Stochastic Game Logic

Christel Baier® Tom4s Brazdil®

bx

Marcus GroBler? Antonin Kucera

nstitut fiir Informatik, Technische Universitit Dresden
PFaculty of Informatics, Masaryk University, Czech Republic
E-mail: {baier,groesser}@tcs.inf.tu-dresden.de, {xbrazdil,kucera}@fi.muni.cz

Abstract

Stochastic game logic (SGL) is a new temporal logic that
combines features of alternating temporal logic (to formal-
ize the individual views and cooperation and reaction fa-
cilities of agents in a multiplayer game), probabilistic com-
putation tree logic and extended temporal logic (to reason
about qualitative and quantitative, linear or branching time
winning objectives). The paper presents the syntax and se-
mantics of SGL and discusses its model checking problem.
The model checking problem of SGL turns out to be unde-
cidable when the strategies are history-dependent. We show
PSPACE completeness for memoryless deterministic strate-
gies and the EXPSPACE upper bound for memoryless ran-
domized strategies. For the qualitative fragment of SGL we
show PSPACE completeness for memoryless strategies.

1. Introduction

In this paper, we introduce Stochastic Game Logic (SGL),
a new formalism aimed at expressing properties of proba-
bilistic multiplayer games. The logic SGL is closely related
to the existing temporal logics such as ECTL [6] and ATL
[1]. The syntax of SGL is rather similar to the one of ATL,
but there is a conceptual difference in the semantics. The
main ingredient of both ATL and SGL is the {A)) opera-
tor, where A is a set of cooperating players (agents). Intu-
itively, the formula (A)® says “there is a strategy for the
agents in A such that the formula ® holds no matter what
the other agents do” . The difference between ATL and SGL
becomes apparent when these operators are nested. To avoid
notation overloading, from now on we use {A)ary to de-
note the ATL version of the operator, and reserve the sim-
pler notation (A} exclusively for SGL.

The ATL semantics relies on the standard CTL-like ap-
proach where all subformulae are interpreted over the “full”

* Supported by the research intent MSM0021622419.

game. For instance, the formula {A) ATLD<>ATL<>p1 as-
serts the existence of a strategy o for the agents in A such
that {B) a7, Op holds (in the "full" game) for all states s that
can be reached when the agents in A make their decisions
according to @, i.e., from these states s the agents in B have
a strategy B in the original game (neglecting the strategy o)
which ensures that a state where p holds is reached. Thus in
ATL a strategy chosen by the {.) a7, operator is not propa-
gated to the inner ATL state formulae. Therefore, properties
stating that a certain agent can react on the choices made by
another agent cannot be formalized in ATL.

Following the approach of [2, 12, 5], the semantics of
the SGL formula {(A)® is defined differently. The oper-
ator ({A)) imposes a binding of the strategy o chosen by
the agents in A in the same way as first-order quantifica-
tion dx¢ binds the variable x. The scope of the binding is
the full formula & including its subformulae. However, the
nested {A’) operators can revise the binding for the agents
in ANA’. In SGL, the {.) operator can be used in combina-
tion with PCTL-like properties [4] that might express qual-
itative or quantitative probability bounds on path-events, or
Boolean combinations thereof. We follow here the concept
of extended temporal logics [18, 15, 6], especially the con-
cept of ECTL [6] and use deterministic Rabin automata to
describe path properties.

With this concept we can formalize typical multiplayer
game properties such as “the agents in A have a strategy
such that whatever strategy the agents in B choose, the
agents in C can react to that strategy so that the winning
condition holds”. This is formalized by SGL formula

(AD||B|I{C) “the winning condition holds”,

where ||B||® = —(B)—®. This property might or might
not be expressible in ATL, depending on the winning con-
dition and whether the game is turn-based or concurrent.
In general, the SGL formulae {A)||B|{C) “win.cond.” and
{(AUC) “win.cond.” and not equivalent, because C’s strate-
gies can depend on B’s decisions.

1 [and ¢ denote the "always" and "eventually" operator, respectively.

For an example that illustrates the usefulness of the re-
vision of a strategy chosen for a formula {A)® by another
{A)) operator inside ®, we consider the following scenario.
A banker or money broker has a certain amount x (say 1
Mio Dollars) to work with. His/her goal is to design a strat-
egy (of buying and selling stock, fixed-term deposit, sub-
scription warrants, etc.) for the upcoming months that guar-
antees with a given probability (e.g. 90) his/her earnings to
become larger than 100.000 Dollars in the next year. On the
other hand, if everything goes haywire, the banker wants
to be able to have at least 120.000 Dollars at his/her dis-
posal within a day, no matter what happens to the rest of the
money.

These are two requirements, that cannot be expressed in
a formula of the kind P-y(...). The second one is rather
a postulation that allows for a change in the strategy of
our banker, which explains the need of the (.) operator in
nested form. Thus the appropriate formula looks like this:

(A) [(T20,9(<>§365(earnings > 100.000)) A
P, (DAY P> (X (available money > 120.000)))}

Here A represents the banker, X represents the
"NextStep" operator and one step corresponds to one day.

Note that except for the probabilistic operator P(.) a for-
mula like the one above can also be expressed in ATL.

Our contribution. This paper introduces a new temporal
logic SGL. This logic provides a uniform framework for
reasoning about qualitative and quantitative properties of
multi-agent systems. We study the decidability and com-
plexity of SGL for various types of strategies. Although
parts of our results rely on known results for stochastic
games with branching time winning objectives [12, 5], to
the best of our knowledge this is the first attempt for defin-
ing an ATL-like logic that can express quantitative (PCTL-
like) properties. Former approaches with ATL-like modali-
ties have been studied by de Alfaro et al, e.g. [10, 9], for
concurrent stochastic games. However, these papers con-
centrate on qualitative properties and they do not consider
Boolean combination of qualitative properties or the nesting
of (.)) operators. From [12, 5] we deduce that SGL model
checking is undecidable for history dependent strategies.
For memoryless randomized strategies we give a reduction
from the model checking problem into the Tarski algebra
which proves the problem to be in EXPSPACE. Moreover,
we show that the model checking problem of SGL for mem-
oryless deterministic strategies as well as the model check-
ing problem of the qualitative fragment of SGL for memo-
ryless strategies is PSPACE complete.

