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Dekan: Prof. Dr. Gernot Fink

Gutachter:

Prof. Dr. Erich Grädel
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Everything changes and nothing stands still.

— Heraclitus (quoted by Platon in Cratylus)





Summary

The re-evaluation of a query result after modifying a large database can be
a time-consuming process; in particular when it is performed from scratch.
For this reason previously computed information such as the old query result
and (possibly) other auxiliary information is often reused in order to speed
up the process.

In this thesis, dynamic query evaluation is studied in a descriptive com-
plexity framework independently introduced by Dong, Su and Topor (1992,
1993) and by Patnaik and Immerman (1994). In this framework, for a
relational database subject to change, auxiliary relations are maintained
with the intention to help answering a query. When a modification to the
database, that is, an insertion or deletion of a tuple, occurs, every auxiliary
relation is updated through a first-order query that can refer to both, the
database and the auxiliary relations.

Our main objective is to advance the understanding of the power of the
dynamic descriptive complexity framework. We contribute by (a) providing
new methods for proving in-expressibility in this dynamic context, and by
(b) exploring the structure of small dynamic descriptive complexity classes
and their relation to static complexity classes. One of our contributions to
the latter aspect helps to confirm the conjecture by Patnaik and Immerman
(1997) that reachability can be maintained by first-order update formulas.
This has been one of the major open questions of the area.





Preface

On the first few days of my PhD studies in the summer of 2009, my adviser
Thomas Schwentick introduced me to dynamic complexity. Very recently
Wouter Gelade, Marcel Marquardt and Thomas had obtained a very nice
characterization of regular languages in terms of dynamic complexity, and
also a lower bound for the dynamic complexity of the alternating reachabil-
ity problem. Many interesting problems in this area seemed to wait for a
solution; and so I started to try to prove a lower bound for reachability. I
was not successful. After two (at the end frustrating) months, I abandoned
this project.

In the following two and a half years I almost forgot about dynamic
complexity. Decidability issues for the two-variable fragment of first-order
logic had turned out to be a much more accessible and fruitful field. Thomas
and I had obtained several results, and a PhD in this field seemed not to be
too far away. This was the moment when Thomas asked whether I would be
interested in applying for funds from the DFG. If successful, such funding
could relieve me from my teaching obligations.

We decided to have a second, deeper look into dynamic complexity, and
to apply for funds for doing an extensive study of the power of logics in
dynamic settings. At that time, the decision to spend more time on dynamic
complexity was not easy for me. I was in the third year of my PhD and
already had results and further ideas for two-variable logics; and it was not
clear whether an application for funding would be successful. On the other
hand, now I had more experience, which might turn out to be helpful to
attack the very same problems that I had tried to solve at the beginning of
my PhD. I do not regret the decision.

With the thesis at hand I want to document the progress in dynamic
complexity that we have made in the last two and a half years. The focus
of this thesis is on small dynamic descriptive complexity classes, in par-
ticular on lower bound methods for them. A short summary of results on
decidability issues for two-variable logic is presented at the end of the thesis.

I am very grateful to Thomas Schwentick for all his support through-
out the years of my PhD studies, and for being a great example of how
to be a researcher and teacher. Further I thank Samir Datta, Sebastian
Siebertz and Nils Vortmeier for many fruitful discussions about dynamic



complexity. I also thank the numerous colleagues at Dortmund and in the
logic and database community for making the last years a great time. Fur-
ther I thank Katja Losemann and Nils Vortmeier for proofreading parts of
this work. I acknowledge the financial support by the German DFG under
grant SCHW 678/6-1.

My warmest thanks goes to my family, to Katja and to all my friends
who supported me during the last couple of years.

Dortmund, January 2015 Thomas Zeume



Contents

Summary v

Preface vii

1 Introduction 1

2 Dynamic Complexity: Definitions and Examples 11
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 The Dynamic Complexity Framework . . . . . . . . . . . . . 14
2.3 Three Basic Dynamic Complexity Classes . . . . . . . . . . . 15

2.3.1 The Class DynFO . . . . . . . . . . . . . . . . . . . . 16
2.3.2 The Class DynProp . . . . . . . . . . . . . . . . . . . 17
2.3.3 The Class DynQF . . . . . . . . . . . . . . . . . . . . 18

2.4 Variants of the Dynamic Complexity Framework . . . . . . . 21
2.5 A Case Study: Graph Queries . . . . . . . . . . . . . . . . . . 24

2.5.1 Regular Path Queries . . . . . . . . . . . . . . . . . . 26
2.5.2 Beyond Regular Path Queries . . . . . . . . . . . . . . 28

2.6 Outlook and Bibliographic Remarks . . . . . . . . . . . . . . 35

3 Relating Small Dynamic Complexity Classes 37
3.1 A Hierarchy of Dynamic Classes . . . . . . . . . . . . . . . . 42

3.1.1 Tools for Collapsing Dynamic Classes . . . . . . . . . 45
3.1.2 Eliminating Negations and Inverting Quantifiers . . . 49
3.1.3 Eliminating Disjunctions . . . . . . . . . . . . . . . . . 50
3.1.4 Simulating Functions by Conjunctive Queries . . . . . 61

3.2 Short Interlude: ∆-Semantics . . . . . . . . . . . . . . . . . . 64
3.3 Relating Dynamic Classes and Static Classes . . . . . . . . . 72

3.3.1 A Dynamic Characterization of First-order Logic . . . 73
3.3.2 DynProp Captures Semi-Positive ∃∗FO Under Inser-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4 Eliminating Built-in Arithmetic . . . . . . . . . . . . . . . . . 81
3.5 Outlook and Bibliographic Remarks . . . . . . . . . . . . . . 85



4 Lower Bounds for Dynamic Complexity Classes 87
4.1 Quantifier-free Update Programs . . . . . . . . . . . . . . . . 91

4.1.1 The Substructure Lemma . . . . . . . . . . . . . . . . 94
4.1.2 Applications of the Substructure Lemma . . . . . . . . 96

Using Counting . . . . . . . . . . . . . . . . . . . . . 96
Using Higman’s Lemma and Ramsey’s Theorem . . 97
Using Bounds on Ramsey Numbers . . . . . . . . . . 105
Proofs of the Combinatorial Tools . . . . . . . . . . 109

4.1.3 An Arity Hierarchy for Quantifier-free Programs . . . 112
4.1.4 Fragments of Quantifier-free Programs . . . . . . . . . 114

4.2 Quantifier-free Update Programs with Functions . . . . . . . 118
4.2.1 A Generalization of the Substructure Lemma . . . . . 120
4.2.2 Applying the Generalized Substructure Lemma . . . . 122

Using Counting . . . . . . . . . . . . . . . . . . . . . 123
Using Ramsey’s Theorem . . . . . . . . . . . . . . . 125

4.2.3 Why Lower Bounds for Binary Functions are Hard to
Prove . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.3 First-order Update Programs . . . . . . . . . . . . . . . . . . 132
4.3.1 Applying Static Lower Bound Methods . . . . . . . . 133
4.3.2 Two Approaches for Restricted Initializations . . . . . 139

Simulating Dynamic Programs . . . . . . . . . . . . 139
Using Domain Independence . . . . . . . . . . . . . 143

4.4 Outlook and Bibliographic Remarks . . . . . . . . . . . . . . 145

5 Conclusion 149

Bibliography 153

Index 161

A Note on Two-Variable Logic 161



Chapter 1

Introduction

In many of today’s data management scenarios the data is subject to fre-
quent modifications, and it is often essential to react to those changes
quickly. When a train is canceled on short notice, travelers need to find
alternative connections as fast as possible. When a web server is temporar-
ily not available, data packages have to be rerouted immediately. Also data
in social networks is subject to frequent changes: modifications of the rela-
tionships of users lead to numerous consequences including the necessity of
updating the visibility of sensitive data.

Recomputation of a query result from scratch after each small change of
the data is often not possible in such scenarios due to the large amount of
data at hand and efficiency considerations. Very often it is also not neces-
sary: the breakdown of a single train does affect only a very small fraction of
the whole train network. Thus it is reasonable to try to dynamically update
essential information in an incremental fashion by reusing information that
has been computed already before. Ideally such a dynamic update should
use less resources than recomputation from scratch.

Approaches for such dynamic updates often store, besides the relevant
data, additional information in order to facilitate the update process. This
information is called auxiliary data. When updating the result of a query
after a modification of the data occurred, an update process has access to
both the modification and the stored auxiliary data. The auxiliary data,
however, has to be updated as well. In Figure 1.1 the dynamic point of view
is juxtaposed to the classical static point of view.

Two fundamentally different approaches for dynamically updating the
result of a query have been studied, an algorithmic approach and a declara-
tive approach.

The algorithmic approach is not subject of this work. In this approach
the goal is to develop algorithms that need less resources for recomputing
query results after modifications than a näıve algorithm that recomputes
results from scratch. A good starting point for readers interested in upper
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Static query evaluation

Q Q

Modification

of the data
Data

Query result

Dynamic query evaluation

Modification

of the data

QU

QA QA

Data

Auxiliary data

Query result

Figure 1.1: Updating the result of a query Q in the static and dynamic set-
ting after modifying the data. In the static setting the query is re-evaluated
from scratch after each modification; in the dynamic setting some auxiliary
data is updated by a query QU , and the result of Q is obtained by evaluating
another query QA on the auxiliary data. In our framework the result of Q
will be part of the auxiliary data.

bounds for dynamic algorithms is [RZ08, DI08]; a good starting point for
lower bound techniques is the survey by Miltersen on cell probe complex-
ity [Mil99].

The objective of this work is to advance the understanding of the declar-
ative approach. Here, declarative means that updates of the auxiliary infor-
mation are specified by some logical formalism. In this approach the input
data and the auxiliary data is stored in (logical) structures. When the un-
derlying input structure is modified, i.e. a tuple is inserted into or deleted
from some input relation, then every auxiliary relation is updated through a
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logical query that can refer to the modification, the previous content of the
input relations and the previous content of the auxiliary relations. The aim
is to be able to extract the updated query result from one of the auxiliary
relations at each moment.

The focus of this work is on first-order definable update queries. This
setting was independently formalized by Dong, Su and Topor [DT92, DS93]
and Patnaik and Immerman [PI94]. Both formalizations are very similar.
We use the formalization by Patnaik and Immerman throughout this work,
henceforth called the dynamic (descriptive) complexity framework . In this
framework first-order formulas are the basic update mechanism. We call
a set of first-order formulas for updating the auxiliary relations dynamic
first-order program and the class of queries maintainable by such dynamic
programs is called DynFO. For a discussion of the differences of the two
formalizations we refer to the later discussion in Section 2.4.

Different aspects of dynamic descriptive complexity have been studied
over the last twenty years. The main focus of research has been to see how
strong this formalism is, and how it relates to the power of static logical
formalisms. Our main objective is to advance those two lines of research.

Before discussing the aspirations and contributions of this work in de-
tail, it is instructive to see this approach at work, to see some merits of
the dynamic descriptive complexity approach, and to have a short look at
previous and related work. We start with an illustrative example.

Example 1.1. Consider a graph G into which edges are inserted dynami-
cally. For the moment we disallow deletions of edges. In the following, our
goal is to maintain the transitive closure of G using a dynamic program with
first-order update formulas. The transitive closure is maintained by such a
dynamic program, if one of its auxiliary relations always (that is, after every
possible insertion sequence) stores the transitive closure of G.

It turns out that if edges may only be inserted (and not deleted), then
it is sufficient to store the current transitive closure relation in an auxiliary
relation T . In other words, T shall contain all pairs (a, b) of nodes that are
connected by a path in the current graph G. Now, when an edge (c, d) is
inserted into G, the relation T has to be updated. The following very simple
rule updates T : there is a path from a to b after inserting (c, d) if (1) there
has been a path from a to b before the insertion, or (2) there has been a
path from a to c and a path from d to b before the insertion. See Figure 1.2
for an example of an edge insertion and the corresponding update of T .

This rule can be easily specified by a first-order update formula:

φTinsE (u, v;x, y)
def
= T (x, y) ∨

(
T (x, u) ∧ T (v, y)

)

The interpretation of the update formula φTinsE(u, v;x, y) is as follows:
when inserting an edge (u, v) into E, then the tuple (x, y) will be present
in the updated relation T if φTinsE(u, v;x, y) holds. Thus, after the insertion
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Figure 1.2: Update of the transitive closure T of a graph G after inserting
the edge (2, 4).

of (u, v), the relation T is replaced by the relation defined by φTinsE (u, v;x, y).

Using first-order formulas as an update mechanism must appear as a
weird choice to readers not too familiar with logic. Yet, there are some
strong arguments for choosing first-order logic as the basic update language
for the dynamic descriptive complexity framework.

Why Dynamic Descriptive Complexity Matters We present two
perspectives on first-order logic that indicate that it is indeed a good choice.

The relational database model due to Codd [Cod70] has, since its in-
troduction in the 1970’s, revolutionized the field of database systems. One
of the most influential query languages for relational databases in use to-
day, SQL, has a strong connection to first-order logic. The core of SQL, the
relational algebra, has many characterizations (see, e.g., [AHV95]); one of
them being first-order logic. In other words, a query can be stated in core-
SQL if and only if it is expressible in first-order logic1. Even more, some
very popular syntactic fragments of core-SQL, such as conjunctive queries
and unions of conjunctive queries, directly correspond to well-defined frag-
ments of first-order logic. As it is well known that certain queries such as
the transitive closure query cannot be expressed in first-order logic, they can
also not be stated in the core of SQL.

Thus studying which queries can be maintained by first-order update
formulas in the dynamic complexity framework has an immediate impact

1More precisely, core-SQL is equivalent to domain-independent first-order logic. For
simplicity we ignore this technical issue here.
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SELECT *

FROM (

SELECT *

FROM T

UNION

SELECT T1.x, T2.y

FROM T as T1, T as T2

WHERE T1.y = u AND T2.x = v

)

Figure 1.3: An SQL query for selecting tuples in the transitive closure of a
graph after inserting the edge (u, v). This query corresponds to the first-
order update formula φTinsE (u, v;x, y)

def
= T (x, y) ∨

(
T (x, u) ∧ T (v, y)

)
.

on the power of core-SQL in a dynamic setting: if a query can be main-
tained via first-order update formulas, then it can also be maintained using
core-SQL queries. In Example 1.1 we have already seen that the transitive
closure query, while not expressible in first-order logic, can be easily ex-
pressed in the dynamic complexity framework under insertions. The update
formula updating the transitive closure after an edge insertion can be easily
translated into an SQL query, see Figure 1.3. In fact, very recently it has
been shown that this query can even be maintained by first-order updates
under both insertions and deletions [DKM+15] (a rough proof sketch for
this result is presented in Section 2.6). More connections between dynamic
descriptive complexity and relational databases will be discussed below in
the paragraph on related work.

Another motivation for studying first-order logic as an update mecha-
nism is its close connection to parallel computation models. Circuits have
been studied as a model for parallelism for several decades (see, e.g., [Vol99]).
The uniform variant of the circuit complexity class AC0 corresponds to first-
order logic complemented by basic arithmetic, that is, built-in addition and
multiplication relations [BIS90]. Circuits in AC0 are of constant depth and
may have polynomially many ∧-, ∨- and ¬-gates; the ∧- and ∨-gates may
have unbounded fan-in. Such circuits can be simulated by parallel random
access machines (short: PRAMs) with polynomially many processors in con-
stant time (see, e.g., [Vol99]). In particular first-order logic can be evaluated
by such random access machines in constant time.

Thus if a query can be maintained via first-order update formulas, it
can be dynamically recomputed by a highly parallel program in constant
time as well. Although it is not immediately clear how to implement first-
order update programs in real systems, results from dynamic descriptive
complexity offer a foundation for future work towards fast, parallel dynamic
programs for important queries. The construction of such programs is highly
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Figure 1.4: Main research topics in dynamic complexity theory over time.

relevant in todays huge, distributed databases.

Those two motivations offer a strong incentive to study dynamic de-
scriptive complexity with first-order update formulas in detail. We will now
discuss prior and related work.

Short History of Dynamic Complexity Theory Several aspects of
dynamic complexity have been studied over the last two decades. The major
directions are depicted in Figure 1.4. We discuss those directions now.

Maintainability of Basic Queries Most of the attention devoted to dy-
namic complexity has been on investigating which queries can be maintained
by first-order updates or even weaker update languages. Typical graph
queries as well as formal languages have been studied.

Among graph queries, the reachability query is the best studied query.
Already with the introduction of the dynamic complexity framework, dy-
namic first-order programs for maintaining the reachability query for acyclic
and undirected graphs have been known [DS95, PI97]. Later Hesse showed
that reachability (on arbitrary graphs) can be maintained usingTC0-circuits
as update mechanism [Hes03a], where TC0-circuits are defined like AC0-
circuits except that they can also use majority gates. Very recently reach-
ability was shown to be maintainable in a non-uniform variant of DynFO

extended by a parity quantifier [DHK14]. Finally, in so far unpublished
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work, reachability was shown to be in DynFO [DKM+15]. Reachability has
been studied also for restricted update formalisms. Hesse showed that reach-
ability on deterministic graphs can be maintained by quantifier-free update
formulas (the corresponding dynamic complexity class is called DynProp),
and on undirected graphs with quantifier-free update formulas that can also
use auxiliary functions (the corresponding dynamic complexity class is called
DynQF) [Hes03b]. Moreover other graph queries such as 2-colorability and
the tree-isomorphism query have been studied, and shown to be contained
in DynFO [DS98, Ete98].

The maintainability of formal languages has been studied as well. Al-
ready Patnaik and Immerman observed that regular languages can be main-
tained in DynFO [PI97]. A more extensive study of languages conducted
by Gelade, Marquardt and Schwentick revealed that regular languages are
exactly the languages that can be maintained in DynProp [GMS12]. They
also showed that all context-free languages can be maintained in DynFO;
and that certain context-free languages can be maintained in DynQF.

Other maintainability results for dynamic descriptive complexity have
been obtained in, e.g, [KW03, WS07, GS12].

Lower Bounds Lower bounds have been studied as well, though proving
lower bounds for DynFO turned out to be very hard. Therefore several
restrictions of DynFO have been studied, among them the restriction of
the arity of auxiliary relations [DS98, DLW03] and syntactic restrictions of
first-order update formulas [GMS12]. For a more detailed overview over
previous work on lower bounds we refer to Chapter 4, which is devoted to
lower bounds and methods for proving them.

Other Aspects A lot of other aspects have been studied as well. Among
them notions of reducibility and complete problems for dynamic complexity
classes [PI97, HI02, WS07], the (in)dependence of the auxiliary relations
from the actual input relations [DS97, DS98, GS12], and the relation of dy-
namic and static complexity classes [PI94, Ete98, WS07, GMS12]. For a
detailed overview over the latter aspect we refer to Chapter 3.

Related work The development of the dynamic complexity framework
has been influenced by several very similar settings from database theory
and computational complexity theory. In the following we present some of
them and highlight their relation to the dynamic complexity framework. We
remark that the following classification is quite artificial as it is neither clear
how to draw a strict line between dynamic descriptive complexity and those
related areas nor is it desirable to do so.

Incremental View Maintenance Dynamic complexity is closely related
to the incremental maintenance of views. The goal in incremental view
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maintenance is to keep a materialized view, defined by some fixed query,
updated after the database has been modified (see, e.g., [GMS93, SI84]).
Most of the work in incremental view maintenance has been done from an
algorithmic perspective. Usually only the database and the current view are
used for updating views in this setting, but sometimes also auxiliary data
may be used.

An algebraic perspective of incremental view maintenance under ∆-
semantics has been studied in [Koc10]. Parts of the latter work have also
been implemented, leading to significant performance gains for query eval-
uation compared to static query evaluation, see e.g. [KAK+14].

Updating with SQL-like languages In the dynamic complexity frame-
work updates are specified by first-order logic. However, many features of
SQL such as the GROUPBY and HAVING clauses as well as aggregate
functions such as TOTAL and COUNT are not captured by first-order
logic. In [LW97b], Libkin and Wong have shown that those constructs can
be modeled by equipping the relational calculus with bag semantics and ag-
gregate functions. The resulting query language, NRC, and its restriction
to flat relations, SQL, have been studied as update mechanism as well. For
example, it has been shown that NRC and SQL are equally expressive in
the dynamic context [LW97a], and that SQL-updates capture the polyno-
mial time hierarchy [LW99]. The latter implies that reachability can be
maintained using SQL as update language [DLSW99].

This setting differs from the dynamic complexity framework in two as-
pects: it uses a stronger update mechanism and it assumes that the domain
has an infinite supply of fresh domain elements (which can be used in aux-
iliary relations even though they are not used in the actual database).

Theory of Incremental Computation The dynamic descriptive complex-
ity class DynFO is equivalent to a dynamic version of the circuit class AC0

for a large class of queries (see Section 3.4 for details). In [MSVT94], Mil-
tersen et al. proposed a framework for studying dynamic complexity classes
based on larger static complexity classes, that is, classes beyond AC0. It
is easy to see that PTIME coincides with the class of queries maintainable
with polynomial time updates. Therefore classes with logarithmic space and
time updates (on random access machines) have been studied in [MSVT94].
Some of the constructions and reduction concepts from [MSVT94] have been
reused by Patnaik and Immerman in [PI97].

This concludes the related work. We now state the goals of this work.

Purpose and Outline of this Work As stated above our main objective
is to advance the understanding of the power of the dynamic descriptive
complexity framework. Our focus is on proving lower bounds. To this end
also a good knowledge about small descriptive complexity classes is essential.
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Our first central goal arises from the fact that very few lower bound
methods for dynamic complexity are known, and that applying the available
methods to a given query is usually not easy. The goal is easy to state.

Goal 1. Provide new lower bound methods and new lower bounds for dy-
namic complexity.

Above we have seen that dynamic programs with first-order update for-
mulas are very powerful. They can maintain recursive queries such as reach-
ability, and they can maintain all AC0-properties. No meaningful lower
bounds for full DynFO are known so far. This indicates that lower bounds
for first-order updates are not easy to achieve, and that a more concerted
approach is necessary. Our approach towards new lower bound methods
is to study small syntactic fragments of DynFO first. The hope is that
lower bound methods for small fragments will serve as a solid foundation
for proving lower bounds for larger fragments. As starting point we choose
the quantifier-free fragment of DynFO, since some lower bounds for this
fragment have been already achieved [GMS12].

When trying to generalize lower bound methods to larger fragments it
is essential to choose a suitable next candidate fragment. This is the moti-
vation for our second central goal, namely to gain a clear understanding of
small dynamic complexity classes.

Goal 2. Understand how small dynamic complexity classes relate with re-
spect to each other, and how they relate with respect to static complexity
classes.

One chapter is devoted to each of the two goals. Our contributions are
presented in an informal way at the beginning of each of those chapters. In
addition to the contributions for those two goals, we present a case study
that examines how queries on graph databases can be maintained in the
dynamic complexity framework.

The structure of the rest of this work is as follows.

In Chapter 2, “Dynamic Complexity: Definitions and Examples”, a for-
mal introduction into the dynamic complexity framework will be given. The
basic dynamic complexity classes used in this work are defined and many
examples given. The chapter is concluded by a longer example section that
explores which queries on graph databases can be maintained by dynamic
programs. In this section we also present an overview of the proof that the
reachability query can be maintained by first-order update formulas.

In Chapter 3, “Relating Small Dynamic Complexity Classes”, the re-
lationship between various small dynamic complexity classes are explored.
Most of them are motivated from database theory. Also the expressive power
of traditional static descriptive complexity classes is compared to the power
of those dynamic classes. As an interlude, the relationship of absolute and
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∆-semantics is studied. Further we take a quick glance at the relationship
between restricted initialization mappings. Our main result presented here
is one of the three steps for maintaining Reachability with first-order update
formulas.

Chapter 4, “Lower Bounds for Dynamic Complexity Classes”, is de-
voted to the development of new techniques for proving lower bounds for
quantifier-free update programs, quantifier-free update programs with aux-
iliary functions and first-order update programs. Furthermore most prior
techniques for proving lower bounds are presented.

Both Chapter 3 and Chapter 4 start with an informal introduction aimed
at an occasional reader. The informal introduction clearly states the goals
that shall be achieved in this chapter, and it states our contributions in an
informal fashion. Precise results are given in subsequent sections. Each such
section contains precise theorem statements close to its beginning. If proofs
of those theorems are more involved, then they are sometimes distributed
into subsections2. Chapters end with a conclusion section that discusses
possible future work and open questions. It also contains bibliographical
remarks.

In order to not distort the flow of reading too much, references within
the text are usually only given to work in which the author was not involved.
In the bibliographical remarks in the conclusion of each chapter there will be
a detailed exposition of who contributed to which result and where results
have been published before.

Bibliographic Remarks Parts of the beginning of this introduction as
well as Figure 1.1 have been used in a project proposal to the German Re-
search Foundation (DFG) prepared by Thomas Schwentick and the author.

2If the statement of a theorem is repeated, it is marked by (R).



Chapter 2

Dynamic Complexity:

Definitions and Examples

In this chapter the dynamic complexity framework is defined formally; and
many examples for its expressive power are presented. As the dynamic
complexity framework is based on notions from database theory and finite
model theory, we will shortly review necessary foundations from those two
areas first. Afterwards we will introduce the formal dynamic complexity
framework, define three basic dynamic complexity classes and present simple
examples for each of them. The formal framework has several aspects that
can be varied; those will be discussed subsequently.

In order to get some familiarity with the setting, this chapter will be con-
cluded by an extensive case study on path queries for graph databases. Re-
cently query languages for graph databases have drawn considerable atten-
tion from the database theory community (see e.g. [MW95, AV99, ACP12,
LM13] and [Woo12, Bae13] for surveys). Graph databases can contain huge
amounts of data and therefore evaluating queries in parallel and, if possi-
ble, dynamically is highly desired. This motivates to study graph query
languages from the dynamic complexity perspective. We will see how to
maintain regular path queries as well as certain non-regular path queries
using dynamic programs. The maintenance of regular path queries relies on
the recent result that reachability can be maintained in by first-order up-
date formuals. An overview for the proof of this result is presented. Rather
than giving a complete picture for graph queries, we aim at developing some
intuition of the capabilities of dynamic programs. This intuition will be of
help in Chapter 3 and Chapter 4.

Parts of this chapter originated in joint work with Samir Datta, Raghav
Kulkarni, Anish Mukherjee and Thomas Schwentick; and discussions with
Katja Losemann. For detailed bibliographic remarks we refer to the end of
this chapter.
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2.1 Preliminaries

In this section we review basic definitions in order to fix notations. We list
definitions that are used throughout the whole work; specific notations are
introduced in later chapters.

Basic Notations Let A be a finite set. We denote by Ak the set of all
k-tuples over A and by [A]k the set of all k-element subsets of A. For
two tuples ~a = (a1, . . . , ak) and ~b = (b1, . . . , bℓ) over A, the (k + ℓ)-tuple
obtained by concatenating ~a and ~b is denoted by (~a,~b). We slightly abuse
set theoretic notations and write c ∈ ~a if c = ai for some i, and ~a ∪ ~b for
the set {a1, . . . , ak, b1 . . . , bℓ}. The tuple ~a is ≺-ordered with respect to a
linear order ≺ of A, if a1 ≺ . . . ≺ ak. If π is a function on A, we denote
(π(a1), . . . , π(ak)) by π(~a).

Structures and First-order Logic We shortly review basic notions from
finite model theory. We emphasize that in this work we are solely interested
in finite structures. For a detailed introduction to the field we refer the
reader to [EF05] and [Lib04].

A (relational) schema τ consists of a set τrel of relation symbols and a
set τconst of constant symbols together with an arity function Ar : τrel → N.
A domain D is a finite set. A database D over schema τ with domain D
is a mapping that assigns to every relation symbol R ∈ τrel a relation of
arity Ar(R) over D and to every constant symbol c ∈ τconst an element
(called constant) from D.

A τ -structure S is a pair (D,D) where D is a database over schema τ
and D is a domain. For a relation symbol R ∈ τ and a constant symbol c ∈ τ
we denote by RS and cS the relation and constant, respectively, that are
assigned to those symbols in S. The substructure S ′ of S induced by some
D′ ⊆ D is denoted by S ↾D′. In this work we always assume that the domain
of a substructure contains all constants from the structure itself.

Let S and T be two structures over schema τ with domains S and T ,
respectively. A mapping π : S → T preserves a relation symbol R ∈ τ of
arity m, when ~a ∈ RS if and only if π(~a) ∈ RT for allm-tuples ~a. It preserves
a constant symbol c if and only if π(cS) = cT . The structures S and T are
isomorphic via π, denoted by S ≃π T , if π is a bijection from S to T
that preserves all relation and constant symbols in τ . The bijection id[~a,~b]
from S to S with ~a = (a1, . . . , ak) (where all ai are pairwise distinct) and
~b = (b1, . . . , bk) (where all bi are pairwise distinct) will be used a couple of
times; it maps ai to bi, bi to ai and every other element of S to itself.

The set of first-order formulas over schema τ is defined inductively as
follows:
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• Every atomic formula of the form R(t1, . . . , tk) or t1 = t2, where all ti
are either constant symbols or variables, is a first-order formula.

• Every composed formula of the form ¬ϕ, ϕ∧ψ, or ∃xϕ is a first-order
formula.

The abbreviations ∨, →, ↔ and ∀x are defined as usual.
Let S

def
= (D,D) be a τ -structure, ϕ a first-order formula over τ with free

variables x1, . . . , xk, and α an assignment that maps every xi to an element
from D. By (S, α) |= ϕ we indicate that (S, α) is a model of ϕ. Often
we write also (S,~a) |= ϕ or S |= ϕ(~a) where ~a

def
= (α(x1), . . . , α(xk)). The

model relation |= is defined as usual.
An m-ary query Q on τ -structures is a mapping that is closed under iso-

morphisms and assigns a subset of Dm to every τ -structure over domain D.
Closure under isomorphisms means that π(Q(S)) = Q(π(S)) for all isomor-
phisms π. Often we will denote Q(S) by ans(Q,S). A query Q is definable
(alternatively: expressible) in first-order logic if there is a first-order for-
mula ϕ(~x) such that ans(Q,S) = {~a | (S,~a) |= ϕ(~x)} for all structures S.

The k-ary atomic type 〈S,~a〉 of ~a ∈ Dk with respect to a struc-
ture S over τ is the conjunction of all atomic formulas ϕ(~x) over τ for
which S |= ϕ(~a).

Standard Structures and Queries The following structures and queries
will be used throughout this work. A (directed) graph G is a pair (V,E)
where V is a finite set and E is a subset of V 2. Graphs can be encoded
as structures over schema {E} where E is a binary relation symbol (to
be interpreted by the set of edges). Usually we identify graphs and their
corresponding structures.

An s-t-graph is a graph with two distinguished nodes s and t. Such
graphs can be encoded by structures over schema {E, s, t} where E is as
before and s and t are two constant symbols (to be interpreted by two
distinguished nodes). A k-layered s-t-graph G is an s-t-graph in which V −
{s, t} is partitioned into k layers A1, . . . , Ak such that every edge is from s
to A1, from Ak to t or from Ai to Ai+1 for some i ∈ {1, . . . , k − 1}.

The reachability query Reach, the k-clique query k-Clique and the
k-colorability query k-Col are defined as usual. A tuple (a, b) is in
Reach(G) if b can be reached from a in G. The s-t-reachability query
s-t-Reach is a Boolean query which is true for an s-t-graph G, if and only
if (s, t) ∈ Reach(G). A graph G = (V,E) is in k-Clique if V contains k
nodes v1, . . . , vk such that (vi, vj) ∈ E or (vj , vi) ∈ E for all 1 ≤ i < j ≤ k.

A k-node-coloring col of G is a mapping that assigns to every node of V
a color from {1, . . . , k}. Such a coloring is admissible, if all nodes a and b
with (a, b) ∈ E are colored by different colors. A graph is k-node-colorable,
if it admits a k-node-coloring. The graph G = (V,E) is in k-Col if it is
k-node-colorable.
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2.2 The Dynamic Complexity Framework

After the informal discussion of the dynamic complexity framework in the
introduction chapter, we present the basic formal framework now. In Ex-
ample 1.1, the structure subjected to modifications was a graph and modifi-
cations were restricted to be insertions. In the general dynamic complexity
framework, arbitrary structures are subject to both tuple insertions and tu-
ple deletions. We present a variant of the framework introduced by Patnaik
and Immerman [PI94].

A dynamic instance of a query Q is a pair (D, α), where D is a database
over some finite domain D and α is a sequence of modifications to D. Here,
a modification is either an insertion of a tuple over D into a relation of D
or a deletion of a tuple from a relation of D. The result of Q for (D, α)
is the relation that is obtained by first applying the modifications from α
to D and then evaluating Q on the resulting database. We use the Greek
letters α and β to denote modifications as well as modification sequences.
The database resulting from applying a modification α to a database D is
denoted by α(D). The result α(D) of applying a sequence of modifications
α

def
= α1 . . . αm to a database D is defined by α(D)

def
= αm(. . . (α1(D)) . . .).

Dynamic programs, to be defined next, consist of an initialization
mechanism and an update program. The former yields, for every (input)
database D, an initial state with initial auxiliary data. The latter defines
how the new state of the dynamic program is obtained from the current
state when applying a modification.

A dynamic schema is a tuple (τinp, τaux) where τinp and τaux are the
schemas of the input database and the auxiliary database, respectively.
While τinp may contain constants, we do not allow constants in τaux in
the basic setting. We always let τ

def
= τinp ∪ τaux.

Definition 2.2.1 (Update program). An update program P over a dynamic
schema (τinp, τaux) is a set of first-order formulas (called update formulas
in the following) that contains, for every relation symbol R in τaux and
every δ ∈ {insS ,delS} with S ∈ τinp, an update formula φRδ (~x; ~y) over the
schema τ where ~u and ~x have the same arity as S and R, respectively.

A program state S over dynamic schema (τinp, τaux) is a structure
(D,I,A) where D is a finite domain, I is a database over the input schema
(the current database) and A is a database over the auxiliary schema (the
auxiliary database).

The semantics of update programs is as follows. Let P be an update
program, S = (D,I,A) be a program state and α = δ(~a) a modification
where ~a is a tuple over D and δ ∈ {insS ,delS} for some S ∈ τinp. If P is in
state S then the application of α yields the new state Pα(S)

def
= (D,α(I),A′)

where, in A′, a relation symbol R ∈ τaux is interpreted by {~b | S |= φRδ (~a;
~b)}.
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The effect Pα(S) of applying a modification sequence α
def
= α1 . . . αm to a

state S is the state Pαm(. . . (Pα1
(S)) . . .).

Definition 2.2.2 (Dynamic program). A dynamic program is a triple
(P, Init, Q), where

• P is an update program over some dynamic schema (τinp, τaux),
• Init is a mapping that maps τinp-databases to τaux-databases, and
• Q ∈ τaux is a designated query symbol .

A dynamic program P = (P, Init, Q) maintains a query Q if, for every
dynamic instance (D, α), the relation ans(Q, α(D)) coincides with the query
relation QS in the state S = Pα(SInit(D)) where SInit(D) is the initial state
for D, that is, SInit(D)

def
= (D,D, Init(D)).

In Example 1.1 we have already seen how to maintain reachability in
graphs under insertions. Now we present a simple dynamic program for
maintaining the parity of a unary relation as another example. This already
gives a glimpse of the power of dynamic programs with first-order update
formulas, as parity and reachability are not expressible in first-order logic
(even with arbitrary built-in predicates) [Ajt83, FSS84].

Example 2.2.3. The parity query asks whether the number of elements in
a unary relation U is divisible by two. A dynamic program can maintain
the parity of U using a single 0-ary auxiliary relation Q as follows:

φQinsU (u;x, y)
def
= (¬U(u) ∧ ¬Q) ∨ (U(u) ∧Q)

φQdelU (u;x, y)
def
= (U(u) ∧ ¬Q) ∨ (¬U(u) ∧Q)

The following notions will be useful at several places. Two programs P
and P ′ with the same input schema and with designated query symbols Q
and Q′ of the same arity are equivalent if Q and Q′ store the same relation
after the application of every modification sequence.

The dependency graph of a dynamic program P with auxiliary schema τ
has the vertex set V = τ and an edge (R,R′) if the relation symbol R′

occurs in one of the update formulas for R. The deletion dependency graph
is defined as the dependency graph except that only update formulas for
delete operations are taken into account.

2.3 Three Basic Dynamic Complexity Classes

It is natural to look at the classes of queries that can be maintained by
dynamic programs. In the following we introduce the dynamic complex-
ity classes DynFO, DynProp and DynQF. These are the basic com-
plexity classes studied in this work. They have been introduced in [PI94]
and [Hes03b].
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2.3.1 The Class DynFO

We start with the class of queries maintainable by dynamic programs with
first-order updates.

Definition 2.3.1 (DynFO). DynFO is the class of all dynamic queries that
can be maintained by dynamic programs with first-order update formulas
and arbitrary initialization mappings.

The role of the initialization mapping will be discussed later in this sec-
tion. We remark that the class DynFO is the prototype of dynamic com-
plexity classes defined by referring to a static class C; in this case FO. More
generally, in the dynamic class DynC updates from class C are allowed. In
Chapter 3 we will encounter several other classes of the form DynC where C
is a fragment of FO.

The dynamic complexity class DynFO and all other classes presented in
the following also come in a variant where the arity of the auxiliary relations
is restricted. A dynamic program is k-ary if the arity of its auxiliary relation
symbols is at most k. By k-ary DynFO we refer to dynamic queries that
can be maintained with k-ary DynFO-programs.

As we already have seen above, the parity query is in DynFO; even in
0-ary DynFO. Many other queries have been shown to be in DynFO as
well, e.g. two-colorability of graphs [DS98] and all context-free languages
are in DynFO [GMS12]. Very recently reachability for arbitrary (directed)
graphs has been shown to be maintainable in DynFO [DKM+15].

As an example we show how reachability on acyclic graphs can be main-
tained in DynFO. The technique used in this example will be the foun-
dation for some results for maintaining graph queries on acyclic graphs in
Section 2.6.

Example 2.3.2. We follow the argument from [PI97] and construct a dy-
namic DynFO-program with one binary auxiliary relation T which is in-
tended to store the transitive closure of an acyclic graph.

Insertions can be handled straightforwardly as in the introductory ex-
ample at the beginning of this section: after inserting an edge (u, v) there
is a path from x to y if, before the insertion, there has been a path from x
to y or there have been paths from x to u and from v to y. There is a path p
from x to y after deleting an edge (u, v) if there was a path from x to y
before the deletion and (1) there was no such path via (u, v), or (2) there
is an edge (z, z′) on p such that u can be reached from z but not from z′.
If there is still a path p from x to y, such an edge (z, z′) must exist on p,
as otherwise u would be reachable from y contradicting acyclicity. All con-
ditions can be checked using the transitive closure of the graph before the
deletion of (u, v). The update formulas for T are as follows:

φTinsE (u, v;x, y)
def
= T (x, y) ∨

(
T (x, u) ∧ T (v, y)

)
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φTdelE(u, v;x, y)
def
= T (x, y) ∧

((
¬T (x, u) ∨ ¬T (v, y)

)

∨ ∃z∃z′
(
T (x, z) ∧ E(z, z′) ∧ (z 6= u ∨ z′ 6= v)

∧ T (z′, y) ∧ T (z, u) ∧ ¬T (z′, u)
))

Those examples already show that DynFO is very powerful. This is the
reason why several restrictions of DynFO have been studied.

2.3.2 The Class DynProp

Disallowing quantifiers in update formulas yields the class DynProp. Thus,
inDynProp, update formulas can only access the inserted or deleted tuple ~a
and the currently updated tuple ~b of an auxiliary relation.

Definition 2.3.3 (DynProp). DynProp is the class of all dynamic queries
that can be maintained by dynamic programs with quantifier-free first-order
update formulas and arbitrary initialization mappings.

By k-ary DynProp we refer to dynamic queries that can be maintained
with k-ary quantifier-free dynamic programs.

At first glance the restriction to quantifier-free programs appears se-
vere. However, Example 2.2.3 shows that the parity query is also in
DynProp, and Example 1.1 shows that reachability can be maintained
in DynProp under insertions. Using a slightly more involved construction,
Hesse proved that reachability on deterministic graphs can be maintained
in DynProp [Hes03b]. Gelade et al. showed that on strings, all regular
languages can be maintained in DynProp [GMS12]. Thus quantifier-free
programs are already quite expressive; and, as we will see later, proving
lower bounds for quantifier-free programs is non-trivial.

The following example illustrates a technique to maintain lists with
quantifier-free dynamic programs which is used in some of our upper bound
results. This technique was introduced in [GMS12, Proposition 4.5].

Example 2.3.4. We provide a DynProp-program P for the dynamic vari-
ant of the Boolean query NonEmptySet.This query asks, for a unary rela-
tion U subject to insertions and deletions of elements, whether U is empty.
Of course, this query is trivially expressible in first-order logic, but not with-
out quantifiers.

The program P uses the auxiliary schema τaux =
{Q,First,Last,List}, where Q is the query bit (i.e. a 0-ary rela-
tion symbol), First and Last are unary relation symbols, and List is a
binary relation symbol. The idea is to store in a program state S a list of all
elements currently in U . The list structure is stored in the binary relation
ListS such that a tuple (a, b) is in ListS if a and b that are adjacent in the
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list. The first and last element of the list are stored in FirstS and LastS ,
respectively. We note that the order in which the elements of U are stored
in the list depends on the order in which they are inserted into the set.

For a given instance of NonEmptySet the initialization mapping ini-
tializes the auxiliary relations accordingly.

In the following we assume for simplicity that only elements that are not
already in U are inserted. The given formulas can be extended easily to the
general case. A similar assumption is made for deletions.

Insertion of a into U . A newly inserted element is attached to the
end of the list. Therefore the First-relation does not change except when
the first element is inserted into an empty set U . Furthermore, the inserted
element is the new last element of the list and has a connection to the
former last element. Finally, after inserting an element into U , the query
result is ’true’:

φFirstinsU
(a;x)

def
= (¬Q ∧ a = x) ∨ (Q ∧ First(x))

φLastinsU
(a;x)

def
= a = x

φListinsU
(a;x, y)

def
= List(x, y) ∨ (Last(x) ∧ a = y)

φQinsU (a)
def
= ⊤.

Deletion of a from U . How a deleted element a is removed from the list,
depends on whether a is the first element of the list, the last element of the
list or some other element of the list. The query bit remains ’true’, if a was
not the first and last element of the list.

φFirstdelU
(a;x)

def
= (First(x) ∧ a 6= x) ∨ (First(a) ∧ List(a, x))

φLastdelU
(a;x)

def
= (Last(x) ∧ a 6= x) ∨ (Last(a) ∧ List(x, a))

φListdelU
(a;x, y)

def
= x 6= a ∧ y 6= a ∧

(
List(x, y) ∨ (List(x, a) ∧ List(a, y))

)

φQdelU (a)
def
= ¬(First(a) ∧ Last(a))

2.3.3 The Class DynQF

Quantifier-free programs, as the one above, can only access the inserted
or deleted tuple and the currently updated tuple of an auxiliary relation.
Dynamic programs with first-order update formulas, on the other hand, have
great freedom in choosing tuples to access. In the following we consider a
class of queries maintainable by programs that lay in between those two
extremes.

To define this class of dynamic programs, we extend the class of programs
with quantifier-free update formulas as follows. In addition to auxiliary
relations, we allow auxiliary functions to be stored as auxiliary data. With
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auxiliary functions further elements might be accessed via function terms
over the modified tuple and the currently updated tuple. Thus, in a sense,
auxiliary functions can be seen as adding weak quantification to quantifier-
free formulas. When full first-order updates are available, auxiliary functions
can be simulated in a straightforward way by auxiliary relations. However,
without quantifiers this is not possible.

The class of queries maintainable by quantifier-free programs extended
by auxiliary functions is called DynQF. Before giving the formal definition
of DynQF, we formalize the extension of the basic dynamic complexity
framework by functions. We follow the approach from [GMS12].

When talking about DynQF, the auxiliary schema τaux is the union of
a relational schema τrel and a functional schema τfun. It has an associated
arity function Ar : τrel ∪ τfun 7→ N. A database D over such a schema with
domain D is a mapping that assigns to every relation symbol R ∈ τrel a
relation of arity Ar(R) over D and to every k-ary function symbol f ∈ τfun
a k-ary function from Dk to D. We observe that constants can be modeled
by 0-ary functions.

In the following, we extend our definition of update programs with rela-
tional auxiliary schemas to programs with auxiliary schemas with function
symbols. It is straightforward to extend the definition of update formulas
for auxiliary relations: they simply can make use of function terms. How-
ever, following the spirit of DynProp, a more powerful update mechanism
for auxiliary functions is used which allows case distinctions in addition to
composition of function terms.

Definition 2.3.5 (Update term). Update terms are inductively defined as
follows:

(1) Every variable and every constant is an update term.

(2) If f is a k-ary function symbol and t1, . . . , tk are update terms, then
f(t1, . . . , tk) is an update term.

(3) If φ is a quantifier-free update formula (possibly using update terms)
and t1 and t2 are update terms, then ITE(φ, t1, t2) is an update term.

The semantics of update terms associates with every update term t and
interpretation I = (S, β), where S is a state and β a variable assignment, a
value JtKI from S. The semantics of (1) and (2) is straightforward. If I |= φ
holds, then JITE(φ, t1, t2)KI is Jt1KI , otherwise Jt2KI .

