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1 Introduction

Quantitative properties, such as real-time and resource consumption, are essential
in embedded system design. Hence, a wide variety of verification frameworks have
been developed for the verification and validation of quantitative system aspects;
we mention timed automata [3], probabilistic CTL [17], hybrid bisimularity [18].

However, the analysis within these frameworks is still boolean: either a timed
automaton satisfies a property or not; two hybrid automata are either bisimilar
or they are not. A boolean approach to quantitative system analysis suffers from
the drawback of being fragile: small pertubations in the values within the system
description may lead to opposite truth values for the satisfaction of a property.
This is problematic, since the system values are usually only known approximately,
because they are often obtained by measurement, learning or educated guesses.

To circumvent this problem, quantitative methods for quantitative system anal-
ysis have been proposed [5,6,8,13]. These approaches are based on quantitative
logics and quantitative system relations: whereas boolean logics indicate whether
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a property holds for a system or not, quantitative logics express to what extend
a property hold for a system; whereas (boolean) bisimulations indicate whether or
not two systems are equivalent, quantitative system relations (or distances) measure
how similar two systems are. More specifically, [6] introduces QCtl, a quantitive
analogon of Ctl, together with model checking procedures for it. [5] considers QLtl,
a quantitive analogon of Ltl, and a quantitative µ-calculus and characterizes these
by quantitative versions of trace equivalence and bisimilarlity, respectively.

This paper continues the quest for quantitative verification and provides model
checking procedures for QLtl over quantitative transition systems (QTSs) and quan-
titative Markov chains (QMCs). QTSs and QMCs are resp. Kripke structures and
Markov Chains whose atomic propositions have values in [0, 1], rather than in {0, 1}.
We also extend QLtl with a quantitative until operator, which is not present in [5].

Our model checking procedure generalizes the classical Ltl model checking al-
gorithms and constructs a Büchi automaton Aϕ for each QLtl formula ϕ.

As the classical Ltl model checking algorithm, our procedure constructs a Büchi
automaton Aϕ for each QLtl formula ϕ. Our constructon of Aϕ bears many simi-
larities to the Ltl case: Recall that, for Ltl, each state q in Aϕ is a subset of the
closure of ϕ, which, roughly speaking, contains all subformulas of ϕ. In our case,
each state q in Aϕ assigns a value γ(ψ) (from a finite subset of [0, 1]) to each formula
ψ in the closure of ϕ. The correctness of this construction heavily relies on the fact
that the Büchi conditions for the boolean until operator immediately generalize to
the quantitative case: for each formula ψ1 Uψ2 in the closure of ϕ, we require that
a trace accepted by Aϕ hits infinitely many times a state where γ(ψ1 Uψ2) = γ(ψ2).
On the other hand, there are also several striking differences in the model checking
algorithms for Ltl and QLtl. As an example, when model checking ϕ over a QTS
S, we consider S ×Aϕ, rather than S ×A¬ϕ, hence avoiding any complementation
operation. Indeed, contrary to the LTL case, we do not test whether all the exe-
cutions satisfy the property, but rather compute the minimal value for which the
property is satisfied. The later can only be done by combining the automaton and
the system, looking for the minimal among all the accepting executions.

We show that for Markov chains, the model checking problem for QLtl reduces
to the one for the Ltl case, and that it has no additional cost. One interesting aspect
of our approach is that the automaton Aϕ we build is separated, i.e. all states accept
disjoint languages. Following [11], this allows to avoid the use of Rabin automata,
matching the well-known single exponential complexity bound proposed in [12].

Finally, we conclude the paper with several open problems and extensions. First,
we state that the model checking procedure for QLtl over quantitative Markov
decision processes is still partially open. Indeed, as for Markov chains, we show that
this problem can be reduced to the model checking problem for Ltl over Markov
decision process. However, contrary to the Markov chain case, this reduction has
an exponential cost. We also consider three extensions of QLtl. First, we deal
with the logic QCtl∗, which is obtained by adding path quantifiers ∃ and ∀ to
QLtl. By interpreting the path quantifiers as in [6], we obtain that, on QMCs,
model checking QCtl∗ is directly equivalent to model checking QLtl, while on
QTSs it can be reduced to model checking QLtl. Further extensions include one
where temporal operators are equipped with discount factors, and the another one
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featuring a long-run average operator. Model checking procedures for those two
extensions is open, and the paper clearly states where the difficulties are.

Organization of the paper. In Section 2, we briefly recall some theory on au-
tomata over infinite words. Section 3 introduces QTS and QMC models, Section 4
presents the logic QLtl, while Section 5 treats our model checking algorithms.
Then, we present in Section 6 several extensions to the theory and in Section 7
some conclusions.

2 Background on Infinite-Word Automata

We suppose the reader familiar with the theory of finite-word automata. We recall
basic notions and definitions concerning infinite words and infinite-word automata.
An infinite word (or ω-word) w over an alphabet Σ is a mapping w : N→Σ. The
set of infinite words over Σ is denoted Σω.