Organization. Section 2 introduces our model of proba-
bilistic multiplayer games (PMG) and related notions. The
syntax and semantics of our logic SGL will be introduced in
Section 3. The model checking problem for SGL on multi-

player games is addressed in Section 4. Section 5 concludes
the paper.

2. Probabilistic multiplayer games

We consider turn-based multiplayer games where in each
state only one agent makes a move.

Definition 2.1. [Probabilistic multiplayer game]
A probabilistic multiplayer game (PMG) is a tuple M =
(Agents,S,—,P,AP, L) where

e Agents = {1,...,n} is a finite set of agents,

e Sis a set of states, disjointly partitioned into
S = Sprop U UaEAgents Sa

e — C SxSis a transition relation?,

P : S, xS — [0,1] is a function such that
YucsP(s,u) = 1 and P(s,r) = 0 iff s 4 ¢ for all
85 € Sprobs

e AP is a finite set of atomic propositions,

e L:S — 2% is a labeling function that assigns to each
state s the set L(s) of atomic proposition p € AP which
hold in s.

We may regard S as a function that assigns to each agent a
aset S, such that S,NS, =0 if a # b. O

The states s € S, are called a-states. The idea is that in
the a-states, it is agents a turn to choose a transition s —
t. In the probabilistic states s € S, the successor state is
chosen randomly according to P.

So far, no restrictions on the cardinality of S have been
made. When addressing the model checking problem, only
finite PMG, i.e., PMG with finite state space, will be con-
sidered.

We write Paths(s) for the set of all sequences sos152... €
S® where so = s and s; — s;1 for all i > 0. We denote by
Succ(s) the set of all successors of s, i.e. Succ(s) = {t €
S| s —t}. For a path T = s9,51,... we denote by () =s;
the j™" state of .

Given a countable set T, let Distr(T) be the set of all
distributions on T, i.e., functions g : T — [0,1] such that
Yoeru(t) =1

For an agent-set A C Agents, we write S4 for (J,c4 S, and
refer to the states s € S4 as A-states.

Definition 2.2. [Strategy]

A history-dependent randomized A-strategy (briefly
HR-strategy, or simply strategy) is a function
o : S*Sy — Distr(S) such that of(sy...s,s)(#) = 0 if
s /> t. An o-path denotes a path sos;s2... which is con-
sistent with o’s decisions, i.e., for all i > 0, s; € Su

2 In the rest of this paper we write s — 7 instead of (s,7) € —.

implies o(so...s;)(si+1) > 0. Strategy o is called mem-
oryless (or an MR-strategy) if a(s;...s,s) = a(s) for
all state-sequences sj...s,. It is called deterministic (or
a HD-strategy) if for all si...s,s € S*Sy4, the distribu-
tion a(s; ...s, s) assigns probability 1 to one successor of s
(and O to the others). An MD-strategy means a determinis-
tic MR-strategy. (I

Given an MR-strategy o, the game M* induced
by o arises from M by fixing the decisions for
the agents in A according to «. Formally, we define
M* = (Agents\ A, S, —* P* AP,L) where

o s —>%tiffse€ Sy and ous)(r) >0,0rs ¢S4 and s — ¢;

o P%(s,t) = as)(r) if s € Sa, and P*(s,t) = P(s,7) if

N € SA.
An analogous definition of M can be provided for HR-
strategies o, in which case we have to deal with the state
space ST (rather than S) for M *. Thus, for HR-strategies
the induced game might be infinite, while M is finite if M
is finite and o0 memoryless.

For notational reasons let 0¢ denote the empty strategy
for the empty agent set.

3. The logic SGL

The logic SGL uses m-regular languages to specify path
properties in the style of the extended computation tree
logic ECTL [6]. These languages are expressed by deter-
ministic Rabin automata.

Definition 3.1. [Deterministic Rabin Automatal]
A deterministic Rabin automaton A4 is a tuple
(Qa 27 Ginit 87 (LivRi);nzl)s where

e () is a finite set of states,

e X is a finite alphabet,

qinir € Q is the initial state,

d: Q0 x X — Qis a transition function and

(Li,Ri),1 <i<m is the acceptance condition where
Li,R; € Q.

Given an infinite word T =Ty, s, ... € £ over the alphabet
X, we call /() = q1,42,93,. .. where g1 = ginir and g1 =
6(gi,m;) the run of 4 for the input word 7. By

lim(r(n)) = {q € Q | q; = q for infinitely many j}

we denote the limit of r(7), i.e., the set of states that occur
infinitely often in r(m). We say that a set of states 7 C Q is
accepting iff there exists an index j € {1,...,m} such that
TNLj#0and TNR; = 0. The language accepted by the
Rabin automaton A4 is defined as

L(4) = {meX®|lim(r(m)) is accepting}.
(]

Stochastic game logic. Our logic, called stochastic game
logic (SGL), borrows ideas from ATL (and the ATL-like
formalisms for stochastic games [10, 9]), extended com-
putation tree logic ECTL [6], and the game logic GL of
[1]. The probabilistic fragment of SGL contains a PCTL-
like probabilistic operator which allows to reason about the
probabilities for w-regular properties, expressed by a deter-
ministic Rabin automaton. This leads to the following ab-
stract syntax for SGL formulae.

