
CMU-CS-83-146

Theoretical Issues in the Design
and Verification of

Distributed Systems

Aravinda Prasad Sistla
August 1983

i

.Q /

DEPARTMENT
of

COMPUTER SCIENCE

f <

Carneg=e-Mellon Un=vers,ty

CMU-CS-83-146

Theoretical Issues in the Design
and Ve rification of

Distributed Systems

Aravinda Prasad Sistla

Department of Computer Science,
Carnegie-Mellon University

August 1983

Submitted to Harvard University in
partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

This research was supported by NSF grant MCS-81-05553 at Harvard University and by NSF

grant MCS-82-16706 at Carnegie-Mellon University.

Synopsis

With the rapid decrease in the cost of hardware distributed computing is finding wider

application. The parallelism inherent in distributed processing makes it much more

difficult to design reliable systems. Many software development techniques such as

hierarchical design and exaustive testing used for large sequential programs are no longer

adequate because of the high degree of nondeterminism present in parallelism. This thesis

addresses the two aspects of correctness and performance in the design of distributed and

concurrent systems.

In chapters 2 through 5 we consider different temporal logics and their extensions, as

formal systems for reasoning about concurrent programs. In chapter 2 we investigate the

complexity of decision procedures for different versions of Propositional Linear Temporal

Logics(PTL). We present a space efficient decision procedure for the full logic. We also

present optimal decision procedures for other restricted versions of this logic. We

investigate the problem of automatic verification of simple concurrent programs using

correctness specifications given in PTL. PTL can not express many important correctness

properties of concurrent programs. For this reason in chapter 3, we extend PTL by allowing

quantifiers over propositions. We investigate the complexity of decision procedures for

these logics. We show that for a weaker version of this logic, there is a tight space

complexity hierarchy with the number of alternations of quantifiers, for the set of valid

sentences in this logic. In chapter 4, we consider a branching time temporal logic for

automatic verification of finite state concurrent processes. We present efficient algorithms

for the automatic verification of finite state concurrent programs using specifications given

in this logic. We show how this method can be applied to check the correctness of well

known practical problems like the Alternating Bit Protocol and a solution to a mutual

exclusion problem. In chapter 5, we extend linear temporal logic by introducing spatial

modalities. This logic allows us to speak about temporal and spatial properties in a unified

logical system. We show how this logic can be used for reasoning about many problems in

fixed connection multiprocessor networks.

In chapters 6,7 we investigate correctness and performance issues in the area of inter-

process communication. In chapter 6, we explore the possibility of using linear temporal

logic for characterizing and axiomatizing different buffered message passing systems. We

prove that all bounded buffers are characterizable and axiomatizable in linear temporal

logic. We show that unbounded FIFO buffers are in general not axiomatizable in PTL,

while unbounded LIFO and unbounded unordered buffers are axiomatizable. In chapter 7,

we consider the problem of distributed implementation of fair communication among a set

of processes that communicate through rendezvous. Specifically, we consider distributed

implementation of Hoare's Communicating Sequential Processes that ensure certain

fairness properties. We introduce two different fairness properties: weak fairness, strong

fairness. For a natural class of algorithms that ensure weak fairness, we prove a non-trivial
0

lower-bound on the time complexity of any algorithm in this class. We present near optimal

algorithms in special cases. We also give new better algorithms for ensuring the above

fairness properties.

Acknowledgment

I am extremely grateful to all my teachers who taught me in my educational career.

I am especially grateful to my advisor, Prof. Edmund M. Clarke for suggesting the

problems addressed in this thesis, for his untiring efforts, lots of enthusiasm and zeal in

directing my research work. The final form and contents of my thesis owe much to his able

guidance, insightful comments and excellent judgement. His advice on both technical and

nontechnical matters was invaluable. I am honored to be one of his doctoral students.

To Professors Amir Pnueli and John Reif I express my sincere appreciation for agreeing

to serve on my research committee. I also thank Professors Michael O. Rabin and Albert

Meyer for their insightful suggestions. I am also grateful to professors John Reif and

Nissim Francez for the many of discussions I had with them.

The Center for Research in Computing Technology provided the right environment for

my research work. I am also thankful to the administration of the Computer Science

Department at Carnegie-Mellon University for giving me the facilities during my stay of

one year there.

Special thanks are to all my friends especially Umeshwar Dayal, Allen E. Emerson and

Anil K. Nod for their encouragement throughout my research work. I am thankful to

Bhubaneswar Mishra for reading parts of my thesis.

Finally, I express my sincerest gratitude to my parents,brothers and sisters for their

constant support and encouragement.

Table of Contents

1. Introduction 0

2. Complexity Of PTL 6

2.1. Introduction 6
2.2. Notation and Basic Definitions 8

2.3. The Complexity of L(F) 10
2.4. The Complexity of L(F,X), L(U) AND L(U,S,X) 17
2.5. Complexity of Extensions of the Logic 26
2.6. Conclusion 28

3. Temporal Logic with Propositional Ouantifiers 30

3.1. Introduction 30

3.2. Upper bounds 31
3.3. Lower bounds 39

4. Automatic Verification of finite state concurrent programs: A Practical 45
approach

4.1. Introduction 45

4.2. The Specification Language. 47
4.3. Model Checker 48

4.4. Introducing Fairness into CTL 57
4.5. Using the Extended Model Checker to Verify the Alternating Bit Protocol 59
4.6. Extended Logics 64
4.7. Conclusion 66

5. A Multiprocess Network Logic with Spatial and Temporal Operators 68

5.1. Introduction 68
5.2. Definitions and Notation 70

5.2.1. Networks 70

5.2.2. Syntax of the Logic 70
5.2.3. Semantics 71
5.2.4. Decision Problems 73

5.2.5. Extensions to First Order Logic 73
5.3. Applications 74

5.3.1. Routing on a Shuffle-Exchange Network 74
5.3.2. The Firing Squad Problem for a Linear Array 76
5.3.3. Systolic Arithmetic Computations 78

5.4. Decidability and Complexity Issues 80
5.5. Conclusion 82

6. Characterization and Axiomatization of Message Buffers in Temporal 84
Logic

6.1. Introduction 84
6.2. Definitions 86
6.3. What Are Message Buffers? 87
6.4. Characterizing Bounded Buffers 89

6.4.1. Expressing Bounded FIFO Buffers 97
6.4.2. Expressing Bounded LIFO Buffers 97
6.4.3. Expressing Bounded Unordered Buffers 98

6.5. Characterizing Unbounded Buffers 100
6.6. Axiomatization of Message Buffers 102
6.7. Conclusion 109

7. Distributed Implementation Of CSP 110
7.1. introduction 110
7.2. Formal Model and Definitions 114

7.2.1. Notation 114
7.2.2. Correctness and Fairness 117

7.2.3. Complexity 118
7.3. Global Algorithms 119
7.4. Local Algorithms with restricted interaction. 121

7.4.1. Lower bounds for weak fairness 121

7.4.2. Algorithms for weak fairness 126
7.5. Algorithms which permit more interaction among Processes 132

7.5.1. An algorithm using preemption of requests 132
7.5.2. An algorithm for strong fairness 138

7.6. Conclusions 141
8. Conclusions 142

Chapter 1

Introduction

Due to the rapid decrease in the cost of hardware distributed computing is finding

wider application. The parallelism inherent in the distributed processing makes it much

more difficult to design reliable systems. Many software development techniques such as

hierarchicaldesign and exaustivetesting that have been used for large sequential programs

are no longer adequate because of the high degree of nondeterminism present in

parallelism. The inadequacyof these techniques becomes more apparent when the system

under construction should continue function even in the presence of partial hardware

failures.

In this thesis we address the two important aspectsof correctness and performance in

the design of distributed and concurrent systems. We consider formal systems based on

temporal logic for reasoningabout concurrent processes. We investigatethe complexityof

decision procedures for different temporal logics and the complexity of automatically

verifying simple concurrent programs. We also present a very practical system for

automatically verifying finite state concurrent programs using specifications given in a

version of temporal logic. We introduce extensions of temporal logics that are useful in

specifyinglargecollectionof concurrent processes.

We also investigatecorrectnessand performance problems in the area of inter-process

communication. The twotypes of communicationwedeal with are bufferedmessagepassing

systems and process communication through rendezvous(or unbuffered communication). In

the former case, we explore the possibility of using temporal logic for characterizing and

axiomatizing different buffered message passing systems. In the rendezvous type of

communication, we develop efficient distributed algorithms that ensure certain fairness

properties in communication among a set of concurrent processes. Specifically, we consider

distributed implementations of Hoare's Communicating Sequential Processes [Ho78], that

ensure various fairness properties.

Linear temporal logic was introduced in [Pn77] as an appropriate formal system for

reasoning about parallel programs. This logic permits the description of a program's

execution history without explicit introduction of time. Many important correctness

properties of concurrent programs like mutual exclusion, deadlock freedom and absence of

starvation can be elegantly expressed in this system. Proving that a parallel program

satisfies some correctness property consists of deducing the formula expressing the property

from program axioms which characterize the possible interleaving of the atomic statements

of the individual processes. An important special case occurs when the programs are finite

state. In this case the program axioms and the correctness properties can be specified in the

propositional version of the logic, Propositional temporal logic (PTL). PTL is also used in

automatically synthesizing concurrent programs as in [Wo82]. In the second chapter, we

consider different decision procedures for different temporal logics. For the full PTL we

give a polynomial space bounded decision procedure for satisfiability and show that the

satisfiability problem for this logic is PSPACE-complete. The previous decision procedure

given for this in [Wo81] is tableau based and requires exponential space. For a fragment of

PTL which uses only the temporal operator F(eventually) we prove a linear size model

theorem and present a decision procedure in NP. We also consider the complexity of truth

in a structure for different versions of PTL

Though PTL is widely used, it can not express many important correctnessproperties.

For this reason we extend PTL by introducing quantifiers over propositions to get

QPTL(Quantified PTL). We show that the set of true sentences in QPTL which are in

normal form with a single quantifier alternation, is decidable using exponential space. We

also consider a logic WQPTL, which is same as QPTL except that in all it's models all the

propositions are false throughout the future after certain instance. We show that there is a

tight space complexity hierarchy with the number of alternations of quantifiers for the set of

true sentences in normal form of this logic. WQPTL is as expressive as WSIS(Weak

Monadic Theory of One Successor). No such tight hierarchy is known for WSIS.

In the traditional approach to concurrent program verification the proof that a program

meets it's specification is constructed by hand using various axioms and inference rules in a

deductive system. The task of proof construction is in general quiet tedious, and a good

deal of ingenuity may be required to organize the proof. Mechanical theorem provers have

failed to be of much help due to the inherent complexity of the simplest logics. In chapter

4, we argue that proof construction is unnecessary in the case of finite state concurrent

systems and can be replaced by a model theoretic approach which will mechanically

determine if the system meets it's specification. The global state graph of a concurrent

system can be viewed as a finite kripke structure. In chapter 2 we showed that automatically

checking if such a system meets a specification given in PTL is very hard. In this chapter we

use a version of branching time temporal logic called Computation Tree Logic(CTL)

introduced in [EC80], as a specification language. We modify the semantics of the logic so

that only fair computations are considered. For this logic, we give an efficient algorithm(

with complexity linear in the size of the specification) which takes a global state graph, and a

specification given in the above logic, and checks if the specifications are met by the global

state graph. We illustrate how this method can be used to automatically verify the

Alternating Bit Protocol and a mutual exclusion problem.

When verifying parallel programs, which involve a large collection of processes

temporal logic may be very cumbersome to use and in some cases may be inadequate. For

these reasons in chapter 5, we introduce a modal logic which can be used to reason about

synchronous and asynchronous fixed connection multiprocessor networks such as VLSI. In

addition to the temporal modalities it has spatial modalities as well. The temporal

modalities used are until, eventually and nexttime. The spatial modalities used are

somewhere, everywhere, across such and suchconnection. The spatial modalities allow us to

relate properties of the current state of a process with the current states of the other

processes, while the temporal modalities allow us to relate the current state of a process with

the succeeding states of the process. We give examples of the diverse applications of our

logic to packet routin_ firing squad problems and systolic algorithms. We also consider the

decidability issues of the different versions of the logic.

Exchange of information between executing processes is one of the primary reasons for

process interaction. Many distributed systems implement explicit message passing

primitives to facilitate intercommunication. Typically, a process executes a write command

to pass a message to another process, and the target process accepts the message by

executing a read command. The semantics of write and read may differ depending on the

method used for buffering messages that have been sent but not yet received. In chapter 6,

we consider the possibility of characterizing and axiomatizing the different message

buffering mechanisms in linear temporal logic. Specifically, we consider FIFO, LIFO and

unordered buffers. The set of distinct messages that can be written into the buffer is the

message alphabet. We specify a message buffer as the set of all valid infinite input/output

message sequences. Characterizing a message buffer consists of obtaining a formula that is

true exactly on these sequences. We show that bounded buffers over a finite alphabet are

characterizable in PTL. We prove that we can not give a domain independent

characterization of unbounded buffers in first order temporal logic, but such a

characterization can be given for bounded buffers. A model of a buffer is an infinite

sequence of states denoting a series of legal read/write operations on the buffer. The theory

of a message buffer is the set of all PTL formulae that are true in all models of the buffer.

Since bounded buffers are characterizable in PTL, they are axiomatizable. We show that

unbounded FIFO buffers over an alphabet of cardinality _ 2, are not axiomatizable. In fact

we prove that their theory is H_-complete. Surprisingly we prove that unbounded

unordered buffers and LIFO buffers are axiomatizable and in fact their theories are

decidable.

Communicating Sequential Processes(CSP) was introduced in [Ho78] as an appropriate

Programming Language for distributed systems. The original semantics of CSP did not

require fairness in the selection of processes waiting to establish communication. However,

in practice such a restriction may be highly desirable. In chapter 7, we consider the problem

of implementing such a fairness property in CSP which allows input as well as output

statements in the guards of alternative commands. We introduce a formal model for this

and consider two different fairness properties; weak fairness, strong fairness. For example,

in weak fairness we require that if two processes are willing to communicate continuously

then they should eventually establish communication. We consider algorithms for

distributed schedulers that ensure the different fairness properties. In this model

neighboring schedulers can talk to each other using shared variables, each of which can be

updated by only one process. We give simple global algorithms to ensure the fairness

properties. Next we consider algorithms in which the interaction between the schedulers is

restricted in a natural way. For these algorithms we present an O(72) lower-bound on the

time complexity of any algorithm that ensures weak fairness where T is the chromatic

number of the communication graph. In the special case when the communication graph is

a complete graph we present a near optimal algorithm that ensures weak fairness. After this

we consider algorithms with improved interaction between the scheduler processes. In this

model we present better algorithms for weak fairness and also give algorithms for strong

fairness.

In chapter 8, we conclude with remarks and open problems.

Chapter 2

Complexity Of PTL

2.1. Introduction

Linear Temporal Logic was introduced in [Pn77] as an appropriate formal system for

reasoning about parallel programs. This logic permits the description of a program's

execution history without the explicit introduction of program states or time. Moreover,

important correctness properties such as mutual exclusion, deadlock freedom, and absence

of starvation can be elegantly expressed in this system. Proving that a parallel program

satisfies some correctness property consists of deducing the formula for that property from

program axioms which characterize the possible interleaving of atomic statements of the

individual processes. An important special case occurs when the program is finite state. In

this case, the program axioms and correctness specification can be expressed in the

propositional version of the logic and provability becomes decidable. A number of

researchers (e.g., [MW81]) have attempted to use such a decision procedure for constructing

correct finite-state programs.

In this chapter we examine the inherent complexity of decision procedures for validity,

satisfiability, and truth in a particular structure for propositional logics with the temporal

operators F (eventually), G (globally), X (nexttime), U (until) and S (since). We first

consider the logic L(F) in which F is the only temporal operator. We prove a linear size

model theorem from which a nondeterministic polynomial time bounded decision procedure

for satisfiability can be obtained. It immediately follows that satisfiability is NP-complete

for L(F). This result is surprising since it shows that the set of satisfiable formulae in L(F) is

no higher in the complexity hierarchy than the set of satisfiable formulae in ordinary

propositional logic.

It is to be observed that we can not obtain an elementary decision procedure for

propositional linear temporal logic by translation into the language of the structures (N, (,

PI' P2....) where N is the set of natural numbers, < is the natural to-ordering and PI' P2'

... are monadic predicates, as it is shown in [Ro] that any decision procedure for

satisfiability of formulae in the later logic has to be non-elementary. A tableau based

decision procedure for propositional linear temporal logic was given in [Wo81]. However

this procedure requires exponential space. We give a polynomial space bounded decision

procedure for satisfiability of formulae in L(U,S,X). We show that satisfiability for the

logics L(F,X), L(U), L(U,X), L(U,S,X) and for the extended temporal logic given in [Wo81]

is PSPACE-Complete. These results are surprising because all of these logics have different

expressive powers (some are more powerful than others).

Finally, we consider the question whether a temporal formula is true on some path

starting from a node of an R-structure. R-structures model finite state parallel programs.

We show that the above problem is NP-complete for L(F) but is PSPACE-complete for the

other above mentioned logics. The corresponding problem for branching- time logics has

been shown to be in P [CE81].

This chapter is organized as follows: Section 2.2 defines the syntax and semantics of

the linear temporal logic that we use in the remainder of the chapters. In Section 2.3 we

prove the linear size model theorem for L(F) and the corresponding NP-completeness

8

results. Section 2.4 contains the PSPACE-completeness results for L(F,X), L(U), and

L(U,S_X). In Section 2.5 we show how our results can be extended to the extended logic

given in [Wo81].

2.2. Notation and Basic Definitions

We use the following convention for symbols:

P,Q,R.... denote atomic formulae and are drawn from the set 9.

f,g,h,.., denote formulae.

s,t,u,.., denote finite or infinite sequences. We always

assume s - (So,S1,...).

S,T,W,... denote structures.

If O1..... Ok ¢ {X,F,G,U,S,Y} are distinct operators then L(O 1..... Ok) denotes the

propositional temporal logic restricted to these operators, e.g. L(F,G), L(X,F,G), etc.

A well-formed formula in propositional linear temporal logic is either an atomic

proposition or is of the form -_ fl' flAf2' Xfl' t"1U f2' Yfl' fl S f2 where fl' f2 are well-

formed formulae. In addition, the following abbreviations will be used:

flv f2 -- "_(_fl ^ "_f2)' fl _ f2" "_flv f2'

Ff-- True U f, Gf z _F-_f.

Let 7,(F,X) be the logic that uses the boolean connectives A,v, the temporal operators F,X

and with negations allowed only on the atomic propositions.

A state is a mapping from the set of atomic propositions into the set {True, False}. An

interpretations is an ordered pair (t, i) where t is an u-sequence of states and i >_0 is an

integer specifying the present state. We define the truth of a formula f inan interpretation

(t,i) (t, i _ f) inductively as follows:

t,i i= P where P is atomic iff ti (P) = True;

t,i _ fl ^ f2 iff t,i I= fl and t,i t= f2;

t,i _ _fl iff not(t,i I= fl);

t,i I= Xf1 iff t,i + 1 I= fl;

t, il=flUf 2 iff 3k>isuchthatt, k_ f2and'v'j i<_j<k, t,jl=fl;

t,i _ Yfl iff i>0 and t, i-1 _ fl;

t,i _ flSf2 iff 3k <i such that t, k _ f2 and Vj such that k < j <_i t,j _ fl;

X,U,Y,S are the "nexttime", "until", "last-time", and "since" operators respectively.

We define the semantics so that F fl - True Ufl and Gf 1 ----,F-,f 1. Length (0 denotes

the length of the formula f and SF(f) is the set of sub-formulae of f or their negations after

eliminating double negations. We assume that Sis finite at many places.

Though, we have defined a state to be mapping associating truth values for each atomic

proposition, in the present chapter we differentiate between a state and the associated

mapping. We use a different notation for convenience. A Structure S = (s, _j)where s -

(s0, s1, ...) is an _-sequence of states and _j • {s0,s1, ... } --, 29. Intuitively, _jspecifies

which atomic propositions are true in each state. We also assume that all the states

appearing in the sequence of a structure are all distinct. An interpretation is pair (S,sj)

where S is a structure defined as above. Since we have assumed all states in S to be distinct,

any state in S uniquely defines il_sposition. It is easily seen how we can go from the earlier

interpretation to the present interpretation. The truth of a formula f in the new

interpretation is defined exactly the same as we did in the previous interpretation.

An R-structure T is a triple (N,R,TI),where N is a finite set of states, Rc_N x N is a total

10

binary relation (that is 'v' t e N 3 t' _ N such that (t,t°) _ R), and r/" N --. 2_. A path p in T

is an infinite sequence (P0,Pl, "") where Vi >_.0, Pi E N, and (pi,Pi+ 1) E R. Throughout

this chapter for a path p in a R-structure T = (N,R,r/) we let Sp denote the structure (s,_)

where Vi > 0, _(sr) = 7/(pi).

The global behavior of a finite state parallel program can be modelled as an R-

structure. In the R-structure each path starting from the initial state represents a possible

interleaving of executions of the individual processes in the program. In many cases, the

correctness requirements of the concurrent system can be expressed by a formula of

propositional linear time logic. The system will be correct iff every possible execution

sequence satisfies this formula; i.e., every path beginning at the initial state in the

corresponding R-structure satisfies the formula. For these reasons the following problem

(which we call the determination of truth in a R-structure) is important in verifying finite

state parallel programs:

Given a R-structure T, a state P0 _ N, a formula fcL, is there a path p in T starting

from P0 such that Sp,S0 ¢= f2.

2.3. The Complexity of L(F)

Let S = (s,_) be a structure and let s" = (sj,sj+ 1"") be the maximal suffix of s such

that for each sk in s" the following condition holds:

'V'l3i such that i > l and _j(si) = _(_),

that is, there exist infinitely many states in s" which have the same assignment of atomic

propositions, as st. It is easily seen that such an s" exists (because _ is finite), and s" is

unique. Lets = 9. s". Define init(s) = _,final(s) = s", range(s) = {_(sk)[sk is in s"} and

size(s) = length(init(s)) + card(range(s)). Thus, range(s) is the set of all assignments of

11

atomic propositions which occur infinitely often in s. Note that init(s) is a finite sequence

(and can be the null sequence{), final(s) is an infinite sequence, and range(s) is a subset of

2

THEOREM 2.1: (Linear size model theorem for L(F)). If f c L(F) is satisfiable then

there exists a structure S = (s,_) such that size(s) < 2. length (f) and S, so _ f.

Proof of Theorem 2.1 is based on the following lemmas which provide insight on the

expressive power of the F operator.

The following lemma shows that all states in final(s) with the same assignment of

atomic propositions satisfy the same formulae in L(F).

LEMMA 2.2: Let S = (s,_) be a structure and let sj, sk be states in final(s) such that

_j(sj)= _J(Sk);thenfor all f_ L(F), S, sj _ f/ffS,s k _ f.

Proof. The proof is by structural induction on f. If f is an atomic proposition, then the

lemma holds trivially. Assume that the lemma holds for fl' t"2'Then it is easily seen that the

lemma hold for fl ^ f2' " fl" We must prove that the lemma holds for f = Ff1. Suppose S,

sj_ Ff1. Then there is a state sl such that l >_.j and S,sl _ fl" Since sl is in final(s), there are

infinitely many m such that _(sm) = _(sl) and (by induction) S,sm _ t"1"Hence, there is an

m _>k such that S, sm _ fl, thatisS, skl= f. i"1

LEMMA 2.3" Let S = (s,_), T = (t,lr) be structures such that length(init(s)) =

length(init(t)); for all j< length(init(s)); _j(sj) = _r(tj); _(s0) = _r(t0) (this is necessaryfor the

case when length(init(s)) = O) and range(s) = range(0; then for all f_L(F),

S,s01=fiffT,t 0 I= f. 17

12

The above lemma can also be proved by induction on f, and it states that formulas in

L(F) cannot distinguish the order of occurrence of states in final(s).