We consider sets of infinite words that can be represented by automata. For-
mally, an infinite-word automaton is a tuple A = (Σ, Q,Q0, ρ, F ), where Σ is a finite
alphabet, Q is a finite set of states, Q0 is a set of initial states, ρ : Q × Σ → 2Q

is a nondeterministic transition function, and F is an acceptance condition. The
automaton A is said to be deterministic iff |ρ(q, a)| = 1 for each a ∈ Σ, q ∈ Q. A
run π of A on an infinite word w is a mapping π : N→ Q, with π(0) ∈ Q0, and for
all i ≥ 0, π(i+ 1) ∈ ρ(π(i), w(i)).

Acceptance of a run π is defined in terms of the set of states that occur infinitely
often in π. This set is denoted by inf (π). We consider the following types of
acceptance conditions.

• A Büchi condition is a set F ⊆ Q of accepting states. A set T ⊆ Q is accepting
for the Büchi condition if T ∩ F 6= ∅.

• A generalized Büchi condition condition is a subset F of 2Q. A set T ⊆ Q is
accepting for the generalized Büchi condition iff for each Fi ∈ F , T ∩ Fi 6= ∅.

• A Rabin condition is a subset F of 2Q×2Q, i.e., it is a collection of pairs of sets
of states, written [(L1, U1). . .(Ln, Un)]. A set T ⊆ Q is accepting for the Rabin
condition if T ∩ Li 6= ∅ and T ∩ Ui = ∅ for some i.

A Büchi (resp. generalized Büchi, Rabin) automaton A is an automaton on infi-
nite words with a Büchi (resp. a generalized Büchi, a Rabin) acceptance condition.
A word w is accepted by A if there exists a run π on w such that the set inf (π)
is accepting with respect to the Büchi (resp. generalized Büchi, Rabin) condition.
The set of infinite words accepted by A is called the language of A and is denoted
by L(A). We denote by LQx(A) the language accepted by A when considering Qx
to be the set of initial states. The automaton A is separated iff for each q, q′ ∈ Q
such that q 6= q′, it holds L{q}(A) ∩ L{q′}(A) = ∅.

Büchi condition is a special case of both generalized Büchi and Rabin conditions.
Hence, Büchi automata are not more expressive than generalized Büchi and Rabin
automata. The opposite direction also holds.

It is well known that finite-word automata are closed under determinization.
When working with infinite-word automata, this closure property may not hold.

3



Faella, Legay, Stoelinga

As an example, Büchi and generalized Büchi automata are not closed under deter-
minization. On the other hand, Rabin automata are closed under determinization.
The following theorem is known to have a significant impact in many automata-
based model checking algorithms.

Theorem 2.1 Given a Büchi automaton A, there is a deterministic Rabin automa-
ton A′ such that L(A) = L(A′).

Theorem 2.1 was first stated in [21], where a doubly exponential construction
was provided. This was improved in [23], where a singly exponential, with an almost
linear exponent, construction was provided (if A has n states, then A′ has 2O(n logn)

states and O(n) pairs in its acceptance condition).

3 Models

3.1 Basic Definitions

We introduce some notations that will be used throughout the rest of the paper.
For two real numbers u1 and u2, we write u1 t u2 for max{u1, u2} , and u1 u u2 for
min{u1, u2}. Given a set E and a sequence π = e0e1e2 · · · ∈ Eω, we write πi for the
i−th element ei of π, and we write πi = eiei+1ei+2 . . . for the (infinite) suffix of π
starting from πi. Let Σ be a finite set and X ⊆ [0, 1], we denote by vals(Σ, X) the
set of all functions from Σ to X. All elements of vals(Σ, X) are called Σ-valuations.
We denote by trac(Σ, X) the set of infinite sequences of valuations from vals(Σ, X).
All elements of trac(Σ, X) are called Σ-traces.

3.2 Quantitative Transition Systems

A quantitative transition system (QTS for short) S = (Σ, S, δ, [·]) consists of a set
Σ of atomic propositions, a finite set S of states, a transition relation δ ⊆ S × S,
which assigns to each state a nonempty set of successor states, and a function [·]:
S → (Σ → [0, 1]) which assigns to each state s ∈ S and proposition r ∈ Σ a
real value [s](r). The size of S is given by its number of transitions. We denote
by V(S) the set of all values taken by the atomic propositions in any state of
S. In addition, for each such value x, 1 − x also belongs to V(S). Formally,
V(S) = {[s](r) | s ∈ S, r ∈ Σ} ∪ {1− [s](r) | s ∈ S, r ∈ Σ}.

A path in S is an infinite sequence π = s0s1s2 . . . of states such that (si, si+1) ∈ δ
for all i ∈ N. Given a state s, we write pts(s) for the set of all paths starting in
s. Every path π in S induces the Σ-trace [π] = [π0][π1][π2] . . . . With an abuse of
notation, we write trac(s) = {[π] | π ∈ pts(s)} for the set of Σ-traces from s ∈ S.
Notice that trac(s) ⊆ trac(Σ, [0, 1]).

3.3 Quantitative Markov Chains

Given a finite set S, a probability distribution on S is a function µ : S → [0, 1] such
that

∑
s∈S µ(s) = 1. We denote by D(S) the set of all probability distributions on S.