®:=p ‘ | A Dy ‘ - ‘ (A)D ‘ P (A1, D)

where p € AP is an atomic proposition, A C Agents a set
of agents, 1 € {<,<,>,>} a comparison operator, and
A €]0,1] a probability bound. 4 is a deterministic Rabin
automaton over the alphabet pAUERUS

Semantics. The formula {A))® requires the existence of an
XY strategy® o, for the A agents, such that the subformula ®
is satisfied in the game induced by a. Thus, P is interpreted
over M%, but decisions already made by o can be changed
by another (B)) operator in @ for the agents in A N B. This
is the crucial difference from the standard ATL-semantics
where the state subformulae of @ are interpreted over the
full game M. As decisions once made by a (.} operator
might be changed by a nested (.)) operator, we need to keep
track on the strategy decisions that have already been made.

The Py (A;Py,...,P;) operator has the standard
PCTL* semantics, meaning that in the current game M%,
for all HR strategies B of the remaining agents, the proba-
bility measure of all paths accepted by the automaton A4 in
the Markov chain (M *)® matches the probability bound A.
Here, a path is accepted by the automaton A4 if its projec-

lae @y, ..., P, are satisfied in each of the states of the path,
isin L(4).

Let M = (Agents, S,—,P,AP, L) be a probabilistic mul-
tiplayer game and XY a class of strategies (i.e., XY is ei-
ther MD, MR, HD, or HR). We define a satisfaction rela-
tion 5,A, 0 =M & where s is a state in M and o is an XY
strategy for A. The intuitive meaning is that s satisfies ® in
the induced game M®. Note that we need to keep track of
the strategy decisions already made. The rules for the sat-
isfaction relation are given in Figure 1. The meaning of the
newly employed symbols is the following:

e o4 \p is the strategy for the agent-set A \ B that co-
incides with strategy o for all paths ending in a state
s E S \SB.

e (a0 < P) denotes the strategy for the agents in AUB
such that the agents in A \ B behave according to the
strategy o and the agents in B behave according to the

3 Here XY stands for MD, MR, HD, or HR.

s,A,a =M p iff pelLs)

5,A, 0 =M Dy A D,y iff s5,A,0 =X @) and 5,4, 00 =M D,

5,A, 0 =M~ iff s,A M @

s,A, 0= (B)® iff there exists an XY-strategy [for B in the PMG

M*A\Bsuch that s,AUB, (o — B) =M &

sAaEY B (2@, By) iff

for all HR-strategies 3 for Agents \ A in the PMG M %

Prob agap ({m € Paths(s) | 3 by € L(A)})k

Figure 1. Semantics of SGL

strategy P, i.e., decisions already made by an agent in
ANB are neglected and a new strategy is chosen. For-
mally, given a path T = s1,...,s,, we put

i { 3 e

2P

o Tyxy € (21K is defined as follows.

~Pp,.. Dy . . M
nA,iﬁc;xyk(’) ={j|m@),A oFxy ®;}.

Given a formula ®, we denote by Sargh (®) the set of states
of M that satisfy @, i.e.,

Satdh (@) = {s € §:5,0,00 =3, D}

Note that the class of strategies for agents that explic-
itly appear in some {.) operator is restricted to XY, while
the remaining agents can always use unrestricted (i.e., HR)
strategies. Intuitively, this is because the remaining agents
are usually interpreted as unpredictable intruders, and hence
their worst possible behaviour must be taken into account.
On the other hand, the strategy for cooperating agents
should be as simple as possible. The results in [2] yield
that the satisfaction relations |=yp, e, Fwp and =y are
pairwise distinct. However, it follows from the results of
[11, 14, 4] that the semantics of the B (4; D1, ..., Py) op-
erator is the same, no matter whether we quantify over all
HR strategies or over all HD strategies for the remaining
agents.

Example 3.2. Since the syntax of SGL does not contain
the standard temporal operators such as “NextStep” (de-
noted X) or “Always” (denoted L), it is worth noting how
to express these operators in SGL. For example, the for-
mula Py (XP1) can be expressed in SGL as B (Ax; 1),
where the Rabin automaton Ay is shown below.

./4 . A1

X " 0.{1}
L 0,{1}

O @<é

Ll = {q3}7 Rl :@

0.{1}

&

The [operator is expressed by a Rabin automaton An

defined as follows.
{1}

An
L1 = {qinit}, Ri =10

Similarly, we can define automata for other temporal oper-
ators such as “Until”, “WeakUntil”, and “Eventually”.

The relationship between SGL and other logics. In this
paragraph we show that formulae of other well-known log-
ics such as CTL, CTL*, PCTL, PCTL*, ATL, etc., can ef-
fectively be translated into SGL.

The standard (non-probabilistic) CTL is expressible in
SGL. CTL is interpreted over labelled transition systems
(Kripke structures) which can be seen as a PMG with no
probabilistic states and only one agent. In the CTL seman-
tics each path quantifier 3,V is interpreted over the “full”
system. Since in SGL strategies chosen by the {{1}})) op-
erator can be overwritten by another ({1}) operator, we
can embed CTL as follows. Given a labelled transition sys-
tem 7 and a CTL formula ®, let ' be the SGL formula
obtained from & by substituting each occurrence of the ex-
istential quantifier 3(.) by {{1})P>1(.), and each occur-
rence of the universal quantifier V(.) by ||{1}||P>1(.), where
|| = ={.)—. Then it holds that Satcr,(®) = Satl;,(P).
Note that @' is not conform to our SGL syntax as it uses
temporal operators like “Always” and “NextStep” instead
of Rabin automata to express path properties. But, as indi-
cated in Example 3.2, the formula @' can be transformed
into an equivalent SGL formula.

