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Synopsis

With the rapid decrease in the cost of hardware distributed computing is finding wider
application. The parallelism inherent in distributed processing makes it mﬁch more
difficult to design reliable systems. Many software development techniques such as
hierarchical design and exaustive testing used for large sequential programs are no longer
adequate because of the high degree of nondeterminism present in parallelism. This thesis
addresses the two aspects of correctness and performance in the design of distributed and

concurrent systems.

In chapters 2 through 5 we consider different temporal logics and their extensions, as
formal systems fof reasoning about concurrent programs. In chapter 2 we investigate the
complexity of decision procedures for different versions of Propositional Linear Temporal
Logics(PTL). We present a space efficient decision procedure for the full logic. We also
present optimal decision procedures for other restricted versions of this logic. We
investigate the problem of automatic verification of simple concurrent programs using
correctness specifications given in PTL. PTL can not express many important correctness
properties of concurrent programs. For this reason in chapter 3, we extend PTL by allowing
quantifiers over propositibns. We investigate the complexity of decision procedures for
these logics. We show that for a weaker version of this logic, there is a tight space
complexity hierarchy with the number of alternations of quantifiers, for the set of valid
sentences in this logic. In chapter 4, we consider a branching time temporal logic for
automatic verification of finite state concurrent processes. We present efficient algorithms

for the automatic verification of finite state concurrent programs using specifications given



in this logic. We show how this method can be applied to check the correctness of well
known practical problems like the Alternating Bit Protocol and a solution to a mutual
exclusion problem. In chapter 5, we extend lincar temporal logic by introducing spatial
modalities. This logic allows us to speak about temporal and spatial properties in a unified
logical system. We show how this logic can be used for reasoning about many problems in

fixed connection multiprocessor networks.

In chapters 6,7 we investigate correctness and performance issues in the area of inter-
process communication. In chapter 6, we explore the possibility of using linear temporal
logic for characterizing and axiomatizing different buffered message passing systems. We
prove that all bounded buffers are characterizable and axiomatizable in linear temporal
iogic. We show that unbounded FIFO buffers are in general not axiomatizable in PTL,
while unbounded LIFO and unbounded unordered buffers are axiomatizable. In chapter 7,
we consider the problem of distributed implementation of fair communication among a set
of processes that communicate through rendezvous. Specifically, we consider distributed
implementation of Hoare’s Communicating Sequential Processes that ensure certain
fairness properties. We introduce two different fairness properties: weak fairness, strong
fairness. For a natural class of algorithms that ensure weak fairness, we prove a non-trivial
lower-bound on the time complexity of any algorithm in this class. We present near optimal
algorithms in special cases. We also give new better algorithms for ensuring the above

fairness properties.
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Chapter 1

Introduction

Due to the rapid decrease in the cost of hardware distributed computing is finding
wider application. The parallelism inherent in the distributed processing makes it much
more difficult to design reliable systems. Many software development techniques such as
hierarchical design and exaustive testing that have been used for large sequential programs
are no longer adequate because of the high degree of nondeterminism present in
parallelism. The inadequacy of these techniques becomes more apparent when the system
under construction should continue function even in the presence of partial hardware

failures.

In this thesis we address the two important aspects of correctness and performance in
the design of distributed and concurrent systems. We consider formal systems based on |
temporal logic for reasoning about concurrent processes. We investigate the complexity of
decision procedures for different temporal logics and the complexity of automatically
verifying simple concurrent programs. We also present a very practical system for
automatically verifying finite state concurrent programs using specifications given in a
version of temporal logic. We introduce extensions of temporal logics that are useful in

specifying large collection of concurrent processes.

We also investigate correctness and performance problems in the area of inter-process

communication. The two types of communication we deal with are buffered message passing



systems and process communication through rendezvous(or unbuffered communication). In
the former case, we explore the possibility of using temporal logic for characterizing and
axiomatizing different buffered message passing systems. In the rendezvous type of
communication, we develop efficient distributed algorithms that ensure certain fairness
properties in communication among a set of concurrent processes. Specifically, we consider
distributed implementations of Hoare’s Communicating Sequential Processes [Ho78], that

ensure various fairness properties.

Linear temporal logic was introduced in [Pn77] as an appropriate formal system for
reasoning about parallel programs. This logic permits the description of a program’s
execution history without explicit introduction of time. Many ‘important correctness
properties of concurrent programs like mutual exclusion, deadlock freedom and absence of
starvation can be elegantly expressed in this system. Proving that a parallel program
satisfies some correctness property consists of deducing the formula expressing the property
from program axioms which characterize the possible interleaving of the atomic statements
of the individual processes. An important special case occurs when the programs are finite
state. In this case the program axioms and the correctness properties can be specified in the
propositional version of the logic, Propositional temporal logic (PTL). PTL is also used in
automatically synthesizing concurrent programs as in [Wo82]. In the second chapter, we
consider different decision .procedures for different temporal logics. For the full PTL we
give a polynomial space bounded decision procedure for satisfiability and show that the
satisfiability problem for this logic is PSPACE-complete. The previous decision procedure
given for this in [Wo81] is tableau based and requires exponential space. For a fragment of
PTL which uses only the temporal operator F(eventually) we prove a linear size model
theorem and present a decision procedure in NP, We also consider the complexity of truth

in a structure for different versions of PTL.



Though PTL is widely used, it can not express many important correctness properties.
For this reason we extend PTL by introducing quantifiers over propositions to get
QPTL(Quantified PTL). We show that the set of true sentences in QPTL which are in
normal form with a single quantifier alternation, is decidable using exponential space. We
also consider a logic WQPTL, which is same as QPTL except that in all it'’s models éll the
propositions are false throughout the future after certain instance. We show that there is a
tight space complexity hierarchy with the number of alternations of quantifiers for the set of
true sentences in normal form of this logic. WQPTL is as expressive as WS1S(Weak

Monadic Theory of One Successor). No such tight hierarchy is known for WS1S.

In the traditional approach to concurrent program verification the proof that a program
meets it’s specification is constructed by hand using various axioms and inference rules in a
deductive system. ‘The task of proof construction is in general quiet tedious, and a good
deal of ingenuity may be required to organize the proof. Mechanical theorem provers have
failed to be of much help due to the inherent complexity of the simplest logics. In chapter
4, we argue that proof construction is unnecessary in the case of finite state concurrent
systems and can be replaced by a model theoretic approach which will mechanically
determine if the system meets it's specification. The global state graph of a concurrent
system can be viewed as a finite kripke structure. In chapter 2 we showed that automatically
checking if such a system meets a specification given in PTL is very hard. In this chapter we
use a version of branching time temporal logic called Computation Tree Logic(CTL)
introduced in [EC80], as a specification language. We modify the semantics of the logic so
that only fair computations are considered. For this logic, we give an efficient algorithm(
with complexity linear in the size of the specification) which takes a global state graph, and a

specification given in the above logic, and checks if the specifications are met by the global



state graph. We illustrate how this method can be used to automatically verify the

Alternating Bit Protocol and a mutual exclusion problem.

When verifying parallel programs, which involve a large collection of processes
temporal logic may be very cumbersome to use and in some cases may be inadequate. For
these reasons in chapter 5, we introduce a modal logic which can be used to reason about
synchronous and asynchronous fixed connection multiprocessor networks such as VLSI. In
addition to the temporal modalities it has spatial modalities as well. The temporal
modalities used are until, eventually and nexttime. The spatial modalities used are
somewhere, everywhere, across such and such connection. The spatial modalities allow us to
relate properties of the current state of a process with the current states of the other
processes, while the temporal modalities allow us to relate the current state of a process with
the succeeding states of the process. We give examples of the diverse applications of our
logic to packet routing, firing squad problems and systolic algorithms. We also consider the

decidability issues of the different versions of the logic.

Exchange of information between executing processes is one of the primary reasons for '
process interaction. Many distributed systems implement explicit message passing
primitives to facilitate intercommunication. Typically, a process executes a write command
to pass a message to another process, and the target process accepts the message by
executing a read command. The semantics of write and read may differ depending on the
method used for buffering messages that have been sent but not yet received. In chapter 6,
we consider the possibility of characterizing and axiomatizing the different message -
buffering mechanisms in linear temporal logic. Specifically, we consider FIFO, LIFO and
unordered buffers. The set of distinct messages that can be written into the buffer is the

message alphabet. We specify a message buffer as the set of all valid infinite input/output



message sequences. Characterizing a message buffer consists of obtaining a formula that is
true exactly on these sequences. We show that bounded buffers over a finite alphabet are
characterizable in PTL. We prove that we can not give a domain independent
characterization of unbounded buffers in first order temporal logic, but such a
characterization can be given for bounded buffers. A model of a buffer is an infinite
sequence of states denoting a series of legal read/write operations on the buffer. The theory
of a message buffer is the set of all PTL formulae that are true in all models of the buffer.
Since bounded buffers are characterizable in PTL, they are axiomatizable. We show that
unbounded FIFO buffers over an élphabet of cardinality > 2, are not axiomatizable. In fact
we prove that their theory is H}-complete. Surprisingly we prove that unbounded
unordered buffers and LIFO buffers are axiomatizable and in fact their theories are

decidable.

Communicating Sequential Processes(CSP) was introduced in [Ho78] as an appropriate
Programming Language for distributed systems. The original semantics of CSP did not
require fairness in the selection of processes waiting to establish communication. However,
in practice such a restriction may be highly desirable. In chapter 7, we consider the problem
of implementing such a fairness property in CSP which allows input as well as output
statements in the guards of alternative commands. We introduce a formal model for this
and consider two different faimess properties; weak fairness, strong fairness. For example,
in weak fairness we require that if two processes are willing to communicate continuously
fhen they should eventually establish communication. We consider algorithms for
distribhted schedulers that ensure the different fairness properties. In this model
neighboring schedulers can talk to each other using shared variables, each of which can be

updated by only one process. We give simple global algorithms to ensure the fairness



properties. Next we consider algorithms in which the interaction between the schedulers is
restricted in a natural way. For these algorithms we present an O(yz) lower-bound on the
time complexity of any algorithm that ensures weak fairness where y is the chromatic
number of the communication graph. In the special case when the communication graph is
a complete graph we present a near optimal algorithm that ensures weak faimess. After this
we consider algorithms with improved interaction between the scheduler processes. In this
model we present better algorithms for weak fairness and also give algorithms for strong

fairness.

In chapter 8, we conclude with remarks and open prbblems.



Chapter 2

Complexity Of PTL

2.1. Introduction

Linear Temporal Logic was introduced in [Pn77] as an appropriate formal system for
reasoning about parallel programs. This logic permits the description of a program's
execution history without the explicit introduction of program states or time. Moreover,
important correctness properties such as mutual exclusion, deadlock freedom, and absence
of starvation can be elegantly expressed in this system. Proving that a parallel'program
satisfies some correctness property consists of deducing the formula for that property from
program axioms which characterize the possible interleaving of atomic statements of the
individual processes. An important special case occurs when the program is finite state. In
this case, the program axioms and correctness specification can be expressed in the
propositional version of the logic and provability becomes decidable. A number of
researchers (e.g., [MW81]) have attempted to use such a decision procedure for constructing

correct finite-state programs.

In this chapter we examine the inherent complexity of decision procedures for validity,
satisfiability, and truth in a particular structure for propositional logics with the temporal
operators F (eventually), G (globally), X (nexttime), U (until) and S (since). We first
consider the logic L(F) in which F is the only temporal operator. We prove a linear size

model theorem from which a nondeterministic polynomial time bounded decision procedure



for satisfiability can be obtained. It immediately follows that satisfiability is NP-complete
for L(F). This result is surprising since it shows that the set of satisfiable formulae in L(F) is
no higher in the complexity hierarchy than the set of satisfiable formulae in ordinary

propositional logic.

It is to be observed that we can not obtain an elementary decision procedure for
propositional linear temporal logic by translation into the language of the structures (N, &,
PP, .. .) where N is the set of natural numbers, < is the natural w-ordering and P,, P,,
...are monadic predicates, as it is shown in [Ro] that any decision procedure for
satisfiability of formulae in the later logic has to _be non-elementary. A tableau based
decision procedure for propositional linear temporal logic was given in [Wo81]. However
this procedure requires exponential space. We give a polynomial space bounded decision
procedure for satisfiability of formulae in L(U,5,X). We show that satisfiability for the
logics I(F,X), L(U), L(U,X), L(U,S$,X) and for the extended temporal logic given in [Wo81]
is PSPACE-Complete. These results are surprising because all of these logics have different

expressive powers (some are more powerful than others).

Finally, we consider the question whether a temporal formula is true on some path
starting from a node of an R-structure. R-structures model finite state parallel programs.
We show that the above problem is NP-complete for L(F) but is PSPACE-complete for the
other above mentioned logics. The corresponding problem for branching- time logics has

been shown to be in P {CE81}.

This chapter is organized as follows: Section 2.2 defines the syntax and semantics of
the linear temporal logic that we use in the remainder of the chapters. In Section 2.3 we

prove the linear size model theorem for L(F) and the corresponding NP-completeness



results. Section 2.4 contains the PSPACE-completeness results for L(F,X), L(U), and
L(U,S,X). In Section 2.5 we show how our results can be extended to the extended logic
given in [Wo81].

2.2. Notation and Basic Definitions

We use the following convention for symbols:

PQR,... denote atomic formulae and are drawn from the set .
fgh,... denote formulae.
stu,... denote finite or infinite sequences. We always

assume s = (30’51’ ce )

STW,... denote structures.

IfO,,... ,Ok e {X,F,G,U,S,Y} are distinct operators then L(Ol, . ,Ok) denotes the

propositional temporal logic restricted to these operators, e.g. L(F.,G), L(X,F,G), etc.

A well-formed formula in propositional linear temporal logic is either an atomic
proposition or is of the form - f;, fjAf,, Xf}, f; U f, Yf,, f, S f, where f, f, are well-
formed formulae. In addition, the following abbreviations will be used:
fivf,= -(-f; A -f), f] > f2 =-fj v f,,

Ff=True Uf, Gf = =F~f.
Let 7.(F,X) be the logic that uses the boolean connectives A,v, the temporal operators F.X

and with negations allowed only on the atomic propositions.

A state is a mapping from the set of atomic propositions into the set {True, False}. An
interpretations is an ordered pair (t, i) where t is an w-sequence of states andi > 0 is an
integer specifying the present state. We define the truth of a formula f in.an interpretation

(i) (t, i = f) inductively as follows:



tie=P where P is atomic iff t (P) = True;
tiFEfAf, iff tiF=f) and tik= £

tikE —‘fl iff not(t,i k= fl);

ti = Xf) iff ti+1 =1

t,it==f1Uf2 iff 3kzisuchthatt,kl=f2ande i<j<k, tje=f;
t,il=Yf1 iff i>0andt,i-1=f;

ti k= f;Sf, iff Jk <isuch that t k = f, and Vjsuch thatk <j<i tjF=f};
X,U,Y,S are the "nexttime", "until", "last-time", and "since" operators respectively.

We define the semantics so that F f; = True Uf, and Gf; = —=F-f}. Length (f) denotes
the length of the formula f and SF(f) is the set of sub-formulae of f or their negations after

eliminating double negations. We assume that is finite at many places.

Though, we have defined a state to be mapping associating truth values for each atomic
proposition, in the present chapter we differentiate between a state and the associated
mapping. We use a different notation for convenience. A Structure S = (s, §) wheres =
(so, Spp - .) is an w-sequence of states and § : {so,sl, R 27 Intuitively, £ specifies
which atomic propositions are true in each state. We also assume that all the states
appearing in the sequence of a structure are all distinct. An interpretation is pair (S,sj)
where S is a structure defined as above. Since we have assumed all states in S to be distinct,
any state in S uniquely deﬂnés its position. It is easily seen how we can go from the earlier
interpretation to the present interpretation. The truth of a formula f in the new

interpretation is defined exactly the same as we did in the previous interpretation.

An R-structure T is a triple (N,R,7), where N is a finite set of states, REN x N is a total
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binary relation (that is ¥ t ¢ N 3 t ¢ N'such that (tt) € R),and n: N = 2% A pathpin F
is an infinite sequence (pyp;, - ..) where Vi>0,p; €N, and (pyp; +'1) € R. Throughout
this chapter for a path p in a R-structure T = (N,R,7) we let Sp denote the structure (s,£)

where Vi > 0, £(s) = n(p).

The global behavior of a finite state parallel program can be modelled as an R-
structure. In the R-structure each path starting from the initial state represents a possible
interleaving of executions of the individual processes in the program. In many cases, the
correctness requirements of the concurrent system can be expressed by a formula of
propositional linear time logic. The system will be correct iff every possible execution
sequence satisfies this formula; ie., every path beginning at the initial state in the
corresponding R-structure satisfies the formula. For these reasons the following problem
(which we call the determination of truth in a R-structure) is important in verifying finite

state parallel programs:

Given a R-structure T, a state p; € N, a formula feL, is there a path p in T starting

from p, such that Sp,s0 = f?

2.3. The Complexity of L(F)

Let S = (s,€) be a structure and let s" = (sj,sj 41 . ) be the maximal suffix of s such
that for each s, in s" the following condition holds:
Ve i such thati > 1 and £(s)) = &(s)
that is, there exist infinitely many states in s" which have the same assignment of atomic
propositions, as s,. It is easily seen that such an s" exists (because @ is finite), and s" is
unique. Lets = s - ", Define init(s) = s, final(s) = s", range(s) = {§(sk)| 5, isin s"} and

size(s) = length(init(s)) + card(range(s)). Thus, range(s) is the set of all assignments of
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atomic propositions which occur infinitely often in s. Note that init(s) is a finite sequence

(and can be the null sequence!), final(s) is an infinite sequence, and range(s) is a subset of
2%

THEOREM 2.1: (Linear size model theorem for L(F)). If f € L(F) is satisfiable then

there exists a structure S = (s,§) such that size(s) < 2-length (f) and S, s = f.

Proof of Theorem 2.1 is based on the following lemmas which provide insight on the

expressive power of the F operator.

The following lemma shows that all states in final(s) with the same assignment of

atomic propositions satisfy the same formulae in L(F).

LEMMA 22: LetS = (s,£) be a structure and let S S be states in final(s) such that

E(sj) = §(s,); then for all fe L(F), S, S; = fiffSs, =1

Proof. The proof is by structural induction on f. If fis an atoniic proposition, then the
lemma holds trivially. Assume that the lemma holds for fl, f2. Then it is easily seen that the
lemma hold for f1 A fz' - fl. We must prove that the lemma holds for f = Ff]. Suppose S,
sj% Ffl. Then there is astate s, such that ¢ > jand 8,5, = f;. Sinces, is in final(s), there are
infinitely many m such that £(s ) = £(s,) and (by induction) S, = f;. Hence, there is an

m > ksuch that S,s _ k= f}, thatis S, s, = 1. O

LEMMA 23: Let S = (,£), T = (t,w) be structures such that length(init(s)) =
length(init(t)); for all j< length(init(s)); i(sj) = w(tj); &(sy) = m(ty) (this is necessary for the
case when length(inii(s)) = 0) and range(s) = range(t); then for all fel(F),
Ssy=fiff Ty =f. O
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The above lemma can also be proved by induction on f, and it states that formulas in

L(F) cannot distinguish the order of occurrence of states in final(s).

Lets = (spSyps - - )t = (to,tl, ...) be finite or infinite sequences with all states in st
being distinct. t is a subsequence of s (written t < s) iff there exist integers io,il. .St
i0<i1<i2< ... and for all j> 0, sij = tj. Let S = (s, £) be a structure and t be a subsequence
of s. We define init(t),final(t),range(t),size(t) are appropriately defined with respect to S. t is
an acceptable subsequence of s (written t[s or s]t) if t <s, final(t) < final(s) and if any s; in
final(s) is contained in t, then £(sj )¢ range(t). We assume that the structure with respect to

which /[ is defined, is understood from the context. If t s then size(t) <size(s). Note that if

t <s then it is possible that size(t) >size(s).

LEMMA 24: LetS = (s,£) be a structure and let t[s be such that for all j > 0, S,tjl=f
where f € I(F). Then (a) there exists an infinite sequence u such that uls,
size(u) < c-length(f) for some constant ¢ and (b) for all structures W = (w,), whereu[w [s,
and g is the restriction of § to the states in w, the following condition holds:

Foranyiifw s present in't then W, w ; = f.
Proof

Using D’morgan's laws and the identities —-Ff = G—f, ~Gf = F-f, any f "¢ I(F) can
be converted to an equivalent formula f in which all negations apply to atomic propositions
only. For formulas of this kind we prove Lemma 2.4 with c = 1. The proof is by induction |

on the length of the formula.

Basis: f = Por =P. u = null sequence satisfies the lemma.
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Induction:
@ f=1f,Af, Forall tet, S,tjl=f2 S,t;j = f,. By induction hypothesis there exist
u;,u, such that size(ul) < length(f)), size(uz) < length(fZ), and (b) holds for u,f; and uz’fz-
Let u [ s be the sequence containing the states of u; and u,  Then

size(u) < size(ul) + size(u2)<length(f), and it is easily seen that (b) holds for u,f.
(i) f=1, vf,. The argument is similar as in (i).

(iii) f=Ff,.

Case 1. tis finite. Lett be the laststate of t. S,t = Ff;. Hence
there is a S; appearing after t_in s such that S,sjt=f1. If S; is in init(s), then let t = (sj);
otherwise let t be the subsequence of all states s, in final(s), such that §(sf) = §(sj). For all
s int, S5, = f. By induction hypothesis there is a u'[ s such that size(u’) < length(fl) and
(b) is satisfied for w, f] and with t=t. Now let u [ s be the sequence containing all states of
u' and t. Then size(u) < size(t')+size(w) = 1+ size(u)<length(f) and (b) holds.

Case 2: t is infinite. There exist infinitely many k such that
Ss, = Ff). Lett = (tg--) [sbesuch that t is infinite, forall j > 0 E(t j) = ¢ (t'j +1)»and

S,t!ji=f1. The remained of the argument is as in case 1.

(iv)F = Gfl. If t is in init(t) then let t = suffix of s starting from ty otherwise let t
= final(s). Clearly for all j<0, S, tj = fl. By induction hypothesis there is a w[s such that
size(u')<length(f1) and (b) holds for v, fl and with t=t. Since t is a suffix of s, it is easily

observed that (b) holds for u,f, and t.

Since any formula fel(F) can be converted into an equivalent formula in which
negations are applied to atomic propositions only, and whose :ngth is no more than double

the length of the original formula, we see that Lemma 2.4 is true with c=2,
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Proof Sketch of Theorem 2.1, Assume f is satisfiable and let V = (v,¢) be a structure
such that V,vob-'f. Let t be the sequence as follows. If length(init(v))> 0 then t = (vo);
otherwise t is the sequence containing all states v, such that ¢ (v)) = @ (vp). Clearly t[v,
and due to Lemma 2.2 for all i >0V, tit=f. Now applying Lemma 2.4 with S = V, we get
an infinite sequence u[v, such that size(u)< 2-length(f) and u satisfies the condition given in
Lemma 24. Lets < v be the sequence containing all the states of t and u. Then s [ v and
size(s) < size(t)+size(u)<2-length(f). Let S = (s,£) where £ is the restriction of ¢ to the

states appearing in s. Then from Lemma 2.4, Ssy=f. O

THEOREM 2.5: The following problems are NP-complete for the linear time logic L(F).
(i) Determination of truth in a R-structure.

