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1. Introduction
W E shall be concerned in this note with abstract algebras which carry

a relation of quasi-order.
We recall first that a relation a ^ b on a set A is a quasi-order if (i) a ^ a

for all a e A, and (ii) a < b and b < c imply a < c. If also a < b and 6 < a
imply a = b, the relation is an order; and if in addition for all a, b either
a ^ b or 6 ^ a, it is a Zmear order. We shall use the same notation a ^.b
for all quasi-orders that occur; in the rare cases where we consider two
different quasi-orders on the same set, we shall give different names, say
P, Q, to the set in its two quasi-orders, and distinguish 'a ^ b in P' from
'a < b in Q\

If B is a subset of the quasi-ordered set A, the closure of B, written
cl(J5), is the set of all elements a in A such that for some 6 in B, b ^ a;
and a closed subset is one that is its own closure. An open subset of A is
one whose complement is closed. The quasi-ordered set A will be said to
have the finite basis property (often abbreviated to f.b.p.) if every closed
subset of A is the closure of a finite set. We give below (Theorem 2.1) a
number of alternative definitions of this property; in particular it is equiva-
lent to the defining condition of the partial well-orders considered by
P. Erdos and R. Rado (3).f

By an abstract algebra (A, M) we mean a set A of elements and a set M
of operations; each operation JU, in M is an r-ary operator for some non-
negative integer r, and maps each sequence ax, a2,..., ar of r elements of A
on a unique element fxa^c,... ar of A. We shall denote by M,, the subset of
M containing all r-ary operations; and we shall suppose that there is an
integer n such that Mr is empty for r > n. As a convention of notation we
shall use the early letters of the alphabet, a, b,... to denote elements of A,
and the late letters, x, y,... to denote finite (possibly empty) sequences of
elements of A. Moreover, we shall suppose that the lengths of these
sequences are such that our formulae make sense; e.g. if/x is an r-ary opera-
tion, the occurrence of the expression fxxay will imply that the lengths

t I have to thank Dr. ErdSs and Dr. Rado for their courtesy in letting me see this
manuscript. The use of their methods has noticeably simplified my proofs in one or
two places.
Proc. London Math. Soc. (3) 2 (1952)
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s and t of x and y satisfy s+2+1 = r. Elements of M will be denoted by
Greek letters.

As usual, by an M-subalgebra of {A,M) we mean an algebra (B,M),
where B is a subset of A such that (xx e B for \x e M and a; a sequence of
elements of B, and where the operations in M are not distinguished from
those obtained from them by restricting them to sequences of elements of B.
(A,M) will be called minimal if it has no subalgebra distinct from itself.
Notice that since we admit the possibility that M contains 0-ary operations,
a minimal algebra is not necessarily empty. In fact, if (x e Mo, ixx is denned
only if £ is the empty sequence, and is then a certain element a of A. Plainly
a belongs to every subalgebra of (A,M), and if Ao is the set of all such
elements a, (A, M) is minimal if and only if Ao is a generating set of the
algebra (A, M'), where M' = M—Mo. Thus the fact that below we consider
only minimal algebras is no real restriction. It would, of course, have
been possible to work with sets of generators and avoid the use of 0-ary
operations; but the present set-up has the advantages first of increasing
the uniformity of the treatment, and secondly of being more flexible, since
the correspondence of 0-ary operations to elements of A is not necessarily
one to one.

A quasi-order on the element set A of the algebra (A, M) makes it into
an ordered algebra provided that, for all /x in M,

(i) a ^ b implies \xxay ^ [ixby.
We shall call the quasi-order a divisibility order if also for all JX in M, and all
relevant a, x, y, we have

(ii) a ^ fxxay.

Suppose next that we are given quasi-orders on Mr, r = 0, 1,..., n. Then
we shall say that a quasi-order on A is compatible with these quasi-orders
if for A, ix in Mr

(iii) A ^ /x implies Arc ̂  ixx.
The main object of this note is to prove the following theorem:

THEOREM 1.1. Suppose that (A,M) is a minimal algebra, and that Mn the
set of r-ary operations in M, is a quasi-ordered set with finite basis property
for r = 0, 1,..., n, and is empty for r > n. Then A has the finite basis property
in any divisibility order of (A, M) compatible with the quasi-orders of M,..