The same transformation embeds CTL* into SGL, but in
this case, the SGL formula has to be interpreted over the
HD-semantics. That is, given a CTL* formula &, it holds
that Satcrr+(®) = Sath,(®'). As CTL* uses LTL path
formulae we need more complicated automata as the ones
introduced in example 3.2. However, this does not pose any
real problems as the languages expressible by LTL formulae
are contained in the w-regular languages, and determinis-

tic Rabin automata are as expressive as @-regular languages
[13, 16, 17].

The standard PCTL (interpreted over Markov decision
processes (MDP)) can also be embedded into SGL. Each
Markov decision process M can be seen as a PMG with
only one agent. In PCTL, there are no path quantifiers
like 3 and V. The semantics of the PCTL B, (.) oper-
ator implicitly quantifies over all strategies in the given
MDP M. This is the same as in our SGL semantics. More-
over, given a formula B, (4;®P,...,Dx), the formulae
®y,..., D, are interpreted over the same system as the for-
mula B, (4;®Py,...,P;). Hence, we do not need a trans-
formation from PCTL to SGL as in the CTL case above;
we only need the transformation from LTL path formulae
to Rabin automata. Given a PCTL formula & and an MDP
M, it holds that Satpcrr (®) = Satll,(®). Again, the tem-
poral operators have to be substituted by the appropriate au-
tomata.

Similarly, PCTL* embeds into SGL. Let M
be an MDP and & be a PCTL* formula. Then
Satpcrr+ (CI)) = Sat%D((I))

Remark 3.3. Let M be and MDP (which can be under-
stood as PMG with one agent 1), and let ® be a SGL for-
mula that is obtained from some PCTL* formula in the way
indicated above. In particular, note that ® does not con-
tain the {.)) operator. Assume that ® has nested P (.) op-
erators, so it might look like this: Pup (... Borpr(...)..).
Let @' be the formula obtained from ® by substitut-
ing each occurrence of Py (.) by |{1}|Bep(.).- Then
Satlly (®) = Sat,(®') for each strategy class XY*,
whereas Sattip(®) # Sat¥,(|{1}||®) in general. This
is because although in ®' the |{1}| operator of the out-
ermost Poy (.) operator fixes a strategy for the only agent,
this strategy can be overwritten by the |{1}| opera-
tor of a nested Py (.) operator. Thus, we get the stan-
dard PCTL semantics. On the other hand, the formula
[{1}|® fixes a strategy o by the ||{1}|| operator and eval-
uates the outermost Bup(.) operator on the Markov
chain M®. This means that also the nested Poy(.) op-
erators are evaluated over M% which gives the above
inequality.

Even ATL is expressible in SGL. In standard ATL, the
{.)arL operator is followed by a path formula. The ATL se-
mantics of the formula {(A) 47, @ yields the existence of an
HD strategy for the A-agents such that for all HD strate-
gies of the agents not in A, the path formula ¢ holds for the
unique path that is determined by the chosen strategies. As
already mentioned, the strategy chosen for the A-agents is
not propagated to the subformulae. Given a PMG M with-
out any probabilistic states and an ATL formula ®, let @' be

4 Realize again that ® does not contain any (.) operator.

the SGL formula obtained from & by substituting each oc-
currence of (A)arr¢ by (A)|Agents\ A||P>1(@). It holds
that Satar; (@) = Satjy(®'). The corresponding results
hold also for ATL* and the SGL satisfaction under the HD-
semantics.

In [1], the authors introduce an extension of ATL called
game logic (GL). In contrast to ATL, where the operator
{.Yarr is followed by a path formula and the semantics im-
plicitly quantifies over all paths, the {.}) operator in game
logic can also be followed by an existential path quantifier
3. A formula of the kind ® = (A)(30¢@; A I0@,) is ex-
pressible in GL. @ assert the existence of a strategy o for
the agents in A, such that for some behavior of the remain-
ing agents @ is always true, and for some (possibly dif-
ferent) behavior of the remaining agents ¢, is always true.
Thus, the chosen strategy o is propagated to the inner sub-
formulae. Nevertheless, the semantics of GL does not prop-
agate strategies chosen by (.)) operators to nested {.)) op-
erators. For example, the GL formula {A) (B)® is equiv-
alent to (B))®. Hence, the GL semantics is more alike to
the standard CTL* semantics and differs crucially from our
SGL semantics. Therefore, GL fails to express typical game
properties like “player B can react to the strategy chosen by
player A”.

ATL-like approaches to reason about stochastic games
and qualitative winning objectives have been introduced by
de Alfaro et al [10, 9]. They use ATL-like formulae, such
as (A aimost¥ or {A)positive W, to formalize the existence
of a strategy for agents in A such that the condition speci-
fied by y holds almost surely or with positive probability.
Our framework generalizes these concepts to the quantita-
tive setting and allows to express, e.g., properties asserting
that the agents in A can cooperate so that the probability
of the event specified by Y is within a certain interval, or
so that a Boolean combination of such PCTL-like formulae
holds, no matter how the other agents behave. The ATL-like
formulae {A) aimostW or {A) positive W of [10, 9] are encoded
in SGL by the formulae {A)P_;(y) and {A)P~o(V¥), re-
spectively. However, SGL cannot express the limit operator
(A timit of [10].

4. Model checking SGL

The model checking problem for SGL addresses the ques-
tion whether for a given finite PMG M, a state s of M and
SGL-formula & it holds that s € Sat% (®) for a given strat-
egy class XY. We first state our main result:

Theorem 4.1. The SGL model checking problem is
e undecidable for HD and HR semantics;
o PSPACE-complete for MD semantics;
e PSPACE-hard and in EXPSPACE for MR semantics.

For the qualitative fragment® of SGL and MR semantics, the
model-checking problem is PSPACE-complete.