(ii) Satisfiability.

Proof: (i) We will prove that determining truth in an R-structure is NP-hard by
reducing 3-SAT to this problem. Let g = C,AC, A..AC_ be a boolean formula in 3-CNF
where Ci = Ve,V (for 1<i<m), tik=xj or —X; (1<k<3) for some j such that 1<j<n.
X)XysX Are the variables appearing in g. Let T = (N,R,7) be the R-structure defined as

fo‘llows:
?={ C | l<igm}
T can be described by the graph shown below:
N={xl<isniu{z|1<i<n}uy|0<ign}
R = {0,059 Oip 5D Gy G| 1 i< ndu {5}

wx) =1 C}|xi appears as a literal in Cj, ie., forsomekl<k<3, by = x;}
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x?
Xt

X‘O
N -t
4

-

Figure 2-1:
) = { cj| ~x; appears as a literal in C;}

) = 2

It can easily be proved that g is satisfiable iff there exists a path p in T staring from y,
such that (Sp,so) = F C1 AF Cz/‘ ..AFC. The above reduction is a polynomial
reduction. Hence determination of truth in a R-structure is NP-hard for the language L(F).

a

Let T = (N,R,7) be an R-structure. Any path p in T can be uniquely decomposed into
p, p" such that p = p'-p", any state that appears in p" appears in it infinitely often, and p"
is the maximal such suffix. All the states in p" belong to a strongly connected component in
the graph of T. Using Lemma 2.4 it can be shown if there is a path q in T staring from q,
such that (Sq,so) k= f, then there is a path p in T starting from q such that Sp,so = f
p = p-p". and length(p')<2-length(f)-card(N). A nondeterministic TM M guesses p' and
the set C of states appearing in p". Next, it verifies that p' is a finite path starting from q, in

T, that the subgraph containing nodes of C is strongly connected, and that there is an edge
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from the last state of p' to a state in C. Then M uses the following algorithm to verify if

(Sp,so) k= f. M labels each node x in p or C with sub-formulae of f as follows:

For each node x label(x)«— @;
For each formula geSF(f) in the increasing order of length(g) do

For each node x in p' orin Cdo

Case of g
g=P: If Pen (x) then label(x)«—label(x)e {P};
g="g;: If glelabel(x) then label(x)+—label(x)u{g};
g=Fg;: If glelabel(y) for some yeC then
label(x)—label(x)u{g};
If x is in p and there is a state y in p'
after x such that gle(y) then
label(x)+~ label(x) u {g};
B=8 A8y if g).8,¢€ label(x) then
label(x)—label(x)u {g};
End Case
End For
End For;
Accept iff felabel(qo).

It can easily be shown that the above algorithm works correctly and that it is
polynomial time bounded in card(N) + length(f). Thus, determination of truth in a R-

structure is NP-complete.
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(ii) Satisfiability is NP-hard because boolean satisfiability is NP-hard.

Left feL(F) and ¢ = the set of atomic propositions appearing in f. From Theorem 2.1 if
f is satisfiable, then it is satisfiable in structure S = (s,£) where size(s)<2-length(f). A
nondeterministic TM M which checks for satisfiability of f operates as follows: M guesses
init(s) and range(s) such that length(init(s))<2 - length(f), card(range(s))<2- length(f). Next
it uses a labelling algorithm similar to the one in (i) to accept or reject f. Clearly M is

polynomial time bounded in length(f). O

We can also prove by the previous techniques a linear size model theorem (Theorem

2.1) for the logic 7 (F,X) and show that Theorem 2.5 holds for this logic as well.

2.4. The Complexity of L(F,X), L(U) AND L(U,S,X)

The main results of this section are summarized in the following theorem.

THEOREM 2.6: The following problems are PSPACE-complete for the logics L(F X),
L(U), and L(U,S,X):
(i) Satisfiability,

(ii) Determination of truth in an R-structure.
The proof of the above theorem is based on the following lemmas.

Let S = (5,£), T=(t,7) be structures such that for some m>0 the following conditions
are satisfied:
ViO<i<m L=s,, Vii>m+1 t=s,4
and = is an extension of § such that w(t_  )=m(t )
i.e. T is obtained by duplicating the m™ state in S successively once. The following lemma

is easily proved by induction on the formula f.
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LEMMA 27:For any fel(U), T,tm#=f T Ffand for any & in
s S,8=fiffT,§ =f. 0O

The above lemma states that by duplicating a state successively we do not change the

truth value of a formula in L(U). Note that the lemma is not true for L{U,X).

LEMMA 2.8: Determining truth in an R-structure is polynomial-time reducible to

satisfiability for L(F X), L(U) and L(U,S,X).

Proof. Let T = (N,R,7) be an R-structure and let fe L(U,S.X). Let® = {P |xeN}

and PNP = 2. % contains one new atomic proposition for each state in N.

Let g, be the conjunction of all Q such that Qen(x), g, be the disjunction of all Q such
that Qe®- n(x), g, be the disjunction of all Py such that (x,y)eR.
f. = G(P,> (g;A(=8)A Xgy)).
Let hy be the disjunction of all Py such that yeN, h, be the conjunction of all fx such that
xeN, let h; assert that exactly one proposition in @, is true at any point. Then

f' = G(h) Ah, AG(h)

Any structure T = (t,7) such that T,to = f' has the following property. At each
state in t exactly one proposition in @, is true, and if P, is true at a state then all propositions
in n(x) are true in that state, all propositions in (2- n(x)) are false in that state and in the
next state Py is true for exactly one y such that (x,y)eR. Letf" = f 'AfAP . It can easily
be seen that there is a path p in S starting from q such that Sp,s0 = fiff f" is satisfiable. If

fel(F.X) then f "¢ L(F,X).

In f, we can avoid the X operator as follows. We replace the formula Xg,byg defined

as follows. If (x,x)¢ R then let g'=(P Ug,),
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otherwise let g = (G(P,) v [PxU(g3/\-wa)]).
If (x,x)¢R then g causes P__to repeat successively a finite number of times before P y is true
for some y which is a neighbor of x. However lemma 2.7 states that this does not change the
truth value of the formula f , that is f " is true in a structure in which P, does not repeat iff it
is true in a structure in which P, repeats a finite number of times. It is easily seen that there
is a path p in S starting from q such that Sp,sot=f iff f" is satisfiable. The above reductions

are clearly polynomial reductions. [J

LEMMA 2.9: Determination of truth in an R-structure is PSPACE-hard for L(F,X) and
L(U).

Proof. LetM = (Q, £, V,,Vg.V)) be a one tape deterministic TM where Q is the set
of states, Z is the alphabet, {: Q x £ —-Q x Z x {LR}, V,,V,,V, are the accepting,
rejecting and initial states respectively. Let M be S(n) space bounded such that S(n) is
bounded by a polynomial in n. M halts on all inputs in state V, or Vg, thus accepting or
rejecting the input. An ID of M is appropriately defined. Leta=aa, ...a, be an input to
M.

Let T=(N,R,7) be an R-structure shown in figure 2.2.

Let?2=(Qx 2 u 3 U{BLEI} be the set of atomic propositions. The structure in
figure 2.2 has S(n) diamoﬁds connected in a chain, and in each' diamond there are
card( QxZ u 2 ) number of vertical vertices. In each diamond, on each vertical vertex
exactly one atomic proposition is true, and every atomic proposition in QxZ u Z is true on
some vertical vertex of the diamond. Each subpath between Bl and EI represents on ID of

M, and a path from BI represents a sequence of Ids of M.
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Figure 2-2:

Using S(n) X operators the relation between the contents of a tape cell in successive
IDs can be asserted. Because of this, polynomial length bounded formulas in L(F,X) can be
obtained asserting the following conditions: All the Ids on a path p starting from BI are
valid, the first ID is the initial ID containing the input string a;a, ...a, each suoceséive ID

follows from the previous one by one move of M, and the final ID appears on the path.

Let fa be the conjunction of formulas asserting the above conditions. It is easily seen
that there is a path p from BI in T such that Sp, sy =, iff M accepts a. For any input a,f,
can be obtained in polynomial time. By introducing additional propositions Po’Pl' ces ,Ps(n)
to mark the left and right end points of successive diamonds we can avoid the X operator

using ‘only the U operator. The resulting formula will be in L{U). O

Let S=(s,§) be a structure and fel(USX). For any state s in s let

Islg = {8eSF(D|S.s;=1}.
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LEMMA 2.10: In S=(s.), if 5,8 be two states such that [s)s ; = [sj]S ¢ then for the
structure S' = (8,§) wheres = (s)$ ..., SepSpSiap - ) and § is restriction of § to states
ins, the following property holds:

Foralls, such thats, is preseht insandins, [Sk]S,f = [sk]S',t‘ O
The above lemma can be proved by induction on the length of the formula f.

A formula g is said to be an U-formula if it is of the form g, Ug,. A structure S=(s,§)is
said to be ultimately periodic with starting index i and period m if Vk2i £6s) = &6y 4 )
For a structure S and a formula f let Mg, = {CcSF(H) | there are infinitely many k such

that [s, ] ; = C}.

LEMMA 2.11: For the‘stmcture S = (s,£) leti, p be integers such that [Si]S,f =[5 +p]S,P
and for any g = g,Ug,, if ge[si]S’f then Im such that ism<i+p and S;s_F=g,(ie. every
U-formula in [Si]S,f is fulfilled before s, +p). LetS = (s8,&) be an ultimately periodic structure
with starting index i and period p such that Vk<i+p §&(s) = &' (s)).

Then, Vk<i+p [Sk]S,f =[] S.f and Vkx>i ['Sk]s,’f =[5} +p]S',f .

Proof. By induction we prove that for any geSF(f),
(2) Vk<i+p S5, =giff S5, =g, and

(b) Vk2i S, 5, =g iff S5 +pl=g.
Basis: If g is atomic then (a), (b) follow trivially.

Induction: Assume (a),(b) hold for gl,gzeSF(f). By a simple argument it can easily be
shown that (a), (b) hold for g = —g,, g;Ag,. Below we prove that (a), (b) hold for g =

g,Ug,.2,58,; a similar argument can be given forg = Xgl.
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Casel: g = g,Ug,.
We prove (a). (b) can be proved similarly. Assume for some k<i+p S5, F=g. Assume k<i.
From the hypothesis of the lemma it follows that for some ¢ such that k<¢<i+p S5, Fg,
and Vj k<j<¢ S,sjh=g1. By the induction hypothesis the above holds for S also. Hence S5/,
k=g. Now assume i<k<i+p. The interesting case occurs when Vj k<j<i+p S,sj =g,

S,sjl= g In this case S.s; +pl=g and hence S,s;F=g. From the hypothesis of the lemma and
the induction hypothesis for (b) it can easily be seen that 8.5, =g. The implication in the

other direction can also be proved similarly.

Case2: g = 8,5¢,
Then fork <i+pSs =g
iff (3 ¢ <kSsj=g, and Vje<j<k Ss=g))
iff Je<kSs, =g andVje<j<k S',s‘j =g,)
(due to induction hypothesis)

iff S',s'kl= g

We would like to prove that (b) also holds for g. Assume for ki, S8, = g. Then there
exists ¢<k such that §s = g, and for all j such that ¢<j<k S',s'j = g,. For k>i+p or

(k<i+p and ¢£> i), the result can easily be seen. So we consider the case when £<i<k<i+p.

In this case due to the induction hypothesis for (a), it can be seen that §, s,=g, and for
all j such that ¢<j<i S,sji=g1. Hence S,s;=g. Due to the hypothesis of the lemma we see

thatS,s. , k=g, Thﬁs, one of the following two cases holds:

i+p
()Im(k<m<i+p and S;s =g, and Vj such that m<j<i+p S,sj =g,).

By the induction hypothesis for (a), the above condition is also satisfied by S. Due to the
induction hypothesis for (b) it follows that for all j such thati+p<gj<k+p S',s'jl= g;- Hence

S8, p 8
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(i) Vj i<j<i+p S,sj =g
Due to the induction hypothesis for (a) the above condition holds for §' also. Due the the
induction hypothesis for (b)

Vj k<i<k+p S',éj =g

Hence S',¢ k= g. The induction step for the reverse implication in (b) can be similarly

k+p
proved. O

THEOREM 2.12: (Ultimately periodic model theorem). A formula f ¢ L(U,SX) is
satisfiable iff it is satisfiable in an ultimately periodic structure S = (s,§) with starting index ¢

<2 1+1length() perind p <altlengh(® g gvsp o [sds s = [Sk+pls’f

Proof Let f be satisfiable. Since f may not be satisfiable at the beginning of a
structure, we consider g = Ff. Then there exists a structure T=(t,n) such that T,t; = g.
Let ¢, m be integers such that [tle,g =t m]T’g and

®  {ltrg | esk<e+m} =My,

It is easily seen that each U-formula in [tZ]T,g is fulfilled before t, . We apply
reductions of Lemma 2.10 repeatedly to states between t and t,, OF to states between t, and
tl;'_ m (excluding tyt,, t, . pWithout violating (*), until no more such reductions are
possible. In the resulting sequence |

() there are at most 2!e"81(®) states before t,and

(b) there are at most (card(MT,g))2 states between t,and t, .
(a) follows trivially if we observe that , in the resulting sequence there are no two states
before t, which satisfy exactly the same sub-formulae of g. If (b) does not hold, then there
exist at least card (MT,g) + 1 states between t, and Yrm which satisfy the same sub-

formulae of g, i.e., there exist at least card(MT g) intervals between these states. It is easily
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seen that there exist at least on interval among these, such that for every state within this

interval there exist another state outside this interval and between t and t such that

£+’
both these states satisfy the same sub-formulae of g. Hence we could have carried a
reduction of Lemma 2.10 for the two end states of this interval without violating (*). This

contradicts our assumption.

Let t be the resulting sequence after the reductions and T' = (t, ') be the structure,
where 1 is the restriction of 7 to the states in t. There exist integers i < 2'*"¢M® p<
4length(®) gch that Gty p satisfy the same sub-formulae of g, and using lemma 2.11 we
obtain a periodic structure S with starting index i<2'*"8®, period p<4'*"8%®) such that

Vk>i [sk]s,g = [s, +p]S,g and S5y Fg.

Proof of Theorem 2.6. Let f be a formula in 1(U,5,X) and g = Ff (= True Uf). fis

satisfiable iff g is satisfiable at the beginning of an ultimately periodic structure. We
describe below a nondeterministic TM M which checks for satisfiability of g. M guesses two
numbers nlsle“g'h(g), n254le“g‘h(g) which are supposed to be the starting index and period
of an ultimately periodic structure. Next, M guesses the sub-formulae that are true at the
beginning, verifies that g is in this set. At this point it checks for boolean consistency and it

checks that any sub-formula f1 S f2 is in this set iff f2 is in this set.

Subsequently, M guesses the sub-formulae that are true in the next state and verifies
their consistency with the sub-formulae that are guessed to be true in the next state. If

Subpresem, Subnexl are the formulae guessed to be true at the present state and the next state

respectively it verifies that

Xf, eSub iff £, €Sub

present next’

f,Uf,€Sub iff fyeSub___ or(feSub___ and f,Uf, € Sub

present present present next)’
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f;Sfye Sub_ ., iff f,€ Sub or (fleSub“ext and f1 S f2 € Sub

present present)'

It also checks the boolean consistency whenever it guesses a set of sub-formulae to be

true at any state , i.e.

f Af,eSub_ ifff,,f, € Sub

present present’

~f, € Sub

present

iff f, ¢ Sub

present’

It continues the above process each time incrementing the counter. When the counter
is n;, it notes that it is in the periodic part of the structure. It saves the set of sub-formulae

Sub guessed to be true at the beginning of the period, and it re-initializes the counter.

period
It continues guessing the sub-formulae in the next state and incrementing the counter. At
each instance it has to keep three sets of sub-formulae: those that are true in present state,
those true in the next state and those true at the beginning of the period. When the counter
has value n,, it stops guessing and takes Subperiod to be the set of sub-formulae true in the
next state. At each step in the above procedure it checks the consistency of the sub-
formulae guessed. It also verifies the following condition. Each formula of the form

(flUfZ)e Sub is eventually fulfilled with in the period, that is f2 is present in the set of

period
sub-formulae guessed to be true somewhere within the period. It can easily be proved by
induction that M accepts an'input formulae iff it is satisfiable. Clearly M uses space linear
in length(f). Using Savitch's[Sa70] theorem it follows that there is a polynomial space

bounded deterministic TM that decides satisfiability.
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2.5. Complexity of Extensions of the Logic

In [Wo81] propositional linear temporal logic is enriched with the addition of operators
corresponding to regular right linear grammars. Let R be a regular right linear grammar
with terminal symbols al;az, R and non-terminal symbols NN, ... N If
fl,fz, ...of are formulae in the logic then so is Nj(fl,fz, e ,fn) for 1<j<m. For a structure
S=(s.§), Ss, = Nj (fl,fz, ....f) iff there exists a string ail,aiz,ai3, ... generated by R from

Nj such that for all £0S.s, +k'=fie+f

Ex: Consider the grammar N0 — alazNo. It generates the infinite string a,a,3,a,. ...

S,sor==N0(True,P) iff P holds at all even states in s.

For convenience, we assume that each production rule in the grammar has at most one
terminal symbol. Note that for any grammar we can obtain an equivalent grammar with the
above property by increasing the size of the grammar by at most a constant factor. For any

formula f in this logic we define SF(f) as follows:

If f=P then SF(f) = P;

If f = f;Af, or fyUf, or f;Sf, then SF(f)=SF(fUSF(f,)u{f};
Iff = -f, or Xf then SF(f) = SF(f)uif};
Iff= Nj(fl,fz, ... f ) where Nj is a non-terminal in the above regular grammar,

then SF(f) = SF(fl)uSF(fz) e uSF(fn)u{Nj(fl,f2, o f) | 1<j<m}

With the above definition of SF(f), it can easily be seen that lemma 2.10 holds for this

logic. We can easily show that theorem 2.12 holds by some changes in the proof.

In Theorem 2.6, we assume that the grammars 'corresponding to the regular operators
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are encoded as part of the input. In this case if the input length is n, then care(SF(f))gn2

where fis the input formula. To prove Theorem 2.6, we need to modify the previous proof
2 2

as follows. The two guessed integers nj,n, should be less than or equal to 2 40

respectively. In addition the operation of M is to be modified as follows:

At any time Nj(fl,fz, s ,fn) is in the set of sub-formulae guessed to be true at any state,
iff either there is production rule of the form Nj—>akN£ is in the grammar, such that f, is
also present in the set of formulae guessed to be true in the present state and
N e(fl’fZ’ ... ,fn) is present in the set of formulae guessed to be true in the next state, or there
is production rule of the form N 2y S0 that}fk is present in the set of sub-formulae guessed

to be true in the present state.

For each formula of the form -:Nj(fl,fz, - ,fn) present in the set of sub-formulae
guessed to be true at the beginning of the periodic part, M keeps a set of sub-formulae
denoted by (p(Nj(fl’fZ’ ...f)). These are the sub-formulae that are to be false in the next
state. At the beginning of the periodic part this set contains only Nj. If Ppresent Prext
denote the value of ¢ in the present and next state, then ¢ is updated as follows: |
<pnext(Nj,(f1,f2, ) ={Ne| there is a production rule Np"’asz in the grammar such
that Npe Pprese m(Nj(fl’fz’ ces ,fn)) and fk is present in the set of sub-formulae guessed to be
true in the present state}. M makes sure that (p(Nj(fl,fz, - ,fn)) becomes empty at some
point within the periodic part of the structure. This will guarantee that Nj(fl,fz, cee ,fn) is

false at the beginning of the period.

It can easily be proved M accepts an input formula in the extended logic iff the formula

is satisfiable. It is easily seen that M is polynomial space bounded.
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2.6. Conclusion

In this chapter we have examined the complexity of satisfiability and truth in a
particular structure for various propositional linear temporal logics. We have determined
that these problems are NP-complete for L(F) and PSPACE-complete for I(F.X), L(U),
L(U,S,X), and Wolper's extended logic (see Figure 2.3). Satisfiability for L(U,X) can also be
shown to be in PSPACE by translation into SDPDL [HR81]; however this technique does
not work for 1(U,S,X) or for Wolpers logic with regular operators. It should be also
observed that both the X and G operators are necessary for PSPACE-hardness of
satisfiability of L(F,X). Thus, the logic 7 (F,X) is NP-complete since it does not permit the

G operator.

Finally, it is interesting to compare our results with the corresponding results for
branching-time logics. Since branching-time formulae are interpreted over the states of a
structure rather than over executions sequences, determining truth in a particular structure
is much easier and, in many cases, is in P [CE81). Satisfiability, on the other hand, can be
shown to be exponential-time hard for branching time logics with a nexttime operator and is
shown to be PSPACE-complete in [La77] for many branching time logics with F and G
operators. Thus satisfiability for the branching time logics is apparently harder than for the

corresponding linear time logics.
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Truth in an
Logic Satisfiability Validity R-Structure
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Figure 2-3:
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Chapter 3

Temporal Logic with Propositional Quantifiers

3.1. Introduction

In the previous chapter we examined the complexities of propositional linear temporal
logics. It can be shown that the language 1(U,S,X) can not express many interesting
properties of parallel programs. It is shown ‘in [Wo81] that we can not express the property
that some event should occur at every even state in a sequence. For this reason we extend
this logic by introducing quantifiers over propositions. Specifically we consider the
language using the temporal operators F, X; which allows quantifiers over propositions. We
call this logic QPTL. It can easily be shown that QPTL is as expressive as the monadic
second order language of one successor when interpreted over natural numbers. Let Zk be
the set of formulae of QPTL in standard form (i.e. all quantifiers appear in the beginning), .
and having a quantifier prefix that begins with an existential quantifier and has i(-l
alternation of quantifiers. Let ik be the set of sentences in Zk which are true in all
interpretations in which all propositions are false after certain point and all the quantifiers
range over such propoéitions. Let g(k,n) be a function defined as follows. g(k,n) has a stack
of k exponents. |

g0n)=n
gk+1, n) = 28k),
g(k,n) has a stack of k exponents .
Let g, -SPACE = {L | For some polynomial p(n), L is accepted by a deterministic Turing

m/c that uses at most g(k,p(n)) of space on each input of length n}.
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In this chapter we prove that ik+1 is complete in g -SPACE with respect to log-
SPACE reductions. We also prove that the set of true sentences of QPTL in 22 is
EXSPACE-complete. In section 3.2 we present the upper bounds, while in section 3.3 we

prove the lower bounds.

3.2. Upper bounds

The formulae of QPTL are built from the atomic propositions, boolean connectives, the
temporal operators F,X and the quantifiers symbol 3. We assume that the atomic
propositions are drawn from the set @ A well formed formula in QPTL is either an atomic
proposition or is of the form —f}, f, A L, X(f), F(f)). 3P(f1) where fj, f, are well formed
formulae and P is an atomic proposition. The set of free atomic propositions in a formula is
defined inductively in the obvious way. A formula without any free propositions is called a
sentence. A formula (sentence) is said to be in standard form if all the propositional
quantifiers appear at the beginning of the formula. A formula (or sentence) is said to be in
2 (IL) form if it is in normal form and has a quantifier prefix which starts with an

existential(universal) quantifier and has (k-1) alternations of quantifiers.