Let s = (s0,sI....), t = (t0,tz....) be finite or infinite sequences with all states in s,t

being distinct, t is a subsequence of s (written t < s) iff there exist integers i0,il.., s.t.

i0<il<i 2<... and for all j> 0, sij = tj. Let S = (s, _) be a structure and t be a subsequence

of s. We define init(t),final(t),range(t),size(t) are appropriately defined with respect to S. t is

an acceptable subsequence of s (written t[s or s]t) if t <s, final(t) < final(s) and if any sj in

final(s) is contained in t, then _(sj)_ range(t). We assume that the structure with respect to

which '['is defined, is understood from the context. If t [s then size(t) <size(s). Note that if

t <s then it is possible that size(t) >size(s).

LEMMA 2.4: Let S = (s,_) be a structure and let t[s be such that for all j > 0, S,tj_f

where f _ L(F). Then (a) there exists an infinite sequence u such that u[s,

size(u) < c. length(f) for some constant c and (b) for all structures W = (w,tp), where u [w [s,

and ¢pis the restriction of l_ to the states in w, thefollowing condition holds:

For any i if w i is present in t then W, w i _ f"

Proof;

Using D'morgan's laws and the identities -,Ff = G-,f, --,Gf = F--,f, any f' c L(F) can

be converted to an equivalent formula f in which all negations apply to atomic propositions

only. For formulas of this kind we prove Lemma 2.4 with c = 1. The proof is by induction

on the length of the formula.

Basis: f = P or --,P. u = null sequence satisfies the lemma.

13

Induction:

(i) f - f l ^ f2" For all tjct, S,tj_f 2 S,tj _ f2" By induction hypothesis there exist

Ul,U2 such that size(u1) < length(fl), size(u 2) < length(f2), and (b) holds for ul,f 1 and uE,f2.

Let u [s be the sequence containing the states of u I and u2. Then

size(u) <_size(ul)+ size(uE)<length(f), and it is easily seen that (b) holds for u,f.

(ii) f= flvf2" The argument is similar as in (i).

(iii) f- Ff1.

Case 1: t is finite. Let tn be the last state of t. S,tn_ Ffr Hence

there is a sj appearing after tn in s such that S,sj_f 1. If sj is in init(s), then let g = (sj);

otherwise let t be the subsequence of all states sk in final(s), such that _(sf) = _(sj). For all

sk in t_,S,sk_ fl' By induction hypothesis there is a u'[s such that size(u') < length(f 1) and

(b) is satisfied for u', fl and with t = t_. Now let u [s be the sequence containing all states of

u' and r. Then size(u) <_size(t')+size(u') = 1+ size(u')<length(f) and (b) holds.

C_e 2: t is infinite. There exist infinitely many k such that

S,sk_ Ff r Let I_= (t_0,...) [s be such that t' is infinite, for all j >_.0 _ (rj) = _ (rj+ 1), and

S,rj_=f1. The remained of the argument is as in case 1.

(iv) F = Gfr If tOis in init(t) then let 1_= suffix of s starting from t0, otherwise let I_

= final(s). Clearly for all j_<0,S, gj I_= fl" By induction hypothesis there is a u'[s such that

size(u')<length(fl) and (b) holds for u', fl and with t=t_. Since I_is a suffix of s, it is easily

observed that (b) holds for u,f, and t.

Since any formula fcL(F) can be converted into an equivalent formula in which

negations are applied to atomic propositions only, and whose :ngth is no more than double

the length of the original formula, we see that Lemma 2.4 is true with c= 2.

14

Pr__r_ogfSketch 9..fTheorem 2.1. Assume f is satisfiable and let V = (v,_) be a structure

such that V,v01=f. Let t be the sequence as follows. If length(init(v))> 0 then t = (v0);

otherwise t is the sequence containing all states vi such that _ (vi) = _ (v0). Clearly t [v,

and due to Lemma 2.2 for ali i > 0, V, tiff. Now applying Lemma 2.4 with S = V, we get

an infinite sequence u[v, such that size(u)< 2. length(f) and u satisfies the condition given in

Lemma 2.4. Let s < v be the sequence containing all the states oft and u. Then s ! v and

size(s) < size(t)+size(u)<_2.1ength(f). Let S = (s,O where _ is the restriction of tp to the

states appearing in s. Then from Lemma 2.4, S,s0_f. I"l

THEOREM 2.5: The following problems are NP-complete for the linear time logic L(F).

(i) Determination of truth in a R-structure.

(ii) Satisfiability.

Proof: (i) We will prove that determining truth in an R-structure is NP-hard by

reducing 3-SAT to this problem. Let g = CIAC 2 A...ACm be a boolean formula in 3-CNF

where Ci = lilVli2vli3 (for l_<i_<m),lik=xj or --,xj (1<k_3) for some j such that l<_<_.n.

Xl,X2,.... xn are the variables appearing in g. Let T = (N,R,r/) be the R-structure defined as

follows:

9= { CiI l<_i<m}

T can be described by the graph shown below:

N= { 7_i11<_i <_n}o { x'il 1<_i <_.n}o{yil0 <_i <_n}

R = {(Yi-l'x i), (Yi-l'x 'i), (x i,Yi),(x 'i,Yi)l1 < i < n} o {(yn,Yn)}

x i) = { Cjlxi appears as a literal in Cj, i.e., for some k 1 <_.k <_3, Xi]'

15

Figure 2-1:

7/(_'i) -" { Cj] "_xiappearsasaliteralinCj}

y.=

It can easily be proved that g is satisfiable iff there exists a path p in T staring from Y0

suchth,t(Sp.s0)_ F q ^Fq^ ... ^ F C_.Th_abover_duc_onis, poly,o,_,_
reduction. Hence determination of truth in a R-structure is NP-hard for the language L(F).

D

Let T = (N,R,r/) be an R-structure. Any path p in T can be uniquely decomposed into

p,, p" such that p = 1_"p", any state that appears in p" appears in it infinitely often, and p"

is the maximal such suffix. All the states in p" belong to a strongly connected component in

the graph of T. Using I.emma 2.4 it can be shown if there is a path q in T staring from qo

such that (Sq,So) _ f, then there is a path p in T starting from q0 such that Sp,s0 _ f,

P = IY'P", and length(gy)<2.1ength(0.card(N). A nondeterministic TM M guesses 1_and

the set C of states appearing in p". Next, it verifies that tYis a finite path starting from qo in

T, that the subgraph containing nodes of C is strongly connected, and that there is an edge

16

from the last state of p' to a state in C. Then M uses the following algorithm to verify if

(Sp,S0) _ f. M labels each node x in lYor C with sub-formulae of f as follows:

For each node x label(x),- _;

For each formula gcSF(0 in the increasing order of length(g) do

For each node x in p' or in C do

Case of g

g=P: If PeT/(x) then label(x)_-label(x)¢ {P};

g= -'gl: If gl¢label(x) then label(x),-label(x)u{g}';

g=Fgl: Ifgldabel(y) for some ycC then

label(x),-label(x)o{g};

If x is in lYand there is a state y in lY

after x such that glc(Y) then

label(x),- label(x) u {g};

g= glAg2: if gl,g2Elabel(x) then

label(x)_-label(x)u {g};

End Case

EndFor

End For;

Accept iff fdabel(qo).

It can easily be shown that the above algorithm works correctly and that it is

polynomial time bounded in card(N) + length(f). Thus, determination of truth in a R-

structure is NP-complete.

17

(ii) Satisfiability is NP-hard because boolean satisfiability is NP-hard.

Left fcL(F) and 9 = the set of atomic propositions appearing in f. From Theorem 2.1 if

f is satisfiable, then it is satisfiable in structure S = (s,O where size(s)<_.2-1ength(f). A

nondeterministic TM M which checks for satisfiability of f operates as follows: M guesses

init(s) and range(s) such that length(init(s))<_2, length(f), card(range(s))<_2, length(f). Next

it uses a labelling algorithm similar to the one in (i) to accept or reject f. Clearly M is

polynomial time bounded in length(f). I"l

We can also prove by the previous techniques a linear size model theorem (Theorem

2.1) for the logic 7.(F,X) and show that Theorem 2.5 holds for this logic as well.

2.4. The Complexity of L(F,X), L(U) AND L(U,S,X)

The main results of this section are summarized in the following theorem.

THEOREM 2.6: The following problems are PSPACE-complete for the logics L(F,X),

L(U), and L(U,S,X):

(i) Satisfiability,

(ii) Determination of truth in an R-structure.

The proof of the above theorem is based on the following lemmas.

Let S = (s,O, T= (t,lr) be structures such that for some m__.0the following conditions

are satisfied:

Vi 0__.i_<mti=s i , 'v'i i>m+ 1 ti= si.1

and _ris an extension of _jsuch that It(tin+ 1)= _tm)

i.e. T is obtained by duplicating the mth state in S successively once. The following lemma

is easily proved by induction on the formula f.

18

LEMMA 2.7:For any f_L(U),T,tm_f iffT,tm+ l_f and for any 8 in

s S,_fiffT,8 _f. F'!

The above lemma states that by duplicating a state successively we do not change the

truth value of a formula in L(U). Note that the lemma is not true for L(U,X).

LEMMA 2.8: Determining truth in an R-structure is polynomial-time reducible to

satisfiabilityfor L(F,X), L(U) and L(U,S,X).

. Let T = (N,R,rl) be an R-structure and let f L(U,S,X). Let _1 = {Px[xCN}

and 91n9 = _. 91contains one new atomic proposition for each state in N.

Let gl be the conjunction of all Q such that Qcr/(x), g2 be the disjunction of all Q such

that Q_9- r/(x), g3 be the disjunction of all Py such that (x,y)_R.

fx = G(Px3 (glA(-_g2)A Xg3))"

Let h 1 be the disjunction of all Py such that yeN, h2 be the conjunction of all fx such that

xcN, let h3 assert that exactly one proposition in 91is true at any point. Then

f' = G(hl) Ah 2 A G(h3)

Any structure T = (t,_r) such that T,t 0 _ f' has the following property. At each

state in t exactly one proposition in 91 is true, and if Px is true at a state then all propositions

in _(x) are true in that state, all propositions in (0_-r/(x)) are false in that state and in the

next state Py is true for exactly one y such that (x,y)cR. Let f" = f'A f ^ Pq. It can easily

be seen that there is a path p in S starting from q such that Sp,S0 _ f iff f" is satisfiable. If

f_L(F,X) then f"¢ L(F,X).

In f', we can avoid the X operator as follows. We replace the formula Xg3 by g defined

as follows. If(x,x)¢ R then let g'=(PxUg3),

19

otherwise let g = (G(P x) v [PxU(g3^ -'Px)])"

If (x,x)¢R then g causes Px to repeat successively a finite number of times before Py is true

for some y which is a neighbor of x. However lemma 2.7 states that this does not change the

truth value of the formula f', that is f" is true in a structure in which Px does not repeat iff it

is true in a structure in which Px repeats a finite number of times. It is easily seen that there

is a path p in S starting from q such that Sp,s0_f iff f" is satisfiable. The above reductions

are clearly polynomial reductions. 17

LEMMA 2.9: Determination of truth in an R-structure is PSPACE-hard for L(F,X) and

L(U).

Proof. Let M = (Q, _Z,_',VA,VR,VI) be a one tape deterministic TM where Q is the set

of states, Z is the alphabet, _': Q x Z --,Q x Z x {L,R}, VA,VR,VI are the accepting,

rejecting and initial states respectively. Let M be S(n) space bounded such that S(n) is

bounded by a polynomial in n. M halts on all inputs in state VA or VR, thus accepting or

rejecting the input. An ID of M is appropriately defined. Let a=ala 2 ... an be an input to

M.

Let T= (N,R,r/) be an R-structure shown in figure 2.2.

Let 9 = (Q x Z-')u Z u{BI,EI} be the set of atomic propositions. The structure in

figure 2.2 has S(n) diamonds connected in a chain, and in each diamond there are

card(QxE u E) number of vertical vertices. In each diamond, on each vertical vertex

exactly one atomic proposition is true, and every atomic proposition in Qx _ u _ is true on

some vertical vertex of the diamond. Each subpath between BI and El represents on ID of

M, and a path from BI represents a sequence oflds of M.

20

S(n)

Figure2-2:

Using S(n) X operators the relation between the contents of a tape cell in successive

IDs can be asserted. Becauseof this, polynomiallength bounded formulasin L(F,X)can be

obtained asserting the followingconditions: All the Ids on a path p starting from BI are

valid,the first ID is the initial ID containing the input string ala2 ... an,each successiveID

followsfrom the previousone by one moveof M, and the final ID appears on the path.

Let fa be the conjunction of formulas asserting the aboveconditions. It is easilyseen

that there is a path p from BI in T such that Sp,so _fa iff M accepts a. For any input a,fa

can be obtained in polynomial time. Byintroducing additional propositions P0,P1,.... Ps(n)

to mark the left and right end points of successivediamonds we can avoid the X operator

usingonly the U operator. The resulting formulawillbe in L(U). IZi

Let S=(s,_) be a structure and fcL(U,SgY). For any state si in s let

[S ls,f={gcSF(01S,s .

21

LEMMA 2.10: In S=(s,O, if si,sj be two states such that [Si]s,f "- [Sj]s,f then for the

structure S' = (_,_j')where_ = (s0,s1..... Si.rSj,Sj+l....) and _' is restriction of l_ to states

in s, thefollowing property holds:

For all sk such that sk is present in s and in s', [Sk]s,f = [sk]S,,f !"I

The above lemma can be proved by induction on the length of the formula f.

A formula g is said to be an U-formula if it is of the form glUg2 . A structure S=(s,O is

said to be ultimately periodic with starting index i and period m if'v'k__.i_(sk) = _(Sk+m).

For a structure S and a formula f let Ms, f = {Cc_SF(f)] there are infinitely many k such

that [St]s,f = C}.

LEMMA 2.11: For the structure S = (s,O let i, p be integers such that [Si]s,f = [Si+p]S,f,

and for any g = glUg2 , /fge[Si]s,f then _m such that i<_.m<i+p and S,sm_gE(i.e. every

U-formula in [Si]s,f is fulfilled before si+p). Let S' = (_,_') be an ultimately periodic structure

with starting indexi andperiodp such that Vk<i+p _(sk) = _' (_k).

Then, Vk<i+p [sk]S,f -Is' k] s,fand _tk_>i [ffk]S, f = [S_k+p]S,,f.

Proof. By induction we prove that for any g¢SF(0,

(a) Vk<i+ p S,Sk_g iff S',S'k_g, and

(b) Vk>_iS', _k_g iffS',_k+p_g.

Basis: If g is atomic then (a), (b) follow trivially.

Induction: Assume (a),(b) hold for gl,g2cSF(f). By a simple argument it can easily be

shown that (a), (b) hold for g = -'gl' gtAg2' Below we prove that (a), (b) hold for g =

glUg2,gtSg2; a similar argument can be given for g = Xgr

22

Case 1: g = glUg2 .

We prove (a). (b)can be proved similarly. Assume for some k<i+p S,sk_g. Assume k<i.

From the hypothesis of the lemma it follows that for some l such that k<t<i + p S,sk _g2

and 'v'j k<j_<t S,sj_g r By the induction hypothesis the above holds for S' also. Hence S',ffk

l=g. Now assume i<k<i+p. The interesting case occurs when 'v'j k<_<i+p S,sj I=--,g2,

S,sj_ gr In this case S,Si+p_g and hence S,si_g. From the hypothesis of the lemma and

the induction hypothesis for (b) it can easily be seen that S',_k_g. The implication in the

other direction can also be proved similarly.

C_e 2: g = glSg2.

Then for k < i + p S,Sk_ g

iff (3 * < k S,se_g 2 and Vj l < j < k S,sj_ gl)

iff _l< k S',s'l _ g2and 'v'jt< j < k S',s_jl=gl)

(due to induction hypothesis)

iff S',s'k_ g.

We would like to prove that (b) also holds for g. Assume for k>i, S',S'k_ g. Then there

exists l<k such that S',s'l_ g2 and for all j such that l<j<k S',s'j _ gr For k>i+p or

(k<i+ p and t>_.i), the result can easily be seen. So we consider the case when l<i<k<i+ p.

In this case due to the induction hypothesis for (a), it can be seen that S, sl_g 2 and for

all j such that l<j<i S,sj_g 1. Hence S,si_g. Due to the hypothesis of the lemma we see

that S,si+ p_g. Thus, one of the following two cases holds:

(i)3m(k<m<i + p and S,sm_g 2 and 'v'j such that m<j<_i+ p S,sj I==gl).

By the induction hypothesis for (a), the above condition is also satisfied by S'. Due to the

induction hypothesis for (b) it follows that for all j such that i + p<___.k+ p S',_j_ gr Hence

S',_k+p _ g,

23

(ii)Vj i<___.i+ p S,sj_ gl"

Due to the induction hypothesis for (a) the abovecondition holds for S' also. Due the the

inductionhypothesis for(b)

Vj k<i<_k+pS',s'j_ gr

HenceS',_k+p_ g.Theinductionstepforthereverseimplicationin(b)canbcsimilarly

proved.I"3

THEOREM 2.12: (Ultimately periodicmodel theorem). A formula f e L(U,S,X) is

satisfiableiff it issatisfiablein an ultimatelyperiodicstructureS = (s,_) withstartingindext

<2 1+length(f), period p<41+length(f)andVk<i [sk]S,f = [sk+p]S,t'

Proof. Let f be satisfiable. Since f may not be satisfiable at the beginning of a

structure, we considerg = Ff. Then there exists a structure T =(t,r/) such that T,t0 I= g.

Letl, m be integerssuchthat [tt]T,g= [tl+ m]T,gand

(*) { [tk]T,s]l<_.k<l+m} = MT,g.

It is easily seen that each U-formula in [tl]T,gis fulfilled before tl+ m. We apply

reductionsof Lemma 2.10repeatedly to statesbetween to and tl, or to states between tt and

tl+ m (excluding to,tt, tl+m)without violating (*), until no more such reductions are

possible. In the resultingsequence

(a) there areat most 2length(g)statesbeforett and

(b) there are at most (card(MT,g))2statesbetween tl and tt+m.

(a) followstrivially if we observe that, in the resulting sequence there are no two states

before tl which satisfyexactly the same sub-formulae of g. If (b) does not hold, then there

exist at least card (MT,g) + 1 states between tl and tl+ m which satisfy the same sub-

formulae of g, i.e., there exist at least card(MT,g)intervals between these states. It is easily

24

seen that there exist at least on interval among these, such that for every state within this

interval there exist another state outside this interval and between tl and tl +m' such that

both these states satisfy the same sub-formulae of g. Hence we could have carried a

reduction of Lemma 2.10 for the two end states of this interval without violating (*). This

contradicts our assumption.

Let t2be the resulting sequence after the reductions and "P = (r, r/°) be the structure,

where r/is the restriction of r/to the states in r. There exist integers i < 2length(g),p<

4length(g)such that I_i, t_i + p satisfy the same sub-formulae of g, and using lemma 2.11 we

obtain a periodic structure S with starting index i<2length(g),period p<4 length(g)such that

'qk>i [sk]S,g= [Sk+p]S,gand S,s0 l= g.

Proof o__fTheorem 2.6. Let f be a formula in L(U,S,X) and g = Ff (= True U0. f is

satisfiable iff g is satisfiable at the beginning of an ultimately periodic structure. We

describe below a nondeterministic TM M which checks for satisfiability of g. M guesses two

numbers nl<length(g),n2<41ength(g)which are supposed to be the starting index and period

of an ultimately periodic structure. Next, M guesses the sub-formulae that are true at the

beginning, verifies that g is in this set. At this point it checks for boolean consistency and it

checks that any sub-formula fl S f2 is in this set iff f2 is in this set.

Subsequently, M guesses the sub-formulae that are true in the next state and verifies

their consistency with the sub-formulae that are guessed to be true in the next state. If

SUbpresent, SUbnextare the formulae guessed to be true at the present state and the next state

respectively it verifies that

Xf 1¢SUbpresent iff flESUbnext;

flUf2ESubpr sentiff f2¢SUbpresentor (fl¢ SUbpresent and flUf2 ¢ SUbnext);

25

fl S f2 ¢ SUbncxt ifff2E SUbprcsent°r (flESUbncxtand fl S f2 ESUbprcsent).

It also checks the boolean consistency whenever it guesses a set of sub-formulae to be

true at any state, i.e.

fl ^ f2 ¢ SUbpresentiff fl' f2 ¢ SUbpresent.

"fl c SUbprcsent iff fl¢ SUbpresent"

It continues the above process each time incrementing the counter. When the counter

is n 1, it notes that it is in the periodic part of the structure. It saves the set of sub-formulae

SUbperiodguessed to be true at the beginning of the period, and it re-initializes the counter.

It continues guessing the sub-formulae in the next state and incrementing the counter. At

each instance it has to keep three sets of sub-formulae: those that are true in present state,

those true in the next state and those true at the beginning of the period. When the counter

has value n2, it stops guessing and takes SUbperiodto be the set of sub-formulae true in the

next state. At each step in the above procedure it checks the consistency of the sub-

formulae guessed. It also verifies the following condition. Each formula of the form

(flUf2)¢ SUbperiodis eventually fulfilled with in the period, that is f2 is present in the set of

sub-formulae guessed to be true somewhere within the period. It can easily be proved by

induction that M accepts an input formulae iff it is satisfiable. Clearly M uses space linear

in length(f). Using Savitch's[Sa70] theorem it follows that there is a polynomial space

bounded deterministic TM that decides satisfiability.

26

2.5. Complexity of Extensions of the Logic

In [Wo81]propositionallinear temporal logic is enrichedwith theaddition of operators

correspondingto regularright lineargrammars. Let R be a regular right lineargrammar

with terminal symbols al,a2..... an and non-terminal symbols N1,N2,.... Nm. If

fl'f2 fn are formulae in the logic then so is Nj(fl,f 2..... fn) for l<i<_m. For a structure

S=(s,_), S,sk _ Nj (fl,f2..... fn) iff there exists a string ail,ai2,ai3,., generated by R from

Nj such that for all l>0 S,Sl+k_fit+l.

Ex: Consider the grammar NO_ ala2N o. It generates the infinite string ala2ala 2

S,so_No(True,P) iff P holds at all even states in s.

For convenience, we assume that each production rule in the grammar has at most one

terminal symbol. Note that for any grammar we can obtain an equivalent grammar with the

above property by increasing the size of the grammar by at most a constant factor. For any

formula f in this logic we define SF(f) as follows:

Iff=P then SF(f) = P;

If f = fl^f2 or flUf2 or flSf2 then SF(f) = SF(fl)USF(f2)u{f};

Iff = "_fl °rXfl then SF(f) = SF(fl)u{f};

If f = Nj(fl,f2,... fn) where Nj is a non-terminal in the above regular grammar,

then SF(f) = SF(fl)USF(f2)... uSF(fn)u{Nj(fl,f 2, fn)[1 <_j<_.m}

With the above definition of SF(0, it can easily be seen that lemma 2.10 holds for this

logic. We can easily show that theorem 2.12 holds by some changes in the proof.