The undecidability result for history-dependent strate-
gies follows from the undecidability result for 1%-player
games and PCTL stated in [5]. More precisely, [5] yields
the undecidability of the model checking problem for PMG
with a singleton agent set {a} and SGL formulae of the form
{a})® where ® is a PCTL formula.

We now turn to the proof of the decidability of the SGL
model checking problem for the MR semantics. For this we
extend the results of [12] on the MR-controller synthesis for
MDPs (viewed as lé-player games) and PCTL specifica-
tions by showing that the model checking problem for SGL
with MR semantics can effectively be encoded by closed
formulae of (R, *,+,<). The EXPSPACE upper bound is
then obtained by analyzing the size of the resulting formula
of (R,*,+,<).

The major difficulty lies in the treatment of nested (-)
operators. This requires an appropriate representation of
the induced games that serve to evaluate subformulae in
the scope of a given {-) operator. Moreover, in the encod-
ing that we provide, we assume that the set of probabilistic
states S0 is empty. This is no restriction, as every PMG
M = (Agents, S,—,P,AP,L) and every SGL formula ® can
efficiently be transformed into a PMG M’ and a SGL for-
mula @ where M’ does not have any probabilistic states
and

Satle (@) = Sat)e(d).

This transformation works as follows. We add a new agent
PROB that controls the former probabilistic states, i.e.,
M’ = (Agents’,S’,—, P’ AP’ L"), where

o §' =S, where Sprop = Sprop and S, = S, for every

agent a # PROB (hence, S;mb =0),

e Agents’ = Agents U { PROB},
o P=0,
e AP =APUS,

o L'(s) =L(s)U{s}

The formula &' looks as follows:

@' = (PROB) (@ A\ P=1(0O(s = Pp(y)(X1))))
$€Sprop
t€8Succ(s)
Here [J denotes the “Always” operator and X denotes the
“NextStep” operator. Note that in M’, each state s € S is
also an atomic proposition. Thus, the above transformation
just adds a new agent PROB for the probabilistic states of S
(and views those states as non-probabilistic ones in S') and

5 The qualitative fragment of SGL is obtained by restricting the syntax
of the B, (.) operator so that it can only use the probability bounds
>0or>1.

requires in @’ that whenever a state s € Sy is visited, the
agent PROB chooses a successor 7 € Succ(s) with the prob-
ability that the transition s — 7 had in M. It is easy to see
that Sarjk (@) = Sar)k(®') (note that there is no appli-
cation of {PROB) in the formula ®). In SGL syntax, @' is
written as

@' = (PROB) (@ A N\ Po1(A:@™)),
S€S prob
teSucc(s)
where @ = (s = P_p(sy) (Ax;t)) and the automata
An and Ay are as shown in Example 3.2. Thus, in the fol-
lowing we assume that the given PMG has no probabilistic
states.

Let M = (Agents,S,—,P,AP,L) be a finite PMG and
® a SGL formula. According to the semantics of SGL,
we need a formalism to handle the satisfaction relation
LA O):ﬂ’,{ for SGL formulae where o is an MR-strategy
for the agent set A. Thus, we need to keep track of the
set A of agents that have already chosen a strategy. This
strategy will be encoded by first-order variables Y;_,; for
§ € Sa,t € Succ(s). The variable Y;_,, represents the prob-
ability ou(s)(r) with which the strategy o chooses the s-
successor f.

Following the semantics, we inductively define first or-
der formulae t¢ (s, ®) over (R, *,+, <) such that T¢(s, D) is
valid iff s,C,y):1?/1[13 &, where the strategy 7y is given by the
values of the variables Y;_,, for s € S¢,t € Succ(s). Thus,

s € Sarjly (@) iff To(s, D) is valid.

The definition of T¢ (s, ®) is given in Figure 2.

The cases when @ is an atomic proposition, a conjunc-
tion or a negation are obvious. In the case when ® = (A) P/,
the formula t¢ (s, {A)P’) existentially quantifies over the
variables Y,_,, for t € S4,u € Succ(t), requiring that the
choice of the Y,_,, represents a strategy for the agent set
A and that with this choice, the formula Ty (s, P’) holds.
Note that if CNA # 0, then CNA strategies chosen in an ear-
lier phase will be overwritten by the new choice of the ¥;_,,,
variables.

The most complicated case is ® = Py (4;Dy,..., D).
First, let us explain how we could effectively solve the
problem whether s,A,):Z‘,,’[R @ for a given set of agents
A C Agents and a given A-strategy o. Let us assume that the
sets Sarpe (®,A4,0) = {s € S | 5,A, 0 =gk ;3,1 < j <k
are known. The semantics requires that for all MR strate-
gies B for the remaining agents & A it holds that the
set of all paths in M® that start in s and are accepted
by the deterministic Rabin automaton A4 has prob-
ability <A in (M*)B. We denote by M* x 4 the
standard product of the PMG M* and the automa-
ton 4, ie., if 4 = (Q72{1*“'*k},qini,,6, (Li,Ri)!;), then
M x A= (SxQ,—gaxq, P *?), where

true,if p € L(s)
‘Cc(s7¢)1) A ‘Ec(sﬁbz)
- TC(qu))

)
>

o
s
Il

u€Suce(r)

a
a
AT A
J
)
=
Il

3 1eSy)’t*)u- [TcuA(S,q)) A

A (0<Y—u<
teSy ucSucc(t)

1)/\ /\(Z Yt~>u:1)]

te€Sy ucSucc(t)