A quantitative Markov chain (QMC for short) S = (Σ, S,∆, [·]) consists of a set Σ of
atomic propositions, a finite set S of states, a transition relation ∆ : S → D(S), and
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a function [·] : S → (Σ→ [0, 1]). The size of S is given by |S|2. A QMC (Σ, S,∆, [·])
induces a QTS (Σ, S, δ, [·]), where δ = {(s, t) ∈ S2 | ∆(s)(t) > 0}. Definitions for
paths and traces in a QMC are identical to those for the corresponding QTS.

A quantitative Markov chain together with an initial state s gives rise to a
probability space (trac(s),B,Prs), where B is the set of measurable subsets of trac(s),
and Prs is the uniquely induced probability measure (see [10] for an introduction).
Given a random variable X over this probability space, we denote its expected value
by Es[X].

When discussing the complexity of algorithms taking a QMC as input, we assume
that transition probabilities are encoded as fixed-precision numbers, and therefore
that arithmetic operations and comparisons take constant time.

4 Quantitative LTL

In this section we introduce Quantitative Linear Temporal Logic (QLtl for short),
a quantitative version of the Linear Temporal Logic (Ltl for short) introduced in
[22].

4.1 Syntax

Let Σ be a set of atomic propositions. The QLtl formulas over Σ are generated by
the following grammar:

ϕ ::= r | t | f | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | ϕUϕ | ϕ Ũϕ | eϕ | 3ϕ | 2ϕ
where r ∈ Σ. The operators U , Ũ , 3, and 2 are the temporal operators. The
syntax of QLtl is therefore the same as the one of Ltl.

4.2 Semantics

Here r ∈ Σ is an atomic proposition. A QLtl formula ϕ over Σ assigns a value
[[ϕ]](σ) to each Σ−trace σ as follows.

[[r]](σ) = σ0(r) [[¬ϕ]](σ) = 1− [[ϕ]](σ) [[ eϕ]](σ) = [[ϕ]](σ1)

[[t]](σ) = 1 [[ϕ ∨ ψ]](σ) = [[ϕ]](σ) t [[ψ]](σ) [[3ϕ]](σ) = supi≥0 [[ϕ]](σi)

[[f]](σ) = 0 [[ϕ ∧ ψ]](σ) = [[ϕ]](σ) u [[ψ]](σ) [[2ϕ]](σ) = infi≥0 [[ϕ]](σi)

[[ϕUψ]](σ) = supi≥0

(
[[ϕ]](σ0) u · · · u [[ϕ]](σi−1) u [[ψ]](σi)

)
[[ϕ Ũψ]](σ) = infi≥0

(
[[ϕ]](σ0) t · · · t [[ϕ]](σi−1) t [[ψ]](σi)

)
.

The semantics of QLtl is a proper extension of the one of Ltl, in the following
sense. If the value of all atomic propositions at all positions of a trace is either 0 or
1 (i.e., if the trace Boolean), then the value of a QLtl formula ϕ on such trace is
the same of the value of ϕ on that trace, if ϕ is interpreted as an Ltl formula, 0 is
interpreted as false and 1 as true.
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We observe that the following classical equivalences hold:

[[2ϕ]](σ) = [[f Ũϕ]](σ) [[3ϕ]](σ) = [[tUϕ]](σ).

In the logic we have defined, negation can be applied to any subformula. However,
any QLtl formula is equivalent to a formula where negation is only applied to atomic
propositions, according to the following equivalences.

[[¬(ϕ1 Uϕ2)]](σ) = [[(¬ϕ1) Ũ(¬ϕ2)]](σ)

[[¬(ϕ1 Ũϕ2)]](σ) = [[(¬ϕ1)U(¬ϕ2)]](σ)
[[¬( eϕ)]](σ) = [[ e(¬ϕ)]](σ).

As a consequence, in the following we only consider formulas containing connec-
tives ∧,∨,¬, e, U , and Ũ , and where negation is only applied to atomic proposi-
tions.
Evaluation for quantitative transition systems. A QLtl formula ϕ assigns
a real value [[ϕ]](s) ∈ [0, 1] to each state s of a given QTS, according to the rule
[[ϕ]](s) = sup{[[ϕ]](σ) | σ ∈ trac(s)}.

Evaluation for quantitative Markov chains. Given a QMC S, a state
s, and a QLtl formula ϕ, the function [[ϕ]], which assigns a real value to each Σ-
trace, is a random variable over the probability space (trac(s),B,Prs). Accordingly,
we define the value of ϕ on state s to be [[ϕ]](s) = Es[[[ϕ]]].

5 Evaluating QLtl

In this section, we extend the automata-based technique by [27,28] to determine
the valuation of a QLtl formula on a QTS or a QMC. First, we prove that if along
a trace all atomic propositions only take a finite number of different values, any
QLtl formula assigns to that trace either one of the values occurring in the trace,
or 1− x, where x is a value occurring in the trace. As a corollary, when evaluated
on a QTS S, a QLtl formula can only assume value in V(S).

Theorem 5.1 Let V be a finite subset of [0, 1] and let σ ∈ trac(Σ,V). Then, for
all QLtl formulas ϕ, we have [[ϕ]](σ) ∈ V ∪ {1− x | x ∈ V}.