The extension of the notion of update programs for auxiliary schemas
with function symbols is now straightforward. An update program still
has an update formula φRδ (possibly using update terms instead of only
variables and constants) for every relation symbol R ∈ τaux and every δ ∈
{insS ,delS} with S ∈ τinp. Furthermore, it has, for every such δ and every
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function symbol f ∈ τaux, an update term tfδ (~x; ~y). For a modification δ(~a)

it redefines f for each tuple ~b by evaluating tfδ (~a;
~b) in the current state.

Definition 2.3.6 (DynQF). DynQF is the class of queries maintainable
by quantifier-free update programs with (possibly) auxiliary functions and
arbitrary initialization mappings.

The class k-aryDynQF is defined via update programs that use auxiliary
functions and relations of arity at most k.

We remark that our definition of DynQF is slightly stronger than the
usual definition. Here we allow for using update terms in update formulas
for relations whereas in [GMS12] only terms are allowed. This strengthens
several of our later results.

Auxiliary functions are quite powerful. While only regular languages can
be maintained in DynProp, all Dyck languages, among other non-regular
languages, can be maintained inDynQF [GMS12]. Furthermore, undirected
reachability can be maintained in DynQF with built-in arithmetic [Hes03b,
Corollary 4.9].

The following example provides an impression of the expressive power
of DynQF.

Example 2.3.7. Consider the unary graph query Q that returns all nodes a
of a given graph G with maximal outdegree.

We construct a unary DynQF-program P that maintains Q in a unary
relation denoted by the designated query symbol Q. The program uses
two unary functions Succ and Pred that shall encode a successor and
its corresponding predecessor relation on the domain. For simplicity, but
without loss of generality, we therefore assume that the domain is of the
form D = {0, . . . , n − 1}. For every state S, the function SuccS is then
the standard successor function on D (with SuccS(n − 1) = n − 1), and
PredS is the standard predecessor function (with PredS(0) = 0). Both
functions are initialized accordingly. In the following we refer to numbers
and mean the position of elements in Succ. The program uses constants
for representing the numbers 0 and 1.

The program P maintains two unary functions #edges and #nodes.
The function #edges counts, for every node a, the number of outgoing
edges of a; more precisely #edges(a) = b if and only if b is the number
of outgoing edges of a. The function #nodes counts, for every number a,
the number of nodes with a outgoing edges; more precisely #nodes(a) = b
if and only if b is the number of nodes with a outgoing edges. A constant
Max shall always point to the number i such that i is the maximal number
of outgoing edges from some node in the current graph.

When inserting an outgoing edge (u, v) for a node u that already has a
outgoing edges, the counter #edges of u is incremented from a to a + 1
and all other edge-counters remain unchanged. The counter #nodes of a is



2.4 Variants of the Dynamic Complexity Framework 21

decremented, the counter of a+1 is incremented, and all other node-counters
remain unchanged. The numberMax increases if, before the insertion, u was
a node with maximal number of outgoing edges. This yields the following
update terms:

t#edges
insE (u, v;x)

def
= ITE

(
¬E(u, v) ∧ x = u,Succ(#edges(x)),#edges(x)

)

t#nodes
insE (u, v;x)

def
= ITE

(
¬E(u, v) ∧ x = #edges(u),Pred(#nodes(x)),

ITE
(
¬E(u, v) ∧ x = Succ(#edges(u)),

Succ(#nodes(x)),#nodes(x)
))

tMax
insE

(u, v)
def
= ITE

(
Max = #edges(u) ∧ ¬E(u, v),Succ(u),Max

)

The update formula for the designated query symbol Q is as follows:

φQinsE (u, v;x)
def
= t#edges

insE (u, v;x) = tMax
insE

(u, v)

The update terms for deletions are very similar:

t#edges
delE (u, v;x)

def
= ITE

(
E(u, v) ∧ x = u,Pred(#edges(x)),#edges(x)

)

t#nodes
delE (u, v;x)

def
= ITE

(
E(u, v) ∧ x = #edges(u),Pred(#nodes(x)),

ITE
(
E(u, v) ∧ x = Pred(#edges(u)),

Succ(#nodes(x)),#nodes(x)
))

tMax
delE

(u, v)
def
= ITE

(
Max = #edges(u) ∧ E(u, v) ∧#nodes(Max) = 1,

Pred(Max),Max
)

The update formula for the designated query symbol Q under deletion
is as follows:

φQdelE (u, v;x)
def
= t#edges

delE (u, v;x) = tMax
delE

(u, v)

2.4 Variants of the Dynamic Complexity Frame-

work

Many variations of the basic dynamic complexity framework presented above
have been studied. In the following we discuss three aspects of the basic
framework that can be varied: the type of the domain; the initial state of a
dynamic program and the power of the initialization mapping; and, closely
related, whether built-in relations are available. For each of the aspects we
also say which variants we consider in this work and explain why we chose
those variants.
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Choosing a Domain While in the framework of Patnaik and Immerman
as well as in our framework fixed and finite domains are used, the first-order
incremental evaluation system framework (short: FOIES) introduced by
Dong, Su and Topor [DT92, DS93] uses active domains, where the domain
accessible by the update formulas contains only elements currently used in
input relations. The choice of domains is the main diference between our
basic framework and the FOIES framework. We discuss both choices in the
following.

In this work, we will almost exclusively use finite and fixed domains and
thus follow the approach taken by Patnaik and Immerman [PI94]. Here,
fixed means that domains do not change while modifications are applied.
Yet a dynamic program has to work uniformly for all domain sizes in order
to maintain a query. Choosing fixed domains for a dynamic setting might
appear counterintuitive at first sight. After all, dynamic complexity is about
dynamically changing structures, in particular structures might grow with-
out any a priori bound on the size of the domain when tuples are inserted.
However, it turns out that fixed and finite domains are sufficient to study
the underlying dynamic mechanisms of dynamic programs. They also offer
a strong connection to logics and circuit complexity, which will be used a
couple of times in this work. Very often upper and lower bounds obtained for
fixed, finite domains can be easily transferred to settings where the domain
can depend on the input database, and vice versa.

When using active domains, only elements used in the input database
are contained in the domain. When a tuple containing a so far unused
element a is inserted into the input database, then a is also inserted into the
domain accessible to the update formulas. This setting is a little closer to
real database systems but most results in dynamic complexity hold equally
for both fixed, finite domains and active domains.

Initializations How the initial state of a dynamic program looks like de-
pends on two choices: the set of permissible input databases and the power
of the initialization mapping. We first highlight some possible options for
those two choices, how those options have been combined in previous work
and how they relate to each other; then we discuss which initialization set-
tings we use in this work and why.

In our basic framework the initial input database can be arbitrary. Al-
ways starting from scratch, that is from an initially empty input database,
is another option.

The initialization mapping in our basic dynamic complexity classes may
assign arbitrary complex auxiliary relations. Other options are to re-
strict the mapping to be computable in some static complexity class, to
be permutation-invariant (short: invariant initialization), or to always as-
sign empty initial auxiliary relations. Intuitively a permutation-invariant
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initialization mapping maps isomorphic databases to isomorphic auxiliary
databases. A particular case of permutation-invariant initialization map-
pings, studied in [GS12], is when the initialization is specified by some logical
formalism.

Several combinations of those options have been used in the literature.
We state some examples only. In [PI97], Dyn-FO is defined as the class of
(Boolean) queries that can be maintained for empty initial input databases
with first-order update formulas and a first-order definable initialization
mapping. Furthermore, a larger class Dyn-FO+ that extends Dyn-FO

by polynomial-time computable initialization mapping has been studied by
Patnaik and Immerman. Also [Ete98] considers empty initial databases.
In [WS07], general instances (with non-empty initial databases) are allowed,
and auxiliary data is initialized by a mapping computable in some given
complexity class. In [GS12], also general instances are allowed, but the
initialization mapping has to be defined by logical formulas and is thus
always permutation-invariant.

Some of the initialization settings are the same. First we note that
for arbitrary initialization mappings, the same queries can be maintained
regardless of whether one starts from an empty or from a non-empty initial
database. This is because the initialization for a non-empty database can be
obtained as the auxiliary relations obtained after inserting all tuples of the
database into the empty one. Furthermore, it is easy to see that applying
an invariant initialization mapping to an empty database is pretty much
useless, as, all tuples with the same constants at the same positions are
treated in the same way. Therefore, queries maintainable in DynFO with
empty initial database and invariant initialization can also be maintained
from initially empty input and auxiliary database. We do not formally prove
this here.

We shortly discuss which settings are used in this work. For upper
bounds, we try to make the initialization as weak as possible. Yet, the
weakest setting we use is the original setting of Patnaik and Immerman,
that is, the setting with initially empty input database and first-order de-
finable initialization mapping [PI97]. If a query can be maintained, for
example, in this setting with first-order update formulas, we say that it can
be maintained in DynFO from scratch.

When proving lower bounds, we try to make the initialization as strong
as possible. This is motivated by the fact that lower bounds in settings with
restricted initialization might depend on the restriction. Thus our goal is to
use the setting with arbitrary initial input databases and arbitrary initial-
ization mappings for lower bounds whenever possible. An inexpressibility
result in this setting shows that a query cannot be maintained dynamically
at all.

In this work the basic dynamic complexity classes use the setting with
arbitrary initial input databases and arbitrary initialization mapping as de-
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fault. We explicitly state when a result does not adhere to this setting.

Built-In Relations When studying fragments of DynFO with restricted
arity, it is sometimes useful to allow for special built-in relations of larger
arity. For example, a lower bound proof for unary DynProp could look like
it depends on the fact that no linear order was present on the domain (as
binary relations are not allowed in unary DynProp). Then proving a lower
bound for unary DynProp with a built-in linear order can refute this.

For the study of dynamic complexity classes with built-in relations we
extend dynamic schemas to triples (τinp, τaux, τbi) where τbi is the schema
for the built-in database. The built-in relations are initialized by an ini-
tialization mapping that only depends on the domain (and not on the input
database). In contrast to the auxiliary database, the built-in database never
changes throughout a “computation”, that is, update formulas for built-in
relations R are of the form φRδ (~u; ~x) = R(~x) for all modifications δ.

In this work, the main dynamic classes do not allow built-in relations. At
times we also consider dynamic programs with non-empty built-in schemas.
We denote the extension of a dynamic complexity class that allows programs
with non-empty built-in schemas by a superscript ∗, as in DynProp∗. For
classes with restricted arity of the auxiliary schema, the restriction does not
apply to the built-in schema. For example, dynamic programs for queries
in binary DynProp∗ can only use binary auxiliary relations, but built-in
relations of arbitrary arity.

We use built-in databases only to strengthen some results in one of two
possible ways, (1) by showing upper bounds in which (some) auxiliary rela-
tions or functions need not to be updated or (2) by showing inexpressibility
results that hold for auxiliary schemas of bounded arity but with built-in
relations of unbounded arity. In general, built-in data can be “simulated”
by auxiliary data. However, this needs not to hold, e.g., if the auxiliary
schema is more restricted than the built-in schema.

2.5 A Case Study: Graph Queries

The goal of this section is to develop a better intuition for the capabilities of
dynamic programs. To this end we will study graph query languages from
the perspective of dynamic complexity. We refer to the introduction of this
chapter for a motivation for studying graph query languages in this context.

Formally, a graph database is a labeled graph G = (V,E) where V is the
set of nodes and E is a set of labeled edges (x, σ, y) ⊆ V × Σ× V for some
alphabet Σ. Here σ is called the label of edge (x, σ, y). The graph underlying
a labeled graph is obtained by removing all labels from the database. A
labeled graph is acyclic if its underlying graph is acyclic; it is undirected if,
for each σ ∈ Σ, the projection of G to edges labeled by σ is undirected.
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A path p in G is labeled with a word w = σ1 . . . σℓ if the edges e1, . . . , eℓ
along p are labeled with σ1, . . . , σℓ. We also say that p is a w-path. A path
is an L-path, for a formal language L, if it is a w-path for some w ∈ L.

Here we focus on path-based graph query languages. Every formal lan-
guage L can be seen as a path query that selects a pair (x, y) of nodes from
a given labeled graph if there is an L-path from x to y. Usually we identify a
path query with its defining formal language. A path query is called regular
path query if L is regular, similarly for context-free path queries and other
classes of formal languages. A conjunctive regular path query is a query
of the form Q(~x)

def
= ∃~z

∧
i yiLiy

′
i where each Li is a regular language, and

each yi, y
′
i is either contained in ~x or in ~z. Informally, a tuple ~x is selected

by the query if there is a tuple ~z such that for each i there is an Li-path
from yi to y

′
i. For a more thorough introduction to graph queries we refer

to [Bae13].

In dynamic complexity, even maintaining path queries as simple as L(a∗)
was, until recently, not possible using first-order update formulas because
this requires to maintain reachability. Very likely this is the reason why
graph queries have (almost) not been studied at all in dynamic complexity.

Some related work has been done before. Already Patnaik and Immer-
man pointed out that regular languages can be maintained inDynFO [PI97].
Later Gelade et al. systematically studied formal languages in the dynamic
complexity framework [GMS12]. They showed, among other results, that
regular languages coincide with DynProp, and that all context-free lan-
guages can be maintained in DynFO. A result for path queries has been
obtained by Weber and Schwentick in [WS07]: the Dyck language D2 can
be maintained in DynFO on acyclic graphs.

Here we present some further results for maintaining graph queries. As
our main goal is to develop some intuition, those results are not meant to
be exhaustive.

It turns out that regular path queries can be evaluated dynamically in a
highly parallel fashion.

Theorem 2.5.1. (a) When only insertions are allowed then every regular
path query can be maintained from scratch in DynProp.

(b) Every conjunctive regular path query can be maintained from scratch
in DynFO.

The proof of the second part relies on the very recent result that reach-
ability can be maintained from scratch in DynFO [DKM+15]. This result
will not be proved in detail here.

Theorem 2.5.2. Reachability can be maintained in DynFO from scratch.

Proof overview. The proof has three main steps.
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Step 1 Show that reachability can be maintained in DynFO if the rank of
a matrix subject to modifications can be maintained in DynFO.

Step 2 Construct a DynFO-program with built-in arithmetic that main-
tains the rank of a matrix.

Step 3 Show that if a domain independent query is in DynFO with built-
in arithmetic then it can be maintained in DynFO from scratch (and,
in particular, without built-in arithemtic).

The statement of the theorem follows from Steps (1)-(3) since the
reachability query is domain independent. In Section 3.4 we present Step 3
in detail.

Capturing non-regular path queries by one of our basic dynamic com-
plexity classes seems to be significantly harder. We provide only some pre-
liminary results for restricted classes of graphs and modifications.

Theorem 2.5.3. (a) Context-free path queries can be maintained from
scratch in DynFO on acyclic graphs.

(b) There is a non-context-free path query that can be maintained from
scratch in DynFO on acyclic graphs.

(c) There is a non-context-free path query that can be maintained from
scratch in DynFO when only insertions are allowed.

Part (a) of the theorem generalizes results and techniques from [GMS12]
and [WS07].

2.5.1 Regular Path Queries

In this subsection we prove Theorem 2.5.1. For proving the first part of the
theorem, the following notion will be useful. Let A be a deterministic finite
state automaton (short: DFA) and let G be a labeled graph. Then a path
p in G can be read by A starting in a state q and ending in a state r if A
can reach state r from state q by reading the label sequence of p.

Proposition 2.5.4. When only insertions are allowed then every regular
path query can be maintained in DynProp from scratch.

Proof. Let L be a regular path query and let A = (Q,Σ, δ, s, F ) be a DFA
with L = L(A). We construct a DynProp-program P that maintains L.

The program P has input schema {Eσ | σ ∈ Σ} and an auxiliary schema
that contains a binary relation symbol Rq,r for every tuple (q, r) ∈ Q2, as
well as a binary designated query symbol R. The simple idea is that in a
state S with underlying labeled graph G, the relation RS

q,r contains all tuples
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(a, b) ∈ V 2 such that A, for some labeled path p from a to b, can read p by
starting in state q and ending in state r.

The update formulas for the relations Rq,r are slightly more involved than
the formulas for maintaining reachability under insertions (see Example 1.1).
This is because A might reach a state r from a state q only by reading a
labeled path from a to b that contains one or more loops. The crucial
observation is, however, that for deciding whether (a, b) is in Rq,r it suffices
to consider paths that contain the node a at most |Q| times (as paths that
contain a more than |Q| times can be shortened). This suffices to maintain
the relations Rq,r dynamically.

The update formulas for Rq,r and R are as follows:

φ
Rq,r

insEσ
(u, v;x, y)

def
= Rq,r(u, v) ∨

∨

q′,r′

(
Rq,q′(x, u) ∧ ϕ

|Q|
q′,r′(u, v) ∧Rr′,r(v, y)

)

φRinsEσ
(u, v;x, y)

def
=

∨

f∈F

φ
Rs,f
insEσ

(u, v;x, y)

Here the formula ϕ
|Q|
q′,r′(u, v) shall only be satisfied by tuples (a, b) for which

there exists a path p from a to b such that A can read p by starting in q′ and
ending in r′. It shall be satisfied by all such tuples with a witness path p
that contains node a at most |Q| times.

We inductively define, for every 1 ≤ i ≤ |Q| and all q, r ∈ Q, the slightly
more general formulas ϕiq,r(u, v) as follows:

ϕ1
q,r(u, v)

def
= [(q, σ, r) ∈ δ] ∨Rq,r(u, v)

ϕiq,r(u, v)
def
= ϕi−1

q,r (u, v) ∨
∨

q′,r′

(
ϕ1
q,q′(u, v) ∧Rq′,r′(v, u) ∧ ϕ

i−1
r′,r(u, v)

)

We conjecture that DynProp cannot maintain regular path queries for
both insertions and deletions. This would imply that reachability can be
maintained in DynProp which is very unlikely. A first step towards verify-
ing this conjecture is done in Section 4.1.2 where we show that reachability
cannot be maintained in binary DynProp.

However, regular path queries with insertions and deletions can be main-
tained in DynFO. The main ingredient for the proof is that reachability
can be maintained in DynFO.

Proposition 2.5.5. Every conjunctive regular path query can be maintained
from scratch in DynFO.

Proof sketch. Since DynFO is closed under conjunctions and existential
quantification, it suffices to show that regular path queries can be main-
tained in DynFO. We reduce the maintenance of regular path queries to
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reachability. The approach is very similar to the approach taken in [KW03]
for showing that dynamic LTL model checking can be maintained by a TC0-
update mechanism.

The product graph G × A of a labeled graph G = (V,E) and an DFA
A = (Q,Σ, δ, s, F ) has nodes V × Q, and the edge set contains a tuple
((u, q), (v, r)) if and only if there is a σ ∈ Σ such that both (u, σ, v) ∈ E
and (q, σ, r) ∈ δ. It can be easily verified that there is a path from node a
to node b in G labeled by w ∈ L(A) if and only if there is a path from (a, s)
to (b, f) in G×A for some accepting state f ∈ F of A.

Now, let L be a regular path query and let A = (Q,Σ, δ, s, F ) be an DFA
with L = L(A). We construct a DynFO-program P that maintains L. The
program P has input schema {Eσ | σ ∈ Σ}, yet it also stores an encoding
of G ×A in its state. This can be easily achieved, for example, by using a
4-ary auxiliary relation RG×A that contains the tuples of G×A. For this it
has to be assumed, without loss of generality, that G contains at least |Q|
nodes and that each q ∈ Q is identified with a unique node. The result of a
fixed regular path query for labeled graphs G with less than |Q| nodes can
be easily encoded by a first-order formula.

The crucial observation is that the modification of a single labeled
edge in G leads to at most |Q| modifications in G × A. Thus, due
to Reach ∈ DynFO [DKM+15] and the closure of DynFO under bounded
expansion first-order reductions (see [PI97]), the transitive closure of G×A
can be maintained in a relation T .

Now, this relation can be used to maintain the regular path query via

φQδ (u, v;x, y) =
∨

f∈F

T ′((x, s), (y, f))

where updating T with modification δ yields T ′.

2.5.2 Beyond Regular Path Queries

The maintenance of non-regular path queries is more difficult. Here we prove
the results stated in Theorem 2.5.3. All of them are either for restricted
graph classes or for restricted modification sequences. We start with proving
part (a).

Proposition 2.5.6. Context-free path queries can be maintained from
scratch in DynFO on acyclic graphs.

It is known that context-free languages are in DynFO [GMS12] and
that the Dyck language with two types of parentheses can be maintained on
acyclic graphs [WS07]. We combine the techniques used in those two proofs
in order to prove Proposition 2.5.6.
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In the following we fix a context-free language L and a grammar
G = (V,Σ, S, P ) for L. We assume, without loss of generality, that G is
in Chomsky normal form, that is, it has only rules of the form X → Y Z
and X → σ. Further if ǫ ∈ L then S → ǫ and no right-hand side of a rule
contains S. We write V ⇒∗ w if w ∈ (Σ ∪ V )∗ can be derived from Z ∈ V
using rules of G.

The dynamic program maintaining L on acyclic graphs will use 4-ary
auxiliary relation symbols RZ→Z′ for all Z,Z ′ ∈ V . The intention is
that in every state S with input database G, the relation RS

Z→Z′ contains
a tuple (x1, y1, x2, y2) if and only if there are strings s1, s2 ∈ Σ∗ such
that Z ⇒∗ s1Z

′s2 and there is an si-path pi from xi to yi for i ∈ {1, 2}.
The paths p1 and p2 are called witnesses for (x1, y1, x2, y2) ∈ RS

Z→Z′. Later
we will see that whether two nodes are connected by an L-path after an
update can be easily verified using those relations.

It turns out that for updating the relations RS
Z→Z′ it is necessary to have

access to (2k+2)-ary relations RS
X→Y1,...,Yk

, for k ∈ {1, 2, 3}, which contain a
tuple (x1, y1, . . . , xk+1, yk+1) if and only if there are strings s1, . . . , sk+1 ∈ Σ∗

such that X ⇒∗ s1Y1s2 . . . skYksk+1 and there is an si-path pi from xi to yi
in the input database underlying S.

Next, in Lemma 2.5.7, we prove that every relation RS
X→Y1,...,Yk

is first-

order definable from the relations RS
Z→Z′ (and thus only relations RS

Z→Z′

have to be stored as auxiliary data). This lemma is inspired by Lemma 7.3
from [WS07], and its proof is a generalization of the technique used in the
proof of Theorem 4.1 in [GMS12]. Afterwards we prove Proposition 2.5.6 by
showing how to use the relations RS

Z→Z′ to maintain L and how to update
the relations RS

Z→Z′ using the formulas that define relations of the form
RS
X→Y1,Y2

and RS
X→Y1,Y2,Y3

.

Lemma 2.5.7. For a grammar G in Chomsky normal form, k ≥ 2 and vari-
ables X,Y1, . . . , Yk there is a first-order formula ϕX→Y1,...,Yk over schema
τ = {RZ→Z′ | Z,Z ′ ∈ V } that defines RX→Y1,...,Yk in states S where the re-
lations RS

Z→Z′ are as described above.

Proof sketch. We explain how ϕX→Y1,Y2,Y3 tests whether a tuple is con-
tained in RS

X→Y1,Y2,Y3
. The construction for general k is analogous.

If a tuple (x1, y1, x2, y2, x3, y3, x4, y4) is contained in RS
X→Y1,Y2,Y3

wit-
nessed by si-paths pi from xi to yi such that X ⇒∗ s1Y1s2Y2s3Y3s4, then in
the derivation tree of s1Y1s2Y2s3Y3s4 from X there is a variable U such that
U → U1U2 and either (1) Y1 and Y2 are derived from U1, and Y3 is derived
from U2; or (2) Y1 is derived from U1, and Y2 and Y3 are derived from U2. In
case (1), the derivation subtree starting from U1 contains a variable W such
that W → W1W2 and Y1 is derived from W1 and Y2 is derived from W2.
Analogously for case (2). The derivation tree of X for case (1) is illustrated
in Figure 2.1.
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X

U

U1 U2

W

W1 W2

Y1 Y2 Y3

x1 u1 w1 y1 x2 w2 y2 x3 w3 u2 y3 x4 u3 y4

s1 s2 s3 s4

Figure 2.1: Illustration of when a tuple (x1, y1, x2, y2, x3, y3, x4, y4) is con-
tained in RX→Y1,Y2,Y3 in Lemma 2.5.7.

The formula ϕX→Y1,Y2,Y3 is the disjunction of formulas ψ1 and ψ2, respon-
sible for dealing with the cases (1) and (2) respectively. We only exhibit ψ1,
the formula ψ2 can be constructed analogously. The formula ψ1 guesses
the variables U,U1, U2,W,W1 and W2, and the start and end positions of
strings derived from those variables. Whether (x1, y1, x2, y2, x3, y3, x4, y4) is
contained in RS

X→Y1,Y2,Y3
can then be tested using the relations RZ→Z′. For

simplicity the formula ψ1 reuses the element names xi and yi as variable
names and is defined as follows:

ψ(x1, y1, . . . , x4, y4) =∃u1∃u2∃u3
∨

U,U1,U2∈V
U→U1U2∈P

∃w1∃w2∃w3

∨

W,W1,W2∈V
W→W1W2∈P(

RX→U (x1, u1, u3, y4) ∧RU1→W (u1, w1, w3, u2)

∧RW1→Y1(w1, y1, x2, w2) ∧RW2→Y2(w2, y2, x3, w3)

∧RU2→Y3(u2, y3, x4, u3)
)

We now use the relations RZ→Z′ and the formulas ϕX→Y1,Y2,Y3 for main-
taining context-free path queries on acyclic graphs.

Proof sketch (of Proposition 2.5.6). Let L be an arbitrary context-free lan-
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guage and let G = (V,Σ, S, P ) be a grammar for L in Chomsky normal form.
We provide a DynFO-program P with designated binary query symbol Q
that maintains L on acyclic graphs. The input schema is {Eσ | σ ∈ Σ} and
the auxiliary schema is τaux = {RX→Y | X,Y ∈ V } ∪ {T}. The intention of
the auxiliary relation symbols RX→Y has already been explained above; the
relation symbol T shall store the transitive closure of the input graph (where
the input graph is the union of all Eσ).

Before showing how to update the relations RX→Y , we state the up-
date formulas for the query relation Q. The update formulas distinguish
whether the witness path is of length 0 or of length at least 2. The updated
relations RX→Y are used for the latter case.

φQinsEσ
(u, v;x, y)

def
= ([S → ǫ ∈ P ] ∧ x = y)

∨ ∃z1∃z2
∨

U∈V
U→τ∈P

(
φRS→U
insEσ

(u, v;x, z1, z2, y) ∧ Eτ (z1, z2)
)

φQdelEσ
(u, v;x, y)

def
= ([S → ǫ ∈ P ] ∧ x = y)

∨ ∃z1∃z2
∨

U∈V
U→τ∈P

(
φRS→U
delEσ

(u, v;x, z1, z2, y) ∧ Eτ (z1, z2)
)

It remains to present update formulas for each RX→Y . For simplicity we
identify names of variable and elements.

After inserting a σ-edge (u, v), a tuple (x1, y1, x2, y2) is contained
in RX→Y if there are two witness paths p1 and p2 such that (1) p1 and p2
have already been witnesses before the insertion, or (2) only p1 uses the new
σ-edge, or (3) only p2 uses the new σ-edge, or (4) both p1 and p2 use the new
σ-edge. In case (2) the path p1 can be split into a path from x1 to u, the
edge (u, v) and a path from v to y1. Similarly in the other cases and for p2.
Using the formulas from Lemma 2.5.7 this can be expressed as follows:

φRX→Y
insEσ

(u, v;x1, y1, x2, y2)
def
= RX→Y (x1, y1, x2, y2)∨ (1)

∨

U1,U2∈V
U1→σ∈P
U2→σ∈P

(
ϕX→U1,Y (x1, u, v, y1, x2, y2) (2)

∨ ϕX→Y,U2
(x1, y1, x2, u, v, y2) (3)

∨ ϕX→U1,Y,U2
(x1, u, v, y1, x2, u, v, y2)

)
(4)

After deleting a σ-edge (u, v) a tuple (x1, y1, x2, y2) is in RX→Y if it still
has witness paths p1 and p2 from x1 to y1 and from x2 to y2, respectively.
The update formula for RX→Y verifies that such witness paths exist. There-
fore, similar to Example 2.3.2, the formula distinguishes for each i ∈ {1, 2}
whether (1) there was no path from xi to yi via (u, v) before deleting the
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x1

x2

z

z′

u v

y2

y1

σ

Figure 2.2: Illustration of the update of RX→Y after deletion of σ-edge (u, v)
in the proof of Lemma 2.5.6. The nodes x1 and y1 satisfy Condition (1),
whereas nodes x2 and y2 satisfy Condition (2).

σ-edge (u, v), or (2) there was a path from xi to yi via (u, v). See Figure 2.2
for an illustration.

In case (1) all paths present from xi to yi before the deletion of the
σ-edge (u, v) are also present after the deletion. In particular the set of
possible witnesses pi remains the same. For case (2), the update formula
has to check that there is still a witness path pi. Such a path pi has the
options (a) to still use the edge (u, v) but for a τ 6= σ, and (b) to not use
the edge (u, v) at all.

The update formula for RX→Y is a disjunction over all those cases for
the witnesses for (x1, y1) and (x2, y2). Instead of presenting formulas for all
those cases, we explain the idea for two representative cases. All other cases
are analogous.

We first look at the case where (x1, y1) satisfies (1), (x2, y2) satisfies (2)
and there are witness paths p1 and p2 where p2 satisfies (a). The following
formula deals with this case:

(¬T (x1, u) ∨ ¬T (v, y1)) ∧ T (x2, u) ∧ T (v, y2)

∧
∨

τ 6=σ,U2∈V
U2→τ∈P

(
ϕX→Y,U2

(x1, y1, x2, u, v, y2) ∧ Eτ (u, v)
)

In the first line the premises for this case are checked, in the second line it
is verified that p2 uses τ -edge (u, v) for σ 6= τ .

Now we consider the case where both (x1, y1) as well as (x2, y2)
satisfy (2), and where there are witness paths p1 and p2 where p1 satisfies (a)
and p2 satisfies (b). The existence of such a path p1 can be verified as above.
For verifying the existence of such a path p2, a path not using (u, v) has to
be found. This is achieved by relying on the same technique as for main-
taining reachability for acyclic graphs (see Example 2.3.2). The following
formula verifies the existence of such p1 and p2:

T (x1, u) ∧ T (v, y1) ∧ T (x2, u) ∧ T (v, y2)
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∧ ∃z∃z′
∨

τ 6=σ,U1,U2∈V
U1→τ∈P
U2→τ ′∈P

(
ϕX→U1,Y,U2

(x1, u, v, y1, x2, z, z
′, y2) ∧Eτ (u, v)

∧
(
T (x2, z) ∧ Eτ ′(z, z

′) ∧ (z 6= u ∨ z′ 6= v)

∧ T (z′, y2) ∧ T (z, u) ∧ ¬T (z′, u)
))

Again, in the first line the premises for this case are checked. In the
second line z and z′ are chosen with the purpose to find an alternative
path p2 (as in Example 2.3.2), and it is verified that p1 and p2 are witness
paths. The third and forth lines verify that z and z′ yield an alternative
path.

Finally we exhibit examples of non-context-free languages that can be
maintained in restricted settings.

Proposition 2.5.8. There is a non-context-free path query that can be
maintained from scratch in DynFO on acyclic graphs.

Proof. Let L
def
= {anbncn | n ∈ N}. We provide a DynFO-program P =

(P, Init, Q) that maintains L on acyclic graphs. The input schema τinp
contains a binary relation symbol Eσ for each σ ∈ {a, b, c}.

We assume that arithmetic is available on the elements that have been
used in modifications so far, that is, that there is a linear order relation < as
well as its corresponding addition relation + on those elements. In [Ete98],
Etessami showed that basic arithmetic relations can be maintained by a
DynFO-program (see also Section 3.4). The linear order < can be used
to interpret elements of the active domain as numbers, i.e. an element x is
interpreted as the number k if x is the kth element with respect to <.

For each σ ∈ {a, b, c} the program P has a binary auxiliary relation Tσ
and a ternary auxiliary relation Dσ. The intention is as follows. In a given
state S, the relation T S

σ shall contain the transitive closure of ES
σ ; and the

relation DS
σ shall contain a tuple (x, y, k) if and only if there is a σ∗-path

from x to y of length k.
Already in Example 2.3.2 we have seen how the transitive closure of an

acyclic graph can be maintained in DynFO. Thus the relations Tσ can be
easily maintained. Their update formulas can be easily extended to also
keep track of the length of paths:

φDσ
insEσ

(u, v;x, y, k)
def
= Dσ(x, y, k) ∨ ∃ℓ∃ℓ′

(
ℓ+ ℓ′ + 1 = k

∧Dσ(x, u, ℓ) ∧Dσ(v, y, ℓ
′)
)

φDσ
delEσ

(u, v;x, y, k)
def
= Dσ(x, y, k) ∧

((
¬Tσ(x, u) ∨ ¬Tσ(v, y)

)

∨ ∃z∃z′∃ℓ∃ℓ′
(
ℓ+ ℓ′ + 1 = k ∧Dσ(x, z, ℓ) ∧ Eσ(z, z

′)

∧ (z 6= u ∨ z′ 6= v) ∧Dσ(z
′, y, ℓ′)
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∧ Tσ(z, u) ∧ ¬Tσ(z
′, u)

))

For updates to Eσ′ for σ′ 6= σ, the relations Dσ and Tσ remain un-
changed. Finally, whether there is an L-path between to nodes after an
update δ can be expressed by the following formulas:

φQδ (u, v;x, y)
def
= ∃z∃z′∃k

(
φDa

δ (u, v;x, z, k) ∧ φDb

δ (u, v; z, z′, k)

∧ φDc

δ (u, v; z′, y, k)
)

Proposition 2.5.9. There is a non-context-free path query that can be
maintained from scratch in DynFO when only insertions are allowed.

Proof sketch. Consider the language L
def
= {an!+n | n ∈ N}. Observe

that L is not context-free (because its Parikh image is not semi-linear).
Furthermore L has the property that if there is a path from x to y containing
a loop, then there is an L-path from x to y. To see this, let p be a path
from x to y containing a loop of length ℓ, and let k be the length of the path p
without the loop. Then there is an a∗-path of length mℓ+k between x and y
for every m, since the loop can be repeated m many times. Now, choosing
n

def
= kℓ+ k shows that there is an L-path from x to y since there is an m

such that mℓ+ k = (kℓ+ k)! + kℓ+ k (because ℓ divides (kℓ+ k)! + kℓ).

Thus, in order to maintain L under insertions, it is sufficient to maintain
for all nodes x and y auxiliary data that indicates (1) whether there is a
path with a loop between x and y, and (2) the lengths of loop-free paths
between x and y.

This can be achieved by using the technique used for maintaining
{anbncn | n ∈ N} in the acyclic case. Hence, again, the dynamic program
maintains a linear order <, as well as its corresponding addition and multi-
plication relations on the the elements that have been used in modifications
so far [Ete98]. Further, the program maintains a relation D which stores all
tuples (x, y, k) for which there is an a∗-path from x to y of length k.

This suffices to check condition (1). For checking (2), additionally a
unary relation F is maintained, which is supposed to store all elements k
such that k = m! + m for some m ∈ N. This can be easily achieved by
extending Etessami’s construction.

Now, when an a-edge (u, v) is added, then there is an L-path between x
and y if there was such a path before; or there is a node z such that there
are a∗-paths from x to z, from z to z and from z to y; or there is an a∗-path
from x to y of length k where k is in F . This can be easily expressed by a
first-order update formula.
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2.6 Outlook and Bibliographic Remarks

In this chapter the basic dynamic complexity framework and the basic dy-
namic complexity classes have been introduced. We presented examples for
the power of dynamic programs and discussed variants of the framework
used in the literature. Furthermore several small results for maintaining
queries on graph databases have been obtained.

The most promising direction for future work is to conduct a deeper,
more systematic study of graph queries. Here, we only looked at very
basic graph query languages. Extensions, such as the query language
ECRPQ [BLLW12], might be worth studying as well. As an example, the
length of paths used in a conjunctive regular path query can be compared in
ECRPQ. It is conceivable that such queries can be maintained in DynFO.
This would also settle the open question whether a context-free path query
can be maintained in DynFO when both insertions and deletions are al-
lowed.

As a minimal prerequisite for maintaining such queries, it is necessary
to be able to maintain distances in a graph. Extending the result that
reachability is in DynFO in this direction seems not to be trivial, but also
not out of reach.

Another possible research direction is motivated from the discussion of
the framework. The discussion highlighted that many different settings have
been looked at and that some variants actually collapse. In order to be
able to transfer results easily between different settings, it would be very
convenient to have a systematic overview of how the settings relate to each
other. This is, however, probably not easy to achieve.

Bibliographical Remarks The dynamic complexity framework pre-
sented in Section 2.2 has originally been introduced by Patnaik and Im-
merman in [PI94]. In this form it was introduced in joint work with
Thomas Schwentick in [ZS13], and reused in [ZS14] and [Zeu14a]. A vari-
ant of the class DynFO was introduced as Dyn-FO in [PI94]; the classes
DynProp and DynQF have been introduced in Hesse’s thesis [Hes03b].
The examples for those classes are attributed as follows. Example 2.3.2
has been independently presented in [DS95]1 and [PI94]. The technique
used in Example 2.3.4 has been introduced in [GMS09], the example itself
is from [ZS13]. Example 2.3.7 will also be contained in the full versions
of [ZS14] and [Zeu14a].

With the only exception of Theorem 2.5.1, Theorem 2.5.2 and Proposi-
tion 2.5.9, the results for graph queries are solely by the author and have
not been published before. Theorem 2.5.1 and Theorem 2.5.2 are joint

1In the cited work the result is attributed to earlier work by the same authors from 1993.
I was not able to obtain this previous work.
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work with Samir Datta, Raghav Kulkarni, Anish Mukherjee and Thomas
Schwentick [DKM+15]. Proposition 2.5.9 originated from related discus-
sions with Katja Losemann.



Chapter 3

Relating Small Dynamic

Complexity Classes

One of the major goals of descriptive complexity theory is to study the
relationship of the expressive power of various logics. The motivation is that
results relating the expressive power of logics may help to answer questions
like “Is a given query expressible in some logic?” more easily. It may also
help to explain why it is hard to express a given query in some logic. Answers
to those questions, on the other hand, are highly relevant as they have an
immediate impact on the amount of resources necessary to answer a query,
due to the close connection between logics and traditional computational
complexity classes.

The goal of this chapter is to systematically pursue a similar program
for dynamic descriptive complexity classes. We will study dynamic classes
from two different perspectives.

First, the relationship between different dynamic complexity classes will
be studied. This is interesting for the same reason as studying the relation-
ship of static classes. If two dynamic complexity classes DynC and DynC′

(induced by two static complexity classes C and C′, respectively) — although
they seem to be different at first glance — turn out to be equal, then queries
that can be maintained in DynC can be maintained in DynC′ as well. In
particular, when C′ is defined by syntactically restricting C, upper bounds for
the more restricted class DynC ′ can be obtained by showing upper bounds
for the less restricted class DynC. It also has implications for lower bounds
as, under this premise, proving lower bounds for DynC′ is as hard as proving
lower bounds for DynC. In other, more optimistic words, for proving lower
bounds for DynC one can focus the attention on DynC′.

Our second perspective on dynamic descriptive complexity classes is to
see how they relate to classical (static) descriptive complexity classes. In
the previous chapter we have seen several examples for queries that can be
maintained in a dynamic class DynC but can only be (statically) expressed
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in a class C′ larger than C. A more generic result is to find examples of
classes C and C′ such that C′ can express more queries than C, but C′ is
contained in DynC. Such results are interesting, for example, in the context
of database query languages, where one can argue that the weak query
language C is actually strong enough when used in a dynamic setting.

Before discussing our goals and results for those two perspectives in
detail, we informally introduce the dynamic complexity classes under con-
sideration.

Our main interest is in fragments of DynFO. Most of the fragments
of DynFO studied in the literature have been obtained from DynFO by
restricting the update programs with respect to three different aspects: the
arity of the auxiliary relations, the syntax of the update formulas and the
power of the initialization mapping. Here we will focus on studying syntactic
restrictions of DynFO; yet we will also have a short look on restricting
the power of the initialization mapping. Dynamic complexity classes with
restricted arity will play an important role in Chapter 4.

The exploration of syntactic fragments of DynFO, such as the one ob-
tained by disallowing quantification in update formulas, was started by
Hesse [Hes03b]. Here, further fragments of DynFO obtained by syntac-
tically restricting first-order update formulas will be studied. Namely, first-
order update formulas with restricted quantifier structure and restricted
quantifier-free matrix of formulas in prenex normalform will be of inter-
est. Our main attention, however, is on classes of queries maintainable by
conjunctive queries and variants thereof. These classes are motivated from
database theory and adhere to both restrictions mentioned above.

Conjunctive queries (CQs), that is, in terms of logic, existential first-
order queries whose quantifier-free part is a conjunction of atoms, are one
of the most investigated query languages. Starting with Chandra and Mer-
lin [CM77], who analyzed conjunctive queries for relational databases, those
queries have been studied for almost every emerging new database model.
Usually also the extension by unions (UCQs), by negations (CQ¬s) as well
as by both unions and negations (UCQ¬s or, equivalently, ∃∗FO) have been
studied. Disallowing also existential quantification yields the less-studied
classes PropCQ, PropUCQ, PropCQ¬ and PropUCQ¬, respectively.
It is folklore that all those classes are distinct for relational databases,
see Figure 3.1.

Already Dong and Topor studied conjunctive queries as update mecha-
nism [DT92]. They showed that certain fragments of Datalog can be main-
tained by unions of conjunctive queries (though under ∆-semantics and un-
der insertions only). Those queries have also been used in [DR97] to maintain
several variants of the transitive closure query (under insertions only).

Other fragments of first-order logic obtained by restricting the quantifier
prefix of formulas will be of interest as well, an example is the class ∀∗FO
of queries definable by universal first-order formulas.
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FO

UCQ¬ = ∃∗FO

UCQ CQ¬

CQ

PropUCQ¬

PropUCQ PropCQ¬

PropCQ

Figure 3.1: Hierarchy of fragments of first-order logic. Solid lines are strict
separations.

After this short introduction to the fragments under consideration, we
will now outline the goals of this chapter. Afterwards we discuss our contri-
butions.

Purpose of this Chapter The discussion above motivates working to-
wards the following goals.

Goal 3.1. Obtain a better understanding of the relative expressiveness of
small dynamic descriptive complexity classes.

Goal 3.2. Exhibit examples of small dynamic descriptive complexity classes
that capture (larger) static descriptive complexity classes.

To the best of our knowledge no (non-trivial) results for the first goal
have been obtained so far. A vaguely related result is the characterization
of the dynamic class DynQF by dynamic constant-time concurrent-read,
write-only PRAMs due to Hesse [Hes03b]. As for the second goal, only very
few such results are known. Dong and Topor showed that under insertions
all regular chain Datalog queries can be maintained by unions of conjunc-
tive queries [DT92]. Further, the class of regular languages is character-
ized by DynProp on strings and, on general structures, ∃∗FO is captured
by DynQF [GMS12].

Our focus for those two goals will be on extensions and restrictions of
dynamic conjunctive queries in update formulas. For extensions, we add
negation and/or disjunction to conjunctive queries, and for restrictions we
disallow quantification. We further consider other quantification patterns.
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As already stated, the study of conjunctive queries as update language
is motivated from query languages for relational databases. In this context
a slightly different perspective is interesting as well. In our standard frame-
work, auxiliary relations are re-defined completely after each modification.
However, in the context of query re-evaluation in relational databases, it
is often convenient to express the new state of an auxiliary relation R in
terms of the current relation and some “Delta”, that is, by specifying a tu-
ple set R+ to be added to R and a tuple set R− to be removed from R.
We refer to the former semantics as absolute semantics and to the latter
as ∆-semantics. In the context of dynamic complexity, ∆-semantics has
been used already in the pioneering work of Dong and Topor [DT92]. Ob-
viously, the choice of the semantics does not affect the expressiveness of an
update language that is closed under Boolean operations. However, some of
the query languages considered here, such as conjunctive queries, lack some
Boolean closure properties.

Goal 3.3. Understand the relationship between absolute semantics and ∆-
semantics for conjunctive queries and their variants.

Contributions For the relationship of the various syntactic fragments
of first-order logic in the dynamic complexity framework we obtain a fairly
complete picture with respect to both absolute and ∆-semantics. The results
are summarized in Figure 3.2. The notation for classes not mentioned so far
will be formally introduced in Section 3.1 and Section 3.2. In general, ∆
indicates ∆-semantics, the absence of ∆ indicates absolute semantics.

All fragments under consideration have unrestricted arity. Although all
the results are stated for arbitrary initialization mappings, they also hold
in the setting where queries are maintained from scratch, that is from an
initially empty input database and first-order initialized auxiliary data. On
the other hand, some proofs do not carry over to the strict setting of Patnaik
and Immerman where, in a dynamic class DynC, only C initializations are
allowed.

Now, we shortly discuss the results in more detail. The distinctness
of the underlying static query classes does not translate into the dynamic
setting:

• We show that, in many cases, the addition of the union-operator
does not yield additional expressive power in the dynamic setting,
for example, DynUCQ¬ = DynCQ¬, DynUCQ = DynCQ, and
DynPropUCQ¬ = DynPropCQ¬.

• Furthermore, negation often does not increase the expressive power of
an update language, e.g. we have DynPropUCQ¬ = DynPropUCQ

and ∆-DynCQ¬ = ∆-DynCQ.
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Figure 3.2: Hierarchy of fragments of DynFO. Solid lines are strict separa-
tions.