An important special case of the theorem occurs when the sets Mr are
finite for r > 0. In this case we can assume that the order on Mf is trivial
(a ^ b only if a = 6); and the compatibility condition then amounts to
saying that {A, M—Mo) has a set of generators with f.b.p. If we observe
that the conditions that make a quasi-order of A a divisibility order of
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(A, M) are unaffected by the removal of 0-ary operations from M, we can
rewrite this case of the theorem as follows:

THEOEEM 1.2. An abstract algebra with a finite set of operations has the
finite basis property in a divisibility order if any generating set has.

Particular cases of this theorem have been proved by P. Erdos and R.
Rado (3); and the theorem was obtained independently by B. H. Neumann
in the case when all the orders are linear. We give below applications of
these theorems to combinatorial problems, to a known theorem on power-
series rings over an ordered quasi-group, and to the study of fully invariant
subgroups of a free group. It is the variety of these applications, rather
than any depth in the results obtained, that suggests that the theorems may
be interesting.

2. Finite basis property
We begin by listing some properties equivalent to the f.b.p.

THEOREM 2.1. The following conditions on a quasi-ordered set A are
equivalent:

(i) every closed subset of A is the closure of a finite subset;
(ii) the ascending chain condition holds for the closed subsets of A;

(iii) if B is any subset of A, there is a finite set Bo such that BQ c B c cl(J50);
(iv) every infinite sequence of elements of A has an infinite ascending

subsequence;
(v) ifav a2,... is an infinite sequence of elements of A, there exist integers

i, j , such that i <j and at < a^\
(vi) there exists neither an infinite strictly descending sequence in A} nor an

infinity of mutually incomparable elements of A.

(i) is, of course the f.b.p.; (v) is the partial well-order of Erdos and
Rado (3), who note its equivalence with (iv). In connexion with (vi) it
should be said that av a2,... is strictly descending if for all i, ai+1 ^ ait but
not at ^ ai+v In an ordered set this would be written ai+1 < aiy but this
notation is ambiguous in a quasi-ordered set.

The equivalence of conditions (i), (ii), and (iii) is a well-known pheno-
menon, which occurs whenever a closure operation satisfies, in addition to
the usual axioms (cf., for example, Birkhoff 1, 49), the condition: a e cl(J5)
implies a e cl(J50) for some finite subset BQ of B (possibly depending on a).
The classical instance is the equivalence of the ascending chain and finite
basis conditions for ideals in a ring; the proof for that case (cf., for example,
van der Waerden 8, 23-27) can easily be adapted to ours, and we leave this
to the reader.

The equivalence of (iv) and (vi), at least in the case of an order, is due to
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I. Kaplansky, and is set as an exercise in Birkhoff (1, ex. 8, p. 39); the
proof for quasi-orders is scarcely harder, so this, too, we leave to the reader.
Obviously (v) is implied by (iv) and implies (vi), so it is equivalent to either
of them.

Thus the first three, and the last three, of our conditions are equivalent.
To complete the proof we show that (iii) implies (v), and that (v) implies (ii).
Assume (iii), then, and let B be the set of elements of the sequence alt a2,....
Since Bo is finite, there is an integer j such that every element of Bo is an
ai with i <j; and since B c cl(B0), for some ai in Bo we have ai ^ a^.
So (v) also holds. On the other hand, if (v) holds, there cannot exist an
infinite properly ascending sequence Av A2,... of closed sets in A. For if
there were we should only need to choose ai in Ai+1—Ai to falsify (v).
Thus (v) implies (ii), completing the proof of the theorem.

THEOREM 2.2. If the quasi-ordered set A has f.b.p., so has every subset and
every homomorphic image of A.

For subsets, condition (v) of Theorem 2.1 makes this obvious. For
homomorphic images, remark that the inverse image of a closed set under
a homomorphism is closed; condition (ii) of Theorem 2.1 then makes the
preservation of f.b.p. under homomorphism obvious.

The cardinal product of two quasi-ordered sets A and B is the set of couples
{a,b) with aeA and b e B, ordered by (a1}bx) < (a2,b2) if and only if
a± ^ a2 and 6j ^ 62.

THEOREM 2.3. / / two quasi-ordered sets have f.b.p., so does their cardinal
product.

This is almost obvious using condition (iv) of Theorem 2.1. For from an
infinite sequence (ai,bi) i = 1, 2,..., we can first select a subsequence on
which the a's are ascending, and from this again a subsequence on which
the 6's also are ascending.

It is clear from Theorem 2.1 that a set with a linear order has f.b.p. if
and only if it is well ordered. Our next theorem is the analogue for quasi-
ordered sets of the principle of transfinite induction.