TC s,Tq;h(ﬂ(QDI, 7¢‘k))) = B th> Hzes AEth queg A(q, 7p)
1<i<k
A [Xm» =lotw@®)] A A [AEG =1 ffte(q)] A
reS,1<i<k teS,qeQ
[A(g;t,p) €{0,1} A (Alg,t,p) =1V (/\iEIXt,CIJ[= 1A NgXew, # 1))]
q,p€Q1ES {1,
S(ql) n
Jies Zi g [(solutionc(Z) AVies Z{ 4. [solutionc(Z') — N\ Zig<Z] } Zs gz S ?\.H
<@ ace reS,qeQ
solutionc(Z) = AN [0<SZy<INAEC3=1—Z4=1)] A (i)
teS,qeQ))
A [(AECiq # 1 AA(q,t,p) =1) — Z1g>Zup | A (ii)
1eS\Sc ueSucc(r)
4,00
A [Zt,q = Y Yi—u 'A(%tap) “Zup] (ii1)
t€Sc,qe0 u€Succ(t),peQ
ffg"cb%(so,PO) = Jies Wrp Jrues, gpeo R<t ><ug>-
peQ 0<n<|S||0| P 4
{Wso,m =1A A [Wp=1AYu>0AApt,g)=1) = Wig=1] A M
/escf:iecsgrr(z)
<I|S|-
[(VVt.p =1 /\vvu,q = 1) - Rzl,[‘z‘>Q<‘u‘q> =1 } A (ID
1,u€s,p,qeQ
V [(VWp=D)A A Wp=0]A (11D
1<i<m 1;:, pet(;)}&’
1 1
A (Rét,p><u,q> =1l<Alpt,g=1)A A (Rét,p><u.q> =1=A(p,t,q) =1 A Yoy >0) A
teS\Sc ueSucc(t) teSc ueSucc(r)
P-qeQ P.q€Q

[<n+l1
1,u€S,p.geQ - 0<n<|s|-|0|

_ <n _
<t,p><ug> = I [R<t.p><u,q> =1V

(WV,V =1A R§2p><v7r> =1 ANA(rvg) =1)V

ves\Sc.ueSuce(v)
reQ

veSc ueSuce(v)
reQ

Vo Wy =1 AR pocys =1 AA(RYg) =1 A Yy >0)]H

Figure 2. Inductive definition of the formula t¢ (s, ®).

yeerr®,
o (5,p) —graxg (t,q) iff s %7 and S(p,sA‘aMR") q°

o P A((s,p), (t,9)) = auls) (1)

We view M* x 4 as a Markov decision process (MDP).
The states (s, p) where s € S4 are purely probabilistic and
all other states are purely nondeterministic. Let AEC denote
the set of states of M* x A4 that are contained in an accept-
ing end component with the acceptance condition being a
Rabin condition with the pairs (S x L;,S x R;)!" ;. Here, an
end component in MY x 4 is a set of states U C § x Q such
that

(D) for every (s,p) € U such that s € S¢ and every 7 € §
such that Y(s)(z) > 0 we have that (¢,8(p,L(s))) € U.

6 RememberthatsAuMR ={j|sA 0=

This means that U is closed under the probabilistic
choice imposed by the strategy .

(II) U is strongly connected, i.e., for each pair of states
of U we have that the first state is reachable from the
second state by a finite path leading only through the
states of U.

An end component is accepting if it satisfies the given ac-
ceptance condition.

It is well known [4, 7] that 5,A, &t =3 @ iff 2(; 4,.) <A,
where the (z(y,4))ses.qeo form the least solution of the fol-
lowing system of inequalities.

Z(s,q) = | forall (s,q) € AEC ()

Usq) = 2t,p) if s € Sa and (t,p) € Succ((s,q)) (i1)

ofs)(r) -

L(s,q) = Y Z(t,p) if s € Sy (iii)

(t,p)€Succ((s,9))

Our encoding into (R,*,+,<) simulates the above
method. Let us have a closer look at the formula
(s, Py (A; Py, ..., Py)). First, we existentially quan-
tify over the variables Xi0,,t € 5,1 <i < k. These vari-
ables indicate whether ¢,C,y |:191‘,,{R ®;, where y is rep-
resented by the variables Y;_,,,t € Sc,u € Succ(t). The
subformula (X; o, = 1 < 1tc(¢,®P;)) serves for this pur-
pose. Then we existentially quantify over the variables
AEC; 4,t € S,q € Q, indicating whether (r,q) is con-
tained in an accepting end component. Last but not least we
existentially quantify over the variables A(g,t,p) encod-
ing the transition relation in 4. If the automaton A moves
from the state ¢ to the state p when reading 7 " %k then
A(g,t,p) = 1; otherwise, A(g,t,p) =0 (Agam y is repre-
sented by the variables Y;_.,,t € Sc,u € Succ(t).) Having
set the conditions for X; ¢,,AEC; 4, and A(g,t,p), we ex-
istentially quantify over the variables Z; 4,7 € S,q € O
requiring that they not only form a solution of the sys-
tem of inequalities, but also form the least solution. At
last, the formula tc(s,Pqy(A;Py,...,Pk)) requires that
ZSa‘Iim‘t d A.

The formula fg’é’%(so, po) evaluates to true iff the state
(s0,q0) in MY x 4 is contained in some end component
that satisfies the acceptance condition of the Rabin automa-
ton A. We quantify over the variables W, ,,t € S, p € Q that
serve to indicate whether (7, p) is contained in some accept-
ing end component and the variables RE;’ p>,<ug> that in-
dicate whether the state (u,q) is reachable from the state
(¢, p) within the end component represented by the choice
of W; p,t € S,p € Q in at most n steps. In Figure 2, for-
mula (IIT) serves to ensure that the end component satisfies
the Rabin acceptance condition.