• Finally, often quantifiers can be replaced by their dual quantifiers,
e.g. Dyn∃∗FO(= DynUCQ¬) = Dyn∀∗FO.

While it remains open whether DynCQ¬ = DynCQ, some of the dy-
namic classes can be separated:

• By showing that DynQF, the extension of DynProp that allows aux-
iliary functions, is contained in DynCQ, we can separate the classes
DynProp and DynCQ.

• Dynamic conjunctive queries without negations and quantifiers are
strictly weaker than DynProp.

As for the relationship between static and dynamic complexity classes
we show the following two results:

• Dynamic conjunctive queries extended by negations capture all first-
order queries. More generally, the class of first-order queries can
be characterized as the class maintainable by non-recursive dynamic
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Dyn∃∗FO-programs with a single existential quantifier per update
formula.

• When only insertions are allowed, then DynProp captures all queries
expressible in positive existential first-order logic extended by negated
equality atoms. This class contains, in particular, all unions of con-
junctive queries.

For the third goal, the main finding is that the difference between abso-
lute and ∆-semantics is much smaller than expected:

• The dynamic classes corresponding to FO, CQ¬ and Prop yield the
same expressive power with respect to absolute and ∆-semantics.

• It turns out that conjunctive queries and conjunctive queries with
negation coincide with respect to ∆-semantics, that is, in particular,
∆-DynCQ = ∆-DynCQ¬ and thus, also ∆-DynCQ = DynUCQ¬ .

All results from above are about syntactical fragments of DynFO. An
orthogonal result for restricted initialization is obtained as well:

• DynFO with computation from scratch and DynFO with built-in
arithmetic coincide for domain-independent queries.

As already mentioned, this result is one of the three main steps in the proof
that reachability is in DynFO with computation from scratch [DKM+15].

Parts of this chapter originated in joint work with Samir Datta, Raghav
Kulkarni, Anish Mukherjee and Thomas Schwentick. For detailed biblio-
graphic remarks we refer to the end of this chapter.

Outline of this Chapter All fragments that have not been formally in-
troduced so far will be presented in the next section. In addition the results
from the left hand side of Figure 3.2 will be obtained in that section. ∆-
semantics will be introduced and studied in Section 3.2; all remaining results
depicted in Figure 3.2 are presented in that section as well. Afterwards, in
Section 3.3, the relationship of static and dynamic descriptive complexity
classes will be studied. In Section 3.4, the class DynFO with computation
from scratch is compared to DynFO with built-in arithmetic. This chap-
ter is concluded by a discussion of possible directions for future work and
bibliographical remarks.

3.1 A Hierarchy of Dynamic Classes

In this section we study the relationship between the various syntactic frag-
ments of DynFO, with a focus on variants of dynamic conjunctive queries.
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As mentioned in the introduction above, conjunctive queries are one
of the most investigated query languages for relational databases. They
correspond to select-project-join queries in the relational algebra and to
select-where-from queries in SQL [AHV95]. We define conjunctive queries
and unions of conjunctive queries as a subclass of the first-order definable
queries:

• CQ is the class of conjunctive queries, that is, queries expressible by
first-order formulas of the form ϕ(~x) = ∃~yψ where ψ is a conjunction
of atomic formulas.

• UCQ is the class of all unions of conjunctive queries, that is, queries
expressible by formulas of the form ϕ(~x) =

∨
i ∃~yψi where each ψi is

a conjunction of atomic formulas.

We note that safety of queries is not an issue here: we use queries as update
formulas only and we can always assume that, for each required arity, there
is an auxiliary “universal” relation containing all tuples of this arity over
the active domain which could be used to make queries syntactically safe.

The classes CQ and UCQ can be extended by additionally allowing
negated atoms, resulting in CQ¬ and UCQ¬; or they can be restricted by
disallowing quantification, resulting in PropCQ, PropUCQ, PropCQ¬

and PropUCQ¬. It is well known that UCQ¬ and ∃∗FO, the class of
queries expressible by existential first-order formulas, coincide, but other-
wise, all these classes are distinct. Furthermore, other quantification pat-
terns than ∃∗ can be considered, for example ∀∗ or arbitrary quantification.
As usual DynCQ denotes the class of queries maintainable by dynamic pro-
grams that use CQ queries only; similarly for the other classes.

It should be stressed that although the class CQ¬ is usually referred to
as conjunctive queries with negations, the negations may only occur directly
in front of atoms.

Most of the examples from the previous chapter can actually be main-
tained by some variant of conjunctive queries. For example, the dy-
namic program maintaining the transitive closure for acyclic graphs in
Example 2.3.2 is actually a DynUCQ¬-program. Hence studying those
classes is well-motivated.

The main goal of this section is to show that the relationship of all these
classes in the dynamic setting is much simpler than in the static setting.
Indeed many dynamic classes collapse, as indicated in the left part of Fig-
ure 3.2. The dynamic classes DynPropCQ, DynProp and DynCQ can
be separated. Whether DynCQ, DynCQ¬ and DynFO can be separated
remains open.

The main results of this section are the following two theorems regarding
the second and the third fragment in the left part of Figure 3.2.
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Theorem 3.1.1. Let Q be a query. Then the following statements are
equivalent:

(a) Q can be maintained in DynUCQ¬.

(b) Q can be maintained in DynCQ¬.

(c) Q can be maintained in Dyn∃∗FO.

(d) Q can be maintained in Dyn∀∗FO.

Theorem 3.1.2. Let Q be a query. Then the following statements are
equivalent:

(a) Q can be maintained in DynUCQ.

(b) Q can be maintained in DynCQ.

Using the same technique as is used for removing unions from dynamic
unions of conjunctive queries, a normal form for DynFO can be obtained.
The class DynFO∧ contains all queries maintainable by a program whose
update formulas are in prenex normal form where the quantifier-free part is
a conjunction of atoms.

Theorem 3.1.3. Let Q be a query. Then the following statements are
equivalent:

(a) Q can be maintained in DynFO.

(b) Q can be maintained in DynFO∧.

Further we prove the following result for the quantifier-free variants of
dynamic conjunctive queries.

Theorem 3.1.4. Let Q be a query. Then the following statements are
equivalent:

(a) Q can be maintained in DynProp.

(b) Q can be maintained in DynPropUCQ¬.

(c) Q can be maintained in DynPropCQ¬.

(d) Q can be maintained in DynUCQ.

The four theorems follow from Lemmata 3.1.10, 3.1.11, 3.1.12 and 3.1.14,
which will be stated and proved in the following subsections.

Those results are complemented by the following separation theorem.

Theorem 3.1.5. (a) The class DynPropCQ is a strict subclass of
DynProp.
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(b) The class DynProp is a strict subclass of DynCQ.

Part (b) follows immediately from the following theorem and the fact
that DynQF can express the equal cardinality query while DynProp

can not [GMS12]. The proof of part (a) is deferred to Section 4.1 in the
next chapter.

Theorem 3.1.6. DynQF is contained in DynCQ.

The rest of this section is structured as follows. Before we turn to the
proofs of the theorems, we discuss the proof techniques that will be used.
Afterwards we exhibit constructions for removing negations and for switch-
ing quantifiers in dynamic programs, that is, e.g., for constructing an ∃∗FO-
program from an ∀∗FO-program. Then we present various ways for eliminat-
ing disjunctions from dynamic programs. Finally we present a construction
for translating DynQF-programs into equivalent DynCQ-programs.

3.1.1 Tools for Collapsing Dynamic Classes

For showing that a class DynC of queries is contained in a class DynC ′, it is
sufficient to construct, for every dynamic program with update queries from
class C, an equivalent dynamic program with update queries from class C′.
In cases where C′ ⊂ C this can also be seen as constructing a C′-normal form
for C-programs.

Most of the proofs for the collapse of two dynamic classes presented here
are not very deep. Indeed, most of them use one or more of the following
three (easy) techniques.

The replacement technique is used to remove subformulas of a certain
kind from update formulas and to replace their “meaning” by additional
auxiliary relations. In this way, we often can remove negations (by choos-
ing negative literals as subformulas, see the proof of Lemma 3.1.10) and
disjunctions (see proof of Lemma 3.1.14) from update formulas.

The preprocessing technique is used to convert (more) complicated up-
date formulas into easier update formulas by splitting the computation per-
formed by the complicated update formula into two parts; one of them per-
formed by the initialization mapping and stored in an additional auxiliary
relation, the other one performed by the easier update formula using the pre-
computed auxiliary relation. Applications of this technique are the removal
of unions from dynamic unions of conjunctive queries (see example below)
and, in the next section, proving that dynamic conjunctive queries with
negations are equally expressive under absolute semantics and ∆-semantics
(see Lemma 3.2.8).

Example 3.1.7. We consider the update formula

φRδ (u;x) = ∃y
(
U(x, y) ∨ V (x, u)

)
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for a unary relational symbol R. We aim at an equivalent update
formula ψRδ (u;x) without disjunction. The idea is to store a ‘disjunction
blue print’ in a precomputed auxiliary relation T and to use existential
quantification to guess which disjunct becomes true.

In this example, we assume that in every state of the dynamic program
on every database, both the interpretations of U and V are always non-
empty sets. Then, φRδ (u;x) can be replaced by

∃y∃z1∃z2∃z3∃z4
(
U(z1, z2) ∧ V (z3, z4) ∧ T (z1, z2, z3, z4, x, y, u)

)

where T is an additional auxiliary relation symbol which is interpreted,
in every state S, by a 7-ary relation T S containing all tuples (a1, . . . , a7)
with (a1, a2) = (a5, a6) or (a3, a4) = (a5, a7). Thus T S ensures that either
the values chosen for z1, z2 coincide with the values of x, y or the values of
z3, z4 coincide with x, u.

Therefore, the initialization mapping initializes T with the result of the
query

QT (z1, z2, z3, z4, x, y, u)
def
= (z1, z2) = (x, y) ∨ (z3, z4) = (x, u).

Observe that this approach fails when U or V are interpreted by empty
relations. In order to cover empty relations as well, some extra work needs
to be done (see Lemma 3.1.13).

The squirrel technique maintains additional auxiliary relations that re-
flect the state of some auxiliary relation after every possible single modifica-
tion (or short modification sequence).1 For example, if a dynamic program
contains a relation symbol R then a fresh relation symbol Rins can be used,
such that the interpretation of Rins contains the content of R after modi-
fication ins (for every possible insertion tuple). Of course, Rins has higher
arity than R, as it takes the actual inserted tuple into account. Sample ap-
plications of this technique are the removal of quantifiers from some update
formulas (see the following example and Lemma 3.1.9) and the maintenance
of first-order queries in DynCQ¬ (see Theorem 3.3.1).

Example 3.1.8. Consider the update formula

φQins(u1;x) = ∃y
(
Q(x) ∨ ¬S(u1, y)

)

for the query symbol Q of some dynamic program P. Sometimes it will
be convenient if the update formulas for the designated query symbol are
quantifier-free. In order to obtain a quantifier-free update formula for Q
under insertions we maintain the relation Qins(· , · ) that contains a tuple

1Squirrels usually make provisions for every possible future, at least in literary fiction
(see, e.g., [Pot03]).
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(a, b) if and only if b would be in Q in the state reached after inserting a.
Similarly for S and deletions.

Then the update formula φQins can be replaced by the quantifier-free
formula φQins(u1;x)

def
= Qins(u1, x). The relation Qins can be updated via

φQins
ins (u0;u1, x)

def
= ∃y

(
Qins(u0, x) ∨ ¬Sins(u0, u1, y)

)

φQins
del (u0;u1, x)

def
= ∃y

(
Qdel(u0, x) ∨ ¬Sdel(u0, u1, y)

)

and similarly, for the other new auxiliary relations. The new auxiliary rela-
tions are initialized accordingly.

We note that, in this example, the application of the technique does
not eliminate all quantifiers in the program (in fact, it removes one and
introduces two new formulas with quantifiers), but it removes quantification
from the update formula for a particular relation. Removing quantification
from the update formulas of the query relation will turn out to be useful in
the proofs of Lemmata 3.1.14, 3.1.11 and 3.2.8.

This concludes the description of the techniques. In the following, as a
preparatory step, we generalize the preceding example and show how to re-
move quantifiers from the update formulas of the query relation for arbitrary
DynFO-programs. For an arbitrary quantifier prefix Q ∈ {∃,∀}∗ let QFO

be the class of queries expressible by formulas with quantifier prefix Q. If
Q is a substring of Q′ and Q is a query in QFO then trivially Q is in Q′FO

as well.

Lemma 3.1.9. Let Q be an arbitrary quantifier prefix. For every DynQFO-
program there is an equivalent DynQFO-program P such that the update
formulas for the designated query symbol of P consist of a single atom.

Proof. We follow the approach from Example 3.1.8 and use the squirrel tech-
nique. For ease of presentation we fix the input schema to be τinp = {E}
where E is a binary relation symbol; the proof can be easily adapted to
arbitrary input schemas.

Let P be aDynC-program over auxiliary schema τ with designated query
symbol Q. We construct an equivalent DynC program P ′ over schema τ ′

where τ ′ contains a designated query symbol Q′ and a (k + 2)-ary relation
symbol Rδ for every k-ary R ∈ τ and every δ ∈ {ins,del}.

The idea is that Rδ shall reflect the content of R in the next state, for
each possible modification of the kind δ. More precisely, let G = (E,V )
be a graph, α a sequence of modifications, β = δ(~e) a modification with
δ ∈ {ins,del} and ~e ∈ V 2. If S is the state obtained by P after applying
αβ to G, i.e. S = Pαβ(Init(G)), and S ′ is the state obtained by P ′ after
applying α to G, i.e. S ′ = P ′

α(Init
′(G)), then

~a ∈ RS if and only if (~e,~a) ∈ RS′

δ . (3.1)
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Thus for every δ(~e) the relation Rδ(~e, ·) stores R(·) after application of δ(~e).
Then the update formula for Q′ after a modification δ can be written as

follows:
φQ

′

δ (~u; ~x)
def
= Rδ(~u, ~x)

It remains to explain how to update the relations Rδ. Therefore it will
be convenient to assume that the edge relation E is updated by formulas
φEins and φEdel that express the impact of a modification to E, for example,
φEins(a, b;x, y) = E(x, y) ∨ (a = x ∧ b = y).

By φRδ1 [τ → τδ0 ](~u0; ~u1, ~x) we denote the formula obtained from φRδ1(~u1; ~x)
by replacing every atom S(~z) with S ∈ τ by Sδ0(~u0, ~z). Then the update
formula for Rδ1 is

φ
Rδ1

δ0
(~u0; ~u1, ~x)

def
= φRδ1 [τ → τδ0 ](~u0; ~u1, ~x).

We observe that all quantifier prefixes of formulas thus obtained have been
used by the program P already.

The initialization mapping of P ′ is as follows. The query symbol Q′ is
initialized like Q in P. For every graph G the relation symbol Rδ ∈ τ ′ is
initialized as ⋃

~e∈V 2

{~e} × Pδ(~e)(Init(G))↾Rδ

where Pδ(~e)(Init(G))↾Rδ denotes the relation Rδ in state Pδ(~e)(Init(G)).
The correctness of this construction is proved inductively over the length

of modification sequences by showing that states of P ′ simulate states of P
as specified by (3.1).

Therefore, let G be a graph and α = α1 . . . αi a modification sequence
with αi = δi(~ei). Further let Si and S ′

i be the states obtained by P and P ′,
respectively, after application of α1 . . . αi.

If α is of length 0 and β is an arbitrary modification with β = δ(~e)
then S

def
= Pβ(S0) and S ′ def

= S ′
0 satisfy (3.1) due to the definition of the

initialization mapping of P ′. If α is of length i ≥ 1 then, by induction
hypothesis, the states S

def
= Si = Pαi

(Si−1) and S ′ def
= S ′

i−1 satisfy (3.1) that
is

~a ∈ RS if and only if (~ei,~a) ∈ RS′

δi
(3.2)

for all relations R and Rδi .
Now, let β = δ(~e) be an arbitrary modification. Further let T

def
= Pβ(S)

and T ′ def
= P ′

αi
(S ′). By definition, ~b ∈ RT if and only if

(RS , {~u1 7→ ~e, ~x 7→ ~b}) |= φRδ (~u1; ~x).

Thanks to (3.2) and the definition of φ
Rδ1

δ0
this is equivalent to

(RS′

, {~u0 7→ ~ei, ~u1 7→ ~e, ~x 7→ ~b}) |= φRδi [τ → τδ0 ](~u0; ~u1, ~x).

By definition this is equivalent to (~e,~b) ∈ RT ′

.
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3.1.2 Eliminating Negations and Inverting Quantifiers

Now we turn towards constructions for removing negations and inverting
quantifiers. Both constructions employ the replacement technique. We start
by exhibiting negation-free normal forms for DynFO and for DynProp.

Lemma 3.1.10. (a) Every DynFO-program has an equivalent negation-
free DynFO-program.

(b) Every DynProp-program has an equivalent DynPropUCQ-program.

Proof. This lemma is a generalization of Theorem 6.6 from [Hes03b]. Given
a dynamic program P, the simple idea is to maintain, for every auxiliary
relation R of P, an additional auxiliary relation R̂ for the complement of R.

We make this more precise. In the following we prove (a). As the
construction does not introduce quantifiers, it can be used for (b) as well.

Let P = (P, Init, Q) be a DynFO-program over schema τ . We as-
sume, without loss of generality, that P is in negation normal form.
Further we assume, for ease of presentation, that the input relations
have update formulas as well, e.g. if the input database is a graph,
then φEins(a, b;x, y) = E(x, y) ∨ (a = x ∧ b = y) et cetera.

We construct a negation-free DynFO-program equivalent to P that uses
the schema τ ∪ τ̂ ∪ {=̂} where τ̂ contains for every relation symbol R ∈ τ
a fresh relation symbol R̂ of equal arity. Recall that τ includes the input
schema and the auxiliary schema. The idea is to maintain in R̂S the negation
of RS , for all states S. Further =̂ shall always contain the complement of =.

In a first step we construct a DynFO-program P ′ = (P ′, Init′, Q) in
negation normal form over τ ∪ τ̂ ∪ {=̂} that maintains RS and R̂S (but
still uses negations). The update formulas for relation symbols R ∈ τ are
as in P . For every R̂ ∈ τ̂ and every modification δ, the update formula

φR̂δ (~x; ~y) is the negation normal form2 of ¬φRδ (~x; ~y). The relation =̂ never

changes. The initialization mapping Init′ initializes R̂ with the complement
of Init(R).

From P ′ a negation-free DynFO-program P ′′ = (P ′′, Init′, Q) can be
constructed as follows. An update formula φRδ (~x; ~y) for P

′′ is obtained from

the update formula φRδ (~x; ~y) for P
′ by replacing all negative literals ¬S by Ŝ.

The initialization mapping of P ′′ is the same as for P ′.

The equivalence of P and P ′′ can be proved by induction over the length
of modification sequences.

Now we prove that Dyn∃∗FO = Dyn∀∗FO, and therefore that unions
of conjunctive queries with negation coincide with Dyn∀∗FO in the dy-
namic setting. The proof uses the replacement technique to maintain the

2Observe that this fails for the classes DynCQ¬ and DynUCQ¬.
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complements of the auxiliary relations used in the Dyn∃∗FO-program via
Dyn∀∗FO-formulas. A small complication arises from the fact that the
query relation (and not its complement) has to be maintained. This is solved
by ensuring that the update formulas of the query relation are atomic.

A slightly more general result can be shown.

Lemma 3.1.11. Let Q be an arbitrary quantifier prefix. A query can be
maintained in DynQFO if and only if it can be maintained in DynQFO.

Proof. Let P = (P, Init, Q) be an arbitrary dynamic DynQFO-program
over schema τ . By Lemma 3.1.9 we can assume, without loss of general-
ity, that the update formulas of Q are atomic. We construct a dynamic
DynQFO-program P ′ over schema τ̂ ∪ {Q′} where τ̂ contains a k-ary re-
lation symbol R̂ for every k-ary R ∈ τ . The intention is that R̂ is always
equal to the complement of R. This is achieved in a similar way as in the
proof above.

We denote by φ[τ → τ̂ ] the formula obtained from φ by replacing every
atom S(~z) in φ by ¬Ŝ(~z). Then the update formulas of P ′ are obtained

as φR̂δ
def
= ¬φRδ [τ → τ̂ ] for every R̂ ∈ τ̂ . Observe that this formula can be

easily transformed into an QFO-formula. Further φQ
′

δ = ¬φQ̂δ which is a

QFO-formula since φQ̂δ is quantifier-free. The initialization mapping of P ′

is straightforward.

3.1.3 Eliminating Disjunctions

Two different methods are used for removing disjunctions. For remov-
ing disjunctions from quantifier-free programs, the replacement technique
is employed. For removing disjunctions from DynUCQ- and DynUCQ¬-
programs, the preprocessing technique is combined with the replacement
technique. The latter technique, employed in a näıve way, can yield pro-
grams with larger arity than the original program. After exhibiting the
näıve construction, we outline how this increase of arity can be avoided.

We start by giving a disjunction-free normal form for quantifier-free pro-
grams.

Lemma 3.1.12. Every DynProp-program has an equivalent
DynPropCQ¬-program.

Proof. Let P = (P, Init, Q) be a DynProp-program over schema τ . We as-
sume, without loss of generality, that τ contains, for every relation symbol R,
a relation symbol R̂ and that P ensures that R̂S is the complement of RS

for every state S. This can be achieved by using the same technique as
in Lemma 3.1.10. Further we assume that all update formulas of P are in
conjunctive normal form.
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The conjunctive DynProp-program we are going to construct is over
schema τ∪τ ′ where τ ′ contains a fresh relation symbolR¬C for every clause C
occurring in some update formula of P. The goal of the construction is to
ensure that RS

¬C(~z) holds if and only if ¬C(~z) is true in state S. Then an
update formula φ = C1(~x1) ∧ . . . ∧ Ck(~xk) with clauses C1(~x1), . . . , Ck(~xk)
can be replaced by the conjunctive formula ¬R¬C1

(~x1) ∧ . . . ∧ ¬R¬Ck
(~xk).

In a first step we construct a DynProp-program P ′ = (P ′, Init′, Q) in
conjunctive normal form that maintains the relations RS

¬C . To this end,
let C be a clause with k variables and let ~z be the k-tuple that con-
tains the variables of C in the order in which they occur. Assume that
C = L1(~z1) ∨ . . . ∨ Lℓ(~zℓ) where ~zi ⊆ ~z and each Li is an atom or a negated
atom. Thus ¬C ≡ ¬L1(~z1) ∧ . . . ∧ ¬Lℓ(~zℓ). The relation symbol R¬C is of
arity k. For a modification δ the update formula for R¬C is

φR¬C

δ (~x; ~z) = φX1

δ (~x; ~z1) ∧ . . . ∧ φ
Xℓ

δ (~x; ~zℓ)

whereXi is the relation symbol R if Li = ¬R and Xi is R̂ if Li = R. Observe
that φR¬C

δ (~x; ~z) is in conjunctive normal form, because each φXi

δ (~x; ~zi) is in

conjunctive normal form; further φR¬C

δ (~x; ~z) does not use new clauses. The
initialization mapping Init′ extends the initialization mapping Init to the
schema τ ′ in a natural way. For a clause C and input database I, a tuple ~a
is in Init′(R¬C) if and only if C evaluates to false in Init(I) for ~a.

The second step is to construct from P ′ the desired conjunctive
DynProp-program P ′′: every clause C in every update formula of P ′ is
replaced by ¬R¬C . This construction yields a conjunctive program P ′′. The
initialization mapping of P ′′ is the same as for P ′.

We sketch the proof that P ′′ is equivalent to P. The dynamic program P ′

updates relations from τ exactly as program P. By induction over the
length of modification sequences, one can prove that RS

¬C(~a) holds if and
only if ¬C(~a) is true in state S for all tuples ~a. Thus corresponding update
formulas of P and P ′′ always yield the same result.

Now we turn to disjunction-free normal forms for DynUCQ, DynUCQ¬

and negation-free DynFO. Observe that the idea of the proof of
Lemma 3.1.12 cannot be applied directly since those classes are not closed
under negations. Instead we use the idea from Example 3.1.7 and simulate
disjunctions by existential quantifiers. As a preparatory step we show how
auxiliary relations can be ensured to be non-empty and to not contain all
tuples.

Lemma 3.1.13. Let k ≥ 0. For every k-ary DynUCQ-program P there is a
k′-ary DynUCQ-program P ′ with k′

def
= max{k, 2} and with query symbol Q′

which is equivalent for domains of size at least 2 and satisfies (1) in every
possible state all auxiliary relations 6= Q′ of P ′ are neither empty nor do
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they contain all tuples, and (2) no update formula uses the relation symbol
Q′. Analogously for DynUCQ¬- and negation-free DynFO-programs.

Proof. We present the construction for DynUCQ-programs. The construc-
tion for DynUCQ¬- and negation-free DynFO-programs is analogous.

Let P = (P, Init, Q) be an arbitrary DynUCQ-program over schema τ .
For the moment we assume that all auxiliary relations have arity at least 2.
Towards the end of this proof we will sketch how to extend the following
construction to programs with auxiliary relations with arity less than 2.

We construct a program P ′ = (P ′, Init′, Q′) that is equivalent
to P for domains of size at least 2. The program P ′ is over schema
{Q′, A, Ā,B, B̄} ∪ τa ∪ τb where A, Ā,B and B̄ are unary relation symbols
and τa and τb contain a k-ary relation symbol Ra and Rb, respectively, for
every k-ary relation symbol R ∈ τ .

The intuition is as follows. Let a and b be distinct elements of the do-
main. Every state S of P has a corresponding state S ′ in P ′ which is obtained
as follows. The k-ary relation RS′

a shall contain the tuple ~a
def
= (a, . . . , a)

and additionally all tuples from RS except for the tuple ~a ′ def
= (b, a, . . . , a).

Similarly RS′

b shall contain the tuple ~b
def
= (b, . . . , b) and additionally all

tuples from RS except for the tuple ~b ′
def
= (a, b, . . . , b). Thus the relations

RS′

a and RS′

b are exactly as RS , except for the four special tuples ~a, ~a ′, ~b

and ~b ′. Observe that the tuples ~a and ~a ′ are in RS′

b if and only if they are

in RS ; and the tuples ~b and ~b ′ are in RS′

a if and only if they are in RS . The
unary relation AS′

contains only the element a, and ĀS′

is the complement
of AS′

. Similarly for BS′

and B̄S′

. Hence all auxiliary relations (except the
query relation) are always non-empty and do not contain all tuples.

The initialization mapping Init′ of P ′ is obtained from Init straightfor-
wardly. The update formula φRa

δ can be defined as

φRa

δ (~u; ~x)
def
= ~x = ~a ∨ (ψRδ (~u; ~x) ∧ ~x 6= ~a ′)

where ψRδ is obtained from the update formula φRδ of P by replacing

every atom S(~z) by (~z 6= ~a ∧ Sa(~z)) ∨ (~z 6= ~b ∧ Sb(~z)). Further ~x = ~a is an
abbreviation for the formula ∃y

(
A(y) ∧ ~x = (y, . . . , y)

)
and ~x 6= ~a ′ is an

abbreviation for B̄(x1) ∨
∨

2≤i≤ℓ Ā(xi) (where ~x = (x1, . . . , xℓ)). Similarly

for ~z 6= ~a and ~z 6= ~b.

The update formulas for relation symbols Rb are obtained analogously.
The update formula for Q′ is as follows:

φQ
′

δ (~u; ~x)
def
= (~x = ~a ∧ φQb

δ (~u; ~x)) ∨ (~x = ~b ∧ φQa

δ (~u; ~x))

Observe that all update formulas are over schema {A, Ā,B, B̄} ∪ τa ∪ τb
and in particular do not use Q′. Furthermore all those formulas can be easily
translated into a union of conjunctive queries.
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It remains to sketch how to deal with programs with auxiliary relations
of arity less than 2. In that case, each unary relation R can be simulated by
a binary relation Rbin with the intention that Rbin contains a tuple (a, b) if
and only if R (in a corresponding state) contains the tuple a. Similarly for
boolean relations. The attentive reader might have noticed that this might
also change the arity of the query relation. Yet if a binary version Qbin of the
query relation is maintained, then the query relation can be extracted from

that relation by a simple UCQ-formula. The formula φQ
′

δ can be adapted
accordingly.

Lemma 3.1.14. (a) For every DynUCQ¬-program there is an equivalent
DynCQ¬-program.

(b) For every DynUCQ-program there is an equivalent DynCQ-program.

(c) For every DynFO-program there is an equivalent DynFO∧-program.

Proof. We first prove the statements for domains with at least two elements
and show how to drop this restriction afterwards. The construction uses the
idea from Example 3.1.7. We present the construction for (a) but, as it does
not introduce any negation operators it works for (b) as well. For (c) it is
sufficient to start from a negation-free DynFO-program by Lemma 3.1.10;
and for those the same construction as for (a) can be used; more precisely,
the quantifier prefix ∃~y used throughout the construction of (a) has to be
replaced by the general quantifier-prefix ∃~y1∀~y2 . . .Q~yℓ.

Let P = (P, Init, Q) be a DynUCQ¬-program over schema τ . For
domains of size at least 2 we can assume, due to Lemma 3.1.13, that all
auxiliary relations of P, except for Q, are not empty and do not contain all
tuples, and that Q is not used in any update formula. Further, without loss
of generality, we assume that the quantifier-free parts of all update formulas
of P are in disjunctive normal form.

We convert P into an equivalent DynCQ¬-program P ′ whose update
formulas are in prenex normal form with quantifier-free parts of the form
T (~w) ∧

∧
i Li(~wi), where Li, for all i, is an arbitrary literal over τ and the

symbols T are fresh auxiliary relation symbols. To this end the program
P ′ = (P ′, Init′, Q) is over schema τ ′ = τ ∪ τT , where τT contains a relation
symbol TR,δ for every relation symbol R ∈ τ and every modification δ. The
intention is that corresponding states for P and P ′ agree on the relations
from τ . The relations TR,δ will be used as in Example 3.1.7.

Now we construct the update formulas for program P ′. Let R ∈ τ and
let δ be a modification. Further let

φRδ (~u; ~x) = ∃~y
(
C1(~u, ~x, ~y) ∨ . . . ∨ Ck(~u, ~x, ~y)

)

be the update formula of R with respect to δ in P, where every Ci is a
conjunction of literals.
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For
Ci(~u, ~x, ~y) = L1

i (~v
1
i ) ∧ . . . ∧ L

ℓ
i(~v

ℓ
i)

we define
Ĉi(~zi)

def
= L1

i (~z
1
i ) ∧ . . . ∧ L

ℓ
i(~z

ℓ
i)

where all ~z ji contain pairwise different, fresh variables and ~zi
def
= (~z 1

i , . . . , ~z
ℓ
i).

We also let ~vi
def
= (~v 1

i , . . . , ~v
ℓ
i). Further let X be the set of variables appering

in ~u, ~x, ~y and in the tuples ~zi.
The update formula ψRδ (~u; ~x) for R ∈ τ in P ′ is as follows:

ψRδ (~u; ~x)
def
= ∃~y ∃~z1 . . . ∃~zk

(
Ĉ1(~z1) ∧ . . . ∧ Ĉk(~zk) ∧ TR,δ(~u, ~x, ~y, ~z1, . . . , ~zk)

)

The relation TR,δ is fixed, that is, both update formulas reproduce the
current value of TR,δ. The relation contains a tuple ~a if there is an assignment
π : X → D with ~a = π(~u, ~x, ~y, ~z1, . . . , ~zk) and π(~zi) = π(~vi) for some i. Here,
the tuple ~vi consists of elements from ~u, ~x and ~y as specified by the definition
of ~vi above.

Auxiliary relation symbols R ∈ τ are initialized as in P. The rela-
tions TR,δ are initialized as intended by simple quantifier-free formulas (but
with a disjunction for selecting i).

We roughly sketch why P and P ′ are equivalent. The proof is by induc-
tion over the length of modification sequences. It is sufficient to show that
the formulas φRδ and ψRδ yield the same result for states S and S ′, where S ′

contains, in addition to the relations of S, the relation TR,δ.

If (S,~a,~b) |= φRδ (~u; ~x) then there is a ~c such that (S,~a,~b,~c) |= Ci(~u, ~x, ~y)

for some i. Now, for showing that (S ′,~a,~b) |= ψRδ (~u; ~x) one can choose ~y

in ψRδ as ~c and the values for ~zi accordingly. This will satisfy Ĉi(~zi) and TR,δ.

The values for each ~zj with j 6= i are chosen such that all literals in Ĉj(~zj)
are satisfied, which is possible because all auxiliary relations are neither
empty nor do they contain all tuples.

If (S ′,~a,~b) |= ψRδ (~u; ~x) then there are tuples ~c and ~d1, . . . , ~dk
such that (S ′, ~di) |= Ĉi(~zi) for some i and (S ′,~a,~b,~c, ~d1, . . . ~dk) |=
TR,δ(~u, ~x, ~y, ~z1, . . . , ~zk). But then, due to the definition of TR,δ , there is

a tuple ~c ′ such that (S,~c ′) |= Ci(~vi). Therefore also (S,~a,~b) |= φRδ (~u; ~x).
This concludes the proof of (a), (b) and (c) for domains with at least

two elements. The restriction on the size of the domains can be dropped as
follows. In all three cases the idea is to make a case distinction on the size
of the domain in the update formulas of the designated query symbol.

To this end, we first construct a dynamic DynPropCQ-program
P ′′ = (P ′′, Init′′, Q′′) over schema τ ′′ with τ ′ ∩ τ ′′ = ∅ which is equiva-
lent to P over databases with domains of size one. Then we construct a
program P ′′′ equivalent to P by combining the programs P ′ and P ′′.

For the construction of P ′′ we observe that every relation of a database
over a single element domain D = {a} contains either exactly one tuple,
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namely (a, . . . , a), or no tuple at all. Thus every such relation R corresponds
to a 0-ary relation R0 where R0 is true if and only if (a, . . . , a) ∈ R. Hence,
by Lemma 3.1.15 (see below), there is a DynPropCQ-program equivalent
to P for databases with domains of size one.

To combine P ′ and P ′′ we use two different approaches, one for (a)
and one for (b) and (c). In both approaches, we assume, by Lemma 3.1.9,
that the update formulas for the query relations Q and Q′′ of P ′ and P ′′,
respectively, consist of single atoms.

First we consider (a). We construct an intermediate program

P̃ = (P̃ , Ĩnit, Q̃) over schema τ̃ = {Q̃, U} ∪ τ ′ ∪ τ ′′ where U is a fresh 0-
ary relation symbol. The intention is that interpretations of symbols in τ ′

and τ ′′ are as in P ′ and P ′′, respectively, and that U is interpreted by true
if and only if the domain is of size one. The initializations are accordingly.

Thus all update formulas of P̃ for relation symbols from τ ′ and τ ′′ are
as in P ′ and P ′′ (and thus disjunction-free). The update formula for U is
φUδ

def
= U and

φQ̃δ
def
= (φQ

′

δ ∧ ¬U) ∨ (φQ
′′

δ ∧ U)

≡ (φQ
′

δ ∨ φQ
′′

δ ) ∧ (¬U ∨ φQ
′′

δ ) ∧ (φQ
′

δ ∨ U).

The program P ′′′ is obtained from P̃ by removing disjunctions from

φQ̃δ using the method3 from the proof of Lemma 3.1.12. For example, the
first clause is replaced by ¬R¬(Q′∨Q′′) where R¬(Q′∨Q′′) is a fresh auxil-
iary relation symbol intended to be always interpreted by the result of the

query ¬(φQ
′

δ ∨ φQ
′′

δ ). The update formula for R¬(Q′∨Q′′) after a modifica-

tion δ is ¬φQ
′

δ ∧ ¬φQ
′′

δ ; it is disjunction-free since, by our assumption, φQ
′

δ

and φQ
′′

δ both consist of a single atom. This concludes the proof of (a).
The program P ′′′ for (b) and (c) is over schema τ ′′′ = {Q′′′} ∪ τ ′ ∪ τ ′′.

Again all update formulas of P ′′′ for relation symbols from τ ′ and τ ′′ are as

in P ′ and P ′′ and φQ
′′′

δ

def
= φQ

′

δ ∧ φQ
′′

δ .
The case distinction is delegated to the initialization mapping. Recall

that the size of the domain is fixed when the auxiliary relations are initial-
ized. The initialization mapping Init′′′ is as follows. If |D| = 1 then

Init′′′(R) =





Init′′(Q′′) for R = Q′′′,

Dk for R ∈ τ ′,

Init′′(R′′) for R ∈ τ ′′

If |D| ≥ 2 then

Init′′′(R) =





Init′(Q′) for R = Q′′′,

Init′(R′) for R ∈ τ ′,

Dk for R ∈ τ ′′

3This method cannot be used for DynCQ and DynFO∧.
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Thus Init′′′ selects either φQ
′

δ or φQ
′′

δ , depending on the size of the do-

main. If |D| = 1 then φQ
′

δ always evaluates to true whereas φQ
′′

δ yields the
same value as in P ′′, and vice versa for |D| ≥ 2. As update formulas do not
use negation, all relations in the program that are initialized to “true” (P ′

or P ′′) remain “full” throughout a computation.4 This concludes the proof
of (b).

It remains to prove that all queries over 0-ary relations can be maintained
in DynPropCQ. Recall that 0-ary relations can either be true (containing
the empty tuple) or false (not containing the empty tuple and thus being
empty), thus 0-ary atoms are basically propositional variables. Queries on
0-ary databases are therefore basically families of Boolean functions, one
function for each domain size. Such queries are not very interesting from
the perspective of databases, but we need to show the following lemma as
we used it in the previous proof.

As quantification in queries on 0-ary databases is useless, every FO

query can be expressed by a quantifier-free formula and therefore can be
maintained in DynProp. The following lemma shows that this can be
sharpened.

Lemma 3.1.15. Every query on a 0-ary database can be maintained by a
DynPropCQ-program.

Proof. Let τinp be an input schema with 0-ary relation symbols A1, . . . , Ak.

Further let Q1, . . . ,Qm be an enumeration of all m
def
= 22

k
many queries

on τinp. We actually show that all of them can be maintained by one
DynPropCQ-program P with auxiliary schema τaux = {R1, . . . , Rm} main-
taining Qi in Ri, for every i ∈ {1, . . . ,m}.

To this end, let ϕ1, . . . , ϕm be propositional formulas over τinp such
that ϕi expresses Qi and each ϕi is in conjunctive normal form. With-
out loss of generality, no clause contains Aℓ and ¬Aℓ for any Aℓ ∈ τinp and
any ϕi. As τaux contains a relation symbol, for every propositional formula
over A1, . . . , Ak, it contains, in particular, an auxiliary relation symbol RC ,
for every disjunctive clause over A1, . . . , Ak.

The update formulas for Rj after changing input relation Aℓ can be
constructed as follows. Let C be the set of clauses of ϕj , i.e. ϕj =

∧
C∈C C.

We denote by C+
Aℓ
, C−

Aℓ
and CAℓ

the subsets of C whose clauses contain Aℓ,
¬Aℓ and neither Aℓ nor ¬Aℓ, respectively.

If Aℓ becomes true by a modification then ϕj evaluates to true if all
clauses in CAℓ

and all clauses C\{¬Aℓ} with C ∈ C−
Aℓ

evaluated to true before

the modification (clauses in C+
Aℓ

will evaluate to true after enabling Aℓ).

4This cannot be guaranteed for DynUCQ¬.
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If Aℓ becomes false by a modification then ϕj evaluates to true if all
clauses in CAℓ

and all clauses C \{Aℓ} with C ∈ C+
Aℓ

evaluated to true before

the modification (clauses in C−
Aℓ

will evaluate to true after disabling Aℓ).

Therefore the update formulas for Rj after updating Aℓ can be defined
as follows:

φ
Rj

insAℓ

def
=

∧

C∈CAℓ

RC ∧
∧

C∈C−

Aℓ

RC\{¬Aℓ}

φ
Rj
delAℓ

def
=

∧

C∈CAℓ

RC ∧
∧

C∈C+

Aℓ

RC\{Aℓ}

The initialization is straightforward. The correctness of this construction
can be proved by induction over the length of modification sequences.

In the proof of Lemma 3.1.14, disjunctions are eliminated by introducing
new relation symbols TR,δ. The arity of those relation symbols strongly
depends on the number of variable occurrences in a clause. In particular,
the constructed disjunction-free program can be of higher arity than the
original program. In the rest of this section, we outline how this can be
avoided.

The construction for reducing the arity of TR,δ will require domains
whose size depends on the original program. This is formalized as follows.
A dynamic program P weakly maintains a query Q, if there is an n ∈ N

such that P maintains Q for every database with a domain of size at least
n. We aim at the following theorem.

Theorem 3.1.16. Every query maintainable in k-ary DynUCQ is weakly
maintainable in k′-ary DynCQ where k′ = max{2, k}. Analogously for
DynUCQ¬ and DynFO.

The idea is to describe the relations TR,δ from the proof of Lemma 3.1.14
using conjunctive queries evaluated on a set of binary relations. The chal-
lenge is to choose suitable conjunctive queries and binary relations.

A query Q over schema τ is described by a formula ϕ over schema τ ∪ τ ′

if, for every domain D, there is an interpretation Sτ ′ of τ
′ over D such that

ans(Q,Sτ ) = ans(ϕ, (Sτ ,Sτ ′)) for all interpretations Sτ of τ over D. We
need the following weaker notion. A formula ϕ weakly describes Q if there
is an n ∈ N such that ϕ describes Q for all domains of size at least n. In
the rest of this section we are only interested in weak describability.

Each of the relations TR,δ is defined by a positive quantifier-free formula
that uses equality atoms only. Such formulas are called positive quantifier-
free =-formulas in the following. Our goal is to weakly describe queries
defined by such formulas using conjunctive queries and binary relations;
and thus, in particular, the relations TR,δ. We first show how a simple query
defined by a disjunction of two equality atoms can be described.
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Example 3.1.17. Consider the query

Q
def
= {(a1, b1, a2, b2) | a1 = b1 or a2 = b2}.

Our goal is to weakly describe Q by a conjunctive query C for domains of
size at least 6. The query C is a conjunction of three queries C12, C34 and C56.
The intention of those queries is as follows. Assume that the domain D of
a structure S contains the elements {1, . . . , 6}. Then C12 evaluated on D
shall yield the same result asQ, except that all tuples (a1, b1, a2, b2) where a1
or a2 is in {1, 2} shall be in the result as well. Thus C12 shall weakly describe
the following query:

Q12
def
= {(x1, y1, x2, y2) | x1 = y1 or x2 = y2 or x1 ∈ {1, 2} or x2 ∈ {1, 2}}

Similarly C34 and C56 shall yield the following results:

Q34
def
= {(x1, y1, x2, y2) | x1 = y1 or x2 = y2 or x1 ∈ {3, 4} or x2 ∈ {3, 4}}

Q56
def
= {(x1, y1, x2, y2) | x1 = y1 or x2 = y2 or x1 ∈ {5, 6} or x2 ∈ {5, 6}}

Before showing how to weakly describe the queries Q12, Q34 and Q56, we
show that they are indeed useful for weakly describing Q. We claim:

ans(Q,S) = ans(Q12,S) ∩ ans(Q34,S) ∩ ans(Q56,S)

The claim implies that Q is weakly described by C12 ∧ C34 ∧ C56 if C12, C34
and C56 weakly describe Q12, Q34 and Q56, respectively.

We now prove the claim. Obviously every tuple in ans(Q,S) is also
in the intersection of ans(Q12,S), ans(Q34,S) and ans(Q56,S). Now,
let (a1, b1, a2, b2) be a tuple in ans(Q12,S) ∩ ans(Q34,S) ∩ ans(Q56,S).
Then either a1, a2 /∈ {1, 2} or a1, a2 /∈ {3, 4} or a1, a2 /∈ {5, 6}. With-
out loss of generality a1, a2 /∈ {1, 2}, but then a1 = b1 or a2 = b2 since
(a1, b1, a2, b2) ∈ ans(Q12,S). This proves the claim.

It remains to exhibit the conjunctive query C12. The queries C34 and C56
are symmetric. The conjunctive query C12 uses schema τ ′ = {R,S, T} to
weakly describe Q12 and is defined by

∃z1∃z2
(
T (z1, z2) ∧R(x1, z1) ∧ S(z1, y1) ∧R(x2, z2) ∧ S(z2, y2)

)

Hence the query graph is as follows:

x1

z1

y1

x2

z2

y2

R

S

R

S

T
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We now specify the interpretation S ′ of τ ′ for domain D. The relations
RS′

, SS′

and T S′

are defined as follows:

RS′ def
= {(v, v) | v ∈ D \ {1, 2}} ∪ {(u, 1) | u ∈ D} ∪ {(1, 2), (2, 2)}

SS′ def
= {(v, v) | v ∈ D \ {1, 2}} ∪ {(1, u′), (2, u′) | u′ ∈ D}

T S′ def
= {(1, v), (v, 1) | v ∈ D \ {1, 2}} ∪ {(1, 2), (2, 1)}

Stated differently, the following tuples are contained in RS′

, SS′

and T S′

:

v

v

v

u

1

u′

R

S

R

S

T ⋃

u

1

u′

v

v

v

R

S

R

S

T ⋃

1, 2

2

u′

u

1

u′′

R

S

R

S

T ⋃

u

1

u′

1, 2

2

u′′

R

S

R

S

T

(I) (II)

where u, u′, u′′ ∈ D and v ∈ D \ {1, 2} and an edge (q, p) labeled by R
indicates that (q, p) ∈ RS′

.
Intuitively (I) ensures that exactly the tuples (a1, b1, a2, b2) satisfying

either a1 = b1 and a1 /∈ {1, 2}, or a2 = b2 and a2 /∈ {1, 2}, are contained in
the query result. Condition (II) ensures that exactly the tuples (a1, b1, a2, b2)
with a1 ∈ {1, 2} or a2 ∈ {1, 2} are in the query result.