THEOREM 2.4. A proposition concerning a quasi-ordered set M which is
true of M if it is true of every proper open subset of M is true of every quasi-
ordered set M with f.b.p.

For if the proposition is false of M, it is also false of some proper open
subset Mx of M, and so of some proper open subset M2 of Mx, and so on.
The complements in M of Mx, M2,... form an infinite properly ascending
chain of closed sets in if. By Theorem 2.1, condition (ii), i f has not the f.b.p.

Conversely, this induction property characterizes quasi-ordered sets with
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f.b.p. For if every proper open subset of M has f.b.p., then so has M.
In fact we have the following slightly stronger result.

THEOREM 2.5. If M is a quasi-ordered set such that for all a in M, M—cl(a)
has f.b.p., then M has f.b.p.

For if # is a non-empty closed set of M, let a be an element of it. E—cl(a)
is a closed set of M—cl(a) and is therefore the closure in M—cl(a) of a finite
set EQ. E is plainly the closure in M of Eo U a, also a finite set. Thus M
has f.b.p.

We next formulate a multiple induction principle. If (Mo, Mv..., Mn), or
(Mt) for short, is a sequence of quasi-ordered sets with f.b.p., then a second
such sequence (M^) is said to be obtained from the first by descent if for some
integer r, 0 ^ r < n, we have (i) for i > r, M\ = M^, (ii) M'r is a proper open
subset of Mr, (iii) for i <r,M'i is any quasi-ordered set with f.b.p.

LEMMA. There exists no infinite chain of sequences (Mfi), r — 1,2,..., such
that for all r, (.M]r+1)) is obtained from [M{p) by descent.

The proof is by induction on n, the case n = 0 being simply the ascending
chain condition for closed subsets of Mo. In the general case the ascending
chain condition for closed subsets of M$ makes it clear that, if such a chain
exists, M$ is constant for large r. But then an inductive hypothesis,
applied to the chain consisting of the original sequences without their
last terms, and starting with sufficiently large r, gives a contradiction.

The multiple induction principle, in the following 'reverse' form, is an
immediate corollary of the lemma.

THEOREM 2.6. Let P{Mt) be a proposition concerning the sequence

of quasi-ordered sets. If the falsity of P(ifeQ) for any sequence of sets with
f.b.p. implies the falsity of P(M'i) for some sequence (M^) obtained from (Mi)
by descent, then P(Mt) is true whenever all sets of the sequence (3^) have f.b.p.

3. Proof of Theorem 1.1
We begin by proving a lemma.
LEMMA. Let (A, M) be an abstract algebra with a divisibiliiy ordering. If

X is a closed subset of A, and (AQ, M) is a subalgebra, then (Ao U X, M) is a
subalgebra.

Let /A be an r-ary operation in M, let av a2,..., ar belong to AQ U X, and put
6 = \iaxa2 ...ar. Then either alt a2,..., ar all belong to Ao, in which case 6
belongs to Ao because (Ao, M) is a subalgebra; or at least one, say ai3 belongs
to X, in which case 6 belongs to X since ai < 6 in any divisibility ordering,
and X is closed. Thus in either case 6 belongs to Ao U X, which proves the
lemma.
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We now prove Theorem 1.1 by induction on the sequence (Mo, Mv..., Mn)
according to Theorem 2.6. That is, we assume the existence of a minimal
algebra {A,M) which has a divisibility ordering in which A has not the
f.b.p., though the ordering is compatible with quasi-orders on Mo,..., Mn

in which these sets have the f.b.p.; and we deduce the existence of an algebra
{A\ M') with precisely similar properties, but in which the sequence (JfeQ
is obtained from {M^ by descent {M^ being the set of i-ary operations in M').

First we note that since A has not the f.b.p., by Theorem 2.5 the set X
of all a such that A—cl(a) has f.b.p. is not the whole of A. Since (A, M) is
minimal, X is not closed under M. We can therefore choose /x in M,. for some
r in 0 < r < n, and a sequence z = ax... ar of elements of X such that
JJLZ = b does not belong to X. We next define M' in terms of this choice.
If i^r—1, r, we take M\ = M^ We take M'r to be jfcfr—clfoi). If r ^ 1,
and A is any r-ary operation, we denote by X(a,s) (a e A, s = l,...,r) the
(r— l)-ary operation defined by X(a,s).xy = Xxay, where x has length s— 1;
we let M^811 denote the set of operations X(a, s) for A e cl(/x) and a e A—c\(as),
ordered as the cardinal product of cl(/z) and A—c\(as); and we take M'r_x

to be the union of Mr_x and M{
r
slx for 5 = 1,..., r, no order relations being

assumed between elements of different terms of this union. Finally we
take (A', M') to be the unique minimal subalgebra of (A, M').