The formula T¢(s,P), where @ is an application of the
probability operator %, (. ..) has only been defined for up-
per probability bounds, i.e., <t € {<,<}. For the definition
of tc(s, Poy(4;®1,...,P;) where > € {>,>} we use the
duality

S7A7(X‘):AmfR TE}L(ﬂ’(_b) — S7A,(X ':/%I/[R ?ﬂl—x(ﬁ;(i))u

where (>,4) € {(>,<),(>,<)}, 4 is the comple-
ment automaton of 4, and & abbreviates ®p,..., Py.
In our case, A4 is a deterministic Rabin automaton
(Q,Z{1 ~~~~ kY Ginir, S, (Li,R)™,), therefore the deterministic
Streett automaton Asyeerr = (0,28 ginir, 8, (Liy R,
accepts the complement language of 4. Hence, the for-
mula Py (...) is alike to the formula P (...) except for
the subformula B

AEC, =1 ffggegf(q).

and the threshold condition
Zs init ﬂ 1 - 7\’

a
Furthermore, fy g (¢,

/ﬁgg’"g(t q) where only the acceptance condition (III) is

changed to the Streett acceptance

N [V Wop=1) = (V W, =1)].

1<i<m PEL; PER;
tes tes

q) is a variant of the formula

The following lemma states the correctness of our con-
struction:

Lemma 4.2 (Correctness). Let A C Agents and let o, be a
MR-strategy for A. Then s,A, o, Iz,{‘,,{R D iffta(s, D) evaluates
to true when the variables Ys;,s € Sa,t € Succ(s) are inter-
preted by o(s)(t). In particular; s € Saty(®) iff To(s,) is
valid.

Proof. By induction on the structure of ® using the previ-
ous explanations. O

A direct corollary to Lemma 4.2 is the following:

Corollary 4.3. The SGL model checking problem with the
MR-semantics is in EXPSPACE.

Proof. Although the quantifier alternation depth in tp (s, P)
is not bounded by a fixed constant, its size is still polyno-
mial in the size of ®. Hence, we can apply the result of
[3] which says that (IR, x,+, <) is decidable in exponential
space. O

Proposition 4.4. The model checking problem of SGL is
PSPACE-hard for memoryless strategies.

Proof. We show the PSPACE-hardness by reducing QSAT,
the satisfaction problem for fully quantified Boolean formu-
lae (QBF) to our model checking problem. Let

¢ = JxVxodxs... I, QcnF

be a QBF in prenex normal form, where Qcyr is a propo-
sitional formula over the variables xi,...,x, in conjunctive
normal form, i.e,, @cyr = c1 A ... Acg with ¢; being a dis-
junction of literals in {xj,...,X,, 7x],..., X, }. We define a

PMG M as follows.
(D () O,
OO BB S
D)
,n,n+1} and each agent i <n

The set of agents is {1,2,...

controls exactly the state s;. The agent n+ 1 controls the de-
terministic states 7, x;, —x;. The set of atomic propositions is
AP = {xi,... ,—, } and each literal state is la-
belled with the corresponding atomic proposition. Let

y Xy XLy e

@ = (2] (n)

n

[A (21 (0m) V2 (0-m)) A A PofO))]

i=1 j=1
i odd]

It holds that ¢ is valid iff s; € Saryl, (®) for any strat-
egy type XY in {MD,MR}. Here { denotes the “eventu-
ally” operator and ||.|| stands for ={.})—

The qualitative fragment of SGL is obtained by restrict-
ing the syntax of SGL such that the B, (.) operator is only
used with the probability bounds > 0 or > 1.

Proposition 4.5. The model checking problem for the qual-
itative fragment of SGL is PSPACE-complete for the MR
and MD strategy semantics.

Proof. PSPACE-hardness follows from the proof of Propo-
sition 4.4. The membership to PSPACE follows from a
closer analysis of Algorithm 1 that solves the model check-
ing problem for the qualitative fragment of SGL and MR
semantics. Note that for the qualitative fragment of SGL,
the exact probabilities in the PMG M do not matter (as we
are only dealing with finite systems). Just the topology of
the underlying graph (a transition is taken with probability
zero or with positive probability) is of importance. Thus,
given an MR-strategy o for an agent set A, it is only impor-
tant which transitions are chosen with a positive probabil-
ity by a. Therefore, we declare two MR-strategies o and o
for the agent set A as equivalent if and only if the follow-
ing holds.

a(s)(r) # 0« a(s)(t) # 0

The corresponding equivalence classes are called sym-
bolic MR-strategies. There are exponentially many sym-
bolic MR-strategies for A (in the size of M), denoted
MR‘S“ymb. Hence, when the formula & is an applica-
tion of the {.)) operator, the FOR loop in the algorithm
might loop exponentially often. However, the recur-
sion depth of the algorithm is bounded by the length of
the formula on input. Having computed the 7;’s, the com-
putation of SatM(Tm;b(ﬂl;(I)l,...,<I>k),A,0c) can be done
by simple graph algorithms on the product M* x 4 (see
[8, 17, 7]). Thus, we obtain the PSPACE upper bound
for the MR semantics. Note that Algorithm 1 also works
for MD-strategies. A symbolic MD-strategy contains ex-
actly one MD-strategy, so in this case the FOR loop ranges
over all MD-strategies for B. O

Vs e Sa,t €8

Proposition 4.6. The SGL model checking problem is
PSPACE complete for the MD semantics.

Proof. PSPACE-hardness was shown in Proposition 4.4.
The membership to PSPACE is obtained by a slight mod-
ification of Algorithm 1. As we are dealing with MD-
strategies, let the FOR loop (in the case of the (.} oper-

Algorithm 1 Sar™ (®,A, o)

Input: PMG M, qualitative SGL formula ®, set of agents A, o a
symbolic MR strategy for A
Output: set of all s € S such that s,A, o |:A9‘fR P

CASE & is
p : return {s€S:peL(s)};
D ND, return SalM(Cbl,A,Ot)ﬂSatM((Dz,A,OL);
-/ . return S\ Sat™ (@', A, 1)
(Byo' T:=0
FOR ALL 8 € MR}, DO
T:=T U Sat™ (¥, AUB,a.— P)
oD
return T’

ka(ﬂ;q)l,...,q)k) (* D<l7\,€{>0,:1} *)
: FORi=1TO kDO
T; = Sar™ (@;,A, 1)
oD
apply graph algorithm to compute the set
T={s|sAaE=l By (2®,...,)}
: return T
END CASE

ator) range over all MD-strategies. In the case when @ =
Py (A; Py, ..., D) we use the following procedure.