Proof. We proceed by structural induction on ϕ. The thesis is obviously true when
ϕ is an atomic proposition. It is easy to check that all temporal operators do not
enrich the range of possible values for the formulas. 2

Corollary 5.2 Given a QTS S, a state s ∈ S, and a QLtl formula ϕ, we have
[[ϕ]](s) ∈ V(S).

Next,we consider the two following definitions.

Definition 5.3 The closure of a QLtl formula ϕ is the smallest set clos(ϕ) of QLtl
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formulas such that:

ϕ ∈ clos(ϕ)
ψ1 ∨ ψ2 ∈ clos(ϕ) =⇒ ψ1, ψ2 ∈ clos(ϕ)
ψ1 ∧ ψ2 ∈ clos(ϕ) =⇒ ψ1, ψ2 ∈ clos(ϕ)eψ1 ∈ clos(ϕ) =⇒ ψ1 ∈ clos(ϕ)
ψ1 Uψ2 ∈ clos(ϕ) =⇒ ψ1, ψ2 ∈ clos(ϕ)

ψ1 Ũψ2 ∈ clos(ϕ) =⇒ ψ1, ψ2 ∈ clos(ϕ).

We denote by |ϕ| the number of temporal operators, boolean connectives and
propositions found in the formula ϕ. Notice that |clos(ϕ)| = O(|ϕ|).

Definition 5.4 A closure-valuation for a QLtl formula ϕ is a function v :
clos(ϕ)→ [0, 1]. A closure-valuation is consistent if the following conditions hold.

(i) If t ∈ clos(ϕ), then v(t) = 1.

(ii) If f ∈ clos(ϕ), then v(f) = 0.

(iii) If ψ1 ∨ ψ2 ∈ clos(ϕ), then v(ψ1 ∨ ψ2) = v(ψ1) t v(ψ2).

(iv) If ψ1 ∧ ψ2 ∈ clos(ϕ), then v(ψ1 ∨ ψ2) = v(ψ1) u v(ψ2).

(v) If both r and ¬r belong to clos(ϕ), then v(¬r) = 1− v(r).

A closure-trace is an infinite sequence of consistent closure-valuations.
To determine the value of a QLtl formula on a Σ-trace one can proceed by

building a closure-trace in a way that is compatible with QLtl semantics. Consider
a closure-trace γ for a formula ϕ defined over a set of atomic propositions Σ. For a
Σ-trace σ, we say that γ is valid for σ if it satisfies the following rules for each i≥0
(adapted from [28]):

(i) For each r ∈ Σ, if r ∈ clos(ϕ) then γi(r) = σi(r), and if ¬r ∈ clos(ϕ) then
γi(¬r) = 1− σi(r).

(ii) If γi( eψ1) = u then γi+1(ψ1) = u.

For the U and Ũ operators, the semantic rules refer to a possibly infinite set of
points of the sequence. The solution is first to notice that the following identities
hold for each i≥0:

[[ψ1 Uψ2]](σi) = [[ψ2]](σi) t ([[ψ1]](σi) u [[ e(ψ1 Uψ2)]](σi))

[[ψ1 Ũψ2]](σi) = [[ψ2]](σi) u ([[ψ1]](σi) t [[ e(ψ1 Uψ2)]](σi)).

These identities suggest the following labeling rules for each i ≥ 0:

(iii) If γi(ψ1 Uψ2) = u, then u = γi(ψ2) t (γi(ψ1) u γi+1(ψ1 Uψ2)).

(iv) If γi(ψ1 Ũψ2) = u, then u = γi(ψ2) u (γi(ψ1) t γi+1(ψ1 Ũψ2)).

However, as it is illustrated by the following example, those conditions are not
sufficient for the closure-trace to be valid.

Example 5.5 Consider the QLtl formula pUq with p, q ∈ Σ. We have clos(ϕ) =
{pUq, p, q}. Consider now a closure-trace that constantly assigns values 0.6, 0.7,
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and 0.3 to pUq, p, and q, respectively. This trace is valid for any Σ-trace that
always assigns the value 0.7 to p and 0.3 to q. However the evaluation of pUq on
such a trace would be 0.3, and thus not 0.6 as it is suggested by the closure-trace.

The problem in the example above is that when only considering rules (iii) and (iv),
the evaluation of pUq can always be postponed to the next element in the sequence.
The solution is to observe that since the systems on which QLtlformula are evalu-
ated are finite-state systems, one can restric ourselves to a finite subset of [0, 1]. In
this setting, we obtain the following result.

Theorem 5.6 Consider a QLtl formula of the form ϕ1 Uϕ2 (resp. ϕ1 Ũϕ2). Let V
be a finite subset of [0, 1] and let σ ∈ trac(Σ,V). For all i≥0 there exists j≥i such
that [[ϕ1 Uϕ2]](σj) = [[ϕ2]](σj) (resp. [[ϕ1 Ũϕ2]](σj) = [[ϕ2]](σj)).