We have next to show that (A',M') has the properties required of it.
We give A' its quasi-order as a subset of A; this is obviously a divisibility
order of (A', M'), and is compatible with the quasi-orders of M'o, M^,..., M'n.
Moreover, these latter sets have the f.b.p. This is obvious except for M'r_x,
which is the union of the finite collection of sets Mr_x and M(

r
slv But Mr_x

has the f.b.p. by assumption and M[slx by Theorem 2.3 and the choice of b.
Since a union of a finite number of sets with f.b.p. obviously has f.b.p.,
M'r_x has f.b.p. On the other hand, A' has not the f.b.p. We prove this by
showing that it contains .4—cl(6), which by assumption has not the f.b.p.
That is, we prove that A' U cl(6) = A. By the minimal property of (A, M)
it is sufficient to prove that {A' U c\(b),M) is an if-subalgebra. By the
lemma above, A' U cl(6) is closed under the operations of M', and so we
have only to prove that it is closed under the operations of M not in M';
i.e., under A for A e cl(/x). Suppose then that ci} i = 1,..., r, belong to
A' U cl(6), and put d — Xcx... cr. If â  ^ ĉ  for all i, then fxax... ar < Xcx... cr

or d e cl(6). But if (as can happen only if r ^ 1) for some s, cs e A—cl(as),
then d = X(cs,s)x, where x is a sequence of elements of A' U cl(6). Since
X(cs, s) £ M{

r
slx c M', and A' U cl(6) is closed under M', it again follows that

de A' V cl(6). It follows that A' U cl(6) is closed under M and is therefore
the whole of A. Finally the sequence (M [) is obtained from (M() bĵ  descent.
Thus (A', M') has all the properties required of it and the theorem follows.



332 G. HIGMAN

4. Some combinatorial applications
P. Erdos (2) proposed as a problem the proof of the following theorem.

THEOREM 4.1. If a set X of positive integers does not contain any infinite
subset no element of which divides any other element, then neither does P(X),
the set of integers which can be written as products of elements of X.

This is a special case of Theorem 1.2. For the condition imposed on X is
precisely that it shall have f.b.p. when a ^ 6 is interpreted as a divides 6,
as follows from (vi) of Theorem 2.1 and the obvious fact that there exists
no infinite sequence of integers that is properly descending in this order.
But if the positive integers are regarded as an algebra under multiplication,
this is a divisibility order. Thus by Theorem 1.2 if X has the f.b.p., so has
the subalgebra generated by X, and this is Theorem 4.1.

Now let A be a quasi-ordered set. Let S{A) be the set of finite subsets of
A, and make it into a quasi-ordered set by the rule P ^ Q if there is a
one-to-one increasing map of P into Q. Then Erd6s and Rado (3) prove the
following result, and use it to prove Theorem 4.1.

THEOREM 4.2. If A has the f.b.p., so has S{A).

Here we prove this as a corollary of another result. Let V(A) be the set
of finite sequences of elements of A, quasi-ordered by the rule: x ^ y if
x is majorized by a subsequence of y. That is, if £ = %...&,. and y = b1...bs,
x ^ ?/ifthereisafunction/(*),£ = l,...,r, such that 1 ̂ f(i) ^s,f(i) <f(j)
if i < j , and ĉ  < 6/(i) for all i.

THEOREM 4.3. If A has the f.b.p., so has V(A).

The elements of V(A) form a semigroup under juxtaposition, and the
quasi-order of V(A) is a divisibility order of this semigroup. The one-
element sequences form a set of generators of the semigroup, and as they
obviously form a set order-isomorphic to A, Theorem 4.3 follows from
Theorem 1.2.

Now let S'(A) be the subset of V(A) consisting of those sequences in which
no element of A occurs twice. There is a natural mapping of S'(A) on S(A),
and this is easily seen to be an order homomorphism. Thus Theorem 4.2
follows from Theorem 4.3 and Theorem 2.2.

It seems worth while to give explicitly the result of taking A to be a finite
set in a trivial order.