We prove the correctness of this construction. Let (a1, b1, a2, b2) be
a tuple in ans(Q12, (S,S

′)). We show that the assignment that maps
(x1, y1, x2, y2) to (a1, b1, a2, b2) satisfies C12. If a1 ∈ {1, 2} then choose z1 as
2 and z2 as 1. This choice satisfies the matrix of C12 due to tuples in (II).
Similarly for a2 ∈ {1, 2}. If both a1 and a2 are not in {1, 2} and a1 = b1
then choose z1 as a1 and z2 as 1. This choice satisfies the matrix of C12 due
to tuples in (I). Similarly for a2 = b2.

Now, let θ be a satisfying assignment of C12 that maps (x1, y1, x2, y2)
to (a1, b1, a2, b2). We show that (a1, b1, a2, b2) is in ans(Q12, (S,S

′)). If
a1 ∈ {1, 2} or a2 ∈ {1, 2} then this follows from the definition of Q12. If
both a1 and a2 are not in {1, 2} then the value 2 is not a witness for z1
and z2 for the assignment θ. But then, due to (I), either there is a witness
for z1 which is equal to a1 and b1, or there is a witness for z2 which is equal
to a2 and b2. Thus either a1 = b1 or a2 = b2.

The technique from this example can be generalized to weakly describe
queries defined by positive quantifier-free =-formulas. The following lemma
immediately implies Theorem 3.1.16.

Lemma 3.1.18. Every positive quantifier-free =-formula can be weakly de-
scribed by a conjunctive query.
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Proof sketch. Consider an arbitrary positive quantifier-free =-formula
which is given, without loss of generality, in conjunctive normal form. It
suffices to weakly describe every clause

∨k
i=1 ui = vi, where some ui and vi

are possibly the same variable. Such a clause can be rewritten as

∃x1∃y1 . . . ∃xk∃yk
(∧

i

(xi = ui ∧ yi = vi) ∧
k∨

i=1

xi = yi

)

and therefore it is sufficient to weakly describe queries Q defined by formulas
of the form

∨k
i=1 xi = yi where all xi and yi are pairwise different variables.

In Example 3.1.17 we have seen a technique for weakly describ-
ing such queries for k = 2. This technique can be extended to ar-
bitrary k. Therefore let us assume that the domain contains the
elements {1, . . . , 6, c1, . . . , ck, d1, . . . , dk}.

We show how to construct a conjunctive query C12 that weakly describes
the following query:

Q12
def
= {(x1, y1, . . . , xk, yk} | xi = yi or xi ∈ {1, 2} for some i ∈ {1, . . . , k}}

Hence C12 will weakly describe Q for tuples (a1, b1, . . . , ak, bk) with
ai /∈ {1, 2} for all i. Using the same technique as in Example 3.1.17, one can
construct conjunctive queries C34 and C56 such that C12 ∧ C34 ∧ C56 weakly
describes Q for all tuples.

The conjunctive query C12 uses schema τ ′ = {R,S, T1, . . . , Tk} and is
defined by

∃z∃z1 . . . ∃zk
(∧

i

(
R(xi, zi) ∧ S(zi, yi)

)
∧
∧

i

Ti(z, zi)
)

and hence the query graph is

z

x1

z1

y1 x2

z2

y2 xk

zk

yk

R S R S R S

T1
T2

Tk

The intention for R and S is as in Example 3.1.17. Recall that in that
example the relation T ensured that (1) one zi was not in {1, 2}, or (2)
one zi was equal to 2. In the first case xi = yi whereas in the second
case xi ∈ {1, 2}. The relations Ti are used for the same purpose.

The idea is as follows. For a domain D, the interpretation S ′ of τ ′ is
chosen as follows. The relations T S′

i are such that the variable z can only
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assume values {c1, . . . , ck, d1, . . . , dk} (otherwise C12 will evaluate to false).
If the value ci is assigned to z then this shall encode that zi is not in {1, 2}.
If the value di is assigned to z then this shall encode that zi is equal to 2.

Now we present the relations. The relations RS′

and SS′

are as in the
previous example:

RS′ def
= {(v, v) | v ∈ D \ {1, 2}} ∪ {(u, 1) | u ∈ D} ∪ {(1, 2), (2, 2)}

SS′ def
= {(v, v) | v ∈ D \ {1, 2}} ∪ {(1, u), (2, u) | u ∈ D}

The relation Ti for i ∈ {1, . . . , k} is defined as follows:

Ti = {(ci, v) | v ∈ D \ {1, 2}} ∪ {(di, 2)} ∪
⋃

j 6=i

{(cj , 1), (dj , 1)}

The correctness of the construction can be shown as in Example 3.1.17.
Exhibiting witnesses for z, z1, . . . zk in order to show that a tuple
(a1, b1, . . . , ak, bk) from ans(Q12, (S,S

′)) is also in ans(C12, (S,S
′)) is

straightforward. Showing that a tuple (a1, b1, . . . , ak, bk) is contained in
ans(Q12, (S,S

′)) if it satisfies C12 can be shown by a case distinction on the
possible values for z.

3.1.4 Simulating Functions by Conjunctive Queries

Finally we show that the class DynQF is a subclass of DynCQ. This
completes the left hand side of Figure 3.2.

Thanks to Lemma 3.1.14 it suffices to show that DynQF is contained
in DynUCQ. The idea of the proof of Theorem 3.1.6 is to simulate auxiliary
functions by auxiliary relations with the help of existential quantifiers in a
straightforward way. However, some care is necessary in order to remove
ITE-conditions and negations. We highlight the idea of the proof in the
following example.

Example 3.1.19. Consider a DynQF-program P that contains the follow-
ing update term tfinsE for a unary function f and update formula φRinsE for
a unary relation R:

tfinsE (u, v;x)
def
= f

(
ITE(R(x), f(x), u)

)

φRinsE (u, v;x)
def
= ¬R(x) ∧ S

(
f(x), ITE

(
¬R(ITE(S(u, v), u, x)), f(x), u

))

As a first step towards the construction of an equivalent DynCQ-program,
we remove negations with the replacement technique by maintaining for
every relation T its complement in an auxiliary relation T̂ , for example:

φRinsE (u, v;x)
def
= R̂(x) ∧ S

(
f(x), ITE

(
R̂(ITE(S(u, v), u, x)), f(x), u

))
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φR̂insE (u, v;x)
def
= R(x) ∨ Ŝ

(
f(x), ITE

(
R̂(ITE(S(u, v), u, x)), f(x), u

))

The crucial step in the construction of an equivalent DynCQ-program
is to simulate the function f by a binary relation Rf with the intention
that Rf stores all tuples of the form (a, f(a)). Then appearances of f as
well as of ITE can be removed. The complement relations obtained in the
preprocessing step above are also needed in order to remove ITE-conditions.

The update formula φ
Rf
insE (u, v;x, y) for Rf is obtained by ’outsourcing’

the computation of the ITE-value:

φ
Rf
insE (u, v;x, y)

def
= ∃z

(
Rf (z, y) ∧

(
(R(x) ∧Rf (x, z)) ∨ (R̂(x) ∧ z = u)︸ ︷︷ ︸

z=ITE(R(x),f(x),u)

))

The update formula for R that uses Rf instead of f is obtained similarly:

φRinsE (u, v;x)
def
= R̂(x) ∧ ∃z1∃z2∃z3

(
S(z1, z2) ∧Rf (x, z1)

∧
(
(R̂(z3) ∧Rf (x, z2)) ∨ (R(z3) ∧ z2 = u)

)
︸ ︷︷ ︸

ITE(R̂(...),·,·)

∧
(
(S(u, v) ∧ z3 = u) ∨ (Ŝ(u, v) ∧ z3 = x)

)
︸ ︷︷ ︸

ITE(S(...),·,·)

)

Observe that only relation symbols from the original DynQF-program are
needed in negated form. The update formula for R̂ is analogous.

Theorem 3.1.6 (R). DynQF is contained in DynCQ.

Proof. Let P = (P, Init, Q) be a dynamic DynQF-program over
schema τ = τrel ∪ τfun. We assume, without loss of generality, that P is
in negation normal form. Further we assume, as in Lemma 3.1.10, that the
input relations have update formulas as well.

We prove that there is a DynUCQ-program P ′′ equivalent to P. Then,
by Lemma 3.1.14, there is an equivalent DynCQ-program.

As a preparation step we construct, from P, a DynQF-program P ′ over
schema τ ′

def
= τrel ∪ τ̂rel ∪ {=̂} ∪ τfun where τ̂rel has, for every R ∈ τ , a

relation symbol R̂ intended to contain the complement of R and =̂ contains
the complement of the relation =. This can be achieved as in the proof of
Lemma 3.1.10.

From P ′ we construct a DynUCQ-program P ′′ over schema
τ ′′

def
= τrel ∪ τ̂rel ∪ τF where τF contains a (k + 1)-ary relation symbol Rf

for every k-ary function symbol f ∈ τfun. The intention is that Rf simu-
lates f in the sense that (~a, b) ∈ RS′

f if and only if fS
′′

(~a) = b in states
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S ′ and S ′′ reached in P ′ and P ′′ by the same modification sequence. The
initialization of Rf can be obtained easily from the initialization of f .

We say that two states S ′ and S ′′ over τ ′ and τ ′′ correspond, if (1)
the condition (~a, b) ∈ RS′

f if and only if fS
′′

(~a) = b is satisfied, and (2)

RS′

= RS′′

for all R ∈ τrel ∪ τ̂rel.
We explain next how to update relations from τF . To this end, we will

define CQ-formulas ϕt(~x, z) and ϕφ(~x) over τ
′′, for every update term t(~x)

and every update formula φ(~x) over τ ′, such that the following conditions are
satisfied for all corresponding states S ′, S ′′, all tuples ~a and all elements b:

• (S ′′,~a, b) |= ϕt(~x, z) if and only if tS
′

(~a) = b, and

• (S ′′,~a) |= ϕφ(~x) if and only if (S ′,~a) |= φ(~x)

Then the update formulas in P ′′ after a modification δ can be defined as

follows. For every Rf ∈ τF , define the update formula as φ
Rf

δ

def
= ϕt where t

is the update term for f ∈ τfun in P ′. For every R ∈ τrel ∪ τ̂rel define the
update formula as φRδ

def
= ϕφ where φ is the update formula of R in P ′. An

easy induction shows that P ′ and P ′′ yield corresponding states when the
same modification sequence is applied. This proves the claim.

It remains to define the CQ-formulas ϕt(~x, z) and ϕφ(~x) for every update
term t(~x) and every formula φ(~x). Those formulas are defined inductively
as follows:

(a) If t(~x) = y for some variable y occurring in ~x, then

ϕt(~x, z)
def
= y = z.

(b) If t(~x) = f(t1(~x1), . . . , tk(~xk)) with ~xi ⊆ ~x, then

ϕt(~x, z)
def
= ∃z1 . . . ∃zk

(
Rf (z1, . . . , zk, z) ∧

∧

i

ϕti(~xi, zi)
)
.

(c) If t(~x) = ITE(φ(~y), t1(~x1), t2(~x2)) with ~y, ~x1, ~x2 ⊆ ~x, quantifier-free
update formula φ and update terms t1, t2, then

ϕt(~x, z)
def
=

(
ϕφ(~y) ∧ ϕt1(~x1, z)

)
∨
(
ϕ¬φ(~y) ∧ ϕt2(~x2, z)

)
.

(d) If φ(~x) contains the maximal update terms t1(~x1), . . . , tk(~xk) then let

ϕφ(~x)
def
= ∃z1 . . . ∃zk

(
φ′ ∧

∧

i

ϕti(~xi, zi)
)

where φ′ is obtained from φ by replacing ti by zi, transforming the
resulting formula into negation normal form and then replacing every
literal of the form ¬R(s1, . . . , sℓ) by R̂(s1, . . . , sℓ). Here, a term ti is
maximal if it is not contained in another update term.
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Observe that the formula φ in (d) contains only relation symbols
from τrel ∪ τ̂rel, and therefore no relation symbols from τfun need to be re-
placed in φ′. The correctness of this construction can be proved inductively.

3.2 Short Interlude: ∆-Semantics

So far we considered a semantics where the new version of the auxiliary
relations is redefined from scratch after each modification. We refer to this
as absolute semantics in the following.

As already explained in the introduction of this chapter, one usually ex-
pects only few auxiliary tuples to change after a modification in the context
of view maintenance. Therefore it is common to express the new version of
the auxiliary relations in terms of the current relations and some “Delta”,
that is, a (small) relation R+ of tuples to be inserted into R and a (small)
relation R− of tuples to be removed from R (with R+ ∩ R− = ∅). The
updated auxiliary relation R′ is then defined by

R′ def
= (R ∪R+) \R−.

We refer to this semantics as ∆-semantics. This is the semantics usually
considered in view maintenance. The intuitive explanations above already
reveal that the expressive power of absolute and ∆-semantics can only be
different if the underlying update language is not closed under Boolean op-
erations.

Next we formalize ∆-semantics via ∆-update programs which provide
formulas defining the relations R+ and R−, for every auxiliary relation R.

Definition 3.2.1 (∆-Update program). A ∆-update program P over dy-
namic schema (τinp, τaux) is a set of first-order formulas (called ∆-update
formulas in the following) that contains, for every R ∈ τaux and every
δ ∈ {insS ,delS} with S ∈ τinp, two formulas φR

+

δ (~u; ~x) and φR
−

δ (~u; ~x) over
the schema τ where ~u and S have the same arity, ~x and R have the same
arity, and φR

+

δ ∧ φR
−

δ is unsatisfiable.

The semantics of ∆-update programs is as follows. For a modifica-
tion δ = δ(~a) and program state S = (D,I,A) we denote by Pδ(S) the
state (D, δ(I),A′), where the relations R′ of A′ are defined by

R′ def
=

(
R ∪

{
~b | S |= φR

+

δ (~a;~b)
})

\
{
~b | S |= φR

−

δ (~a;~b)
}
.

The effect of a modification sequence on a state, dynamic ∆-programs
and so on are defined like their counterparts in absolute semantics except
that ∆-update programs are used instead of update programs.
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Definition 3.2.2 (∆-DynC). For a class C of formulas, let ∆-DynC be the
class of all dynamic queries that can be maintained by dynamic ∆-programs
with formulas from C and arbitrary initialization mapping.

We note that the definitions above do not require that R+ ∩ R = ∅
or R− ⊆ R, that is, R+ might contain tuples that are already in R, and
R− might contain tuples that are not in R. While it is conceivable to
require that R+ ∩ R = ∅ and R− ⊆ R in the definitions, in all proofs
below we construct only ∆-update formulas that guarantee these additional
properties. As a consequence, for the considered fragments, the expressive
power is independent of this difference.

The goal of this section is to prove the remaining results of Figure 3.2,
that is, the collapse results depicted in the right part of the figure and the
correspondences between absolute semantics and ∆-semantics.

The main results of this section are the following characterizations of
(extensions of) dynamic conjunctive queries with ∆-semantics.

Theorem 3.2.3. Let Q be a query. Then the following statements are
equivalent:

(a) Q can be maintained in ∆-DynUCQ¬.

(b) Q can be maintained in ∆-DynUCQ.

(c) Q can be maintained in ∆-DynCQ¬.

(d) Q can be maintained in ∆-DynCQ.

(e) Q can be maintained in ∆-Dyn∃∗FO.

(f) Q can be maintained in ∆-Dyn∀∗FO.

In particular, even more fragments collapse under ∆-semantics. More-
over, there is a tight relationsship between absolute and ∆-semantics when
conjunctive queries with negations are used as update language.

Theorem 3.2.4. Let Q be a query. Then the following statements are
equivalent:

(a) Q can be maintained in DynUCQ¬.

(b) Q can be maintained in ∆-DynUCQ¬.

The technique used for removing unions from dynamic unions of con-
junctive queries under ∆-semantics can be used to obtain a ∆-DynFO∧

normal form for ∆-DynFO-programs.

Theorem 3.2.5. Let Q be a query. Then the following statements are
equivalent:
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(a) Q can be maintained in ∆-DynFO.

(b) Q can be maintained in ∆-DynFO∧.

We state some basic facts about dynamic programs with ∆-semantics
before proving those theorems. The following lemma establishes the obvious
fact that absolute semantics and ∆-semantics coincide in expressive power
for dynamic classes closed under boolean operations. We observe that the
proof does not work for (extensions of) conjunctive queries. Later we will
see how to extend the result to conjunctive queries.

Lemma 3.2.6. Let C be some fragment of first-order logic closed under the
boolean operations ∨, ∧ and ¬. Then for every query Q the following are
equivalent:

(a) There is a DynC-program that maintains Q.

(b) There is a ∆-DynC-program that maintains Q.

Proof. From a DynC-update formula φRδ , the ∆-DynC-update formulas are
defined as follows:

φR
+

δ (~u; ~x)
def
= φRδ (~u; ~x) ∧ ¬R(~x)

φR
−

δ (~u; ~x)
def
= ¬φRδ (~u; ~x) ∧R(~x)

From ∆-DynC-update formulas φR
+

δ and φR
+

δ , a DynC-update formula is
obtained via

φRδ (~u; ~x)
def
=

(
R(~x) ∨ φR

+

δ (~u; ~x)
)
∧ ¬φR

−

δ (~u; ~x).

Removing negations in dynamic programs with ∆-semantics is straight-
forward using the replacement technique, since the complement R̂ of an
auxiliary relation R can be maintained by exchanging the formulas φR

+

δ

and φR
−

δ . Observe that in contrast to absolute semantics this works for
almost any class of queries, even if the class is not closed under complemen-
tation.

Lemma 3.2.7. Let ∆-DynC be one of the dynamic complexity classes
∆-DynPropCQ¬, ∆-DynCQ¬, ∆-DynUCQ¬ or ∆-DynQFO for arbi-
trary quantifier prefix Q. If a query Q can be maintained in ∆-DynC then
Q can be maintained in negation-free ∆-DynC.

Proof. The idea is again to maintain the complements for auxiliary relations.
Given a dynamic ∆-program P over schema τ we construct a dynamic ∆-
program P ′ over schema τ ∪ τ̂ where τ̂ contains, for every k-ary relation
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symbol R ∈ τ , a fresh k-ary relation symbol R̂ with the intention that R̂
always stores the complement of R.

The update formulas for R ∈ τ are as in P. For a relation symbol R ∈ τ
let φR

+

δ (~u; ~x) and φR
−

δ (~u; ~x) be the update formulas of R. Then the update

formulas for R̂ can be defined as follows:

φR̂
+

δ (~u; ~x) = φR
−

δ (~u; ~x)

φR̂
−

δ (~u; ~x) = φR
+

δ (~u; ~x)

From P ′, a negation-free dynamic ∆-program P ′′ can be constructed by
replacing, for all R ∈ τ , all occurrences of ¬R(~x) in update formulas of P ′

by R̂(~x). We omit the obvious proof of correctness.

We now turn towards proving the main results of this section. We first
prove Theorem 3.2.4. Afterwards we use the connection between absolute
and ∆-semantics that it establishes, as well as the adaption of Lemma 3.1.14
to ∆-semantics, to prove the characterization of conjunctive queries with ∆-
semantics.

The only-if-direction of Theorem 3.2.4 can be generalized to arbitrary
quantifier prefixes. It is open whether the if-direction generalizes as well.

Lemma 3.2.8. Let Q be an arbitrary quantifier prefix. If a query can be
maintained in DynQFO then it can be maintained in ∆-DynQFO as well.

Proof. Let P = (P, Init, Q) be a DynQFO-program with schema τ . By
Lemma 3.1.9 we can assume, without loss of generality, that the up-
date formulas of Q are atomic. We construct a dynamic ∆-DynQFO-
program P ′ = (P ′, Init′, Q′).

The main challenge is to design update formulas of the kind φR
−

δ with-
out being able to complement the given update formulas because this would
lead to QFO-formulas (additionally, the disjointness requirement for formu-
las φR

+

δ and φR
−

δ needs to be ensured).

The basic idea is to use two copies of the auxiliary relations, both alter-
nating between empty and useful states, such that one copy is useful for even
steps and the other one for odd steps. More precisely, for every auxiliary rela-
tion R used by P, the program P ′ uses two auxiliary relations Reven and Rodd

with the intention that after an even sequence of modifications Reven stores
the content of R after the same sequence of modifications while Rodd is
empty. After an odd sequence of modifications Reven is empty while Rodd

stores the content of R.

Then, for an even modification, the relation R+
even can be simply ex-

pressed as in absolute semantics (using “odd” relations) and R−
even is empty.

For an odd modification R−
even can be simply chosen as Reven and R+

even is
empty. Similarly for Rodd.
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In the following we give a precise construction of P ′ over schema
τeven ∪ τodd ∪ {Odd, Q′} where Odd is a boolean relation symbol, and τeven
and τodd contain, for every k-ary relation symbol R ∈ τ , a k-ary relation
symbol Reven and Rodd, respectively. The relation Odd is used to store the
parity of the number of modifications performed so far.

Let φRδ be the update formula of R ∈ τ for a modification δ in the
dynamic program P. Denote by φRδ [τ → τeven] the formula obtained
from φRδ by replacing every atom S(~x) with S ∈ τ by Seven(~x). Analo-
gously for φRδ [τ → τodd]. Now, the update formulas for Rodd and Reven are
as follows:

φ
R+

odd

δ (~u; ~x)
def
= ¬Odd ∧ φRδ [τ → τeven](~u; ~x)

φ
R−

odd

δ (~u; ~x)
def
= Odd ∧Rodd(~x)

φR
+
even

δ (~u; ~x)
def
= Odd ∧ φRδ [τ → τodd](~u; ~x)

φR
−

even

δ (~u; ~x)
def
= ¬Odd ∧Reven(~x)

Observe that all those formulas can be easily converted into QFO-
formulas. The boolean auxiliary relation Odd can be updated straight-
forwardly.

Now, since the update formulas of Q in P are quantifier-free, the rela-
tion Q′ can be updated with the following quantifier-free update formulas:

φQ
′+

δ (~u; ~x)
def
= φQδ (~u; ~x) ∧ ¬

((
Odd ∧Qodd(~x)

)
∨
(
¬Odd ∧Qeven(~x)

))

φQ
′−

δ (~u; ~x)
def
= ¬φQδ (~u; ~x) ∧

((
Odd ∧Qodd(~x)

)
∨
(
¬Odd ∧Qeven(~x)

))

The initialization mapping of P ′ is straightforward. Every Reven ∈ τeven
is initialized with Init(R). All Rodd ∈ τodd are initialized with the empty
relation. The relation Odd is initialized with ⊥, and Q′ is initialized
with Init(Q).

Lemma 3.2.9. (a) If a query can be maintained in ∆-DynUCQ¬ then it
can be maintained in DynUCQ¬ as well.

(b) If a query can be maintained in ∆-Dyn∀∗FO then it can be maintained
in Dyn∀∗FO as well.

We note that the first statement could equally be expressed in terms of
∆-Dyn∃∗FO and Dyn∃∗FO.

Proof. We only prove (a), the proof of (b) is analogous. Let P = (P, Init, Q)
be a dynamic ∆-DynUCQ¬-program over schema τ . By Lemma 3.2.7 we
can assume, without loss of generality, that the update formulas of P are
negation-free. For ease of presentation we assume that the input schema
contains a single binary relation symbol E.
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We construct an equivalent DynUCQ¬-program P ′ using the following
idea. Consider some update formulas φR

+

δ (~u; ~x) and φR
−

δ (~u; ~x) of a rela-
tion R ∈ τ for a modification δ in P. The näıve translation into a DynFO-
update formula φRδ (~u; ~x) yields the formula

φRδ (~u; ~x) = (R(~x) ∨ φR
+

δ (~u; ~x)) ∧ ¬φR
−

δ (~u; ~x)

which is possibly non-UCQ¬ due to ¬φR
−

δ (~u; ~x). Therefore, P ′ maintains

a relation R−
δ that contains all tuples (~a,~b) such that ~a would be removed

from R after applying the modification δ(~b). Those relations are maintained
using the squirrel technique. See the following Example 3.2.10 for a sample
construction.

The dynamic program P ′ is over schema τ ∪ τ∆ where τ∆ contains a
(k + 2)-ary relation symbol R−

δ ∈ τ for every k-ary relation symbol R ∈ τ
and every modification δ ∈ {ins,del} of the input relation E.

The update formula for a relation symbol R ∈ τ is

φRδ (~u; ~x)
def
= (R(~x) ∨ φR

+

δ (~u; ~x)) ∧ ¬R−
δ (~u, ~x).

This formula can be translated into an existential formula in a straightfor-
ward manner.

For updating a relation R−
δ1

after a modification δ0, the update for-

mula φR
−

δ1
for R− is used. However, since R−

δ1
shall store tuples that have to

be deleted after applying δ1, the formula φR
−

δ1
has to be adapted to use the

content of relation symbols S ∈ τ after modification δ0 (instead, as usual,
the content from before the modification). For this purpose relation symbols
S ∈ τ in φR

−

δ1
need to be replaced by their update formulas as defined above.

The update formula for R−
δ1

is

φ
R−

δ1

δ0
(~u0; ~u1, ~x)

def
= φ

R−

δ1

δ0
[τ → φτ ](~u0; ~u1, ~x)

where φ
R−

δ1

δ0
[τ → φτ ](~u0; ~u1, ~x) is obtained from φR

−

δ1
(~u; ~x) by replacing every

atom S(~z) by φSδ0(~u0; ~z), as constructed above. Since by our initial assump-

tion, φR
−

δ1
itself is an UCQ-formula and all update formulas φSδ0 for S ∈ τ

are UCQ-formula, the formula φ
R−

δ1

δ0
can be easily converted into an UCQ-

formula as well.

The following example illustrates the construction of Lemma 3.2.9.

Example 3.2.10. Consider the following negation-free ∆-update formulas
for a relation symbol R:

φR
+

ins (u;x) = ∃y
(
R(y) ∧ S(u, x)

)
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φR
−

ins (u;x) = ∃y
(
U(x) ∨

(
R(y) ∧ S(y, u)

))

φR
+

del(u;x) = ∃yU(y)

φR
−

del(u;x) = ∃y∃z
(
S(x, z) ∧ S(y, u)

)

Then the construction from the previous Lemma 3.2.9 yields the fol-
lowing update formulas for R and R−

δ1
which can be easily translated into

UCQ¬-formulas:

φRins(u;x) = (R(x) ∨ φR
+

ins (u;x)) ∧ ¬R−
ins(u, x)

φRdel(u;x) = (R(x) ∨ φR
+

del(u;x)) ∧ ¬R−
del(u, x)

φ
R−

ins
ins (u0;u1, x) = ∃y

(
φUins(u0;x) ∨

(
φRins(u0; y) ∧ φ

S
ins(u0; y, u1)

))

φ
R−

ins
del (u0;u1, x) = ∃y

(
φUdel(u0;x)

)
∨
(
φRdel(u0; y) ∧ φ

S
del(u0; y, u1)

)

φ
R−

del
ins (u0;u1, x) = ∃y∃z

(
φSins(u0;x, z) ∧ φ

S
ins(u0; y, u1)

)

φ
R−

del
del (u0;u1, x) = ∃y∃z

(
φSdel(u0;x, z) ∧ φ

S
del(u0; y, u1)

)

Lemmas 3.2.8 and 3.2.9 together yield Theorem 3.2.4. We now fi-
nally prove Theorem 3.2.3. For this we need the following adaption of
Lemma 3.1.14 to ∆-semantics.

Lemma 3.2.11. (a) For every ∆-DynUCQ¬-program there is an equiv-
alent ∆-DynCQ¬-program.

(b) For every ∆-DynFO-program there is an equivalent ∆-DynFO∧-
program.

Proof sketch. The proof uses the idea from the corresponding Lemma
3.1.14 for absolute semantics. We prove (a) only. The construction for (b)
is exactly the same.

Let P be a ∆-DynUCQ¬-program. As in Lemma 3.1.14 we construct
two programs P ′ and P ′′ equivalent to P for domains of size at least two
and domains of size one, respectively. The construction of P ′ is exactly the
same as the construction for absolute semantics, yet this requires to adapt
Lemma 3.1.13 to ∆-semantics. Such an adaption is straightforward. For
the construction of P ′′, Lemma 3.2.12 (see below) is used. A ∆-DynCQ¬-
program P ′′′ is obtained from P ′ and P ′′ by using a modification of the
construction used for the cases (b) and (c) in Lemma 3.1.14.

In order to delegate the case distinction to the initialization mapping,
we use an additional 0-ary relation symbol U to ensure that interpretations
of relations R′′ ∈ τ ′′ never change for domains of size a least two and,
analogously, interpretations of relations R′ ∈ τ ′ never change for domains of
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size one. To achieve this, U is interpreted by true if and only if the domain
is of size at least two and the update formulas of P ′ and P ′′ are slightly
modified as follows.

Update formulas φR
′+

δ and φR
′−

δ of a relation symbol R′ ∈ τ ′ in pro-

gram P ′ are replaced in P ′′′ by φR
′+

δ ∧U and φR
′−

δ ∧U . Hence the interpre-
tation of R′ changes only for domains of size at least two. Similarly, update
formulas φR

′′+

δ and φR
′′−

δ of a relation symbol R′′ ∈ τ ′′ in program P ′′ are

replaced in P ′′′ by φR
′′+

δ ∧ ¬U and φR
′′−

δ ∧ ¬U . Hence the interpretation
of R′′ changes only for domains of size one.

The initialization of relation symbols from τ ′ ∪ τ ′′ ∪ {Q′′′} is as in
Lemma 3.1.14, and U is initialized as true if and only if |D| = 1.

Lemma 3.2.12. Every query on a 0-ary database can be maintained by a
∆-DynPropCQ-program.

Proof. Let τinp be an input schema with 0-ary relation symbols A1, . . . , Ak.

Further let Q1, . . . ,Qm be an enumeration of all m = 22
k
many queries

on τinp. As in Lemma 3.1.15 we show that all of them can be main-
tained by one ∆-DynPropCQ-program P with auxiliary schema τaux =
{R1, . . . , Rm} maintaining Qi in Ri, for every i ∈ {1, . . . ,m}.

Our goal is to re-use the program constructed in Lemma 3.1.15 and the
translation

φ
R+

i

δ (~u; ~x) = φRi

δ (~u; ~x) ∧ ¬Ri(~x)

φ
R−

i

δ (~u; ~x) = ¬φRi

δ (~u; ~x) ∧Ri(~x)

Yet ¬φRi

δ does not yield a DynPropCQ-formulas immediately.

The idea to solve this issue is to use two dynamic programs P∧ and P∨

that both maintain all queries Qi in their auxiliary relations. The pro-
gram P∧ will be the program from Lemma 3.1.15 whereas P∨ will be a
DynProp-program whose update formulas are disjunctions of atoms. Then

the update formulas of Ri in P∨ will be used for defining φ
R−

i

δ .

We make this more precise. By Lemma 3.1.15 there is a DynPropCQ-
program P∧ over schema τ∧ = {R∧

1 , . . . , R
∧
m} that maintains Qi in R

∧
i with

conjunctive quantifier-free update formulas. Analogously a dynamic pro-
gram P∨ over schema τ∨ = {R∨

1 , . . . , R
∨
m} can be constructed that main-

tains Qi in R
∨
i with disjunctive quantifier-free update formulas.

Then the update formulas for Ri in P are constructed as

φ
R+

i

δ = φ
R∧

i

δ [τ∧ → τ ] ∧ ¬R(~x)

φ
R−

i

δ = ¬φ
R∨

i

δ [τ∨ → τ ] ∧R(~x)
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where φ
R∧

i

δ [τ∧ → τ ] is obtained from φ
R∧

i

δ by replacing symbols S∧ ∈ τ∧

by S ∈ τ , and φ
R∨

i

δ [τ∨ → τ ] is obtained from φ
R∨

i

δ by replacing symbols
S∨ ∈ τ∨ by S ∈ τ .

Those update formulas can be easily written as conjunctions. Negations
can be removed by Lemma 3.2.7.

Proof (of Theorem 3.2.3). The equivalence of (a) and (b) as well as of (c)
and (d) follows from Lemma 3.2.7. Statements (a) and (c) are equivalent
by Lemma 3.2.11. Further, (a) and (e) are equivalent by definition. The
equivalence of (e) and (f) follows immediately by combining Lemmas 3.2.8
and 3.2.9 with Theorem 3.1.1.

3.3 Relating Dynamic Classes and Static Classes

In this section we are interested in maintaining all queries in some descriptive
complexity class using updates from a weaker class. As mentioned already
in the introduction of this chapter, only very few examples for results of
this kind have been obtained so far. The results most related to our results
are that all MSO-queries on strings can be maintained in DynProp and
that, on general structures, ∃∗FO is captured by DynQF [GMS12]. Here
we present two further results of this kind.

The first result characterizes first-order logic by a much weaker dynamic
class: all first-order definable queries are maintainable using conjunctive
queries with negations as update formalism. More precisely, we character-
ize first-order queries as the class of queries maintainable by non-recursive
UCQ¬-programs and, equivalently, by non-recursive Dyn∃1FO-programs.
Here ∃1FO is the class of queries expressible by first-order formulas in prenex
normal form with at most one existential quantifier and no universal quan-
tifiers. A non-recursive dynamic program is a dynamic program with an an
acyclic dependency graph (as a directed graph). We refer to Section 2.2 for
a definition of dependency graphs. For every class C, non-recursive DynC
refers to the set of queries that can be maintained by non-recursive DynC-
programs.

Theorem 3.3.1. For every query Q the following statements are equivalent

(a) Q can be expressed in FO.

(b) Q can be maintained in non-recursive DynFO.

(c) Q can be maintained in non-recursive Dyn∃1FO.

(d) Q can be maintained in non-recursive Dyn∀1FO.
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With respect to the number of quantifiers in update formulas this result
is optimal because the first-order definable alternating reachability query on
graphs of bounded diameter cannot be maintained with quantifier-free up-
date formulas [GMS12], but it can be easily defined by a first-order formula.
Theorem 3.3.1 should be compared with the related result of [GMS12] that
all ∃∗FO queries can be maintained in DynQF.

Combining Theorem 3.3.1 with Theorem 3.1.1 immediately yields the
following corollary.

Corollary 3.3.2. Every first-order query can be maintained in DynCQ¬.

The second result for capturing a static class by a weaker dynamic class
is that, when restricting modifications to be insertions, queries definable
by unions of conjunctive queries with negated equality atoms can be be
maintained in DynProp. Actually we prove that every property expressible
by such a query with k quantifiers can be maintained by a (k − 1)-ary
quantifier-free program under insertions. In Section 4.1 we will see that this
result is tight with respect to the arity, that is, (k − 2)-ary quantifier-free
programs are not sufficient.

A positive existential first-order query over schema τ is a query that
can be expressed by a first-order formula of the form ϕ(~y) = ∃~xψ(~x, ~y)
where ψ is a quantifier-free formula that contains no negations. Semi-positive
existential first-order queries may contain literals of the form zi 6= zj . We
observe that the class of positive existential first-order queries coincides with
the class of UCQ-queries.

Theorem 3.3.3. Let ℓ ∈ N. An ℓ-ary query expressible by a semi-positive
existential first-order formula with k quantifiers can be maintained under
insertions in (ℓ+ k − 1)-ary DynProp.

3.3.1 A Dynamic Characterization of First-order Logic

In this subsection we prove the characterization of first-order queries as the
class of queries maintainable by non-recursive UCQ¬-programs, that is, we
prove Theorem 3.3.1.

The equivalence of (c) and (d) follows from Theorem 3.1.1 and the fact
that its proof does not introduce recursion when applied to a non-recursive
program. Alternatively, the equivalence to (d) could be stablished by adapt-
ing the proof of (a)⇒(c) to a proof of (a)⇒(d). It is obvious that (c) im-
plies (b).

For ease of presentation, we prove the remaining directions (a)⇒(c) and
(b)⇒(a) for the input schema τinp = {E} where E is a binary relation
symbol. The proofs can be easily adapted to general (relational) signatures.

First we prove (a)⇒(c). The proof makes use of the following nor-
mal form for FO. A formula ϕ is in existential prefix form if it
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has a prefix over ((¬∃)|∃))∗ and no quantifier occurs after this prefix
(e.g. ∃x¬∃y¬

(
E(x, x) → E(x, y)

)
is in existential prefix form with pre-

fix ∃¬∃). A formula in prefix normal form can be easily translated into
existential prefix form by duality of universal and existential quantifiers.
The prefix length of a formula in existential normal form is the number of
existential and ¬-symbols in the maximal prefix ending with ∃.

The following example outlines the idea of the construction for the proof
of (a)⇒(c).

Example 3.3.4. Consider the query Q defined by

ϕ = ∃x∀y
(
E(x, x) → E(x, y)

)

≡ ∃x¬∃y¬
(
E(x, x) → E(x, y)

)

We construct a non-recursive dynamic Dyn∃1FO-program P that main-
tains Q under deletions only (for simplicity). The construction of P applies
the squirrel technique. It uses a separate auxiliary relation Rψ for each
subformula ψ obtained from ϕ by stripping off a “quantifier prefix” from
the existential prefix form of ϕ. The relation Rψ reflects the possible states
after a sequence of changes whose length equals the number of stripped off
¬- and ∃-symbols.

In order to update the query relation after the deletion of an
edge, we maintain an auxiliary ternary relation R1 (here, for simplic-
ity, we write R1 instead of Rψ1

) that contains the result of the query
ψ1

def
= ¬∃y¬

(
E(x, x) → E(x, y)

)
for every choice a1 for x and every (pos-

sibly deleted) edge ~e1, that is (a1, ~e1) ∈ R1 if and only if

(V,E \ {~e1}, {x 7→ a1}) |= ¬∃y¬
(
E(x, x) → E(x, y)

)
.

Then we can define φQdel(~v1)
def
= ∃xR1(x,~v1) and it only remains to find a way

to update the relation R1. To this end, we maintain a further relation R2

that contains the result of ψ2
def
= ∃y¬

(
E(x, x) → E(x, y)

)
for every choice a1

for x and all (possibly deleted) edges ~e1, ~e2, that is (a1, ~e1, ~e2) ∈ R2 if and
only if

(V,E \ {~e1, ~e2}, {x 7→ a1}) |= ∃y¬
(
E(x, x) → E(x, y)

)
.

Then φR1
del(~v1;x,~v2)

def
= ¬R2(x,~v1, ~v2) and it remains to update the rela-

tion R2. Therefore we maintain a relation R3 that contains the result of
ψ3 = ¬

(
E(x, x) → E(x, y)

)
for every choice a1, a2 for x, y and all (possibly

deleted) edges ~e1, ~e2, ~e3. Then

φR2
del(~v1;x,~v2, ~v3)

def
= ∃yR3(x, y,~v1, ~v2, ~v3)

and it remains to update relation R3 via

φR3
del(~v1;x, y,~v2, ~v3, ~v4)

def
= ¬

(
E′(x, x,~v1, . . . , ~v4) → E′(x, y,~v1, . . . , ~v4)

)
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where E′ is the edge relation obtained from E by deleting ~v1, ~v2, ~v3 and ~v4,
that is E′(x, y,~v1, . . . , ~v4) can be replaced by

E(x, y) ∧ (x, y) 6= ~v1 ∧ . . . ∧ (x, y) 6= ~v4.

This completes the description of the program P for ϕ which is easily seen
to be non-recursive.

The following definition will be useful in the two remaining proofs of this
subsection. For every first-order formula ϕ with k free variables and every
sequence δ = δ1 . . . δj over {ins,del} let ϕEδ1...δj be a (k + 2j)-ary formula

such that for every graph G = (V,E), every ~a ∈ V k and every instantiation
α = δ1(~e1) . . . δ2(~ej) of δ with tuples ~e1, . . . , ~ej ∈ V

2:

α(G) |= ϕ if and only if (G,~a,~e1, . . . , ~ej) |= ϕδ1...δj (~x, ~u1, . . . , ~uj).

It is straightforward to construct ϕEδ1...δj . It should be noted that ϕEδ1...δj
can be constructed such that its quantifier-prefix is the same as for ϕ. In
particular, if ϕ is quantifier-free then ϕEδ1...δj can be constructed quantifier-

free as well. For example, if δ = ins del and ϕ(~x) = ¬E(~x) then

ϕEins del(~x, ~u1, ~u2) = ¬
((
E(~x) ∨ ~x = ~u1

)
∧ ¬(~x = ~u2)

)
.

Lemma 3.3.5. If a query is definable in FO, then it can be maintained in
non-recursive Dyn∃1FO.

Proof. Inductively over the length of the prefix of a formula ϕ in existential
prefix form, we prove that, for every finite sequence δ1 . . . δj , the query
defined by ϕδ1...δj is maintainable in non-recursive Dyn∃1FO. The claim
follows by setting j = 0. We construct dynamic programs where the result
of the query defined by ϕδ1...δj is stored in the relation Rϕδ1...δj .

For a formula ϕ with a prefix of length 0 (i.e. a quantifier-free formula),
we define

φ
R

ϕ
δ1...δj

δ0
(~v0; ~y,~v1, . . . , ~vj)

def
= ϕEδ0...δj (~y,~v0, . . . , ~vj)

where ϕEδ0...δj is as defined above (in the quantifier-free case).
For the induction step, let ϕ be a formula of prefix length i. By induction

hypothesis, every query defined by ψδ1...δj where ψ has prefix length i − 1,
can be maintained in non-recursive Dyn∃1FO, for every sequence δ1 . . . δj
of modifications.

We distinguish the two cases ϕ(~y) = ∃xψ(x, ~y) and ϕ(~y) = ¬γ(~y). If
ϕ(~y) = ∃xψ(x, ~y) then the dynamic program for ϕ and δ1 . . . δj has auxiliary

relations Rψδ0...δj for δ0 ∈ {ins,del} containing the result of the query ψδ0...δj .
Further,

φ
R

ϕ
δ1...δj

δ0
(~v0; ~y,~v1, . . . , ~vj)

def
= ∃xRψδ0...δj (x, ~y,~v0, . . . , ~vj).
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If ϕ(~y) = ¬γ(~y) then the dynamic program for ϕ and δ1 . . . δj has auxiliary
relations Rγδ0...δj for δ0 ∈ {ins,del} containing the result of the query γδ0...δj .
Further,

φ
R

ϕ
δ1...δj

δ0
(~v0; ~y,~v1, . . . , ~vj)

def
= ¬Rγδ0...δj (~y,~v0, . . . , ~vj).

This yields a non-recursive ∃1FO-program, for every ϕδ1...δj .

We now turn towards proving the implication (b)⇒(a) in Theorem 3.3.1.
The following notion will be useful. A topological sorting of a graph (V,E) is
a sequence v1, . . . , vn such that every vertex from V occurs exactly once and
i > j for all edges (vi, vj) ∈ E. Every acyclic graph has a topological sorting.
In particular, if R1, . . . , Rm is a topological sorting of the dependency graph
of a non-recursive dynamic program P = (P, Init, Q) then update formulas
for R1 do only contain relation symbols from τinp. Further we can assume,
without loss of generality, that Rm = Q. We say that Ri is on the ith level
of the dependency graph.

Lemma 3.3.6. If a query can be maintained in non-recursive DynFO, then
it can be expressed in FO.

Proof. Consider a non-recursive dynamicDynFO-program P = (P, Init, Q)
over input schema {E}.

We start with some intuition. Let R be an auxiliary relation of P which
is (for simplicity) on the first layer of the topological sorting of the de-
pendency graph of P. That is, the update formulas φRinsE and φRdelE of R
depend on the input relations only. There is no a priori upper bound on the
complexity of the initialization process for R. However, after one modifica-
tion step the relation is redefined via one of the first-order update formulas
φRinsE or φRdelE which only use atoms over the input relations. Similarly,
the auxiliary relations on higher levels of the dependency graph depend in
a first-order fashion from the input structure after a constant number of
modification steps. This is exploited in the proof.

More technically, the proof idea is as follows. For every modification
pattern δ = δ1 . . . δj and every auxiliary relation R, a first-order formula
ϕRδ is constructed that “precomputes” the state of R for every possible
modification sequence with the pattern δ. Thanks to non-recursiveness,
once δ is longer than the number of auxiliary relations, the formula ϕRδ can
only use relations from the input schema. That is, it is just a first-order
formula over τinp. We get the desired first-order formula for Q by choosing
in ϕRδ a sufficiently long modification sequence δ (by repeatedly inserting
and deleting the same tuple).

We make this more precise now. Let Q be a query which can be main-
tained by a non-recursive DynFO-program P = (P, Init, Q) over schema
τ = τinp∪ τaux. We assume for simplicity that τinp = {E}, for a binary sym-
bol E. We let R0

def
= E and assume that the auxiliary relations R1, . . . , Rm
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are enumerated with respect to a topological sorting of the dependency
graph of P with Rm = Q.

We define inductively, by i, for every sequence δ1 . . . δj with j ≥ i, first-

order formulas ϕRi

δ1...δj
(~y, ~x1, . . . , ~xj) over schema τinp = {E} such that ϕRi

δ1...δj

defines Ri after modifications δ1(~x1) . . . δj(~xj). More precisely ϕRi

δ1...δj
will be

defined such that for every state S = (V,ES ,AS) of P and every sequence
δ = δ1(~a1) . . . δj(~aj) of modifications the following holds:

Pδ(S)↾Ri = {~b | (V,E) |= ϕRi

δ1...δj
(~b,~a1, . . . ,~aj)} (3.3)

Here Pδ(S) ↾ Ri denotes the relation stored in Ri in state Pδ(S). For
R0 = E the formula ϕEδ1...δj is as defined before the previous lemma.