In Theorem 2.6, we assume that the grammars corresponding to the regular operators

27

are encoded as part of the input. In this case if the input length is n, then care(SF(0)<n 2

where f is the input formula. To prove Theorem 2.6, we need to modify the previous proof

n2
as follows. The two guessed integers nl,n 2 should be less than or equal to 2 , 4n2

respectively. In addition the operation of M is to be modified as follows:

At any time Nj(fl,f2..... fn) is in the set of sub-formulae guessed to be true at any state,

iff either there is production rule of the form Nj_akN l is in the grammar, such that fk is

also present in the set of formulae guessed to be true in the present state and

Nl(fl,f2 fn) is present in the set of formulae guessed to be true in the next state, or there

is production rule of the form Nj-,a kso that fk is present in the set of sub-formulae guessed

to be true in the present state.

For each formula of the form -_Nj(fl,f2..... fn) present in the set of sub-formulae

guessed to be true at the beginning of the periodic part, M keeps a set of sub-formulae

denoted by _Nj(fl,f 2..... fn))" These are the sub-formulae that are to be false in the next

state. At the beginning of the periodic part this set contains only Nj. If tPpresent,tPnext

denote the value of tp in the present and next state, then tp is updated as follows:

tPnext(Nj'(fl'f2'""" fn)) = {Ne[there is a production rule Np--,akNe in the grammar such

that NpCCPpresent(Nj(fl,f2, fn)) and fk is present in the set of sub-formulae guessed to be

true in the present state}. M makes sure that (p(Nj(fl,f2..... fn)) becomes empty at some

point within the periodic part of the structure. This will guarantee that Nj(fl,f 2..... In) is

false at the beginning of the period.

It can easily be proved M acceptsan input formula in the extended logic iff the formula

is satisfiable. It is easily seen that M is polynomial space bounded.

28

2.6. Conclusion

In this chapter we have examined the complexity of satisfiability and truth in a

particular structure for various propositional linear temporal logics. We have determined

that these problems are NP-complete for L(F) and PSPACE-complete for L(F,X), L(U),

L(U,S,X), and Wolpers extended logic (see Figure 2.3). Satisfiability for L(U,X) can also be

shown to be in PSPACE by translation into SDPDL [HR81]; however this technique does

not work for L(U,S,X) or for Wolpers logic with regular operators. It should be also

observed that both the X and G operators are necessary for PSPACE-hardness of

satisfiability of L(F,X). Thus, the logic 7,(F,X) is NP-complete since it does not permit the

G operator.

Finally, it is interesting to compare our results with the corresponding results for

branching-time logics. Since branching-time formulae are interpreted over the states of a

structure rather than over executions sequences, determining truth in a particular structure

is much easier and, in many cases, is in P [CE81]. Satisfiability, on the other hand, can be

shown to be exponential-time hard for branching time logics with a nexttime operator and is

shown to be PSPACE-complete in [La77] for many branching time logics with F and G

operators. Thus satisfiability for the branching time logics is apparently harder than for the

corresponding linear time logics.

29

Truth in an

Logic Satisfiability Validity R-Structure

NP-complete CO-NP- NP-complete

Z(F,X) complete

L(F.X)
L(U)
L(U,X)
L(U,S,X) PSPACE- PSPACE- PSPACE-

complete complete complete
Lineartime
logicwith
Regular
operators

Figure2-3:

30

Chapter 3

Temporal Logic with Propositional Quantifiers

3.1. Introduction

In the previous chapter we examined the complexities of propositional linear temporal

logics. It can be shown that the language L(U,SuX) can not express many interesting

properties of parallel programs. It is shown in [Wo81] that we can not express the property

that some event should occur at every even state in a sequence. For this reason we extend

this logic by introducing quantifiers over propositions. Specifically we consider the

language using the temporal operators F, X; which allows quantifiers over propositions. We

call this logic QPTL. It can easily be shown that QPTL is as expressive as the monadic

second order language of one successor when interpreted over natural numbers. Let ZI_be

the set of formulae of QPTL in standard form (i.e. all quantifiers appear in the beginning),

and having a quantifier prefix that begins with an existential quantifier and has k-1

alternation of quantifiers. Let Zk be the set of sentences in Zk which are true in all

interpretations in which all propositions are false after certain point and all the quantifiers

range over such propositions. Let g(k,n) be a function defined as follows, g(k,n) has a stack

ofk exponents.

g(0,n) = n

g(k + 1, n) = 2g(k'n).

g(k,n) has a stack ofk exponents.

Let gk-SPACE = { L { For some polynomial p(n), L is accepted by a deterministic Turing

m/c that uses at most g(k,p(n)) of space on each input of length n}.

31

In this chapter we prove that _2k+1 is complete in gk-SPACE with respect to log-

SPACE reductions. We also prove that the set of true sentences of QPTL in _-'2, is

EXSPACE-complete. In section 3.2 we present the upper bounds, while in section 3.3 we

prove the lower bounds.

3.2. Upper bounds

The formulae of QPTL are built from the atomic propositions, boolean connectives, the

temporal operators F,X and the quantifiers symbol 3. We assume that the atomic

propositions are drawn from the set 9. A well formed formula in QPTL is either an atomic

proposition or is of the form -'fl' fl ^ f2' X(fl)' F(fl)' ::]P(fl) where fl' f2 are well formed

formulae and P is an atomic proposition. The set of free atomic propositions in a formula is

defined inductively in the obvious way. A formula without any free propositions is called a

sentence. A formula (sentence) is said to be in standard form if all the propositional

quantifiers appear at the beginning of the formula. A formula (or sentence) is said to be in

'Y-'k(IIk) form if it is in normal form and has a quantifier prefix which starts with an

existential(universal) quantifier and has (k-l) alternations of quantifiers.

An interpretation is a pair (t,i) where i >_.0, and t is an w-sequence of states, each state

being a mapping from the set of atomic propositions into {True, False}. The truth of a

formula f in an interpretation (t,i) (denoted by t,i _ f) is inductively defined.

(t,i) _ 3P(f 1) iff for some interpretation (t_,i)such that such that Vj >_0, t_jassigns

the same truth value as tj for all the atomic propositions excepting P and (t_,i)_ fl"

The inductive definition for the other cases is same as give in the previous chapter.

Let f be formula in QPTL not containing any propositional quantifiers. Let

32

SF(f) = {g [g is a subfomaula of f or the negation of a subformula of f}. A c c_SF(f) is said

to be consistent and complete iff it satisfies the following conditions:

(i) For each g, -, g c SF(f) exactly one of them is in c;

(ii) For each g = gl ^ g2 c c iff gl c c and g2 ¢ c.

Let S'fbe the set of consistent and complete subsets of SF(f). Let Tableau(f) = (S'f,R'f)

be a directed graph such that (c1,c2) e R'f iff the following condition is fulfilled: For any g,

(i)g = Xg c c1 iff g¢c 2,

(ii)g = Fg' ¢ c1 iff g ¢ c1 or g _ c2.

LEMMA 3.1: In tableau (f) iffor any c

(i) g = Fg_¢ c thenfor all d such that there is a path from d to c, g¢ d;

(ii) If g = -_Fg¢ c then for all d such that

there is a path from c to d, g_ d.

Proof: The above lemma is easily proved by induction. F'!

We say that a formula is an F-formula iff it is of the form F(g). The following Lemma

easily follows from the previous one.

LEMMA 3.2:In tableau(f) all the states in a strongly connected component contain the

same F-formulae. E!

A finite state automaton h on infinite strings is a 5-tuple (E,S,M,st, H) where E is a

finite alphabet, S is a finite set of states, M: SxE _ 2s, st is the start state and H _ 2s. A

run of A on an input a = (a0,a1, ...) ¢ E_, is an infinite sequence s _ S_ such that so = st

and 'v'i>_0si+l_ M(si,ai). For seS_, let in(s) = {ccS[Vi>_.0suchthat j>_.i sj = c}. i.e.

33

in(s) is the set of all states that appear infinitely often in s. The automaton A is said to

accept input a iff there exists a run s of h on a such that in(s)_H. L(A) denotes the set of

stringsacceptedby A.

Let f be a quantifier free formula in QPTL and Vf= {PrP2 Pm} be the set of free

propositionsappearing in f. Also let Zf = {0,1}m. For any a = (a0,a 1....) ¢ ZZf_' let

denote the ¢o-sequence(_ 0' _ 1....) where:

Vi > 0 _i" _f-} {True,False} such that

Vj I <j < m, _i (Pj) - True iff (ori)j -- 1.

Let A(f) = (EpSf,Mf,Cst,Hf) be a FSA on infinitestringsdefined as follows:

Sf - {Cst}u S_rwhere S)_is the set of states in tableau(f);

For c *Cst

Mf(c,_') = {g [(c,g) E R'fand Vi 1< i < m, Pi¢ ¢_iff _'i = 1}

Mf(Cst,_') = {c' [fc C and Vi 1< i <_m, Pi E c' iff _'i = 1}

Hf = {D g S:f [D isnon-empty and for each F-formulag = Fg',

such that for some d, g ¢ d, d _ D, there existsa d' with g c (t' _ D}.

THEOREM 3.3: a ¢ L(A(f)) iff o, 0 _ fi

Proof: (=) Assume tr _ L(A(f)). Then there existsa run s = (So,...) of A (0 on o

such that the set of statesthatappear infinitelyoften in s, is in He Sinces is a run,so = cst

and Si+l E Mf(si, o'i).

Claim 1: Forallg c SF(f) andfor all i_>Og ¢ si+1/ff _' i _ g.

Proofo_fClaim 1: Byinduction on the structureof g.

Basis: For g - P where Pelf: the result followsfrom the waywe define Mr

34

Induction:

(i)g = "gl" glESi+l iff a,it=g I foraUi>0.

Since either g or -,g, is in si+ 1 it follows that g¢ si+ 1 iff _, i t= g for all i > 0.

(ii) g = gl^g2 . obvious.

(iii) g = Xg1. It can easily be seen that g c si+ 1 iff gl c si+ 2

iff _,i+lt=g 1 iff _,it=g.

(iv) g = Fg 1. Assume g ¢ si+ 1" From the way we defined acceptance it is

easily seen that for some j> i + 1 glesj" Hence _, j-1 t= gl and so _ ,it= g.

Assume _, i t= g. Then for some j>i, _,j t= gl" Hence

gl c sj+ 1' By lemma 1, it follows that g¢ si+ 1"

r-IQ. E. D for claim 1.

continuation .ofp_.Loofof Theorem. 3.3.

From the definition, f e s1. Hence by claim 1, _ ,0 t= f.

(=) Assume _r,0t= f.

Let s = (s0,s1....) be a _o-sequenceof states of h (0 defined as follows:s0 = cst,

si+ 1 = {g_SF(0 [a,i t= g}. Each si (for i>_0)is consistent and complete, and hence is in Sf

It can easily be seen that (si, si+ 1) c Mf (si,ai) for i > 0. Also if Fg 1 ¢ si (for i _>1), then

__>i, such that gl esj. Due to this, the set of all states that appear infinitely often in s, is in

Hl_ Thus s is an accepting run of A (f) on a. IZ!

We use the following additional notation. Let 9f = {P1,P2.... ,Pm} be the set of free

propositions in f. Then o ¢ Ef is such that Vi 1< i < m (o)i = 0,and 0: 9f ---,{True, False}

such that _/i l<i<m 0 (Pi) = False. co = {g _ SF(0 [0_, 0 t= g}.

35

An interpretation (t,i) is weak if t is of the form (I_• 0_), i.e. in t all propositions are

falseafter certain instance. Let WQPTL be the logicobtained from QPTL by restrictingall

the interpretations to be weak and all quantifiers range over propositions which are false

after certain instance. The truth of a formula is defined inductively as for QPTL but by

restrictingallthe interpretationsto be weak.

Let FL(f) = {tr c _f [o',0 _ f where o' = o • 0 _0}.

It is to be observed that if tr _ FL(f) then Vn>_.0 tr. (o)n ¢ FL(f), and f is true in all

weak interpretationsiff FL(0 = Zf. We state the followingobviouslemma.

LEMMA3.4:FL(-_f) = (_E;- FL(f)). 17

We inductivelydefine an automation _,(f)= (_El,SrMt_cst,Hf) on finite strings which

acceptsFL(f) where Hfc2_Sf.Observethat A(f)is an automation on infinitestringswhile

(0 ison finite strings.

For a quantifier free formulaf, we define, 7,(f)as follows:

_,(f) = (Zt_Sf,Mf,Cst,Hf) where Zf,Sf,Mfand Cstaresame as in A(0

Hf = { c I c ESf,and c 0 ¢ Mf(c, o)1.

IIi

THEOREM. 3.5"tr ¢ If is accepted by _,(f) iff tr ¢ FI.(0.

Proof: The proof easily followsfrom theorem 3.3 and the fact that {c0} ¢ Hf in A(0.

El

We extendMfin _(f) to the domain If in the natural way, i.e. for any
III

tre Ef Mt(c,tr) is the set of all states reached when _.(0 is run on the input tr starting from

the state c. Let fbe any formula and g = ::IPmf.

36

Define 7,(g) = (Xg,Sg, Ms, Cst,Hg) where

where Eg = {0,1}re'l, Sg = S t"

Mg(c,8) = {c Ie¢ Mr(c,(81,82..... 8m.1,i)) for some i _ {0,1}},

Hg = Hf u {c I for some n> 1 Mg (c,(o n)) n Hf, _}.

LEMMA 3.6: FL(g) = L(_ (g))

Proof:

(__): It is easily seen that FL(g) __L (_, (g)).

(c_): Assume tr¢ FL(g). Then _r " 0_,0 I= g.

3 "t _ (Z;) such that length(),) > length(o) and

Vi 0<_i<length(a), Vj l<_<_m-1(yi)j = (ai)j, and

Vi length(a) < i < length(),), Vj l<j< m-1 ()'i)j = 0, and ._ • 0t°,0 I= f.

Hence)' ¢ L(_ (0). From the above it can be seen that for some n>0,

Mg(Cst,tr • (o)n) nHf _ 0.

Hence Mg(cst,tr) n Hg ,_ and o c L(A(g)) n

If g = -,f, then _,(g) is the automation that accepts the complement of the language

accepted by A(0 and can be obtained in the standard way.

Let _:k = {fl fis a sentence in _ and is true in all weak interpretations}.

THEOREM. 3.7:_1 ¢ PSPACE andfork>_l _:k+l _ gk"SPACE"

Proof: Let f = ::!1 V 2 _3 "'" Qk+ 1 fl where 3 i or Vi is a sequence of existential or

universal quantifiers respectively. By replacing each V by --,::I--,,f can be written as

37

:::]1"__2"_ ::t3TM ::]4""'_ _k+l(f2)' Lett"3= _2"_ _3 ""-_3k+1(f2)"Thus

f = 3,_ (f3)'

From _ (f2), by applying the transformation of lemma 3.6, and by using successive

complementation for each negation, we can obtain _ (t"3). Since t"3has only (k-l) negations

between the quantifiers it is easily seen that _ (t"3)has at most g(k,n) states where n is the

*).
length of f. It is easily seen that fe _:k+1 iff L(_ (t"3)),, (_Ef3 The later condition can be

easily checked using space polynomial in the size of _ (t"3).

Hence :Ek+ 1 c gk-SPACE. O

THEOREM 3.8: The set of true sentences of QPTL in "Y"2'is in EXSPACE.

Proof: Let f = 3 PIP2... Pk VPk+I "'" Pk+/t"1 (PI' Pk+t)

= 3PIP2""" Pk "_3 Pk+l" "" Pk+t (g)

where g = "fl (Pl Pk+t)"

Let h = 3P k+ 1 "'" Pk+l(g) and

A(g) = (_ig,Sg,Mg,Cst,Hg)where _ie = {0,1}k+t. From A(g), we obtain

A(h) = ('Y"h'Sh' Mh'Csr Hh) where "Y-'h= {0'l}k' Sh = Sg, Hh = He and

Mh(C,8) = {OI :t &c {0,1}k+t such that for l<i<k &i = 8i' and o_ Me(c,,_)}.

Let r,r' ¢ (Sh)_ be runs of A(h) on an input q. We say that r is an accepting run iff in

(0 c Hh. Assume that in (r ') _ in(r). In this case the following claim holds.

Claim 1: If r is not an accepting run then r' is also not an accepting run.

Proof: States in in(r) belong to a strongly connected component in tableau(g), and so each

state in in(0 contains the same F-formulae. Hence ifin(r') e He then in(r) e He. O

38

A run r is maximal if there is no other run r' on a such that in(r) c_in(r '). From the

above claim to check that a is not accepted by h (h) it is enough if we verify that all

maximalruns are not acceptingruns.

It can easilybe shown that if A(h)does not accept at least one input, then there exists

an input of the form a = a. (fl) o_not accepted by A(h). Let a be as above and fl = (fl0'

.... t/m-I)"

We define a directedgraph G whichcaptures all the runs of h(h) on fl_, starting from

different states. The nodes of G are of the form (c,i)where c c Sh and 0 < i < m. There is

an edge from (c,i) to (c, (i+ 1) rood _n)iff c e Mh(C,fli). These are the only edges in the

graph. For each infinite path p = [(c0,0),(Cl,1), ...] let _r(p) = (c0,cl,...). It(p) is a

maximal run iff all the nodes of a strongly connected component of G appear infinitely

often in p. Let after(a) = Mh(Cst,a). If we know after (a), and the states of strongly

connectedcomponentsin G we can easilyget all the set of states that appear infinitelyoften

in the maximalruns. To determine the above it is not necessaryto build the graph G as we

show below.

Let G' = (V,E,I)be a labelled directedgraph where V = Sh, (c,d) c E iff there is a path

from (c,0) to (d,0) in G, of the form [(c,0),(c2,1)..... (Cm.r m-l), (d,0)l. l((c,d)) = {b[for

somej, (b,i) is on a path of the aboveform from (c,0)to (d,0) in G}.

Let C be a strongly connectedcomponent in G' and _C) = {c [for some (Cl,C2) e E,

c¢ l((C1,C2))}.C is said to befulfilled if for everyF-formula g= Fg such that g e c c tp(C),

there is a c' such that g c c e tp(C). The followingclaim is easilyproved from our previous

remarks.

39

Claim 2: tr is not accepted by A(h) iff everystronglyconnectedcomponent in G' that is

reachablefrom a state in after(a), is not fulfilled. O

Now we can easily give a non-deterministic O(2c.length(f))space bounded algorithm

that checks that some tr = a .(fl) _ is not accepted by A(h). The algorithm successively

guesseseach letter in a and builds after (t_). At some point it guesses that fl starts. From

the beginning of fl it builds G' while simultaneously guessing fl as follows. Let

G'i+ 1 = (V,Ei+I,Li+I) be the partially built G' after fli is guessed. Initially,

E0= {(c,c)lccV}, 10((c,c))={c}. After fli is guessed G'i+ 1 is obtained from G'i using the

followingequations.

Ei+1= {(¢'C")1 3d such that (c,d) ¢ Ei and c"EMh(d,fli)},

If (e,c")_Ei+1then

ti+ x((e'c'')) = {elF°r some d, (c,d) cEi , c"CMh(d,fli)and e_ £i((c',d))}u{c"}. It is easily

seen that to build GSi+l it requires at most O(2c.length(t))space. At some point after

guessing tim it guessesthat fl ends and it takes (3'm as G_and it verifiesthat the conditions

givenin claim2 is satisfied. The aboveprocedure accepts f iff for some tr, tr is not accepted

by A(h). Clearlyf is true iff there is at least one such string. O

3.3. Lower bounds

In this sectionwe showthe lower bound for _ic"

THEOREM. 3.9: Everylanguagein glc-SPACEis log-SPACEreducibleto _,lc+1"

Proof: We assumethat there is a procedure which givenan m >0, uses space log m and

outputs a formula _k,m(Px,Py)E _ such that if t,0 _ _k,m(Px,Py)then

(i) Pxis true at exactlyone point in t and so is Pyand

(ii) If t,i I==Px' t,i _ Pythen j = i+ Nk,rnwhere Nk,m > g(k,m).

40

i.e. the places where Px, Py are true are separated by a distance of length at least Nk,m. We

show later how this formula can be obtained.

Let M = (Q,,Y.,,S,VA,VI) be a one tape deterministic turing m/c that is g(k,p(n)) space

bounded. The elements in M are the set of states, the alphabet, the next move function, the

accepting state and the initial state respectively. Let ID 0, ID1,... be a sequence of IDs that

describe the computation of M on some input of length n. Let m = p(n). Without loss of

generality we assume that each ID is of length Nk,m. If Nk,m >_g(k,m) then M uses only the

initial g(k,m) cells in each ID. Using a formula f in WQPTL we express the computation of

M on input 'a'.

We use the propositions Po for each tr e (Q x _ u _ where the elements in Q x _ are

the composite symbols. We use a proposition B which marks the beginning of IDs. The

sequence between successive instances where B holds defines an ID. We briefly describe

how we can obtain a formula that expresses the computation of M.

Let f be the conjunction of the following formulae which are informally described.

fl = VPx'Py [_k,m(Px'Py) _ fl] where fl' is quantifier free and asserts that if B is true

at some point after x, then between x and y (excluding y) there is exactly one place where B

is true. This condition implies that all the IDs are of length Nk,m;

f2 asserts that each ID is a valid ID. In this the only difficult part will be to assert that.

each ID has exactly one compound symbol. After some thought it is easily seen that we can

obtain a formula like fl which asserts this;

t'3asserts that each successive ID is obtained from the previous one by one move of M

41

i.e. the contents of a cell in an ID depend on the contents of this cell and it's neighbor's

contentsin the preceding ID.

t"3= 'V'Px'Py[(_k,m(Px'Py) ^ f3')_ f3"]"

f3'f "
"3 are quantifier free. t"3asserts that there is at least one instance before and after y

where B is true i.e. x,yare points with in the computation of M. t"3"_serts that the contents

in the cell at y isrelated to the contentsin the cellsat x and its neighbors.

f4assertsthat ID0is an initial ID, and that eventuallya finalID appears.

If fl,f2,f3are converted into standard form then they willbe in II k,this is because tPk,m

appears only in the antecedent of an implication. Let f' be f converted into standard form.

Then f'¢ rI k. Let g be the sentence obtained by introducing an existential quantification

over each free variable in f'. Clearlyg c ,Ek+1 and is a true sentence iff "a" is accepted by

M. Alsog can be obtained usingspaceO(logn). 1"3

Let c0,c1, ct.1be a sequence of binary counterseach of size p. We let v(ci) denote

the integer value of the counter ci, and cij denote the jth bit in the counter ci (Othbit is the

least significantbit). We say that the above sequence is a proper sequence of counters iff

v(c0) = 0, v(ci+1) = v(ci) + 1 for 0 < i < t-l, and v(ct.1) = 2P-1. Clearly for a proper

sequence t = 2p. It is easily seen that the bit values in successivecounters are related as

follows:

For0 __.i < t-l, 0<j < p

(A) c(i+1)j = ckiiff 3 r < j such that el,r = 0.

We recursivelydefine tpk+1,min termsof tPk,mfor k>_.1. For this weassert that there is

a proper sequence of counters each of length Nk,m between the points x,y. We use the

42

proposition B whose truth values give the contents of the counters and the proposition M

which marks the beginnings of counter. We require the following conditions to be satisfied.

1. Pxholds at exactly one point, say x, and Py holds at exactly one point say y. M is true

at x and y, and is false at all points before x and after y. We can easily give a quantifier flee

formula fl that asserts this condition.