An interpretation is a pair (t,i) where i > 0, and t is an w-sequence of states, each state
being a mapping from the set of atomic propositions into {True, False}. The truth of a
formula f in an interpretation (t,i) (denoted by t,i = f) is inductively defined.

(ti) = 3P(f1) iff fof some interpretation (t,i) such that such that Vi>0, ¢ assigns

the same truth value as tj for all the atomic propositions excepting P and (t,i) = £
The inductive definition for the other cases is same as give in the previous chapter.

Let f be formula in QPTL not containing any propositional quantifiers. Let
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SF(f) = {g | g is a subformula of f or the negation of a subformula of f}. A ¢ ¢ SF(f) is said
to be consistent and complete iff it satisfies the following conditions:
(i) For each g, - g € SF(f) exactly one of them is in c;

(ii)Foreachg=gl/§g26ciffglecandgzec.

Let S'f be the set of consistent and complete subsets of SF(f). Let Tableau(f) = (S' f,R' f)
be a directed graph such that (c,,c,) € R'f iff the following condition is fulfilled: For any g,
()g = Xg e, iffgec,,

(i)g = Fg ec,iffgec orgec,

LEMMA 3.1: In tableau (f) if foranyc
(i) g = Fg € c then for all d such that there is a path from dtc, ged;
(ii) Ifg = —Fge c then for all d such that

there is a path fromc to d, ge d.
Proof: The above lemma is easily proved by induction. [

We say that a formula is an F-formula iff it is of the form F(g). The following Lemma

easily follows from the previous one.

LEMMA 3.2:1In tableau(f) all the states in a strongly connected component contain the

same F-formulae. [J

A finite state automaton A on infinite strings is a S-tuple (Z,5,M,st,H) where 2 is a
finite alphabet, S is a finite set of states, M: SxX — 25, st is the start state and H ¢ 2% A
run of A on an input a = (a,a,, ... ) € 2%, is an infinite sequence s € S* such that §p = st

and Vi20 s, ;€ M(s;a). For s€S¥, let in(s) = {ceSlVizO j such that j>i 5 = c}. ie.
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in(s) is the set of all states that appear infinitely often in s. The automaton A is said to
accept input a iff there exists a run s of A on a such that in(s)eH. 1(A) denotes the set of

strings accepted by A.

Let f be a quantifier free formula in QPTL and ¥, = {P,.P,,... P nt be the set of free
propositions appearing in f. Also let 2, = {0,1}™. Forany ¢ = (640 ---)€ Zf“’, let 5
denote the w -sequence ( 50, e P ) where:
Viz0g;: ®— {True,False} such that

Vil<j<m, ;i(Pj) = Trueiff(ai)j =1

Let A(f) = (Z,SpMpc,,,Hp) be a FSA on infinite strings defined as follows:
S¢={c b u S'f where S'f is the set of states in tableau(f);
Forc=c,
M;(c.{) = {c | cc) e Rpand Vilgi<m, Pyeciff §; = 1}
M{c,.{) = {c | fec andVilgi<m, P eciff §; = 1}
H;={D¢ S'f | D is non-empty and for each F-formula g = Fg,

such that for some d, g € d, d € D, there exists a d with g € d € D}.
THEOREM 3.3: ¢ ¢ L{A(f)) iff o,.0=f

Proof: (=) Assume o € L(A (f)). Then there exists aruns = (s, . . JofA(Hon o
such that the set of states that appear infinitely often in s, is in Hy Since sisarun, s, = ¢,

ands, ; € M(s; o).
Claim 1: Forallg ¢ SF(f) and forallix0g¢s, ; iff 5.iF &

Proof of Claim 1: By induction on the structure of g.

Basis. For g = P where Pe%;: the result follows from the way we define M,
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Induction:
() g = g, 868, iff §,ikE g, forallix 0.
Since either g or —g, isins; | it follows that ge s; iff g,ik=gforalli>0.
(i) g = g A8, obvious.
(i) g = Xg;- Itcan easily be seen thatg € s, | iff 8 €849
iff g,i+1kg iff g.iE8

(iv)g = Fg;. Assumeges,

.41+ From the way we defined acceptance it is

easily seen that for some j>i+1 8y €8 Hence g,j-1 =g, andso g,iFg.
Assume g, i = g. Then for some j>i, ¢ j = g,;. Hence
8 €Si41 By lemma 1, it follows that ge s; ;.

00Q:-E-D forclaim 1.

continuation of proof of Theorem 3.3.

From the definition, f € s;. Hence by claim 1, s 0E=f

(=) Assume 4, 0= f.
Lets = (SO’SI’ ...) be a w-sequence of states of A (f) defined as follows:so = Cp
5,1 = {8eSF() | 0,i = g}. Each s, (for ix0) is consistent and complete, and hence is inS,
It can easily be seen that (s;, s; +1) € M (si,o:l) fori > 0. Also if Fg €5 (for i > 1), then
dj>i, such that 8 5; Due to this, the set of all states that appear infinitely often in s, is in

H; Thuss is an accepting run of A (Don 0. O

We use the following additional notation. Let % = {Pl,Pz, e ,Pm} be the set of free
propositions in f. Then ¢ € Ef issuch thatVil<i<m(g )i = 0,and 4: Fp — {True, False}

such that V; 1<i<m 8 (P) = False. ¢, = {g € SF(f) | §“,0 =g}.
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An interpretation (i) is weak if t is of the form (¢ - 0%), i.e. in t all propositions are
false after certain instance. Let WQPTL be the logic obtained from QPTL by restricting all
the interpretations to be weak and all quantifiers range over propositions which are false
after certain instance. The truth of a formula is defined inductively as for QPTL but by

restricting all the interpretations to be weak.
Let FI(f) = {o € 2;[ o0=fwhereo = g - 6}

It is to be observed that if 0 € FL(f) then Vn> 0 ¢ - (5)" € FL(f), and f is true in all

weak interpretations iff FL(f) = Ef*. We state the following obvious lemma.
LEMMA 34: FL(-f) = (5, - FL(). O

We inductively define an automation A ()= (ZSpMpcy,Hy) on finite strings which
accepts FL(f) where HCS,. Observe that A(f) is an automation on infinite strings while

(f) is on finite strings.

For a quantifier free formula f, we define, j (f) as follows:
A = (ZpSpMpc  Hp) where 2,5, Mand c are same as in A(f)

H;={c|ceS,andcyeM(c, 5)}.
THEOREM. 3.5: ¢ ¢ ;" is accepted by  (f) iff ¢ ¢ FL(D).

Proof: The proof easily follows from theorem 3.3 and the fact that {co} € Hein A(f). |
O

We extend M in A(D to the domain 2; in the natural way, ie. for any
o€ Zf* M(c,0) is the set of all states reached when } (f) is run on the input ¢ starting from

the state c. Let fbe any formulaandg = 3P f.



36

Define 3 (g) = (ZS,S o M Hg) where

g Cst’
— -1 —

where Eg = {0,1}™ .8, =8,

Mg(c,B) = {c | ce M(c(6,.8,, . ...8, ;1)) forsome i € {0,1}},

Hg = H;u{c | for some n>1 Mg(c,(a'“)) nH; = 2}.
LEMMA 3.6: FL(g) = L(x(g))
Proof:

(2): Itiseasily seen that FL(g) o L (,’{(g)).
(©): Assume o € FI(g). Then 5 - 0“0 =g
dye (Z;) such that length(y) > length(o) and
Vi O<i<length(o), Vj 1<j<m-1 (yi)j = (O‘i)j, and
V, length(a) < i < length(y), Vj 1<j< m-1 (yi)j =0,and y - 0“0 =1
Hence y € L(x (f)). From the above it can be seen that for some n>0,

g (o) NH; = 2.

st’

M g(c

Hence M g(cs‘,a) nH . =2 and 0 ¢ L(A(g)) O

If g = —f, then A (g) is the automation that accepts the complement of the language

accepted by A(f) and can be obtained in the standard way.
Let 3, = {f | fis a sentence in Zk and is true in all weak interpretations}.
THEOREM. 3.7: il € PSPACE and for k>1 ')‘;k +1 €& SPACE.

Proof: Letf=3,V,d; ...Q, ., fj where 3, or V, is a sequence of existential or

universal quantifiers respectively. By replacing each V¥V by —d-, f can be written as



kY

F-Fm Fm T Fa) Lethy =3 Fy Ty, B Thus
f=3,-().

From X(fz), by applying the transformation of lemma 3.6, and by using successive
complementation for each negation, we can obtain 3 (f3). Since f3 has only (k-1) negations
between the quantifiers it is easily seen that x (f3) has at most g(k,n) states where n is the
length of f. It is easily seen that fe '5'_'k +1 iff (A (f3)) * (Zf;). The later condition can be
easily checked using space polynomial in the size of A (f3).

Hence 2, _, €g,-SPACE. O

k+1

THEOREM 3.8: The set of true sentences of QPTL in 22 is in EXSPACE.

Proof: Letf = HPle...Pk‘v'Pk+1 N NPR S TRRTN S
~3pp,...P-3P,,...P,,,®
where g = —f; ... ,Pk+,).
Leth = E]PH1 ...P (8)and
A(g) = (Eg,Sg,Mg,cst,Hg) where Eg = {0,1}**£ From A(g), we obtain

— — k - —
Ah) = (T, S, M, C. Hy) where 2 = {01}, S, =S, H, = H, and
M, (c.0) = {cl J 8¢ {0,13%* £ such that for 1<i<k § =6,andceM 8(0,6')}.

Letrr'e (Sh)“’ be runs. of A(h) on an input 6. We say that r is an accepting run iff in

(ne H,. Assume thatin (r') ¢ in(r). In this case the following claim holds.

Claim 1: If r is not an accepting run then r! is also not an accepting run.
Proof: States in in(r) belong to a strongly connected component in tableau(g), and so each

state in in(r) contains the same F-formulae. Hence ifin(r') ¢ H g then in(r) € Hg. O
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A run r is maximal if there is no other run r' on o such that in(r) ¢ in(r’). From the
above claim to check that ¢ is not accepted by A (h) it is enough if we verify that all

maximal runs are not accepting runs.

It can easily be shown that if A(h) does not accept at least one input, then there exists

an input of the form ¢ = a- () “ not accepted by A(h). Let o be as above and B = (B,
Y )

We define a directed graph G which captures all the runs of A(h) on 8%, starting from
different states. The nodes of G are of the form (c,i) where ¢ € Sh and 0 <i <m. Thereis
an edge from (c,i) to (¢, (i+1) mod m) iff ¢ € Mh(c.Bi). These are the only edges in the
graph. For each infinite path p = [(cO,O), (D), ... ] let w(p) = (C:Cys - - .). m(p)isa
maximal run iff all the nodes of a strongly connected component of G appear infinitely
often in p. Let afte(a) = Mh(cst,a). If we know after (a), and the states of strongly
connected components in G we can easily get all the set of states that appear infinitely often
in the maximal runs. To determine the above it is not necessary to build the graph G as we

show below.

LetG = (V.E.¢) be a labelled directed graph where V.= §, (c,d) € Eiff there is a path
from (c,0) to (d,0) in G, of the form [(c,0), (02,1), R (v -1’ m-1), (d,0)]. &«(c.d)) = {b| for

some j, (b.j) is on a path of the above form from (c,0) to (d,0) in G}.

Lg:t Cbea strqngly connected component in G and p©O) = {c | for some (cl,cz) € E,
ce z((Cl,CZ))}. C is said to be fulfilled if for every F-formula g= Fg such thatg e c € ¢ (O),
there is a ¢ such that g’ € ¢ € ¢(C). The following claim is easily proved from our previous

remarks.



39

Claim 2: o is not accepted by A(h) iff every strongly connected component in G that is

reachable from a state in after(a), is not fulfilled. O

Now we can easily give a non-deterministic O(2°-*"8%(®y space bounded algorithm
that checks that some ¢ = a +(8) “ is not accepted by A(h). The algorithm successively
guesses each letter in a and builds after (a). At some point it guesses that 3 starts. From
the beginning of B it builds G while simultaneously guessing B as follows. Let
G,, = (VE, 4, be the partially built G after B, is guessed. Initially,
E0={(c,c)|ceV}, eo((c,c))={c}. After Bi is guessed G'i +1 is obtained from G'i using the
following equations. |
E,, ;={(c.c")| 3d such that (¢.d) € E; and c"eM,(d,8) }.

If (cc")eE, then

A +1((c,c")) = {eIFor some d, (¢,d) €E, , c"th(d,Bi) and e€ zi((c,d))}u{c"}. It is easily
seen that to build G'i 41 it requires at most 0(2¢-length®y space At some point after
guessing Bm it guesses that 8 ends and it takes G S G and it verifies that the conditions

given in claim 2 is satisfied. The above procedure accepts f iff for some o, o is not accepted

by A(h). Clearly fis true iff there is at least one such string. O

3.3. Lower bounds

In this section we show the lower bound for S:k.
THEOREM. 3.9: Every language in gk-SPACE is log-SPACE reducible to "z'k +1

Proof: We assume that there is a procedure which given an m >0, uses space log m and

outputs a formula ¢, m(Px,Py) € Zk such thatif t,0 = Py m(Px,Py) then

(i) P, is true at exactly one point in t and so is Py' and

() IftiEP, tjE= Py thenj =i+ Nk’m where Nk, 2 g(k,m).
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i.e. the places where P, Py are true are separated by a distance of length at least Nk, o We

show later how this formula can be obtained.

LetM = (Q,ZS,V A,VI) be a one tape deterministic turing m/c that is g(k,p(n)) space
bounded. The elements in M are the set of states, the alphabet, the next move function, the
accepting state and the initial state respectively. Let ID, IDl, ... be a sequence of IDs that
describe the computation of M on some input of length n. Let m = p(n). Without loss of
generality we assume that each ID is of length Nk'm. If Nk’m > g(k,m) then M uses only the
initial g(k,m) cells in each ID. Using a formula f in WQPTL we express the computation of

M on input ’a’.

We use the propositions P for each ¢ € (Q x 2) u Z, where the elements in Q x X are
the composite symbols. We use a proposition B which marks the beginning of IDs. The
sequence between successive instances where B holds defines an ID. We briefly describe

how we can obtain a formula that expresses the computation of M.
Let f be the conjunction of the following formulae which are informally described.

f, = ‘v’PX,Py [ q;k'm(Px,Py) | fl'] where fl' is quantifier free and asserts that if B is true
at some point after x, then between x and y (excluding y) there is exactly one place where B

is true. This condition implies that all the IDs are of length N, _

f2 asserts that each ID is a valid ID. In this the only difficult part will be to assert that -
each ID has exactly one compound symbol. After some thought it is easily seen that we can

obtain a formula like f1 which asserts this;

f; asserts that each successive ID is obtained from the previous one by one move of M
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i.e. the contents of a cell in an ID depend on the contents of this cell and it's neighbor’s
contents in the preceding ID.

f, = VPP, (@ (PP A ) D3]

f3',f3" are quantifier free. f3' asserts that there is at least one instance before and after y
where B is true i.e. x,y are points with in the computation of M. f3" asserts that the contents

in the cell at y is related to the contents in the cells at x and its neighbors.
f, asserts that ID,, is an initial ID, and that eventually a final ID appears.

If f,.£,,f, are converted into standard form then they will be in IT,., this is because ¢, |
appears only in the antecedent of an implication. Let f ' be f converted into standard form.
Then f'e I"Ik. Let g be the sentence obtained by introducing an existential quantification
over each free variable in f . Clearly g ¢ Zk +1 and is a true sentence iff "a" is accepted by

M. Also g can be obtained using space O(log n). O

Let ¢jc,, ..., G, be a sequence of binary counters each of size p. We let v(ci) denote
the integer value of the counter Cp and ¢, i denote the jLh bit in the counter c; (Oth bit is the
least significant bit). We say that the above sequence is a proper sequence of counters iff

Ve = 0,v(c;, ) = vc) + 1for0<i<el andv(e,) = 2P-1. Clearly for a proper
sequence £ = 2P. It is easily seen that the bit values in successive counters are related as
follows:

For0<i<¢1,0<j<p

(A) Ca+1)j = Cij iff 9 r < j such that ¢, =0

We recursively define in terms of for k> 1. For this we assert that there is
Pk+1m Pim

a proper sequence of counters each of length N, = between the points x,y. We use the
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proposition B whose truth values give the contents of the counters and the proposition M

which marks the beginnings of counter. We require the following conditions to be satisfied.

L P holds at exactly one point, say x, and Py holds at exactly one point say y. M is true
at x and y, and is false at all points before x and after y. We can easily give a quantifier free

formula f1 that asserts this condition.

2. The successive points where M is true, are separated by a distance Nk’m. We can
satisfy this by requiring that for all points ij, if i and j are separated by a distance Nk,m then
there is exactly one instance between i and j where M is true. It is easily seen that we can
assert this condition by the following formula.

f, = VPVP, (¢ (PsP) 2 1)
where fz' is quantifier free and asserts that if i,j are between x and y, then there exists exactly

one instance p such thati < p <jand M is true at p.

By this condition we can consider the truth values of B, between successive instances
where M is true, to be a binary counter of size N, m e consider the right most bit in a .

counter to be the least significant bit.

3. The proposition B is false throughout the subsequence between the 1st and 2nd
instances where M is true. This asserts that the value of the first counter is 0. This is
expressed by

f, = VP(f, > G(P, > ~B))
f3' is quantifier free and asserts that P, is true at exactly one instance, and this instance is in

the first ID. Such an f3' can easily be obtained.

4, The value of each succeeding counter is equal to the value of the preceding counter
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incremented by 1. This can be expressed by corresponding the values of bits which are in
the same position in successive counters. Such positions are those between x and y, which

are separated by a distance N, . The following formula expresses the above condition.

f, = VPiVPj ((tpk’m(Pi,Pj) A f4') > f,")) where f4' and f," are quantifier free. f4l asserts
that i,j are between x and y. f 4" asserts that if there is a less significant bit position than i, in
the counter of i and B is false in this position, then the truth values of B at i and j are equal,

otherwise they are different. We can easily obtain f4' and f4".

5. In the last counter, that is the one before y B is true at all points in the counter. We

can easily obtain a quantifier free formula, f; that expresses this condition.

6. In all counters other than the last counter there is at least one position where B is
false. This condition guarantees that 5 does not hold in any other counter. The following

formula expresses this condition.

f6 =VP iV P_] (((pk,m(Pist) A f6) ) f5")
where f6',f6" are quantifier free. f6' asserts that i,j are the beginnings of successive counters

and j is strictly before y. f6" asserts that there exists a point between i and j where B is false.

Letf' = f3igs f, and f be the resulting formula when f ' is converted into standard

form. Since Pem €Z,, it is easily seen that f € I1,.

Let q’k+1,m (Px;Py) =3B3M (f). Clearly (pk+1,m € 2“k+1

We describe how to obtain P We use m propositions Qo,Ql, s Qg which are
existentially quantified. The truth values of these propositions define a binary counter at

any point. We assert that the sequence of these counters starting from x. form a proper
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sequence of counters. We also assert that there is exactly one point between x and y, which
is just before y where all the propositions are true. It is not difficult to see how this formula

can be obtained. We can obtain ¢, such that it's length is O(mz). Clearly N, = 2m,

THEOREM. 3.10: t,0 = Pyil m(Px,Py) iff Px is true at exactly one point , say x; Py is
true exactly one pointsay y; andy = x + Nk m where Nk m is given as follows:

N

- nm
1,m"2 *

Nim = Nk_l’m-z(de,m) fork>2 O

The above theorem can easily be proved by induction. It is easily seen that length of
Py m 18 0(m2), and that ¢,  can be obtained in space (log m) recursively. It is clear that

N, > g(k,m).

k,m

THEOREM. 3.11: The set of true sentences of QPTL in 22 is EXSPACE-complete.

Proof: Follows from theorems 3.8 and 3.9. [
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Chapter 4

Automatic Verification of
finite state concurrent programs:

A Practical approach

4.1. Introduction

In the traditional approach to wncuﬁent program verification, the proof that a
program meets its specifications is constructed by hand using various axioms and inference
rules in a deductive system such as temporal logic ((MP81], [HO80], [OL80]). The task of
proof construction is in general quite tedious, and a good deal of ingenuity may be required
to organize the proof in a manageable fashion. Mechanical theorem provers have failed to

be of much help due to the inherent complexity of even the simplest logics.

We argue that proof construction is unnecessary in the case of finite state concurrent
systems and can be replaced by a model theoretic approach which will mechanically
determine if the system meets a specification expressed in propositional temporal logic. The
global state graph of the concurrent system can be viewed as a finite Kripke structure, and
an efficient algorithm can be given to determine whether a given structure is a model of a
particular formula - i.e. to determine if the program meets its specification. The algorithm, |
which we call a model checker, is similar to the global flow analysis algorithms used in
compiler optimization and has complexity linear in both the size of the structure and the

size of the specification. When the number of global states is not excessive (i.e. not more



46

than a few thousand) we believe that our technique may provide a useful new approach to

the verification of finite state concurrent systems.

Our approach is of wide applicability since a large class of concurrent programming
problems have finite state solutions, and the interesting properties of many such problems
can be specified in propositional temporal logic. For example, many network
communication protocols (e.g. the Alternating Bit Protocol [BSW69]) can be modeled at
some level of abstraction by a finite state system. A typical requirement for such systems is
that every transmitted message must ultimately be received; this can easily be expressed in

the logic we use.

Our specification language is a propositional, branching-time temporal logic called
Computation Tree Logic (CTL) and is based on the logical systems described in [EC80},
[BMP81], and [CE81]. Since our goal is to specify concurrent systems we must be able to
assert that a correctness property only holds on fair execution sequences. It follows from
the results of ([ECSO], [EH83]) that CTL cannot express such a property. The altemaﬁ\}e of
using a linear time logic is ruled out because any model checker for such a logic must have
high complexity ( [SC82]). We overcome this problem by moving fairness requirements
into the semantics of CTL. Specifically, we change the definition of our basic modalities so
that only fair paths are considered. Our previous model checking algorithm is modified to

handle this extended logic without changing its complexity.

This chapter is organized as follows: Section 4.2 contains the syntax and semantics of
our logic. In section 4.3 we describe the basic model checking algorithm and illustrate its
use to establish absence of starvation for a solution to the mutual exclusion problem. An

extension of the model checking algorithm which only considers fair computations is given
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in section 4.4. Section 4.5 describes an experimental implementation of the extended model
checking algorithm and shows how it can be used to verify the correctness of the Alternating
Bit Protocol. In section 4.6 we consider extensions of our logic that are more expressive and
investigate the complexity of model checkers for these logics. The chapter concludes with a

discussion of related work and remaining open problems.

4.2. The Specification Language.

The syntax for CTL is given below. AP is the underlying set of atomic propositions.

1. Every atomic proposition p € AP is a CTL formula.

2.If f; and f, are CTL formulae, then so are - f}, f; A f,, AXf}, EXf;, A[f1 U f2],
and E[f, U}

The symbols A and — have their usual meanings. X is the nexttime operator; the
formulae AXf1 (EXfl) intuitively means that f1 holds in every (in some) immediate
successor of the current program state. U is the until operator; the formula A[flUf2]
(E[flUfz]) intuitively means that for every computation path (for some computation path),

there exists an initial prefix of the path such that f, holds at the last state of the prefix and f;

holds at all other states along the prefix.