For Ri with i ≥ 1 the formula ϕRi

δ1...δj
(~y, ~x1, . . . , ~xj) is obtained from the

update formula φRi

δj
(~xj ; ~y) of Ri by substituting all occurrences of Ri′(~z) by

ϕ
Ri′

δ1...δj−1
(~x1, . . . , ~xj−1, ~z) for all i

′ < i. Using induction over i, one can prove

that the formulas ϕRi

δ1...δj
satisfy Equation 3.3. As P is non-recursive, each

formula ϕRi

δ1...δj
with j ≥ i is over schema {E}.

The first-order formula ϕ for Q over schema τinp = {E} can be con-
structed as follows. The formula “guesses” a tuple ~a ∈ E, deletes and
inserts it m times and applies ϕRm

(del ins)m to the result (which is identical

to the current graph), or (for the case that E is empty) it guesses a tuple
~a 6∈ E, inserts and deletes it m times and applies ϕRm

(ins del)m to the result.
More precisely, ϕ for Q is defined by

ϕ(~y)
def
= ∃~x

((
E(~x) ∧ ϕRm

(del ins)m(~y, ~x, ~x, . . . , ~x︸ ︷︷ ︸
2m−times

)
)

∨
(
¬E(~x) ∧ ϕRm

(ins del)m(~y, ~x, ~x, . . . , ~x︸ ︷︷ ︸
2m−times

)
))
.

3.3.2 DynProp Captures Semi-Positive ∃∗FO Under Inser-

tions

In this subsection we prove that, when restricting modifications to be in-
sertions, queries definable by semi-positive existential first-order formulas
can be maintained in DynProp. Before turning to the proof we give some
intuition.

Example 3.3.7. We show how to maintain 3-Clique in binary DynProp

under insertions. The very simple idea is to use an additional binary aux-
iliary relation R that stores all edges whose insertion would complete a tri-
angle. Hence a tuple (a, b) is inserted into R as soon as deciding whether
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there is a 3-clique containing the nodes a and b only depends on those two
nodes. More precisely (a, b) is added to R, e.g., if an edge (c, a) is inserted
to the input graph and the edge (c, b) is already present (or vice versa).

Thus the update formula for R is

φRinsE(u, v;x, y)
def
= u 6= v∧x 6= y ∧

((
E{u, y}∧ v = x

)
∨
(
E{u, x}∧ v = y

)

∨
(
E{v, y} ∧ u = x

)
∨
(
E{v, x} ∧ u = y

))

where E{x, y} is an abbreviation for E(x, y) ∨ E(y, x).
The update formula for the query symbol Q is

φQinsE (u, v;x, y) = Q ∨R(u, v).

The general proof for arbitrary semi-positive existential first-order prop-
erties extends the approach from the previous example.

Theorem 3.3.3 (R). Let ℓ ∈ N. An ℓ-ary query expressible by a semi-
positive existential first-order formula with k quantifiers can be maintained
under insertions in (ℓ+ k − 1)-ary DynProp.

Proof. For simplicity we restrict the proof to boolean graph queries. The
proof easily carries over to arbitrary semi-positive existential queries.

We give the intuition first. Basically a semi-positive existential sentence
with k quantifiers can state which (not necessarily induced) subgraphs with
k nodes shall occur in a graph. Therefore it is sufficient to construct a
dynamic quantifier-free program that maintains whether the input graph
contains a subgraph H. Such a program can work as follows. For every
induced, proper subgraph H ′ = {u1, . . . , um} of H, the program maintains
an auxiliary relation that stores all tuples ~a = (a1, . . . , am) such that insert-
ing H ′ into {a1, . . . , am} (with ai corresponding to ui) yields a graph that
contains H.

In particular, auxiliary relations have arity at most k−1 (as only proper
subgraphs of H have a corresponding auxiliary relation). Furthermore the
graph H is contained in the input graph whenever the value of the 0-ary
relation corresponding to the empty subgraph of H is true. In the example
above, the relation R is the relation for the subgraph of the 3-clique graph
that consists of a single edge, and the designated query relation is the 0-ary
relation for the empty subgraph.

Those auxiliary relations can be updated as follows. Assume that a
tuple ~a = (a1, . . . , am) is contained in the relation corresponding to H ′. If,
after the insertion of an edge with end point am, every edge from um in H ′

has a corresponding edge from am in the graph induced by {a1, . . . , am},
then the tuple ~a ′ = (a1, . . . , am−1) has to be inserted into the auxiliary
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H:

x1

x2x3

x4 G:

a1

a2a3

a4

Figure 3.3: Illustration of the notions used in Theorem 3.3.3. The
graph H is the graph defined by the existential semi-positive formula
∃x1∃x2∃x3∃x4

(∧
i 6=j xi 6= xj ∧E(x3, x1)∧E(x1, x2)∧E(x3, x2)∧E(x2, x4)

)
.

Before inserting the edge (a3, a1) into G, the tuple (a1, a2, a3) can be ex-
tended to H((x1,x2,x3),x4), but (a1, a2) does not extend to H((x1,x2),(x3,x4)).
After inserting the edge (a3, a1), the tuple (a1, a2) can be extended to
H((x1,x2),(x3,x4)) as well.

relation for the subgraph H ′ ↾{u1, . . . , um−1}. This is because inserting the
graph H ′ ↾ {u1, . . . , um−1} into {a1, . . . , am−1} will now yield a graph that
contains H. Observe that for those updates no quantifiers are needed.

In the following we make the intuitive idea outlined above more precise.
We first show how a quantifier-free dynamic program can maintain whether
the input graph contains a certain (not necessarily induced) subgraph. Af-
terwards we show how to combine the programs for several subgraphs in
order to maintain an arbitrary semi-positive existential formula.

For the first step it will be technically easier not to speak about sub-
graphs H ′ of H (as in the intuition above) but to work with partitions of H.
We introduce this notion as well as other useful notions next. Let H be a
graph. A tuple (~y, ~z) is called a partition of H if it contains every node of
H exactly once. The subgraph of H induced by ~y is denoted by H ↾~y; the
graph obtained from H by removing the edges of H ↾~y is denoted by H(~y,~z).

Now let G = (V,E) and H = (V ′, E′) be graphs, and let (~y, ~z) be an
arbitrary partition of H with |~y| = ℓ. We say that an ℓ-ary tuple ~a can be
extended to H(~y,~z), if there is a |~z|-tuple ~b such that the mapping π defined

by π(~y, ~z)
def
= (~a,~b) maps edges in H(~y,~z) to edges in G. Intuitively ~a can be

extended to H(~y,~z) when deciding whether H is a subgraph of G, where ~y
corresponds to ~a, depends only on ~a and not on nodes of G not contained
in ~a. See Figure 3.3 for an illustration.

Let ~a = (a1, . . . , aℓ) be a tuple that can be extended to H(~y,~z). Then a
node ai is called saturated with respect to a partition (~y, ~z) and ~a if (ai, aj)
(respectively (aj , ai)) is an edge in G whenever (yi, yj) (respectively (yj , yi))
is an edge in H. A tuple (c, d) is critical for ai with respect to a partition
(~y, ~z) and ~a if ai is not saturated in G but it is saturated in G + (c, d).
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In Figure 3.3, the tuple (a3, a1) is critical for a3 with respect to the par-
tition ((x1, x2, x3), x4) and the tuple (a1, a2). Observe that therefore the
insertion of the edge (a3, a1) yields a graph where (a1, a2) can be extended
to H((x1,x2),(x3,x4)).

We are now ready to construct a DynProp-program P that maintains
whether the input graph contains a graph H as (not necessarily induced)
subgraph. The program P has an auxiliary relation R(~y,~z) of arity |~y| for
every partition (~y, ~z) of H with |~z| ≥ 1. The intention is that, for a state S
with input graph G, a tuple ~a is in RS

(~y,~z) whenever ~a extends to H(~y,~z) in G.

Thus R(~y,~z) corresponds to the auxiliary relation for H ↾ ~y in the intuitive
explanation above. The condition |~z| ≥ 1 ensures that the auxiliary relations
are of arity at most |H| − 1

Before sketching the construction of the update formulas it is illustrative
to see what happens when inserting the edge (a3, a1) in Figure 3.3. We
observed above that this yields a graph where (a1, a2) can be extended to
H((x1,x2),(x3,x4)). Therefore (a1, a2) should be inserted into the auxiliary
relation R((x1,x2),(x3,x4)). However, this update of R((x1,x2),(x3,x4)) can be
made without quantifiers since it is sufficient to verify that (a1, a2, a3) is
already in R((x1,x2,x3),x4) and that (a1, a3) was critical. This involves the
nodes a1, a2 and a3 only.

In general, when an edge e is inserted, the update formulas of P check
for which nodes and partitions the edge is critical; and adapt the auxiliary
relations accordingly.

For updating a relation R(~y,~z) with ~y = (y1, . . . , yℓ) and ~z = (z1, . . . , zk−ℓ)

the update formula φRins E(u, v; ~y) has to check whether there is some R(~y ′,~z ′)

with ~y ′ = (y1, . . . , yi, zj , yi+1 . . . , yℓ) and ~z ′ = (z1, . . . , zj−1, zj+1, . . . , zk−ℓ)
such that the insertion of (u, v) saturates zj . It is also possible that the
insertion of a single edge saturates two nodes, this case is very similar and
will not be treated in detail here.

The formula φRins E(u, v; ~y) is a conjunction of formulas ϕu, ϕv and ϕu,v
responsible for dealing with the cases where u, v and both u and v are being
saturated. We only exhibit ϕu:

ϕu
def
=

∨

For all (~y ′,~z ′) with
~y ′=(y1,...,yi,zj ,yi+1,...,yℓ)
~z ′=(z1,...,zj−1,zj+1,...,zk−ℓ)

(
R(~y ′,~z ′)(y1, . . . , yi, u, yi+1, . . . , yℓ) ∧

∧

i′

u 6= yi′

∧
∧

(zj ,yi′)∈H↾~y
′

E(u, yi′) ∧
∧

(yi′ ,zj)∈H↾~y
′

E(yi′ , u)
)

The other formulas are very similar. This completes the construction of P.

It remains to construct a quantifier-free dynamic program for an ar-
bitrary semi-positive existential formula using quantifier-free programs for
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subgraphs. To this end let ϕ = ∃~xψ(~x) be an arbitrary semi-positive exis-
tential first-order formula. We show how to translate ϕ into an equivalent
disjunction of formulas ϕi of the form

ϕi = ∃~xi
∧

y,y′∈~xi

(
y 6= y′ ∧ ψi(~xi)

)

where each ψi is a conjunction of atoms over {E} and |~xi| ≤ |~x|.
Observe that the quantifier-free part of each ϕi encodes a subgraph Hi.

Hence a graph G satisfies ϕ if and only if one of the graphs Hi is a subgraph
ofG. Thus a program maintaining the query defined by ϕ can be constructed
by combining the dynamic programs for all Hi in a straightforward way.

We now sketch how to translate ϕ into the form stated above. First ϕ is
rewritten as disjunction of conjunctive queries, that is as

∨
i ∃~yiγi(~yi) where

each γi is a conjunction of positive literals and literals of the form x 6= x′.
Afterwards each ∃~yiγi(~yi) is rewritten into an equivalent disjunction over all
equality types over the variables in ~yi, that is as

∨

ε

∃~yi,ε
( ∧

y,y′∈~yi,ε

y 6= y′ ∧ ϕi,ε(~yi,ε)
)

where ε is over all equality types and ϕi,ε is a conjunction of atoms over {E}.

3.4 Eliminating Built-in Arithmetic

It is well-known that a query is expressible in FO(+,×) if and only if it can
be evaluated by a DLogtime-uniform AC0-circuit [BIS90]. Here FO(+,×)
denotes the class of queries expressible in first-order logic with built-in
linear order as well as its corresponding addition and multiplication; and
DLogtime-uniform AC0 refers to the class of queries that can be evalu-
ated by a DLogtime-uniform, constant-depth, polynomial-size unbounded
fan-in circuit.

This characterization of FO(+,×) translates immediately to dynamic
complexity: a query is maintainable in DynFO with built-in arithmetic if
and only if it can be maintained using DLogtime-uniform AC0 as update
mechanism. Here DynFO with built-in arithmetic has distinguished auxil-
iary relations <, + and × which are initialized, for a domain D of size n,
with a linear order on 0, . . . , n− 1, and its corresponding addition and mul-
tiplication relations (where a + b = n − 1 if a + b > n − 1, and likewise
for ×).

This begs the question whether built-in arithmetic is necessary for this
characterization in the dynamic setting. In this section we show that built-in
arithmetic is not needed for domain independent queries.



82 Relating Small Dynamic Complexity Classes

A query Q is domain independent if ans(Q,D) and ans(Q,D′) coincide
whenever D and D′ coincide in all relations and constants (but possibly
differ in the underlying domain).

Theorem 3.4.1. For a domain independent query Q the following state-
ments are equivalent:

(a) Q can be maintained from scratch in DynFO.

(b) Q can be maintained in DynFO with built-in arithmetic.

This result does not hold for arbitrary queries. For example, the domain
dependent boolean query Qeven, which is true for domains of even size and
false otherwise, cannot be maintained in DynFO from scratch. This is
because the first-order initialization formulas cannot tell domains of even
and odd size apart for large, empty structures. We refer to the second part
of Section 4.3.2 for a broader discussion of this aspect.

As the reachability query is domain independent, the preceeding theorem
implies the following.

Corollary 3.4.2. If reachability can be maintained in DynFO with built-in
arithmetic, then it can be maintained from scratch in DynFO as well.

Thus for showing that reachability is in DynFO in the original Pat-
naik/Immerman framework, that is, with initialization from scratch, it suf-
fices to exhibit a dynamic program with first-order updates that possibly
uses arithmetic, or, equivalently, a dynamic program with AC0-updates.
This has been done in [DKM+15] and a short proof overview can be found
in Section 2.6.

We now turn towards proving Theorem 3.4.1. The active domain of a
state S contains all elements that are used in a tuple of one of the input
relations. An element element a is touched by a modification sequence α =
δ1, . . . , δℓ if it occurs in some δi. For DynFO-programs that start from
scratch we observe that if the application of α yields a state S, then all
elements in the active domain of S have been touched by α.

Already Etessami observed that arithmetic on the active domain can
be constructed on the fly when new elements are touched [Ete98]. This is,
however, not sufficient for simulating a program P with built-in arithmetic.
Thanks to its built-in arithmetic, P can maintain complex auxiliary struc-
tures even for elements that have not been touched so far. On the other
hand, a program P ′ starting from scratch can only use elements in a non-
trivial way as soon as they have been touched. Indeed, while non-touched
elements are already present in the domain before they are touched, it is
easy to see that all of them behave similarly since they are all updated by
the same first-order formulas. Therefore they cannot be used for storing
complex auxiliary data structures. Thus, the challenge for the construction
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of P ′ is to make arithmetic as well as the auxiliary data for an element
available as soon as it has been touched.

The construction of P ′ uses arithmetic on the elements that have been
touched. Therefore we start with a repetition of Etessami’s result.

Proposition 3.4.3 ([Ete98]). There is a DynFO-program that maintains
auxiliary relations Dt, <t, +t and ×t that represent the elements touched so
far, and a linear order as well as its corresponding addition and multiplica-
tion relations on those elements.

Proof idea. The idea is straightforward. When a tuple ~a is modified, so far
non-touched elements in ~a are inserted into Dt and they are appended to
the linear order <t (in the order in which they occur in ~a). The relations +t

and ×t are extended according to their well-known inductive definitions
(see, e.g., [Lib04, p. 182]).

We are now ready to sketch the proof of Theorem 3.4.1.

Proof sketch (of Theorem 3.4.1). It suffices to show that (a) implies (b).
For a given DynFO-program P with built-in arithmetic, we construct an
equivalent DynFO-program P ′ that starts from scratch. For simplicity, we
assume that P maintains a graph query, i.e. that it is over input schema
{E} where E is a binary relation symbol. As stated above, the challenge
for the construction of P ′ is to make the arithmetic as well as the auxiliary
data for an element available as soon as it has been touched.

The basic idea for the construction of P ′ is to start simulating P for m2

touched elements as soon as m elements have been touched. There will be
one such simulation for every m in parallel. For each m, the “m-simulation”
starts from an initially empty database and simulates P for an insertion
sequence leading to the current database. The goal is that as soon as (m−1)2

elements have been touched, the m-simulation will be “consistent” with P,
that is, both the m-simulation of P ′ and P store the same auxiliary data.
Beginning with (m − 1)2 touched elements and ending with m2 touched
elements, the program P ′ uses the query result of the m-simulation as its
overall query result.

Them-simulation is started as soon as themth element has been touched
by a modification sequence. Assume, without loss of generality, that the
elements Dm

def
= {0, . . . ,m−1} have been touched after themth element has

been touched. In order to simulate P for domains of size m2, the arithmetic
for such domains has to be available. To this end the m-simulation of P ′

encodes elements from {0, . . . ,m2−1} by tuples from Dm×Dm. Arithmetic
on Dm × Dm can be defined from the arithmetic relations <t, +t and ×t

on the touched elements Dm via the mapping π : a 7→ (a1, a2) where a =
a1m+a2. Those relations can be maintained due to Proposition 3.4.3. By â
we denote the tuple obtained by applying the mapping component-wise to
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a tuple a.

The actual m-simulation uses a 4-ary relation Êm and, for every k-ary
auxiliary relation R of P, a 2k-ary relation R̂m. The increase in arity is due
to the encoding of elements of {0, . . . ,m2 − 1} by tuples over {0, . . . ,m}.
When themth element is touched, the relation Êm is empty and the relations
R̂m are initialized according to the initialization formula for R, but adapted
to the encoding of elements by tuples. After touching themth element, every
modification α(e) of E induces two steps of modifications to the relation Êm:

• The modification α(ê) is applied to Êm.

• Let e1, . . . , e4 be the four smallest edges present in E such that
ê1, . . . , ê4 are not in Êm. Then ê1, . . . , ê4 are inserted into Êm.

For every modification of Êm, the relations R̂m are updated using the cor-
responding update formulas for R in P, but adapted to the encoding of
elements by tuples.

Although m-simulations are run in parallel for many m, all those rela-
tions can be stored in a constant number of relations. For example, the
relations Êm can be stored in a single 5-ary relation Ê with m as an addi-
tional parameter.

The updates of Êm and R̂m are made precise in Algorithm 1. For every
modification only a constant number of modifications is induced on Êm
and R̂m. Those can be easily described by a DynFO-update program.

We shortly describe the correctness of the algorithm. When the mth
element has been touched, the input graph contains at most m2 edges. Thus
all edges of the input graph will be present in Êm after at most m2

4 many

modifications. On the other hand, at least (m−1)2−(m+1)
2 insertion steps

are necessary in order to touch (m − 1)2 elements. Thus, for m ≥ 8, the
relation Êm encodes the current graph when (m − 1)2 elements have been
touched, and the m-simulation of P ′ is consistent with P. The cases m < 8
can be hard-coded into the update formulas.

We note that the construction from the proof above does not extend
to FOIES, because in FOIES elements are removed from the domain as soon
as they are not used in any input relation. While the arithmetical relations
can be adapted when elements are removed from the domain, it is not clear
how to adapt the other auxiliary relations in general. Thus it remains open
whether arithmetic can be simulated for domain independent queries in the
FOIES setting as well. However, for some domain-independent queries this
can be achieved in an ad-hoc fashion. An example for this is the reachability
query.
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Algorithm 1 Updates for the m-simulation for change operation δ. The
set T shall contain all elements that have been touched so far.
1: if m = |T | then
2: for all R ∈ τaux do
3: Initialize R̂′

m according to the initialization formula of R.
4: end for
5: end if
6: if m ≤ |T | ≤ m2 after modification α(e) then
7: Apply α(ê) to Êm
8: for all R ∈ τaux do
9: Apply the update formula for α(ê) to R̂′

m

10: end for
11: for i ∈ {1, 2, 3, 4} do
12: f

def
= “smallest” edge from E such that f̂ is not contained in Êm.

13: Add f̂ to Êm
14: for all R ∈ τaux do
15: Apply the update formula for insertion of f̂ to R̂m
16: end for
17: end for
18: end if
19: if (m− 1)2 < |T | ≤ m2 then Q′ def

= decoding of Q̂m

3.5 Outlook and Bibliographic Remarks

In this chapter we studied fragments of DynFO. We have shown that,
contrary to the static setting, many fragments collapse in the dynamic
world. Further we proved that DynCQ captures DynQF which implies
that DynCQ is strictly larger than DynProp. Moreover a close connec-
tion between absolute semantics and ∆-semantics for conjunctive queries has
been established. These results were summarized in Figure 3.2. In addition,
first-order logic and positive existential first-order logic have been related
to dynamic complexity classes. Finally, we saw that DynFO with empty
initialization and DynFO with built-in arithmetic coincide for domain in-
dependent queries.

All those results, except for the last one, have been shown for arbitrary
initialization mappings. However, they also hold in the setting with first-
order definable initialization mappings. Not all of them carry over when the
initialization mapping and updates have to be definable in the same class.

Although we obtained a good picture for various small dynamic descrip-
tive complexity classes, many interesting questions remain open.

Several relationships between fragments are still unclear. For example,
it is open whether the classes DynQF, DynCQ, DynCQ¬ and DynFO

can be separated or collapsed. The näıve way for separating two fragments
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DynC ⊆ DynC ′ is to exhibit a query which is contained in DynC ′ but not
in DynC. For this it is necessary to prove a lower bound for DynC. In the
next chapter the currently available techniques for proving lower bounds are
presented. Unfortunately separating even the smallest of the above classes,
DynQF, from the largest class DynFO seems to be out of reach at the
moment, at least in the setting with arbitrary initialization.

In addition to untangling the remaining fragments, the dynamic quan-
tifier hierarchy and quantifier alternation hierarchy deserve a closer look.
Lemma 3.1.11 shows that in the dynamic setting the Σi- and Πi-fragment
of first-order logic coincide. Whether there is a strict Σi-hierarchy remains
open. Furthermore, the equivalence of ∃∗FO with absolute and ∆-semantics
does not immediately translate to fragments of FO with alternating quan-
tifiers (although one of the direction does, see Lemma 3.2.8).

A better understanding of the relationship between static and dynamic
classes is of interest as well. We believe that the results obtained in [GMS12]
and here are only the tip of the iceberg. Pursuing a systematic study, also
of dynamic classes larger than DynFO, looks very promising. The following
questions could be another starting point for further studies. We have seen
that DynCQ¬ captures FO, and that DynQF captures ∃∗FO. Can this gap
be closed? What happens in between FO and ∃∗FO, respectively, DynCQ¬

and DynQF?

Furthermore capturing first-order logic by dynamic conjunctive queries
with negations does not immediately yield performance gains (since a first-
order query with k quantifiers is translated to a dynamic DynCQ¬-program
of arity at least k). It might be worth to study whether the results obtained
here can be a foundation for improving the performance of query mainte-
nance tasks.

Another question, only loosely connected to dynamic complexity, arises
from the proof of Theorem 3.1.16. There conjunctive queries and built-in
binary relations have been used to describe unions of conjunctive queries.
While the expressive power of first-order logic with built-in arithmetic rela-
tions has been studied a lot (see, e.g., [Lib04]), studying built-in relations
with respect to other aspects might be worthwhile as well.

Bibliographical Remarks Except for the results in Section 3.3.2 and
Section 3.4, all results in this chapter are joint work with Thomas
Schwentick.

Almost all those results appeared in [ZS14]; the only exceptions are
Lemma 3.1.10 and Lemma 3.1.12, which have been published already
in [ZS13], and Theorem 3.1.16, which has not been published before. The
proof of Lemma 3.1.14 has been streamlined, including the outsourcing of
Lemma 3.1.13.

The result from Section 3.3.2 is solely by the author and appeared
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in [Zeu14a]. The result from Section 3.4 is joint work with Samir Datta,
Raghav Kulkarni, Anish Mukherjee and Thomas Schwentick [DKM+15].
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Chapter 4

Lower Bounds for Dynamic

Complexity Classes

In the traditional static setting, several methods for proving inexpressibility
results have been developed. For example, Ehrenfeucht-Fräıssé games and
locality-based arguments are widely used to establish lower bounds for first-
order logic. For a detailed presentation of methods for proving lower bounds
for classical logics, we refer the reader to [EF05] and [Lib04].

For dynamic complexity, the toolset for proving lower bounds is much
less developed. One of the reasons is that obtaining lower bounds in the
dynamic framework is inherently harder. An a priori hope that lower bound
methods for first-order logic can be easily adapted in order to show lower
bounds for DynFO does not withstand a closer inspection. We have already
seen that parity and reachability — two standard examples for queries, which
are provably not expressible in first-order logic — are contained in DynFO.

There is also another reason for why proving lower bounds for DynFO

is not easy. As already discussed in Section 3.4, Etessami pointed out that
DynFO-programs that start from scratch can construct arithmetic on the
active domain [Ete98]. Thus DynFO contains FO(+,×) or, equivalently,
it contains DLogtime-uniform AC0. However, proving lower bounds is
already highly non-trivial for those classes.

Yet some attempts for proving lower bounds for dynamic complexity
have been made. The goal of this chapter is to add new lower bound proof
techniques to the available toolbox and to present available techniques in an
accessible way. Before discussing the goals and contributions of this chapter
in detail, we give a short overview of the current state of the art; a more
detailed account will be given in subsequent sections.

In fact, there are no general inexpressibility results for DynFO at all.
The lack of results seems to be due to a lack of understanding of the under-
lying mechanisms of dynamic complexity.

To improve the understanding of dynamic complexity, and to gain in-
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sights in how lower bound methods could look like, fragments of DynFO

have been studied. We have already encountered most of those fragments
in Chapter 3. In the following we shortly discuss lower bound results for
fragments obtained by restricting the arity of the auxiliary relations, by re-
stricting the syntax of the update formulas and by restricting the power of
the initialization mapping.

The study of bounded arity auxiliary relations was started by Dong and
Su (see, for example, [DS98]). They showed that unary auxiliary relations
are not sufficient to maintain the reachability query and several other queries
with first-order updates. Further an arity hierarchy for auxiliary relations
was established. However, to separate level k− 1 from higher levels, queries
of arity k on databases of arity 6k + 1 were used1. A strict hierarchy has
not yet been established for queries on graphs. In [DLW03] it was shown
that unary auxiliary relations are not sufficient to maintain reachability for
update formulas of any logic with certain locality properties. The proofs use
the “static” weakness of local logics and do not fully exploit the dynamic
setting, as they only require modification sequences of constant length.

As for fragments with restricted syntax of update formulas, mostly
the quantifier-free fragment DynProp has been studied. Some inexpress-
ibility results for DynProp have been shown by Gelade, Marquardt and
Schwentick in [GMS12]. The alternating reachability query (on graphs
with ∧- and ∨-nodes) is not maintainable in DynProp. Furthermore,
on strings, DynProp exactly captures the regular languages (as Boolean
queries on strings); in particular, non-regular languages cannot be main-
tained in DynProp. There is still no proof that reachability on general
graphs cannot be maintained in DynProp.

All results mentioned so far are independent from the power of the initial-
ization mapping, that is, the bounds hold even if the initialization mapping
is arbitrary. Lower bounds for DynFO with a logical initialization mapping
have been obtained bei Grädel and Siebertz in [GS12]. They show that equal
cardinality of two unary relations as well as the tree isomorphism problem
cannot be maintained in DynFO if the auxiliary data is initialized by any
logical formalism.

After this short presentation of the state of the art, we will now outline
the goals of this chapter. Afterwards we discuss our contributions.

Purpose of this Chapter The first goal of this chapter is straightfor-
ward.

Goal 4.1. Develop new methods for proving dynamic lower bounds and use

1This result has been obtained in the FOIES-framework, where the query relation is
not counted as auxiliary relation. In our framework, where the query relation is counted
as auxiliary relation, the query used by Dong and Su does not separate (k−1)-ary DynFO

from k-ary DynFO. In Section 4.3.1 we adapt their result to our setting.
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them to obtain new lower bounds.

In order to achieve this goal, it is essential to know the techniques that are
currently available. Unfortunately the lower bound results discussed above
are distributed over many different publications. Sometimes a particular
lower bound is one of the main results of an article; sometimes it is hidden
away in a theorem which is stated along the lines of the general theme of an
article. In many cases, techniques are used in an adhoc fashion in order to
prove a particular lower bound.

This motivates the following goal, aimed at making the available lower
bound techniques better accessible to more researchers.

Goal 4.2. Present essential proof techniques for lower bounds for dynamic
complexity in an accessible way.

Contributions In this chapter we present the main methods — including
methods from the literature as well as new methods — for proving lower
bounds for dynamic complexity classes. The methods are sorted by the
dynamic complexity classes to which they can be applied; we cover methods
for DynProp, DynQF and DynFO.

The main method for proving lower bounds for DynProp is the Sub-
structure Lemma; a variant of which was introduced in [GMS12]. For prov-
ing lower bounds using this lemma, one has to find well-behaved isomorphic
structures. The challenge is to find such structures. We present how well-
known combinatorial tools can be applied to solve this task; two of those
tools have not been used in this context before. Using the Substructure
Lemma in conjunction with these combinatorial tools we prove several new
lower bounds:

• Reachability and k-clique (k ≥ 2) cannot be maintained in DynProp

with invariant initialization.

• Reachability and k-clique (k ≥ 3) cannot be maintained in binary
DynProp with arbitrary built-in relations (and arbitrary initializa-
tion).

• Under insertions, (k + 2)-clique cannot be maintained in k-ary
DynProp with arbitrary built-in relations (and arbitrary initializa-
tion).

For DynQF a generalization of the Substructure Lemma is the main
method for proving lower bounds. Here we present a stronger variant of this
lemma than the one that has been introduced in [GMS12]. We show how
combinatorial tools can be applied to show lower bounds for DynQF. The
following new lower bounds are obtained, some of them extend results from
above:
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• Reachability and k-clique (k ≥ 2) cannot be maintained in DynQF

with invariant initialization.

• Reachability cannot be maintained in unary DynQF (with arbitrary
initialization).

• Under insertions, the (k + 2)-clique cannot be maintained in k-ary
DynProp extended by unary auxiliary functions (and with arbitrary
initialization).

For DynFO we present a unified view that captures most lower bounds
obtained in prior work. Most of those bounds rely on static lower bounds as
well as static lower bound techniques for proving lower bounds for DynFO.
We reprove some of the bounds from this unified point of view. Further-
more we present two approaches for proving lower bounds for DynFO with
restricted initialization settings. The lower bounds obtained by using those
approaches are not very strong, yet we hope that they can be used to prove
better lower bounds in the future.

Orthogonally to our contributions on methods for proving lower bounds,
we exhibit arity hierarchy results. The arity hierarchy for the FOIES-
framework obtained by Dong and Su in [DS98] does not immediately transfer
to our framework as the query relation is not counted as an auxiliary re-
lation in their framework and they use a k-ary query relation to separate
(k − 1)-ary FOIES from k-ary FOIES. We adapt their proof and show how
to separate arity k − 1 from arity k by a boolean query. Thereby we also
obtain an arity hierarchy for first-order update programs in our framework.
Whether DynFO and FOIES have an arity hierarchy for graph queries re-
mains open. For DynProp we show that there is an arity hierarchy upto
arity 3 for graph queries; and that there is an infinite arity hierarchy for
graph queries if only insertions are allowed.

Parts of this chapter originated in joint work with Thomas Schwentick
and Nils Vortmeier, and discussions with Samir Datta. For detailed biblio-
graphic remarks we refer to the end of this chapter.

Outline of this Chapter The methods for proving lower bounds
presented in this chapter are ordered by the expressivity of the dy-
namic complexity classes to which the methods can be applied. In Sec-
tion 4.1 and Section 4.2, lower bound methods and results for DynProp

and DynQF, respectively, are presented. In Section 4.3 we present lower
bound techniques for DynFO. The arity hierarchy for DynProp is dis-
cussed in Subsection 4.1.3; the arity hierarchy for DynFO is discussed
in Subsection 4.3.1.

We conclude this chapter with a discussion of possible directions for
future work and bibliographical remarks.
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4.1 Quantifier-free Update Programs

Lower bounds are hard to prove even for the quantifier-free fragment. How-
ever, it is known that non-regular languages as well as the alternating reacha-
bility query cannot be maintained without quantifiers [GMS12]. From those
lower bounds several further lower bounds can be easily derived. For ex-
ample, since the language {anbn | n ∈ N} is not in DynProp, the equal
cardinality query for two unary input relations and the isomorphism query
cannot be maintained in the quantifier-free fragment as well. Further, the
use of very restricted graphs in the proof that the alternating reachability
query is not inDynProp, implies that there is an ∃∗∀∗∃∗FO-definable query
that cannot be maintained without quantifiers either.

Yet, in general, it is still a difficult task to prove lower bounds for the
quantifier-free fragment. We are not at the point where we can, when given
a query, apply a set of tools in order to prove that the query cannot be
maintained in DynProp.

The main tool used to obtain lower bounds for quantifier-free dy-
namic programs is the Substructure Lemma. It was introduced in
[GMS12, Lemma 1], though in a slightly different form then we will present
here. To prove that a query Q is not in DynProp with the Substructure
Lemma, one basically has to find two structures S and T with two iso-
morphic substructures A and B, respectively, such that applying two corre-
sponding modification sequences α and β to A and B yields one structure S ′

in Q and one structure T ′ not in Q. The challenge is to find such structures
S and T with suitable isomorphic substructures.

Here, we present three techniques for finding such structures. The first
technique is a simple counting argument that relies on the fact that there
are only finitely many atomic types for a fixed schema. It was already used
in [GMS12] to show that alternating reachability cannot be maintained in
DynProp. The second and third technique are more elaborated. The sec-
ond uses Ramsey’s Theorem and Higman’s Lemma in order to find structures
with isomorphic substructures to which the Substructure Lemma can be ap-
plied. The third techniques combines upper and lower bounds for Ramsey
numbers in order to exhibit suitable structures.

All three techniques will be used to obtain new lower bounds for the
quantifier-free fragment. Two queries will be studied in detail with respect
to their maintainability in DynProp, namely the reachability query and
the k-clique query. Both queries are very important queries.

Reachability in directed graphs is the most intensely investigated prob-
lem in dynamic complexity (and also much studied in dynamic algorithms
and other dynamic contexts). It is one of the simplest inherently recursive
queries and thus serves as a kind of drosophila in the study of the dynamic
maintainability of recursive queries by non-recursive means. We refer to the
introduction chapter for a more detailed discussion of previous work on the
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reachability query. A recent result places reachability inDynFO [DKM+15],
yet it is very unlikely that it can also be maintained in DynProp.

The other query to be studied in detail is the k-clique query: given a
graph G, does G contain k pairwise connected nodes? Since k-clique can be
easily expressed in existential first-order logic, it can be trivially maintained
by a first-order update program. This makes the query an ideal candidate
query for getting a better understanding of the quantifier-free fragment.

For both queries, reachability and k-clique, lower bounds are obtained
for different variants of the quantifier-free fragment in this subsection. Both
invariant initialization and arbitrary initialization are studied.

It turns out that invariant initialization is not very powerful in the
quantifier-free fragment. Yet this initialization setting is a simple test bed
to get acquainted with the Substructure Lemma. The following result is
proved with the Substructure Lemma and the counting technique.

Theorem 4.1.1. s-t-Reach cannot be maintained in DynProp with in-
variant initialization.

From this lower bound we obtain, via a reduction, that also
k-clique (k ≥ 2) and k-colorability (k ≥ 1) cannot be maintained in this
setting.

Proving lower bounds for arbitrary initialization is much more intricate.
We obtain two different lower bounds.

As stated already in the introduction of this chapter, the proof that
s-t-Reach is not in unary DynFO in [DS98] uses constant-length modi-
fication sequences, and is mainly an application of a locality-based static
lower bound for monadic second order logic. This technique does not seem
to generalize to binary DynFO. We prove the first unmaintainability result
for s-t-Reach with respect to binary auxiliary relations.

Theorem 4.1.2. s-t-Reach cannot be maintained in binary DynProp,
even with arbitrary built-in relations.

The proof uses the Substructure Lemma on isomorphic substructures
obtained by employing a Ramsey-like argument and Higman’s Lemma.

This result is weaker than the result of Dong and Su in terms of the
logic (quantifier-free vs. general first-order) but it is stronger with respect
to the information content of the auxiliary data (binary relations vs. unary
relations). Whether reachability can be maintained with quantifier-free up-
date formulas remains open. Again lower bounds for k-clique (k ≥ 3) and
k-colorability (k ≥ 2) follow via a reduction. Furthermore, the shallowness
of the graphs used in the proof of the lower bound is used to establish a
strict hierarchy for unary, binary and ternary DynProp on graph queries.

For k-clique we also obtain another lower bound. We have already seen
that k-clique can be maintained in (k − 1)-ary DynProp under insertions
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(see Theorem 3.3.3 in Section 3.3). Here we complement this result and
obtain the following characterization. The lower bound is proved using
the Substructure Lemma and both upper and lower bounds for Ramsey
numbers.

Theorem 4.1.3. When only edge insertions are allowed then k-Clique

(k ≥ 3) can be maintained in (k− 1)-ary DynProp, but it cannot be main-
tained in (k − 2)-ary DynProp, even with arbitrary built-in relations.

The lower bound provided by the theorem is interesting in two ways.
First, it exhibits, for every k, a query in ∃kFO that cannot be maintained
in (k − 2)-ary DynProp, even when only insertions are allowed. We be-
lieve that finding simple queries that cannot be maintained will advance the
understanding of dynamic complexity. Second, the lower bound establishes
the first arity hierarchy for graph queries, although for a weak fragment of
DynFO and for insertions only. Using the same proof technique, we also
exhibit a ∃∗∀∗FO-definable query that cannot be maintained in DynProp

(with arbitrary arity); this improves a result from [GMS12].

Using the lower bounds described above, we obtain the following arity
separations.

Theorem 4.1.4. (a) Unary, binary and ternary DynProp form a strict
arity hierarchy on graphs.

(b) Under insertions, DynProp has a strict arity hierarchy on graphs.

As stated above, reachability and 3-clique cannot be maintained in bi-
nary DynProp. However, we were not able to prove that reachability and
3-clique cannot be maintained in DynProp with auxiliary relations of arbi-
trary arity. A natural question is, whether lower bounds for arbitrary arity
can be proved for syntactic fragments of DynProp. In Section 3.1 we have
seen that queries maintainable in DynProp can already be maintained in
DynPropCQ¬ and DynPropUCQ. Hence proving lower bounds for those
fragments is not easier than proving lower bounds for DynProp itself. We
prove the following lower bounds for the next smaller class DynPropCQ.

Theorem 4.1.5. NonEmptySet, s-t-Reach and 3-Clique cannot be
maintained in DynPropCQ.

In Example 2.3.4 we have seen that NonEmptySet can be maintained
in DynProp, and therefore Theorem 4.1.5 implies that DynPropCQ is a
strict subclass of DynProp. This proves the first part of Theorem 3.1.5.

The rest of this section is structured as follows. In the next subsection,
the Substructure Lemma is introduced. The following Subsection 4.1.2 is
devoted to the presentation of the three techniques for finding suitable sub-
structures; each of them is used to prove one of the first three theorems from
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above. At the end of that subsection, the combinatorial tools underlying the
second and third technique will be proved. In the following Subsection 4.1.3
we exhibit the arity separations for DynProp. We conclude this section
with lower bounds for DynPropCQ.

4.1.1 The Substructure Lemma

In this subsection we introduce the Substructure Lemma. Currently this
is the major tool for proving quantifier-free lower bounds. The form of
the Substructure Lemma presented here is a slight variation of Lemma 1
from [GMS12].

The intuition of the Substructure Lemma is as follows. When updating
an auxiliary tuple ~c after an insertion or deletion of a tuple ~d, a quantifier-
free update formula has access to ~c, ~d, and the constants only. Thus, if a
sequence of modifications changes only tuples from a substructure A of S,
then the auxiliary data of A is not affected by information outside A. In
particular, two isomorphic substructures A and B remain isomorphic, when
corresponding modifications are applied to them.

We formalize the notion of corresponding modifications as follows. Let π
be an isomorphism from a structure A to a structure B. Two modifi-
cations δ(~a) on A and δ′(~b) on B are said to be π-respecting if δ = δ′

and ~b = π(~a). Two sequences α = δ1 · · · δm and β = δ′1 · · · δ
′
m of modi-

fications respect π if δi and δ′i are π-respecting for every i ≤ m. Recall
that Pα(S) denotes the state obtained by executing the dynamic program
P for the modification sequence α from state S.

Lemma 4.1.6 (Substructure Lemma [GMS12]). Let P be a DynProp-
program and let S and T be states of P with domains S and T . Further
let A ⊆ S and B ⊆ T such that S ↾ A and T ↾ B are isomorphic via π.
Then Pα(S) ↾ A and Pβ(T ) ↾ B are isomorphic via π for all π-respecting
modification sequences α, β on A and B.

The Substructure Lemma is illustrated for a single modification
in Figure 4.1.

Proof. The lemma can be shown by induction on the length of the modifi-
cation sequences. To this end, it is sufficient to prove the claim for a pair of
π-respecting modifications δ(~a) and δ(~b) on A and B. We abbreviate S ↾A
and T ↾B by A and B, respectively.

Since π is an isomorphism from A to B, we know that RA(~d) holds if
and only if RB(π(~d)) holds, for every m-tuple ~d over A and every relation
symbol R ∈ τ . Therefore, ϕ(~x) evaluates to true in A under ~d if and
only if it does so in B under π(~d′), for every quantifier-free formula ϕ(~x)
over schema τ . Thus all update formulas from P yield the same result
for corresponding tuples ~d and π(~d) from A and B, respectively. Hence
Pδ(~a)(S)↾A is isomorphic to Pδ(π(~a))(S)↾B. This proves the claim.
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S
S

A

~a

T
T
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π(~a)
∼=
π

α = δ(~a) β = δ(π(~a))
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A

T
Pβ(T )

B∼=
π

Figure 4.1: The statement of the Substructure Lemma.

The following corollary is implied by Lemma 4.1.6, since the 0-ary aux-
iliary relations of two isomorphic structures coincide.

Corollary 4.1.7. Let P be a DynProp-program with designated Boolean
query symbol Q, and let S and T be states of P with domains S and T .
Further let A ⊆ S and B ⊆ T such that S ↾ A and T ↾ B are isomorphic
via π. Then Q has the same value in Pα(S) and Pβ(T ) for all π-respecting
sequences α, β of modifications on A and B.

The Substructure Lemma can be applied along the following lines to
prove that a (graph) query Q cannot be maintained in a setting with
quantifier-free updates. Towards a contradiction, assume that there is a
quantifier-free program P = (P, Init, Q) that maintains Q. Then, find

• two states S and T reachable by P with current graphs GS and GT

(here reachable means that S = Pα(SInit(G)) for some graph G and
modification sequence α, and likewise for T );

• substructures S ↾A and T ′ ↾B of S and T isomorphic via π; and

• two π-respecting modification sequences α and β on A and B such
that α(GS) is in Q and β(GT ) is not in Q.

This yields the desired contradiction, since Q has the same value in Pα(S)
and Pβ(T ) by the Substructure Lemma.
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4.1.2 Applications of the Substructure Lemma

The Substructure Lemma can be applied for different settings and different
queries. In all cases the critical part is to find suitable isomorphic sub-
structures. In the following, we present three techniques to obtain such
substructures. We start with a simple counting argument and then proceed
to more advanced techniques that require Higman’s Lemma, a Ramsey-like
theorem as well as upper and lower bounds for Ramsey numbers.

Using Counting

For proving that the alternating reachability query is not in DynProp, the
finiteness of the set of atomic types for fixed schemas was used in [GMS12]
in order to exhibit isomorphic substructures suitable for applying the Sub-
structure Lemma. Here we give another example of this technique.

Our goal is to prove lower bounds for quantifier-free dynamic programs
with invariant initialization. Recall that an initialization mapping Init is
invariant if it maps isomorphic databases to isomorphic auxiliary data, that
is if π(Init(D)) = Init(π(D)) for every database D and permutation π of
the domain.

First-order logic, second-order logic and other logics considered in com-
puter science can only define queries, i.e. mappings that are invariant under
permutations. Therefore the results on invariant initializations to be pre-
sented here apply to all initialization mappings defined in those logics.

The following proposition restates Theorem 4.1.1 more precisely.

Proposition 4.1.8. s-t-Reach cannot be maintained in DynProp with
invariant initialization. This holds even for 1-layered s-t-graphs.

Proof. Towards a contradiction, assume that the dynamic program
(P, Init, Q) with schema τ = τinp ∪ τaux and invariant initialization map-
ping Init maintains the s-t-reachability query for 1-layered s-t-graphs. Let
n be the number of atomic types of tuples of arity up to m for τaux ∪ {E}
where m is the highest arity of relation symbols in τaux ∪ {E}.

We consider the 1-layered s-t-graphs Gi = (Vi, Ei), for every i from
1, . . . , n+ 1, with Vi = {s, t} ∪ Ai where Ai = {a0, . . . , ai} and E = {s} ×
Ai ∪ Ai × {t}. Further, we let Si = (Vi, Ei,Ai) be the state obtained by
applying Init to Gi.

Our goal is to find Sk and Sℓ with k < ℓ such that Sk is isomorphic
to Sℓ ↾ Vk (see Figure 4.2 for an illustration). Then, by the Substructure
Lemma, the program P computes the same query result for the following
modification sequences:

(β1) Delete edges (s, a0), . . . , (s, ak) from Sk.