Proof. Consider the U case. The proof is a direct consequence of the semantic and
the fact that V is finite. By contradiction, one could extract an infinite sequence
where the evaluation of ϕ2 is strictly increasing. The Ũ case is proved similarly. 2

As a consequence of Theorem 5.6, we add the following labeling rules, which only
have sense when considering V to be a finite subset of [0, 1] :

(v) For each i≥0, there exists j≥i such that γj(ψ1 Uψ2) = γj(ψ2).

(vi) For each i≥0, there exists j≥i such that γj(ψ1 Ũψ2) = γj(ψ2).

Theorem 5.7 Consider a QLtl formula ϕ, a finite set V ⊆ [0, 1] and a Σ-trace
σ ∈ trac(Σ,V). We have that [[ϕ]](σ) = u iff there exists a valid closure-trace γ for
σ such that γ0(ϕ) = u.

Given a QLtl formula ϕ, we now build a generalized Büchi automaton that
describes a possibly infinite set of Σ-traces and whose states are consistent closure-
valuations of ϕ. More precisely, the automaton is built in such a way that for each
formula ψ1 in the closure of ϕ, for each state q, and for each accepting Σ-trace σ
from s, the valuation [[ψ1]](σ) is given by q(ψ1).

Definition 5.8 Let Σ be a set of atomic propositions and let V be a finite subset
of [0, 1] such that, for all x ∈ V, 1 − x ∈ V. We define the QLtl-automaton for ϕ
and V as the tuple AVϕ = (vals(Σ,V), Q,Q0, ρ, F ), where:

• The alphabet of the automaton is vals(Σ,V).
• The set of states Q is the set of closure-valuations in vals(clos(ϕ),V) which are

consistent.
• We choose Q0 = Q.
• The transition function is such that for each q, q′ ∈ Q and a ∈ vals(Σ,V), we have
q′ ∈ ρ(q, a) iff

(i) For all r ∈ Σ, if r ∈ clos(ϕ) (resp. ¬r ∈ clos(ϕ)), then q(r) = a(r) (resp.
q(¬r) = 1− a(r)).

(ii) If eψ1 ∈ clos(ϕ), then q( eψ1) = q′(ψ1).
(iii) If ψ1 Uψ2 ∈ clos(ϕ), then q(ψ1 Uψ2) = q(ψ2) t (q(ψ1) u q′(ψ1 Uψ2)).
(iv) If ψ1 Ũψ2 ∈ clos(ϕ), then q(ψ1 Ũψ2) = q(ψ2) u (q(ψ1) t q′(ψ1 Uψ2)).
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• If clos(ϕ) contains no formula with U and Ũ operators, then F = {Q}. Other-
wise, for each formula of the form ψ1 Uψ2 (resp. ψ1 Ũψ2) in clos(ϕ), F contains
the set Qψ1 Uψ2 (resp. Qψ1 Ũψ2

), where q ∈ Qψ1 Uψ2 iff q(ψ1 Uψ2) = q(ψ2) (resp.
q(ψ1 Ũψ2) = q(ψ2)).

Observe that the number of states of AVϕ is bounded by |V||clos(ϕ)|. In practice the
bound is not reach since one only considers consistent closures. The set of initial
states is defined arbitrarily and will be discussed in the next section. The following
theorem is a key result, stating the correctness of construction AVϕ.

Theorem 5.9 Let ϕ be a QLtl formula and let V be a finite subset of [0, 1] such
that if x ∈ V, then also 1 − x ∈ V. Then we have for all v ∈ V and all ψ in the
closure of ϕ that ⋃

q∈Q,q(ϕ)=v

L{q}(A
V
ϕ) = {σ ∈ vals(Σ,V) | [[ψ]](σ) = v}.

Proof. By induction on the structure of ψ, using Theorem 5.7. 2

The automaton AVϕ also satisfies the following property, which will be of particular
interest for the results that will be presented in Section 5.2.

Theorem 5.10 The automaton AVϕ is separated.

Proof. For each q, q′ ∈ Q with q 6= q′, there exists ϕ1 ∈ clos(ϕ) such that q(ϕ1) 6=
q′(ϕ1). Since it is not possible that a Σ-trace assigns two different values to the
same formula ϕ1, we have L{q}(AVϕ) ∩ L{q′}(AVϕ) = ∅. 2

5.1 Evaluating QLtl on Quantitative Transition Systems

Consider a quantitative transition system S = (Σ, S, δ, [·]) and a QLtl formula ϕ.
We aim at computing [[ϕ]](s) for a state s ∈ S. We first propose the following
definition

Definition 5.11 Consider a QTS S = (Σ, S, δ, [·]) and a QLtl formula ϕ. Let
Aϕ = (vals(Σ,V(S)), Q,Q0, ρ, F ) be the QLtl-automaton for ϕ and V(S). For
a state s̄ ∈ S, the s̄-product of S and Aϕ, denoted S × Aϕ, is the automaton
({∅}, Q′, Q′0, ρ′, F ′), where:

• The alphabet contains only the symbol ∅.
• The set of states Q′ contains all pairs (s, q) ∈ S×Q which are synchronized w.r.t.

the value of the atomic propositions. Formally, for all r ∈ clos(ϕ), [s](r) = q(r).
• The set of initial states is given by Q′0 = ({s̄} ×Q0) ∩Q′.
• The set of final states is given by F ′ = (S × F ) ∩Q′.
• We have (s′, q′) ∈ ρ′((s, q), ∅) iff (s, s′) ∈ δ.