?Dqk(ﬂ;q)l gous ,(Dk)
: FORi=1TO kDO
T; = Sar™ (@;,A,)
[0))]
solve linear programming problem to compute
the set T of states s such that

5, A0 =30 By (2D, ..., DY)
return T

The linear programming problem consists of the sys-
tem of inequalities (i), (ii) and (iii) described earlier in
this section’. Gaining the least (resp. the greatest) so-
lution of the system of inequalities is achieved by us-
ing an appropriate objective function. Having computed the
T’s, Sat™ (B (A; Py, ..., ®y),A, 1) is computable in time
polynomial in the size of M and 4. The PSPACE mem-
bership follows as the recursion depth of the algorithm is
bounded by the length of the formula on input. [

5. Conclusion

We introduced a new stochastic game logic (SGL) inter-
preted over probabilistic multiplayer games (PMG). It com-
bines features of alternating time logic (ATL), probabilistic
computation tree logic and extended temporal logics. Our

7 Of course, only if >1 € {<,<}. For < € {>,>} everything can easily
be adapted.

logic uses an existential strategy quantifier {.)) that, unlike
in ATL, propagates the chosen strategies to the subformu-
lae. This enables us to state game properties like "player B
can react to the strategy chosen by player A". Whereas the
ATL model checking problem is known to be solvable in
PTIME [1], modifying the semantics of the (.)) operator so
that the strategy decisions are propagated to the subformu-
lae makes the model checking problem PSPACE-hard. In
this paper we established the following results.

The model-checking problem for finite state PMG and
general SGL is

e undecidable for HR and HD strategies,
o PSPACE-complete for MD strategies,
e PSPACE-hard and in EXPSPACE for MR strategies.

The model-checking problem for finite state MPG and
the qualitative fragment of SGL is

o PSPACE-complete for MD and MR strategies

The decidability of the qualitative fragment of SGL with re-
spect to history dependent strategies remains open.

References

[1] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman.
Alternating-time temporal logic. Journal of the ACM,
49:672-713, 2002.

[2] C. Baier, M. GroBer, M. Leucker, F. Ciesinski, and B. Bol-
lig. Controller synthesis for probabilistic systems. In IFIP
Worldcongress, Theoretical Computer Science, 2004.

[3] Michael Ben-Or, Dexter Kozen, and John Reif. The com-
plexity of elementary algebra and geometry. J. Comput. Syst.
Sci., 32(2):251-264, 1986.

[4] Bianco and de Alfaro. Model checking of probabilistic and
nondeterministic systems. In Proc. FSTTCS, volume 15 of
Lecture Notes in Computer Science, pages 499-513, 1995.

[5] Tomds Brazdil, Viclav BroZek, Vojtéch Forejt, and Antonin
Kucera. Stochastic games with branching-time winning
objectives. In Proc. LICS. IEEE Computer Society Press
(to appear), 2006.

[6] Edmund M. Clarke, Orna Grumberg, and Robert P. Kurshan.
A synthesis of two approaches for verifying finite state con-
current systems. J. Log. Comput., 2(5):605-618, 1992.

[7] Costas Courcoubetis and Mihalis Yannakakis. The com-
plexity of probabilistic verification. Journal of the ACM,
42(4):857-907, July 1995.

[8] Luca de Alfaro. Formal verification of probabilistic systems.
Thesis CS-TR-98-1601, Stanford University, Department of
Computer Science, June 1998.

[9] Luca de Alfaro and Thomas A. Henzinger. Concurrent
omega-regular games. In Proc. LICS, pages 141-154, 2000.

[10] Luca de Alfaro, Thomas A. Henzinger, and Orna Kupfer-
man. Concurrent reachability games. In IEEE Symposium on
Foundations of Computer Science (FOCS), pages 564-575,
1998.

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

Sergiu Hart, Micha Sharir, and Amir Pnueli. Termination
of probabilistic concurrent programs. ACM Transactions on
Programming Languages and Systems (TOPLAS), 5(3):356—
380, July 1983.

Antoni Kucera and Oldfich StraZovsky. On the controller
synthesis for finite-state Markov decision processes. In Proc.
FSTTCS, volume 3821 of Lecture Notes in Computer Sci-
ence, pages 541-552, 2005.

Shmuel Safra. On the complexity of w-automata. In 29th An-
nual Symposium on Foundations of Computer Science, pages
319-327, White Plains, New York, 24-26 October 1988.
IEEE.

R. Segala and N. Lynch. Probabilistic simulations for prob-
abilistic processes. Lecture Notes in Computer Science,
836:481-496, 1994.
Wolfgang Thomas.
omega-languages.
354:690-713, 1988.
Wolfgang Thomas. Automata on infinite objects. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Sci-
ence, chapter 4, pages 133-191. Elsevier Science Publish-
ers B. V., 1990.

Moshe Y. Vardi. Probabilistic linear-time model checking:
An overview of the automata-theoretic approach. Lecture
Notes in Computer Science, 1601:265-276, 1999.

Moshe Y. Vardi and Pierre Wolper. Yet another process logic
(preliminary version). Lecture Notes in Computer Science,
164:501-512, 1983.

Computation tree logic and regular
Lecture Notes in Computer Science,