(β2) Delete edges (s, a0), . . . , (s, ak) from Sℓ.
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Sk:
s

a1 ak

t

Sℓ:
s

a1 ak ak+1 aℓ

t

Figure 4.2: The structures Sk and Sℓ from the proof of Proposition 4.1.8.
The isomorphic substructures are highlighted in blue.

However, applying the modification sequence β1 yields a graph where t is
reachable from s, whereas by β2 a graph is obtained where t is not reachable
from s, a contradiction.

Thus it remains to find such states Sk and Sℓ. A tuple is diverse, if all
components are pairwise different. For arbitrary m′ ≤ m, diverse tuples
~a,~b ∈ Am

′

and i ≤ n, we observe that Gi ≃
id[~a,~b]

Gi where id[~a,~b] is the

bijection that maps ai to bi, bi to ai and every other element from S to itself.
Therefore Si ≃id[~a,~b]

Si by the invariance of Init. Thus 〈Si,~a〉 = 〈Si,~b〉, and

therefore all diverse m′ tuples are of the same atomic type in Si.
Since n is the number of types up to arity m, there are two states Sk

and Sℓ such that, for every m′ ≤ m, all diverse m′-tuples are of the same
atomic type in Sk and Sℓ. But then Sk ≃ Sℓ ↾Vk.

The proof of the previous result does not extend to DynFO, since reach-
ability in graphs of depth three is expressible even in (static) predicate logic.
The proof fails, because the Substructure Lemma does not hold for DynFO-
programs.

Lower bounds for the dynamic variants of the k-Clique and k-Col

problems (where k is fixed) can be established via reductions to the dynamic
s-t-reachability query for shallow graphs.

Corollary 4.1.9. k-Clique, for k ≥ 2, and k-Col, for k ≥ 1, cannot be
maintained in DynProp with invariant initialization.

The corollary will be proved in a more general form in Section 4.2.

Using Higman’s Lemma and Ramsey’s Theorem

The search for isomorphic substructures in the lower bound proof of
Theorem 4.1.1 relied on a simple counting argument. For proving more
powerful lower bounds, stronger tools are required. Next we will present
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two tools for finding suitable substructures for the Substructure Lemma:
Higman’s Lemma and a Ramsey-like theorem. Afterwards we will see how
to use those two tools for proving lower bounds for binary DynProp with
arbitrary initialization for reachability, k-clique and k-colorability.

We present the variant of Higman’s Lemma first. Let Σ be an alphabet.
A subsequence of a word v ∈ Σ∗ is a word obtained from v by deleting
letters. Formally, a word u ∈ Σ∗ is a subsequence of v, in symbols u ⊑ v,
if u = u1 . . . uk and v = v0u1v1 . . . vk−1ukvk for some words u1, . . . , uk ∈ Σ∗

and v0, . . . , vk ∈ Σ∗.

Theorem 4.1.10 (Higman’s Lemma). For every infinite sequence (wi)i∈N
of words over an alphabet Σ there are ℓ and k such that ℓ < k and wℓ ⊑ wk.

We will actually make use of the following stronger result, see
e.g. [SS11, Proposition 2.5, page 3] for a proof. Both results will be referred
to as Higman’s Lemma.

Theorem 4.1.11. For every alphabet of size c and function g : N → N there
is a natural number H(c) such that in every sequence (wi)1≤i≤H(c) of H(c)
many words with |wi| ≤ g(i) there are ℓ and k with ℓ < k and wℓ ⊑ wk.

Now we present a Ramsey-like theorem. The classical theorem of Ramsey
is about colored (hyper)graphs. As we are mainly interested in structures
here, we use a Ramsey-like theorem for structures. Before stating the the-
orem, we need to introduce some notions. Let τ be a k-ary schema, let
S be a τ -structure over domain D and let ≺ be a linear order on D. An
≺-ordered τ -clique of S is a subset D′ ⊆ D such that all ≺-ordered k-tuples
~a over D′ have the same atomic τ -type in S. We also say that such a D′

is ≺-homogeneous. Recall that the atomic type of a tuple ~a includes infor-
mation on how ~a relates to the constants of the structure, and therefore all
tuples over a τ -clique relate in the same way to constants as well.

We are now ready to state the variant of Ramsey’s theorem needed in
our proofs. It will be proved towards the end of this subsection

Theorem 4.1.12 (Ramsey’s Theorem for Structures). Let τ be a schema
and let ℓ be a positive integer. Then there is a number n such that every ≺-
ordered τ -structure with at least n elements contains an ≺-ordered τ -clique
of size ℓ.

The smallest such number n is called Ramsey number for τ and ℓ. It is
denoted by R(ℓ; τ).

We use those two tools to prove lower bounds for the maintainability of
the s-t-reachability query. Recall that the extension of DynProp by arbi-
trary built-in relations is denoted by DynProp∗ (cf. Section 2.4). We prove
the following proposition which is slightly stronger than Theorem 4.1.2.
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Proposition 4.1.13. s-t-Reach cannot be maintained in binary
DynProp∗, even for 2-layered s-t-graphs.

The result for 2-layered s-t-graphs will later help us to show that binary
DynProp∗ does not capture ternary DynProp. The actual separation
shows that the lower bound technique for binary DynProp does not im-
mediately transfer to ternary DynProp (or ternary DynProp∗). At the
moment we do not know whether it is possible to adapt the technique to
full DynProp.

Before proving Proposition 4.1.13, we show the following corresponding
result for unary DynProp∗ whose proof uses the same techniques in a sim-
pler setting. We remark that the same proof can be used to show that the
query NonEmptyList from Example 2.3.4 cannot be maintained in unary
DynProp∗ either.

Proposition 4.1.14. s-t-Reach cannot be maintained in unary
DynProp∗, not even for 1-layered s-t-graphs.

Proof. Towards a contradiction, assume that P = (P, Init, Q) is a dynamic
program over schema τ = (τinp, τaux, τbi) with unary schema τaux that main-
tains the s-t-reachability query for 1-layered s-t-graphs. Let n′ be sufficiently
large with respect to τ and n be sufficiently large with respect to n′; explicit
numbers are given at the end of the proof. Further let m be the highest
arity of a relation symbol from τbi.

Let G = (V,E) be a 1-layered s-t-graph such that V = {s, t} ∪A with
n = |A| and E = ∅. Further let S = (V,E,A,B) be the state obtained by
applying Init to G.

First, we identify a subset of A on which the built-in relations are ho-
mogeneous. By Ramsey’s Theorem for structures and because n = |A| is
sufficiently large with respect to n′ there is a set A′ ⊆ A of size n′ and an
order ≺ on A′ such that all ≺-ordered m-tuples over A′ are of equal atomic
τbi-type. Recall that the atomic type information of a tuple ~a also includes
the relationship of ~a to the constants s and t.

Let S ′ def
= (V,E′,A′,B) be the state of P that is reached from S after

application of the following modifications to G (in some arbitrary order):

(α) For every node a ∈ A′, insert edges (s, a) and (a, t).

We observe that the built-in data has not changed, but the auxiliary data
might have changed.

Let a1 ≺ . . . ≺ an′ be an enumeration of the elements of A′. For every
i ∈ {1, . . . , n′}, we define αi to be the modification sequence that deletes
the edges (s, an′), (s, an′−1), . . . , (s, ai+1), in this order. Let S ′

i be the state
reached by applying αi to S ′. Thus, in state S ′

i only nodes a1, . . . , ai have
edges to node s. For every i, we construct a word wi of length i that has a
letter for every node a1, . . . , ai and captures all relevant information about
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S ′
k:

s

a1 ai1−1 ai1 ai1+1 ai2−1 ai2 ai2+1 ak ak+1 aik−1 aik aik+1 al al+1 am

t

S ′
ℓ:

s

a1 ai1−1 ai1 ai1+1 ai2−1 ai2 ai2+1 ak ak+1 aik−1 aik aik+1 aℓ aℓ+1 am

t

Figure 4.3: The structures S ′
k and S ′

ℓ from the proof of Proposition 4.1.14.
Deleted edges are dotted. The isomorphic substructures are highlighted in
blue.

those nodes in S ′
i. The words wi are over the set of all unary types of τaux.

More precisely, the jth letter σji of wi is the unary atomic τaux-type of aj
in S ′

i. We recall that the unary atomic type of aj captures all information
about the tuple (s, aj , t).

Since n′ = |A′| was chosen sufficiently large with respect to τ , it follows
by Higman’s Lemma that there are k and ℓ such that k < ℓ and wk ⊑ wℓ,
that is, wk = σ1kσ

2
k . . . σ

k
k = σi1ℓ σ

i2
ℓ . . . σ

ik
ℓ for suitable numbers i1 < . . . < ik.

We argue that the structures S ′
k ↾ {s, t, a1, . . . , ak} and S ′

ℓ ↾

{s, t, ai1 , . . . , aik} are isomorphic via the mapping π with π(aj) = aij for
all j, π(s) = s and π(t) = t. By definition of A′ and because built-in re-
lations do not change, the mapping π preserves τbi. The schema τaux is
preserved since aj and aij are of equal unary atomic type, by the definition
of wk and wℓ. Thus π is indeed an isomorphism. We refer to Figure 4.3 for
an illustration.

Therefore, by Corollary 4.1.7, the program P computes the same query
result for the following π-respecting modification sequences β1 and β2:
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(β1) Delete edges (s, a1), . . . , (s, ak) from S ′
k.

(β2) Delete edges (s, ai1), . . . , (s, aik) from S ′
ℓ.

However, applying the modification sequence β1 yields a graph where t is
not reachable from s, whereas by β2 a graph is obtained where t is reachable
from s since k < ℓ, the desired contradiction.

We now specify the numbers n and n′ that were chosen in the beginning
of the proof. In order to apply Higman’s Lemma, the set A′ needs to be of
size at least n′

def
= H(|n′′|) where n′′ is the number of unary atomic types

of τ and H is the function from Higman’s Lemma. Therefore, the set A has
to be of size n

def
= R(τ ;n′).

Now we prove Proposition 4.1.13, i.e. that s-t-Reach is not in bi-
nary DynProp∗. In the proof, we will again first choose a homogeneous
subset with respect to the built-in relations. The notation introduced next
and the following lemma prepare this step.

Let S be a structure of some schema τ and let A and B be disjoint subsets
of the domain of S. We say that B is A-≺-homogeneous up to arity m, if
for every ℓ ≤ m, all tuples (a,~b), where a ∈ A and ~b is an ≺-ordered ℓ-tuple
over B, have the same atomic type. We may drop the order ≺ from the
notation if it is clear from the context, and we may drop A if A = ∅. We
observe that if the maximal arity of τ is m and B is A-homogeneous up to
arity m, then B is A-homogeneous up to arity m′ for every m′. In this case
we simply say B is A-homogeneous.

The following is a corollary of Ramsey’s theorem for structures. A de-
tailed proof is deferred to the end of this subsection.

Corollary 4.1.15. For every schema τ and natural number ℓ, there is a
number n such that for any two disjoint subsets A, B of the domain of a
τ -structure S with |A|, |B| ≥ n, there are subsets A′ ⊆ A and B′ ⊆ B such
that |A′|, |B′| = ℓ and B′ is A′-homogeneous in S.

The smallest such number n is denoted by Rhom(ℓ; τ).
Now we can finally prove that the reachability query is not in bi-

nary DynProp∗.

Proof (of Proposition 4.1.13). Let us assume, towards a contradiction,
that the dynamic program (P, Init, Q) over schema τ = (τinp, τaux, τbi) with
binary τaux maintains the dynamic s-t-reachability query for 2-layered s-t-
graphs. We choose numbers n, n1, n2 and n3 such that n3 is sufficiently large
with respect to τ , n2 is sufficiently large with respect to n3, n2 is sufficiently
large with respect to n1 and n is sufficiently large with respect to n1; again,
explicit numbers are given at the end of the proof.

Let G = (V,E) be a 2-layered s-t-graph with layers A and B,
where A and B are both of size n and E = {(b, t) | b ∈ B}. Further, let
S = (V,E,A,B) be the state obtained by applying Init to G.
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We will first choose homogeneous subsets. By Corollary 4.1.15 and
because n is sufficiently large, there are subsets A1 and B1 such that
|A1| = |B1| = n1 and B1 is A1-≺-homogeneous in S, for some order ≺. Next,
let A2 and B2 be arbitrarily chosen subsets of A1 and B1, respectively, of
size |B2| = n2 and |A2| = 2|B2|. We note that B2 is still A2-homogeneous. In
particular, B2 is still A2-homogeneous with respect to schema τbi. We asso-
ciate with every subset X ⊆ B2 a unique vertex aX from A2 in an arbitrary
fashion.

Now,we define the modification sequence α as follows.

(α) For every subset X of B2 and every b ∈ X insert an edge (aX , b), in
some arbitrarily chosen order.

Let S ′ def
= (V,E′,A′,B) be the state of P after applying α to S,

i.e. S ′ = Pα(S). We observe that the built-in data has not changed, but
the auxiliary data might have changed. In particular, B2 is not necessarily
A2-homogeneous with respect to schema τaux in state S ′.

Our plan is to exhibit two sets X,X ′ such that X ( X ′ ⊆ B2 such that
the restriction of S ′ to {s, t, aX′} ∪ X ′ contains an isomorphic copy of S ′

restricted to {s, t, aX} ∪X. Then the Substructure Lemma will easily give
us a contradiction.

By Ramsey’s theorem and because |B2| is sufficiently large with respect
to n2, there is a subset B3 ⊆ B2 of size n3 such that B3 is ≺-homogeneous
in S ′ with respect to τ . Let b1 ≺ . . . ≺ bn3

be an enumeration of the elements
of B3 and let Xi

def
= {b1, . . . , bi}, for every i ∈ {1, . . . , n3}.

Let S ′
i denote the restriction of S ′ to Xi ∪ {s, t, aXi

}. For every i, we
construct a word wi of length i that has a letter for every node in Xi

and captures all relevant information about those nodes in S ′
i. More pre-

cisely, wi
def
= σ1i · · · σ

i
i , where for every i and j, σji is the binary atomic type

of (aXi
, bj).

Since B3 is sufficiently large with respect to τaux, it follows, by Higman’s
Lemma that there are k and ℓ such that k < ℓ and wk ⊑ wℓ, that is
wk = σ1kσ

2
k . . . σ

k
k = σi1ℓ σ

i2
ℓ . . . σ

ik
ℓ for suitable numbers i1 < . . . < ik. Let

~b
def
= (b1, . . . , bk) and ~b′

def
= (bi1 , . . . , bik). Further, let Tk

def
= S ′

k ↾ Tk where

Tk = {s, t, aXk
} ∪~b, and let Tℓ

def
= S ′

ℓ ↾ Tℓ where Tℓ
def
= {s, t, aXℓ

} ∪ ~b′. We
refer to Figure 4.4 for an illustration of the substructures Tk and Tℓ of S

′.

We show that Tk ≃π Tℓ, where π is the isomorphism that maps s and
t to themselves, aXk

to aXℓ
and bj to bij for every j ∈ {1, . . . , k}. We

argue that π fulfills the requirements of an isomorphism, for every relation
symbol R from τinp ∪ τbi ∪ τaux:

• For the input relation E this is obvious. In S ′ there are no edges from
s to nodes in A2 and all nodes from B2 have an edge to t. Further Xℓ

is connected to all nodes in ~b and Xk is connected to all nodes in ~b′.
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• For R ∈ τbi, the requirement follows because B2 is A2-homogeneous
for schema τbi.

• For R ∈ τaux of arity 2 and two 2-tuples ~c and π(~c) we distinguish two
cases. First, if ~c and π(~c) contain elements from B3 only, then ~c ∈ RTk

if and only if π(~c) ∈ RTℓ because B3 is homogeneous in S ′. Second, if
~c contains s, t or AXℓ

, then ~c ∈ RTk if and only if π(~c) ∈ RTℓ because
of the construction of wk and wℓ.

Thus, by the Substructure Lemma, application of the following two mod-
ification sequences to S ′ results in the same query result:

(β1) Deleting edges (aXk
, b1), . . . , (aXk

, bk) and adding an edge (s, aXk
).

(β2) Deleting edges (aXℓ
, bi1), . . . , (aXℓ

, bik) and adding an edge (s, aXℓ
).

However, applying β1 yields a graph in which t is not reachable from s,
whereas by applying β2 a graph is obtained in which t is reachable from s.
This is the desired contradiction.

It remains to specify the sizes of the sets. To apply Higman’s Lemma,
|B3| has to be of size at least n3

def
= H(m) where m is the number of binary

atomic types over τaux. Hence, for applying Ramsey’s theorem, |B2| has
to be of size n2

def
= R(τ ;n3). Thus it is sufficient if |B1| and |A1| contain

n1
def
= 2n2 elements. Therefore, by Corollary 4.1.15, the sets A and B can

be chosen of size n
def
= Rhom(n1; τ).

Lower bounds for binary DynProp for the k-clique query and the k-
colorability query (where k is fixed) can be established via reductions to the
dynamic s-t-reachability query for shallow graphs.

Corollary 4.1.16. k-Clique, for k ≥ 3, and k-Col, for k ≥ 2, cannot be
maintained in binary DynProp∗.

Proof. We prove that 3-Clique cannot be maintained in binary DynProp.
Afterwards we sketch the proof for k-Clique, for arbitrary k ≥ 3. The
graphs used in the proof have a k-clique if and only if they are not (k − 1)-
colorable. Hence the lower bound for k − 1-Col is immediately implied by
the lower bound for k-Clique.

For proving the lower bound for k-Clique, we show that from a binary
DynProp-program P ′ for the query 3-Clique one can construct a dynamic
program P that maintains the s-t-reachability query for 2-layered s-t-graphs.
As the latter does not exist thanks to Proposition 4.1.13, we can conclude
that the former does not exist either.

The reduction is very simple. For a 2-layered graph G = ({s, t} ∪ A ∪
B,E), let G′ be the graph obtained from G by identifying s and t. Clearly,
G has a path from s to t if and only if G′ has a 3-clique. See Figure 4.5 for
an illustration.
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Tk:
s

t

aX1
aXk

aXℓ

b1 bi1−1 bi1 bi1+1 bi2−1 bi2 bi2+1 bk bk+1 bik−1 bik bik+1 bℓ

Tℓ:
s

t

aX1
aXk

aXℓ

b1 bi1−1 bi1 bi1+1 bi2−1 bi2 bi2+1 bk bk+1 bik−1 bik bik+1 bℓ

Figure 4.4: The structure S ′ from the proof of Proposition 4.1.13 with high-
lighted isomorphic substructures Tk and Tℓ.

The dynamic program P uses the same auxiliary schema as P ′, the same
initialization mapping and the same built-in schema relations. However,
edges (u, t) in E are interpreted as if they were edges (u, s) in E′. More pre-
cisely, the update formulas of P are obtained from those in P ′ by replacing
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G: s

t

a1 a2 a3 a4

b1 b2 b3 b4

G′: s = t

a1 a2 a3 a4

b1 b2 b3 b4

Figure 4.5: The construction from Proposition 4.1.13. The s-t-paths
(s, a2, b1, t) and (s, a4, b4, t) in G correspond to the cliques {s, a2, b1} and
{s, a4, b4} in G′.

every atomic formula E′(x, y) with (y = s∧E(x, t))∨ (y 6= s∧E(x, y)). Ob-
viously, P is a dynamic program for s-t-reachability for 2-layered s-t-graphs
if P ′ is a dynamic program for 3-Clique, as desired.

For arbitrary k, the construction is similar. The idea is that P simulates
on a graph G the behavior of P ′ on G⊗Kk−3, that is, the graph that results
from G by adding a (k − 3)-clique and completely connecting it with every
node of G. Interestingly, the update formulas of P are exactly as in the
previous reduction to 3-Clique, as the “virtual” additional k− 3 nodes are
never involved in changes of the graph. However, Init is not the same as
Init′(G) but rather the projection of Init′(G⊗Kk−3) to the nodes of G.

Using Bounds on Ramsey Numbers

The third technique for obtaining suitable substructures for an application
of the Substructure Lemma is based on upper and lower bounds for Ram-
sey numbers. More precisely, the technique exploits a disparity between
upper bounds for Ramsey numbers in k-ary structures and lower bounds
for Ramsey numbers in (k + 1)-dimensional hypergraphs. We will apply the
technique to show that the k-clique query cannot be maintained in (k − 2)-
ary DynProp, even when only insertions are allowed.

We introduce hypergraphs first. A k-hypergraph G is a pair (V,E)
where V is a set and E is a subset of [V ]k. If E = [V ]k then G is called
complete. An r-coloring col of G is a mapping that assigns to every edge
in E a color from {1, . . . , r}. A r-colored k-hypergraph is a pair (G, col)
where G is a k-hypergraph and col is a r-coloring of G. If the name of the
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r-coloring is not important we also say G is r-colored.

The following lemma formalizes the above-mentioned disparity. While
the first condition guarantees the existence of a Ramsey clique of size f(|A|)
in k-ary structures over A, the second condition states that there is a 2-
coloring of the complete (k + 1)-hypergraph over A that does not contain a
Ramsey clique of size f(|A|). This disparity is the key to the lower bound
proof.

Lemma 4.1.17. Let k ∈ N be arbitrary and τ a k-ary schema. Then there
is a function f : N → N and an n ∈ N such that for every domain A larger
than n the following conditions are satisfied:

(S1) For every τ -structure S over A and every linear order ≺ on A there is
a subset A′ of A of size |A′| ≥ f(|A|) such that all ≺-ordered k-tuples
over A′ have the same atomic type in S.

(S2) The set [A]k+1 of all (k+1)-hyperedges over A can be partitioned into
two sets B and B′ such that for every set A′ ⊆ A of size |A′| ≥ f(|A|)
there are (k + 1)-hyperedges b, b′ ⊆ A′ with b ∈ B and b′ ∈ B′.

The proof of the lemma uses upper and lower bounds for Ramsey num-
bers. It is deferred to the end of this subsection.

We now apply the lemma to obtain the lower bound for the k-clique
query.

Proposition 4.1.18. Under insertions, (k + 2)-Clique (k ≥ 1) cannot be
maintained in k-ary DynProp∗.

Proof. To keep the idea clear we prove the statement forDynProp (without
built-in relations) first. Afterwards we will sketch how to extend the proof
to DynProp∗.

Towards a contradiction assume that there is a k-ary DynProp-
program P over schema τ that maintains (k + 2)-Clique. Let n and f
be as in Lemma 4.1.17. For a set A larger than n let ≺ be an arbitrary
order on A and let D

def
= A ⊎ C be a domain with C

def
= [A]k+1. Further

let B,B′ be the partition of [A]k+1 guaranteed to exist by (S2) in Lemma
4.1.17.

We consider a state S over domain D where the input graph G contains
the following edges:

{(b, b1), (b, b2), . . . , (b, bk+1) | b = {b1, b2, . . . , bk+1} ∈ B}

See Figure 4.6 for an illustration.

By Condition (S1) there is a subset A′ ⊆ A of size |A′| ≥ f(|D|) such
that all ordered k-tuples over A′ have the same atomic τ -type in S. Then
by (S2) there are (k + 1)-hyperedges b, b′ ⊆ A′ with b ∈ B and b′ ∈ B′.
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A

C
def

= [A]k+1

A′

B

B′

b1 b2 bk+1

b′1 b′2 b′k+1

b = {b1, b2, . . . , bk+1}

b′ = {b′1, b
′
2, . . . , b

′
k+1}

Figure 4.6: The construction from the proof that (k + 2)-clique cannot be
maintained in k-ary DynProp.

Without loss of generality b = {b1, b2, . . . , bk+1} with b1 ≺ . . . ≺ bk+1 and
b′ = {b′1, b

′
2, . . . , b

′
k+1} with b′1 ≺ . . . ≺ b′k+1. By construction of the graph G,

all elements in b are connected to the node b ∈ C while there is no node in C
connected to all elements of b′. Thus applying the modification sequences

(α) Insert the edges (bi, bj) in lexicographic order with respect to ≺.

(β) Insert the edges (b′i, b
′
j) in lexicographic order with respect to ≺.

yields one graph with a (k+2)-clique and one graph without a (k+2)-clique,
respectively. However, by the Substructure Lemma, the program P yields
the same result since the substructures induced by ~b = (b1, . . . , bk+1) and
~b ′ = (b′1, . . . , b

′
k+1) are isomorphic. This is the desired contradiction.

For extending the proof to DynProp∗, a preprocessing step similar to
the one in Proposition 4.1.14 can be used. The idea is to make the do-
main D from above homogeneous with respect to the built-in schema τbi
before the actual construction. Then applying the same construction to this
homogeneous domain yields the lower bound.

To this end, instead of starting from the domain D
def
= A⊎C, one starts

from a much larger domain D′. Using Ramsey’s Theorem for structures, a
τbi-homogeneous subset of D′ of size |D| can be found. This homogeneous
subset can be used as the domain to start from.

The proof technique from the previous theorem can also be applied to
improve upon a result by Gelade et al. [GMS12]. They provided a lower
bound for the alternating reachability problem. The use of very restricted
graphs in their proof implies that there is a ∃∗∀∗∃∗FO-definable query that
cannot be maintained in DynProp. We show that there is a first-order
property expressible by a formula with only one quantifier alternation which
cannot be maintained in DynProp. It remains open whether there is a
∃∗FO- or ∀∗FO-property that is not maintainable in DynProp.
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A

C
def

= [A]k+1

A′

B

B′

b1 b2 bk+1

b′1 b′2 b′k+1

b = {b1, b2, . . . , bk+1}

b′ = {b′1, b
′
2, . . . , b

′
k+1}

s

t

Figure 4.7: The construction from the proof that the ∃∗∀∗FO-definable
query ϕ

def
= ∃x∀y

(
E(s, x) ∧ (E(y, t) → E(x, y))

)
cannot be maintained in

DynProp. The edges inserted by the modification sequence α are dashed.

Proposition 4.1.19. There is an ∃∗∀∗FO-definable query which cannot be
maintained by a DynProp∗-program.

Proof. We prove the statement only for DynProp; the proof can be easily
adapted for DynProp∗. Consider the graph schema {E} extended by two
constants s and t. We show that the query Q defined by

ϕ
def
= ∃x∀y

(
E(s, x) ∧ (E(y, t) → E(x, y))

)

cannot be maintained by any DynProp-program. We remark that it is
possible to remove the constants in the following construction by using more
existential quantifiers.

The proof is an adaption of the proof of Proposition 4.1.18. Towards a
contradiction assume that there is a k-ary DynProp-program P over k-ary
schema τ that maintains Q. Let n, f , A, C, B, B′, ≺ be as in the proof of
Proposition 4.1.18.

We consider a state S over domain D where the input graph G contains,
as before, the edges

{(b, b1), (b, b2), . . . , (b, bk+1) | b = {b1, b2, . . . , bk+1} ∈ B}

and, additionally, the edges

{(s, b) | b = {b1, b2, . . . , bk+1} ∈ B}

We refer to Figure 4.7 for an illustration. By Lemma 4.1.17, we can find
tuples b = {b1, b2, . . . , bk+1} with b1 ≺ . . . ≺ bk+1 and b′ = {b′1, b

′
2, . . . , b

′
k+1}
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with b′1 ≺ . . . ≺ b′k+1 such that (s, t, b) and (s, t, b′) have the same atomic
τ -type in S.

However, applying the modification sequences

(α) Insert the edges (bi, t) in lexicographic order with respect to ≺.

(β) Insert the edges (b′i, t) in lexicographic order with respect to ≺.

yields one graph that satisfies ϕ and one graph that does not. However, by
the Substructure Lemma, the program P yields the same result. This is the
desired contradiction.

Proofs of the Combinatorial Tools

It remains to prove the Ramsey-like theorems used in the previous subsec-
tions. We recapitulate some useful notions and results first.

The k-dimensional Ramsey number for r colors and clique-size ℓ, denoted
by Rk(ℓ; r), is the smallest number n such that every r-coloring of a complete
k-hypergraph with n nodes has a monochromatic clique of size ℓ. The tower
function towk(n) is defined by

towk(n)
def
= 22

..
.2
n

with (k − 1) many 2’s. The following classical result for asymptotic bounds
on Ramsey numbers is due to Erdős, Hajnal and Rado. The concrete for-
mulation is from [DLR95].

Theorem 4.1.20. [ER52, EHR65] Let k, ℓ and r be positive integers. Then
there are positive constants ck, ck,r and ℓk such that

(a) Rk(ℓ; r) ≤ towk(ck,rℓ)

(b) Rk(ℓ; 2) ≥ towk−1(ckℓ
2) for all ℓ ≥ ℓk

The theorem immediately implies that (T1) Ramsey cliques in r-colored
k-dimensional complete hypergraphs are of size at least Ω(log(k−1)(n)); and
that (T2) there are 2-colorings of the (k + 1)-dimensional complete hyper-

graphs such that monochromatic cliques are of size O((log(k−1)(n))
1

2 ). Here
log(k)(n) denotes log(log(. . . (log n) . . .)) with k many log’s. The conditions
(T1) and (T2) are formalized and proved in the following corollary.

Corollary 4.1.21. Let k and r be integers. There are functions g ∈

Ω(log(k−1)(n)) and h ∈ O(

√
log(k−2)(n)) such that:

(a) Every r-colored complete k-hypergraph with n nodes contains a
monochromatic clique of size g(n).
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(b) The complete k-hypergraph with n nodes can be 2-colored such that
every monochromatic clique is of size at most h(n).

Proof. The corollary follows immediately from Theorem 4.1.20. Define g
and h by

g(n)
def
=

⌊
1
ck,r

log(k−1)(n)
⌋
and h(n)

def
=

⌈√
1
ck

log(k−2)(n)
⌉
+ 1

where the constants ck,r and ck are as in Theorem 4.1.20.

For proving a), consider an arbitrary hypergraph G with n nodes,
and an arbitrary r-coloring of G. Then, by Theorem 4.1.20a), there is a
monochromatic clique of size ℓ where ℓ is the maximal number such that
towk(ℓck,r) ≤ n. The number ℓ is exactly g(n).

For proving b), consider again an arbitrary hypergraph G with n nodes.
By Theorem 4.1.20b), there is a 2-coloring without a monochromatic clique
of size ℓ where ℓ is the minimal number such that n < towk−1(ℓ

2ck). Thus
the largest monochromatic clique of G is of size at most h(n).

The upper bound from the Theorem 4.1.20 can be generalized to Ramsey
numbers for structures as follows. Recall that, for a schema τ and a positive
integer ℓ, the smallest number n such that every ≺-ordered τ -structure with
at least n elements contains an ≺-ordered τ -clique of size ℓ is called Ramsey
number for τ and ℓ; denoted by R(ℓ; τ).

Theorem 4.1.22. Let τ be a schema with maximal arity k and let ℓ be a
positive integer. Then there is a constant c such that R(ℓ; τ) ≤ towk(ℓc).

Proof. The proof of Observation 1’ in [GMS12, p. 11] yields this bound. For
the sake of completeness we repeat the full construction.

Consider the schema τ and let Γ be the set of all k-ary atomic types for τ .
Let S be a τ -structure over domain D of size towk(ℓc) where c = |Γ|. Further
let ≺ be an arbitrary order on D. Define a coloring col of the complete k-
dimensional hypergraph over domain D with colors Γ as follows. An edge
{e1, . . . , ek} with e1 ≺ . . . ≺ ek is colored by the atomic type 〈S, e1, . . . , ek〉.
Recall that the atomic type of a tuple ~a includes information about ~a as well
as the constants of the structure. By Theorem 4.1.20 there is an induced
monochromatic sub-k-hypergraph with domain D′ ⊆ D with |D′| ≥ ℓ. By
the definition of the coloring col, two ≺-ordered k-tuples over D′ have the
same atomic type and therefore D′ is a ≺-ordered τ -clique in S as well.

The previous theorem immediately implies Theorem 4.1.12. Further-
more it implies that Ramsey cliques in k-ary structures are of size at least
Ω(log(k−1)(n)). The proof is analogous to the proof of Corollary 4.1.21.
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Corollary 4.1.23. Let τ be a schema with maximal arity k. There is a func-
tion g ∈ Ω(log(k−1)(n)) such that every τ -structure with n elements contains
an ordered τ -clique of size g(n).

In the rest of this section we prove Corollary 4.1.15 and Lemma 4.1.17.
For the sake of convenience we also repeat the statements.

Corollary 4.1.15 (R). For every schema τ and natural number ℓ, there
is a number n such that for any two disjoint subsets A, B of the domain of
a τ -structure S with |A|, |B| ≥ n, there are subsets A′ ⊆ A and B′ ⊆ B such
that |A′|, |B′| = ℓ and B′ is A′-homogeneous in S.

Proof. Let τ be a schema with maximal arity k. Choose n′ to be a large
number with respect to τ and ℓ; and let n be a large number with respect
to n′; explicit numbers can be found at the end of the proof. In particular n
is large with respect to the number of constant symbols in τ . Further let A
and B be disjoint subsets of the domain of a τ -structure S with |A|, |B| > n.
Since n is large with respect to the number of constants in S, we assume,
without loss of generality, that neither A nor B contains a constant.

Fix a n′-tuple ~a = (a1, . . . , an′) of A. Further let ≺ be an arbitrary order
on B. Because |B| is large with respect to n′, ℓ and τ , and by Ramsey’s
theorem on structures (treating a1, . . . , an′ as constants), there is a subset
B′ of B of size ℓ such that the atomic type of (~a,~b) in S is the same, for all
≺-ordered k-tuples ~b over B′.

Since n′ is large with respect to τ and because there is only a bounded
number of (k + 1)-ary atomic τ -types, there is an increasing sequence
i1, . . . , iℓ such that the atomic τ -types of tuples (aij ,

~b) are equal, for all ≺-

ordered k-tuples~b over B′ and j ∈ {1, . . . , ℓ}. We choose A′ def
= {ai1 , . . . , aiℓ}.

Then B′ is A′-homogeneous up to arity k and therefore A′-homogeneous.

It remains to give explicit numbers. For the sequence i1, . . . , iℓ to exist
in 1, . . . , n′, the number n′ has to be at least (ℓ − 1)K + 1 where K is the
number of (k + 1)-ary atomic τ -types. Thus n has to be of size at least
R(τ ;n′) + c where c is the number of constants in τ .

Lemma 4.1.17 (R). Let k ∈ N be arbitrary and τ a k-ary schema. Then
there is a function f : N → N and an n ∈ N such that for every domain A
larger than n the following conditions are satisfied:

(S1) For every τ -structure S over A and every linear order ≺ on A there is
a subset A′ of A of size |A′| ≥ f(|A|) such that all ≺-ordered k-tuples
over A′ have the same atomic type in S.

(S2) The set [A]k+1 of all (k+1)-hyperedges over A can be partitioned into
two sets B and B′ such that for every set A′ ⊆ A of size |A′| ≥ f(|A|)
there are (k + 1)-hyperedges b, b′ ⊆ A′ with b ∈ B and b′ ∈ B′.
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Proof. Let k ∈ N be arbitrary and let τ be a k-ary schema τ . Choose f
def
= g

where g ∈ Ω(log(k−1)(n)) is the function from Corollary 4.1.23. We show
that there is an n such that f satisfies the conditions (S1) and (S2) for all
domains larger than n.

Let h ∈ O(

√
log(k−1)(n)) be the function guaranteed to exist for k + 1

by Corollary 4.1.21b). Then h ∈ o(f), and therefore there is an n such that
f(n′) > h(n′) for all n′ > n. Hence for every domain larger than n condition
(S1) is satisfied for f due to Corollary 4.1.23 and condition (S2) is satisfied
due to Corollary 4.1.21.

4.1.3 An Arity Hierarchy for Quantifier-free Programs

In this subsection we use the lower bound results from the previous section
to obtain a strict hierarchy between unary, binary and ternary DynProp

for graph queries, and a strict arity hierarchy for all arities under insertions.

Theorem 4.1.4 (R).

(a) Unary, binary and ternary DynProp form a strict arity hierarchy on
graphs.

(b) Under insertions, DynProp has a strict arity hierarchy on graphs.

Furthermore, boolean queries are used for the separations. The sec-
ond part of the theorem follows immediately from Theorem 3.3.3 and
Proposition 4.1.18. For separating unary, binary and ternary DynProp,
we use the following queries obtained by analyzing the proofs of
Proposition 4.1.14 and Proposition 4.1.13:

Problem: s-t-TwoPath

Input: An s-t-graph G = (V,E).
Question: Is there a path of length two from s to t?

Problem: s-TwoPath

Input: A graph G = (V,E) with one distinguished node s ∈ V .
Question: Is there a path of length two starting from s?

Proposition 4.1.24. s-t-TwoPath is in binary DynProp, but not in
unary DynProp∗.

Proof sketch. That s-t-TwoPath is not in unary DynProp∗ follows im-
mediately from Proposition 4.1.14 as such a program would also maintain
the dynamic s-t-reachability query for 1-layered graphs.

In order to prove that s-t-TwoPath is in binary DynProp, we sketch
a DynProp-program (P, Init, Q) whose auxiliary schema contains unary
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relation symbols In, Out, First, and Last and a binary relation symbol
List. The idea is to store, in a program state S, a list of all nodes a such
that (s, a, t) is a path in ES . The relation InS contains all nodes with an
incoming edge from s, and OutS contains all nodes with an outgoing edge
to t. The relations FirstS , LastS , ListS maintain the actual list, similarly
to Example 2.3.4. The current query bit is maintained in QS .

For a given instance of s-t-TwoPath the initialization mapping initial-
izes the auxiliary relations accordingly.

Insertion of (a, b) into E. We note that edges (a, b) where a 6= s and
b 6= t can be ignored, as they cannot contribute to any path of length 2 from
s to t. Furthermore, paths of length 2 involving only nodes s and t can be
easily handled by DynProp formulas, and therefore will be ignored as well.

If a = s and b 6= t, then b is inserted into In, otherwise if a 6= s and b = t
then a is inserted into Out. Afterwards a or b is inserted into List, if it is
now contained in both In and Out. In that case the query bit is set true.

Formally:

φIninsE(a, b;x) = In(x) ∨ (x = b ∧ a = s ∧ b 6= s ∧ b 6= t)

φOut
insE

(a, b;x) = Out(x) ∨ (x = a ∧ a 6= s ∧ a 6= t ∧ b = t)

φFirstinsE
(a, b;x) = First(x) ∨ (¬Q ∧ ϕn(x))

φLastinsE
(a, b;x) = (Last(x) ∧ ¬ϕn(a) ∧ ¬ϕn(b)) ∨ ϕn(x)

φListinsE
(a, b;x, y) = (List(x, y) ∧ ¬ϕn(a) ∧ ¬ϕn(b)) ∨ (Last(x) ∧ ϕn(y))

φQinsE (a, b) = Q ∨ ϕn(a) ∨ ϕn(b)

Here, ϕn(x) is an abbreviation for

φIninsE (a, b;x) ∧ φ
Out
insE

(a, b;x) ∧ (¬In(x) ∨ ¬Out(x))

expressing that x is becoming newly inserted into List.
Deletion of (a, b) from E. First, if a = s, then b is removed from In.

Further if b = t then a is removed from Out. Afterwards a or b is removed
from List, if it has been removed from In or Out. If List is empty now,
then the query bit is set to false. The precise formulas are along the lines
of the formulas of Example 2.3.4.

Proposition 4.1.25. s-TwoPath is in ternary DynProp, but not in bi-
nary DynProp∗.

Proof sketch. For proving that s-TwoPath is not in binary DynProp∗,
assume to the contrary that there is a binary DynProp∗-program
P = (P, Init, Q) for s-TwoPath. With the help of P one can, for the
graphs from the proof of Proposition 4.1.13, maintain whether there is a
path from s to some node of B. However, this yields a correct answer for
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s-t-Reach for those graphs, since in the proof all nodes of B have an edge
to t.

In order to prove that s-TwoPath is in ternary DynProp, we sketch
a DynProp-program (P, Init, Q) whose auxiliary schema contains unary
relation symbols In, Out, First1, Last1 and Empty1, binary relation
symbols List1, First2, Last2 and Empty2, and a ternary relation symbol
List2. The idea is that in a state S, the binary relation ListS

1 contains a
list of all nodes a on a path (s, a, b) in ES , for some node b. The relation
InS contains all nodes with an incoming edge from s, and OutS contains
all nodes with an outgoing edge. In order to update OutS , the projec-
tion ListS

2 (a, ·, ·) of the ternary relation ListS
2 stores a list of nodes b with

(a, b) ∈ ES , for every node a. The lists ListS
1 and ListS

2 (a, ·, ·) are main-
tained by using the technique from Example 2.3.4 and by using the auxiliary
relations stored in FirstS

1 , Last
S
1 , Empty

S
1 , First

S
2 , Last

S
2 and EmptyS

2 .
The current query bit is maintained in QS .

For a given instance of s-TwoPath the initialization mapping initializes
the auxiliary relations accordingly.

Insertion of (a, b) into E. First, if a = s then b is inserted into In.
Otherwise, a is inserted into Out and b is inserted into List2(a, ·, ·). After-
wards a or b is inserted into List1, if it is now contained in both In andOut.
If one of them is inserted, then the query bit is set true.

Deletion of (a, b) from E. First, if a = s then b is removed from In.
Otherwise, b is removed from List2(a, ·, ·) and if List2(a, ·, ·) is empty
afterwards, then a is removed from Out. Afterwards a or b is removed
from List1, if it has been removed from In or Out. The query bit is set to
false, if the list List1 is empty now.

4.1.4 Fragments of Quantifier-free Programs

In the previous sections we have seen that the reachability query and the
3-clique query cannot be maintained in binary DynProp. However, a lower
bound for arbitrary initialization appears to be non-trivial. Here we pur-
sue the natural question, whether lower bounds for syntactic fragments of
DynProp with no arity restriction can be proved. We aim at the following
theorem.

Theorem 4.1.5 (R). NonEmptySet, s-t-Reach and 3-Clique cannot
be maintained in DynPropCQ.

As NonEmptySet can be maintained inDynProp (see Example 2.3.4),
it follows thatDynPropCQ is a strict subclass ofDynProp. To prove The-
orem 4.1.5, we first show that the query NonEmptySet from Example 2.3.4
cannot be maintained in this fragment. Afterwards we sketch how to adapt
this proof for the reachability query and the 3-clique query.
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For technical reasons, the proof assumes a DynPropCQ-program in
which no atom contains any variable more than once. We first illustrate by
an example how this restriction can be achieved.

Example 4.1.26. We consider the following DynPropCQ-program,
where, for simplicity, only update formulas for insertions are specified.

φRins(u;x, y) = S(x, y) ∧R(x, x)

φSins(u;x, y) = S(x, y)

An equivalent DynPropCQ-program in which all update formulas only
contain atoms with distinct variables can be obtained by replacing R(x, x)
by R′(x) whereR′ is a fresh unary relation symbol. It then has to be ensured,
that R′(x) ≡ R(x, x). This can be achieved by updating R′ with the update
formula for R, in which x and y are unified.

φRins(u;x, y) = S(x, y) ∧R′(x)

φSins(u;x, y) = S(x, y)

φR
′

ins(u;x) = S(x, x) ∧R′(x)

Finally we apply the same construction to the atom S(x, x) in φR
′

ins:

φRins(u;x, y) = S(x, y) ∧R′(x)

φSins(u;x, y) = S(x, y)

φR
′

ins(u;x) = S′(x) ∧R′(x)

φS
′

ins(u;x) = S′(x)

The process of Example 4.1.26 necessarily terminates since there is only
a finite number of equality types for the variables of each of the atoms
occurring in an update formula. An equality type ρ over a set of variables
X = {x1, . . . , xn} is an equivalence relation on X.

Lemma 4.1.27. For every DynPropCQ-program with unary input schema
there is an equivalent DynPropCQ-program in which no atom in any update
formula contains a variable more than once.

Proof sketch. For a given DynPropCQ-program P over schema τ , con-
struct an equivalent DynPropCQ-program P ′ over schema τ ′ where τ ′ con-
tains, for every k-ary relation symbol R ∈ τ and every equality type ρ over k
variables x1, . . . , xk, a relation symbol Rρ of arity k′ where k′ is the number
of equivalence classes of ρ.

The intention is that (S,Θ) |= R(~x), for a state S and variable
assignment Θ satisfying ρ, if and only if (S,Θρ) |= Rρ(~y), where Θρ maps
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every variable yi to the value of the i-th equivalence class of ρ under Θ.
This can be ensured along the lines of Example 4.1.27.

We prove Theorem 4.1.5 in a slightly more general setting. A modifica-
tion α is honest with respect to a given state if it does not insert a tuple
already present in the input database and does not delete a tuple which is
not present in the database. A query is in h-DynC if it can be maintained
with C update programs for all sequences of honest modifications. It is easy
to see that for a class C closed under boolean operations, the classes DynC
and h-DynC coincide. However for weak classes such as DynPropCQ the
restriction to honest modifications might make a difference, since update for-
mulas cannot explicitly test (at least not in a straightforward way) whether
a modification is honest. Nevertheless, all our proofs work for both kinds of
types of modifications.

Proposition 4.1.28. NonEmptySet can neither be maintained in
DynPropCQ nor in h-DynPropCQ.

Proof. Towards a contradiction, we assume that there is a h-DynPropCQ-
program P = (P, Init, Q) over schema τ that maintains NonEmptySet,
i.e. the query defined by ∃xU(x). Further, we assume, by Lemma 4.1.27,
that no variable occurs more than once in any atom of an update formula
of P.