2. The successive points where M is true, are separated by a distance Nk,m. We can

satisfy this by requiting that for all points i,j, if i and j are separated by a distance Nk,m then

there is exactly one instance between i and j where M is true. It is easily seen that we can

assert this condition by the following formula.

f2 = V PiVPj ((Pk,m(Pi,Pj)_f2)

where f2 is quantifier free and asserts that if ij are between x and y, then there exists exactly

one instance p such that i <_p < j and M is true at p.

By this condition we can consider the truth values of B, between successive instances

where M is true, to be a binary counter of size Nk,m. We consider the tight most bit in a

counter to be the least significant bit.

3. The proposition B is false throughout the subsequence between the 1st and 2nd

instances where M is true. This asserts that the value of the first counter is 0. This is

expressed by

f3 = V Pi(f; _ G(Pi _ -.B))

f3'is quantifier free and asserts that Pi is true at exactly one instance, and this instance is in

the first ID. Such an f3' can easily be obtained.

4. The value of each succeeding counter is equal to the value of the preceding counter

43

incremented by 1. This can be expressed by corresponding the values of bits which are in

the same position in successive counters. Such positions are those between x and y, which

are separated by a distance Nk,m. The following formula expresses the above condition.

f4 = VPiVPj ((_k,m(Pi'Pj) ^ t"4) D f4")) where f4 and f4" are quantifier free. f4 asserts

that ij are between x and y. f4" asserts that if there is a less significant bit position than i, in

the counter of i and B is false in this position, then the truth values of B at i and j are equal,

otherwise they are different. We can easily obtain f4 and f4""

5. In the last counter, that is the one before y B is true at all points in the counter. We

can easily obtain a quantifier free formula, t"5that expresses this condition.

6. In all counters other than the last counter there is at least one position where B is

false. This condition guarantees that 5 does not hold in any other counter. The following

formula expresses this condition.

t"6= _/Pi 'v'Pj ((_k,m(Pi'P_ ^ t"6) D f6")

where f' f ""6"6 are quantifier free. f6 asserts that id are the beginnings of successive counters

and j is strictly before y. f6" asserts that there exists a point between i and j where B is false.

Let f' = _i<6 fi' and f be the resulting formula when f' is converted into standard

form. Since _k,m _ER' it is easily seen that f ¢II k.

Let _k +1,m(Px;Py) = 3 B 3 M (f). Clearly _k + 1,m_ _ + 1

We describe how to obtain _l,m' We use m propositions Q0,Q1..... Qm-1which are

existentially quantified. The truth values of these propositions define a binary counter at

any point. We assert that the sequence of these counters starting from x. form a proper

44

sequence of counters. We also assert that there is exactly one point between x and y, which

is just before y where all the propositions are true. It is not difficult to see how this formula

can be obtained. We can obtain tPl,msuch that it'slength is O(m2). Clearly N1,m = 2m.

THEOREM. 3.10:t,0 _ _k + 1,m(Px'Py) iff Px is true at exactly one point, say x; Py is

true exactly one point say y; and y = x + Nk,m where Nk,m is given as follows:

N1,m = 2m,

Nk,m = Nk.1,m. 2(Nk-l,m) for k>2 i"3

The above theorem can easily be proved by induction. It is easily seen that length of

tPk,mis O(m2), and that q_k,mcan be obtained in space (log m) recursively. It is clear that

Nk,m > g(k,m).

THEOREM. 3.11: The set of true sentences of QPTL in Y-"2is EXSPACE-complete.

Proof: Follows from theorems 3.8 and 3.9. El

45

Chapter 4

Automatic Verification of

finite state concurrent programs:

A Practical approach

4.1. Introduction

In the traditional approach to concurrent program verification, the proof that a

program meets its specifications is constructed by hand using various axioms and inference

rules in a deductive system such as temporal logic (IMP81], [HO80], [OLS0]). The task of

proof construction is in general quite tedious, and a good deal of ingenuity may be required

to organize the proof in a manageable fashion. Mechanical theorem provers have failed to

be of much help due to the inherent complexity of even the simplest logics.

We argue that proof construction is unnecessary in the case of finite state concurrent

systems and can be replaced by a model theoretic approach which will mechanically

determine if the system meets a specification expressed in propositional temporal logic. The

global state graph of the concurrent system can be viewed as a finite Kripke structure, and

an efficient algorithm can be given to determine whether a given structure is a model of a

particular formula - i.e. to determine if the program meets its specification. The algorithm,

which we call a model checker, is similar to the global flow analysis algorithms used in

compiler optimization and has complexity linear in both the size of the structure and the

size of the specification. When the number of global states is not excessive (i.e. not more

46

than a few thousand) we believe that our technique may provide a useful new approach to

the verification of finite state concurrent systems.

Our approach is of wide applicability since a large class of concurrent programming

problems have finite state solutions, and the interesting properties of many such problems

can be specified in propositional temporal logic. For example, many network

communication protocols (e.g. the Alternating Bit Protocol [BSW69]) can be modeled at

some level of abstraction by a finite state system. A typical requirement for such systems is

that every transmitted message must ultimately be received; this can easily be expressed in

the logic we use.

" Our specification language is a propositional, branching-time temporal logic called

Computation Tree Logic (CTL) and is based on the logical systems described in [EC80],

[BMP81], and [CE81]. Since our goal is to specify concurrent systems we must be able to

assert that a correctness property only holds on fair execution sequences. It follows from

the results of ([EC80], [EH83]) that CTL cannot express such a property. The alternative of

using a linear time logic is ruled out because any model checker for such a logic must have

high complexity ([SC82D. We overcome this problem by moving fairness requirements

into the semantics of CTL. Specifically, we change the definition of our basic modalities so

that only fair paths are considered. Our previous model checking algorithm is modified to

handle this extended logic Without changing its complexity.

This chapter is organized as follows: Section 4.2 contains the syntax and semantics of

our logic. In section 4.3 we describe the basic model checking algorithm and illustrate its

use to establish absence of starvation for a solution to the mutual exclusion problem. An

extension of the model checking algorithm which only considers fair computations is given

47

in section 4.4. Section 4.5 describes an experimental implementation of the extended model

checking algorithm and shows how it can be used to verify the correctness of the Alternating

Bit Protocol. In section 4.6 we consider extensions of our logic that are more expressive and

investigate the complexity oi"model checkers for these logics. The chapter concludes with a

discussion of related work and remaining open problems.

4.2. The Specification Language.

The syntax for CTL is given below. AP is the underlying set of atomic propositions.

1. Every atomic proposition p ¢ AP is a CTL formula.

2. If fl and f2 are CTL formulae, then so are -, fl' fl ^ f2' AXfl' EXfl' Atfl U f21'
and E [fl U f2].

The symbols ^ and -, have their usual meanings. X is the nexttime operator; the

formulae AXf1 (EXf1) intuitively means that fl holds in every (in some) immediate

successor of the current program state. U is the until operator; the formula A[flUf2]

(E[flUf2]) intuitively means that for every computation path (for some computation path),

there exists an initial prefix of the path such that f2 holds at the last state of the prefix and fl

holds at all other states along the prefix.

We define the semantics of CTL formulae with respect to a labeled state-transition

graph. Formally, a CTL structure is a triple M = (S, R, P) where

1. S is a finite set of states.

2. R is a binary relation on S(R c S x S) which gives the possible transitions
between states and must be total, i.e. Vx _ S3y ¢ S [(x,y) ¢ R].

3. P is an assignment of atomic propositions to states i.e. P : S _ 2AP.

A path is an infinite sequence of states (s0, s1, s2,...) such that 'v'i [(si, si + 1) E R]. For

48

any structure M = (S,R,P) and state s0c S, there is an infinite computation tree with root

labeled so such that s --, t is an arc in the tree iff (s,t) ¢ R.

We use the standard notation to indicate truth in a structure: M, so b f means that

formula f holds at state so in structure M. When the structure M is understood, we simply

write so b f. The relation b is defined inductively as follows:

Sol=p iff p ¢ P(so).

Sob-_f iff not(s0 I= 0.

s0_=f1Af 2 iff s0bflands01=f 2.

Sob AXf1 iff for all states t such that (So,t)¢ R, t b t"1"

Sob EXf1 iff for some state t such that (s0,0 ¢ R, t b fl"

Sob A[f1 U f2l iff for all paths (s0, Sl,...),
_i[i _>0 m Si b f2m"v'j[0<_j< i_sj b fl]].

S0_ E [t"1U f2] iff for some path (s0, s1....),
_i[i _>0 A si b f2^ Vj[0 <_.j< i_s i I= fl]].

4.3. Model Checker

Assume that we wish to determine whether formula f is true in the finite structure M =

(S, R, P). We design our algorithm so that when it finishes, each state will be labelled with

the set of subformulae true in the state. We let label(s) denote this set for state

s. Consequently, M, s b f iff f c label(s) at termination. In order to explain our algorithm

we first consider the case in which each state is currently labelled with the immediate
• .

subformulae of f which are true in that state.

We will use the following primitives for manipulating formulas and accessing the labels

associated with states:

49

• argl(f) and arg2(f) give the first and second arguments of a two argument

formula f such as Atf1U f2I.

• labelled (s, 0 will return true (false) if state s is (is not) labelled with formula f.

• add.label(s, f) adds formula f to the current label of state s.

Our state labelling algorithm (procedure label_graph (0) must be able to handle seven

cases depending on whether f is atomic or has one of the following forms: -_ fl' fl ^ f2'

AXf1,EXf1, A[f1 U f2]'or Elf1 U f2l. We will only consider the case in which f = A[f1 U f2]

here since all of the other cases are either straightforward or similar. For the case

f = A[f1 U f2]our algorithm uses a depth first search to explore the state graph. The bit

array marked[l: nstates] is used to indicate which states have been visited by the search

algorithm. The algorithm also uses a stack ST to keep track of those states which require

additional processing before the truth or falsify of f can be determined. The boolean

procedure stacked(s) will determine (in constant true) whether state s is currently on the

stack ST.

begin
ST := empty_.stack;
for all s c S do marked(s) := false;
L : for all s ¢ S do
if- marked(s) then au(f,s,b)

end

The recursive procedure au(f,s,b) performs the search for formula f starting from state

s. When au terminates, the boolean result parameter b will be set to true iff s _ f. The

annotated code for procedure au is shown below:

procedureau(f,s,b)
begin

50

{If s is marked and stacked, return false (see lemma 4.1). If s is already labelled with
f, then return true. Otherwise, if s is marked but neither stacked nor labelled, then
return false.}

if marked(s) then
begin

if stacked(s) then
begin

b "= false;
return

end ;
if labeUed(s,f)then

begin
b "= true;
return

end;
b := false;
return

end;

{Mark state s as visited. Let f = A[f1 U t"2]"If f2 is true at s, f is true at s; so label s
with f and return true. If fl is not true at s, then f is not true at s; so return false. }

marked(s):= true;
if labelled(s,arg2(0) then

begin
add__.label(s,0;
b "= true;
return

end

else if -qabelled(s,argl(0) then
begin

b := false;
return

end;

{Push s on stack ST. Check to see if f is true at all successor states of s. If there is
some successor state sl at which f is false, then f is false at s also; hence remove s
from the stack and return false. If f is true for all successor states, then f is true at s;
so remove s from the stack, label s with f, and return true.}

51

push(s,ST);
for all sl _ successors(s)do

begin
au (f,sl,bl);
if -_bl then

begin
pop(ST);
b "= false;
return

end

end;
pop(ST);
add__label(s,f);
b" = true;
return

end of procedure au.

To establish the correctness of the algorithm we must show that

Vs rlabelled (s,f) _ sl==f]

holds on termination. Without loss of generality we consider only the case in which f has

the form A[fl U f2]" We further assume that the states are already correctly labelled with the

subformulae fl and f2" The first step in the proof is an induction on depth of recursion for

the procedure au. Let I be the conjunction of the following eight assertions:

I1. All states are correctly labelled with the subformulae fl and f2:

vsr labelled(s,f i) _ s _ fi] for i = 1,2.

I2. The states on the stack form a path in the state graph:

Vi rl<_i< length(sT) --, (ST(i), ST(i+ 1)) ¢ R].

I3. The current state parameter of au is a descendant of the state on top of
the stack: (Top(ST), s) ¢ R.

I4. fl A --, t'2 holds at each state on the stack :

Vi r l<i < length(ST) --, ST(i) _ fl A -_ f2].

52

15. Every state on the stack is marked but unlabelled •

Vi [- l<i<length(ST) -_ marked(ST(i)) ^
-_ labelled(ST(i), f)'].

16. If a state is labelled with f, then it also marked and f is true in that state:
Vs ['labelled(s,f) -_ marked (s) ^ s I= f'].

17. If a state is marked but neither labelled with f nor on the stack, then f
must be false in that state:

VsEmarked(s) ^ -_labelled(s,0 A
-_ 3i[- l<_i<_length(ST)A S = ST[i]-] _ s_ "_f'l.

I8. ST0 records the contents of the stack: ST - ST0.

We claim that if I holds before execution of au(f, s, b), then I will also hold on termination

of au; Moreover, the boolean result parameter b will be true iff f holds in state s. In the

standard Hoare triple notation for partial correctness assertions the inductive hypothesis

would be

{l}au(f,s,b){I^ s 0}.

Once the inductive hypothesis is proved, the correctness of our algorithm is easily

established. If the stack is empty before the call on au, we can deduce that both of the

following conditions must hold:

a. Vs I-marked(s) -, [labelled(s, 0 _ st= f]'] (from I1).

b. Vs Emarked(s) -_ [-4abelled(s,f) _ s_-_f]] (from !2, I3).

It follows that

Vs['marked(s) _ [labelled (s, f) _ s_ f]].

Because of the for loop L in the calling program for au, every state will eventually be

marked. Thus, when loop L terminates Vsl'labelled (s, f) _ s_f] must hold.

53

Proof of the inductive hypothesis is straightforward but tedious and will be left to the

reader. The only tricky case occurs when the state s is marked and on the stack. In this

situation the procedure au simply sets b to false and returns. To see that this is the correct

action, we make use of the following observation:

LEMMA 4.1: Suppose there exists a path (s1, s2..... sm, Sk)inthe state graph such that
1< k < m andVi[1<_i <_m ---,si _ -, f2]' then sk I=-_ A[f1 U f2]" E!

Assuming that the statesof the graph are already correctly labelled with fl' and f2' it is

easy to see that the above algorithm requires time O(card(S) + card(R)). The time spent by

one call of procedure au excluding the time spent in recursive calls is a constant plus time

proportional to the number edges leaving the state s. Thus, all calls to au together require

time proportional to the number of states plus the number of vertices since au is called at

most once in any state.

We next show how handle CTL formulas with arbitrary nesting of subformulas. Note

that if we write formula f in prefix notation and count repetitions, then the number of

subformulae of f is equal to the length of f. (The length of f is determined by counting the

total number of operands and operators.) We can use this fact to number the subformulae

of f. Assume that formula f is assigned the integer i. If f is unary i.e. f= (op fl) then we

assign the integers i + 1 through i + length(fl) to the subformulae of fr If f is binary i.e. f

= (op t"1f2) then we assign the integers from i + 1 through i + length(fl) to the

subformulae of fl and i + length(fl) through i + length(fl) + length(f2) to the

subformulae of f2" Thus, in one pass through f we can build two arrays ntI1 : length(0] and

sttl • length(f)] where ntli] is the itlasubformula of f in the above numbering and stIi] is the

list of the numbers assigned to the immediate subformulae of the ittaformula. For example,

iff = (AU (NOT X) (OR Y Z)), then nfand sfare given below:

54

nf[1] (AU (NOT X)(OR Y Z)) sf [1] (2 4)
nf[2] (NOT X) sf [2] (3)
nf[3]X sf [3] nil
nf[4] (OR Y Z) sf [4] (5 6)
nf[5] Y sf [5] nil
nf[6] Z sf [6] nil

Given the number of a formula f we can determine in constant time the operator of f

and the number assigned to its arguments. We can also efficiently implement the

procedures "labelled" and "addlabel". We associate with each state s a bit array L[s] of

size length(0. The procedure add_label(s,fi) sets L[s][fi] to true, and the procedure

labelled(s,fi) simply returns the current value of L[s][fi].

In order to handle an arbitrary CTL formula f we successively apply the state labelling

algorithm described at the beginning of this section to the subformulas of f, starting with

simplest (i.e. highest numbered) and working backwards to f:

for fi "= length(f) step -1 until I do
label_graph (fi);

Since each pass through the loop takes time O(size(S) + card(R)), we conclude that the

entire algorithm requires O(length(f) • (card(S) + card(R))).

THEOREM 4.2: There is an algorithm for determining whether a CTL formula f is true in
state s of the structure M = (S, R, P) which runs in time
O(length(f).(card(S) + card(R))). I"l

We illustrate the model checking algorithm by considering a finite state solution to the

mutual exclusion problem for two processes P1 and P2" In this solution each process is

always in one of three regions of code:

55

-

!

Figure 4-1: Global state transition graph for two process
mutual exclusion problem

Ni the Noncritical region,

Ti the Trying region,

or Ci the Critical region.

A global state transition graph for this solution is shown in figure 4.1. Note that we only

record transitions between different regions of code; moves entirely within the same region

are not considered at this level of abstraction.

In order to establish absence of starvation for process 1 we consider the CTL formula

T1 -. AFC 1or, equivalently, -_T1 v AFC1, where AFp s A[true U p] means that p occurs at

56

Figure4-2: Global state transition graph after terminationof
modelcheckingalgorithm

some pointon allexecutionpaths.In thiscasethesetof subformulaecontains

-,TI v AFCI,--,TI,TI,AFC IandCI.Thestatesoftheglobaltransitiongraphwillbe

labelledwiththesesubformulaeduringexecutionofthemodelcheckingalgorithm.On

terminationeverystatewillbelabelledwith_TIv AFC Iasshowninfigure4.2.Thus,we

canconcludethatsoI-AG(T1 ---,AFCI)whereAGp = -_E[trueU --,p]meansthatpholds

globallyon allcomputationpaths.Itfollowsthatprocess1 cannotbepreventedfrom

_enteringitscriticalregiononceithasentereditstryingregion.

57

4.4. Introducing Fairness into CTL

Frequently, in verifying concurrent systems we are only interested in the correctnessof

fair execution sequences. For example, with a system of concurrent processes we may wish

to consider only those computation sequences in which each process is executed infinitely

often. When dealing with network protocols where processes communicate over imperfect

(or lossy) channels we may also wish to restrict the set of computation sequences; in this

case the unfair execution sequences are those in which a sender process continuously

transmits messages without any reaching the receiver. Since we are considering only finite

state systems, each of these notions of fairness requires that some collection of states be

repeated infinitely often in every fair computation. It follows from [EH83] that correctness

of fair executions cannot be expressed in CTL. In fact, CTL cannot express the property

that some proposition Q should eventually hold on all fair executions.

In order to handle fairness and still obtain an efficient model checking algorithm we

modify the semantics of CTL. The new logic, which we call CTLF, has the same syntax as

CTL. But a structure is now a 4-tuple (S, R, P, F) where S, R, P have the same meaning as

in the case of CTL, and F is a collection of subsets of S i.e. F _ 2s. A path p is fair iff the

following condition holds:

for each c _ F, there are infinitely many instances
onp at which some state in c appearr_

CTLF has exactly the same semantics as CTL except that all
path quantifiers range over fair paths.

An execution of a system Pr of concurrent processes is some interleaving of the

execution steps of the individual processes. We can model a system of concurrent processes

by a structure (S, R, P) and labelling function L:R --, Pr. S is the set of global states of the

system, R is the single step execution relation of the system, and for each transition in R, L

58

gives the process which caused the transition. By duplicating each state in S at most

card(Pr) times, we can model the concurrent system by a structure (S*, R*, P*, F), where

each state in S*is reached by the executionof at most one process,and F is a partitioningof

S*such that each element in F is the set of states reached by the executionof one process;

thus card(F) = card(Pr). The fairpaths of the abovestructure are exactlythe fair execution

sequencesof the systemof concurrent processes. A similar approach can be used to model

networkprotocols(see section5).

We next extend our model checking algorithm to CTLF. We introduce an additional

propositionQ,which is true at a state iff there isa fair path starting from that state. This can

easily be done, by obtaining the strongly connected components of the graph denoted by

the structure. A stronglyconnected component isfair if it contains at least one state from

eachci in F. We label a state with Q iff there is a path from that state to some node of a fair

stronglyconnectedcomponent. As usual we design the algorithmsothat after it terminates

eachstate willbe labelledwith the subformulaeof f0true in that state.

We consider the two interesting cases where f _ sub(f0) and either f = E[g U h] or

f = A[g U h]. We assume that the states have already been labelled with the immediate

subformulaeof fby an earlierstageof the algorithm.

(i) f = E[gU h] : f istrue in a state iff the CTL formula E[g U (h ^ Q)] is true in that state,

and this can be determined using the CTL model checker. A state s is labeled with f iff f is

true in that state.

59

(ii) f = A[g U h] : It is easy to see that A[g U hi - -_(E[-_h U (-_g A -_h)]v EG(-,h)). For

a state s we can easily check if s _ E[-,h U (-,g ^ -,h)] using the previous technique. To

check if s _ EG(-_h) we use the following procedure. Let GR be the graph corresponding

to the above structure. From GR eliminate all nodes v such that h e label(v) and let (3'R be

the resultant labeled graph. Find all the strongly connected connected components of G'R

and mark those which are fair. If s is in G'R and there is a path from s to a fair strongly

component of (3'R thens _ EG(-,h); otherwise s _ -_EG(-_h). As in (i), s is labeled with f

iff f is true in s.

If n = max(card(S), card(R)), m = length(f) and p = card(F), then it can be shown

that the above algorithm takes time O(n. m. p).

4.5. Using the Extended Model Checker to Verify the Alternating Bit

Protocol

In this section we consider a more complicated example to illustrate fair paths and to

show how the Extended Model Checking (EMC) system might actually be used. The

example that we have selected is the Alternating Bit Protocol (ABP) originally proposed in

[BSW69]. This algorithm consists of two processes, a Sender process and a Receiver process,

which alternately exchange messages. We will assume (as in [QS81]) that messages from the

Sender to the Receiver are data messages and that messages from the Receiver to the Sender

are acknowledgments. We will further assume that each message is encoded so that garbled

messages can be detected. Lost messages will be detected by using time-outs and will be

treated in exactly the same manner as garbled messages (i.e. as error messages).

Ensuring that each transmitted message is correctly received can be tricky. For

example, the acknowledgment to a message may be lost. In this case the Sender has no

6O

choice but to resend the original message. The Receiver must realize that the next data

message it receives is a duplicate and should be discarded. Additional complications may

arise if this message is also garbled or lost. These problems are handled in the algorithm of

[BSW69] by including with each message a control bit called the alternation bit.

In the EMC system finite-state concurrent programs are specified in a restricted subset

of the CSP programming language [Ho78] in which only boolean data types are permitted

and all messages between processes must be signals. CSP programs for the Sender and

Receiver processes in the ABP are shown in figures 4.3 and 4.4. To simulate garbled or lost

messages we systematically replace each message transmission statement by a

(nondeterrninistic) alternative statement that can potentially send an error message instead

of the original message. Thus, for example,

Receiver ! mess0 would be replaced by

[True _ Receiver! mess0
rl

True _ Receiver! err]

A global state graph is generated from the state machines of the individual CSP

processes by considering all possible ways in which the transitions of the individual

processes may be interleaved. Since construction of the global state graph is proportional to

the product of the sizes of the state machines for the individual processes, various

(correctness preserving) heuristics are employed to reduce the number of states in the graph.