We define the semantics of CTL formulae with respect to a labeled state-transition

graph. Formally, a CTL structure is a triple M = (S, R, P) where

1. S is a finite set of states.

2.R is a binary relation on S(R ¢ S x S) which gives the possible transitions
between states and must be total, i.e. Vx € STy € S [(x,y) € R].

3. P is an assignment of atomic propositions to states i.e. P: S — AP

A path is an infinite sequence of states (so, Sy s2,...) such that Vi [(si, S, 4+ 1) € R]. For
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any structure M = (S,R,P) and state s S, there is an infinite computation tree with root

labeled s, such that s — t isan arc in the tree iff (s,t) € R.

We use the standard notation to indicate truth in a structure: M, s, = f means that
formula f holds at state s in structure M. When the structure M is understood, we simply
write s, = f. The relation k= is defined inductively as follows:

SoFP iff pe P(so).

s0|=—|f iff not(so = f).

soFfy A f, iff sy flands) = f,.

soF= AXIf) iff for all states t such that (s)t) € R, t = fj.

SoF EXf) iff for some state t such that (so,t) R t= 1.

so= Alf; U £,] iff for all paths (s, s )
Jdili>0As =LA Ji0<1<1—+s =1}

soF= EIf} U fJiff for some path (s, 5,
Jdili>0As |=f/\\;9[0<1<1—»si= f1

4.3. Model Checker

Assume that we wish to determine whether formula f is true in the finite structure M =
(S, R, P). We design our algorithm so that when it finishes, each state will be labelled with
the set of subformulae true in the state. We let label(s) denote this set for state
s. Consequently, M, s = fiff f € label(s) at termination. In order to explain our algorithm
we first consider tl_u_: case in which each state is currently labelled with the immediate

subfoﬁnulae of f which are true in that state.

We will use the following primitives for manipulating formulas and accessing the labels

associated with states:
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o argl(f) and arg2(f) give the first and second arguments of a two argument
formula f such as A[f; U f2].

o labelled (s, f) will return true (false) if state s is (is not) labelled with formula f.

o add label(s, f) adds formula f to the current label of state s.

Our state labelling algorithm (procedure label graph (f)) must be able to handle seven
cases depending on whether f is atomic or has one of the following forms: - fl, f1 A fz’
AXf), EXf}, Alf, UL}, or E[f; U f,]. We will only consider the case in which f = A[f; U f)]
here since all of the other cases are either straightforward or similar. For the case
f = A[f, U f,] our algorithm uses a depth first search to explore the state graph. The bit
array marked[1: nstates] is used to indicate which states have been visited by the search
algorithm. The algorithm also uses a stack ST to keep track of those states which require
additional processing before the truth or falsify of f can be determined. The boolean
procedure stacked(s) will determine (in constant true) whether state s is currently on the
stack ST.
begin

ST : = empty_stack;

foralls € S do marked(s) : = false;

L:forallseS do

if = marked(s) then au(fs,b)
end

The recursive procedure au(f;s,b) performs the search for formula f starting from state
s. When au terminates, the boolean result parameter b will be set to true iff s = f. The

annotated code for procedure au is shown below:

procedure au(f}s,b)

begin
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{If s is marked and stacked, return false (see lemma 4.1). If s is already labelled with
f then return true. Otherwise, if s is marked but neither stacked nor labelled, then

return false.}

if marked(s) then
begin
if stacked(s) then
begin
b : = false;
return
end ;
if labelled(s,f) then
begin
b := true;
return
end;
b .= false;
return
end;

{Mark state s as visited. Let f = Alf; U £,). If f, is true at s, fis true at s; so label s
with f and return true. If f is not true at s, then f'is not true at s; so return false. }

marked(s) : = true;
if labelled(s,arg2(f)) then
begin
add_label(s,f);
b := true;
return
end
else if labelled(s,arg1(f)) then
begin
b : = false;
return
end;

{Push s on stack ST. Check to see if f is true at all successor states of s. If there is
some successor state sl at which f is false, then f is false at s also; hence remove s
from the stack and return false. If f is true for all successor states, then f is true at s;
so remove s from the stack, label s with f, and return true.}
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push(s,ST);
for all s1 € successors(s) do
begin
au (f,s1,bl);
if =~bl then
begin
pop(ST);
b : = false;
return
end
end;
pop(ST);
add_label(s,f);
b : = true;
return

end of procedure au.

To establish the correctness of the algorithm we must show that

Vs [labelled (s,f) — sk=f]

holds on termination. Without loss of generality we consider only the case in which f has
the form A[f; U f2]. We further assume that the states are already correctly labelled with the -
subformulae f; and f, The first step in the proof is an induction on depth of recursion for
the procedure au. Let I be the conjunction of the following eight assertions:

I1. All states are correctly labelled with the subformulae f; and fy:
Vs[ labelled(s.f) = s = f,] fori = 1,2,

I2. The states on the stack form a path in the state graph:
Vi [1<i< length(ST) — (ST(), ST(i+1)) e R].

I3. The current state parameter of au is a descendant of the state on top of
the stack: (Top(ST), s) € R.

4. fl A = f2 holds at each state on the stack
Vi [ 1<i < length(ST) - ST() =flA-~12].
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IS. Every state on the stack is marked but unlabelled
Vi [ 1<i<length(ST) — marked(ST(i)) A
— labelled(STG), f) ].

I6. If a state is labelled with f, then it also marked and f is true in that state:
Vs [labelled(s,f) — marked (S) As k= f].

I7. If a state is marked but neither labelled with f nor on the stack, then f
must be false in that state:
Vs marked(s) A — labelled(s,f) A
- 3i[ 1<i<length(ST) A s = ST[i]] — s=-f].

I8. ST0 records the contents of the stack: ST = STO.

We claim that if I holds before execution of au(f, s, b), then I will also hold on termination
of au; Moreover, the boolean result parameter b will be true iff f holds in state s. In the
standard Hoare triple notation for partial correctness assertions the inductive hypothesis

would be
{I}au(f, s, b) {I A (b= s =1}

Once the inductive hypothesis is proved, the correctness of our algorithm is easily
established. If the stack is empty before the call on au, we can deduce that both of the

following conditions must hold:

a. Vs [ marked(s) — [labelled(s, f) — s= f1] (from 11).

b. Vs [ marked(s) — [-labelled(s,f) — s=—f1] (from I2, I3).
It_follows that -
\s[ marked(s) — [labelled (s, f) « s= 1]

Because of the for loop L in the calling program for au, every state will eventually be

marked. Thus, when loop L terminates Vs[labelled (s, f) — st=f] must hold.
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Proof of the inductive hypothesis is straightforward but tedious and will be left to the
reader. The only tricky case occurs when the state s is marked and on the stack. In this
situation the procedure au simply sets b to false and returns. To see that this is the correct
action, we make use of the following observation:

LEMMA 4.1: Suppose there exists a path (s §9s - m S )m the state graph such that
1<k<mandV1[1<1<m—»s I= ] thensk =-Alff URL O

Assuming that the states of the graph are already correctly labelled with fl, and f), itis
easy to see that the above algorithm requires time O(card(S) + card(R)). The time spent by
one call of procedure au excluding the time spent in recursive calls is a constant plus time
proportional to the number edges leaving the state s. Thus, all calls to au together require
time proportional to the number of states plus the number of vertices since au is called at

most once in any state.

We next show how handle CTL formulas with arbitrary nesting of subformulas. Note
that if we write formula f in prefix notation and count repetitions, then the number of
subformulae of f is equal to the length of f. (The length of f is determined by counting the
total number of operands and operators.) We can use this fact to number the subformulae
of f. Assume that formula f is assigned the integer i. If f is unary ie. f= (op fl) then we
assign the integers i+1 through i + length(fl) to the subformulae of f;. If fis binary i.e. f
= (op f f. ,) then we assign the integers from i + 1 through i + length(f)) to the
subformulae of f; and i + length(f ) through i + length(f ) + length(f ) to the
subformulae of f,. Thus, in one pass through f we can build two arrays nf[1 : length(f)] and
sf[1 : length(f)] where nffi] is the i" subformula of f in the above numbering and sfi] is the
list of the numbers assigned to the immediate subformulae of the i formula. For example,

if f = (AU (NOT X) (OR Y Z)), then nf and sf are given below:



nf[1] (AU (NOT X) (OR Y Z)) sf [1] (2 4)

nf[2] (NOT X) sf [2] (3)
nf[3]X sf [3] nil
nf[4] (ORY Z) sf [4] (5 6)
nf[6]Y sf [56] nil
nf[(6]Z sf [6] nil

Given the number of a formula f we can determine in constant time the operator of f
and the number assigned to its arguments. We can also efficiently implement the
procedures "labelled" and "add_label". We associate with each state s a bit array L{s] of
size length(f). The procedure add_label(s,fi) sets Lfs][fi] to true, and the procedure

labelled(s, i) simply returns the current value of Lfs][fi].

In order to handle an arbitrary CTL formula f we successively apply the state labelling
algorithm described at the beginning of this section to the subformulas of f, starting with

simplest (i.e. highest numbered) and working backwards to f:

for fi : = length(f) step -1 until 1 do
label_graph (fi);

Since each pass through the loop takes time O(size(S) + card(R)), we conclude that the

entire algorithm requires O(length(f) - (card(S) + card(R))).

THEOREM 4.2: There is an algorithm for determining whether a CTL formula f is true in |
state s of the structure M = (S, R, P) which runs in time
O(length(f) - (card(S) + card(R))). O

We illustrate the model checking algorithm by considering a finite state solution to the

mutual exclusion problem for two processes P, and P,. In this solution each process is

always in one of three regions of code:
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Figure 4-1: Global state transition graph for two process
mutual exclusion problem

N, the Noncritical region,
Ti the Trying region,
orC, the Critical region.

A global state transition graph for this solution is shown in figure 4.1 . Note that we only
record transitions between different regions of code; moves entirely within the same region

are not considered at this level of abstraction.

In order to establish absence of starvation for process 1 we consider the CTL formula

T, - AFC, or, equivalently, =T, v AFC,, where AFp = Altrue U p] means that p occurs at
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Figure 4-2: Global state transition graph after termination of
model checking algorithm

some point on all execution paths. In this case the set of subformulae contains
-T, v AFC,, -Tj, T,, AFC, and C,. The states of the global transition graph will be
labelled with these subformulae during execution of the model checking algorithm. On
termination every state will be labelled with =T, v AFC1 as shown in figure 4.2. Thus, we
can conclude that s, k= AG(T, — AFC)) where AGp = — E[true U —p] means that p holds
globally on all computation paths. It follows that process 1 cannot be prevented from

‘entering its critical region once it has entered its trying region.
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4.4. Introducing Fairness into CTL

Frequently, in verifying concurrent systems we are only interested in the correctness of
fair execution sequences. For example, with a system of concurrent processes we may wish
to consider only those computation sequences in which each process is executed infinitely
often. When dealing with network protocols where processes communicate over imperfect
(or lossy) channels we may also wish to restrict the set of computation sequences; in this
case the unfuir execution sequences are those in which a sender process continuously
transmits messages without any reaching the receiver. Since we are considering only finite
state systems, each of these notions of fairness requires that some collection of states be
repeated infinitely often in every fair computation. It follows from [EH83] that correctness
of fair executions cannot be expressed in CTL. In fact, CTL cannot express the property

that some proposition Q should eventually hold on all fair executions.

In order to handle fairness and still obtain an efficient model checking algorithm we
modify the semantics of CTL. The new logic, which we call CT LF, has the same syntax as
CTL. But a structure is now a 4-tuple (S, R, P, F) where S, R, P have the same meaning as
in the case of CTL, and F is a collection of subsets of S i.e. F ¢ 25, A path p is fair iff the

following condition holds:

for each c € F, there are infinitely many instances
on p at which some state in ¢ appears.

CTLF has exactly the same semantics as CTL except that all
path quantifiers range over fair paths.

An execution of a system Pr of concurrent processes is some interleaving of the’
execution steps of the individual processes. We can model a system of concurrent processes
by a structure (S, R, P) and labelling function L:R — Pr. S is the set of global states of the

system, R is the single step execution relation of the system, and for each transition in R, L
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gives the process which caused the transition. By duplicating each state in S at most
card(Pr) times, we can model the concurrent system by a structure (S*, R*, P*, F), where
each state in S* is reached by the execution of at most one process, and F is a partitioning of
S* such that each element in F is the set of states reached by the execution of one process;
thus card(F) = card(Pr). The fair paths of the above structure are exactly the fair execution
sequences of the system of concurrent processes. A similar approach can be used to model

network protocols (see section 5).

We next extend our model checking algorithm to CTLF. We introduce an additional
proposition Q, which is true at a state iff there is a fair path starting from that state. This can
easily be done, by obtaining the strongly connected components of the graph denoted by
the structure. A strongly connected component is fair if it contains at least one state from
each ¢; in F. We label a state with Q iff there is a path from that state to some node of a fair
strongly connected component. As usual we design the algorithm so that after it terminates

each state will be labelled with the subformulae of f0 true in that state.

We consider the two interesting cases where f € sub(f) and either f = E[g U h] or
f = Alg U h]. We assume that the states have already been labelled with the immediate

subformulae of f by an earlier stage of the algorithm.

() f = E[g Uh]: fis true in a state iff the CTL formula E[g U (h A Q)] is true in that state,
and this can be determined using the CTL model checker. A state s is labeled with fiff fis

true in that state.
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(i) f = Al[g Uh]: Itis easy to see that A[g U h] = = (E[-h U (=g A -h)] v EG(-h)). For
a state s we can easily check if s = E[-h U (=g A —h)] using the previous technique. To
check if s = EG(—h) we use the following procedure. Let Gy be the graph corresponding
to the above structure. From Gy, eliminate all nodes v such that h € label(v) and let G'R be
the resultant labeled graph. Find all the strongly connected connected components bf G'R
and mark those which are fair. If s is in G'R and there is a path from s to a fair strongly
component of G'R then s = EG(=h); otherwise s = = EG(=h). As in (i), s is labeled with f

iff fis true in s.

If n = max(card(S), card(R)), m = length(f) and p = card(F), then it can be shown

that the above algorithm takes time O(n-m-p).

4.5. Using the Extended Model Checker to Verify the Alternating Bit

Protocol

In this section we consider a more complicated example to illustrate fair paths and to
show how the Extended Model Checking (EMC) system might actually be used. The
example that we have selected is the Alternating Bit Protocol (ABP) originally proposed in
[BSW69]. This algorithm consists of two processes, a Sender process and a Receiver process,
which alternately exchange messages. We will assume (as in [QS81]) that messages from the
Sender to the Receiver are data messages and that messages from the Receiver to the Sender
are acknowledgments. We will further assume that each message is encoded so that garbled
messages can be detected. Lost messages will be detected by using time-outs and will be

treated in exactly the same manner as garbled messages (i.e. as error messages).

Ensuring that each transmitted message is correctly received can be tricky. For

example, the acknowledgment to a message may be lost. In this case the Sender has no
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choice but to resend the original message. The Receiver must realize that the next data
message it receives is a duplicate and should be discarded. Additional complications may
arise if this message is also garbled or lost. These problems are handled in the algorithm of

[BSW69] by including with each message a control bit called the alternation bit.

In the EMC system finite-state concurrent programs are specified in a restricted subset
of the CSP programming language [Ho78] in which only boolean data types are permitted
and all messages between processes must be signals. CSP programs for the Sender and
Receiver processes in the ABP are shown in figures 4.3 and 4.4 . To simulate garbled or lost
messages we systematically replace each message transmission statement by a
(nondeterministic) alternative statement that can potentially send an error message instead

of the original message. Thus, for example,

Receiver ! messO would be replaced by

[True — Receiver ! mess0
O

True — Receiver ! err]

A global state graph is generated from the state machines of the individual CSP
processes by considering all possible ways in which the transitions of the individual
processes may be interleaved. Since construction of the global state graph is proportional to
the product of the sizes of the state machines for the individual processes, various
(correctness preserving) heuﬁstics are employed to reduce the number of states in the graph.
Explicit construction of the global state machine can be avoided to save space by
dynamically recomputing the successors of the current state. The global state graph for the

ABP is shown in the figure 4.5 .
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Once the global state graph has been constructed, the algorithm of section 4 can be
used to determine if the program satisfies its specifications. In the case of the ABP we
require that every data message that is generated by the Sender process is eventually
accepted by the Receiver process:

AG[gen_dm0 — AX[A[- (gen_dmO v gen_dml) U acc_dm0]] A

AG]gen_dml — AX[A[- (gen_dm0 v gen_dml) U acc_dml]]

This formula is not true of the global state graph shown in figure 4.5 because of infinite
paths on which a message is lost or garbled each time that it is retransmitted. For this
reason, we consider only those fair paths on which the initial state occurs infinitely often.
With this restriction the algorithm of section 4 will correctly determine that the state graph

of figure 4.5 satisfies its specification.

As of October 1982, most of the programs that comprise the EMC system have been
implemented. The program which parses CSP programs and constructs the global state
graph is written in a combination of C and lisp and is operational. An efficient top-down
version of the model checking algorithm of section 3 has also been implemented and
debugged. The extended model checking algorithm of section 4 (which only considers fair

paths) has been implemented in Lisp and is currently being debugged.
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*[ gen—dm0;
RCV!dm0;
*[ RCV ?7am0 — exit;
a
RCV ?7aml — RCV ! dm0;

O
RCV ?err — RCV ! dm0;

]
gen—dml;
RCV ! dml;
*[ RCV 7aml — exit;
a
RCV ?7am0 — RCV ! dml;

a
RCV ?err - RCV ! dml;
]

]
Figure 4-3: Sender Process(SND)

*[ *[ SND ?dm0 — exit;
O
SND ?dml — SND !aml;

a
SND ? err — SND ! aml1;

]

acc—dmoO;

SND ! am0;

*[ SND ? dml — exit;

a
SND ? dm0 — SND ! am0;

SND ? err — SND ! am0;
] |
acc—dml;
SND ! aml;
]
Figure 4-4: Receiver Process(RCV)

(Note: dm stands for data message; am stands for acknowledgement message.)
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Figure 4-5: Global state transition graph for alternating bit protocol.



4.6. Extended Logics

In this section we consider logics which are more expressive than CTL and investigate
their usefulness for automatic verification of finite state concurrent systems. CTL severely
restricts the type of formula 'that can appear after a path quantifier. In CTL* we relax this
restriction and allow an arbitrary formula of linear time logic to follow a path quantifier.
We distinguish two types of formulae in giving the syntax of CTL*: state formulae and
path formulae. Any state formulae is a CTL* formula.

¢state-formula>:: = <atomic proposition |
<state-formula> A <state-formula|

- <state-formula> |
E(<{path-formula>)

¢path-formula>:: = <state-formula>|
<path-formula> U <path-formula>|
~<path-formula> |
<path-formula> A <path-formula> |
X <path-formula> |
F<path-formula>

We use the abbreviation Gf for —=F—f and A(f) for ~E-(f). We interpret state formulae
over states of a structure and path formulae over paths of a structure in a natural way. The
truth of a CTL* formula in a state of a structure is inductively defined. A formula of the
form E(<path formula>) is true in a state iff there is a path in the structure starting from that
state on which the path formula is true. The truth of a path formula is defined in much the
same way as for a formula in linear temporal logic if we consider all the immediate state
- subformulae as atomic propositions [EH83]. BT will denote the subset of the above logic
in which path formulae only use the F operator. CTL* will denote the subset in which the

temporal operators X, U, F are not nested.

Fairness can be easily handled in CTL*. For example, the following formula asserts

that on all fair executions of a concurrent system with n processes, R eventually holds:
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A((GFP, A GFP, A ...GFPn) — FR)

Here P, P)...P| hold in a state iff that state is reached by execution of one step of

process P,, P,..P , respectively.

THEOREM 4.3: The model checking problem for CTL* is PSPACE-complete. [

Proof Sketch: We wish to determine if the CTL* formula f'is true in state s of structure
M. Let g be a subformula of f of the form E(g') where g is a path formula not containing any
path quantifiers. For each such g we introduce an atomic proposition Qg. Let f be the
formula obtained by replacing each such subformula g in f by Qg. We modify M by
introducing the extra atomic-propositions Qg. Each Qg is true in a state of the modified
structure iff g is true in the corresponding state in M. The latter problem can be solved in
polynomial space using the algorithm given in Chapter 2. fis :ue at state s in M iff f is true
in state s in the modified structure. We successively repeat the above procedure, each time

reducing the depth of nesting of the path quantifiers.

It is easily seen that the above procedure takes polynomial space. Model checking for
CTL* is PSPACE-hard because model checking for formulas of the form E(g), where g is
free of path quantifiers, is shown to be PSPACE-hard in Chapter2. [

THEOREM 4.4: The model checking problem for BT (CTLY)
is both NP-hard and co-NP-hard, and is in A». O

Proof Sketch: ”"I'he lower bounds follow from the results in Chapter 2. In Chapter 2 it
was shown that the model checking problem for formulas of the form F(g), where g is free
of path quantifiers and uses the only temporal operator F, is in NP. Using this result and a
procedure like the one in the proof of previous theorem it is easily seen that the model

checking problem for BT  isin A%. A similar argument can be given for CTL*, O
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We believe that the above complexity results justify our approach in section 4.4 where
fairness constraints are incorporated into the semantics of the logic in order to obtain a

polynomial-time model checking algorithm.

4.7. Conclusion

Much research in protocol verification has attempted to exploit the fact that protocols
are frequently finite state. For example, in [Za80] and [Si] (global-state) reachability tree
constructions are described which permit mechanical detection of system deadlocks,
unspecified message receptions, and non-executable process interactions in finite-state
protocols. An obvious advantage that our ap'proach has over such methods is flexibility; our
use of temporal logic provides a uniform notation for expressing a wide variety of
correctness properties. Furthermore, it is unnecessary to formulate protocol specifications
as reachability assertions since the model checker can handle both safety and liveness

properties with equal facility.

The use of temporal logic for specifying concurrent systems has, of course, been
extensively investigated ((MP81], [HO80}, [OL80]). However, most of this work requires
that a proof be constructed in order to show that a program actually meets its specification.
Although this approach can, in principle, avoid the construction of a global state machine, it
is usually necessary to consider a large number of possible process interactions when
establishing non-interference of processes. The possibility of automatically synthesizing
finite state concurrent systems from temporal logic specifications has been considered in
[CE81] and [MW81]. But this approach has not been implemented, and the synthesis

algorithms have exponential-time complexity in the worst case.

Perhaps the research that is most closely related to our own is that of Quielle and
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Sifakis ([QS81], [QS82]), who have independently developed a system which will
automatically check that a finite state CSP program satisfies a specification in temporal
logic. The logical system that is used in [QS81], is not as expressive as CTL, however, and
no attempt is made to handle fairess properties. Although fairness is discussed is [QS82],
the approach that is used is much different from the one that we have adopted. Special
temporal operators are introduced for asserting that a property must hold on fair paths, but
neither a complexity analysis nor an efficient model checking algorithm is given for the

extended logic.
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Chapter 5

A Multiprocess Network
Logic with Spatial and

Temporal Operators

5.1. Introduction

. One of the fundamental models of parallel computation is a collection of synchronous
processors with fixed inter-connections. For example, the iterative linearly connected, mesh
connected, and multidimehsional arrays of [Ko69] and [Co69], the shuffle exchange
networks of [St71] and ultracomputer of [Sc80], and the cube connected cycle networks of

[PV79].