Our approach to computing [[ϕ]](s̄) consists in the following three steps:

(i) We first build the s̄-product S × Aϕ between the system S and the QLtl-
automaton for ϕ and V(S).
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(ii) We then compute the set of states Q′′ = {(s̄, q) ∈ Q′0 | L{(s̄,q)}(S ×Aϕ) 6= ∅}.
(iii) Finally, [[ϕ]](s̄) = min(s̄,q)∈Q′′ q(ϕ).

As far as the complexity of the above procedure is concerned, it is easy to see that
step (ii) dominates the others. Such step consists in determining the set Q′′ of
states of the product automaton which, used as initial states, give rise to a non-
empty language. The classical algorithm for the emptiness of a generalized Büchi
automaton can be easily adapted to compute the set Q′′ in time linear in the size
of the product (precisely, in the number of edges in the product). We thus obtain
the following theorem which states that the model checking procedure for QLtl is
not more expensive than the one for model checking Ltl.

Theorem 5.12 Given a QLtl-formula ϕ, a QTS S = (Σ, S, δ, [·]), and a state
s ∈ S, the value [[ϕ]](s) can be computed in time O(|δ| · |V(S)||clos(ϕ)|).

Notice that, unlike the Ltl case, our evaluation procedure does not need to
complement a Büchi automaton or a QLtl formula.

5.2 Evaluating QLtl on Quantitative Markov Chains

In this section, we consider the model checking problem for QLtl over quantitative
Markov chains. We will show that this problem can be reduced to the model
checking problem for Ltl over Markov chains.

Consider a QMC S = (Σ, S,∆, [·]) and a QLtl formula ϕ on Σ. We aim at
computing Es[[[ϕ]]] for a state s ∈ S. Assuming that V(S) = {b1, b2, . . . , bn}, recall
that we denote by Prs[[[ϕ]] = bi] the probability for the value of the random variable
[[ϕ]] to be bi on the probability space generated by the traces starting at s. We have

[[ϕ]](s) = Es[[[ϕ]]] =
n∑
i=1

bi · Prs[[[ϕ]] = bi].

Consequently, to compute [[ϕ]](s), it is sufficient to compute for each value bi ∈ V(S)
the probability for the value of the random variable to be bi. More precisely, given
the set of Σ-traces T bi = {σ ∈ trac(S) | [[ϕ]](σ) = bi} and the probability space
(trac(s),B,Prs) given by S and s, we aim at computing Prs(T bi). For this, we
recall the following theorem (see [10] for a proof).

Theorem 5.13 Consider a QMC S = (Σ, S,∆, [·]), a state s ∈ S, and the prob-
ability space (pts(s),B,Prs) given by S and s. Let T be a set of Σ-traces. If T
can be represented by a deterministic Rabin automaton with n states, then one can
compute Prs(T ) in time polynomial in |S| · n.

We thus need to provide a deterministic Rabin automaton Aϕ=bi accepting T bi , for
each bi. Working with a deterministic Rabin automaton is needed not to break the
deterministic behavior of Markov chain (see [10]). The automaton Aϕ=bi can easily
be obtained from the automaton Aϕ. Indeed, it suffices to remove from the set of
initial states of Aϕ all the states that do not assign the value bi to ϕ. We obtain a
generalized Büchi automaton, which can be turned into a deterministic Rabin one
whose size is exponentially larger (see Theorem 2.1).
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The result above involves a double exponential, which is due to the fact that
we build a generalized Büchi automaton for the formula (whose size is exponential
in the size of the formula), and then turn it into a deterministic Rabin one (whose
size is again exponential in the size of the Büchi). However, in [11], it is showed
that one can avoid the exponential blow-up needed to compute the deterministic
Rabin automaton, when the generalized Büchi automaton representing the formula
is separated. Observe that since the automaton Aϕ is separated, any automaton
Aϕ=bi will also be separated. We can thus use the result from [11] to avoid one
exponential blow-up. The resulting algorithm is polynomial in the size of the QMC
and singly exponential w.r.t. the formula.

Remark 5.14 The result in [11] additionally requires automata to be unambigu-
ous. An automaton is unambiguous if two transitions that start in the same state
and have the same label reach different destinations. This property is satisfied by
our automata by definition. In conclusion, the automaton Aϕ is separated and
unambiguous. Moreover, this property does not depend on the set of initial states.

6 Extensions and Open Problems

This section discusses several extensions of QLtl model checking. First, we describe
how our QLtl model checking algorithm can be extended to an algorithm for QCtl∗.
Then, we present a partial solution to the model checking problem for a discounted
version of QLtl. Finally, model checking the 4 operator and quantitative Markov
decision processes remain completely open.