THEOREM 4.4. If X is any set of words formed from a finite alphabet, it is
possible to find a finite subset Xo of X such that, given a word w in X, it is
possible to find w0 in Xo such that the letters of w0 occur in w in their right
order, though not necessarily consecutively.
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5. Power-series rings
In this section we apply our theorems to obtain results, mostly well

known, about power-series rings of an ordered groupoid. Here we shall
have to do with ordered sets only, not with quasi-ordered sets. We require
a preliminary lemma. A homomorphism p of an ordered set A into an
ordered set B is called strict if a < 6 implies p(a) < p(b).

LEMMA. If pis a strict homomorphism of A into B, and A has f.b.p., then
for any element b of B, p~x{b) is a finite set.

By the definition of a strict homomorphism elements of p^ib) are in-
comparable, so that this is an immediate consequence of (vi) of Theorem 2.1.

Now let (?bea groupoid (i.e. an algebra with a single binary operation,
which we denote by juxtaposition) and let C be an abelian group (written
additively). A ring B is called a groupoid-ring of G over C if it contains
elements a. g, a e C, g e G, such that

(i) a.flr+j8.flf=(o+jS).flr;
(ii) every element of R is a finite sum ]£ ai.gi, where the gt are distinct,

and this expression is unique up to order of terms and omission of
terms with ĉ  = 0;

(iii) (a. g)(j3. h) = p. gh, where p is a function of a, j8, g, h, which we do not
restrict for the moment, beyond noting that the distributive laws
and (i) impose some conditions on it.

Under certain conditions it is possible to embed a groupoid-ring in a larger
ring whose elements are infinite formal sums 2ai'-9r*> wi*h the natural
definitions of addition and multiplication. But while the sum of two such
formal sums always exists, their product only exists under conditions.
In fact, if for any formal sum x we denote by D(x) the set of elements of G
that occur in it with non-zero coefficients, then the product xy exists only
if for all elements g of G the number of solutions of g = hk with h in D(x)
and k in D(y) is finite. Thus to obtain a ring we have to restrict the infinite
formal sums to be considered. If G is an ordered groupoid, and, moreover,
is a groupoid with cancellation, then we may do this by considering only the
power-series of G, i.e. the formal sums x for which D(x) has the f.b.p.

THEOREM 5.1. The power-series of an ordered groupoid with cancellation
form a ring.

Let x, y be two power-series. Then D(x-\-y) is contained in D(x) U D(y)
and so has f.b.p., which is to say that x-\-y is a power-series. Consider the
mapping (g, h) -> gh of the cardinal product of D(x) and D(y) into G. The
fact that G is an ordered groupoid says that this is an order homomorph-
ism; the fact that G is a groupoid with cancellation is easily seen to imply
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that it is strict. By the lemma the number of counter-images of a fixed
element of G is finite, which shows that the product xy exists. Also D{xy)
is contained in the image of the homomorphism, and so by Theorems 2.3
and 2.2, xy is a power-series. The ring axioms are easy to verify, and the
theorem follows.

We say that the power-series a; has the initial term <x.g if x = a.g-\-x',
where a ^ 0 and h e D(x') implies g <h. We wish to prove next that
division by a power-series with an initial term is always possible and unique.
For this, however, we must make further assumptions. First, we must
ensure that division by a monomial a.g is always possible and unique.
This requires that G is a quasi-group (i.e. that for all g, h in G the equations
gk = h and kg = h for k have each a unique solution in G) and that for
fixed g, h, the non-zero elements of C form a quasi-group under the operation
aOj8 = p defined by (iii) above. The last condition is satisfied for instance
if C is a not necessarily associative ring, and p = (ajS')S, where j8-> j8' is
an additive isomorphism and 8 depends only on g, h. We shall also need to
assume that the order of G is invariant under division (i.e. that gk ^ hk
or kg ^ kh implies g ^ h; this is not a consequence of the converse implica-
tion in general).

THEOEEM 5.2. Under the above conditions, if x0 is a power-series with an
initial term and x is any power-series, the equations xoy = x and yx0 = x
for y have each a unique solution.