Parallel algorithms for such networks are difficult to formally describe and prove
correct. For example, the systolic algorithms of [KL78] are not formally proved correct in

that paper; instead informal "picture proofs" are presented.

An informal description of a program or algorithm for a fixed connection network
would likely make reference to the spatial relationships between neighboring processes and
the properties holding for all processes, as well as the transformations over time. Indeed,
natural English allows expressions of spatial modal operators such as everywhere, -
somewhere, across such and such connection, as well as temporal modal operators such as
until,eventually, hereafter, and nexttime. However, natural English cannot suffice for formal
semantics. This paper proposes a formal logic allowing use of these modal operators in the

context of a fixed connection network.
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Previous program logics contained only temporal modal operators [Pn77], [MP81] or
modal operators for the effect of program statements [FL79]. Temporal logic has been used
to reason about parallel programs; however it is impractical to use this logic to reason about
large number of processes 'operating synchronously and communicating through fixed
connections. Our use of spatial as well as temporal modal operators is a new idea. (Note:
our spatial modal operators differ in an essential way from the modal operators of dynamic
logic; see Section 5.2). This combination of temporal and spatial modal operators allows us

to formally reason about computations on networks with complex connections.

The contribution of this chapter is more than simply the definition of our logic. We
also describe applications and investigate the computational complexity of decision

procedures.

Section 5.2 defines the logic. Section 5.3 describes some interesting applications of our
logic to routing on the shuffle exchange network, to the firing squad problem on a linear
array, and to systolic computations on arrays. We felt these examples to multiprocess

networks illustrate the general applicability.

Section 5.4 investigates the problem of deciding validity of formulae of our logic. We
show the set of valid formulas is [T} -complete. However, in practice we are generally only
interested in deciding validity of a proportional formula with respect to a given finite
network. We show that giveh a finite network and a formula, the problem of deciding if the

formula is valid in all models over the given network, is PSPACE-complete.
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5.2. Definitions and Notation

First we define the propositional version of the logic. At the end of this section we

briefly describe the first order version of this logic.

5.2.1. Networks

Let L be a countable set of symbols, which we call links. A network G = (P,E) contains
a countable set of processes P and a partial mapping E: L x P — P. For each process p € P
and label ¢ € L, E(¢,p) is (if defined) the process connected to p by link ¢. For example, a
square grid network might have links up, down, left, and right. The links are different from

the atomic programs of PDL due to the restrictions given in the next page.

5.2.2. Syntax of the Logic

We distinguish as temporal modal operators the symbols F, G, U, X; for readability
purpose sometimes we use the mnemonics eventually, hereafter, until, and nexttime
respectively for the above mentioned temporal operators. The spatial modal operators are
somewhere, everywhere, and any symbol in the set of links L, which we assume contains

none of the previously mentioned modal operators.

Let ¢ be the infinite set of atomic propositions. The well formed formulae are
inductively defined as follows: An atomic proposition is a well-formed formula; if f |, f,
are well formed formulae then so are —f}, f; A f,, Ff,, Gfj, Xf,, UL, somewhere(fl),

everywhere(fl), t(fl) where ¢ € L.
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5.2.3. Semantics

A Model M is a 5-tuple (S,¥,A,G, ) where:
(i) S is the set of states,
(i) ¥ : S 27,
(i) A: (L u {nexttime}) x S — S, is a partial function,
(iv) G = (P,E) is a network, and
V)7 S—=P.

Thus for each state s € S, W(s) is the set of atomic formulas which are true in s, and m(s)
is the process associated with state s. Also A(nexttime, s) is the state occurring in the next
time instance if the current state is s , and A(¢,s) is the current state of the process connected

to process m(s) by link ¢.

We extended A as a partial mapping to the domain (L U {nexttime})* x S so that for all
s €S, A(e,s) = s where ¢ is the empty string , and A(tl~e2 , 8) is defined iff A(tl, s ) and
A(ez, Ae,, 9) ) are defined and in this case A(t1 4y, §) = Ae,, A(el, s) ). Similarly we also

extend E as a partial mapping to the domain L’ xP.
A model A is proper iff the following five conditions are satisfied:

R1: For each link ¢ ¢ L and each state s €S, A(¢- nexttimes) = A(nexttime- ¢,s) (thus

nexttime commutes with respect to each link; this presumes the processes are synchronous).

R2: For each state s € S, A (nexttime,s) is defined and m(s) = m(A(nexttime.s)) (thus

the name of each process is invariant over time).

R3: For each state s €S and link ¢€L, E(¢,7(s)) is defined iff A(¢,5) is defined and in this
case, E(¢,7(s)) = m(A(L.$)).
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R4: For any a,o L’ and state s €S if E(a, 7(s)), E(¢,(s)) are defined and E(a,m(s))
= F(e,m(s)) then A(a,s) = A(et,s). (Thus the relationship between the states of two

processes is independent of the particular paths of links over which they are connected.)
RS: If m(s))= 7(s,) then for some i>0 A(nexttimé.s P=s,0r A(nexttimei,sz)= $;-
Hereafter, we consider only proper models.

Let us fix the model M. We define truth of a formulae at a given state s € S by

structural induction on the formula.

For each atomic proposition Q € %, s k= Q iff Q € ¥(s);
For any f, f,
s=f AL iff sk=f andsk=f,;
S k= ﬂfl iff not (s I=f1);
s = nexttime ) iff A(nexttime, s) = f v
s = eventually | iff Ik > 0 A(nexttime®s) = f,;
s k= hereafier £ iff k= 0, A (nexttime®s) = f;;
s = f) until £, iff 3k > 0 A(nexttimé® s) = f,and Vi, 0 <i<k, A(nexttimé.s) = f v
s b= ¢f) iff A(¢) is defined and A(es) =1;
s b= somewhere f, iff 3 ae L, such that A(as) is defined and A(as) = f;;

s k= everywhere f, iff Va € L® (A(as) is defined = A(as) = f)-

We let = 4 denote truth with respect to a given model .
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5.2.4. Decision Problems

A formula f is said to be satisfiable (valid) if s = _y f for some (all, respectively) model
A and some (all) state s. Given a network G, a formula f is said to be G-satisfiable

(G-valid) if s =y, f for some (all) models b with network G and some(all) state s.

5.2.5. Extensions to First Order Logic

The first order version of this logic consists of the additional symbols like local
variables, global variables, constant symbols, function and relation symbols, and the
universal quantifier V. A term is defined as in the case of first order predicate calculus. An
atomic formula is an atomic proposition or of the form R(tlt2 tk) where R is k-ary relation
symbol (R can be equality in which case k = 2) and t, t,, ..., t, are terms. The additional
requirement for the set of formulae is that if f is a formula and x is a global variable so is
Vx(f). A model M is a S-tuple (S , A, G,#) where £ = (D, a,) in which D is a
countable domain from which the variables take values, a interprets relation and function
symbols, B is mapping associating with each global variable and constant symbol a value
from the domain: S is the set of states where each state is a mapping that associates a truth
value with each atomic proposition and a value from D with each local variable; A, G,  are
the same as in the propositional case. A proper model should satisfy the same conditions as
for propositional case, modified in a natural way. We consider only proper models. Truth
of an atomic formula in a state of a model is defined as in the case of first order predicate
calculus; and truth of a formula in a state of a model is defined inductively as in the
propositional version with the following addition; s = Vx fiff for each c €D, sk= M, f
where b _is exactly same as b except that the global variable x is given the value ¢ in b,

Satisfiability and validity of formulae are defined as usual.
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5.3. Applications

This section gives some examples of the use of our logic to various multiprocess

network applications.

5.3.1. Routing on a Shuffle-Exchange Network

A Shuffle-Exchange  network G=(P,E) where P={01}" and
E: {exchange, shuffle} x P — P is defined as follows:
E(exchange,(a .3 5, ....3)) = (@ q2,9 -5 ag)
E(shuffle, (an_l, a aO)) = (ao, a ...al)
foralla ,,a ,, ...,a €{0,1}.

Intuitively, the exchange edge connects processes p, and p, if all the bits of p, and p,
are the same excepting the least significant bits which are distinct. The shuffle edge

connects two processes p; and p,, ifp, is obtained by one cyclic shift of bits in p;.

The routing problem in this network is to route a packet present at some process to a

given destination traversing only along the shuffle and exchange edges.

We capture the name of a process by the atomic propositions A_;, A, ..., A The
formula f;, asserts that the name of process is invariant over time;
fo = Q_kn (hereafter Y hereafter-nAi)
fl, f2 assert that exchange and shuffle edges are properly connected.
| fi= {;k,, (A, +~ exchange Ai) A (A0 — exchange -on)

The presence of the packet at any process will be indicated by the atomic proposition

X, and the destination by D_ ;. D, - ,Do. We assume that the name of the destination
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travels with the message. Let g, assert that X is true in at most one place at any time. It is
not difficult to see that this can easily be expressed. g, asserts that the name of the
destination travels with the packet.
g =X ({; i<n ( Di D hereafter everywhere (X2 Di))A

(—D, > hereafter everywhere (X2 - D,))
g, asserts that the packet travels along the shuffle or exchange edges only.

g, = X D nexttime (Xv shuffleX v exchange X)

The main correctness property is g, which asserts that the packet reaches its destination
eventually.

g = eventually somewhere( X ékn (Ai - Di))

Let r be a formula which describes the actual routing algorithm. Then
(hereafter everywhere (tA fy A fy ATy A B A B AB))D B,

is a valid formula iff the algorithm correctly routes packets.

Next we describe a specific routing algorithm for the shuffle-exchange network and
derive the corresponding formula r for its semantics. The packet will be routed in n stages,
where fori = 0, ..., n-1if at the start of the i-th stage the packet is located at a process
whose lowest order address bit is not the value of D,, then the packet traverses the exchange

link and reaches the i+ 1 stage. In either case, the packet next traverses a shuffle link.

To define a fo_rmula r for this routing algorithm, it is useful to introduce propositional
variables Sp -+ S, and require that only unique S; be true at any process, and that S, be
invariant on traversing an exchange link but that S(i +Dmod n be true on traversing a shuffle

link. Thus we let
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Ih = (}l_;_kn [(Sl A— So/\ WA qSi-lA-‘Si+1 AL A-‘Sn'l)

A(nexttime exchange S,) A (nexttime shuffle S(i +Dmod )
The formula for the semantics of this routing algorithm is given by r, where

r= roA[(XA (}ékn(Ai H-’Di))
> icn SM(AG=D)2

nexttime exchange X)A((Ay—~-D)) > nexttime shuffle X)}]

5.3.2. The Firing Squad Problem for a Linear Array

We briefly describe the problem and show how it’s correctness can be specified in our
logic. A solution to the firing squad problem consists of a linear array of deterministic finite
state processes as shown in the following figure. The next state of each process is a function
of it’s present state and the states of it's neighbors. All the privates are identical processes.
The problem is to obtain the programs for the lieutenant, the sergeant and the privates so
that whenever the lieutenant is in a designated initial state, then eventually all the processes
simultaneously enter a special state called the firing state, and none of them enters this state

before this time. The solution should work for linear arrays of all sizes.

right | right right right

(1ieutenant i

left left left left

!
’é

We assume that all processes have the state set Q={0,1,2, ..., m}, and the state 0 is

the initial state of each process. State 1 is the specific state into which the lieutenant enters
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to start the operation. State m is the firing state. All the privates are identical. We use
atomic propositions P, Py, P _to indicate the state of a process (Pi is true at a place iff
the corresponding process is in state i at that instance). Now we assert the operation of the

system as follows.

(i) "I" asserts that each process is in at most one state at any instance of time.

I = everywhere hereafter| ({}_iq <k (P;2~ Pj)]

(ii) f; asserts that the moves of the lieutenant is according to its next move partial
function
8y:Q*-Q.
fo = everywhere{~lefi(true) 2 {(P, v P)) A
A ) .
hereafter i} ((P; A right Pj) D nexttime PGO(i ,j))}]

Note that ~/efi(true) is true only on the lieutenant, the left most processor.

(iii) Similarly let f,f, be the formulae that define the moves of all privates and the
sergeant respectively. The positions of privates is identified by the truth of the formula
(lef(True) A righiTrue)).

Note that the position of the sergeant is identified by the formula —righi(True).

(iv) Let g, be the formhla that asserts that if any process (other than the lieutenant) and
all its neighbors are in state 0 then it remains in state 0 in the next step. It is easily seen that

this can also be asserted.

Now we assert that if all the above conditions are met and at any time the licutenant
enters the state 1 then all processes will eventually enter the firing state simultaneously at
some future instance, and none of them will be in the firing state before that instance. This

is captured by the formula g.
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g=(AfyAf A f,Angy> hereafter| somewhere (- lefi(true) A P)) 2

{(—somewhere P_) until (everywhereP )}]

g is valid on all models with linear arrays as networks iff the given solution to the firing
squad problem is correct. A similar construction can be given for the firing squad problem

over any given network.

5.3.3. Systolic Arithmetic Computations

The systolic algorithms of [_KL78] are not formally proved correct in their paper;
instead they present informal "picture proofs”. Our logic is thus particularly useful here

when extended to first order formulae (as described in Section 2.5).

We consider an interesting example of a network for matrix-vector multiplication due
to ([KL78],[Le81]). The matrix is an infinite band matrix of bandwidth (n+1). The

network architecture is shown in figure 5.1.

input
right
lefit

Figure 5-1:
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The main processors are Py, Py, ..., P The processors Py, Py, P are the input
processors, each of them contains a variable Z. The values of Z in P, change with time and
they represent the values of the i diagonal of the matrix. This variable takes the successive
values of the i diagonal at alternate time instances and takes value zero at the intermediate
time instances. Each processor P; has two variables X,Y. The values of the variable X in P0
over time represent the input vector. This variable takes the successive values of the input
vector at alternate time instances and takes value zero at the intermediate time instances.
The values of X move right with each time instance. The details of the relative timings are
given in [Le81] and the reader is referred to this.

Thus,

g = lefi(true) o Va(lef(X = a) — nexttimgX = a))
asserts that the value of X at the next time instance in processor P; @i > 0), is the present

value of X in the process left to P,.

At each step P(i > N) computes its value of Y to be the sum of the previous value of Y

in process P. _,, plus the product of X in P; times Z in P, This is captured by

i+l
g, = right(true) > VaVpB(righY = &) Anexttime input (Z = B)

onexttimeY = a + X - B))

At each step P computes its value of Y to be the product of the value of X'in P and
the value of Zin P o This can also be easily asserted by the formula
g; = ~righfTrue) A inpuf(true)] o VoV B[ (X= aAinput(Z=B)) > nexttime(Y = a- Bl

(note that —righf(True) A input(true) holds only for processor Pn)

The steady state correctness property at P can thus be expressed in our logic as
hereafter everywhere (g, /\gzl\g3) O hereafterh

where



80

h = [~lefi(True) A inpuf(true)] >
Vay ..o,V By .. Byl 0/;,-5,, nexttime® X=a) A
nexttime *iright® \input (Z = BY)

D nexttimeZ“ Y = ozs_isn a; - Bl)]

5.4. Decidability and Complexity Issues

In this section we consider issues of decidability and complexity of different versions of
our logic. Recall that a formula is said to be satisfiable iff there exists a model and a state at
which the formula is true. A formula is said to be valid if it is true in all states of all models.
We say that a formula is satisfiable (valid) on finite networks if the formula is true in some

(all) model with finite networks.

THEOREM 5.1: The set of satisfiable formulae of multiprocessor network logic is P

-complete and the set of valid formulae is IT} -complete.

Proof sketch: First we show that the set of satisfiable formulae is a £} -complete  set.

From this result it can easily be shown that the set of valid formulae is IT 1-complete.

We consider a deterministic Tuﬁng machine M on infinite strings. M has one read
only infinite input tape, and an infinite work tape. An infinite string is input to M on its
input tape. M never halts. M is said to accept an input if during its computation it goes into
any of a set of final states infinitely often. The set of encodings of all Turing machines that -
accept at least one input, is shown to be Z1-complete in [SCFG82] . We reduce this set to
the set of satisfiable formulae. An ID of M is the part of input is seen thus far, the contents

of the work tape, the position of the head on the work tape. We define a sequence of IDs of
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M during its computation on an input and express this sequence using a formula in the
logic. We also assert that in this sequence, final IDs (IDs having a final state) appear
infinitely often. Thus given an encoding of a Turing machine we obtain a formula that is
satisfiable iff the Turing machine accepts at least one input. The details can easily filled up

by the reader. O

Let 46 = (S, ¥, A, G, m) be a model where G=(P,E) is a is a finite network. Let
@:P—S. ¢ is said to be consistent with b, if a(q(p))=p for all peP, and for all p,, D if p;
= E(¢p,) forsome £ € L, then <p(pj) = A, @(p)). Let d={gp | @ is consistent with b},
and let next: ® — ® be such that for all ¢ € ® and for all p, nexf(pXp) =
A(nexttime, (p)). b is said to be ultimately periodic with starting index ¢ and period m, if
forall € ®, nexti((p) = next”m(q)) for all i > ¢. For any formula f, let SF(f) be the set of
subformulae of f, and for any ¢ € @, let [pP — 25F®  such  that
[<p](p)={g|geSF(f) and @(p)= g}. We require a technical lemma characterizing
satisfiability. This lemma can be proved on the same lines as the corresponding lemma for

PTL given in Chapter 2.

LEMMA 5.2: f is satisfiable in a model over a finite network iff f is satisfiable over an

ultimately periodic model over a finite network. [J

THEOREM 5.3: The set of formulae that are satisfiable in a model over a finite network

is 9 -complete,and the set of valid formulae in models over finite networks is IT¢ -complete.

Proof: As in the previous theorem, we can reduce the halting problem of Turing
machines over finite strings to the set of satisfiable formulae in a model over a finite

network. We give a Turing machine M which accepts the above set. M guesses a finite
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network and an ultimately periodic model over this network. It next verifies that fis
satisfiable in this model. M halts only on the input formulae that are satisfiable in a model

over a finite network. [

THEOREM 5.4: The following problem is PSPACE-complete. Given a finite network

G, and a formula f, is f satisfiable in a model over the network G ?

Proof: The PSPACE-hardness of the problem follows from the PSPACE-hardness of
satisfiability for PTL given in Chapter 2. We give a polynomial space bounded Turing
machine M that checks if f is satisfiable in a model over the network G. M guesses [¢], and
verifies for consistency and that fe[¢}(p) for some peP. At each subsequent instance M
guesses [next(¢)] and checks that it is consistent with ¢. It continues this each time keeping
[¢] and [nexs] (g). At a certain instance it guesses the beginning of the period and saves the
corresponding [¢]. It continues the previous process, each time guessing either [nex(¢] or
guessing that it is the end of the periodic part. In the latter case it takes [nexx(@)] to be the
saved value at the beginning of the period. Each time M guesses [nexf(¢)] it verifies that [¢]
is consistent with [nex®()]. M also verifies that certain formulae are fulfilled in the periodic

part. M clearly uses space polynomial in the size of G and the size of f. O

5.5. Conclusion

. We have proposed a logic to reason about computations of multiprocessor networks.
We feel that our logic will be useful to specify the semantics and prove correctness of
multiprocess networks. No such formal system for multiprocessor networks had been
proposed previously. We have examined the application of our logic to some diverse
multiprocess network problems, and presented some results in decidability and complexity

of our logic.
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All the applications we presented are synchronous systems. However, our logic can

also be used for asynchronous distributed systems.
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Chapter 6

Characterization and Axiomatization of

Message Buffers in Temporal Logic

6.1. Introduction

Exchange of information between executing processes is one of the primary reasons for
process interaction. Many distributed systems implement explicit message passing
primitives to facilitate intercommunication. Typically, a process executes a write command
to pass a message to another process, and the target process accepts the message by
executing a read command. The semantics of write and read may differ considerably
depending on the methods used for storing or buffering messages that have been sent but

not yet accepted by the receiving process.

Because message passing systems are so widely used, it is important to develop formal
techniques for reasoning about them. In this chapter we investigate the possibility
(impossibility) of using linear temporal logic to characterize the semantics of different

message buffering mechanisms.

Specifically, we consider FIFO buffers (queues), LIFO buffers (stacks) and unordered
buffers (bags). The set of distinct messages that can be written into the buffer is called the
message alphabet. We specify a message buffer as the set of all valid infinite input/output
message sequences. Thus, characterizing a message buffer in temporal logic consists of

obtaining a formula that is true exactly on these sequences. For unbounded buffers, we
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show that it is impossible to obtain such a formula in first order linear temporal logic that is
independent of the underlying interpretation (i.e. message alphabet). Nor is it possible to
obtain such a formula in propositional linear temporal logic (PTL) when the message
alphabet is finite. It is possible ,however, to give a formula in first order linear temporal
logic that gives a domain-independent characterization of bounded buffers. In fact, if the
message alphabet is finite, then such a formula can be expressed in PTL. Although such
bounded message buffers can be characterized using «-regular expressions (or monadic
second order theory of one successor), it is not obvious that they can be expressed in PTL
since this logic is provably less expressive than w-regular expressions [Wo81]. We show how
we can characterize bounded buffers elegantly in QPTL with one level of existential

quantification.

We also consider the problem of axiomatizing the various types of message buffers. A
model of a message buffer is an infinite sequence of states denoting a series of legal
read/write operations on the buffer. The theory of a message buffer is the set of all PTL
formulae which are true in all models of the buffer. Since bounded buffers over finite
alnhabet can be characterized in PTL and since PTL has a complete axiom system it can
easily be shown that bounded buffers are axiomatizable in PTL. We show that, in general,
unbounded FIFO buffers are not axiomatizable. Surprisingly, it is possible to axiomatize
unbounded LIFO buffers and unbounded unordered buffers; in fact, the theories of these

buffers are decidable.

This chapter is organized as follows: Section 6.2 defines the additional notation that we -
use in the remainder of this chapter. In section 6.3 we specify precisely those properties of
message buffers that we would like to capture in temporal logic. Section 6.4 shows that

bounded buffers can be characterized in the logic and describes how uninterpreted auxiliary
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proposition symbols can be added to simplify this construction. In section 6.5 we prove that
it is impossible to give a domain independent characterization of unbounded message
buffers in first order temporal logic. We also show that unbounded FIFO message buffers
are not axiomatizable in PTL while unbounded LIFO and unordered buffers are
axiomatizable. The chapter concludes in section 6.6 with a summary and discussion of 6ur

results.

6.2. Definitions

In the previous chapters we deﬁnéd the syntax and semantics of PTL . Here we define
a restricted version of the first order temporal logic. The language of this logic includes
variables, function symbols, relation symbols and the universal quantifier in addition to the
symbols in the propositional version of the logic. The type of the language is a tuple which
gives the function‘ symbols, the relation symbols with their arities. The variables are
partitioned into two groups: local variables whose values depend on the current state and
global variables whose values are state independent. Atomic formulae have the same syntax
as in the usual first order case. The set of well formed formulae is the smallest set
containing the atomic formulae and closed under universal quantification over global

variables, boolean connectives, and the above temporal operators.