Explicit construction of the global state machine can be avoided to save space by

dynamically recomputing the successors of the current state. The global state graph for the

ABP is shown in the figure 4.5.

61

Once the global state graph has been constructed, the algorithm of section 4 can be

used to determine if the program satisfies its specifications. In the case of the ABP we

require that every data message that is generated by the Sender process is eventually

accepted by the Receiver process:

AG[gen_.dm0 _ AX[A[--,(gen__dm0v gen_._dml)U acc_dm0]] ^

AG[gen_dml _ AXIAl-, (gen._dm0 v gen_dml) U acc_dml]]

This formula is not true of the global state graph shown in figure 4.5 because of infinite

paths on which a message is lost or garbled each time that it is retransmitted. For this

reason, we consider only those fair paths on which the initial state occurs infinitely often.

With this restriction the algorithm of section 4 will correctly determine that the state graph

of figure 4.5 satisfies its specification.

As of October 1982, most of the programs that comprise the EMC system have been

implemented. The program which parses CSP programs and constructs the global state

graph is written in a combination of C and lisp and is operational. An efficient top-down

version of the model checking algorithm of section 3 has also been implemented and

debugged. The extended model checking algorithm of section 4 (which only considers fair

paths) has been implemented in Lisp and is currently being debugged.

62

*[gen-dm0;
RCV!dm0;
*[RCV? am0--, exit;

D
RCV? am1 -+ RCV! dm0;
D

RCV? err --, RCV ! dm0;

]
gen-dml;
RCV! dml;
*[RCV9.am1 --, exit;

D
RCV9.am0 -_ RCV !dml;
D

RCV9.err _ RCV ! dml;
]

]

Figure 4-3: Sender Process(SND)

*[*[SND ? dm0 --, exit;
D

SND ? dml --. SND !aml;
D

SND ? err _ SND ! aml;
]
acc-dm0;
SND !am0;
*[SND ? dml -_ exit;

D
SND ? din0 -+ SND !am0;
SND ? err ---,SND ! am0;

]
acc-dml;
SND ! arnl;

l

Figure4-4: ReceiverProcess(RCV)

(Note: dm stands for data message;am standsfor acknowledgementmessage.)

63

gel__

SNO!err

!dmO RCV!err SND!am

dm

I
9__dml SNO! err

Ldin1 RCV! err ;NI)!am0

j
_dml

! err

SND!oml SNO! err RCV!din] :

Figure 4-5: Global statetransitiongraph for altcrnadng bit protocol.

64

4.6. Extended Logics

In this section we consider logics which are more expressive than CTL and investigate

their usefulness for automatic verification of finite state concurrent systems. CTL severely

restricts the type of formula that can appear after a path quantifier. In CTL* we relax this

restriction and allow an arbitrary formula of linear time logic to follow a path quantifier.

We distinguish two types of formulae in giving the syntax of CTL*: state formulae and

path formulae. Any state formulae is a CTL* formula.

<state-formula>:'= <atomic proposition> [
<state-formula> A <state-formula>]
-, <state-formula> I
E((path-formula>)

<path-formula>:: = <state-formula>l
<path-formula> U <path-formula>I
-,<path-formula>]
<path-formula> A <path-formula>[
x <path-formula>[
F<path-formula>

We use the abbreviation Gf for --,F--,fand A(0 for -,E-,(f). We interpret state formulae

over states of a structure and path formulae over paths of a structure in a natural way. The

truth of a CTL* formula in a state of a structure is inductively defined. A formula of the

form E(<path formula>) is true in a state iff there is a path in the structure starting from that

state on which the path formula is true. The truth of a path formula is defined in much the

same way as for a formula in linear temporal logic if we consider all the immediate state

- subformulae as atomic propositions [EH83]. BT* will denote the subset of the above logic

in which path formulae only use the F operator. CTL + will denote the subset in which the

temporal operators X, U, F are not nested.

Fairness can be easily handled in CTL*. For example, the following formula asserts

that on all fair executions of a concurrent system with n processes, R eventually holds:

65

A((GFP 1 A GFP 2 A ...GFPn)--, FR)

Here PI' P2....Pn hold in a state iff that state is reached by execution of one step of

process PI' P2....Pn' respectively.

THEOREM 4.3: The model checking problemforCTL* is PSPACE-complete. 17

Proof Sketch: We wish to determine if the CTL* formula fis true in state s of structure

M. Let g be a subformula of f of the form E(g') where g is a path formula not containing any

path quantifiers. For each such g we introduce an atomic proposition Qg. Let t*be the

formula obtained by replacing each such subformula g in f by Qg. We modify M by

introducing the extra atomic-propositions Qg. Each Qg is true in a state of the modified

structure iff g is true in the corresponding state in M. The latter problem can be solved in

polynomial space using the algorithm given in Chapter 2. f is _::ueat state s in M iff f is true

in state s in the modified structure. We successively repeat the above procedure, each time

reducing the depth of nesting of the path quantifiers.

It is easily seen that the above procedure takes polynomial space. Model checking for

CTL* is PSPACE-hard because model checking for formulas of the form E(g'), where g is

free of path quantifiers, is shown to be PSPACE-hard in Chapter 2. 17

THEOREM 4.4: The model checking problem for BT° (CTL+)
is both NP-hard and co-NP-hard, and is in A_,. I"1

Proof Sketch: The lower bounds follow from the results in Chapter 2. In Chapter 2 it

was shown that the model checking problem for formulas of the form F(ff), where g' is free

of path quantifiers and uses the only temporal operator F, is in NP. Using this result and a

procedure like the one in the proof of previous theorem it is easily seen that the model

checking problem for BT° is in A_,. A similar argument can be given for CTL+. I"1

66

We believe that the above complexity results justify our approach in section 4.4 where

fairness constraints are incorporated into the semantics of the logic in order to obtain a

polynomial-time model checking algorithm.

4.7. Conclusion

Much research in protocol verification has attempted to exploit the fact that protocols

are frequently finite state. For example, in [ZaS0] and [Si] (global-state) teachability tree

constructions are described which permit mechanical detection of system deadlocks,

unspecified message receptions, and non-executable process interactions in finite-state

protocols. An obvious advantage that our approach has over such methods is flexibility; our

use of temporal logic provides a uniform notation for expressing a wide variety of

correctness properties. Furthermore, it is unnecessary to formulate protocol specifications

as teachability assertions since the model checker can handle both safety and liveness

properties with equal facility.

The use of temporal logic for specifying concurrent systems has, of course, been

extensively investigated ([MPS1], [HO80], [OLS0]). However, most of this work requires

that a proof be constructed in order to show that a program actually meets its specification.

Although this approach can, in principle, avoid the construction of a global state machine, it

is usually necessary to consider a large number of possible process interactions when

establishing non-interference of processes. The possibility of automatically synthesizing

finite state concurrent systems from temporal logic specifications has been considered in

ICE81] and [MW81]. But this approach has not been implemented, and the synthesis

algorithms have exponential-time complexity in the worst case.

Perhaps the research that is most closely related to our own is that of Quielle and

7

Sifakis ([QS81], [QS82D, who have independently developed a system which will

, automatically check that a finite state CSP program satisfies a specification in temporal

logic. The logical system that is used in [QS81], is not as expressive as CTL, however, and

no attempt is made to handle fairness properties. Although fairness is discussed is [QS82],

the approach that is used is much different from the one that we have adopted. Special

temporal operators are introduced for asserting that a property must hold on fair paths, but

neither a complexity analysis nor an efficient model checking algorithm is given for the

extended logic.

68

Chapter 5

A Multiprocess Network

Logic with Spatial and

Temporal Operators

5.1. Int roduction

• One of the fundamental models of parallel computation is a collection of synchronous

processors with fixed inter-connections. For example, the iterative linearly connected, mesh

connected, and multidimensional arrays of [Ko69] and [Co69], the shuffle exchange

networks of [St71] and ultracomputer of [Sc80], and the cube connected cycle networks of

[PV79].

Parallel algorithms for such networks are difficult to formally describe and prove

correct. For example, the systolic algorithms of [KL78] are not formally proved correct in

that paper; instead informal "picture proofs" are presented.

An informal description of a program or algorithm for a fixed connection network

would likely make reference to the spatial relationships between neighboring processes and

the properties holding for all processes, as well as the transformations over time. Indeed,

natural English allows expressions of spatial modal operators such as everywhere,.

somewhere, across such and such connection, as well as temporal modal operators such as

until,eventually, hereafter, and nexttime. However, natural English cannot suffice for formal

semantics. This paper proposes a formal logic allowing use of these modal operators in the

context of a fixed connection network.

69

Previous program logics contained only temporal modal operators [Pn77], [MP81] or

modal operators for the effect of program statements [FL79]. Temporal logic has been used

to reason about parallel programs; however it is impractical to use this logic to reason about

large number of processes operating synchronously and communicating through fixed

connections. Our use of spatial as well as temporal modal operators is a new idea. (Note:

our spatial modal operators differ in an essential way from the modal operators of dynamic

logic; see Section 5.2). This combination of temporal and spatial modal operators allows us

to formally reason about computations on networks with complex connections.

The contribution of this chapter is more than simply the definition of our logic. We

also describe applications and investigate the computational complexity of decision

procedures.

Section 5.2 defines the logic. Section 5.3 describes some interesting applications of our

logic to routing on the shuffle exchange network, to the firing squad problem on a linear

array, and to systolic computations on arrays. We felt these examples to multiprocess

networks illustrate the general applicability.

Section 5.4 investigates the problem of deciding validity of formulae of our logic. We

show the set of valid formulas is rli -complete. However, in practice we are generally only

interested in deciding validity of a proportional formula with respect to a given finite

network. We show that given a finite network and a formula, the problem of deciding if the

formula is valid in all models over the given network, is PSPACE-complete.

70

5.2. Definitions and Notation

First we define the propositional version of the logic. At the end of this sectionwe

briefly describethe firstorderversionof thislogic.

5.2.1.Networks

Let L be acountablesetof symbols,whichwecall links. A networkG = (P,E)contains

a countablesetof processesP anda partial mappingE: L x P --, P. For eachprocessp ¢ P

andlabel l _ L, E(t,p) is (if defined)the processconnectedto p by link t. For example,a

square grid network might have links up, down, left, and right. The links are different from

the atomic programs of PDL due to the restrictions given in the next page.

5.2.2.Syntax of the Logic

We distinguish as temporal modal operators the symbols F, G, U, X; for readability

purpose sometimes we use the mnemonics eventually, hereafter, until, and nexttime

respectively for the above mentioned temporal operators. The spatial modal operators are

somewhere, everywhere, and any symbol in the set of links L, which we assume contains

none of the previously mentioned modal operators.

Let _ be the infinite set of atomic propositions. The well formed formulae are

inductively defined as follows: An atomic proposition is a well-formed formula; if f 1' f 2

are well formed formulae then so are -_fl' t"1̂ f2' Ffl' Gfl' Xfl' fl U f2' s°mewhere(fl)'

everywhere(f1), l(fl) where t ¢ L.

71

5.2.3.Semantics

AModel ./tt,isa 5-tuple(S,q',A,G,Ir)where:

(i) S is the set of states,

(ii)_" S--.29,

(iii) A: (L u {nexttime}) x S --, S, isa partial function,

(iv)G = (P,E) is a network,and

(v) _r: S-, a.

Thus for each state s e S, q'(s) is the set of atomicformulaswhichare true in s,and _r(s)

is the process associatedwith state s. Also A(nexttime,s) is the state occurring in the next

time instance if the current state iss, and h(l,s) is the current state of the processconnected

to process_r(s)by link t.

We extended A as a partial mapping to the domain(L u {nexttime})* x S so that for all

s ¢ S, A(e,s) = s where e is the empty string, and A(l1"t2 , s) is defined iff A(t1, s) and

A(t2, A(l1,s)) are defined and in this case A(tl.l 2,s) - A(l2, A(l1, s)). Similarlywe also

extendE as a partialmapping to the domain L*x P.

Amodel ._ isproperiff the followingfiveconditionsare satisfied:

RI: For each link t c L and each state s ¢S, A(t. nexttime,s) = A(nexttime. t,s) (thus

nexttimecommuteswith respectto each link; this presumes the processesare synchronous).

R2: For each state s c S, A (nexttime,s) is defined and It(s) = _r(A(nexttime,s))(thus

the name of each processis invariantover time).

R3: For eachstate scS and link teL, E(t,lr(s)) is definediff A(t,s) is defined and in this

case, =

72

R4: For any a,a eL* and state s _S if E(a, rt(s)), E(ot,Tr(s))are defined and E(a, rr(s))

= E(t_,_r(s)) then A(a,s) = A(t_,s). (Thus the relationship between the states of two

processes is independent of the particular paths of links over which they are connected.)

R...55:If _r(sl)= Ir(s2)then for some i_>0A(nexttim_,s 1)=s2 or A(nexttim2,s2)=s 1.

Hereafter, we consider only proper models.

Let us fix the model ._. We define truth of a formulae at a given state s c S by

structural induction on the formula.

For each atomic proposition Q _ v, s _ Q iff Q ¢ q(s);

For any fl, f2

s_flAf 2 iff s _ fland s I_ f2;

s I= "_fl iff not (s I=fl);

s _ nexttimef 1 iff z$(nexttime, s) != fl;

s _ eventually fl iff ::]k >_0 A(nexttimek,s) _ t"1;

s _ hereafterf 1 iff _/k> 0, h (nexttimek,s) _ fl;

s _ fl until f2iff 3k > 0 h(nexttimek,s) _ f2 and Vi, 0 <_.i < k, h(nexttim_,s) _=f 1;

s _ If1 iff h(t,s) is defined and A(l,s) I_ t"1;

s _ somewhere fl iff 3 a ¢ L *, such that A(a,s) is defined and A(a,s) I_ fl;

s _ everywhere fl iff'V'a _ L* (A(a,s) is defined = A(a,s) I_ fl).

We let _ denote truth with respect to a given model Jtt,.

73

5.2.4. Decision Problems

A Formulaf is said to be satisfiable (valid) if s _Alf for some (all, respectively) model

and some (all) state s. Given a network G, a formula f is said to be G-satisfiable

(G-valid) if s _ f for some (all) models _ with network G and some(all) state

5.2.5. Extensions to First OrderLogic

The first order version of this logic consists of the additional symbols like local

variables, global variables, constant symbols, function and relation symbols, and the

universal quantifier V. A term is defined as in the case of first order predicate calculus. An

atomic formula is an atomic proposition or of the form R(tlt2 ... tk) where R is k-aryrelation

symbol (R can be equality in which case k = 2) and t1,t2..... tk are terms. The additional

requirement for the set of formulae is that if f is a formula and x is a global variable so is

Vx (f). A model .At is a 5'tuple (_S , A, G,_r) where E = (D, a,fl) in which D is a

countable domain from which the variables take values, a interprets relation and function

symbols, fl is mapping associating with each global variable and constant symbol a value

from the domain; S is the set of states where each state is a mapping that associates a truth

value with each atomic proposition and a value from D with each local variable; A, G, _r are

the same as in the propositional case. A proper model should satisfy the same conditions as

for propositional case, modified in a natural way. We consider only proper models. Truth

of an atomic formula in a state of a model is defined as in the case of first order predicate

calculus; and truth of a formula in a state of a model is defined inductively as in the

propositional version with the following addition; s 1=31_ 'V'xf iff for each ceD, sl=a_,c f

where aroc is exactly same as _ except that the global variable x is given the value c in _e.

Satisfiability and validity of formulae are defined as usual.

74

5.3. Applications

This section gives some examples of the use of our logic to various multiprocess

network applications.

5.3.1. Routing on a Shuffle-Exchange Network

A Shuffle-Exchange network G=(P,E) where P= {0,1}n and

E: {exchange, shuffle} x P _ P is defined as follows:

E(exchange, (an.l, an.2..... a0)) = (an.l,an.2, ..., a 0)

E(shuffle, (an.l, an.2..... ao)) = (a0, an.1.... a1)

for all a n-l' an-2..... a0 E{0,1}.

Intuitively, the exchange edge connects processes Pl and P2 if all the bits of Pl and P2

are the same excepting the least significant bits which are distinct. The shuffle edge

connects two processes Pl and P2' if P2 is obtained by one cyclic shift of bits in Pl"

The routing problem in this network is to route a packet present at some process to a

given destination traversing only along the shuffle and exchange edges.

We capture the name of a process by the atomic propositions An.l, An.2, ..., A0. The

formula f0 asserts that the name of process is invariant over time;

A (hereafter Ai v hereafter-_A i)f0 o<_.i<n

fl' f2 assert that exchange and shuffle edges are properly connected.
A

fl = x<_.i<n(Ai _ exchange Ai) A (A0 _ exchange -,A O)

A _ shuffle n)f2 = o<_i<n (A i A(i-1) rood

The presence of the packet at any process will be indicated by the atomic proposition

X, and the destination by Dn.1, Dn.2, D0. We assume that the name Of the destination

75

travels with the message. Let go assert that X is true in at most one place at any time. It is

not difficult to see that this can easily be expressed, gl asserts that the name of the

destination travels with the packet.

A
gl = X o<i<n (D i 3 hereafter everywhere(Xz Di))^

(-,D i 3 hereafter everywhere(Xz --,Di))

g2asserts that the packet travels along the shuffle or exchange edges only.

g2 = X z nexttime (Xv shuffleX v exchange X)

The main correctness property is g3 which asserts that the packet reaches its destination

eventually.

A
g3 = eventually somewhere(X 0_<i<n(Ai _ Di))

Let r be a formula which describes the actual muting algorithm. Then

(hereafter everywhere(r^ f0 ^ fl ^ f2 ^ go ^ gl ^ g2)) z g 3

is a valid formula iff the algorithm correctly mutes packets.

Next we describe a specific routing algorithm for the shuffle-exchange network and

derive the corresponding formula r for its semantics. The packet will be routed in n stages,

where for i = O, n-1 if at the start of the i-th stage the packet is located at a process

whose lowest order address bit is not the value of Di, then the packet traverses the exchange

link and reaches the i + 1 stage. In either case, the packet next traverses a shuffle link.

To define a formula r for this muting algorithm, it is useful to introduce propositional

variables S0, Sn.1and require that only unique Si be true at any process, and that Si be

invariant on traversing an exchange link but that S(i+l)mod n be true on traversing a shuffle

link. Thus we let

76

V
ro = o<t<,,[(Si A-,S0A... A-',Si.lA",Si+1A ... A",S,.1)

A(nexttime exchange Si) A(nexttime shuffle S(i+i)modn)]

The formula for the semantics of this muting algorithm is given by r, where

r r0A[(XA V= o<i<n(A i _-'Di))

A {SiA((A0_Di) DD o<i<n

nexttime exchange X)A((A0_-,Di) _ nexttime shuffle X)}]

5.3.2. The Firing Squad Problem for a Linear Array

We briefly describe the problem and show how it's correcmess can be specified in our

logic. A solution to the firing squad problem consists of a linear array of deterministic f'mite

state processes as shown in the following figure. The next state of each process is a function

of it's present state and the states of it's neighbors. All the privates are identical processes.

The problem is to obtain the programs for the lieutenant, the sergeant and the privates so

that whenever the lieutenant is in a designated initial state, then eventually all the processes

simultaneously enter a special state called the firing state, and none of them enters this state

before this time. The solution should work for linear arrays of all sizes.

riqht right :right right

: _ _left: left left left

We assume that all processes have the state set Q= {0,1,2..... m}, and the state 0 is

the initial state of each process. State I is the specific state into which the lieutenant enters

77

to start the operation. State m is the firing state. All the privates are identical. We use

atomic propositions P0' P1..... Pm to indicate the state of a process (Pi is true at a place iff

the corresponding process is in state i at that instance). Now we assert the operation of the

system as follows.

(i) 'T' asserts that each process is in at most one state at any instance of time.

A
I = everywherehereafter[0_<i<j<_.k(Pi 3 " P'j)]

(ii) f0 asserts that the moves of the lieutenant is according to its next move partial

function

30:Q2_Q.

f0 = everywhere[-,left(true) _ {(P0 v P1) ^

hereafter iA ((Pi ^ right Pj) _ nexttime Ps0(i,i))}]

Note that -,left(true) is true only on the lieutenant, the left most processor.

(iii) Similarly let fl,f2 be the formulae that define the moves of all privates and the

sergeant respectively. The positions of privates is identified by the truth of the formula

(left(True) A right(True)).

Note that the position of the sergeant is identified by the formula -_right(True).

(iv) Let go be the formula that asserts that' if any process (other than the lieutenant) and

all its neighbors are in state 0 then it remains in state 0 in the next step. It is easily seen that

this can also be asserted.

Now we assert that if all the above conditions are met and at any time the lieutenant

enters the state 1 then all processes will eventually enter the firing state simultaneously at

some future instance, and none of them will be in the firing state before that instance. This

is captured by the formula g.

78

g = (I A f0A fl Af2Ago) 3 hereafter[somewhere(-, left(true) AP1) 3

{(--,somewherePm) until (everywherePro)}]

g is validon all models.withlinear arrays as networks iff the given solution to the firing

squad problem is correct. A similar construction can be given for the firingsquad problem

over any givennetwork.

5.3.3.Systolic ArithmeticComputations

The systolic algorithms of [KL78] are not formally proved correct in their paper;

instead they present informal "picture proofs". Our logic is thus particularly useful here

whenextended to firstorder formulae (as describedin Section 2.5).

We consider an interesting exampleof a network for matrix-vectormultiplicationdue

to ([KL78],[Le81D. The matrix is an infinite band matrix of bandwidth (n+ 1). The

networkarchitecture is shown in figure 5.1.

Figure5-1:

79

The main processorsareP0' PI' '"' Pn" The processors1_0, P1..... Pn are the input

processors,each of them contains a variableZ. The valuesof Z in P_i change with time and

they represent the valuesof the ith diagonalof the matrix. This variable takes the successive

valuesof the ith diagonalat alternate time instancesand takesvalue zero at the intermediate

time instances. Each processorPihas two variablesX,Y. The valuesof the variableX in P0

over time represent the input vector. This variable takes the successivevaluesof the input

vector at alternate time instances and takes value zero at the intermediate time instances.

The valuesof X move rightwith each time instance. The detailsof the relativetimingsare

givenin [Le81]and the reader is referred to this.

Thus,

gl = left(true)_ Va(left(X = a)_ nexttime(X = a))

asserts that the value of X at the next time instance in processor Pi (i > 0), is the present

valueof X in the processleftto Pr

At each step Pi(i > N) computesits valueof Y to be the sum of the previous value of Y

in process Pi+l' plus theproduct of X in Pi times Z in 1_i. This iscaptured by

g2 = right(true)_ VaVfl(right(Y = a) Anexttime input(Z = fl)

3nexttime(Y = a + X. fl))

At each step Pncomputes its value of Y to be the product of the value of X in Pn and

the valueof Z in l_n. This can also be easilyassertedby the formula

g3 = [-_right(True)A input(true)]_ VaVfl[(X= aAinput(Z= fl)) _ nexttime(Y = a. fl)].

(note that -_right(True)A input(true)holds only for processorPn)

The steadystate correctnessproperty at Pocanthus be expressedin our logicas

hereaftereverywhere(glAg2Ag3)_ hereafterh

where

80

h = [-,left(True) ^ input(true)] D

A nexttirne2i(X = AVa 0 ... a nVflO "" fin [(o<_i<_n a i)

nexttimen+irighf'iinput (Z = fli))

mnexttime 2n(Y = Zo<_.i<_nai " fli)]

5.4. Decidability and Complexity Issues

In this section we consider issues of decidability and complexity of different versions of

our logic. Recall that a formula is said to be satisfiable iff there exists a model and a state at

which the formula is true. A formula is said to be valid if it is true in all states of all models.