The notions of a (deletion) dependency graph will be convenient for the
proof. Recall that the dependency graph of a dynamic program P has vertex
set V = τ and an edge (R,R′) if the relation symbol R′ occurs in one of
the update formulas for R. In the deletion dependency graph only update
formulas for deletions are used. The deletion depth of a relation R is defined
as the length of the shortest path from Q to R in the deletion dependency
graph.

We start with a simple observation. Let R(u) be a relation atom in the
formula φQdel for the 0-ary query relation Q, that is:

φQdel(u)
def
= . . . ∧R(u) ∧ . . .

Further let S be a state in which the relation U contains two elements a 6= b.
Then, necessarily, RS contains a and b, as otherwise deletion of a or b would
make Q false (since R(u) evaluates to false for a or b) without U becoming
empty. This observation can be generalized: if a relation R has “distance k”
from Q in the deletion dependency graph and U contains at least k + 1
elements, then R must contain all diverse tuples over U , that is, tuples that
consist of pairwise distinct elements from U . Note that the empty tuple is
always diverse.

We prove this observation next, afterwards we look at how the statement
of the lemma follows. Using our assumption on non-repeating variables, it
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is easy to see that the arity of relations of deletion depth k is at most k (at
most one plus the arity of the updated relation).

We prove by induction on k that, for each relation R of deletion depth k,
and every state S in which U contains at least k + 1 elements, R has to
contain all diverse tuples over U .

For k = 0 this is obvious as Q needs to contain the empty tuple if U is
non-empty.

For k > 0, let S be a state such that US contains at least k + 1 ele-
ments. Further let R be some arbitrary relation symbol of deletion depth k.
Then R(~x) occurs in the update formula φR

′

del(u; ~y) of some relation sym-
bol R′ of deletion depth k − 1 for some ~x = (x1, . . . , xℓ), with ~x ⊆ {u} ∪ ~y.
By the above, ℓ ≤ k and ~y contains at most k − 1 variables. We assume,
without loss of generality, that the arity of R is k.

Towards a contradiction, let us assume that there is a diverse k-tuple
~a = (a1, . . . , ak) over US that is not in RS . Let Θ : {x1, . . . , xℓ} → US be
the assignment with Θ(xi) = ai and let Θ̂ be some extension of Θ to an
injective assignment of {u} ∪ ~y to elements from US (such an assignment
exists because |{u} ∪ ~y| ≤ k < |U |). Then φR

′

del(u; ~y) evaluates to false
in state S under Θ̂ (since ~a /∈ RS by assumption). Thus, deleting Θ̂(u)
from US yields a state S ′ with Θ̂(~y) /∈ R′S′

. However, US′

still contains at
least k elements and therefore, by induction hypothesis, the relation R′S′

contains every diverse tuple over US′

and thus, in particular, Θ̂(~y), the
desired contradiction from the assumption that ~a 6∈ RS .

Now we can complete the proof of Proposition 4.1.29. Let S be a state
in which the set U contains m + 1 elements, where m is the maximum
(finite) deletion depth of any relation symbol in P. By the claim above, all
relations whose symbols are reachable from Q in the deletion dependency
graph of P contain all diverse tuples over US . Thus, all relation atoms over
tuples from US evaluate to true. It is easy to show by induction on the
length of modification sequences that this property (applied to US′

) holds
for all states S ′ that can be obtained from S by deleting elements from US .
In particular, it holds for any such state in which US′

contains only one
element a. But then, φQdel(a) evaluates to true in S ′ and thus Q remains
true after deletion of a, the desired contradiction to the assumed correctness
of P.

Proposition 4.1.29. s-t-Reach and 3-Clique can neither be maintained
in DynPropCQ nor in h-DynPropCQ.

Proof. Towards a contradiction assume that there is a DynPropCQ-
program P for s-t-Reach over schema τ . We show that a DynPropCQ-
program P ′ can be constructed from P such that P ′ maintains
NonEmptySet under deletions. As the proof of the preceding lemma
shows that NonEmptySet cannot be maintained in DynPropCQ even
if elements are deleted from U only, this is the desired contradiction.
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The intuition behind the construction of P ′ is as follows. For sets
U ⊆ A, the 1-layered graph G with nodes {s, t} ∪ A and edges {(s, a) |
a ∈ U} ∪ {(a, t) | a ∈ A} naturally corresponds to the instance I of
NonEmptySet over domain A with set U . The deletion of an element
a from U in I corresponds to the deletion of the edge (s, a) from G. Using
this correspondence, the program P ′ essentially maintains the same auxil-
iary relations as P. When a is deleted from U then P ′ simulates P after the
deletion of (s, a).

A complication arises from the fact that NonEmptySet does not have
constants s and t. Therefore the program P ′ encodes the relationship of s
and t to elements from A by using additional auxiliary relations. More pre-
cisely, for every k-ary relation symbol R ∈ τ and every tuple ρ = (ρ1, . . . , ρk)
over {•, s, t}, the program P ′ has a fresh ℓ-ary relation symbol Rρ where ℓ is
the number of ρi’s with ρi = •. The intention is as follows. Let i1 < . . . < iℓ
such that ρij = •. With every ℓ-tuple ~u = (y1, . . . , yℓ) of variables we asso-
ciate the tuple ~uρ = (uρ1, . . . , u

ρ
k) of terms from {s, t, y1, . . . , yℓ}, where (1)

uρi = s if ρi = s, (2) uρi = t if ρi = t, and (3) uρij = yj, for j ∈ {1, . . . , ℓ}.

Analogously, we define ~aρ for tuples ~a = (a1, . . . , aℓ) over A. Then P ′ en-
sures that ~a ∈ Rρ in some state if and only if ~aρ ∈ R in the corresponding
state of P.

Update formulas φR
ρ

delU (v;x1, . . . , xℓ) of P ′ are obtained from update
formulas φRdelE(u, v;x1, . . . , xk) of P in two steps. First, from φRdelE a for-
mula φ′ is constructed by (syntactically) replacing every occurrence of xi
by xρi and replacing every occurrence of u by s. Then φR

ρ

delU is obtained
from φ′ by replacing every atom T (~w) in φRdelE by T ρ(~y), for the unique
tuple ~y of variables and the unique tuple ρ, for which ~yρ = ~w.

Now, P ′ yields the same query result after deletion of elements a1, . . . , am
as P after deletion of edges (s, a1), . . . , (s, am). Hence the program P ′ main-
tains NonEmptySet under deletions. This is a contradiction.

The proof that 3-Clique cannot be maintained neither in DynPropCQ

nor in h-DynPropCQ is the same, except that G additionally has an
edge (s, t). Here, one can assume without loss of generality that the con-
stants s and t are available.

The preceding propositions immediately imply Theorem 4.1.5.

4.2 Quantifier-free Update Programs with Func-

tions

In quantifier-free update programs with merely auxiliary relations only the
modified and updated tuple as well as the constants can be accessed while
updating an auxiliary tuple. Since lower bounds for first-order update pro-
grams — where arbitrary elements can be accessed in updates — seem to be
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out of reach for the moment, it seems natural to look for lower bounds for
extensions of quantifier-free update programs that allow for accessing more
elements in some restricted way.

For this reason DynQF, the extension of quantifier-free programs by
auxiliary functions will be studied in this section. Recall that auxiliary
functions may access, besides the elements of the modified and updated
tuples, functional values of those tuples. Thus auxiliary functions allow
access to more elements but in a restricted way, and therefore are a good
candidate for trying to prove better lower bounds.

Our main tool for proving lower bounds for DynQF is a generalization of
the Substructure Lemma from the previous section. A restricted generaliza-
tion of this kind was proposed already in [GMS12, Lemma 4], though only
for DynProp extended by a successor and a predecessor function. Here,
we introduce a Substructure Lemma for DynQF with arbitrary auxiliary
functions.

For DynProp the Substructure Lemma requires to exhibit two isomor-
phic substructures. For DynQF this is not sufficient anymore, as tuples
outside such a substructure can possibly be accessed using the auxiliary func-
tions. Therefore the Substructure Lemma for DynQF requires to exhibit
isomorphic substructures that, additionally, have similar neighborhoods.
Isomorphic substructures with similar neighborhoods can be obtained via
the basic techniques we have seen before. We will use the counting tech-
nique, Ramsey’s Theorem and bounds on Ramsey numbers in order to obtain
lower bounds for DynQF. Yet, the constructions from the previous section
need to be adapted.

Again, we look for lower bounds for DynQF with respect to both in-
variant initialization and arbitrary initialization.

The result from the previous section for invariant initialization can be
generalized in a straight-forward fashion to the following theorem.

Theorem 4.2.1. s-t-Reach cannot be maintained in DynQF with invari-
ant initialization.

A reduction yields lower bounds for k-clique (k ≥ 2) and k-
colorability (k ≥ 1) as well.

For arbitrary initialization we are only able to prove lower bounds for
unary auxiliary functions. So far there has been only one lower bound for
dynamic classes with auxiliary functions: alternating reachability was shown
to be not maintainable in DynProp in the presence of a successor and a
predecessor function [GMS12]. Here, we prove further lower bounds for
unary DynQF with arbitrary unary auxiliary functions.

Theorem 4.2.2. s-t-Reach cannot be maintained in unary DynQF.

Theorem 4.2.3. Under insertions, k-Clique (k ≥ 3) cannot be maintained
in (k − 2)-ary DynProp with unary auxiliary functions.
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The first result is obtained using Ramsey’s theorem; the second by using
bounds on Ramsey numbers.

Currently the barrier for proving lower bounds for natural queries is
DynQF with unary functions. Towards the end of this section we will
argue why proving bounds for binary auxiliary functions likely requires new
techniques. To this end we show that binary DynQF can maintain every
boolean graph property when the domain is large with respect to the actually
used domain.

The rest of this section is structured as follows. In the next subsection,
the generalization of the Substructure Lemma for DynQF is presented.
Then, one subsection is devoted to prove the main theorems above; the sub-
section is structured according to the technique used for obtaining isomor-
phic substructures with similar neighborhoods. The last part of this section
argues why the current techniques are not sufficient for proving lower bounds
for binary DynQF.

4.2.1 A Generalization of the Substructure Lemma

The main tool for proving lower bounds for DynQF is a generalization of
the Substructure Lemma. A restricted variant of this lemma was already
used in [GMS12].

As discussed already in the introduction above, when a modification
changes a tuple from a substructure A of a structure S, then the update of
the auxiliary data of A can depend on elements obtained from applying func-
tions to elements from the domain of A. All elements that can be obtained
by update terms of a fixed depth from the domain of A will be called the
neighborhood of A. The Substructure Lemma for DynQF requires two iso-
morphic substructures whose neighborhoods behave very similarly. Before
presenting the precise statement of the Substructure Lemma for DynQF,
we will formalize the notions of neighborhood and similarity.

We start by defining neighborhoods. The nesting depth d(t) of an
update term t is its nesting depth with respect to function symbols:
If t is a variable, then d(t) = 0; if t is of the form f(t1, . . . , tk) then
d(t) = max{d(t1), . . . , d(tk)} + 1; and if t is of the form ITE(φ, t1, t2) then
d(t) = max{d(φ), d(t1), d(t2)}. The nesting depth d(φ) of φ is the maximal
nesting depth of all update terms occurring in φ. The nesting depth of P is
the maximal nesting depth of an update term occurring in P.

For a schema τ , let Termsmτ be the set of terms of nesting depth at
most m with function symbols from τ . Informally, the m-neighborhood of
a set A is the set of all elements that can be obtained by applying a term of
nesting depth at most m to a tuple of elements from A. We formalize this
as follows.

Let t1, . . . , tℓ be the lexicographic enumeration of Termsmτ with respect
to some fixed order of the function symbols. Let the m-neighborhood tu-
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ple ~Nm
S (a) of an element a in S be the tuple (a, t1(a), . . . , tℓ(a)). The m-

neighborhood Nm
S (a) of a is the set of all elements occurring in ~Nm

S (a). The
m-neighborhood Nm

S (A) of a set A is the union of all neighborhoods of
elements a ∈ A. The neighborhood of a tuple can be defined analogously.

Two subsets A ⊆ S, B ⊆ T are m-similar , if there is a bijection
π : Nm

S (A) → Nm
T (B) such that

• the restriction of π to A is a bijection of A and B,

• π preserves τrel over N
m
S (A), and

• π satisfies π(tS(~a)) = tT (π(~a)) for all t ∈ Termsmτ and ~a over A.

We write A ≈π,S,T
m B to indicate that A and B are m-similar via π in

S and T . The structures S and T are dropped from this notation if
they are clear from the context, and π is dropped if the name is not
important. We also write (a1, . . . , ap) ≈S,T

m (b1, . . . , bp) to indicate that

{a1, . . . , ap} ≈π,S,T
m {b1, . . . , bp} via the isomorphism π that maps ai to bi,

for every i ∈ {1, . . . , p}. Note that if A ≈0 B, then S ↾ A and T ↾ B are
τrel-isomorphic by the first and second property of similar subsets.

The relation ≈π,S,T
m is an equivalence relation on tuples. Its equivalence

classes are called similarity types.
We now state the Substructure Lemma for DynQF formally.

Lemma 4.2.4 (Substructure Lemma for DynQF). Let P be a DynQF

program and let ℓ be some number. There is a number m ∈ N such that for
all states S and T of P with domains S and T ; and all subsets A and B

of S and T the following holds. If A ≈π,S,T
m B, then A ≈

π,Pα(S),Pβ(T )
0 B,

for all π-respecting modification sequences α and β on A and B of length at
most ℓ.

Proof. The lemma follows by an induction over the length ℓ of the modifi-
cation sequence. For ℓ = 0 there is nothing to prove. The induction step
follows easily using Claim (C) below.

Let k be the nesting depth of P, and let δ(~a) and δ(~b) be two π-
respecting modifications on A and B, respectively, i.e. ~b = π(~a). Further
let S ′ def

= Pδ(~a)(S) and T ′ def
= P

δ(~b)(T ). We prove the following claims for

arbitrary r ∈ N:

(A) If A ≈π,S,T
r+k B, then for all ~c over N r

S(A):

(i) ~c ∈ RS′

if and only if π(~c) ∈ RT ′

for all relation symbols R ∈ τ .

(ii) fS
′

(~c) ∈ N r+k
S (A) and π(fS

′

(~c)) = fT
′

(π(~c)) for all function
symbols f ∈ τ .

(B) If A ≈π,S,T
r·k B, then tS

′

(~c) ∈ N r·k
S (A) and π(tS

′

(~c)) = tT
′

(π(~c)) for all
terms t ∈ Termsrτ and ~c over S.
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(C) If A ≈π,S,T
r·k+k B, then A ≈π,S′,T ′

r B.

We prove Claim (A) first. We recall that ~c ∈ RS′

if and only if

S |= φRδ (~a;~c), and that fS
′

(~c) is Jtfδ (~x; ~y)K(S,γ), where γ maps (~x, ~y) to (~a,~c).
Since ~a and ~c are tuples over N r

S(A) it is sufficient to prove, for every tu-

ple ~d over N r
S(A), that (i) ϕ(

~d) holds in S if and only if ϕ(π(~d)) holds in T ,
for every quantifier-free formula ϕ with nesting depth at most k, and that
(ii) π(JtK(S,~d)) = JtK(T ,π(~d)), for every update term t with nesting depth at

most k. Here, we use ~d to denote the variable assignment mapping the free
variables of t to the components of ~d.

The proof is by induction on k. We start with the base case. If k = 0,
terms and update terms do not use any function symbols and therefore, (i)
and (ii) hold trivially, because π witnesses the (r+ k)-similarity of A and B
in S and T .

For the induction step, we consider update terms and update formulas
with nesting depth k′ ∈ {1, . . . , k}. If an update term t with d(t) = k′

is of the form f(~s) with ~s = (s1, . . . , sn), then, by induction hypothesis,
π(JsiK(S,~ei)) = JsiK(T ,π(~ei)) and s

S
i (~ei) ∈ N r+k′−1

S (A) for every i and tuple ~ei

consisting of elements from ~d. Thus, π(Jf(~s)K
(S,~d)

) = Jf(~s)K
(T ,π(~d))

because

A and B are (r+k)-similar and k′ ≤ k. The other cases are analogous. This
concludes the proof of Claim (A).

Claim (B) can be proved by an induction over the nesting depth of t.
The induction step uses Claim (A ii).

For Claim (C) we have to prove that π is witnessing the r-similarity
of A and B in S ′ and T ′. The first property of similarity is trivial. For
the second property let ~c be an arbitrary m-tuple over N r

A(S
′) and R some

m-ary relation symbol. Then ~c = (Jt1K(S′,~c1), . . . , JtnK(S′,~cn)) with ~ci over A

and ti ∈ Termsrτ . Thus ~c is a tuple over N r·k
A (S), by Claim (B), and there-

fore RS′

(~c) if and only if RT ′

(π(~c)), by Claim (A). The third property follows
from Claim (B).

The Substructure Lemma for DynQF is applied along similar lines as
the corresponding lemma for DynProp. In the next subsection we will see
several examples of how to use the lemma to prove lower bounds.

4.2.2 Applying the Generalized Substructure Lemma

For applying the Substructure Lemma for DynQF, it is essential to find
structures with suitable similar substructures. In Section 4.1.2 several tech-
niques for finding suitable isomorphic substructures have been exhibited.
Here we extend those techniques for finding similar substructures.
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Using Counting

The counting technique for obtaining isomorphic substructures relies on the
finiteness of the set of isomorphism types of fixed arity. Hence, a natural
approach towards finding suitable similar substructures, is to rely on the
finiteness of the set of similarity types. Here we use a simplified form of
this approach to extend the lower bound for invariant initialization from
Proposition 4.1.8 to quantifier-free programs with auxiliary functions: we
aim at finding structures where the similarity type and the isomorphism
type of relevant substructures coincide. Then the counting technique can be
applied in the same way as in Section 4.1.2.

Exhibiting substructures where isomorphism types and similarity types
coincide relies on a weakness of invariant initialization, namely functions
initialized by invariant initialization can only point to distinguished nodes
as formalized by the following lemma.

Lemma 4.2.5. Let P = (P, Init, Q) be a DynQF-program with invariant
initialization mapping Init and auxiliary schema τaux. Further let I be an
input structure for P whose domain contains b and b′ with b 6= b′. If id[b, b′]
is an isomorphism of I, then f Init(I)(~a) 6= b for all k-ary function symbols
f ∈ τaux and all k-tuples ~a.

Proof. The claim follows immediately from the invariance of the initializa-
tion mapping.

The following lemma will be useful for the proof of the next theorem. A
subset A of S is closed if N 1

S(A) = A. Obviously Nm
S (A) = A for closed sets

A and for every m.

Lemma 4.2.6. Let P be a DynQF program and S and T be states of P
with domains S and T . Further let A ⊆ S and B ⊆ T be closed. If S ↾A and
T ↾B are isomorphic via π then Pα(S) ↾A and Pβ(T ) ↾B are isomorphic
via π for all π-respecting modification sequences α, β on A and B.

Proof. Observe that when A and B are closed and S ↾ A and T ↾ B are
isomorphic via π then A and B are k-similar via π for arbitrary k. Thus the
claim follows from Lemma 4.2.4.

The following proposition is slightly more precise than Theorem 4.2.1.

Proposition 4.2.7. s-t-Reach cannot be maintained in DynQF with in-
variant initialization mapping. This holds even for 1-layered s-t-graphs.

Proof. We adapt the argumentation of the proof of Proposition 4.1.8.
Towards a contradiction, assume that P is a DynQF-program with aux-

iliary schema τaux and invariant initialization mapping Init which maintains
the s-t-reachability query for 1-layered s-t-graphs. Let m be the maximum
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arity of relation or function symbols in τaux ∪ {E}. Further let n be the
number of isomorphism types of structures with at most m+ 2 elements.

We consider the complete 1-layered s-t-graphs Gi = (Vi, Ei), 2 ≤ i ≤
n+2, with Vi = {s, t}∪Ai and Ai = {a1, . . . , ai}. Further let Si = (Vi, Ei,Ai)
be the state obtained by applying Init to Gi.

We observe that id[a, a′] is an automorphism of Gi for all pairs (a, a
′) of

nodes in Ai with a 6= a′. Thus, by Lemma 4.2.5, s and t are the only values
that the auxiliary functions in Si can assume, and therefore Si ↾A ∪ {s, t}
is closed for any subset A of Ai. Hence, by Lemma 4.2.6, it is sufficient
to find Sk and Sℓ with k < ℓ such that Sk is isomorphic to Sℓ ↾ Vk. The
contradiction can now be obtained as in the proof of Proposition 4.1.8.

Lower bounds for k-clique and k-colorability (where k is fixed) can be
established via reductions to the dynamic s-t-reachability query for shallow
graphs.

Corollary 4.2.8. k-Clique, for k ≥ 2, and k-Col, for k ≥ 1, cannot be
maintained in DynQF with invariant initialization.

Proof. We prove that 3-Clique cannot be maintained in DynQF with in-
variant initialization using a similar idea as in the proof of Proposition 4.1.16.
Afterwards we sketch the proof for k-Clique, for arbitrary k ≥ 3. We re-
mark that the result for 2-Clique follows from a closer inspection of the
proof of Proposition 4.2.7. The graphs used in the proof have a k-Clique
if and only if they are not (k − 1)-colorable. Therefore it follows that k-
Col cannot be maintained in DynQF with invariant initialization mapping
for k ≥ 1.

More precisely, we show that from DynQF dynamic program P ′ with
invariant initialization that maintains 3-Clique one can construct a dy-
namic program P ′ that maintains the s-t-reachability query for 1-layered
s-t-graphs. As the latter does not exist thanks to Proposition 4.2.7, we can
conclude that the former does not exist either.

Let us thus assume that P ′ = (P ′, Init′, Q′) is a dynamic program
for 3-Clique with invariant initialization mapping Init’ and auxiliary
schema τ ′aux.

We use the following simple reduction. For a 1-layered graph
G = ({s, t} ∪A,E), let G′ be the graph obtained from G by adding an
edge (s, t). Clearly, G has a path from s to t if and only if G′ has a 3-
clique.

The dynamic program P uses the same auxiliary schema as P ′ and the
same initialization mapping. The update formulas of P are obtained from
those in P ′ by replacing every atomic formula E′(x, y) by (E(x, y) ∨ (x =
s ∧ y = t)). Obviously, P is a dynamic program for s-t-reachability for
2-layered s-t-graphs if P ′ is a dynamic program for 3-Clique, as desired.
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For arbitrary k, the construction is similar. The idea is that P simulates
on a graph G the behavior of P ′ on G ⊗ (Kk−3,Kk−3), that is, the graph
that results from G by adding two (k−3)-cliques and completely connecting
them with every node of G. The update formulas of P are exactly as in
the previous reduction to 3-Clique. However, Init is not the same as
Init′(G) but rather the projection of Init′(G⊗ (Kk−3,Kk−3)) to the nodes
of G. By Lemma 4.2.5, auxiliary functions in Init(G) do not take values
from (Kk−3,Kk−3). Thus P is a dynamic program for s-t-reachability for
2-layered s-t-graphs if P ′ is a dynamic program for k-Clique.

Using Ramsey’s Theorem

The method of finding suitable substructures using Ramsey’s Theorem pre-
sented in Section 4.1.2 can be extended for finding suitable similar substruc-
tures. After formalizing a Ramsey-like statement for structures with func-
tions, we will see how to obtain lower bounds for k-clique and reachability
in quantifier-free fragments with unary functions.

The following notion will be useful in what follows. Them-similarity type
of a k-ary tuple ~a is the atomic τ -type of the m-neighborhood tuple ~Nm

S (~a)
of ~a. Recall that also constants and their functional values are contained
in ~Nm

S (~a). For fixed m, k and τ there are only finitely many similarity

types. Observe that two tuples ~a and ~b with the same m-similarity type
are m-similar. This is certified by the bijection that maps ~Nm

S (~a) to ~Nm
S (~b)

component-wise.

The following analogon of Corollary 4.1.23 for structures with unary
functions can be used to exhibit similar substructures. Recall that
log(k)(n) denotes log(log(. . . (log n) . . .)) with k many log’s.

Lemma 4.2.9. Let τ be a k-ary schema whose function symbols are of arity
at most 1; and let m ∈ N be an arbitrary number. Then there is a function
g ∈ Ω(log(k−1)(n)) such that for every τ -structure S with domain S and
every linear order ≺ on S, there is a subset S′ ⊆ S of size g(|S|) such that
all ≺-ordered k-tuples over S′ are m-similar.

Proof. The idea is to construct, from the structure S, a purely relational
structure T such that the type of a tuple ~a in T encodes the type of the
whole m-neighborhood of ~a in S. Then Corollary 4.1.23 is applied to the
structure T in order to obtain S′.

For the construction of T we assume, without loss of generality, that the
schema of S contains the equality symbol =. Denote by Γ the set of all k-ary
m-similarity types. The structure T is over the same domain as S and uses
the schema τΓ which contains a k-ary relation Rγ for every k-ary similarity
type γ ∈ Γ. A relation RT

γ contains all tuples ~a whose similarity type in S
is γ.
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Then, by Corollary 4.1.23, T contains an ≺-ordered τ -clique S′ of size
Ω(log(k−1)(|S|)). We show that all ≺-ordered k-tuples over S′ are m-similar
in the structure S. Therefore let ~a and ~b be two such tuples. By definition
of S′ they have the same type in T and therefore, by definition of T , their
neighborhood tuples ~Nm

S (~a) and ~Nm
S (~b) have the same type in S. Hence,

by the observation from above, the tuples ~a and ~b are m-similar.

Now, we prove that unary DynQF cannot maintain s-t-reachability.
Unfortunately, reusing the method from Proposition 4.1.14 where a lower
bound for s-t-reachability for unary DynProp on 1-layered s-t-graphs was
obtained is not possible, since lists can be represented by unary functions in
a straightforward way.

Proposition 4.2.10. s-t-Reach on 1-layered s-t-graphs can be maintained
in unary DynProp with unary built-in functions. In particular, s-t-Reach

on 1-layered s-t-graphs can be maintained in unary DynQF.

Proof sketch. We construct a DynQF∗-program P over relational auxiliary
schema {Q,ConS,ConT, C} and functional built-in schema {Pred,Succ},
where Q is the query bit (i.e. a 0-ary relation symbol), ConS, ConT and C
are unary relation symbols and Pred and Succ are unary function symbols.

The basic idea is to interpret elements ofD as numbers according to their
position in the graph of Succ. For simplicity, but without loss of generality,
we therefore assume that the domain is of the form D = {0, . . . , n− 1} with
s = 0 and t = n− 1. For every state S, the built-in function SuccS is then
the standard successor function on D (with SuccS(n − 1) = n − 1) and
PredS is its corresponding predecessor function (with PredS(0) = 0).

The second idea is to store the current number i of vertices connected to
both s and t by letting CS = {i}. If an edge-insertion connects an element
to s and t then i is replaced by i + 1 in CS with the help of PredS and
SuccS . Analogously i is replaced by i−1 for edge-removals that disconnect
an element from s or t. The relations ConSS and ConTS store the elements
currently connected to s and t, respectively.

For a given instance of the s-t-reachability query on 1-layered s-t-graphs
the initialization mapping initializes the auxiliary relations accordingly.

Insertion of (a, b) into E. If a = s then node b is inserted into ConS;
if b = t then node a is inserted into ConT. Further, if a or b is now in both
S and T then the counter is incremented by 1:

φConS
insE

(a, b;x)
def
= (a = s ∧ x = b) ∨ConS(x)

φConT
insE

(a, b;x)
def
= (b = t ∧ x = a) ∨ ConT(x)

φCinsE(a, b;x)
def
=

(
a = s ∧ ConT(b) ∧ C(Pred(x))

)

∨
(
b = t ∧ConS(a) ∧C(Pred(x))

)

∨
(
a = s ∧ ¬ConT(b) ∧ C(x)

)

∨
(
b = t ∧ ¬ConS(a) ∧ C(x)

)
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φQinsE (a, b)
def
= ¬φCinsE (a, b; s)

Deletions can be maintained in a similar way.

Intuitively, unary functions cannot store the transitive closure relation
of a directed path in such a way that the information can be extracted by a
quantifier-free formula. The proof is simplified by the following observation.

Lemma 4.2.11. If an ℓ-ary query Q can be maintained by a k-ary DynQF-
program, then Q can be maintained by a k-ary DynQF-program with only
one ℓ-ary auxiliary relation (used for storing the query result) on databases
with at least two elements.

The restriction to structures with at least two elements is harmless, as
we only use this lemma in a context where structures indeed have at least
two elements.

Proof sketch. In order to encode relations by functions, two constants
(i.e., 0-ary functions) c⊥ and c⊤ are used. Those constants are initialized
by two distinct elements of the domain. Then a k-ary relation R can be
easily encoded by a k-ary function fR via (a1, . . . , ak) ∈ R if and only if
fR(a1, . . . , ak) = c⊤.

Now we will prove Theorem 4.2.2, which we restate for the convenience
of the reader.

Theorem 4.2.2 (R). s-t-Reach cannot be maintained in unary DynQF.

Proof. Towards a contradiction, we assume that P = (P, Init, Q) is a unary
DynQF-program that maintains s-t-reachability over schema τ = τinp∪τaux
with unary τaux. By Lemma 4.2.11 we can assume that τaux contains only 0-
ary and unary function symbols and one 0-ary relation symbol Q for storing
the query result. The graphs used in this proof do not have self-loops and
every node has at most one outgoing edge. Therefore we can assume, in order
to simplify the presentation, that τ contains a unary function symbol e, such
that in every state S the function eS encodes the edge relation E as follows.
If the single outgoing edge from u is (u, v) then e(u) = v and if u has no
outgoing edge then e(u) = u.

Let n be chosen sufficiently large with respect to τ and P. Let G = (V,E)
be a graph where V = {s, t}∪A with A = {a1, . . . , an} and E = {(ai, ai+1) |
i ∈ {1, . . . , n−1}}, i.e., G↾A is a path of length n−1 from a1 to an. Further,
let S = (V,E,A) be the state obtained by applying Init to G.

Our goal is to find i and j with i < j such that (a, b) ≈m (b, a) holds
for the two nodes a

def
= ai and b

def
= aj , where m is the number from the

Substructure Lemma for DynQF, for modification sequences of length 2.



130 Lower Bounds for Dynamic Complexity Classes

Pβ1(S): s

a1
. . .

ai−1 ai ai+1

. . .
aj−1 aj aj+1

. . .
an

t

Pβ2(S): s

a1
. . .

ai−1 ai ai+1

. . .
aj−1 aj aj+1

. . .
an

t

Figure 4.8: The structures Pβ1(S) and Pβ2(S) from the proof of Theo-
rem 4.2.2. Edges inserted by modification sequence β1 and modification
sequence β2, respectively, are dotted.

Then the Substructure Lemma for DynQF implies that the program P
computes the same query result for the following two modification sequences:

(β1) Insert edges (s, a) and (b, t).

(β2) Insert edges (s, b) and (a, t).

However, applying the modification sequence β1 yields a graph in which t
is reachable from s, whereas β2 yields a graph in which t is not reachable
from s (see Figure 4.8 for an illustration). This is the desired contradiction.

Thus it remains to show the existence of such i and j. To this end,
applying Lemma 4.2.9 yields numbers i1 < i2 < i3 such that (ai1 , ai2),
(ai1 , ai3) and (ai2 , ai3) are (m + 1)-similar. Our goal is to show that also
(ai1 , ai2) and (ai2 , ai1) are m-similar.

Note that ~Nm+1
S (ai1 , ai2),

~Nm+1
S (ai1 , ai3) and ~Nm+1

S (ai2 , ai3) have
the same atomic type because (ai1 , ai2), (ai1 , ai3) and (ai2 , ai3) are
(m+ 1)-similar; and that it is sufficient to show that the atomic types of
~Nm
S (ai1 , ai2) and

~Nm
S (ai2 , ai1) are equal.

Let S ′ be the structure obtained by removing the relation E from S.
Recall that all information about E is encoded in the unary function e.
As an intermediate step we show that the atomic types ~Nm+1

S′ (ai1 , ai2)

and ~Nm+1
S′ (ai2 , ai1) are equal. The atomic types certainly agree on the
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only relation QS′

of S ′. Thus it remains to verify that ~Nm+1
S (ai1 , ai2) and

~Nm+1
S′ (ai2 , ai1) have the same equality type.

To this end we show the following claim: if t1(ai1) = t2(ai2) holds for
two terms t1 and t2 of depth at most m + 1, then also t1(ai2) = t2(ai1).
We observe that if t1(ai1) = t2(ai2) then also t1(ai1) = t2(ai3) and
t1(ai2) = t2(ai3) (since ~Nm+1

S′ (ai1 , ai2),
~Nm+1
S′ (ai1 , ai3), and

~Nm+1
S′ (ai2 , ai3)

have the same equality type). Hence, t1(ai2) = t2(ai2) and therefore
t1(ai2) = t2(ai2) = t1(ai1) = t2(ai1). The latter equality follows as the
equality types of ~Nm+1

S′ (ai1), and
~Nm+1
S′ (ai2) are equal. This concludes the

proof of the claim.

To prove ~Nm
S (ai1 , ai2) and ~Nm

S (ai2 , ai1) it only remains to show that
(u, v) ∈ E if and only if (u′, v′) ∈ E, for two components u and v
from ~Nm

S (ai1 , ai2) and their corresponding components u′ and v′ from
~Nm
S (ai2 , ai1). However, (u, v) ∈ E if and only if e(u) = v, and analogously

(u′, v′) ∈ E if and only if e(u′) = v′. Thus this claim follows already from the
fact that ~Nm+1

S (ai1 , ai2 , s, t) and
~Nm+1
S (ai2 , ai1 , s, t) have the same equality

type.

The lower bounds for k-clique and a ∃∗∀∗FO-definable query, obtained
in Proposition 4.1.18 and Proposition 4.1.19, respectively, can be generalized
to DynProp with unary functions as well. For the convenience of the reader
we restate the theorems.

Theorem 4.2.3 (R). Under insertions, k-Clique (k ≥ 3) cannot be
maintained in (k − 2)-ary DynProp with unary auxiliary functions.

Theorem 4.2.12. There is a ∃∗∀∗FO-definable query which cannot be
maintained in DynProp with unary auxiliary functions.

The proofs are along the same lines as the proofs of Proposition 4.1.18
and Proposition 4.1.19. The only difference is that here we use Lemma 4.2.9
in order to obtain the set A′. The contradiction is then obtained by using
the Substructure Lemma for DynQF and the modification sequences (α)
and (β) from the proofs of Proposition 4.1.18 and Proposition 4.1.19, re-
spectively.

4.2.3 Why Lower Bounds for Binary Functions are Hard to

Prove

A natural question is whether the lower bounds for unary DynQF can be
transferred to k-ary auxiliary functions with k ≥ 2. We conjecture that they
do, but we will argue that the techniques used so far are not sufficient for
proving lower bounds for binary auxiliary functions.

The fundamental difference between unary and binary auxiliary func-
tions is that, on the one hand, unary functions can access elements that
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depend either on the tuple that has been modified in the input structure or
on the auxiliary tuple under consideration but not on both. On the other
hand binary functions can access elements that depend on both tuples.

A consequence is that binary DynQF can maintain every boolean graph
property when the domain is large with respect to the actually used do-
main. We make this more precise. In the following we assume that all
domains D are a disjoint union of a modifiable domain D+ and a non-
modifiable domain D−, and that modifications may only involve tuples
over D+. Auxiliary data, however, may use the full domain. A dynamic
complexity class C profits from padding if every boolean graph property can
be maintained whenever the non-modifiable domain is sufficiently large in
comparison to the modifiable domain2.

Above we have seen that DynProp with unary auxiliary functions does
not profit from padding.

Theorem 4.2.13. Binary DynQF profits from padding.

Proof. First we show that ternary DynQF profits from padding. Let Q
be an arbitrary boolean graph property. In the following we construct a
ternary DynQF program P which maintains Q if 2|D

+|2 = |D−|. The idea
is to identify D− with the set of all graphs over D+, that is D− contains an
element cG for every graph G over D+. A unary relation RQ stores those
elements of D− that correspond to graphs with the property Q. Finally the
program maintains a pointer p to the element in D− corresponding to the
current graph over D+. The pointer is updated upon edge modification by
using ternary functions fins and fdel initialized by the initialization mapping
in a suitable way.

The program P is over schema τ = {Q, p, fins, fdel, RQ} where p is a
constant, fins and fdel are ternary function symbols, RQ is a unary relation
symbol and Q is the designated query symbol.

We present the initialization mapping of P first. The initial state S for a
graph H is defined as follows. The functions fins and fdel are independent
of H and defined via

fSins(a, b, cG) = cG+(a,b)

fSdel(a, b, cG) = cG−(a,b)

for a, b ∈ D+ and cG ∈ D−. For all other arguments the value of the
functions is arbitrary. Here G + (a, b) and G − (a, b) denote the graphs
obtained by adding the edge (a, b) to G and removing the edge (a, b) from G,
respectively. The relation RS

Q contains all cG with G ∈ Q. Finally the
constant pS points to cH .

2Note that this type of padding differs from the padding technique used by Patnaik
and Immerman for maintaining a PTIME-complete problem in DynFO [PI97].
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It remains to exhibit the update formulas. After a modification, the
pointer p is moved to the node corresponding to the modified graph, and
the query bit is updated accordingly:

tpins(u, v) = fins(u, v, p) tQins(u, v) = RQ(fins(u, v, p))

tpdel(u, v) = fdel(u, v, p) tQdel(u, v) = RQ(fdel(u, v, p))

Now we sketch how to modify this construction for binary DynQF. The
binaryDynQF program maintainsQ on an extended non-modifiable domain
that contains

• an element cG for every graph G over D+, and

• elements cG,a,ins and cG,a,del for every graph G over D+ and every
a ∈ D+.

The intuition is that when an edge (a, b) is inserted into the graph G then
the pointer p is moved from cG to the element cG+(a,b) using the intermediate
element cG,a,ins.

For insertion modifications the binary DynQF program maintaining Q
uses two binary functions fins and sins that are initialized as

fSins(a, cG) = cG,a,ins

sSins(b, cG,a,ins) = cG+(a,b)

for a, b ∈ D+ and cG, cG,a,ins ∈ D−. For all other arguments the value of
the functions is arbitrary.

When an insertion occurs, the pointer and the query bit are updated via

tpins(u, v) = sins(v, fins(u, p))

tQins(u, v) = RQ(sins(v, fins(u, p)))

The update formulas and terms for deletions are analogous.

Hence the ability to profit from padding distinguishes binary DynQF

and DynProp extended by unary functions. Although the proof of the
preceding theorem requires the non-modifiable domain to be of exponential
size with respect to the modifiable domain, the construction also explains
why the lower bound technique for k-clique cannot be immediately applied
to binary DynQF. In that lower bound construction only tuples over the
set A are modified, while tuples containing elements from C = [a]k are not
modified. Thus, by treating C as a non-modifiable domain, it can be used
to store information as in the proof above. As the modification sequences
used in the lower bounds are of length k2, finding similar substructures in
structures with binary auxiliary functions becomes much harder.
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4.3 First-order Update Programs

As argued in the introduction of this chapter, lower bounds for DynFO

are notoriously hard to prove. So far we have seen lower bounds for the
syntactic restriction DynProp and for its extension by auxiliary functions.
In this section we discuss several approaches for proving lower bounds for
DynFO.

The first approach to be discussed is the application of static lower
bounds in order to obtain dynamic lower bounds. It is used in a straight-
forward way: assume that there is a DynFO-program for some query and
deduce a contradiction to a well-known static lower bound from this upper
bound. In previous work, this approach has been applied successfully to
prove, for example, that the transitive closure cannot be maintained using
unary auxiliary relations as well as one binary auxiliary relation that stores
the transitive closure [DS98, DLW03]; and that there is an arity hierarchy
for dynamic programs with first-order updates [DS98]. Although both re-
sults employ quite different static lower bounds, the underlying technique
is the same. We will make this technique explicit by introducing the notion
of a query being expressible with help relations. Then, looking from this
perspective, we will reprove the above results and the following small new
result.

Theorem 4.3.1. There is a context-free language that cannot be maintained
in unary DynFO.

This theorem is joint work with Nils Vortmeier and already appeared in
his master’s thesis [Vor13], though with a different proof.

Two new approaches towards lower bounds for DynFO will be discussed
in detail. The first employs simulation in order to separate dynamic com-
plexity classes from static complexity classes. We outline how it can be
used to obtain lower bounds for DynFO with restricted initialization set-
tings. The second approach uses a weakness in the original initialization
setting of Patnaik and Immerman to prove lower bounds in this setting for
several queries. Unfortunately the lower bounds proved with these two ap-
proaches are not very strong. Yet we hope that the approaches can be used
to obtain better lower bounds in the future.

While working on lower bounds for DynFO we also tried to employ
Ehrenfeucht-Fräıssé-like games. Ehrenfeucht-Fräıssé games played a major
role for standardizing inexpressibility proofs for (static) logics. In particular,
they can be used for proving that a property cannot be expressed on finite
structures (see [Lib04] for a very accessible introduction to those games).
Therefore it is natural, to try to develop an Ehrenfeucht-Fräıssé-like game for
dynamic complexity. One such attempt has been made by Stephan Kreutzer,
Thomas Schwentick, Sebastian Siebertz and the author. Unfortunately, so
far the game has not been used for obtaining new lower bounds. Most lower
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bounds from the literature can be proved using the game, though only in
the weak setting of history-independent dynamic programs. For details on
this method we refer to Nils Vortmeier’s master’s thesis [Vor13] which also
contains several example applications.

The rest of this section is structured as follows. In the next subsection, we
present a unified perspective on dynamic lower bounds relying on static lower
bounds. Afterwards, in Subsection 4.3.2, we explain the two approaches for
proving lower bounds for restricted initialization settings.

4.3.1 Applying Static Lower Bound Methods

As already mentioned in the introduction of this chapter, several techniques
for proving lower bounds in the static setting are available. Most dynamic
lower bounds for DynFO have been proved drawing on those techniques.
In this subsection we present a unified view on how to prove dynamic lower
bounds by falling back to static lower bound results.

Most of the lower bounds forDynFO found in the literature are captured
by this unified perspective. A notable exception is the technique used by
Grädel and Siebertz in [GS12] for proving lower bounds for DynFO with
logical initialization. However, also those results are shown by falling back
to methods for proving inexpressibility results for first-order logic.

The basic idea for establishing many dynamic lower bounds for DynFO

is to infer a contradiction to a known static lower bound from a hypothetic
dynamic upper bound. More precisely, the fact that a query Qstatic is not
expressible (with help relations) in some fragment of first-order logic is used
to obtain a dynamic lower bound by showing that if there was a dynamic
program for a particular query Qdynamic, then Qstatic would be expressible.
The unified view presented here makes this idea explicit.

The following notion captures the essence of the technique. A query Q
over schema τ is expressible with help relations3 by a formula ϕ over schema
τ ∪ τhelp if for every τ -structure S there is a τhelp-structure Shelp over the
same domain such that ans(Q,S) = ans(ϕ, (S,Shelp)). The schema τhelp is
called helping schema.

Observe that every k-ary query can be expressed by using a single k-ary
help relation. We will use inexpressibility results where a k-ary query cannot
be expressed using k′-ary help relations for k′ < k.

In the following we present three example applications that obtain dy-
namic lower bounds by relying on static lower bounds for the expressibility
with help relations. In each of those applications we will first sketch a proof
of the static lower bound, and then show how it can be used to prove a
dynamic lower bound.

3We note that this notion differs from the notion of describability introduced in Sec-
tion 3.1. Help relations can depend on the whole structure whereas for describability the
additional relations may only depend on the domain.
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The first example is that the transitive closure of a binary relation R
cannot be maintained in unary DynFO. We follow the argument of Dong,
Libkin and Wong [DLW03]; yet we make the use of a query which is not
expressible with help relations explicit.

A graph (V,E) is a simple path if V = {v1, . . . vn} and
E = {(vi1 , vi2), (vi2 , vi3), . . . (vin−1

, vin)} where all ij are pairwise distinct.

Lemma 4.3.2. The transitive closure of simple paths cannot be expressed
by a first-order formula with unary help relations.

Proof sketch. This follows from a standard locality argument, similar to the
argument that reachability is not expressible in monadic, existential second-
order logic, see, e.g., [Lib04, Proposition 7.14]. We only give a very rough
proof sketch.

Assume that there is a first-order formula ϕ that expresses the transitive
closure of simple paths using unary help relations. The unary help relations
can be seen as a coloring of the nodes of a graph. Now, in a very long
colored path one can find two nodes whose neighborhoods have the same
color-pattern. Those two nodes cannot be distinguished by ϕ if the
neighborhoods are large enough; and therefore the transitive closure cannot
be expressed for such paths, even in the presence of unary help relations.

Theorem 4.3.3. Transitive closure cannot be maintained in unary DynFO

with a binary designated query relation.

Proof. Assume that there is a unary DynFO-program P that maintains the
transitive closure of a graph in the designated query relation T . We claim
that from P one can construct a first-order formula ϕ that expresses the
transitive closure of simple paths using unary help relations. This contra-
dicts the preceding lemma.

Let G = (V,E) be a simple path with first node u and last node v.
Consider the graph G′ def

= G + (v, u) and let SG′ be a state with input
database G′ which is reachable by P. Then T SG′ is exactly V 2. Observe
that u, v and V 2 are first-order definable for simple paths, and let ϕfirst(x),
ϕlast(x) and ϕV 2(x, y) be first-order formulas that define the relations {u},
{v} and V 2 for simple paths.

When removing the edge (v, u) from G′ the update formula φTdelE de-
fines the transitive closure of G, because P maintains the transitive closure
of E. Thus the formula ϕ can be constructed from φTdelE , by simulating the
removal of edge (v, u) from G+ (v, u).