A model T is a triple (A, a,s) where A is the domain; a assigns meanings to the function
symbols, relation symbols, and global variables; and s is a w-sequence of states. A state
assigns values from A to the local variables and truth \}alues to the atomic propositions. An
interpretation in this case is a pair <T,i> where T is a model and i > 0 specifies the present
state. Truth of an atomic formula in an interpretation is defined as in the usual first order
case; truth of a composite formula is defined as in the case of propositional temporal logic
with the following addition: T,i = Vx(f) iff for each ceA T o = fwhere T is T with the

meaning assigned to the global variable x changed to the value c.
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6.3. What Are Message Buffers?

We characterize a message buffer by the set of legal read/write Sequences allowed on
the buffer. A write operation writes a message into the buffer; a read operation reads a
message from the buffer and deletes it. At most one read or write operation is permitted at
any instant of time. In the case of bounded buffers a write request will be rejected when the
buffer is full; similarly, a read request on an empty buffer will be rejected. Rejected
read/write requests are not included in the sequences of legal operations characterizing the
buffer. We consider below three types of message buffers: FIFO buffers (queues), LIFO
buffers (stacks), and unordered buffers (bags). In FIFO buffers the earliest written message
in the buffer is the output for a read request; with LIFO buffers the latest written message
in the buffer is used; and with unordered buffers any message present in the buffer is
output. We also require that each physical message written into the buffer is ultimately

read; this is the liveness property of buffer behavior.

Let Z be the message alphabet and Py, be the set of atomic propositions {R | o € 2} U

{W,loe Z}. Let®2 Py be the set of atomic propositions in the language.
ST = {¢@| p: ?— {True, False} such that ¢(P) = True for at most one P in ?Pz}

We consider each member of ST to be a state; if R U(W o) true in a state, then it

indicates that the message ¢ is read (written) from (into) the buffer in that state.

Lette ST u ST® and ig < i; <... beall the instances at which some messages 001
are read from the buffer, i.e., tik(R "k) = True for k > 0. Then # (t) denotes the sequence
(oo,al,...). Similarly, we define -rrw(t). Let t9 denote the sequence (to,t1 ,...,ti), then nbi =
length('rrw(t(i))) - length('rrr(t(i))) is the number of messages in the buffer just after the

instance i.
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FSX’k is the set of all infinite sequences of states which denote legal series of read/write
operations on a FIFO buffer of size k. LSZ,k and USE,k are the corresponding sets of
sequences for LIFO and unordered buffers respectively. Unbounded buffers will be

denoted in this scheme of notation by k = o0.
Fork >0andk = oo

FSy, = {teST¥|foralli 20,0 < nb(i) < k and 7 (tV) is a prefix of

7 (D) and 7 (1) = 7 (O}.

LSE,k = {t e ST®|foralli> 0,0 < nb(i) < k and if for some o € 2, t, i l=Wothen
there exists j > i such that tj = R , nb(j-1) = nb(i) and Veigct<ijl
nb(¢) > nb(i)}

USZk = {te ST¥ | foralli >0, 0 < nb(i) < k and for all ¢ € Z, the number of writes
of the message o up to i > the number of reads of the message o up to i, and

for infinitely many i, nb(i) = 0}

In the case of both LIFO and unordered buffers we require that the buffer should

become empty infinitely often, in order to satisfy the liveness requirement.

For a finite alphabet Z, a formula fin PTL characterizes a FIFO message buffer of size

k (unbounded FIFO buffer) if Vt € ST ,0 k= fiff t € FSg, (te FSy o)
Similarly we define what it means to characterize LIFO and unordered buffers in PTL.

Let L be a language of first order linear temporal logic of type 7 with local variables

read-val, write-val and with mutually exclusive atomic propositions RW. Let T = (2, a,5)
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be a model of type 7. In any state s, if si(R) = True then it signifies the reading of message
si(read-val) in that state. Similarly si(wn'te-val) denotes the message written if si(W) =

True. With s, we associate any sequence t defined as follows:

Foralli> 0t :®— {True,False} such that forall ¢ € Z,
t(R) = True iff s(R) = True and si(read-val) = 0,

t(W ) = True iff s(W) = True and s(write-val) = o.

A first order linear temporal formula f of type 7 is a (domain independent)
characterization of a FIFO buffer of size k (unbounded FIFO buffer) if for all T = (Z,a,s)
of type 7 T0 = fiff t € FSzk (t e FSE, °Q). Similar definitions hold for LIFO and

unordered buffers.

A model of a message buffer is an infinite sequence of states denoting a legal series of
read/write operations on the buffer, as given above. The theory of a message buffer is the
set of all PTL formulae which are true in all interpretations (t,i) where t is a model of the
buffer. We say that a message buffer is axiomatizable if there exists a recursive set of
axioms from which the formulae in the theory of the buffer can be deduced using séme

inference rules.

6.4. Characterizing Bounded Buffers

In this section we characterize bounded buffers over a finite alphabet using
propositional linear temporal logic; we also give domain independent characterizations in |
first order linear temporal logic. We let fb,, ¢b,, ub, denote formulae in propositional
temporal logic characterizing FIFO, LIFO, and unordered message buffers of size k over
the finite message alphabet Z. First we describe how to obtain the formulae for buffer size

= 1 and 2, and show how it can be extended to the general case.
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Let T be a finite message alphabet, and 95 = {R |0 ¢ 2} u{W_| o€ 2} be the set

of atomic propositions. Throughout this section we use the following abbreviations:

Ex= A —|(R01AR02)A .

~“(W_ AW )HIA(WAR
oMo (W, AW, ) A=W AR)

A
|79,

I = G(Ex)

I’ asserts that at any instant at most one operation occurs on the buffer, and

reads, writes are mutually exclusive.

In the case of buffer size = 1 the buffer behavior is as follows:

1. The writes and reads occur alternately;

2. The message read in each read operation is the message written by the previous
write operation. Thus, fb, = T A fa A fb where

f,= G(W 2 X(-WUR)) A G((R A X(FR)) > X(-R U W));
fy, = G( 962 R, > (=WS Wa))).
It is easily seen that fa and f, assert properties (1) and (2), respectively.

Intuitively, the operation of a buffer of size = 2 can be described as follows. Initially,
writes and reads occur alternately; whenever a read occurs the buffer becomes empty, and
after each write the buffer will have exactly one message. This continues until two writes

occur successively without a read operation in between, and the buffer becomes full
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(formula ¢, expresses this). Subsequently, reads and writes will again begin to alternate.
After each read the buffer will have one message and after each write operation the buffer
becomes full. This may continue forever, or until two reads occur successively without a
write in between, making the buffer empty (r2 expresses this); now the previous sequence
repeats. This behavior is common for FIFO, LIFO and unordered buffers of size = 2. The

formula ¢,, r, are given below:

£2=WA(-|RUW)

r,= RA(-WSR)

In the remainder of this section we will frequently use the formula alt(p,q,c) given

below:

alt(p,g.c) = [gUc) vG(g A =] A[(-cUp)2(—q Up)]

where

g = (P3X(-pUq@)A(@2a[X(-qUp) Vv X(-qUc))

The first conjunct in alt(p,q,c) asserts that either there is a future instant at which ¢ occurs
and until this instant p,q occur alternately, or throughout the future p,q occur alternately
without ¢ occurring anywhere. The second conjunct asserts that if p occurs then it occurs
before q. Thus, the previous intuitive description of the behavior of the buffer of size 2 is

captured by the formula bv given below.

bv = alt(W,R,5,)) A Gle, > X alt(W,R,r,)] A Glr,oX alt(W,R,ez)]

bv asserts that £,,1, occur alternately with alternating read and writes occurring in between.
Any read after ¢ but before the next I, is on a full buffer, while any read after an I, but

before the next ¢, ison a buffer containing one message. The formulas read-on-full, read-
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on-single given below characterize reads on a full buffer and reads on a buffer with one
message, respectively.
read-on-full = R A (-1, § 12)

read-on-single = R A[(=¢,)St, v —(True S ¢,)]

For FIFO buffers, a read on a full buffer reads the message written by the write before

the previous write.
fo, = IAbvAgAh where
g = G(read-on-full o é\ (R 62 [FWS(WAY(-WSW 0))])),

h = G(read-on-single D {,\ [R 62 (-WSW u)]).

The formula on the left side of >’ in g is true when reads occur on a full buffer, while
the formula on the right side asserts that the message read at these instances is the message
written by the last but one write operation. ’'h’ asserts that read operations on a buffer

containing a single message, read the message written by the previous write operation.
THEOREM 6.1: For any infinite sequence of statest, 1,0 k= fb, ifft € FSy,. O

Lette LSzz. If ti = r., then there exists j < i such that tj k= ¢,. The message read at
the instance i is the message written at the instance j. If ti = R and ti &= -r,, then the
message read at the instance i is the message written in the previous write operation. These

properties are expressed by g and h' respectively.
g = G(r2: {7\52 [Roz —»ezs(tzz\wo)])
b = G((-r,AR) > é\ez [ROSﬂWSWc])

Let by =IAbvAg Al
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THEOREM 6.2: For any infinite sequence of statest, 1,0 = ¢b, ifft € LSZ,Z‘ O

Lette USZ,Z' Then for every @ € Z, for all i > 0 the number of messages of value &
written into the buffer up to the instance i is greater than or equal to the number of
messages of valhe o read from the buffer up to the instance i, and they do not differ by
more than 2. For a given o, we can obtain a formula bvo asserting the above property by

replacing R by R G,W by W o in bv.
Letub, =TADbVA </r\€2 bva
The following theorem can be easily proved:
THEOREM 6.3: For any infinite sequences of statest, t,0 = ub2 iffte USZ,2° n

We have shown how the buffer behaviors can be expressed for buffer size = 2. We

show below how we can express the buffer properties for arbitrary buffer sizes.

As before we use formulae with parameters ex: f{d) denotes a formula with parameter
d which can be substituted for. Frequently we use the formula ALT(hl,hz,g(d),c). This

formula is slightly different from the formula "alt’ we used before. It asserts that
either

there is a future instanée.i at which ¢ holds and from the present up to i
(i) the instances at which hl,h2 are true occur alternately (i.e., between every two
instances at which h1 is true there is an instance where h, is true, and vice versa) with h1
occurring first and h, occurring last and

(ii) whenever h; holds, at the immediate next instance g(h,) holds and whenever h,
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holds, g(h,) holds at the next instance if this is not the last occurrence of h, before c,

otherwise g(c) holds at the next instance. Also at i g(h,) holds

or there is no instance in future at which c is true and (i),(ii) hold throughout in the

future.
It is easily seen that ALT can be expressed in PTL.

Lett = (tO tyo- .) € ST, We say that the subsequence (t.t ol ,t) is a RW pattern of a
k buffer if the number of reads and writes in the subsequence are equal and at any point in
the sequence the number of reads is no more than the number of writes up to that point and

they do not differ by more than k.

We use the following intermediate formulae:

NF, (0): tiF NF, (c) iff Jj > isuchthat tj=cand (tt; .t S _p) has RW pattern ofa
k buffer. Incase tik=c, then tik= NFk(c)

Ly Let d be the number of messages in the buffer before the i™ instance.
ti=Ll 1ff3 j > i such that the buffer has d+k+1 messages at j and at all
instances between i and j (including i, j) the buffer has at least d +1 messages.
This is shown in Figure 6.1.

We will obtain a formula for L, +1 (k > 2) in terms of NF,. Letti =L, +1 and d be
the number of messages before the instance i, and j be as given in the definition of L, _ ;.
Let m > i be the earliest inétant such that the buffer has at least d+2 'messages throughout

between m and j. This is shown in Figure 6.1.

It is clear that tm = L, and, throughout between i and m the buffer has at least d+1

messages and at most d+k messages. Hence (t.t; +1""’tm-l) has RW pattern of a k-1 buffer.
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Figure 6-1:

Hence L, | = WAX (NFk_l(Lk)) fork>2

L2=WAX(-'RUW)

L1=W

We also use the following formulae:

NB,(¢):

K+1°

It is the dual of NF,(c). ti = NB,(c) iff 3j <isuchthattj E=cand(t ;..t)
has RW pattern of a k buffer. NBk(c) speaks about the past while NF (é) speaks
about the future.

It is the dual of L, . Letd be the number of messages in the buffer just after
the j instance. Then i i== R, . iff Jj < i such that the buffer has d+k+1
messages just before the j instance and at all instances between j and i-1
(including both) the buffer has at least d + 1 messages.

Similarto L, _ ,, R, ., can be defined in terms of NB, , and R,. L, denotes that there

is a future instance at which the buffer will have d+k messages if it has d messages just
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before the present instance. Similarly Rk denotes that there was an instance in the past

when the buffer had d +k messages, and at present the buffer has d messages.

Now we define NF,(c) in terms of L, , R, and NF, . Let t,i = NF, (c) and let d be the
number of messages before the ith instance. Then 3j > i such that t,j = cand (ti,ti +l,...,tj_l)

has RW pattern of a k buffer. In this case one of the following two conditions holds.

(i) Between i and j, the buffer never has d+k messages in it, that is (t;t; +1,...,tj_1) has

RW pattern of a k-1 buffer; i.e., t,i = NFk_l(c).

(ii) Between i and j, the buffer has d+k messages in it at least once. In this case it is
easily seen that between i and j, Lk,Rk occur alternately with L, occurring first, R, occurring
last; between successive L, and R,, the sequence has RW pattern of a k-1 buffer; between i
and the first L, as well as between the last R, and j the sequence has RW pattern of a k-1
buffer.

Thus ti = ALT(L,.R, ,NF, (d).).
Hence, NFk(c) = NFk_l(c) \% (ALT(Lk,Rk,NFk_l(d),c)

NF,(c) = Al(W,R,True,c)

It is to be observed that NFk(c), L, are defined mutually inductively. Similarly we can

define NB,(c).

Above we gave a formula NFk(c) to express the RW pattern of a k buffer up to an -
instance where ¢ holds. We can extend this easily to express the behavior of a k buffer
forever. For an infinite sequence to be the behavior of a FIFO or LIFO or unordered k
buffer, it has to satisfy two properties, (a) the RW pattern denoted by the sequence should

be that of a k buffer and (b) the messages read by the read operations should match with the
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messages written by the write operations. Below we describe how to express the property

(b) for FIFO, LIFO and unordered buffers of size k.

6.4.1. Expressing Bounded FIFO Buffers

We briefly sketch how we can express a FIFO buffer of size k. Let i,j be integers such
that j < i and m is the maximum integer so that t,j = L_, and there is no instance between j
and i at which Rrrl is true. It can easily be seen from figure 6.1 that if the buffer has d
messages before j, then it will have at least d+ 1 messages at every instance between j and
i. Thus every instance like j increases the number of messages present in the buffer at the
instance i. It can easily be shown that the number of messages in the buffer at the instance i
is equal to the number of instances like j, present before i. Using this property we can obtain
a formula f_ which is true at an instance iff the number of messages in the buffer just before
that instance is c. We can also express that the message read by a read operation is the
message written by the cth previous write operation. Thus we can obtain a formula which
expresses the correspondence between messages read from the buffer and messages written

into the buffer.

6.4.2. Expressing Bounded LIFO Buffers

Let m be the maximum integer such that tiF=R_. Alsoletj <ibe such that tj =L
and at no other instance between j and i L holds. If nb(j-1) = d, then at every instance
between j and i, the buffer has at least d+1 messages. Hence the message read at i is the
message written at j. Since at every read operation R_ holds for some 0 < m < k, we can
easily obtain a formula which expresses the correspondence between messages read from’

the buffer and messages written into the buffer.
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6.4.3. Expressing Bounded Unordered Buffers

In case of unordered buffers the message read can be any message present in the buffer
at that instance. We express the above property as follows: For each o € Z, we assert that
the number of messages of vélue o written into the buffer is always greater than or equal to
the number of messages o read from the buffer and that they differ by no more than k. This
property can be expressed. It is easily seen that the above property together with the

property (a) given above expresses an unorder buffer of size k.

All the formulae fb,, ¢b,, ub, are in propositional linear temporal logic and are
dependent on the message alphabet 2. By making the following changes we can convert
them into formulae in first order linear temporal logic that give domain independent

characterizations of buffers of size k.

(i) ReplaceallR o by ((read-val = 0) A R)and W by ((write-val = 6) A W)

(ii) Replace all (/7\ (conjunctions over @) by Vo.

It can easily be proved that the resulting formulae give domain independent

characterizations of buffers of size k.

Below we show how we can characterize bounded message buffers more elegantly in
QPTL(introduced in chapter 3) i.e. if quantification over propositions is allowed. We use
only one level of existential quantification. A FIFO buffer of size 2 can be considered as

two FIFO buffers each of size 1 in tandem as shown in figure 6.2 .

External writes come into the left buffer while external reads are from the right buffer.
Whenever the left buffer is full and the right buffer is empty the message in the left buffer is
internally read and is written into the right buffer. We consider this internal reading and

writing to be occurring simultaneously and capture it by the propositions I o foroe X



I, R,
Figure 6-2:
Let fb,(w . &) be the formula characterizing a buffer of size 1, where W. R indicate

vectors of propositions. The sequence of operations on the left buffer is characterized by
fbl( Ww.T ) and the sequence of operations on the right buffer is characterized by fbl( T.R

. Let

sz = 3 ?{fbl( W'T’)/\fbl('f'.?)}
LEMMA 64: 50 = fb, iff seFSm. a

For the general case of a buffer of size k we use a somewhat more complicated
approach with k existentially quantified propositions Py,P,..., P,. We will assert that Pj is

true at an instance i iff the buffer has j messages before the operation of the i instance.

= G[os?msk =(P, AP ) A osé\d‘ (P, AW)DXP, DA

o</t\5k (P,AR)>XP, )A(Py>-R)A(P, > W) A P,

The first clause asserts that no more than one P, is true at any instance, the second clause
asserts that if P, is true at an instance and the operation is a write operation then at the next
instance P, , is true, the third clause asserts similar property for read operation, the last

two clauses assert that there are no writes on a full buffer and no reads on an empty buffer.
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Let

P, = I FUARAG( f, (> SR> DC(a.H)))}

where DC(0,¢) asserts that the e previous write is the message o. It is easily seen that fbk

characterizes FIFO buffers of size k.
THEOREM 6.5: t0 k= ﬂ)k iff te FSZk. a

Let
b= IFUAANAG( f, B2 ¢RI (P,SW, AP, DD}
The last clause asserts that the message read at any instance when the buffer has ¢ messages

is same as the message written at the last instance when the buffer has ¢-1 messages. The

following theorem can be easily proved.
THEOREM 6.6 t0 = ¢b, iffte Lszx- O

Similarly we can obtain a formula for unordered buffers.

6.5. Characterizing Unbounded Buffers

Let % be a finite set of atomic propositions and s= (so,sl,...) be an infinite sequence of
states where each state is a mapping from % into {True,False}. Let f be a formula in
propositional temporal logic and SF(f) denote the set of subformulae of f. It is easily seen

that card(SF(f)) < length (f). Fori > Olet[il .= {g € SF(f) | s,i = g}.

LEMMA 6.7: Let0 < i < j be such that [i]_ = [ﬂsf Then s,0 = f iff 8,0 = f where

s = (so,sl,...,si,sj +1%5 4 O
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THEOREM 6.8: Unbounded message buffers (unordered, FIFO or LIFO) cannot be

characterized in propositional linear temporal logic.

The above theorem can be proved by a simple argument using the previous lemma.

O

THEOREM 6.9: There is no domain independent characterization of unbounded

message buffers (unordered, FIFO or LIFO) in first order linear temporal logic.

Proof. Suppose there is a formula f of type 7 in first order temporal logic, which is a
domain independent characterization of an unbounded buffer on models of type 7.
Consider any model of type 7 with finite domain. Then f characterizes unbounded message
buffers in this model. Since the domain of this model is finite, we can replace all universal
quantifiers by finite conjunctions, and by some other trivial changes we can obtain a
formula £ in propositional temporal logic characterizing unbounded buffers over this

domain. But this contradicts the Theorem 6.8. [J

We have proved that it is impossible to give a domain independent characterization of
unbounded message buffers. However, there are partially x’ﬁterpreted temporal logics in
which unbounded message buffers can be characterized. Assume that there are two local
variables write-history, read-history such that at any instance write-history contains the
sequence of messages written into the buffer, while read-history contains the sequence of of
messages read from the buffer. Then the following formula fb ” characterizes the behavior

of an unbounded FIFO buffer:
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fboo =gAh where
g = G(read-history < write-history),

h = G(V hist (hist = write-history > F read-history = hist))

where < is interpreted as the prefix relation, V is interpreted as quantification over the
set of all finite sequences of the message alphabet. 'g' asserts that the sequence of messages
read from the buffer is a prefix of the sequence of messages written into the buffer; b’
asserts that each message written into the buffer is ultimately read from the buffer. It can

easily be shown that the above logic is undecidable.

6.6. Axiomatization of Message Buffers

Axiomatization of message buffers in PTL is a weaker notion than expressiveness. We
show below that in general unbounded FIFO buffers are not axiomatizable. We also show
that unbounded LIFO buffers and unbounded unordered buffers are axiomatizable though

they are not characterizable in PTL.

THEOREM 6.10: Bounded FIFO, LIFO and unordered buffers over any finite alphabet

Y are axiomatizable in PTL.

Proof. Let fbk be the formula in PTL characterizing the FIFO buffer of size k over a
finite alphabet Z. |

Let fb, = True S (fo, A Y True). Forany tandi > 0, ti = =Y(True) iffi = 0.
Hence forany tandi >0, ti = t‘bk ifft,0 = fbk; ie.,ifte FSZ,k' Let A be any consistent
and complete axiomatization for PTL. Then A U {ﬂ)k} is a consistent and complete
axiomatization for FIFO buffers of size k over Z. Similarly we can give an axiomatization

for bounded LIFO and unordered buffers over a finite alphabet. [
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THEOREM 6.11: For any = such that card 2 > 2, the theory of unbounded FIFO

buffers over 2 is not axiomatizable, and this set is [T} -complete.

Proof. We prove below that for £ = {0,1} the theory of unbounded FIFO buffers is
I}

-complete. From this it automatically follows that this theory is not axiomatizable.

We first prove that the set of PTL formulae satisfiable over some model of an
unbounded FIFO buffer over {0,1} is =1 -complete. We consider a deterministic turing
m/c on infinite strings with one read only infinite input tape and one work tape. This turing
m/c works exactly like an ordinary turing m/c, but it takes infinite input strings and it never
halts. It accepts an input string by going through the final state infinitely often. Let M=
(A.Q.8.9p) be such a turing m/c where A is the alphabet (including both input alphabet and
tape alphabet), Q is the set of states, §: Q x A x A — Q x A x {leftright}, g is the final
state. After each step the input head of M moves right by one cell. If §q.0),0,) =
(q',o'z,leﬁ), then whenever M is in state q and sees the symbols ¢,,0,, on the input and work
tapes respectively, then M moves into state q, writes @', on the work tape and moves its
head left, and it moves its input head right by one cell. We show below that given the
encoding of M we can recursively obtain a formula fM in PTL such that fM is satisfiable on

an unbounded FIFO buffer over {0,1} iff M accepts at least one input.