We shall deal only with the equation xoy = x, as the proofs are entirely
similar. We have to show that the mapping LXo:y-> xQy is a permutation
of the set of power-series; i.e. that it has a two-sided inverse. Let <x.g0

be the initial term of x0, and let x0 = <x. go-\-xo. Then the left multiplication
La 9o has an inverse by assumption, and we can write LXo = La go(l-\-M),
where 1 is the identity permutation, M — L~x

goLx,o, and mappings of
the set of power-series into itself are added in the obvious way. Thus it is
sufficient to prove that (1 -\-M) has an inverse, for which again it is sufficient
to show that (1— M-\-M2—...) has a meaning as a mapping of the set of
power-series into itself. This in turn requires that, for any power-series y,
no element of G occurs in more than a finite number of the sets

D{y), D{My), D{M*y)t ...,

and that the union of these sets has the f.b.p. Now if we write Qg = Lg~*Lg,
where Lg and Lgo are left multiplications in G, then the elements of D(Mry)
are among the elements QgiQgi... Qg,h, gt eD(x0), h eD(y). Denote by X
the set of these expressions, r = 0, 1, 2,..., ordered as the cardinal product
of V(D(x'o)) and D(y), where V(A) has the same meaning as in Theorem 4.3.
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By Theorem 4.3 and Theorem 2.3 X has the f.b.p. But it is easy to see that
the mapping of X into G which maps each expression QOlQga...QOrh on
the element of 0 it denotes is a strict homomorphism. That no element of
0 belongs to an infinity of the sets D(y), D(My), D(3Py),... follows from the
lemma above, and that their union has f.b.p. from Theorem 2.2.

COROLLARY. / / 0 is linearly ordered, the power-series form a division ring.

This corollary, which is the main point of the development, was proved
by H. Hahn (4) for the case of associative and commutative systems, and
by B. H. Neumann (7) and A. I. Malcev (6) for associative systems. I. Kap-
lansky (5) and D. Zelinsky (9) have pointed out that Hahn's proof in fact
works without any restriction.

6. Fully invariant subgroups
Let G be a group, and denote the set of all normal subgroups of G by U.

We shall order U by inverse inclusion; H ^ K will mean H D K. It is pos-
sible to introduce operations into U so as to make it an algebra with this
order as a divisibility order. For instance, we may take the unary opera-
tions H -> nH, where nH is the group generated by the nth powers of
elements of H, for n = 2, 3,...; and we may take the binary operation of
commutation, which maps the pair H, K on the subgroup [H, K] generated
by the commutators h^k^hk, he H,k e K. More generally, if w(xx, x2,..., xr)
is any word in generators xx, x2)...,xr and their inverses which reduces to 1
on setting any generator equal to 1, we may define a corresponding operation
in U, by putting w(Gx, G2,..., Gr) equal to the subgroup generated by the
elements w(xx,x2,...,xr), xi E Gt. Now if Uo is a subset of U which has the
f.b.p., the ascending chain condition holds for subgroups which can be
expressed as unions of elements of Uo. For if H is such a subgroup, it is
determined by the set S(H) of elements of Uo contained in it. S(H) is a
closed set in Uo, and since Hx c H2 implies ^(J^) c S(H2), the ascending chain
condition for closed subsets of Uo implies the ascending chain condition for
subgroups H. Thus we may apply Theorem 1.1 or Theorem 1.2 to prove
that suitable sets of subgroups of G have the ascending chain condition. If,
as in the case we consider, the set is a subalgebra of U generated, under
certain operations, by Q itself, the set will be a set of fully invariant sub-
groups of G. We give one example only.

THEOREM 6.1. Let I be a set of integers containing no infinite subset of
mutually indivisible integers. Let UQ be the least set of subgroups of G such that

(i) Uo contains G;
(ii) if H e UQ and ne I, then nH e Uo;
(iii) ifHeUoandKe Uo, then [H,K] e Uo.
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Then the ascending chain condition holds for subgroups of 0 which can be
expressed as unions of elements of Uo.

This follows from Theorem 1.1; for UQ is a minimal algebra with a 0-ary
operation mapping the empty sequence on G, with unary operations
H -+ nH, ne I, ordered by divisibility of the integers n, and with the
binary operation of commutation; and the ordering of Uo by inverse in-
clusion is a divisibility order compatible with the order given for the unary
operations.

It is clear, however, that Theorem 1.1 is unlikely to give the whole truth
in this direction, or even the whole accessible truth. For the closure
operation on U most closely connected with the problem is not the one
we have been considering, obtained from its order by inverse inclusion,
but that which assigns as closure to any set of elements of U the set of all
normal subgroups of G contained in their union. Since this is not obtained
from a quasi-order, it is outside the scope of Theorem 1.1. It would be
interesting to know whether any analogous theorem can be formulated
and proved for more general closure operations.
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