We say that a formula is satisfiable (valid) on finite networks if the formula is true in some

(all) model with finite networks.

THEOREM 5.1: The set of satisfiableformulae of multiprocessor network logic is 2g]

-complete and the set of validformulae is H]-complete.

Proof sketch: First we show that the set of satisfiable formulae is a [xx-complete set.

From this result it can easily be shown that the set of valid formulae is FI]-complete.

We consider a deterministic Turing machine M on infinite strings. M has one read

only infinite input tape, and an infinite work tape. An infinite string is input to M on its

input tape. M never halts. M is said to accept an input if during its computation it goes into

any of a set of final states infinitely often. The set of encodings of all Turing machines that

accept at least one input, is shown to be Z _-complete in [SCFG82]. We reduce this set to

the set of satisfiable formulae. An ID of M is the part of input is seen thus far, the contents

of the work tape, the position of the head on the work tape. We define a sequence of IDs of

81

M during its computation on an input and express this sequence using a formula in the

logic. We also assert that in this sequence, final IDs (IDs having a final state) appear

infinitely often. Thus given an encoding of a Turing machine we obtain a formula that is

satisfiable iff the Turing machine accepts at least one input. The details can easily filled up

by the reader. !"1

Let ._ = (S, xI,, A, G, It) be a model where G=(P,E) is a is a f'mite network. Let

_p:P---,S. q_is said to be consistent with .,1_,if _r(_p))=p for all peP, and for all Pi' Pj if pj

= E(t,pi) for some l ¢ L, then _pj) = A(t, _(pi)). Let • = {_] _ is consistent with .,ti,},

and let next: ¢_ ---, d_ be such that for all _ _ • and for all p, next(_)(p) =

A(nexttime, _(p)).._% is said to be ultimately periodic with starting index t and period m, if

for all cp e _, nex?(q)) = nex_+m(qg) for all i > l. For any formula f, let SF(f) be the set of

subformulae of f, and for any _ c _, let [_]:P --, 2sF(0 such that

[l(p)={glgcSF(0 and _)1= g}. We require a technical lemma characterizing

satisfiability. This lemma can be proved on the same lines as the corresponding lemma for

PTL given in Chapter 2.

LEMMA 5.2: f is satisfiable in a model over a finite network iff f is satisfiable over an

ultimately periodic model over a finite network. I"1

THEOREM 5.3: The set of formulae that are satisfiable in a model over a finite network

is _;,°-complete,and the set of validformulae in models overfinite networks is II°-complete.

_: As in the previous theorem, we can reduce the halting problem of Turing

machines over finite strings to the set of satisfiable formulae in a model over a finite

network. We give a Turing machine M which accepts the above set. M guesses a finite

82

network and an ultimately periodic model over this network. It next verifies that f is

satisfiablein this model. M halts only on the input formulae that aresatisfiable in a model

over a Finitenetwork. F'l

THEOREM 5.4: Thefollowing problem is PSPACE-complete. Givena finite network

G, andaformula f, isf satisfiablein a model overthe networkG ?

Proof: The PSPACE-hardnessof the problem followsfrom the PSPACE-hardnessof

satisfiability for PTL given in Chapter 2. We give a polynomial space bounded Turing

machine M that checks if f is satisfiablein a model over the network G. M guesses[q)],and

verifies for consistencyand that fc[q)](p)for some peP. At each subsequent instance M

guesses[next(q))]and checks that it is consistentwith q). It continuesthis each time keeping

[q)]and [next](q)). At a certaininstance it guessesthe beginningof the period and savesthe

corresponding[q)]. It continues the previous process,each time guessing either [next(q)]or

guessingthat it is the end of the periodic part. In the latter case it takes [next(q))]to be the

savedvalue at the beginningof the period. Each time M guesses[next(q))]it verifiesthat [q)]

is consistentwith [next(q))].M alsoverifiesthat certain formulae are fulfilled in the periodic

part. M clearlyusesspacepolynomialin the sizeof G and the sizeof f. I"!

5.5. Conclusion

• We have proposed a logicto reason about computationsof multiprocessornetworks.

We feel that our logic will be useful to specify the semantics and prove correctness of

multiprocess networks. No such formal system for multiprocessor networks had been

proposed previously. We have examined the application of our logic to some diverse

multiprocessnetwork problems, and presented some results in decidabilityand complexity

of our logic.

83

All the applications we presented are synchronous systems. However,our logic can

also be used for asynchronousdistributed systems.

84

Chapter 6

Characterization and Axiomatization of

Message Buffers in Temporal Logic

6.1. Introduction

Exchange of information between executing processes is one of the primary reasons for

process interaction. Many distributed systems implement explicit message passing

primitives to facilitate intercommunication. Typically, a process executes a write command

to pass a message to another process, and the target process accepts the message by

executing a read command. The semantics of write and read may differ considerably

depending on the methods used for storing or buffering messages that have been sent but

not yet accepted by the receiving process.

Because message passing systems are so widely used, it is important to develop formal

techniques for reasoning about them. In this chapter we investigate the possibility

(impossibility) of using linear temporal logic to characterize the semantics of different

message buffeting mechanisms.

Specifically, we consider FIFO buffers (queues), LIFO buffers (stacks) and unordered

buffers (bags). The set of distinct messages that can be written into the buffer is called the

message alphabet. We specify a message buffer as the set of all valid infinite input/output

message sequences. Thus, characterizing a message buffer in temporal logic consists of

obtaining a formula that is true exactly on these sequences. For unbounded buffers, we

85

show that it is impossible to obtain such a formula in first order linear temporal logic that is

independent of the underlying interpretation (i.e. message alphabe0. Nor is it possible to

obtain such a formula in propositional linear temporal logic (PTL) when the message

alphabet is finite. It is possible ,however, to give a formula in first order linear temporal

logic that gives a domain-independent characterization of bounded buffers. In fact, if the

message alphabet is finite, then such a formula can be expressed in PTL. Although such

bounded message buffers can be characterized using o-regular expressions (or monadic

second order theory of one successor), it is not obvious that they can be expressed in PTL

since this logic is provably less expressive than _-regular expressions [Wo81]. We show how

we can characterize bounded buffers elegantly in QPTL with one level of existential

quantification.

We also consider the problem of axiomatizing the various types of message buffers. A

model of a message buffer is an infinite sequence of states denoting a series of legal

read/write operations on the buffer. The theory of a message buffer is the set of all PTL

formulae which are true in all models of the buffer. Since bounded buffers over finite

alphabet can be characterized in PTL and since PTL has a complete axiom system it can

easily be shown that bounded buffers are axiomatizable in PTL. We show that, in general,

unbounded FIFO buffers are not axiomatizable. Surprisingly, it is possible to axiomatize

unbounded LIFO buffers and unbounded unordered buffers; in fact, the theories of these

buffers are decidable.

This chapter is organized as follows: Section 6.2 defines the additional notation that we "

use in the remainder of this chapter. In section 6.3 we specify precisely those properties of

message buffers that we would like to capture in temporal logic. Section 6.4 shows that

bounded buffers can be characterized in the logic and describes how uninterpreted auxiliary

86

proposition symbols can be added to simplify this construction. In section 6.5 we prove that

it is impossible to give a domain independent characterization of unbounded message

buffers in first order temporal logic. We also show that unbounded FIFO message buffers

are not axiomatizable in PTL while unbounded LIFO and unordered buffers are

axiomatizable. The chapter concludes in section 6.6 with a summary and discussion of our

results.

6.2. Definitions
o

In the previous chapters we defined the syntax and semantics of PTL. Here we define

a restricted version of the first order temporal logic. The language of this logic includes

variables, function symbols, relation symbols and the universal quantifier in addition to the

symbols in the propositional version of the logic. The type of the language is a tuple which

gives the function symbols, the relation symbols with their arities. The variables are

partitioned into two groups: local variables whose values depend on the current state and

global variables whose values are state independent. Atomic formulae have the same syntax

as in the usual first order case. The set of well formed formulae is the smallest set

containing the atomic formulae and closed under universal quantification over global

variables, boolean connectives, and the above temporal operators.

A model T is a triple (A,a,s) where A is the domain;a assigns meaningsto the function

symbols, relation symbols, and global variables; and s is a _-sequence of states. A state

assigns values from A to the local variables and truth values to the atomic propositions. An

interpretation in this case is a pair <T,i) where T is a model and i __.0 specifies the present

state. Truth of an atomic formula in an interpretation is defined as in the usual first order

case; truth of a composite formula is defined as in the case of propositional temporal logic

with the following addition: T,i _ 'v'x(f) iff for each c_A Tc,i I= f where Tc is T with the

meaning assigned to the global variable x changed to the value c.

87

6.3. What Are Message Buffers?

We characterize a message buffer by the set of legal readwrite Sequences allowed on

the buffer. A write operation writes a message into the buffer; a read operation reads a

message from the buffer and deletes it. At most one read or write operation is permitted at

any instant of time. In the case of bounded buffers a write request will be rejected when the

buffer is full; similarly, a read request on an empty buffer will be rejected. Rejected

read/write requests are not included in the sequences of legal operations characterizing the

buffer. We consider below three types of message buffers: FIFO buffers (queues), LIFO

buffers (stacks), and unordered buffers (bags). In FIFO buffers the earliest written message

in the buffer is the output for a read request; with LIFO buffers the latest written message

in the buffer is used; and with unordered buffers any message present in the buffer is

output. We also require that each physical message written into the buffer is ultimately

read; this is the livenessproperty of buffer behavior.

Let Z be the message alphabet and 9Z be the set of atomic propositions {R a I tr c Z} o

{Wtr [tr _ 1_}. Let 9 z _Z be the set of atomic propositions in the language.

ST = {cp I _: 9-+ {True,False} such that tp(P) = True for at most one P in 9E}

We consider each member of ST to be a state; if Rcr(Wo) true in a state, then it

indicates that the message tr is read (written) from (into) the buffer in that state.

Let t c ST*u ST°_and i0 < i1 < ... be all the instances at which some messages tr0,trl,...

are read from the buffer, i.e., tik(Rtrk) = True for k >_.0. Then rtr(0 denotes the sequence

(tr0,tr1....). Similarly, we define Irw(0. Let t(i) denote the sequence (t0,tIti), then nbi =

length(_rw(t(i))) - length(rrr(t(i))) is the number of messages in the buffer just after the

instance i.

88

FSxk is the set of all infinitesequencesof stateswhich denote legal seriesof read/write

operations on a FIFO buffer of size k. LSxk and USxk are the corresponding sets of

sequences for LIFO and unordered buffers respectively. Unbounded buffers will be

denoted in this schemeof notation by k = oo.

Fork >_0andk = oo

FSy.,,k = {t c ST_I for all i > 0, 0 < nb(i) < k and 'n'r(t(i))is a prefixof

_'w(t(i))and _'r(O= _'w(t)}.

LSxk = {t ¢ ST_I for all i __.0, 0 <_.nb(i) < k and if for some tr c ,E,t, i _ Wo then

there existsj > i such that t,j _ Ro, nbO-1)= nb(i) and V t i < t <_.j-1

nb(O >_nb(i)}

USxk = {t CSTY[for alli _>0,0 _<nb(i) < k and for all tr c 1_,the number of writes

of the messagetr up to i > the number of reads of the message tr up to i, and

for infinitelymany i, nb(i) = 0}

In the case of both LIFO and unordered buffers we require that the buffer should

becomeempty infinitelyoften, in order to satisfythe livenessrequirement.

For a finite alphabet ,E,a formula f in PTL characterizesa FIFO messagebuffer of size

k (unbounded FIFO buffer) ifVt c ST_ t,0 I= f iff t _ FSxk (t c FSxoo).

Similarlywe define what it means to characterizeLIFO and unordered buffers in PTL.

Let L be a language of first order linear temporal logic of type _-with local variables

read-val, write-valand with mutually exclusiveatomic propositions R,W. Let T = (,E,a,s)

89

be a model of type _-. In any state si, if si(R) - True then it signifies the reading of message

si(read-val) in that state. Similarly si(write-val) denotes the message written if si(W) -

True. With s, we associate any sequence t defined as follows:

For all i >_0 ti •?-_ {True,False} such that for all tr ¢

ti(Rtr) = True iffsi(R) = True and si(read-val) = tr;

ti(Wtr) = True iffsi(W) = True and si(write-val) = tr.

A first order linear temporal formula f of type _" is a (domain independent)

characterization of a FIFO buffer of size k (unbounded FIFO buffer) if for all T = (_a,s)

of type _-T,0 _ f iff t _ FSxk (t c FSxoo). Similar definitions hold for LIFO and

unordered buffers.

A model of a message buffer is an infinite sequence of states denoting a legal series of

read/write operations on the buffer, as given above. The theory of a message buffer is the

set of all PTL formulae which are true in all interpretations (t,i) where t is a model of the

buffer. We say that a message buffer is axiomatizable if there exists a recursive set of

axioms from which the formulae in the theory of the buffer can be deduced using some

inference rules.

6.4. Characterizing Bounded Buffers

In this section we characterize bounded buffers over a finite alphabet using

propositional linear temporal logic; we also give domain independent characterizations in

first order linear temporal logic. We let fbk, Iblc, ubk denote formulae in propositional

temporal logic characterizing FIFO, LIFO, and unordered message buffers of size k over

the finite message alphabet ,E. First we describe how to obtain the formulae for buffer size

= i and 2, and show how it can be extended to the general case.

90

Let E be a finite message alphabet, and Vz = {Ro I tr c E} u {Wo I tr e _} be the set

of atomic propositions. Throughout this section we use the following abbreviations:

W= VzW o

R= V ER o

Ex = a_ 02 " (Ral ^ Ra2) ^ o_ o_ _ (Wcrl ^ Wa2) ^ --(W ^ R)

I = G(Ex)

T asserts that at any instant at most one operation occurs on the buffer, and

reads,writes are mutually exclusive.

In the case of buffer size = 1 the buffer behavior is as follows:

1. The writes and reads occur alternately;

2. The message read in each read operation is the message written by the previous

write operation. Thus, fb1 = I ^ fa ^ fb where

fa = G(W _ X(_W U R)) ^ G((R A X(F R)) _ X(--,R U W));

fb = G(AcX(Ra D(-_W S Wa))).

It is easily seen that fa and fb assert properties (1) and (2), respectively.

Intuitively, the operation of a buffer of size = 2 can be described as follows. Initially,

writes and reads occur alternately; whenever a read occurs the buffer becomes empty, and

after each write the buffer will have exactly one message. This continues until two writes

occur successively without a read operation in between, and the buffer becomes full

91

(formula e2 expresses this). Subsequently, reads and writes will again begin to alternate.

After each read the buffer will have one message and after each write operation the buffer

becomes full. This may continue forever, or until two reads occur successively without a

write in between, making the buffer empty (r2 expresses this); now the previous sequence

repeats. This behavior is common for FIFO, LIFO and unordered buffers of size = 2. The

formula e2, r2 are given below:

t2 = W A (-,RU W)

r2 = R A(-_WS R)

In the remainder of this section we will frequently use the formula alt(p,q,c) given

below:

alt(p,q,c) = [(g U c) v G(g ^ -,c)] A [(-,c U p) D (-_q U p)]

where

g = (p_X(--,p U q)) A (q Z [X(-,q U p) v X(-,q U c)])

The first conjunct in alt(p,q,c) asserts that either there is a future instant at which c occurs

and until this instant p,q occur alternately, or throughout the future p,q occur alternately

without c occurring anywhere. The second conjunct asserts that if p occurs then it occurs

before q. Thus, the previous intuitive description of the behavior of the buffer of size 2 is

captured by the formula bvgiven below.

bv = alt(W,R,e2) AG[12 D X alt(W,R,r2)] A G[r 2 DX alt(W,R,t2)]

by asserts that t2,r2 occur alternately with alternating read and writes occurring in between.

Any read after l 2 but before the next r2 is on a full buffer, while any read after an r2 but

before the next l 2 is on a buffer containing one message. The formulas read-on-full, read-

92

on-single given below characterize reads on a full buffer and reads on a buffer with one

message, respectively.

read-on-full - R ^ (-_r2 S 12)

read-on-single = R ^ [(-_t2) S rEv -_(True S 12)]

For FIFO buffers, a read on a full buffer reads the message written by the write before

the previous write.

fb2 = I ^ by ^ g ^ h where

g - G(read-on-full 3 A (Rg _ [-_WS (Wm Y(-_W S Wcr))])),a

h - G(read-on-single _ A [Rtr _ (-_W S Wtr)]).

The formula on the left side of'_' in g is true when reads occur on a full buffer, while

the formula on the right side asserts that the message read at these instances is the message

written by the last but one write operation. 'h' asserts that read operations on a buffer

containing a single message, read the message written by the previous write operation.

THEOREM 6.1: For any infinite sequence of states t, t,0 _ fb2/fit ¢ FSx2. l"i

Let t ¢ LSx2. If t,i _ r2, then there exists j < i such that t,j _ t2. The message read at

the instance i is the message written at the instance j. If t,i _ R and t,i _ -,r2, then the

message read at the instance i is the message written in the previous write operation. These

properties are expressed by g_and h' respectively.

g = G(r 2 3 A_ [Rtr = "_t2 S (l2 ^ Wtr)])

h' = G((-_r2 ^ R) = Ac_ [Rcr. -_W S WaD

Let b2=IAbvAg'Ah'

93

THEOREM 6.2: For any infinite sequence of states t, t,0 _ lb 2/fit _ LSx2. D

Let t c USx2. Then for every tr _ E, for all i >_.0 the number of messages of value tr

written into the buffer up to the instance i is greater than or equal to the number of

messages of value tr read from the buffer up to the instance i, and they do not differ by

more than 2. For a given tr, we can obtain a formula bva asserting the above property by

replacing R by Rtr,W by W tr in by.

Let ub 2 = I ^ bv A A X bvtr

The following theorem can be easily proved:

THEOREM 6.3: For any infinite sequences ofstatesL L0 _ ub2/fit ¢ USx2. D

We have shown how the buffer behaviors can be expressed for buffer size = 2. We

show below how we can express the buffer properties for arbitrary buffer sizes.

As before we use formulae with parameters ex: f(d) denotes a formula with parameter

d which can be substituted for. Frequently we use the formula ALT(hl,h2,g(d),c). This

formula is slightly different from the formula 'alt' we used before. It asserts that

either

there is a future instance i at which c holds and from the present up to i

(i) the instances at which hl,h 2 are true occur alternately (i.e., between every two

instances at which h 1 is true there is an instance where h2 is true, and vice versa) with h 1

occurring first and h 2 occurring last and

(ii) whenever h1 holds, at the immediate next instance g(h2) holds and whenever h2

94

holds, g(h1) holds at the next instance if this is not the last occurrence of h 2 before c,

otherwise g(c) holds at the next instance. Also at i g(hl) holds

or there is no instance in future at which c is true and (i),(ii) hold throughout in the

future.

It is easily seen that ALT can be expressed in PTL.

Let t = (t0,t1....) ¢ STu. We say that the subsequence (ti,ti+ 1.....tj) is a RW pattern of a

k buffer if the number of reads and writes in the subsequence are equal and at any point in

the sequence the number of reads is no more than the number of writes up to that point and

they do not differ by more than k.

We use the following intermediate formulae:

NFk(c): t,i_ NFk(C) iff 3j _>isuch that td _cand(ti,ti+ 1,....tj.1)hasRWpatternofa
k buffer. In case Li _ c, then t,i _ NFk(c).

Lk+I: Let d be the number of messages in the buffer before the ith instance.
t,i _ Lk+ 1 iff 3 j > i such that the buffer has d + k + 1 messages at j and at all
instances between i and j (including i, j) the buffer has at least d + 1 messages.
This is shown in Figure 6.1.

We will obtain a formula for Lk+ 1 (k > 2) in terms of NF k. Let t,i _ Lk+ 1 and d be

the number of messages before the instance i, and j be as given in the definition of Lk+ 1"

Let m > i be the earliest instant such that the buffer has at least d + 2 messages throughout

between m and j. This is shown in Figure 6.1.

It is clear that t,m _ Lk and, throughout between i and m the buffer has at least d + 1

messages and at most d + k messages. Hence (ti,ti+ 1'....tin.l) has RW pattern of a k-1 buffer.

95

d+k+l;f

"' /7 /i
/ ! / i / ,/ !

.,,.,.0,,,,,.,t___l.... .:

d+2 t---- I " j!

I .i |
I "1

I ' 1
! ,,. _ _ _

t m l

.n.t .za.STAKEs
I"

Figure6-1:

HenceLk+1 = W A X (NFk.I(Lk))fork_ 2

L_=W ^Xf-_RUW)

L1 =W

We also use the followingformulae:

NBk(C): It is the dual ofNFk(c), t,i ,= NBk(c)iff 3 j < i such that t,j I=,c and (t,+ lti)
has RW pattern of a k buffer. NBk(C)speaksabout the past while NFk(_ speaks
aboutthe future.

Rk+1: It is the dual of Lk+1"Let d be the number of messagesin the buffer just after
the jth instance. Then t.i _= iff 3 j < i such that the buffer has d + k+ i
messages just before the jthRk+1instance and at all instances between j and i-1

(including both) the bufferhas at leastd + 1 messages.

SimilartoLk+1'Rk+1canbedefinedintermsofNBk.1andR k.Lkdenotesthatthere

is a future instance at which the buffer will have d + k messages if it has d messagesjust

96

before the present instance. Similarly Rk denotes that there was an instance in the past

when the buffer had d + k messages, and at present the buffer has d messages.

Now we define NFk(C)in terms of Lk, Rk and NFk. r Let t,i _ NFk(C) and let d be the

number of messages before the ith instance. Then 3 j > i such that t,j _ c and (ti,ti+ 1.....tj-1)

has RW pattern of a k buffer. In this case one of the following two conditions holds.

(i) Between i and j, the buffer never has d+k messages in it, that is (ti,ti+ 1.... ,tj.1) has

RW pattern ofa k-1 buffer; i.e., t,i _ NFk.l(C).

(ii) Between i and j, the buffer has d + k messages in it at least once. In this case it is

easily seen that between i and j, Lk,Rk occur alternately with Lk occurring first, Rk occurring

last; between successive Lk and R k, the sequence has RW pattern of a k-1 buffer; between i

and the first Lk as well as between the last Rk and j the sequence has RW pattern of a k-1

buffer.

Thus t,i _ ALT(Lk,Rk,NFk.I(d),c).

Hence, NFk(C) = NFk.l(C) v (ALT(Lk,Rk,NFk.I(d),c)

NF (c)= A{t(W,R,True,c)

It is to be observed that NFk(C), Lk are defined mutually inductively. Similarly we can

define NBk(C).

Above we gave a formula NFk(c) to express the RW pattern of a k buffer up to an

instance where c holds. We can extend this easily to express the behavior of a k buffer

forever. For an infinite sequence to be the behavior of a FIFO or LIFO or unordered k

buffer, it has to satisfy two properties, (a) the RW pattern denoted by the sequence should

be that of a k buffer and (b) the messages read by the read operations should match with the

97

messages written by the write operations. Below we describe how to express the property

(b) for FIFO, LIFO and unordered buffers of size k.