Let ¢ = (Q x A) u A be the set of composite symbols. A partial id of M, is a sequence
of values from c, containing exactly one symbol from (o x A). A partial id denotes the
contents of the work tape and the head position on the work tape and the state of finite
control in the usual way. We like to assert that there is a w-sequence of partial ids, so that

each succeeding partial id is obtained from the previous partial id by one move of M for
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some value of input character read by the input head, and there are infinitely many partial
ids in this sequence containing a symbol of the form (q; ,0). We call such a sequence an
accepting sequence. Any such sequence denotes an accepting computation of M, and for

every accepting computation of M there is such a sequence.

We fix a unary encoding of symbols from c using the character 0 € Z. An encoding ofa
partial id is a sequence of encoding of the symbols in it separated by a single 1. An
encoding of a sequence of partial ids, is the sequence of encodings of the partial ids
separated by two consecutive 1's. " In the following a symbol denotes the encoding of the
value of the symbol. fy, asserts that there is an accepting sequence of partial ids of M as
follows: An encoding of the initial partial id followed by two consecutive 1’s is written into

the buffer and during this period nothing is read from the buffer.

After writing of the initial id, reading and writing of symbols occurs alternately.
Whenever a symbol is read, it is the symbol of the previous id. Each symbol written into the
buffer is the value of the symbol in the new id assuming some input symbol on the input
tape. fy, can express this because the value of a symbol in a new id depends only on the
contents of that cell and its neighbors in the previous id, and the assumed value of input
character. fM makes sure that the assumed value of input character is the same throughout
an id. fM makes sure that two consecutive 1’s are written at the end of each id. Finally fM
asserts that there are infinitely many places where a symbol of the form (qf ,0) is written
into the buffer. It is clearly seen that fy, is satisfiable on a model of an unbounded FIFO

buffer-over {0,1} iff M accepts at least one input.

Now we give a reduction in the other direction. Given any formula f in PTL we obtain

a finite state automaton M on infinite strings which accepts exactly those sequences of t



105

such that t,0 k= f (each symbol in t is a mapping from the set of atomic propositions in finto
{True False}). From M/ we obtain a TM M, which operates as follows. M, takes each
symbol in its input to be an encoding of a function assigning truth values to the set of atomic
propositions. M; simulates M'c on the input, and at the same time it makes sure that the
values of the propositions R O,RI,W oV denotes a valid FIFO buffer behavior. M accepts
an input iff M'; accepts it and the input sequence denotes a valid FIFO buffer behavior. It

is easily seen that M; accepts at least one input iff f is satisfiable on a model of an

unbounded FIFO buffer over {0,1}.

It can easily be shown that the set of encodings of TM’s on infinite strings that accept at
least one input, is 2} -complete. Hence the set of formulae in PTL that are satisfiable on a
model of an unbounded FIFO buffer is 2} -complete. From this it follows that set of
formulae, not satisfiable on any model of an unbounded FIFO buffer over {0,1} is M

-complete. Hence the set of valid formulae is ITi-complete. [

LetFS = " FSZk. Then the theory of finite FIFO message buffers is the set of all
PTL formulae true in all interpretations over the models in FS. It can easily be shown that

this theory is also not axiomatizable and that it is 1% -complete.

Sometimes it is more realistic to consider models of FIFO buffers which are recursive;
i.e., models for which we can recursively determine the truth value of an atomic proposition
at any point on the model. For this case also, it can be shown that the theory of these

models is [13- complete.

The degenerate case in which the message alphabet has a single element is also

interesting since it corresponds to processes that communicate using signals.
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THEOREM 6.12: The theory of unbounded FIFO buffers over Z has a single element, is

decidable.

Proof. We say that an infinite sequence of states t is ultimately periodic with starting
index ¢and period pif Vi ¢t =t P We can easily prove that a formula f is satisfiable
onate FSZ o iff there exists a t’ € FSZ, o such that t' is ultimately periodic with starting
index 26! and period 2° fl for some constant ¢ and f is satisfiable on t’. From this we can
easily get a decision procedure for satisfiability of f in FSz oo is decidable. Indeed we can

get a decision procedure that uses space polynomial in the length of the input. O

THEOREM 6.13: The theory of unbounded LIFO buffers over a finite alphabet is
decidable.

Proof. For each formula f in PTL we can obtain a finite state automaton Mg on infinite
strings such that M, accepts exactly those sequences t such that t,0 = f (each state in tis a
mapping from the set of atomic proposition appearing in f into {True,False}). From M; we
can obtain a push down automata P operating on infinite strings. P, uses its stack to make
sure that the sequence of read/write operations represented by the input string is a legal
series of read/write operations on the buffer, while at the same time the finite state control
of P, makes state transitions exactly as M, . P.accepts an infinite string iff its finite state
control goes through any of a set of final states infinitely often. P, accepts an input tiff t e
LSZ o and t,0 = f. Thus f is satisfiable on a t ¢ LSX o iff P accepts some input. The
latter problem can be reduced to a finite set of questions regarding whether an ordinary
push down automaton (on finite strings) accepts any string. Hence the problem of

satisfiability of a formula on a sequence in LSZ, o is decidable. [0
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THEOREM 6.14: For a finite 3, satisfiability of a formula on a model of an unbounded
unordered message buffer over 2 is decidable iff reachability problem for vector addition

systems with states of dimension card(Z) is decidable.

Proof. Let G = (V,EL) be a vector addition system with states of dimension k, where
(V.E) is a directed graph, and L: E — NX where N is the set of integers. A configuration is a
pair (s,a) wheres € V,a € NK. We say that a configuration (t,b) is reachable from (s,a) iff
there exists a sequence of configurations (called a path) (sl,al), (sz,az),...,(sn,an) such that
(sl,al) = (s,a), (sn,an) =(b),andVil<ignVjlgjgk a2 Oandfori<n (si,si + l) €E

anda,_, = 3 + L(s;5;, ) Letk = card(2).

We reduce reachability problem to satisfiability problem. G is a vector addition system
as given above and it is required to determine if (t,b) is reachable from (s,a). Let 2 =
{0,,0,...0,}. We give a formula f such that for some t € US; t0 = fiff (tb) is
reachable from (s,a). We use propositions P for each u ¢ V. f asserts the following

properties:

(i) For each i, 1 < i < k initially a, number of messages of value g; are written into the

buffer; immediately after this P_ is true.

(ii) The propositions P | (for u € V) are mutually exclusive. Foru = tif P is true at any
instance i then the next proposition to be true in future at instance j will be P where (uyv) €
E, and if (c;.c,, ...ck) = L(u,v) then betweeniand j, V¢ 1 < ¢ <kifc,is positive (negative) '

then [c,| number of messages of value @, are written into (read from) the buffer.

(iii) If Pt is true at any instance, either (i) holds or the following condition is satisfied.
Immediately after P, is true, Vel <e<k b, number of messages of value.o, are read from

the buffer, and after this all propositions are false forever.
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(iv) There is a future instance from where all propositions will be false forever.

Since we required that for any t € US2 o’ infinitely often the buffer should be empty it
easily follows that t,0 = fiff (t,b) is reachable from (s,a) in the above vector addition system.

Assume reachability problem is decidable.

Let f be a formula. We wish to determine if 3 t ¢ US S oo such that ,0 = f. From f we
can easily obtain a finite state automaton on infinite strings M; , which accepts by going
through a final state infinitely often, and such that M accepts exactly the set of strings t such
that t,0 = f. From M we can obtain a vector addition system G = (V,E,L), in which V is
the set of states of M, , (51'32) ¢ E iff there is an a (a is a tuple denoting a function that
assigns truth values to propositions) such that there is a transition in M; from s; to s, on

input a, and L(sl,sz) = (al,az,...,ak) where Vi 1<i<k,
ai=1 1fwai1struema,

a =-1 ifR_istruein a
9

a. =0 otherwise.
Let q;, q; be the initial and final states of M , and 0 = (0,0....0).
The following is easily seen:

Thereisate USX © such that t,0 = fiff there is a q € V such that

(i) (q.0) is reachable from (q,,0) in G and,

(i) (q.,0) is reachable from (q,0) by passing through q,,

(i) is not a direct reachability problem; however, we can put it as a reachability
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problem as follows: Introduce another copy of G, call it G, and introduce a transition from
P in G to q;in G', which is labelled with 0. Now (ii) is satisfied in G iff (q.0) is reachable

from (q,0) in the new vector addition system.

Since we assumed reachability is decidable, we can easily decide if there is a q satisfying

(i) and @ii). O

6.7. Conclusion

We have examined the possibility of using linear temporal logic to express the
semantics of different message buffering systems. We have shown that it is possible to
characterize bounded message buffers but not unbounded ones. We have also considered
axiomatization of the theory of various message buffer systems; unbounded FIFO buffers
are, in general, not axiomatizable, while unbounded LIFO and unordered buffers are

axiomatizable.
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Chapter 7

Distributed Implementation Of CSP

7.1. Introduction

Communicating Sequential Processes (CSP) was introduced in [Ho78] as an
appropriate Programming Language for Distributed Systems. The original semantics of
CSP did not require fairness in the selection of processes waiting to establish
communication. However, in practice such a restriction may be highly desirable. In this
chapter we introduce a formal model for CSP implementations and prove simple lower
bounds on the time complexity for establishing fair communication. We also present a
number of new algorithms that ensure different fairness properties and are near optimal in

special cases.

The processes in the CSP language do not share global memory, but instead

communicate by message passing primitives using the following syntax:

P ? x (input message from process P into variable x),

P ! x (output x to process P).
Communication occurs when one process names another as destination for output, and the
second process names the first as the source for input. In this case, the value to be output is
copied from the first process to the second. This type of synchronization is called a
rendezvous and is used as the basis for synchronization mechanism in the ADA language

also. Note that there is no automatic buffering of messages that have been sent but not
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received; therefore, a process executing an output command will be delayed until the

destination process is ready to receive and vice versa.

Much of the power and elegance of CSP comes from the fact that input and output
statements can occur within the guards of guarded commands. For example, a server
process which is willing to receive requests from any of two user processes executes a

command of the following form:

[

user, ? request — ...
O

user, ? request — ...

]

In this case whenever the server process enters the above alternative command, it waits
until either user,, or user, is ready to send a request and accepts a request from one of them.
After this it executes the statements following the corresponding guard. If both the user
processes are ready to send a request then it chooses one of them arbitrarily. It is possible to
have a sequence of boolean expressions in front of a guard with at most one i/0 command. |
In this case, whenever the server process enters an alternative command then all the boolean
expressions in a guard are evaluated, if any of them is false then the guard fails and the
corresponding communication is not allowed. A failed guard is ignored. Thus we see that,
in general the set of communications that are enabled depends on the state of the server
process and so is dynamic. The following is an example where output statements in guards
are convenient. There are two identical server processes P, P,. Each user whenever it

needs a service executes the following alternative command.
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P, ! request — ...
O

P, ! request — ...
]

The semantics of the above command is the same as in the previous case. Thus we see
that a particular user does not have to wait for a particular server. The same alternative

command can have both input and output guards.

Fairness was not required in the original semantics of CSP. However fairness in

communication is highly desirable in many cases. Consider the following example:

output
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The input process reads a sequence of transactions from a terminal. It sends all
transactions of type i to the transaction processor P,. The output process periodically
executes an alternative command where in it is ready to receive processed transactions from
any of the transaction processors. The output process prints the processed transactions.
Each transaction processor P, periodically executes an alternative command where in it is
ready to receive the next input transaction, or is ready to send an already processed output
transaction to the ouiput process. In this problem we require that whenever P, wants to
send a processed transaction then the output process should eventually receive it. Thus
fairness in communication is a requirement here. We assume that each CSP process is

non-terminating and periodically executes an alternative command with i/0 guards.

We introduce a formal model for this and consider two different fairness properties;
weak fairness and strong fairness. For example: in weak fairness we require that
computations in which two processes are willing to communicate with each other
throughout the future but in which the two processes never establish communication,
should not be possible. We consider algorithms for distributed schedulers to ensure the
different fairness properties. In this model neighboring schedulers can talk to each other
using shared variables. We define the time complexity for ensuring the fairness property, as
in [Ly80). We give simple global algorithms for ensuring the fairness properties. In these the
scheduler processes are able to send arbitrary information to one another. Next we consider
algorithms in which interaction between neighboring schedulers is restricted (i.e. a scheduler
can request another for communication and the other scheduler can grant or deny the'.
request). For these algorithms we prove an 0(72) lower bound on the time complexity for
ensuring weak fairness where y is the chromatic number of the communication graph. We

present a near optimal algorithm for the case when the communication graph is a complete
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graph. We consider algorithms in which the interaction between neighboring schedulers is
improved (in addition to the previous interaction a scheduler can withdraw a request). In

this model we present better algorithms for weak fairness, and for strong fairness.

In [Be80], [BS83], [Si79] algorithms for distributed implementation of CSP were
considered. but their notion of fairness (if any) is weaker than ours. An algorithm for weak
fairness is presented in [Sc], but no lower bounds are presented, and our new algorithms
have better complexity. Some probabilistic algorithms are presented in [Sp81], [RS81], for

weak faimess. However the model used in these is slightly more general than our model.

This chapter is organized as follows: In section 2 we introduce the formal model,
define the weak/strong fairness properties and the complexity of implementing fairness. In
section 3 we present simple global algorithms for ensuring the fairness properties. In
section 4 we consider algorithms with restricted interaction. In section 5 we consider

algorithms that permit more interaction between the scheduler processes.
7.2. Formal Model and Definitions

7.2.1. Notation

A Distributed Synchronization System (DSS) is a triple (G, P, Var) where G = (V,E) is
an undirected graph, called the Communication Graph. Each node in V denotes a CSP
process and each edge denotes a possible communication between a pair of CSP processes.
Note that this graph can be syntactically determined from any given CSP program.
P: V — Programs is a function that associates a scheduler process with each node in V. We~
denote the nodes in V by integers, and the scheduler process P(i) by P. Var is the set of
variables which consists of local variables and shared variables. The local variables can only

be accessed by one process.
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A process is a set of actions. Each action is of the form: (s,q V-valuey pyalue .S, ow)
This action denotes that whenever the process is in state s, and the value of v is valueo1 d
then it changes the value of v to value . and goes into the new state s_ ., in one operation.
The states of a process are drawn from an infinite set of states. We require that each process
should be deterministic i.e. in every state, all the actions of the process in that state should
be on the same variable and there should be exactly one action in a given state for each
possible present value of the variable. The only local variables present at node i are S
portij corresponding to each {i,j} €E. These variables take values 0 or 1. Intuitively ¢y = 1
indicates that the CSP process at node i is willing to communicate with the one at node j. If
port;; = portji = 1 then it indicates that the CSP processes at node i,j are in communication.

We require that each Pi should satisfy the following constraints:

1. c;; can only be accessed by Pi, and it is a read only variable for Pi i.e, the old and

new values of S in any action of P, should be identical;

2. The only update by P, on the variable portij is from 0 to 1.

Each shared variable can be accessed by only one pair of adjacent processes i.e. a
variable v is accessible by only two processes P;, Pj such that {i,j} € E. Only one process can

update the variable, but it can be read by both.

We assume that the shared variables are implemented as follows: Consider a logical
shared variable v that is shéred between two adjacent processes P, Pj. Assume that P, can
update v while Pj can only read this variable. There are two actual variables v, v"
corresponding to this v. v is at the node i, while v" is at node j. In addition to the scheduler
nrocesses, there are two channel processes Mij, Mji corresponding to each edge {ij}inG.
Whenever P, updates v, Mij reads this value in one action and writes this value into v" in

another action.
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Let Act-var = { i port; I{ij} € E} u{ v, v" | for each shared variable v }

Processes = {P,|ieV} U { Mij, Mji |{ij}€E}
A configuration (or id) of a DSS is pair of the form (S, Val) where S: Processes — States,
Val: Act-var — Values where S(p) denotes the state of process p, Val(v) denotes the value of
the variable v and should be from the appropriate domain. A computation C is an

w-sequence of ids ido, id;, id,, ..., id,id L ... that satisfies the following criterion:
1. id0 is the initial id.
2.4d is obtained from id_ by one of the following moves:

(a) Process moves - the transition from id_ to id_ ,, may
involve one action of more than one process, but the actions of different processes should be
on different variables. These processes moves also include the moves of the channel

processes.

(b) Oracle moves - An oracle move occurs simultaneously at
nodes i,j if portij = portji = linid . The oracle move resets portij,portji to 0 ; and it gives
arbitrary new values to the the variables in the set {c;, | {ik}eE} u {cjkl{j,k}eE}. An oracle
move models the completion of communication between the CSP processes at i,j and the
reevaluation of the guards by both of them. By this we are assuming that the computation
by the CSP processes between successive entries into an alternative command takes zero

time.

In the initial id, the values of the variables portij is 0. A DSS may have a restricted set

of initial ids.
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7.2.2. Correctness and Fairness

The correctness criterion is that in any computation if two processes are in
communication at any instant then both of them should be willing to communicate with
each other at that instant and at any instant a process can communicate with at most one

other process. This is captured by the following invariance requirement:

For every {i,j} €E

— — A ‘
pOl’tij ) (Cij =1)A (Cji =1 A k#j (-wportki A= portik) i}.l(ﬁportkj A= portjk)

A DSS is said to satisfy weak fairness iff the following type of computation is not
allowed by it.
ido,idi,...,idn,...,id NP
In the above computation °ij=°j1=1 in every id after id , but in no id after id_ i] establish
communication ; that is in no id after idn portij = portji = 1. Intuitively weak faimess
requires that if two processes are willing to communicate with each other for sufficiently

long time then they eventually establish communication.

A DSS is said to satisfy strong fairness iff the following type of computations are
avoided by it.

idyidy, ....id,, ....id,....

S
In the above computation, in every id after id ¢ = 1, and infinitely often cj = 1 but i,j
never establish communication after id . The above definition is symmetrical with respect

to ij. It is to be observed that any DSS that ensures strong fairness also ensures weak

fairness.
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7.2.3. Complexity

A timed computation is a pair (C, t) where C is a computation and t; N — Reals (where
N is the set of positive integers) such that t is positive and monotonic i.e. t(i) > 0 and ifi > j

then t(i) > t(j). Intuitively, t gives timing to each step of the computation.

We use the following time parameters:

T, - upper bound on communication time,
T, -upper bound on message passing time,

Tp - upper bound on process step time.

We say that a timed computation (C,t) obeys the above time parameters iff it satisfies

the following conditions:

For all m>¢>0, ,j>0

LIf port; = port; = 1in every id, such that £<k<m then (m) - () < T ;

2. Let v,v" be the two images of a shared variable v that can be updated by P, and
read by Pj. Assume id, is obtained by a move of the channel process Mij which
read the variable v, and letid | be the id obtained by an action of Mij that wrote
into v", the previously read value. Then t(m) - t(¢) < T

3.1fid, is obtained by one move of P,, and id_ is the earliest next id obtained bya
move of P,, then t(m) - t(¢) < Tp.

The meaning of the above time parameters is intuitively obvious. Note that we are
only considering upper bounds, thus allowing each process to be arbitrarily faster than the

other. From here onwards we fix the above time parameters and only consider timed



119

computations that obey the above parameters. We say that p is the complexity of a DSS D
iff 1 is the minimum value satisfying the following condition:

In every timed computation (Ct) of D and for every
{i,j} €E, if ¢,m are two instances such that t(m) - t(¢) >p and in every id between idl, idm

Cj= Ci= 1, then i, j establish communication in some id between id,id .

We let (D) denote the complexity of D. Clearly it is a function of the time parameters

Tc,Tm,Tp. We also assume that Tp is negligible compared to T, T .

7.3. Global Algorithms

We present a simple global algorithm that ensures weak faimess. Let d be the
maximum degree of any node in G. We color the edges of G with h colors i.e.for each edge
e we associate a color c(e) such that if e,.e, are edges incident on a vertex then °(°1) » °(°2)'
From graph theory [Be73], it is known that there is a coloring such that the number of colors

h <(d+1). Let the colors be drawn from the set { 0,1, .. ., h-1}.

Ex:

We designate a scheduler at a particular node as the controlling scheduler. The whole



120

algorithm proceeds in successive rounds. At the beginning of the ¢™ round, the controlling
scheduler sends messages to all other schedulers denoting the beginning of the round. Letk
= ¢ mod h. When P, receives this message it performs the following procedure: If there is
an edge e={ij} with color k, then P, Pj talk to one another and if both are willing to
communicate then they establish communication. Otherwise P, sends an acknowledgement
to the controlling scheduler. If communication along e is established then once the
communication is complete then both Pi,I'*‘j send acknowledgements to the controlling
scheduler. When all the acknowledgements are received the controlling scheduler starts the

next round.

In the above algorithm, we can use some protocol to merge acknowledgements at each
node. We can use echo algorithms as in [Ch] to send acknowledgements. The details are
easy to work out. It is easily seen that this algorithm ensures weak fairness. A careful
analysis shows that the complexity of the above algorithm = h-T_ + k-D- d? *T,» where D
is the diameter of G and k is a constant. The above algorithm does not guarantee strong
fairness. However we can easily obtain a similar algorithm which uses dynamic priorities on

edges, that ensures strong fairness.

We can indeed easily obtain many different such global algorithms that use a central
scheduler. All these algorithms have the following disadvantages:
¢ Reliability will be poor because these algorithms are coﬁtrolled by a centralized

scheduler.

o If at any instance the set of (edges connecting neighboring processes which are
willing to communicate with each other), is sparse then these algorithms take too

long time,
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o The complexity of these algorithms is dependent on the diameter of the graph

which is an undesirable feature.
7.4. Local Algorithms,with restricted interaction.

7.4.1. Lower bounds for weak fairness

We consider a class of algorithms in which the interaction between neighboring

processes is limited. For each edge {ij}, there are two shared variables ViV Vi can be

updated by P;, while vj can be updated by Pj. These variables take the following values:

R - Request
G - Granted
D - Denied
N - Nul

We restrict the interaction between neighboring processes as follows:

P, sets vijto "R";
Pj sets v; to "G" or "D"; /* After seeing the request of P;*/

P, setsv;; to "N": /* After seeing the answer of Pj */

ij
Pj sets v to "N" /* After seeing P, reset it's variable */

We require that P, set Vi to "R" only when ¢ = 1i.e. when i is willing to communicate

with j. Also when Pj sets Vii to "G" then it is committed for communication i.e. in the next

action it sets portji tol If Pj sets Vi to "D" then it does not commit to communicate until
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the next interaction. If both P,, Pj set their respective variables to "R" at the same time then
they both should commit to communicate immediately. All these restrictions can be

defined more formally.

It can easily be shown that with the above restricted interaction processes cannot pass

any information between them.

THEOREM 7.1: IfD is any DSS with restricted interaction that ensures weak fairness

then (D) > (Y(y-1)/2)-(T_ + 2T ) where y is the chromatic number of G.
Proof Sketch:

Consider two nodes i,j in the communication graph as shown below:

m - L

We say that i immediately waits on j in the configuration ID, iff j is in communication
with one of its neighbors other than i and in all computations from ID, in which G = i =
1 throughout, i does not communicate with any other node until it established

communication with j.