6.1 From QLtl to QCtl∗

Having considered the branching logic DCtl in [6] and the linear logic QLtl in
this paper, it is natural to consider logic QCtl∗, which extends QLtl with path
quantifiers ∃ and ∀. The syntax of QCtl∗ is the same as the one of Ctl∗. The
semantics of a QCtl∗ formula is defined with respect to the system on which it is
evaluated. Consider a QCtl∗ formula ϕ.

• If the formula is evaluated for a state s of a quantitative transition system S, then
the operators ∀ and ∃ represent the inf-evaluation-over-all and the sup-evaluation-
over-all traces, respectively. Formally, [[∀ϕ]](s) = inf{[[ϕ]](σ) | σ ∈ trac(s)}, and
[[∃ϕ]](s) = sup{[[ϕ]](σ) | σ ∈ trac(s)}. Observe also that [[∃ϕ]](s) = 1− [[∀¬ϕ]](s).

• When considering quantitative Markov chains, following [6], we interpret both ∀
and ∃ as the expected value operator. Therefore, on QMCs, QCtl∗ essentially
coincides with QLtl.

Evaluating QCtl∗ formulas with only one path quantifier is immediate. Indeed,
the automata-based algorithm presented in Section 5.1 allows us to immediately
evaluate formulas of the form ∃ϕ. Observing that [[∃ϕ]](s) = 1 − [[∀¬ϕ]](s), we get
the result. When considering formulas with several path quantifiers, one recursively
replaces each quantified subformula with a new atomic proposition that represents
its value (using again the automata-based algorithm). We thus have the following
complexity result.
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Theorem 6.1 Consider a QTS S = (Σ, S, δ, [·]), a state s ∈ S, and a QCtl∗-
formula ϕ. The value [[ϕ]](s) can be computed in time O(|ϕ| · |S| · |V(S)||clos(ϕ)|).

Recall from Theorem 5 of [6] that a formula ϕ from the logic DCtl can be
evaluated on a QTS S in time O(|S|2 · |ϕ|). It follows that QLtl formulas which do
not contain nesting of linear operators can be evaluated in the same time. As a side
note, it should be noted that DCtl does not feature an until operator. However, it is
our belief that its addition would not increase the complexity of model checking the
logic. We therefore observe, as expected, that ad-hoc algorithms for dealing directly
with 2 and 3 operators are definitely more efficient than the present automata-
based algorithms, which on the other hand is capable of treating arbitrary nesting
of temporal operators.

6.2 Discounting

The logics in [6] use discounting, meaning that values in the near future weigh
heavier than values in the far future. Given a discount factor α ∈ [0, 1], discounted
versions e

α, 3α, and 2α of the next, eventually, and always operator are defined
below. There is a second next operator ê

α, which is the dual of e
α

[[ e
αϕ]](σ) = α[[ϕ]](σ1) [[3αϕ]](σ) = supi≥0 α

i[[ϕ]](σi)

[[ ê
αϕ]](σ) = 1− α+ α[[ϕ]](σ1) [[2αϕ]](σ) = infi≥0 1− αi(1− [[ϕ]](σi))

Just as for the next operator, one should consider two discounted variants Uα and
Ûα of U (and also two for Ũ)

[[ϕUαψ]](σ) = supi≥0 α
0[[ϕ]](σ0) u α1[[ϕ]](σ1) u · · · u αi−1[[ϕ]](σi−1) u αi[[ψ]](σi)

[[ϕ Ûαψ]](σ) = supi≥0 1− α0(1− [[ϕ]](σ0)) u 1− α1(1− [[ϕ]](σ1)) u . . .
u 1− αi−1(1− [[ϕ]](σi−1)) u 1− αi(1− [[ψ]](σi))

For ψ1 Uαψ2, we have [[ψ1 Uαψ2]](σi) = [[ψ2]](σi) t ([[ψ1]](σi) u [[ e
α(ψ1 Uαψ2)]](σi))

and thus the following labeling rule.

γi(ψ2) t (γi(ψ1) u α · γi+1(ψ1 Uψ2))

The other until operators can be treated similarly. It is important to realize that
no Büchi conditions are needed for α < 1: in the undiscounted case, the recursive
characterization ψ1 Uψ2 ≡ ψ2 ∨ (ψ1 ∧ e(ψ1 Uψ2)) for U has two fixed points and
one needs the smallest. If α < 1, then the underlying operators are contractions
and have unique fixed points.

The analogon of Theorem 5.1 does not hold in the case of discounting. We do
not know if, given a QTS S, the set of values Vα(S) = {[[ϕ]](S) | ϕ is a QLtl formula
with discount factor α} is finite or not. However, by performing the construction of
Definition 5.8 with V being a finite subset of [0, 1], one can build an infinite-state
Büchi automaton with the property of Theorem 5.9. ♣ Try to put a note about the
influence of discounting in the closure, which makes it infinite ♣. In other words, the
Büchi construction works for discounting, but we cannot use it for model checking,
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since it yields an infinite-state automaton. We leave it as an open problem to
investigate whether Vα(S) is finite. If so, our construction yields a model checking
algorithm for discounted QLtl. If not, alternative methods have to be investigated,
e.g. based on approximation.