6.4.1. Expressing Bounded FIFO Buffets

We briefly sketch how we can express a FIFO buffer of size k. Let i,j be integers such

that j < i and m is the maximum integer so that kJ _ Lm, and there is no instance between j

and i at which Rm is true. It can easily be seen from figure 6.1 that if the buffer has d

messages before j, then it will have at least d + 1 messages at every instance between j and

i. Thus every instance like j increases the number of messages present in the buffer at the

instance i. It can easily be shown that the number of messages in the buffer at the instance i

is equal to the number of instances like j, present before i. Using this property we can obtain

a formula fc which is true at an instance iff the number of messages in the buffer just before

that instance is c. We can also express that the message read by a read operation is the

message written by the cth previous write operation. Thus we can obtain a formula which

expresses the correspondence between messages read from the buffer and messages written

into the buffer.

6.4.2. Expressing Bounded LIFO Buffers

Let m be the maximum integer such that t,i _ Rm. Also let j < i be such that t,j _ Lm

and at no other instance between j and i Lm holds. If nb(j-1) = d, then at every instance

between j and i, the buffer has at least d + 1 messages. Hence the message read at i is the

message written at j. Since at every read operation Rm holds for some 0 <_m <_.k, we can

easily obtain a formula which expresses the correspondence between messages read from

the buffer and messages written into the buffer.

98

6.4.3.ExpressingBoundedUnorderedBuffers

In caseof unordered buffersthe messageread can be any messagepresent in the buffer

at that instance. We expressthe aboveproperty as follows: For each tr¢ Z, we assert that

the number of messagesof value orwritten into the buffer is alwaysgreater than or equal to

the number of messagesorread from the buffer and that they differby no more than k. This

property can be expressed. It is easily seen that the above property together with the

property(a) givenaboveexpressesan unorder buffer of sizek.

All the formulae fbk, lb k, ubk are in propositional linear temporal logic and are

dependent on the messagealphabet _. By making the followingchanges we can convert

them into formulae in first order linear temporal logic that give domain independent

characterizationsof buffersOfsizek.

(i) Replaceall Ro by ((read-val = or)̂ R) and Wo by ((write-val = or)AW)

(ii) Replaceall A (conjunctionsover or)by Vtt.

It can easily be proved that the resulting formulae give domain independent

characterizationsof buffersof sizek.

Below we show how we can characterizebounded messagebuffers more elegantly in

QPTL(introduced in chapter 3) i.e. if quantification over propositions is allowed. We use

only one level of existential quantification. A FIFO buffer of size 2 can be considered as

two FIFO buffers eachof size 1in tandem as shown in figure6.2.

Externalwritescome into the left buffer whileexternal reads are from the fight buffer.

Whenever the left buffer is fulland the fight buffer isempty the messagein the left buffer is

internally read and is written into the right buffer. We consider this internal reading and

writingto be occurringsimultaneouslyand capture it by the propositions It, for tr ¢ ,_

99

| i l

Wo I.

i

Figure 6-2:
.

Letfbl("' " W, R indicatew, R) be the formula characterizing a buffer of size 1, where " "

vectorsof propositions. The sequence of operations on the left buffer is characterized by

fb1(_, 7*), and the sequence of operations on the right buffer is characterized by fbl(T, R')

• Let

t'b2 = 3 F {fbl(-_,T') ^ fbl(T',_')}

LEMMA 6.4:s,0 i,= fb2 /ff s ¢ FSz2. I-!

For the general case of a buffer of size k we use a somewhat more complicated

approach with k existentially quantified propositions P0,P1..... Pk' We will assert that Pj is

true at an instance i iff the buffer has j messages before the operation of the ith instance.

Iv= G[0<_<m<k-(Pt^ Pm)^ 0,_</c((Pt Ŵ)= X Pt+1)̂

• 0<_<k((PtA R)_ X Pt.l)A (P0D ",R)A (PkD --,W)]A P0

The firstclauseassertsthatno morethanonePtistrueatanyinstance,thesecondclause

assertsthatifPtistrueataninstanceandtheoperationisa writeoperationthenatthenext

instancePt+I istrue,thethirdclauseassertssimilarpropertyforreadoperation,thelast

twoclausesassertthattherearenowritesona fullbufferandnoreadsonanemptybuffer.

100

Let

fbk = =1T {I A h' A G(o<_<_.k(Pt _ A (R_ _ DC(_,0)))}

where DC(_,e) asserts that the ethprevious write is the message _. It is easily seen that fbk

characterizes FIFO buffers of size k.

THEOREM 6.5"t,0_ fbk/fft¢FSxk. Vl

Let

= __'{IAh'AG(o<_,_<k(P_:_[Ro=(-_P_4S(WoAPt-I))D)}Ibk

The lastclauseassertsthatthemessagereadatanyinstancewhenthebufferhastmessages

is same as the message written at the last instance when the buffer has t-1 messages. The

following theorem can be easily proved.

THEOREM 6.6:t,0 _ ebk ifit ¢ LSxk. I"1

Similarly we can obtain a formula for unordered buffers.

6.5. Characterizing Unbounded Buffers

Let 0_be a finite set of atomic propositions and s= (s0,sl,...) be an infinite sequence of

states where each state is a mapping from _ into {True,False}. Let f be a formula in

propositional temporal logic and SF(0 denote the set of subformulae of f. It is easily seen

that card(SF(0) < length (0. For i > 0 let [i]s,f= {g c SF(0 [s,i I= g}.

LEMMA 6.7" Let 0 < i < j be such that [i]s,f = [J]s,f Then s,0 _ f iff _,O _ f where

S_= (So,SI..... Si,Sj+ 1,Sj+ 2,...) . [-I

101

THEOREM 6.8: Unboundedmessagebuffers (unordered,FIFO or LIFO) cannot be

characterizedinpropositionallineartemporallogic.

The above theorem can be proved by a simple argument using the previous lemma.

D

THEOREM 6.9: There is no domain independent characterizationof unbounded

messagebuffers(unordered,FIFO or LIFO) infirst orderlineartemporallogic.

Proof. Suppose there is a formula f of type _"in first order temporal logic,which is a

domain independent characterization of an unbounded buffer on models of type I".

Consider any modelof type _-with finite domain. Then f characterizesunbounded message

buffers in this model. Since the domain of this model is finite, wecan replace ali universal

quantifiers by finite conjunctions, and by some other trivial changes we can obtain a

formula f' in propositional temporal logic characterizing unbounded buffers over this

domain. But this contradictsthe Theorem 6.8. D

We have proved that it is impossibleto give a domain independentcharacterizationof

unbounded message buffers. However, there are partially interpretedtemporal logics in

which unbounded messagebuffers can be characterized. Assume that there are two local

variables write-history, read-history such that at any instance write-history contains the

sequenceof messageswritten into the buffer, while read-historycontains the sequenceof of

messagesread from the buffer. Then the followingformula fboocharacterizesthe behavior

of an unbounded FIFO buffer:

102

fboo = g ^ h where

g = G(read-history< write-history),

h = G(V hist (hist = write-history_ F read-history = hist))

where < is interpreted as the prefix relation,k/is interpreted as quantificationover the

set of all finite sequencesof the messagealphabet. 'g' assertsthat the sequence of messages

read from the buffer is a prefix of the sequence of messages written into the buffer; 'h'

asserts that each messagewritten into the buffer is ultimately read from the buffer. It can

easilybe shownthat the above logicis undecidable.

6.6. Axiomatization of Message Buffers

Axiomatizationof messagebuffers in PTL is a weakernotion than expressiveness.We

show below that in general unbounded FIFO buffers are not axiomatizable. We also show

that unbounded LIFO buffers and unbounded unordered buffers are axiomatizablethough

theyare not characterizablein PTL.

THEOREM 6.10: BoundedFIFO, LIFO and unorderedbuffersoveranyfinite alphabet

Y_areaxiomatizablein PTL.

Proof. Let fbk be the formula in PTL characterizingthe FIFO buffer of size k over a

finite alphabet X

Let fbk = True S (fbk ^ -,Y True). For any t and i >_.0, t,i _ -,Y(True) iffi = 0.

Hence for any t and i > 0, t,i _ fbk iff t,0 _ fbk; i.e., if t ¢ FSxk. Let A be any consistent

and complete axiomatization for PTL. Then A u {fbk} is a consistent and complete

axiomatizationfor FIFO buffers of sizek over Z. Similarlywe can give an axiomatization

for bounded LIFO and unordered buffersover a finite alphabet, i"1

103

THEOREM 6.11: For any)2 such that card _X>_.2, the theory of unbounded FIFO

buffersover E is not axiomatizable,and this set is H 11-complete.

Proof. We prove below that for X = {0,1} the theory of unbounded FIFO buffers is

rIi

-complete. From this it automaticallyfollowsthat this theory isnot axiomatizable.

We first prove that the set of PTL formulae satisfiable over some model of an

unbounded FIFO buffer over {0,1}is E]-complete. We consider a deterministic turing

m/c on infinite stringswith one readonly infinite input tape and one work tape. This turing

m/c worksexactly likean ordinary turing m/c, but it takes infinite input stringsand it never

halts. It acceptsan input stringby going through the final state infinitely often. Let M =

(A,Q,&qf)be such a turing m/c where A is the alphabet (including both input alphabet and

tape alphabe0, Q is the set of states, 8: Q x A x A --, Q x A x {left,fight}, qf is the final

state. After each step the input head of M moves fight by one cell. If 6(q,trl,tr2) =

(q,,o'2,1eft),then wheneverM is in state q and sees the symbolstrl,tr2 on the input and work

tapes respectively,then M moves into state q', writes t_2 on the work tape and moves its

head left, and it moves its input head fight by one cell. We show below that given the

encoding of M we can recursivelyobtain a formula fMin PTL such that fMis satisfiableon

an unbounded FIFO buffer over {0,1} iffM acceptsat least one input.

Let c = (Q x A)u h be the set of compositesymbols. A partial id of M, is a sequence

of values from c, containing exactlyone symbol from (tr x A). A partial id denotes the.

contents of the work tape and the head position on the work tape and the state of finite

control in the usual way. We like to assert that there is a to-sequenceof partial ids, so that

each succeeding partial id is obtained from the previous partial id by one move of M for

104

some value of input character read by the input head, and there are infinitely many partial

ids in this sequence containing a symbol of the form (qf ,or). We call such a sequence an

accepting sequence. Any such sequence denotes an accepting computation of M, and for

every accepting computation' of M there is such a sequence.

We fix a unary encoding of symbols from c using the character 0 ¢ _ An encoding of a

partial id is a sequence of encoding of the symbols in it separated by a single 1. An

encoding of a sequence of partial ids, is the sequence of encodings of the partial ids

separated by two consecutive l's. In the following a symbol denotes the encoding of the

value of the symbol, fM asserts that there is an accepting sequence of partial ids of M as

follows: An encoding of the initial partial id followed by two consecutive l's is written into

the buffer and during this period nothing is read from the buffer.

After writing of the initial id, reading and writing of symbols occurs alternately.

Whenever a symbol is read, it is the symbol of the previous id. Each symbol written into the

buffer is the value of the symbol in the new id assuming some input symbol on the input

tape. fM can express this because the value of a symbol in a new id depends only on the

contents of that cell and its neighbors in the previous id, and the assumed value of input

character, fM makes sure that the assumed value of input character is the same throughout

an id. fM makes sure that two consecutive l's are written at the end of each id. Finally fM

asserts that there are infinitely many places where a symbol of the form (qf ,or)is written

into the buffer. It is clearly seen that fM is satisfiable on a model of an unbounded FIFO

bufferover {0,1} iff M accepts at least one input.

Now we give a reduction in the other direction. Given any formula f in PTL we obtain

a finite state automaton M'f on infinite strings which accepts exactly those sequences of t

105

such that t,OI= f (each symbol in t is a mapping from the set of atomic propositions in f into

{True,False}). From M'f we obtain a TM Mr, which operates as follows. Mf takes each

symbol in its input to be an encoding of a function assigning truth values to the set of atomic

propositions. Mf simulates M'f on the input, and at the same time it makes sure that the

values of the propositions Ro,RI,Wo,Wl denotes a valid FIFO buffer behavior. Mf accepts

an input iff M'f accepts it and the input sequence denotes a valid FIFO buffer behavior. It

is easily seen that Mf accepts at least one input iff f is satisfiable on a model of an

unbounded FIFO buffer over {0,1}.

It can easily be shown that the set of encodings of TM's on infinite strings that accept at

least one input, is E _-complete. Hence the set of formulae in PTL that are satisfiable on a

model of an unbounded FIFO buffer is E _-complete. From this it follows that set of

formulae, not satisfiable on any model of an unbounded FIFO buffer over {0,1} is I-Ix

-complete. Hence the set of valid formulae is rI _-complete. I"i

Let FS = _>t FSxk" Then the theory of finite FIFO message buffers is the set of all

PTL formulae true in all interpretations over the models in FS. It can easily be shown that

this theory is also not axiomatizable and that it is ri o-complete.

Sometimes it is more realistic to consider models of FIFO buffers which are recursive;

i.e., models for which we can recursively determine the truth value of an atomic proposition

at any point on the model. For this case also, it can be shown that the theory of these

models is ri0. complete.

The degenerate case in which the message alphabet has a single element is also

interesting since it corresponds to processes that communicate using signals.

106

THEOREM 6.12: The theory of unbounded FIFO buffers over Z has a single element, is

decidable-

Proof. We say that an infinite sequence of states t is ultimately periodic with starting

index l and period p if'v' i >_.t ti = ti+ p. We can easily prove that a formula fis satisfiable

on a t ¢ FSxo o iff there exists a t' c FSxo o such that t' is ultimately periodic with starting

index 2c. If]and period 2c. Ifl for some constant c and f is satisfiable on t'. From this we can

easily get a decision procedure for satisfiability of f in FSxo o is decidable. Indeed we can

get a decision procedure that uses space polynomial in the length of the input. I"1

THEOREM 6.13: The theory of unbounded LIFO buffers over a finite alphabet is

decidable.

Proof. For each formula f in PTL we can obtain a finite state automaton Mf on infinite

strings such that Mf accepts exactly those sequences t such that t,0 _ f (each state in t is a

mapping from the set of atomic proposition appearing in f into {True,False}). From Mf we

can obtain a push down automata Pf operating on infinite strings. Pf uses its stack to make

sure that the sequence of read/write operations represented by the input string is a legal

series of read/write operations on the buffer, while at the same time the finite state control

of Pf makes state transitions exactly as Mf . Pf accepts an infinite string iff its finite state

control goes through any of a set of final states infinitely often. Pf accepts an input tiff t ¢

LSxo o and t,0 I= f. Thus f is satisfiable on a t ¢ LSxo o iff Pf accepts some input. The

latter problem can be reduced to a finite set of questions regarding whether an ordinary

push down automaton (on finite strings) accepts any string. Hence the problem of

satisfiability of a formula on a sequence in LSxo o is decidable. El

107

THEOREM 6.14: For a finite _ satisfiability of a formula on a model of an unbounded

unordered message buffer over _, is decidable iff reachability problem for vector addition

systems with states of dimension card(_ is decidable.

Proof. Let G = (V,E,L) be a vector addition system with states of dimension k, where

(V,E) is a directed graph, and L: E _ Nk where N is the set of integers. A configuration is a

pair (s,a) where s e V, a e Nk. We say that a configuration (t,b) is reachable from (s,a) iff

there exists a sequence of configurations (called a path) (sl,al), (s2,a2).....(sn,an) such that

(sl,al) = (s,a), (Sn,an) = (t,b), and Vi 1 < i < n Vj 1 <j < k aij > 0 and fori < n (si,si+l) _ E

and ai+ 1 = ai + L(si'si+ 1)" Let k = card(E).

We reduce reachability problem to satisfiability problem. G is a vector addition system

as given above and it is required to determine if (t,b) is reachable from (s,a). Let _ =

{trl,tr 2.....trk}. We give a formula f such that for some t _ UScr,oo, t,0 i= f iff (t,b) is

reachable from (s,a). We use propositions Pu for each u _ V. f asserts the following

properties:

(i) For each i, 1 < i < k initially ai number of messages of value tri are written into the

buffer; immediately after this Ps is true.

(ii) The propositions Pu (for u e V) are mutually exclusive. For u, t if Pu is true at any

instance i then the next proposition to be true in future at instance j will be Pv where (u,v) c

E, and if (Cl,C2.... ck) = L(u,v) then between i and j, 'v't 1 <_t _<k if ct is positive (negative)

then Ictlnumber of messages of value a t are written into (read from) the buffer.

(iii) If Pt is true at any instance, either (ii) holds or the following condition is satisfied.

Immediately after Pt is true, Vl 1 < _<k be number of messages of value at are read from

the buffer, and after this all propositions are false forever.

108

(iv)There is a future instance from where all propositions willbe false forever.

Sincewe required that for any t c USxoo, infinitelyoften the buffer should be empty it

easilyfollowsthat t,0 I= f iff (t,b) is reachablefrom (s,a) in the above vectoraddition system.

Assumereachabilityproblem is decidable.

Let fbe a formula. We wish to determine if::l t _ US Xoosuch that t,0 I= f.From fwe

can easilyobtain a finite state automaton on infinite strings Mf , which accepts by going

through a finalstate infinitelyoften, and such that Mfacceptsexactlythe set of stringst such

that t,0 _ f. From Mf we can obtain a vector addition system G = (V,E,L), in which V is

the set of states of Mf , (Sl,S2) c E iff there is an a (a is a tuple denoting a function that

assigns truth values to propositions) such that there is a transition in Mf from s1 to s2 on

input a, and L(Sl,S2) = (al,a2.....ak)whereVi l<i<k,

ai = 1 if wai istrue in a,

ai = -1 ifRai is true in a

ai = 0 otherwise.

Let qI' qf be the initial and final statesof Mf , and 0"= (0,0,...0).

The followingis easilyseen:

There is at¢ USxo¢ such that t,0 _ f iff there is a q ¢ Vsuch that

(i) (q,0")is reacha_!e from (qi,0")in G and,

(ii) (q,0")is reachable from (q,0")by passingthrough ql"

(ii) is not a direct reachability problem; however, we can put it as a reachability

109

problem as follows: Introduceanothercopy of G, call it Ce,and introduce a transition from

qf in G to q'f in Ce,which is labelled with ft. Now (ii) is satisfiedin G iff (q',0")is reachable

from (q,0")in the new vectoraddition system.

Sincewe assumedreachabilityis decidable,wecan easilydecideif there isa q satisfying

(i) and (ii). IZ!

6.7. Conclusion

We have examined the possibility of using linear temporal logic to express the

semantics of different message buffering systems. We have shown that it is possible to

characterizebounded messagebuffers but not unbounded ones. We have also considered

axiomatizationof the theory of various messagebuffer systems; unbounded FIFO buffers

are, in general, not axiomatizable, while unbounded LIFO and unordered buffers are

axiomatizable.

110

Chapte r 7

Distributed Implementation Of CSP

7.1. Int roduction

Communicating Sequential Processes (CSP) was introduced in [Ho78] as an

appropriate Programming Language for Distributed Systems. The original semantics of

CSP did not require fairness in the selection of processes waiting to establish

communication. However, in practice such a restriction may be highly desirable. In this

chapter we introduce a formal model for CSP implementations and prove simple lower

bounds on the time complexity for establishing fair communication. We also present a

number of new algorithms that ensure different fairness properties and are near optimal in

special cases.

The processes in the CSP language do not share global memory, but instead

communicate by message passing primitives using the following syntax:

P ? x (input message from process P into variable x),

P ! x (output x to process P).

Communication occurs when one process names another as destination for output, and the

second process names the first as the source for input. In this case, the value to be output is

copied from the first process to the second. This type of synchronization is called a

rendezvous and is used as the basis for synchronization mechanism in the ADA language

also. Note that there is no automatic buffeting of messages that have been sent but not

111

received; therefore, a process executing an output command will be delayed until the

destinationprocessis ready to receiveand viceversa.

Much of the power and elegance of CSP comes from the fact that input and output

statements can occur within the guards of guarded commands. For example, a server

process which is willing to receive requests from any of two user processes executes a

command of the followingform:

[
user1? request _ ...

D

user2? request_ ...
]

In this case whenever the server process enters the above alternativecommand, it waits

until either user1,or user2 is readyto send a requestand acceptsa request from one of them.

After this it executes the statements followingthe correspondingguard. If both the user

processesare readyto send a request then it choosesone of them arbitrarily. It is possibleto

have a sequence of boolean expressionsin front of a guard with at most one i/o command.

In this case,wheneverthe server processenters an alternativecommand then all the boolean

expressionsin a guard are evaluated, if any of them is false then the guard fails and the

correspondingcommunication is not allowed. A failed guard is ignored. Thus we see that,

in general the set of communications that are enabled depends on the state of the server

processand so is dynamic. The followingis an example where output statements in guards

are convenient. There are two identical server processes PI' P2" Each user whenever it

needs a serviceexecutesthe followingalternativecommand.

112

[
P1! request--, ...

El

P2 ! request _ ...
]

The semantics of the above command is the same as in the previous case. Thus we see

that a particular user does not have to wait for a particular server. The same alternative

command can have both input and output guards.

Fairnesswas not required in the originalsemanticsof CSP. Howeverfaim_s in

communicationishighlydesirablein manycases.Considerthe followingexample:

input

113

The input process reads a sequence of transactions from a terminal. It sends all

transactions of type i to the transaction processor Pi" The output process periodically

executes an alternative command where in it is ready to receive processed transactions from

any of the transaction processors. The output process prints the processed transactions.

Each transaction processor Pi periodically executes an alternative command where in it is

ready to receive the next input transaction, or is ready to send an already processed output

transaction to the output process. In this problem we require that whenever Pi wants to

send a processed transaction then the output process should eventually receive it. Thus

fairness in communication is a requirement here. We assume that each CSP process is

non-terminating and periodically executes an alternative command with i/o guards.

We introduce a formal model for this and consider two different fairness properties;

weak fairness and strong fairness. For example: in weak fairness we require that

computations in which two processes are willing to communicate with each other

throughout the future but in which the two processes never establish communication,

should not be possible. We consider algorithms for distributed schedulers to ensure the

different fairness properties. In this model neighboring schedulers can talk to each other

using shared variables. We define the time complexity for ensuring the fairness property, as

in [Ly80]. We give simple global algorithms for ensuring the fairness properties. In these the

scheduler processes are able to send arbitrary information to one another. Next we consider

algorithms in which interaction between neighboring schedulers is restricted (i.e. a scheduler

can request another for communication and the other scheduler can grant or deny the

request). For these algorithms we prove an 0(72) lower bound on the time complexity for

ensuring weak fairness where 7 is the chromatic number of the communication graph. We

present a near optimal algorithm for the case when the communication graph is a complete

114

graph. We consider algorithms in which the interaction between neighboring schedulers is

improved (in addition to the previous interaction a scheduler can withdraw a request). In

this model we present better algorithms for weak fairness, and for strong fairness.

In [Be80], [BS83], [Si79] algorithms for distributed implementation of CSP were

considered, but their notion of fairness (if any) is weaker than ours. An algorithm for weak

fairness is presented in [Sc], but no lower bounds are presented, and our new algorithms

have better complexity. Some probabilistic algorithms are presented in [Sp81], [RS81], for

weak fairness. However the model used in these is slightly more general than our model.

This chapter is organized as follows: In section 2 we introduce the formal model,

define the weak/strong fairness properties and the complexity of implementing fairness. In

section 3 we present simple global algorithms for ensuring the fairness properties. In

section 4 we consider algorithms with restricted interaction. In section 5 we consider

algorithms that permit more interaction between the scheduler processes.

7.2. Formal Model and Definitions

7.2.1. Notation

A Distributed Synchronization System (DSS) is a triple (G, P, Var) where G = (V,E) is

an undirected graph, called the Communication Graph. Each node in V denotes a CSP

process and each edge denotes a possible communication between a pair of CSP processes.