Claim 1: There exists computations in which i immediately waits on j infinitely often

or j immediately waits on i infinitely often.
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Proof: Assume the contrary. We can generate computations in which C; = = 1
throughout and the following happens: Whenever P, requests Pj for communications at that
instance j is in communication with one of its neighbors. Since i does not immediately wait
on j, after some time it establishes communication with a different neighbor (other than j).
And a similar situation occurs whenever Pj requests P Thus i,j never establish

communication, though each of them is willing to communicate with the other throughout

the future. This violates weak fairness requirement. O

One of the protocols by which i immediately waits on j is that P, sets Vi to "R" and
waits until Pj replies. Because of the restricted interaction, the only other protocols are
trivial modifications (ex. P; and Pj have at most a fixed number of interactions in which in
all interactions except the last one Pj denies the request, and in the last interaction Pj may
grant the request). We say that i waits on j in ID, iff j immediately waits on another of it’s
neighbors in ID, and in all computations starting in IDt in which through out the
computation ¢ =i = 1, i does not establish communication with any other process until

it establishes communication with j.
Claim 2: There exists computations in which i waits on j infinitely often or vice versa.

Proof: Assume the contrary. From Claim 1, assume j immediately waits on some
neighbor k infinitely often in some computation and so does i immediately wait on some
neighbor n in some other corhputation. Because of the asynchrony we can prove that there
isa oomputatioh in which j immediately waits on k and i immediately waits on n infinitely
often. Now we can generate a computation as follows. Whenever P, requests Pj then j is
immediately waiting on k. At these instances Pj cannot come out of its waiting phase on P,

and establish communication with i (ex: in the simple protocol Pj sets Vik to "R" and waits
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for the reply of P, which may grant the request. In this case if Pj withdraws the request,
then the sequence of events may be as follows. P, sees the request of Pj, after this Pj
withdraws the request and establishes communication with i, then P, commits for
communication with j by granting its request. This clearly causes incorrect computation.)
Hence from our hypothesis Pj always rejects the request of P.. Similarly whenever Pj
requests P, at that instance i is immediately waiting on n and this request gets rejected. Thus

i,j never establish communication. This violates weak fairess requirements. [J

By similar arguments we can show that dynamic arbitrary long waiting chains form.
Clearly these waiting chains have to be acyclic, otherwise deadlocks occur. Because the
processes cannot pass information around, the only way to avoid deadlocks is as follows.
There should be an a priori defined RW relation as follows: For each edge { i,j };iRW jor
jRW i. i waits on j only if i RW j. Also there should not be any cycles of length greater

than 2 in the RW relation.

Let the RW-graph be the directed graph corresponding to the RW relation. Let eye;, .
. +&, be a sequence of edges along a path in the RW-graph. Consider a computation in
which a waiting chain along this path forms and communication along these edges occur in
sequence. Thus by the time communication along € is established, it will have to wait for k

communications to occur in sequence and this takes k -(Tc +2 Tm) time period.

Let the RW'-graph be a directed graph obtained from RW-graph by keeping, only one
directed edge for every cycle of length 2. Clearly the RW'-graph is acyclic and is obtained
by directing all the edges of G in one direction. Let i be any node which has directed edges
leaving it to the vertices; jg, j, . . - ji- Now consider a computation in which Ci, = i = 1

¢
(for 0 < ¢ < k) throughout the computation. i can only wait along one edge at a time. This
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can easily be seen , otherwise correctness will be violated. Lete, = (igp) (for0 < £ <k).
Now i has to wait on one of the edges last before it waits on other edges at least once.
Without loss of generality let e, be this edge. When i waits along €, a waiting chain along
the longest path starting with €, can form. Letm, be the length of the maximum path along
ey Thus when i waits along e, it takes at least m, -(Tc + 2 Tm) time before it complefes the
communication along e,. Hence by the time communication along e, is established it takes

at least time ozt <My (T, +2T ).
Using simple graph theory [Be73] we can easily prove the following claim.

Claim 3: IF G is an acyclic directed graph obtained by directing the edges of G, then
there is a vertex i in G' such that there are (y-1) outgoing edges from i (say e e, ..., e(y_l))

such that the length of the maximum path along e, is (y-1-0). O

From claim 3, it follows that there is a computation such that to establish
communication along one of the edges it takes time > Ogg (v 1) (y~£-l)-(Tc+2Tm)=
(y(y-1/2)- (T +2T ).

Hence we see that w(D) > (Y(y-1)/2)- (T + 2T ). O

The lower bound given by theorem 7.1 may not be significant for some cases (where y
is very small). An obvious lower bound is d- (Tc + 2Tm). In these cases this may be the

better lower bound.
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7.4.2. Algorithms for weak fairness

The following algorithm was proposed in [Sc] for ensuring weak fairness:

Letc: V— {0,],...,(h-1)} be a vertex coloring of G using h colors, i.e. for each edge
{i,j} in G, c(i)=c(j). The RW relation is defined as follows: i RW j iff {i, j} is an edge in G

and o(i) < c(j). Clearly the RW relation is acyclic.
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The protocol at node i

OUT: Array of all j such thati RW j;

IN: Array of all j such that j RW i;

D,: Outdegree of node i, in the RW-graph;
D;: In degree of node i, in the RW-graph;

Current: Variable used to point into the array OUT;

current : = 0;
Loop Forever
flag := TRUE; pointer : = current; found : = FALSE;
While flag
j := OUT [pointer];
If S then
current : = pointer,
flag : = FALSE, found := TRUE
else
pointer: = (pointer +1) mod D
If pointer = current then flag := FALSE

end of while

If —found then goto Answering-Phase;
j := OUTJcurrent];

o VDN,
Vij.— R 'Y

await vji = "N";



128

Temp := Vii s
vij:= N";
Await Vi = N";

If temp = "G" then establish communication with j;

Answering - Phase:
For ¢:=1Step 1 until D, do
ji=IN;
If Vi = "R" then
if G = 0 then answer negatively to j

Else
begin
V= "G";
establish communication with j
end
End for

End main for loop

The above algorithm works as follows: P, alternates between an asking phase and an

answering phase. During an asking phase it requests along an outgoing edge. It waits until

this request is answered. If the request is granted then it establishes communication along

this edge. After this it goes into answering phase. In this phase it goes through all waiting

requests in some order. During this phase if it is willing to communicate on an in coming

edge it grants the request and establishes communication along this edge, otherwise it denies

the request. A proof of correctness of the above algorithm is presented in [Sc]. It is also

shown that the above algorithm has complexity
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pgh -dz-(TC + 2Tm).
If we use minimum coloring then h = y<(d+1). Hence p < d2(d +1)(T .t 2Tm).

Thus the complexity of the above algorithm depends only on the degree d, and is
independent of the size of the graph. We say that an algorithm is real time iff the
complexity of the algorithm is a function of the maximum degree d and is independent of

the size of the graph.

For complete graphs we give an algorithm that is near optimal. Let G be a complete
graph. Define the RW relation as follows: (i RW j)iff i <j. We modify the answering

phase of the previous algorithm as follows:

We initialize the IN array at node i as follows. Ifk < j < i then j appears before k in the

array IN.
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Answering-Phase at node i:

For ¢:= Ostep 1 until ¢ = D, do FLAG[]: =FALSE od;
ind : = TRUE;
while Ind do
t:= FALSE;
For ¢:=0 Step 1 until D,do
ji= IN[d;
case
Vi = "R" A cij=1 A = FLAGI¢]:
Fstablish communication with j;
FLAG [¢] : = TRUE;
t := TRUE;
Vi = "R" A cij=0 A =FLAG{¢]:
Answer negatively to j;
Vi = "R" A FLAG/):
Answer negatively to j;
Vi * "R":5
End case

End for

If -tthen Ind := FALSE;

End of while

The answering phase given above works as follows: In the "for’ loop P, makes a sweep
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of waiting requests in the order of the IN array. During a sweep it grants a request along an
edge iff it is willing to communicate and has not established communication along this edge
previously in the current answering phase. It continues these sweeps until after a sweep in
which it has not established communication along any edge. It is easily seen that P, makes
at most (D, + 1) sweeps and establishes communication at most once along an in coming
edge, during an answering phase. Thus we see that the time taken for an answering phase <
Di-T + kD, (Di +1)- Tp where T = (T C+2Tm). Since Tp is much smaller than the other
time parameters,we approximate the above time to (Di+ 1)- T = i-T( since G is a complete

graph D, = (i-1).

'Consider a computation in which ¢ =i = 1 throughout. We say that a request from
i to j is successful if the request is granted. Let tij denote the time between the instances
when i made a sucéessful request and j granted the request. If the request of i to j is made
when j is in the answering phase then the request will be answered with in time j-T.
However if the request of i is made while j is waiting on it’s request to k then i’s request will
be answered within time (tjk+(j-i)'T) (this is because there at most (j-i-1) items before i in

the IN array at node j). The following recurrence inequality can easily be seen.

t; < max {i'T,[GD T+ B‘}x(tjk)]}

where T = (T + 2T)).

By induction we can easily show that tij < (2n-1)-T. A request will be rejected if it
occurs in the same answering phase of j as the previous one. Thus there may be several
requests before it is granted. However in this case the difference in time between the first
and last rejected requests is bounded by the time taken by j to complete one answering

phase and this is j-T. By taking into consideration the time taken to answer requests at
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node i we can show that the worst case time ;i taken for establishing communication along
the edge {i.j} is bounded as follows:

By < (@n-i)-T + j-T)-(n-i) + (n-1)-i-T
From the above analysis the following theorem is easily proved
THEOREM 7.2: For the above algorithm the complexity p < m? - (T REANN O

For a complete graph y = n and hence we see that the complexity of the above
algorithm has the same order as the lower bound proved in theorem 7.1. Thus it is a near

optimal algorithm.

7.5. Algorithms which permit more interaction among Processes

In the previous section we considered algorithms with restricted interaction between
schedulers. Due to the restriction, processes cannot withdraw requests. In this section we
consider algorithms with improved interaction. We introduce two more shared variables
Wi Wy for each edge {i,j}. w;; can only be updated by Pi. These variables take binary |
values. In the following algorithms schedulers use these variables to withdraw requests.
Briefly, whenever P, wants to withdraw its request to Pj it sets W to 1. When Pj grants the |

withdrawal it sets Wy to 1.

7.5.1. An algorithm using preemption of requests

Each scheduler process P, maintains priorities of edges incident on it. It gives unique
priorities to them which are dynamically updated. To maintain the priorities it keeps a
queue Q, of edges incidents on it. If edge e, is before e, in Q then e, has higher priority

then e,
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As in the previous algorithm it uses an a priori defined RW relation. In the beginning

Q contains all the in coming edges (at node i in the RW-graph) before all the outgoing

edges.
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Protocol at node i:

We say that an edge e = {i,j} is ready iff ¢ = 1 and (e is an outgoing edge in the
RW-graph or e is in coming edge on which there is a request)

Loop
If there is no ready edge then go to end-of-loop;
1. Get aready edge e which has highest priority;

2. If e is an in comming edge then /*there is a request along e*/
begin
Deny all other waiting requests of lower priority;
4, Put ¢ at the end of Qi;
Establish Communication along e;
5. During the communication Ok all withdrawals;
go to end-of-loop;
end

6. If e is an outgoing edge then
Begin /*lete be {ij}*/
7. Deny all request of lower priority;
8. Request for communication along e;
9. While there is no reply along e do
10. Go through all waiting requests as follows:
11. If there is a request on ¢ = {i,k}

such thatc; = 0 then deny the request; .
12. If there is a request on a ready edge
¢ = {ik} with higher priority than e
then request j for withdrawal by setting Wi to1;
13. If there is a withdrawal request along ¢ = {i,k}
such that e has lower priority than e
then Ok the withdrawal by setting w,, to 1
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end wﬁile
end

/* the request along e is answered */

14. If the request is granted i.e. Vi = "G" then
Begin
15. Deny all waiting requests along edges € such that
e has lower priority then ¢ or € is not ready;
16. Grant all withdrawal requests;
/* All ready requests along € such that ¢ has
higher priority than e and such that there is no
withdrawal request along € are kept waiting */
17. Establish communication along e,
during the communication grant all withdrawal requests;
go to end-of-loop
end
18. If the request is denied i.e. vji="D"
then Put e at end of Qi,
, go to end-of-loop;
19. If the withdrawal request is granted without denial
then go to end-of-loop;
end
end-of-loop:
End of loop

We informally describe the algorithm below. The main features of the algorithm are

that it uses dynamic priorities and that it allows preemption of requests. At the beginning of

the loop, P, picks up a ready edge of highest priority. If this is an in coming edge in the
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RW-graph then it establishes communication and it denies all other requests of lower
priority (new requests of higher priority might have arrived after the choice). During
communication it okays all withdrawal requests. If the edge is an outgoing edge it does the
following: it denies all lower priority requests. It requests for communication along this
edge. While it is waiting for the reply, it checks for pre-emption. If there is a request on a
higher priority edge it requests for withdrawal of previous communication request. It denies
all requests along edges on which it is not willing to communicate. If there is a withdrawal
request along an edge with lower priority it okays the withdrawal request. The other parts

of the algorithm are self explanatory.
Let h be the number of edges in a longest path in the RW-graph.

LEMMA 7.3: Every communication request ( or withdrawal request) is answered

within time at most (Tc + 2 h-Tm).

Proof: The only situation when a withdrawal request from P, to Pj is not immediately
answered is, when the withdrawal request arrives while Pj is executing in the loop at
statement 9. Even in this case, the withdrawal request is not immediately answered only if
Pj has requested along an edge of lower priority than {i,j}. And in this case Pj also requests
for the withdrawal of it’s communication request to the other process. Thus if a withdrawal
request is not immediately answered, there must have formed a chain of withdrawal -
requests along some directed edges. This chain can be of length at most h. Hence it takes

time at most 2h- T _ before a withdrawal request is answered.

Assume there is a communication request from i to j. If the request to j arrives when Pj

is outside the while loop at statement 9, then it will be answered after at most one
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communication i.e. within time T . If the request arrives while Pj is executing the loop at

statement 9, then a chain of requests forms. Let1,j, j;, . be the chain of

s der ke
requesting processes. It is easily seen that the worst case occurs when there are no
withdrawal requests along the chain and the request of jk to jk +1 arrives just when
communication along the edge {jk +1 ks 2} has begun. After the communication is over
Jx 4+ answers j, which in turn immediately answers j, , and so on. Since the length of the

chain can be at most h, it takes time almost (Tc + 2h-Tm) before the request of i is

answered. O

THEOREM 7.4: The above algorithm ensures weak fairness and it has complexity
ps 2d%(T, + h-T,).

Proof: Consider an edge e = (i,j) in the RW-graph such that ¢ = G = 1 for
sufficiently long time starting from the instance ’t’. Assume that e has least priority at this
instance at i as well as at j. If P, chooses an edge ¢ at statement 1, then at that instance €
must be having higher priority than e. If ¢ is an in coming edge then after the
communication along € it will have lesser priority than e. Assume € is an outgoing edge. If
thg request along e is not withdrawn then after the request is answered it is given priority
lesser then e. Assume the request along e is withdrawn. Then this must have been due to a
request along an in coming edge e" of higher priority than €. In this case i immediately
establishes communication along e" and gives it the least priority. Thus we see that after a
request along e is answered, some edge which has higher priority than e before the request
will have lesser priority after the request is answered. From this it follows that within d
iterations of the main loop of P, P, will request along e and this request will not be
withdrawn. If this request is denied by Pj then it must have been the case that j established

communication along an edge of higher priority than e at j (which will imnmediately be given
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lesser priority than e at j) . Hence after at most d such requests e will have highest priority
at j and communication will get established along this edge. Thus the complexity is
bounded by the time required to make d? iterations of the main loop in P, The time
required to make one iteration is at most equal to the sum of the time required for getting
an answer to a request and the time for one communication (answering the other
withdrawal or communication requests takes time which depends only on Tp and is

negligible). Thus the complexity p< 2d2( T.+hT) O

As before we can get RW-graph such that hg(d+1). In this case,
p< 2d2-Tc+ 2d2(d+1)'Tm. Clearly this algorithm has better complexity than the one

given in the previous section.

Even though the above algorithms guarantee weak fairness, in general they do not
guarantee strong fairness. Indeed any algorithm that uses an a priori defined RW relation
as above does not guarantee strong fairness in general. Assume G has cycles. Then there
exist a pair of nodes i,j such that i RW j but not vice versa. Now consider a computation in
which C; = 1 throughout the future and ¢ = 1 infinitely often: whenever i requests j for
communication at that instance ¢ = 0 and j cannot keep the request of i waiting

" indefinitely and hence j rejects the request of i. But ¢;; may be 1 when there is no request

from i and i,j never establish communication.

7.5.2. An algorithm for strong fairness

We present a new algorithm that ensures strong fairness. In this algorithm there is no
constraint on which process should request which other process, as in the previous

algorithm. Instead any process can request any other process for communication.
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The algorithm is a slight modification of the previous one. Each scheduler process P,
keeps two queues of edges Q P Q;'. Q; is used so that requests for communication are made
in a fair way and it is maintained exactly as in the previous algorithm. Ql defines the
priorities among edges used in the algorithm. Whenever there is a communication along
the edge = {i} then e is given least priority at both i (i.e. s placed at the end of Q. Q;).
Apart from the above change the modified algorithm has also the following changes. At
line 1, the earliest ready edge on Q, is picked. This ensures that communication requests
along the edges are made in a fair manner. At statement 2, it is checked if there is a request
along e, in this case statements 3 through 5 are executed, otherwise the control goes

statement 6.

At any instant of time let ">’ be a relation defined among the edge of G as follows: Let
e, = {ij}, e,={ik}. Then e, > e, iff ¢| has higher priority then e, at node i. Since the
priorities are dynamic, so is the relation >, We require that in the beginning all Ql are

initialized in such a way that > is acyclic.
LEMMA 7.5: In the above algorithm > is always acyclic.

Proof. The only situation when the priorities (i.e. Ql) are updated is whenever a
communication is established along an edge. After the communication, both the processes
on either side of the edge give least priority to that edge while preserving the relative

priorities of the other edges. This update clearly preserves the acyclicity of >. O,
Let L be the length of the longest path in G.

LEMMA 7.6: Any request is answered within time (T + 2 LT )
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Proof: First we have to prove that every request gets eventually answered. The only
problem comes when there is a circular chain of requests. In this case we want to show that

deadlocks do not occur.

Let io, ip,... . 1y be a sequence of nodes along a cyclic chain of requests i.e. for
0<j<k, i has a communication request to i+ 1ymod & Let e = {1j, iG+1) mod - Since > is
an acyclic relation among the edges, it is easily seen that there exists at least one vertex ij on
this cycle such that €G - 1) mod k has higher priority then ¢; at this node. Thus ij will send a

withdrawal request to i(i +Dmod k' This guarantees that the cycle gets broken.

Waiting chains of length at most L can form. Now the time bound can be proved as in

lemma7.3. O

THEOREM 7.7: The above algorithm guarantees weak fairness and has complexity p

< d2. (T .+ L Tm). The algorithm also guarantees strong fairness.

Proof: The weak fairness and the complexity can be proved as in theorem 7.4. It is to
be observed that in the complexity bound there is no constant factor 2 as in theorem-7.4.
This is because if ¢ = G = 1 for a time period d~(2Tc + 2L-T m) and if ij did not
establish communication then each of them must have requested the other at least once
during this time (instead of only one of them requesting as in the previous algorithm). The
strong fairness property is easily seen from the fact that any process can request any other

process. []

The main disadvantage of the above algorithm is that it’s complexity depends on the

size of the graph.
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7.6. Conclusions

In this chapter we have considered the problem of achieving different fairess
properties in communication among CSP processes. For a natural class of algorithms we
have proved a lower bound on the time complexity for ensuring weak fairness. For special
cases we presented near optimal algorithms. We also presented interesting new algorithms
for ensuring weak and strong fairness properties. The algorithms we gave for strong fairness
are not real time. This makes us conjecture that there are no real time algorithms that
ensure strong fairness. The algorithms we presented can also be used for distributed

implementation of other formal concurrent systems like Millner’s CCS [Mi78].
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Chapter 8

Conclusions

In this thesis we have addressed some important theoretical problems in the design and
verification of distributed systems. In chapter 2 we examined the complexity of decision
procedures for satisfiability of different versions of temporal logics. We gave a polynomial
space bounded decision procedure for the full Propositional Linear Temporal Logic and we
presented a decision procedure in NP for the logic that uses oﬁly the F(eventuality)
operator. These results justify the use of temporal logic in program verification instead of
first order language of linear order since it is known that the later logic is non-elementary.
In chapter 2 we also considered the problem of automatic verification of finite state
concurrent programs using specifications given in PTL. These results show that there may
not be efficient algorithms for this problem. An important problem for future research is to
investigate restricted versions of this logic for which there are efficient algorithms for
automatic verification of finite state concurrent programs. In chapter 3 we extended PTL to
QPTL by allowing quantifiers over propositions. We showed that the set of true sentences
of this logic which are in normal form with a quantifier prefix that has one alternation of
quantifiers, is EXSPACE-complete. We showed that for a weaker version of this logic
(WQPTL) there is a tight space complexity hierarchy with the number of quantifier
a]temaﬁons for the set of true sentences that are in normal form. WQPTL is expressively
equivalent to the well known logic WS1S(Weak Monadic Second-order Theory of One

Successor). However WS1S is not known to exhibit such a nice hierarchy.
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In chapter 4, we considered a branching time temporal logic for verifying concurrent
systems. We modified the semantics of this logic so that only fair computations are
considered. We presented efficient algorithms for automatic verification of finite state
concurrent processes using the specifications given in this logic. We showed it's application
to well known practical problems. We feel that this approach may be useful in the érea of
developing robust protocols. It will be worthwhile to see if there are more expressive
branching time logics than the one used by us, for which there are efficient algorithms for
automatically verifying finite state concurrent programs. In this chapter we also considered
a branching time logic called CTL*. There are no good known decision procedures for this

logic. This is an important open problem.

In chapter 5, we extended temporal logic in a novel manner by introducing spatial
modalities in addifion to the temporal modalities. This logic allows us to reason about
temporal and spatial behavior in a unified formal system. We have given applications for
this logic from wide areas of multiprocessor networks such as VLSI. We showed that the
validity problem for this logic is undecidable. It is an interesting open problem if certain
restricted versions of this logic are decidable. Another important problem to investigate is

the use of this logic in verifying some algorithms.

In chapter 6, we considered the possibility of characterization and axiomatization of
buffered message passing systems in temporal logic. We showed that all bounded buffers
are characterizable and axiomatizable in temporal logic. We also proved that unbounded
FIFO ‘buffers are in general not axiomatizable while unbounded LIFO, unbounded
unordered buffers are axiomatizable. These results answer some questions regarding the
possibility of obtaining complete proof systems in temporal logics for the correctness of

concurrent programs that use message buffers for interprocess communication.
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Finally, in chapter 7 we explored the problem of distributed implementation of CSP
that ensures certain fairness properties. The two fairness properties we considered are weak
fairness and strong fairness. For a natural class of algorithms that ensure weak fairness, we
proved a lower-bound on the time complexity of any algorithm in this class. We presented
near optimal algorithms in special cases. In a slightly different model we presented
algorithms for weak fairness which have better complexity. We also presented algorithms
for strong fairness. For the model we considered it may be possible to improve our lower-
bound. Other than time complexity, number of messages may be another complexity

measure. It will be interesting to study this problem using this complexity measure.
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