6.3 Long-run Average Operator

The branching logic DCtl of [6] also contains the path operator 4. This operator
stands for the long-run average of a quantitative proposition and is defined by:

[[4ϕ]](σ) = lim
n→∞

[[ϕ]](σ0) + [[ϕ]](σ1) + · · ·+ [[ϕ]](σn−1)
n

.

Such operator does not fit well with the finite automata-based approach, since the
value of a 4p formula in general does not coincide with the value of the proposition
p in any state of the system: for instance, any number in [0, 1] can be obtained as
the long run average of a sequence whose propositional values are {0, 0.1, 0.2 . . .
0.9}.

Thus, it remains open whether the 4 operator can be evaluated on a system by
automata-theoretic means.

6.4 Model checking QLtl over Quantitative Markov Decision Processes

A Quantitative Markov Decision Process (QMDP) is a Markov decision process
(MDP) with quantitative values in the states. Thus, a QMDP can be viewed as
a QMC combined with nondeterminism, i.e. each QMDP state enables one or
more transitions whose target state is determined probabilistically. Thus, a QMDP
S = (Σ, S,∆, [·]) contains the same ingredients as a QMC, except that the transition
relation is a function ∆ : S → 2D(S) such that ∆(s) 6= ∅ for each s ∈ S. Each
QMDP induces a QTS (Σ, S, δ, [·]), where δ = {(s, t) ∈ S2 | ∃µ ∈ ∆(s) ∧ µ(t) >
0}. Definitions for paths and traces in a QMDPs are identical to those for the
corresponding QTS. In what follows, we assume that the number of transitions of
the QMDP is m.

A scheduler for S resolves the non-deterministic choices in S. Schedulers can
be (1) history-dependent, i.e. they may base their decisions on the history of the
system and (2) randomized, i.e., they may make a probabilistic choice over the
outgoing transitions in each state. More precisely, a scheduler for S in a state s0 is
a function π : pts(s0)→ D(D(S)) such that if π(s0, s1 . . . sn)(µ) > 0, then µ ∈ δ(sn).
A scheduler is memoryless if last(ρ) = last(ρ′) implies π(ρ)(µ) = π(ρ′)(µ) for all µ ∈
D(S). A scheduler is deterministic if for each path ρ there is exactly one µ ∈ D(S)
with π(ρ)(µ) > 0. We denote the set of all schedulers in s0 by Sched(s0) and set
of all schedulers in s0 that are both memoryless and deterministic by DSched(s0).
Each scheduler π in state s defines a probability space over Pπs = (tracπ(s),Bπ,Prπs ),
where B is the set of measurable subsets of trac(s), and Prπs is the uniquely induced
probability measure traces of S. We denote the expected value of a random variable
X over Pπs by Eπs [X].

We interpret QLtl over QMDPs by taking the minimum expected value over all
schedulers, i.e. we set [[ϕ]](s) = infπ∈Sched(s) Eπs [[[ϕ]]].
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Unfortunately, contrary to the case of Markov chains, we cannot directly ex-
tend the algorithm for Ltl model checking over MDPs [1,2,24]: we could, for
each value bi run an Ltl-inspired algorithm that finds the minimum probability
minπ∈Sched Prπs [[[ϕ]] = bi] with which value bi is attained. However, the QMDP model
checking problem ask for the global minimum, i.e. minπ∈Sched

∑n
i=1 bi ·Prπs [[[ϕ]] = bi],

which cannot be found by solving the model checking problem for the bi’s sepa-
rately 1 . Unfortunately, we did not find a way to solve this global minimization
problem based on Ltl model checking.

However, we claim that, just as for Ltl model checking over MDPs, the value
of a QLtl formula is determined by a memoryless and deterministic scheduler, i.e.
[[ϕ]](s) = infπ∈DSched(s) Eπs [[[ϕ]]]. Since each deterministic scheduler π over S induces
a QMC Sπ, and there are O(2m) different deterministic schedulers, one can model
check QLtl over QMDPs by running the QMC algorithm O(2m) times and taking
the minimum of all runs, thus yielding an exponential algorithm.

In conclusion, as for Markov chains, one can still reduce the model checking
problem for QLtl over quantitative MDP to the model checking problem of Ltl over
MDP. However, contrary to the Markov chain case, this reduction has an exponential
cost since one has to consider all the schedulers. We leave the investigation of more
efficient algorithms as an open problem.

7 Conclusion and Future Work

In this paper, we extended the work done in [6], by presenting a quantitative linear
temporal logic and showing how such logic can be model-checked (i.e., evaluated)
over non-deterministic or probabilistic systems, by using a classical automata-based
approach. We have provided partial solutions to the model checking problem for
QCtl∗, and over quantitative Markov decision processes. Model checking of the
long run average operator and the discounted version of QLtl is open.

Apart from the directions mentioned in Section 6, it is also worhtwile to inves-
tigate an extension of the results presented in this paper (and in [6]) to continuous
time or interval Markov chains. Another promissing research direction consists in
extending the abstract probabilistic frameworks of [15,19] to quantitative logics. We
could also investigate whether the alternating automata based construction of [20]
extends to the case of QCtl∗. Finally, it would also be of interest to see whether
one can reduce the size of the automata we construct following techniques similar
to those proposed in [16].
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