More precisely, the formula ϕ uses helping schema τhelp
def
= τaux and is

defined by

ϕ(x, y)
def
= ∃u∃v

(
ϕfirst(u) ∧ ϕlast(v) ∧ ψ

T
delE

(v, u;x, y)
)
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where ψTdelE is obtained from φTdelE by substituting literals T (w1, w2) by
ϕV 2(w1, w2) and literals E(w1, w2) by E(w1, w2) ∨ (w1 = v ∧ w2 = u). The
help relations for a graph G are the corresponding auxiliary relations in SG′ .

In a similar way one can show that there is a context-free language
that cannot be maintained in unary DynFO. This example has previously
appeared in the master’s thesis of Vortmeier [Vor13, Satz 5.2] though with
a different proof. It should be contrasted with Hesse’s result that all regular
languages can be maintained in unary DynFO [Hes03b], and with the result
by Gelade, Marquardt and Schwentick that all context-free languages can
be maintained in 4-ary DynFO [GMS12] (see also Section 2.6).

Lemma 4.3.4. The following binary query Qdist over linearly ordered struc-
tures (D,<) cannot be expressed by a first-order formula with unary help
relations. The query Qdist selects, for all k, the tuple (a, b) such that a is
the kth and b is the k-last element with respect to <.

Proof sketch. The argument is again a standard locality argument and
very similar to the argument from Lemma 4.3.2. Assume that there is a
first-order formula ϕ that expresses Qdist using unary help relations. Again
we interpret the unary help relations as a coloring of the elements of the
domain. If the domain is large enough, then there are two elements a1 and
a2 such that a1 and a2 are in the first third of D with respect to < and large
neighborhoods of a1 and a2 have the same color-pattern.

Suppose that a1 is the kth element of D. Let b be the k-last element
of D. Since D is large and a1 and a2 are in the first third of D, all three
elements a1, a2 and b are far apart with respect to <. Hence the pairs (a1, b)
and (a2, b) cannot be distinguished by ϕ, but (a1, b) is in ans(Qdist, (D,<))
while (a2, b) is not.

Theorem 4.3.1 (R). There is a context-free language that cannot be main-
tained in unary DynFO.

Proof sketch. We show that the language of palindromes

Lpali
def
= {wwR | w ∈ {a, b}∗}

cannot be maintained in unary DynFO. Recall that strings are encoded by
structures with a linear order < (representing the order on the positions)
and two unary relations A and B (representing the letters a and b).

Assume that P is a unary DynFO-program that maintains Lpali us-
ing auxiliary schema τaux. From P a formula ϕ can be constructed that
expresses Qdist using unary help relations:

ϕ(x, y)
def
= ψQinsBinsB (x, y)
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Here the formula ψQinsB insB (x, y) simulates the computation of the new
query bit of P after inserting the letter b at position x and position y.
Furthermore every occurrence of a literal A(x) is replaced by ⊤.

The unary help relations for ϕ for a structure (D,<) are the unary
auxiliary relations of P for the initial state for the word a|D|. The formula
ϕ expresses Qdist with unary help relations. This contradicts the preceding
lemma.

A slightly different example for the help-relation technique relies on a
circuit lower bound due to Cai [Cai90]. Using this circuit bound, one can
show that, for every k, a certain k-ary query over a 6k-ary schema cannot
be expressed with help relations of arity k − 1. This static lower bound
for expressivity is used for obtaining an arity hierarchy for DynFO in a
similar way as in the preceding theorems. An analogous result for FOIES
has already been proved by Dong and Su in [DS98] where it was attributed
to Peter Bro Miltersen. We follow their argument, but explicitly use a query
which is not expressible with help relations.

The following theorem states the circuit lower bound to be used; its
formulation is from [DS98].

Theorem 4.3.5 ([Cai90]). Let m ∈ N and let X = {xij | 1 ≤ i ≤ m, 1 ≤ j ≤
m5} be a set of Boolean variables. Further let C be a circuit of depth d with
unbounded fan-in that computes the m parity functions xi1 ⊕ . . . ⊕ xim5 for
every 1 ≤ i ≤ m. Assume further that C also takes as input m− 1 arbitrary
precomputed values, called help bits, which can depend on the values of the
variables in X in any desired way. Then the circuit C must have size ≥ 2m

c

where c is a constant depending on d.

The help bits in the statement of the theorem play a similar role as help
relations. Therefore it is not surprising that Cai’s theorem has a formulation
in terms of expressibility with help relations.

For k ∈ N let Qk be the k-ary query defined over a 6k-ary relation
symbol S as follows. For every {S}-structure S, the result ans(Qk,S) of Qk

contains all k-ary tuples ~a such that the number of 5k-ary tuples ~b with
(~a,~b) ∈ RS is divisible by 2.

Corollary 4.3.6. Let k ∈ N. There is no first-order formula ϕ that ex-
presses Qk with (k − 1)-ary help relations.

Proof sketch. Assume, towards a contradiction, that there is such a first-
order formula ϕ over schema {S} ∪ τhelp where τhelp is (k− 1)-ary. One can
easily construct a polynomial-size constant-depth circuit family (Ci)i∈N that
evaluates ϕ.

For evaluating ϕ over domains of size n, the circuit CN with
N

def
= n6k + |τhelp| · n

k−1 input bits is used, where n6k bits X = {xij | 1 ≤
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i ≤ m, 1 ≤ j ≤ m5} are used to encode the relation S and |τhelp| · n
k−1 bits

are used to encode the relations from τhelp. Here we assume, without loss of
generality, that all S ∈ τhelp are of arity k − 1.

Let SS be the relation corresponding to a valuation ν of X. Then us-
ing the encoding of the help relations for SS as help bits, the circuit CN
computes the m parity functions xi1 ⊕ . . .⊕ xim5 for the valuation ν. Let
c be the constant from Cai’s theorem depending on the depth of the fam-
ily (Ci)i∈N.

One can find an n large enough such that for m
def
= nk the number

|τhelp| · n
k−1 of help bits needed by CN is smaller than m, and the size of

the circuit CN is less than 2m
c
. This contradicts Cai’s theorem.

The following theorem is basically from [DS98]. We state a slightly
generalized variant for boolean queries.

Theorem 4.3.7 ([DS98]). Let k ≥ 2. There is a boolean query over a
(6k + 1)-ary schema that can be maintained in k-ary DynFO, but not in
(k − 1)-ary DynFO. In particular, DynFO has a strict arity hierarchy.

Proof. We first exhibit a k-ary queryQ′
k such thatQ′

k is in k-aryDynFO but
not in (k−1)-ary DynFO with a k-ary designated query relation. The latter
will be shown by assuming the existence of such a DynFO-program, and
constructing from this a first-order formula ϕ that expressesQk using (k−1)-
ary help relations. This contradicts the preceding corollary. Afterwards we
present a boolean query Q′′

k that satisfies the theorem statement.

The k-ary query Q′
k is very similar to the query Qk. It is defined over

a (6k + 1)-ary relation symbol T and ans(Q′
k,T ) contains, for every {T}-

structure T , all k-ary tuples ~a such that the number of (5k+1)-ary tuples ~b
with (~a,~b) ∈ T T is divisible by 4.

Towards a contradiction, assume that Q′
k can be maintained by a (k−1)-

ary DynFO-program P with designated query relation Q. Let S be a {S}-
structure over a domain D that contains at least four distinguished elements
{c1, c2, c3, c4} (for simplicity we assume that P stores them in constants of
the same name). Consider a state T of P over domain D reachable by P
where T is interpreted as follows:

T T = Dk × {c1}
5k+1 ∪ {(~d, c2), (~d, c3) | ~d ∈ SS}

Then for each k-ary tuple ~a, the number of (5k + 1)-ary tuples ~b such
that (~a,~b) ∈ T T is either 1 or 3 modulo 4. It is 1 modulo 4 if the number of
5k-ary tuples ~b′ with (~a,~b′) ∈ SS is even, and it is 3 modulo 4 otherwise.

The following observation is crucial. The answer of Q′
k for the tuple ~a

after inserting the tuple (~a, c4, . . . , c4) into T
T is exactly the negation of the

answer given by Qk for ~a evaluated on the structure S. This can be used
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to define a formula ϕ that expresses Qk with (k− 1)-ary help relations from
the update formula φQinsT .

To this end we note that the construction of T T from SS as described
above is first-order definable. Let ϕT (~x) be a (6k + 1)-ary formula over
schema {S, c1, c2, c3, c4} that defines T from S.

Then Qk can be expressed by the {S}-formula

ϕ(~x)
def
= ¬ψQinsT (~x, c4, . . . , c4; ~x)

where ψQinsT is obtained from φQinsT by substituting literals T (~x) by ϕT (~x).
The help relations for ϕ are obtained from the corresponding auxiliary re-
lations in T T . The constants c1, . . . , c4 can be removed from ϕ by using
additional unary help relations.

As the formula ϕ contradicts the preceding corollary, the query Q′
k is

not maintainable by a (k−1)-ary DynFO-program with a k-ary designated
query relation.

Now we exhibit a boolean query Q′′
k over a (6k+1)-ary schema which is

not maintainable by a (k − 1)-ary DynFO-program. The query Q′′
k is over

schema {T,U1, . . . , Uk} where T is a (6k+1)-ary relation symbol and all Ui
are unary relation symbols. If, in a structure S, each of the relations US

i

contains exactly one element ui, then Q′′
k evaluates to true if and only if

the tuple (u1, . . . , uk) is contained in the result of Q′
k on T S . If one of the

relations US
i does not contain exactly one element, then the result of Q′′

k is
false.

The query Q′′
k can be easily maintained by a k-ary DynFO program by

maintaining the query result for Q′
k by counting modulo 4 for every k-ary

tuple; and extracting the result for (u1, . . . , um) (if all those ui exist and are
unique).

On the other hand, it is easy to see that from a (k − 1)-ary DynFO-
program P ′′ for Q′′

k, a (k − 1)-ary program P ′ for Q′
k with k-ary designated

query symbol can be constructed. The program P ′ maintains all auxiliary
relations of P ′′ using their respective update formulas from P ′′, under the
assumption that the relations U1, . . . , Uk are empty (those relations are not
present in P ′). Additionally it maintains the k-ary designated query rela-
tion Q′ as follows. If a tuple is inserted into or deleted from T , then in
order to determine whether a tuple ~x = (x1, . . . , xk) is in Q′, the update
formula for Q′ simulates inserting x1, . . . , xk into U1, . . . , Uk, respectively,
using the update formulas of P ′′. The tuple ~x is contained in Q′ if and only
if the value of the query relation Q′′ of P ′′ after this insertion sequence is
true. The detailed construction is straightforward though tedious. This is
a contradiction to the lower bound for Q′

k proved above. Hence Q′′
k cannot

be maintained by a (k − 1)-ary DynFO-program.
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4.3.2 Two Approaches for Restricted Initializations

Two approaches aimed at proving lower bounds forDynFO will be discussed
in this subsection. One of them is based on simulating dynamic programs
by algorithms, the other is based on finding a property which is satisfied
by all queries maintained by some fragment of DynFO but which is not
satisfied by certain queries. The simulation-based approach is inspired by a
remark by William Hesse. He proposed to use diagonalization to separate
static from dynamic complexity classes.

Most lower bounds in the dynamic world so far have been proved for
fragments of DynFO obtained by either restricting the arity of the auxiliary
relations or by restricting first-order update formulas syntactically. Both
approaches to be presented here are exemplary used to prove lower bounds
for DynFO with restricted initialization settings instead.

Some prior work on restricted initializations has been done. Grädel and
Siebertz showed that the equal cardinality query for two unary relations is
not in DynFO when the initial input database can be arbitrary and the
initialization for the auxiliary database is defined by some logical formal-
ism [GS12]. This lower bound strongly depends on the restriction of the
initialization. In Section 4.1 and Section 4.2 we have seen further lower
bounds for restricted initializations though for quantifier-free dynamic pro-
grams only.

The two approaches presented here will be applied to the original ini-
tialization setting of Patnaik and Immerman, where queries are maintained
from scratch using first-order update formulas. Recall that a program main-
tains a query from scratch if it starts from an initially empty input database
and from auxiliary relations initialized by first-order formulas.

Simulating Dynamic Programs

Every query Q maintained by some DynFO-program P from scratch, can
also be evaluated by a polynomial time algorithm. Given some domain
and database over that domain, such an algorithm can simply simulate P
for the modification sequence that inserts all tuples from the database into
an initially empty database. It starts by initializing the auxiliary relations
by evaluating the initialization formulas, and then updates the auxiliary
relations by evaluating the update formulas for every modification. This
can be achieved in time O(nℓ) for some ℓ ∈ N where we assume that the
input size n is the sum of the size of the domain and the amount of space
necessary to store the database. The constant ℓ depends, among others, on
the arity of P. Hence DynFO with initialization from scratch is contained
in PTIME.

A natural follow-up question is whether this containment is strict. If all
such programs could be simulated in time O(nℓ) for some uniform ℓ ∈ N
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then this would indeed be the case: the time hierarchy theorem guarantees
the existence of a query that can be computed in time O(nℓ+1) but not in
time O(nℓ). Unfortunately a simulation with uniform time bound O(nℓ)
is not possible in a näıve way since the arity of DynFO-programs is not
bounded.

The approach, however, works for space-restricted complexity classes.
In the following we will see that every query that can be maintained by
a DynFO-program from scratch can be evaluated by an O(nℓ)-space algo-
rithm for some ℓ ∈ N where ℓ depends not on the DynFO-program at hand.
The space hierarchy theorem then implies that DynFO with this kind of
initialization is strictly contained in PSPACE. After proving the following
theorem, we shortly discuss the limits of this approach.

Theorem 4.3.8. There is an ℓ ∈ N such that every query that can be
maintained by a DynFO-program from scratch can be evaluated by an O(nℓ)-
space algorithm.

Proof. We exhibit an algorithm for the following slightly more general evalu-
ation problem for a DynFO-program P: Given a domain D, a modification
sequence α on D, a relation symbol R from P and a tuple ~d over D of the
same arity as R. Is ~d ∈ RS where S

def
= Pα(S0) and S0 is the initial state

for domain D?
Recall that the combined complexity of the evaluation problem for first-

order logic is in PSPACE. The standard recursive evaluation algorithm
for first-order logic does, however, not immediately yield a uniform polyno-
mial space-bound for evaluating DynFO-programs. Näıve evaluation of a
DynFO-program P for a given modification sequence uses |D|k space for
storing the auxiliary relations, where k is the largest arity of an auxiliary re-
lation occurring in P. Since the arity of dynamic programs is not bounded,
this yields no uniform space-bound.

Yet a well-known trick for space-bounded algorithms can be applied.
Instead of storing the auxiliary relations explicitly, the algorithm can re-
compute an auxiliary bit when necessary. The idea is as follows. For evalu-
ating whether a tuple ~d is in a relation R after application of a modification
sequence α = α1 . . . αm with αi = δi(~ai), the algorithm starts to evalu-
ate φRδm(~am;

~d). The evaluation is with respect to the state Sm−1 reached
by P after application of α1 . . . αm−1. Whenever the evaluation requires to
know whether a tuple ~d′ is contained in some relation R′ in state Sm−1, the
formula φR

′

δm−1
is evaluated recursively for (~am−1, ~d

′).
This idea is made precise in Algorithm 2. The procedure evalP imple-

ments the actual evaluation algorithm for a DynFO-program P. For empty
modification sequences the procedure returns the value of the initialization
mapping, which can be obtained by application of the standard evaluation
algorithm evalFO. For all other sequences the evaluation is delegated to
the procedure eval′FO, that evaluates the update formula corresponding to
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the last modification in the modification sequence. The evaluation of the
update formula is done as in the usual evaluation of first-order formulas, ex-
cept that required information about the structure is computed by recursive
calls to evalP .

The correctness of the algorithm can be shown by a straightforward
induction over the length of modification sequences.

We show that for every DynFO-program P the algorithm uses O(m|D|)
space. To this end, we first argue that the call tree of evalP for evaluating
a modification sequence α of length m is of depth at most cm for some
constant c that depends on P only. The procedure evalP is called at mostm
times in every branch of the call tree. Furthermore, the procedure eval′FO is
called at most once from each invocation of evalP . The number of successive
recursive calls of eval′FO (without a call of evalP in between) can be at
most c′ for some constant c′ that depends on the update formulas of P.
Each branch of the call tree ends with at most c′′ additional calls for the
evaluation of an initialization formula of P where c′′ is some constant that,
again, only depends on P. Hence all in all the depth of the call tree of
evalP is at most c′′ + c′m and therefore of the form cm for some c.

We now argue that only one branch has to be stored and that each node
of a branch can be stored in a linear amount of space. Observe that all
branches are independent, that is, after computing the result of a branch
starting from a node v of the call tree, it is sufficient to store the result
in node v and proceed with the next branch starting from v. Therefore at
every point of time, the algorithm stores at most one branch of the call tree
and each node of this branch stores at most one tuple ~a of domain elements.
The arity of ~a is bounded by a constant d that only depends on P. Thus
the algorithm uses space O(m|D|) for every program P.

For evaluating a query Q maintained from scratch by a DynFO-
program P, the procedure evalP is called for the modification sequence
that inserts all tuples of a given database. Thus this sequence is of length
at most n where n is the sum of the size of the domain and the amount
of space necessary to store the database. Therefore Q can be evaluated in
space O(n2).

The theorem also holds for other initialization settings as long as the
initialization can be computed in the given space bound. Thus, for example,
if the initialization mapping may use O(|D|ℓ) space to compute one bit of
the auxiliary data, then the same proof goes through.

The simulation-based approach, however, has two drawbacks. First, pre-
sumably, for DynFO only separation from PSPACE can be proved. A
uniform O(nℓ)-time bound for simulating DynFO-programs would yield a
O(nℓ)-time algorithm for the evaluation problem for first-order formulas with
combined complexity. Yet this problem is PSPACE-complete, and therefore
such a time bound is very unlikely. Second, as we will see in the next part



144 Lower Bounds for Dynamic Complexity Classes

Algorithm 2 A PSPACE-algorithm for evaluating a DynFO-program P.
Here α = α1 . . . αm with αi = δi(~ai) is a modification sequence on a do-
main D; R is a relation symbol from P; and ~d is a tuple over D of the same
arity as R.

1: procedure evalP(α, R, ~d)
2: ⊲ Evaluates whether ~d is in relation R after applying α.
3: if |α| = 0 then
4: Return Init(R, ~d).
5: else
6: Return eval′FO(φ

R
δm
, (~am, ~d), δ1(~a1) . . . δm−1(~am−1))

7: end if
8: end procedure
9: procedure eval′FO(ϕ, ~a, α)

10: ⊲ Evaluates whether ~a satisfies ϕ after applying α.
11: if ϕ(x1, . . . , xl) = R′(xi1 , . . . , xil′ ) then
12: Assume ~a = (a1, . . . , al)
13: Let ~d′

def
= (ai1 , . . . , ail′ )

14: Return evalP(α,R
′, ~d′)

15: else if ϕ = ¬ψ then
16: Return NOT eval′FO(ψ,

~d, α)
17: else if . . . then
18: . . . (All other cases are as in the standard FO-evaluation
19: algorithm.)
20: end if
21: end procedure

of this subsection, the separation of DynFO from PSPACE can also be ob-
tained much easier for the initialization setting of Patnaik and Immerman.
Also for initializations computable in space O(|D|ℓ) a separation can be ob-
tained easier. The idea here is as follows. The space hierarchy already holds
for unary languages [Sze94, Theorem 11.1.1]. Let L be a unary language
over Σ

def
= {a} that can be decided in space O(nℓ+1) but not in space O(nℓ).

Let QL be the boolean query that is true if and only if a|D| ∈ L where D is
the domain of the database. Then DynFO with O(|D|ℓ)-space initialization
mapping cannot maintain this query (as already the initialization has to be
incorrect).

Despite those drawbacks, the approach to prove lower bounds via simula-
tion might be useful because it is quite robust. For example, fast simulation
algorithms for fragments of DynFO, e.g. DynProp and DynQF, might
yield new lower bounds for those fragments.
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Using Domain Independence

Next we aim at an application of the following very simple idea. Assume
that all queries maintainable in some dynamic complexity class DynC satisfy
a certain property. Now, if one can show that a given query does not have
this property, then the query is not maintainable in DynC.

Here we apply this idea to DynFO with initialization from scratch. Very
simple queries cannot be maintained in this setting. Consider, for example,
the boolean query which is true for domains of even size and false other-
wise. It cannot be maintained in DynFO from scratch because a first-order
formula cannot tell domains of even and odd size apart for large, empty
structures. More generally, queries that depend on domain elements that
are not used in the input database cannot be maintained in DynFO from
scratch.

Next we generalize this argument. Recall that the active domain of a
state consists of all elements of the domain that are contained in a tuple
of an input relation. The non-active domain contains all elements of the
domain that are not in the active domain. Let f : N → N be a function. A
boolean query Q is f -domain independent if the answer of Q is the same for
all structures S and S ′ over domains D,D′ with D ⊆ D′ that have the same
active domain, agree on their active domain and whose non-active domain
is of size at least f(|Dact|) where Dact denotes the active domain. Thus,
intuitively, the result of an f -domain independent query Q does not depend
on the non-active domain as long as the size of the non-active domain is
larger than f(|Dact|).

The following lemma can be used to prove lower bounds forDynFO with
initialization from scratch for queries that are not c-domain independent for
any c ∈ N. We postpone its technical proof to the end of this subsection.

Lemma 4.3.9. If a boolean query Q can be maintained in DynFO from
scratch, then Q is c-domain independent for some constant c ∈ N.

Corollary 4.3.10. The following queries cannot be maintained in DynFO

from scratch:

(a) The domain is of even size.

(b) The number of elements not contained in a unary relation U is of size
f(|U |) where f is an arbitrary monotonically increasing function.

Thus proving lower bounds in the original setting of Patnaik and Im-
merman is not too hard for queries that strongly depend on the non-active
domain.

We observe that part (b) of the preceding theorem implies that the
boolean query on a unary relation U which is true if and only if |U | = |D \ U |
cannot be maintained in DynFO from scratch. We shortly discuss the
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relation of this observation to Theorem 4.2 in [GS12]. In this theorem, it
is shown that the equal cardinality query for two unary relations cannot
be maintained in DynFO with arbitrary initial input databases and logical
initialization of the auxiliary data. Although DynFO with computation
from scratch also has logical initialization, the observation is not a special
case of the setting used by Grädel and Siebertz. The reason is, that when
arbitrary initial input databases are allowed, it is sufficient to show that
the logical initialization is not very powerful for certain specific initial input
databases. This is used in the proof of Theorem 4.2 in [GS12]. Actually, the
equal cardinality query can be easily maintained from scratch in DynFO:
build a linear order on the active domain and maintain counters for the two
unary relations.

It remains to prove Lemma 4.3.9. It is immediately implied by the
following more general lemma. For a DynFO-program P, let cP be the
sum of the maximal arity of all input relations, the maximal arity of all
auxiliary relations and the maximal number of quantifiers occurring in an
update or initialization formula of P. Recall that an element a is touched
by a modification α(~b) if a is contained in ~b.

Lemma 4.3.11. Let D and D′ be two domains with D ⊆ D′, and let U ⊆ D
and c ∈ N be such that |U | + c ≤ |D|. If P is a DynFO-program that
starts from scratch such that cP ≤ c and α is a modification sequence that
only touches elements from U then Pα(S0) and Pα(S

′
0) agree on the 0-ary

relations where S0 and S ′
0 are the initial states of P for the domains D

and D′, respectively.

Proof. A function µ is U -invariant, if µ(ai) = ai whenever ai ∈ U . We aim
at proving that Pα(S0) ≃µ Pα(S

′
0)↾Xµ for all modification sequences α and

all U -invariant injective functions µ : D → D′ with Xµ
def
= µ(D). This, in

particular, implies that the two structures Pα(S0) and Pα(S
′
0) agree on the

0-ary relations.
We first prove the following claim. Let S and S ′ be states over D

and D′, respectively. If S ≃µ S ′ ↾ Xµ for all U -invariant injective func-
tions µ : D → D′ then

(S,~b) |= ϕ if and only if (S ′, π(~b)) |= ϕ

for all m-tuples ~b, all U -invariant injective functions π and all first-order
formulas ϕ of quantifier-depth q with m+ q ≤ c.

Towards proving the claim let ~b, π and ϕ be as described above. Let A
be the elements of D \U that are not contained in ~b and, analogously, let A′

be the elements of D′ \U that are not contained in π(~b). We prove the claim
by sketching a winning strategy for Duplicator in a q-round Ehrenfeucht-
Fräıssé game. Duplicator replies a move c on (S,~b) by Spoiler with a move d
on (S ′, π(~b)) where (1) d

def
= c if c ∈ U , (2) d

def
= π(c) if d is in ~b, and (3) d is
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an element from A′ if c is an element from A (if c has been used before, then
Duplicator uses the previous response to c). Duplicator responds similarly
when Spoiler’s move is on the structure (S ′, π(~b)). Observe that sincem+q ≤
c there are sufficiently many fresh elements in A and A′. We claim that the
partial bijection π′ induced by the corresponding choices of Spoiler and
Duplicator is actually a U -invariant partial isomorphism of the structures
(S,~b) and (S ′, π(~b)), and therefore Duplicator wins the game. The function
π′ is U -invariant due to (1). It can be extended to a U -invariant injective
function π′′ from D to D′. By the assumption S ≃π′′ S ′ ↾Xπ′′ and therefore
π′ is a partial isomorphism.

Now we prove the statement of the lemma. Inductively over the length
of α we prove that Pα(S0) ≃µ Pα(S

′
0) ↾ Xµ for an arbitrary U -invariant

injective function µ : D → D′ with Xµ
def
= µ(D). The induction hypothesis

is satisfied in the initial structures S0 and S ′
0, as the initial input database

is empty and the auxiliary relations are initialized by first-order formulas of
quantifier-depth ≤ cP . Now, if the states Si and S ′

i — obtained by applying
the first i modifications in α — satisfy the hypothesis, then so do Si+1

and S ′
i+1. To see this let δ(~b) be the (i + 1)st modification in α, let R be

an arbitrary ℓ-ary auxiliary relation symbol and ~c an ℓ-ary tuple over D.
Then (Si,~b,~c) |= φRδ (~u; ~x) if and only if (Si,~b, µ(~c)) |= φRδi(~u; ~x), due to the
induction hypothesis, the claim proved above and because |~u|+ |~x|+q ≤ cP .
Therefore Pα(Si+1) ≃µ Pα(S

′
i+1)↾Xµ.

4.4 Outlook and Bibliographic Remarks

In this chapter methods for proving lower bounds in the dynamic complexity
framework have been presented. For DynProp and DynQF, the Substruc-
ture Lemma and combinatorial tools have been used to obtain new lower
bounds for the reachability query and the k-clique query. For DynFO, a
unified perspective on static lower bounds has been introduced, and two
new approaches for proving dynamic lower bounds for restricted initializa-
tion settings have been discussed.

While proving lower bounds for full DynFO — a major long-term goal
in dynamic descriptive complexity — might be really hard to achieve, we
believe that the following goals are suitable for both developing new lower
bound methods and for improving the current methods.

We start with possible goals for quantifier-free complexity classes. A gen-
eral quantifier-free lower bound for the reachability query and the k-clique
query remains open. We have seen that both queries cannot be maintained
in binary DynProp. We conjecture that neither the 3-clique query nor
the reachability query can be maintained in DynProp under insertions and
deletions. Such lower bounds would be interesting as still very few general
lower bounds for DynProp are known, and therefore lower bounds for those
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two queries could contribute to finding a general framework for proving lower
bounds for this fragment.

For DynQF, the current methods for proving lower bounds have been
applied only to fragments with unary auxiliary functions. In Subsection 4.2.3
we argued why those methods cannot be easily generalized to obtain lower
bounds for binary DynQF. Proving lower bounds for this fragment seems
feasible due to the severe restrictions posed by DynQF. A first step towards
such lower bounds could be to study binary DynQF-programs that start
from scratch.

For quantifier-free dynamic complexity classes, we have seen that com-
binatorial tools such as the theorems of Ramsey and Higman played an
important role for lower bound proofs. Therefore it appears to be promising
to study the applicability of other combinatorial tools in this context.

For (full) first-order updates a major challenge is the development of
lower bound tools. Most of the current techniques are in some sense not
fully dynamic: either results from static descriptive complexity are applied
to constant-length modification sequences (see Subsection 4.3.1); or non-
constant but very regular modification sequences are used. In the latter
case, the modifications do not depend on previous changes to the auxiliary
data (as, e.g., in [GS12] and in Section 4.1). Finding techniques that adapt
to changes could be a good starting point. Here, the Ehrenfeucht-Fräıssé
game discussed in the introduction of Section 4.3 could be a good starting
point.

We think that the power of the two techniques presented in Subsec-
tion 4.3.2 have not been completely exhausted here, and finding further
applications of them is possible.

Another promising direction is to substantiate that proving lower bounds
for DynFO is hard, for example, by showing that a certain lower bound for
DynFO implies the separation of two well-known static complexity classes.

Bibliographical Remarks The Substructure Lemma has already been
introduced in [GMS09]; here we use a new formulation of this result. Most
lower bound results from Section 4.1 and Section 4.2 have been published
in [ZS13] and [Zeu14a]. The former work includes all lower bounds for arbi-
trary modifications and is joint work with Thomas Schwentick. The latter
work contains lower bounds for insertions only and is solely by the author.
Proposition 4.1.19 will appear in [Zeu14b], the full version of [Zeu14a]. It
resulted from discussions with Samir Datta. The separations of fragments
of DynProp have been announced in [ZS14], the proofs will be published
in the full version of [ZS15].

The results for DynFO are attributed as follows. The results using
static lower bounds in Section 4.3.1 have all been presented elsewhere before.
We contributed a new unified presentation of their proofs. Theorem 4.3.3
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is from [DLW03] originally; Theorem 4.3.7 has been published in [DS98].
Theorem 4.3.1 is joint work with Nils Vortmeier and has been proved, though
in a different way, in his master’s thesis. The two approaches in Section 4.3.2
are part of (so far) unpublished joint work with Thomas Schwentick and Nils
Vortmeier on algorithmic properties of dynamic programs. The idea to use
simulations is inspired by William Hesse.
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Chapter 5

Conclusion

In the decade after its introduction in the early 1990s, dynamic descriptive
complexity has seen many results; including results for the maintainability of
specific queries as well as lower bounds for restricted dynamic programs. Yet,
after Hesse’s proof that reachability can be maintained inDynTC0 [Hes03b],
work in the area stopped almost completely. Probably the focus of the
community shifted to other fields because further progress on maintaining
reachability was not foreseeable and proving lower bounds for other dynamic
complexity classes seemed unattainable.

In the last few years, however, new progress on both topics — lower
bounds and reachability — has been achieved. We shortly recapitulate those
results and their relation to this thesis.

Two new lower bounds, one for the quantifier-free fragment [GMS09]
and one for logical initialization mappings [GS12], indicated that approaches
orthogonal to the study of bounded-arity DynFO might foster better un-
derstanding of dynamic complexity; and, in the long term, maybe even lead
to stronger lower bounds.

Those two results motivated us to study small dynamic complexity
classes in more detail. We have seen how several small dynamic complexity
classes relate to each other and how they relate to static complexity classes
(see Chapter 3). Further some new attempts to prove lower bounds for such
small classes have been presented (see Chapter 4). In particular new lower
bounds for the quantifier-free fragment have been obtained by using the
basic technique from [GMS12] in conjunction with suitable combinatorial
tools, and a unified view on lower bounds for DynFO has been presented.

While we were studying lower bounds for small fragments, progress on
maintaining reachability was made by Samir Datta, William Hesse and
Raghav Kulkarni. In a breakthrough result for dynamic descriptive com-
plexity, they showed that reachability can be maintained by non-uniform
AC0 with parity gates [DHK14]. Only recently, by a different approach,
reachability was shown to be maintainable using first-order update formulas
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by Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick
and the author [DKM+15]. We have seen a short overview of the proof in
Section 2.6, and the detailed construction for one of the three key steps has
been presented in Section 3.4.

Although this thesis is not focused on upper bounds, we have seen how
the latter result can be applied in order to maintain regular path queries
(see Chapter 1). Also more expressive path queries have been studied here,
though for restricted graph classes.

Thus, in the last couple of years, significant progress has been achieved
for both lower bounds and reachability. We hope that those results help to
spark a wider interest in dynamic descriptive complexity.

At the end of each chapter we already discussed open questions and
further directions for the topic of the chapter. In the following we indicate
other possible directions for future research.

New Applications The recent result on the maintainability of Reachabil-
ity raises hopes that dynamic complexity can be applied to many other fields
of interest in computer science. This is, on the one hand, because reachabil-
ity as well as the closely related problem of computing the transitive closure
of a relation is the basis for many computational problems. On the other
hand, the technique used for maintaining Reachability in [DKM+15] seems
to yield more insights. In the following we shortly discuss those two aspects.

As an example of applying the result itself we have seen how regular
path queries can be evaluated dynamically. Other problems that rely on
maintaining the transitive closure can now be studied as well. Examples for
such problems are dynamic LTL model checking and query evaluation under
ontologies.

The former problem has already been studied in [KW03], where dynamic
LTL model checking was shown to be in DynTC0. The reduction to reacha-
bility used in the proof does not immediately transfer to DynFO. However,
if reachability is maintainable when nodes can be (de)activated, then LTL
model checking can be maintained in DynFO as well.

Query evaluation under ontologies has been studied a lot in the descrip-
tion logic community in the last decade (see, e.g., [CDL+13, LW12]). In this
setting, the input is a database, an ontology and a query, and one is inter-
ested in answering the query on the database extended by ontological knowl-
edge. The data complexity for different description logics used as ontol-
ogy language varies a lot, among others examples for AC0, NLOGSPACE

and PTIME are known [CDL+13]. Extending a database by ontological
knowledge is very related to the computation of a transitive closure. There-
fore query evaluation under ontologies that have static data complexity in
NLOGSPACE could be a good first candidate for studying the dynamic
complexity of query answering.
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We now turn to possible applications of the technique used for maintain-
ing Reachability in [DKM+15]. Maintainability of Reachability was reduced
to maintaining the rank of a matrix, which in turn was maintained using
first-order updates. Thus linear algebraic problems seem to be interesting
candidates for further studies. Problems from algebra and linear algebra
have not been studied in dynamic complexity so far, with the exception of
the observation that multiplication of two n bit numbers encoded by unary
relations can be maintained in DynFO [PI94]. We plan to pursue this path
more systematically. Candidate problems to start with are division and
iterated multiplication, as they are in TC0 but not in AC0.

Generalized Modifications The choice of allowing only single deletions
and insertions is rather restricted. Changes to a database are often induced
by an SQL-query that specifies which tuples shall be modified, deleted or
inserted. Looking at the dynamic complexity of problems when more elabo-
rated modifications are possible is therefore another interesting direction for
future research. This was already noted by different authors, among them
Patnaik and Immerman [PI97] and Etessami [Ete98].

Preliminary work on some simple generalized modifications has already
been done. Dong and Pang studied maintainability of Reachability under
edge-set and node-set deletions [DP97]; edge contractions have been studied
by Siebertz [Sie11]. A framework for general modifications was introduced
by Weber and Schwentick [WS07].

Generalized modifications might also offer new insights into the tra-
ditional dynamic complexity setting. Above we have already mentioned
that maintainability of reachability in DynFO under node (de)activations
(which roughly corresponds to node insertions and deletions) implies that
LTL model checking can be maintained in DynFO. Another problem that
might be tackled by having a closer look at generalized modifications is the
following. The dynamic maintenance of many queries is difficult because one
change in the input database influences the query result at several places.
Examples for such queries are the dynamic model checking problem for
CTL∗ and the evaluation problem for the graph query language nSPARQL
[PAG10]. A CTL∗ formula can, for example, ask if there is a path p starting
from some initial node such that at every node v along p a path pv with a
certain property starts. Then a single change in the Kripke structure pos-
sibly influences many of the paths pv. The query language nSPARQL can
express similar properties and therefore dynamic evaluation leads to related
challenges. A thorough understanding of generalized modifications might
lead to new approaches for maintaining such queries.

Finally a systematic study of first-order defined modifications might yield
new approaches for proving lower bounds.
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Transfer of Techniques We believe that dynamic complexity can profit
a lot from other fields of theoretical computer science, and vice versa.

So far several techniques used in dynamic complexity have been im-
ported from other areas. For example, an Euler tour construction due to
Henzinger and King [HK99] was used by Hesse to maintain undirected reach-
ability in DynFO with unary functions [Hes03b]. The derandomized Isola-
tion Lemma due to Reinhardt and Allender [RA00] was used by Datta et
al. to maintain the size of maximum matchings in DynFO (with arbitrary
initialization) [DKM+15].

On the other hand, techniques for maintaining reachability for restricted
graph classes in the dynamic descriptive complexity framework have been
used in a logical framework for shape analysis [RSL10]. The techniques were
used for keeping information in an abstraction as precise as possible during
a sequence of modifications.

Those transfers indicate that dynamic complexity can both profit from
and contribute to other fields. We advocate for an active study of further
transfers of techniques.
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A Note on Two-Variable

Logic

The discovery of the undecidability of the satisfiability and finite satisfia-
bility problem for first-order logic [Chu36, Tur36, Tra50] lead to a quest for
decidable yet expressive fragments (see for example [BGG01, HSG04]); one
of them is the two-variable fragment.

The two-variable fragment of first-order logic (two-variable logic or FO2

for short) is known to be reasonably expressive and its satisfiability and
finite satisfiability problems are decidable [Mor75], in fact they are complete
for NEXPTIME [GKV97]. Unfortunately many important properties, as
for example transitivity, cannot be expressed in two-variable logic. This
shortcoming lead to an examination of two-variable logic on structures with
special relation symbols that are interpreted by equivalence relations, orders
and successor relations [Ott01, KT09, Man10, BDM+11, KO12, SZ12, MZ13,
ST13, KMPT14].

This note summarizes several results for two-variable logic on structures
with linear orders and preorders, as well as their corresponding successor
relations. All results are joint work with Amaldev Manuel and Thomas
Schwentick.

From now on all orders are either linear orders or preorders. Recall that
a preorder is an equivalence relation whose equivalence classes are ordered
by a linear order. A structure with two orders can be seen as a point set on
the two-dimensional plane, where each element of the structure corresponds
to one point. The two orders allow for comparing the x- and y-coordinates
of points. If both orders are linear orders, then every row and every column
of the plane contains exactly one point. Similarly, rows and columns can
contain more than one point if the corresponding orders are preorders. In
the following we refer to structures with two orders, (possibly) their corre-
sponding successor relations and arbitrary many additional unary relations
as two-dimensional structures.

Two-variable logic on two-dimensional structures has some interesting
applications.

Data words, introduced in [Bou02], extend usual words by assigning data
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values to every position. Applications of data words arise for example in ver-
ification, where they can be used for modeling runs of infinite state systems,
and in database theory, where XML trees can be modeled by data trees.
Data words with a linearly ordered data domain can be seen as finite struc-
tures with a linear order on the positions and a preorder on the positions
induced by the linear order of the data domain. Thus data words can be
represented as two-dimensional structures in the above sense. Two-variable
logic on data words has been studied first by Bojańczyk et al. in [BDM+11].

Two other applications of two-variable logic on two-dimensional struc-
tures arises from its close connection to compass logic and interval tempo-
ral logic. In compass logic, two-dimensional temporal operators allow for
moving north, south, east and west in the two-dimensional plane [Ven90].
In interval temporal logic operators like ’after’, ’during’ and ’begins’ al-
low for moving along intervals [HS91]. The connection of intervals to the
two-dimensional plane becomes clear when one interprets an interval [a, b]
as point (a, b). In [SZ10] decidability results for FO2 on two-dimensional
structures have been transferred to those two logics.

Those applications motivate working towards a thorough understand-
ing of FO2 on two-dimensional structures in general, and the decidability
frontier for the finite satisfiability problem in this setting in particular. We
were able to obtain a fairly complete picture for the decidability of the finite
satisfiability problem on such structures. The results are summarized in
Figure 5.1.

We shortly discuss the main proof techniques. Our undecidability results
rely on standard reductions from Post’s correspondence problem, from the
problem of tiling the two-dimensional plane and from the emptiness problem
for Minsky machines with two counters. All decidability results are shown
either by exhibiting small-world-like properties or by using automata-based
techniques.

A small-world-like property is used for proving that FO2 on finite struc-
tures with a linear order and a preorder (short: FO2(≤l ,≤p)) is decidable.
This can be extended to structures that include the successor corresponding
to the preorder (short: FO2(≤l ,+1p ,≤p)). The basic idea is as follows. For
a given two-variable formula ϕ, assume that S is a model of ϕ of smallest
size. The goal is to bound the size of S by some function in the size of ϕ.
To this end assume that the columns of S (when S is interpreted as points
in the two-dimensional plane) are ordered by the linear order, and that the
rows are ordered by the preorder. One can show that S, as a smallest model,
satisfies the following two properties:

• Every row contains only a bounded number of elements (which depends
only on the number of unary relations).

• Every row type occurs at most once and the number of row-types is
bounded. Here, the difficulty lies in finding a good notion of row type.
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Logic Complexity Comments

(lower/upper)

One linear order

FO2(+1l) NEXPTIME-complete [EVW02]

FO2(≤l) NEXPTIME-complete [EVW02]

FO2(+1l ,≤l) NEXPTIME-complete [EVW02]

One total preorder

FO2(+1p) EXPSPACE-complete ExpCorridorTiling

FO2(≤p) NEXPTIME/EXPSPACE

FO2(+1p ,≤p) EXPSPACE-complete [SZ12]

Two linear orders

FO2(+1l1 ,+1l2) NEXPTIME-complete [Man10], [Fig12]

FO2(+1l1 ,≤l2) NEXPTIME/EXPSPACE [SZ12]

FO2(+1l1 ,+1l2 ,≤l2) Multicounter-Emptiness [MZ13]

FO2(+1l1 ,≤l1 ,≤l2) NEXPTIME/EXPSPACE [SZ12]

FO2(+1l1 ,≤l1 ,+1l2 ,≤l2) Undecidable [Man10]

One linear order and one total preorder

FO2(+1l ,+1p) Undecidable [MSZ13]

FO2(+1l ,≤p) NEXPTIME Unpublished

/Multicounter-Emptiness

FO2(+1l ,≤l ,≤p) Undecidable [BDM+11]

FO2(≤l ,+1p,≤p) EXPSPACE-complete [SZ12]

Two total preorders

FO2(+1p1 ,≤p2) Undecidable [MZ13]

FO2(≤p1 ,≤p2) Undecidable [SZ10]

Many orders

FO2(≤l1 ,≤l2 ,≤l3) Undecidable [Kie11]

FO2(≤l1 ,≤l2 ,≤p3) Undecidable [SZ10]

FO2(+1l1 ,+1l2 ,+1l3) ?

FO2(+1l1 ,+1l2 ,+1l3 , . . .) ?

Figure 5.1: Summary of results on finite satisfiability of FO2 with successor
and order relations. Cases that are symmetric and where (un)decidability
is implied are omitted.

For details we refer the reader to [SZ10, SZ12].

Using those two properties, one can easily see that the size of S is bounded.
This yields a decision algorithm.

The automata-based technique was, for example, used to prove that
two-variable logic is decidable on structures with two linear orders, but only
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with access to one of the linear orders and the two corresponding successor
relations (short: FO2(+1l1 ,+1l2 ,≤l2). Here the basic idea is to translate a
given formula into a suitable automaton such that finite satisfiability of the
formula corresponds to non-emptiness of the language of the automaton. A
decision algorithm for the emptiness problem for the automata class then
yields a decision algorithm for finite satisfiability of FO2(+1l1 ,+1l2 ,≤l2).

In [MZ13] a suitable automaton model called ordered data automata was
introduced. The model is slightly more general than necessary. Ordered data
automata work on structures with one successor relation (of an underlying
linear order) and a preorder and its accompanying successor relation. It can
be shown that those automata are equivalent to the existential two-variable
fragment of monadic second order logic (∃MSO2) over such structures.

When restricting the equivalence classes of the preorder to contain only
a bounded number of elements, the emptiness problem for this automaton
model is decidable. This implies the decidability of the finite satisfiabil-
ity problem of two-variable logic over structures with two linear successor
relations and one of their corresponding orders.

This concludes the discussion of our proof techniques. We conclude with
some open questions.

It remains open whether there is some m such that FO2(+1l1 , . . . ,+1lm)
is undecidable. We remark that a method for proving undecidability
of FO2(+1l1 , . . . ,+1lm) should not extend to the closely related logic
FO2(F1, . . . , Fm) where F1, . . . , Fm are binary predicates that are inter-
preted as permutations. A successor relation +1l can be seen as a per-
mutation with only one cycle and one label that marks the first element.
Finite satisfiability of FO2(F1, . . . , Fm) is decidable since one can express
that some arbitrary interpreted binary predicate R is a permutation by us-
ing two-variable logic with counting quantifiers which in turn is decidable
by [GOR97]. This is an observation by Juha Kontinen.

Furthermore, decidability of the general satisfiability problem for all of
those fragments remains open. For some special infinite linear orders some
progress for FO2(≤l1 ,≤l2) has been made in preliminary joint studies with
Szymon Toruńzcyk.

In the results discussed so far, additional relations may only be unary.
The general case, for arbitrary additional relations, is open. Current joint
studies with Frederik Harwath suggest that the technique used for deciding
finite satisfiability of FO2(≤l1 ,≤l2) with unary relations can be adapted to
arbitrary relations.
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