Note that this graph can be syntactically determined from any given CSP program.

P: V --, Programs is a function that associates a scheduler process with each node in V. We

denote the nodes in V by integers, and the scheduler process P(i) by Pi" Var is the set of

variables which consists of local variablesand shared variables. The local variables can only

be accessed by one process.

115

A process is a set of actionz Each action is of the form: (Sold, v,valueold,ValUenew,Snew).

This action denotes that whenever the process is in state Soldand the value of v is valueold

then it changes the value ofv to valuenew and goes into the new state Shew in one operation.

The states of a process are drawn from an infinite set of states. We require that each process

should be deterministic i.e. in every state, all the actions of the process in that state should

be on the same variable and there should be exactly one action in a given state for each

possible present value of the variable. The only local variables present at node i are cij,

portij corresponding to each {i,i} cE. These variables take values 0 or 1. Intuitively cij = 1

indicates that the CSP process at node i is willing to communicate with the one at node j. If

portij = portji = i then it indicates that the CSP processes at node i,j are in communication.

We require that each Pi should satisfy the following constraints:

1. cijcan only be accessed by Pi' and it is a read only variable for Pi i.e, the old and

new values of cij in any action of Pi should be identical;

2. The only update by Pi on the variable portij is from 0 to 1.

Each shared variable can be accessed by only one pair of adjacent processes i.e. a

variable v is accessible by only two processes Pi' Pj such that {i,j} ¢ E. Only one process can

update the variable, but it can be read by both.

We assume that the shared variables are implemented as follows: Consider a logical

shared variable v that is shared between two adjacent processes Pi' Pj" Assume that Pi can

update v while Pj can only read this variable. There are two actual variables v', v"

corresponding to this v. v' is at the node i, while v" is at node j. In addition to the scheduler

r_rocesses,there are two channel processes Mij, Mji corresponding to each edge { i,j } in G.

Whenever Pi updates v', Mij reads this value in one action and writes this value into v" in

another action.

116

Let Act-var = { cij,portij [{i,i} EE } u { v', v"l for each shared variable v },

Processes = { Pili _ V} u { Mij, Mji I{i,i}_E }

A configuration (or id) of a DSS is pair of the form (S, Val) where S: Processes --, States,

Val: Act-vat _ Values where S(p) denotes the state of process p, Val(v) denotes the value of

the variable v and should be from the appropriate domain. A computation C is an

to-sequence of ids id0, id1, id2..... idn, idn+ 1.... that satisfies the following criterion:

1. id0 is the initial id.

2. idn+ 1 is obtained from id n by one of the following moves:

(a) Process moves - the transition from idn to idn+ 1 may

involve one action of more than one process, but the actions of different processes should be

on different variables. These processes moves also include the moves of the channel

processes.

(b) Oracle moves - An oracle move occurs simultaneously at

nodes i,j if portij = portji = I in id n. The oracle move resets portij,portji to 0 ; and it gives

arbitrary new values to the the variables in the set {cik[{i,k}¢E} u {cjkl{j,k}cE}. An oracle

move models the completion of communication between the CSP processes at i,j and the

reevaluation of the guards by both of them. By this we are assuming that the computation

by the CSP processes between successive entries into an alternative command takes zero

time.

In the initial id, the values of the variables portij is 0. A DSS may have a restricted set

of initial ids.

117

7.2.2. Correctness andFairness

The correctness criterion is that in any computation if two processes are in

communication at any instant then both of them should be willing to communicate with

each other at that instant and at any instant a process can communicate with at most one

other process. This is captured by the following invariance requirement:

Forevery{ij} ¢ E

portij 3 (cij = 1) ^ (cji = I)A _ (-,portld ^-_ portik)_,i(--,porttj A --,portjk)

A DSS issaidtosatisfyweakfairnessiffthefollowingtypeofcomputationisnot

allowedbyit.

id0,idi....,idn,....idl,,..

Intheabovecomputationcij=cji=1 ineveryidaReridn,butinnoidaReridnijestablish

communication;thatisinno idafteridn portij= portji= 1. Intuitivelyweak fairness

rcquircsthatiftwoprocessesarewillingtocommunicatewitheachotherforsufficiently

longtimethentheycvcntuallyestablishcommunication.

A DSS is said to satisfy strong fairness iff the following type of computations are

avoided by it.

idO,idI , idn, ..., idt,...

In the above computation, in every id after idn cij = 1, and infinitely often Cji = 1 but ij

never establish communication after idn. The above definition is symmetrical with respect

to ij. It is to be observed that any DSS that ensures strong fairness also ensures weak

fairness.

118

7.2.3. Complexity

A timed computation is a pair (C, 0 where e is a computation and t: N --, Reals (where

N is the set of positive integers) such that t is positive and monotonic i.e. t(i) _ 0 and if i > j

then t(i) > t(j). Intuitively, t gives timing to each step of the computation.

We use the following time parameters:

Tc - upper bound on communication time,

Tm - upper bound on message passing time,

Tp - upper bound on process step time.

We say that a timed computation (C,0 obeys the above time parameters iff it satisfies

the following conditions:

For all m>l>0, ij>_0

1. Ifportij = portji = I in every idk such that l<k<m then t(m) - t(t) <_Te;

2. Let v_,v'' be the two images of a shared variable v that can be updated by Pi and

read by Pj. Assume idl is obtained by a move of the channel process Mij which

read the variable v', and let idm be the id obtained by an action of Mij that wrote

into v", the previously read value. Then t(m)- t(l) < Tin;

3. If idt is obtained by one move of Pr and idm is the earliest next id obtained by a

move of Pi' then t(m)- t(0 < Tp.

The meaning of the above time parameters is intuitively obvious. Note that we are

only considering upper bounds, thus allowing each process to be arbitrarily faster than the

other. From here onwards we fix the above time parameters and only consider timed

119

computationsthatobeytheaboveparameters.We my thatp isthecomplexityofaDSS D

iff_ isthemin_um valuemtisfyingthefollowingcondition:

In everytimed_mpumtion (C.t)of D and forevery

{i,j} ¢ E, if t,m are two instancessuch that t(m)- t(t) >p and in every id between idt, idm

cij= cji= 1, then i, j establishcommunication in some id between idt,idm.

Welet _D) denote the complexityof D. Clearly it is a function of the time parameters

Tc,Tm,Tp. We also assume that Tp is negligiblecompared to Tc,Tm.

7.3. Global Algorithms

, We present a simple global algorithm that ensures weak fairness. Let d be the

maximumdegree of any node in G. We color the edges of G with h colors i.e.for each edge

e we associatea color c(e)such that if el,e2are edges incident on a vertex then c(e1) ,, e(e2).

From graph theory [Be73],it isknown that there is a coloringsuch that the number of colors

h < (d + 1). Let the colors be drawn from the set { 0,1,..., h-l}.

Ex:

We designate a scheduler at a particular node as the controlling scheduler. The whole

120

algorithm proceeds in successive rounds. At the beginning of the ethround, the controlling

scheduler sends messages to all other schedulers denoting the beginning of the round. Let k

= l rood h. When Pi receives this message it performs the following procedure: If there is

an edge e= {ij} with color k, then Pi' Pj talk to one another and if both are willing to

communicate then they establish communication. Otherwise Pi sends an acknowledgement

to the controlling scheduler. If communication along e is established then once the

communication is complete then both Pi,Pj send acknowledgements to the controlling

scheduler. When all the acknowledgements are received the controlling scheduler starts the

next round.

In the above algorithm, we can use some protocol to merge acknowledgements at each

node. We can use echo algorithms as in [Ch] to send acknowledgements. The details are

easy to work out. It is easily seen that this algorithm ensures weak fairness. A careful

analysis shows that the complexity of the above algorithm = h. Tc + k.D. d2 .T m, where D

is the diameter of G and k is a constant. The above algorithm does not guarantee strong

fairness. However we can easily obtain a similar algorithm which uses dynamic priorities on

edges, that ensures strong fairness.

We can indeed easily obtain many different such global algorithms that use a central

scheduler. All these algorithms have the following disadvantages:

• Reliability will be poor because these algorithms are controlled by a centralized

scheduler.

• If at any instance the set of (edges connecting neighboring processes which are

willing to communicate with each other), is sparse then these algorithms take too

long time.

121

• The complexity of these algorithms is dependent on the diameter of the graph

whichis an undesirable feature.

7.4. Local Algorithms with restricted interaction.

7.4.1.Lowerboundsforweakfairness

We consider a class of algorithms in which the interaction between neighboring

processesis limited. For each edge {ij}, there are two shared variables vij,vji, viican be

updated by Pi' whilevjican be updated by Pj. These variablestake the followingvalues:

R - Request

G - Granted

D - Denied

N - Null

We restrictthe interactionbetween neighboringprocessesas follows:

Pi sets vii to "R" ;

Pjsets viito "G" or "D"; /* After seeingthe requestof Pi*/

Pi sets vii to "N"; /* After seeing the answer of Pj */

Pj sets vii to "N" /* After seeingPi reset it's variable */

We require that Piset viito "R" only when cij = I i.e. when i is willingto communicate

withj. Alsowhen Pj sets viito "G" then it is committed for communication i.e. in the next

action it sets portji to 1. If Pj sets vii to "D" then it does not commit to communicateuntil

122

thenextinteraction.If both Pi'Pjset theirrespectivevariablesto "R" at thesame time then

they both should commit to communicate immediately. All these restrictionscan be

definedmoreformally.

It can easily be shown that with the above restricted interaction processescannot pass

any information betweenthem.

THEOREM 7.1: IfD is any DSS with restrictedinteraction that ensuresweakfairness

then_D) >_.("1_-1)/2)' (Tc + 2Tra)where"yisthe chromaticnumberof G.

Proof Sketch:

Consider two nodes ij in the communication graph asshown below:

"tt

"rrt

We say that i immediatelywaits on j in the configuration IDt iff j is in communication

with one of its neighbors other than i and in all computations from IDt in which cij = cji =

1 throughout, i does not communicate with any other node until it established

communicationwithj.

Claim 1: There exists computations in which i immediately waits on j infinitely often

or j immediatelywaits on i infinitelyoften.

123

Proof: Assume the contrary. We can generate computations in which cij = cji - 1

throughout and the following happens: Whenever Pi requests Pj for communications at that

instance j is in communication with one of its neighbors. Since i does not immediately wait

on j, after some time it establishes communication with a different neighbor (other than j).

And a similar situation occurs whenever Pj requests Pi' Thus i,j never establish

communication, though each of them is willing to communicate with the other throughout

the future. This violates weak fairness requirement. I"!

One of the protocols by which i immediately waits on j is that Pi sets vii to "R" and

waits until Pj replies. Because of the restricted interaction, the only other protocols are

trivial modifications (ex. Pi and Pj have at most a fixed number of interactions in which in

all interactions except the last one Pj denies the request, and in the last interaction Pj may

grant the reques0. We say that i waits on j in IDtiff j immediately waits on another of it's

neighbors in ID t and in all computations starting in IDt in which through out the

computation cij = cji = 1, i does not establish communication with any other process until

it establishes communication with j.

Claim 2: There exists computations in which i waits on j infinitely often or vice versa.

Proof: Assume the contrary. From Claim 1, assume j immediately waits on some

neighbor k infinitely often in some computation and so does i immediately wait on some

neighbor n in some other computation. Because of the asynchrony we can prove that there

is a computation in which j immediately waits on k and i immediately waits on n infinitely

often. Now we can generate a computation as follows. Whenever Pi requests Pj then j is

immediately waiting on k. At these instances Pj cannot come out of its waiting phase on Pk

and establish communication with i (ex: in the simple protocol Pj sets vjk to "R" and waits

124

for the reply of Pk which may grant the request. In this case if Pj withdraws the request,

then the sequence of events may be as follows. Pk sees the request of Pj, after this Pj

withdraws the request and establishes communication with i, then Pk commits for

communication with j by granting its request. This clearly causes incorrect computation.)

Hence from our hypothesis Pj always rejects the request of Pi" Similarly whenever Pj

requests Pi at that instance iis immediately waiting on n and this request gets rejected. Thus

i,j never establish communication. This violates weak fairness requirements. D

By similar arguments we can show that dynamic arbitrary long waiting chains form.

Clearly these waiting chains have to be acyclic, otherwise deadlocks occur. Because the

processes cannot pass information around, the only way to avoid deadlocks is as follows.

There should be an a priori defined RW relation as follows: For each edge { id };i RW j or

j RW i. i waits on j only if i RW j. Also there should not be any cycles of length greater

than 2 in the RW relation.

Let the RW-graph be the directed graph corresponding to the RW relation. Let e0,el,.

• .,ek be a sequence of edges along a path in the RW-graph. Consider a computation in

which a waiting chain along this path forms and communication along these edges occur in

sequence• Thus by the time communication along e0 is established, it will have to wait for k

communications to occur in sequence and this takes k .(To + 2 Tm) time period.

Let the RW'-graph be a directed graph obtained from RW-graph by keeping, only one

directed edge for every cycle of length 2. Clearly the RW'-graph is acyclic and is obtained

by directing all the edges of G in one direction. Let i be any node which has directed edges

leaving it to the vertices; J0' Jl ' Jk' Now consider a computation in which cijt cjti 1

(for 0 < l < k) throughout the computation, i can only wait along one edge at a time. This

125

can easily be seen, otherwise correctness will be violated. Let et = (i,jl) (for 0 < t < k).

Now i has to wait on one of the edges last before it waits on other edges at least once.

Without loss of generality let ek be this edge. When i waits along e0, a waiting chain along

the longest path starting with e0 can form. Let ml be the length of the maximum path along

el. Thus when i waits along ee it takes at least ml .(T c + 2 Tm) time before it completes the

communication along et. Hence by the time communication along ek is established it takes

at least time 0___<kml"(Tc + 2Tm).

Using simple graph theory [Be73] we can easily prove the following claim.

Claim 3: IF Ce is an acyclic directed graph obtained by directing the edges of G, then

there is a vertex i in C¢such that there are (-/-1) outgoing edges from i (say e0,e1, e(_,.1))

such that the length of the maximum path along et is (-/-1-0. 12

From claim 3, it follows that there is a computation such that to establish

communication along one of the edges it takes time >_ 0____.(T-1) (-/'l'l)'(Tc+2Tm)=

(-/(-/-1)/2) •(Tc+ 2Tin).

Hence we see that _D) >_(_(-/-1)/2). (Tc + 2Tin). 12

The lower bound given by theorem 7.1 may not be significant for some cases (where `/

is very small). An obvious lower bound is d. (Tc + 2Tm). In these cases this may be the

better lower bound.

126

7.4.2. Algorithmsfor weak fairness

The following algorithm was proposed in [Sc] for ensuring weak fairness:

Let c: V ---,{ 0,1, (h-l)} be a vertex coloring of G using h colors, i.e. for each edge

{i, j} in G, c(i)*cO). The RW relation is defined as follows: i RW j iff {i, j} is an edge in G

and c(i) < cO). Clearly the RW relation is acyclic.

127

The protocol at node i

OUT: Array of all j such that i RW j;

IN: Array of all j such i.hatj RW i;

Do: Out degree of node i, in the RW-graph;

Di: In degree of node i, in the RW-graph;

Current: Variable used to point into the array OUT;

current : = 0;

Loop Forever

flag : = TRUE; pointer : = current; found : = FALSE;

While flag

j := OUT [pointer];

If cij then

current : = pointer,

flag := FALSE, found : = TRUE

else

pointer: = (pointer + 1) rood Do

If pointer = current then flag := FALSE

endofwhile

If -_found then go to Answering-Phase;

j'= OUT[current];

await Vji_,"N";

128

Temp := vji ;

tl'll_tt o

Vii "_--" "" 9

Await vji = "N";

If temp = "G" then establish communication with j;

Answering- Phase:

For e:= 1 Step 1 until D i do

j :- IN [el;

If Vji "-"R" then

if cij = 0 then answer negatively to j

Else

begin

• lt_T|t •

Vij = ...,

establish communication with j

end

End for

End main for loop

The above algorithm works as follows: Pi alternates between an asking phase and an

answering phase. During an asking phase it requests along an outgoing edge. It waits until

this request is answered. If the request is granted then it establishes communication along

this edge. After this it goes into answering phase. In this phase it goes through all waiting

requests in some order. During this phase if it is willing to communicate on an in coming

edge it grants the request and establishes communication along this edge, otherwise it denies

the request. A proof of correctness of the above algorithm is presented in [Sc]. It is also

shown that the above algorithm has complexity

129

/z<_h. d2. (To + 2Tin).

If we use minimum coloring then h = T<_.(d+1). Hence/z <_.d2(d+ 1).(T c + 2Tin).

Thus the complexity of the above algorithm depends only on the degree d, and is

independent of the size of the graph. We say that an algorithm is real time iff the

complexity of the algorithm is a function of the maximum degree d and is independent of

the size of the graph.

For complete graphs we give an algorithm that is near optimal. Let G be a complete

graph. Define the RW relation as follows: (i RW j) iffi < j. We modify the answering

phase of the previous algorithm as follows:

We initialize the IN array at node i as follows. If k < j < i then j appears before k in the

array IN.

130

Answering-Phase at node i:

For t := 0 step I until t = Di do FLAG[l]: = FALSE od;

ind := TRUE;

while lnd do

t : = FALSE;

For l: =0 Step 1 until Dido

j:= IN[tl;

case

Vji -----"R" A cij--1 ^ - FLAG[t]:

Establish communication with j;

FLAG [e]:= TRUE;

t := TRUE;

vji = "R" ^ cij=0 A -FLAG[t]:

Answer negatively to j;

vii = "R" ^ FLAG[t]:

Answer negatively to j;

vji a "R": ; "

Endcase

Endfor

If-tthenInd:= FALSE;

Endof while

The answering phase given above works as follows: In the 'for' loop Pi makes a sweep

131

of waiting requests in the order of the IN array. During a sweep it grants a request along an

edge iff it is willing to communicate and has not established communication along this edge

previously in the current answering phase. It continues these sweeps until after a sweep in

which it has not established communication along any edge. It is easily seen that Pi makes

at most (Di + 1) sweeps and establishes communication at most once along an in coming

edge, during an answering phase. Thus we see that the time taken for an answering phase <_

Di.T + k Di (D i + 1) • Tp where T = (Tc + 2Tm). Since Tp is much smaller than the other

time parameters, we approximate the above time to (D i+ 1). T = i. T(since G is a complete

graph D i =0-1)).

Consider a computation in which cij = cji = I throughout. We say that a request from

i to j is successful if the request is granted. Let tij denote the time between the instances

when i made a successful request and j granted the request. If the request of i to j is made

when j is in the answering phase then the request will be answered with in time j.T.

However if the request ofi is made while j is waiting on it's request to k then i's request will

be answered within time (tjk+ (j-i). T) (this is because there at most (j-i-l) items before i in

the IN array at node j). The following recurrence inequality can easily be seen.

tij <_max {j.T,[(j-i)'T + I_x(tj_)] }

where T = (Tc + 2Tm).

By induction we can easily show that tij <_(2n-i). T. A request will be rejected if it

occurs in the same answering phase of j as the previous one. Thus there may be several

requests before it is granted. However in this case the difference in time between the first

and last rejected requests is bounded by the time taken by j to complete one answering

phase and this is j.T. By taking into consideration the time taken to answer requests at

132

node i we can show that the worst case time Pij taken for establishing communication along

the edge {ij} is bounded as follows:

Fij <- ((2n-i).T + j.T).(n-i) + (n-i).i.T

From the above analysis the following theorem is easily proved

THEOREM 7.2: For the above algorithm the complexity _ < 2n2 • (T c + 2Tin) D

For a complete graph 7 = n and hence we see that the complexity of the above

algorithm has the same order as the lower bound proved in theorem 7.1. Thus it is a near

optimal algorithm.

7.5. Algorithms which permit more interaction among Processes

In the previous section we considered algorithms with restricted interaction between

schedulers. Due to the restriction, processes cannot withdraw requests. In this section we

consider algorithms with improved interaction. We introduce two more shared variables

wij, wji for each edge {id}. wij can only be updated by Pi' These variables take binary

values. In the following algorithms schedulers use these variables to withdraw requests.

Briefly, whenever Pi wants to withdraw its request to Pj it sets wij to 1. When Pj grants the

withdrawal it sets wji to 1.

7.5.1. An algorithmusing preemptionof requests

Each scheduler process Pi maintains priorities of edges incident on it. It gives unique

priorities to them which are dynamically updated. To maintain the priorities it keeps a

queue Qi of edges incidents on it. If edge e1 is before e2 in Qi then e1 has higher priority

then e2.

133

As in the previous algorithmit uses an a priori defined RW relation. In the beginning

Qi contains all the in coming edges (at node i in the RW-graph) before all the outgoing

edges.

134

Protocol at node i:

We say that an edge e = {i,j} is ready iff cij = 1 and (e is an outgoing edge in the

RW-graph or e is in coming edge on which there is a request)

Loop

If there is no ready edge then go to end-of-loop;

1. Get a ready edge e which has highest priority;

2. If e is an in comming edge then /*there is a request along e*/

begin

3. Deny all other waiting requests of lower priority;

4. Put e at the end of Qi;

Establish Communication along e;

5. During the communication Ok all withdrawals;

go to end-of-loop;

end

6. If e is an outgoing edge then

Begin /*let e be {i,j}*/

7. Deny all request of lower priority;

8. Request for communication along e;

9. While there is no reply along e do

10. Go through all waiting requests as follows:

11. If there is a request on e' = {i,k}

such that cik = 0 then deny the request;

12. If there is a request on a ready edge

= {i,k} with higher priority than e

then request j for withdrawal by setting wij to 1;
13. If there is a withdrawal request along _ = {i,k}

such that e has lower priority than e

then Ok the withdrawal by setting wik to I

135

end while

end

/* the requestalong e is answered */

14. If the request is granted i.e. vji = "G" then

Begin

15. Deny all waiting requests along edges e such that

has lower priority then e or e is not ready;

16. Grant all withdrawal requests;

/* All ready requests along e such that _ has

higher priority than e and such that there is no

withdrawal request along e are kept waiting */

17. Establish communication along e,

during the communication grant all withdrawal requests;

go to end-of-loop

end

18. If the request is denied i.e. Vji--"D"

then Put e at end of Qi'

go to end-of-loop;

19. If the withdrawal request is granted without denial

then go to end-of-loop;

end

end-of-loop:

End of loop

We informally describe the algorithm below. The main features of the algorithm are

that it uses dynamic priorities and that it allows preemption of requests. At the beginning of

the loop, Pi picks up a ready edge of highest priority. If this is an in coming edge in the

136

RW-graph then it establishes communication and it denies all other requests of lower

priority (new requests of higher priority might have arrived after the choice). During

communication it okays all withdrawal requests. If the edge is an outgoing edge it does the

following: it denies all lower priority requests. It requests for communication along this

edge. While it is waiting for the reply, it checks for pre-emption. If there is a request on a

higher priority edge it requests for withdrawal of previous communication request. It denies

all requests along edges on which it is not willing to communicate. If there is a withdrawal

request along an edge with lower priority it okays the withdrawal request. The other parts

of the algorithm are self explanatory.

Let h be the number of edges in a longest path in the RW-graph.

LEMMA 7.3" Every communication request (or withdrawal request) is answered

within time at most (T¢ + 2 h. Tin).

Proof: The only situation when a withdrawal request from Pi to Pj is not immediately

answered is, when the withdrawal request arrives while Pj is executing in the loop at

statement 9. Even in this case, the withdrawal request is not immediately answered only if

Pj has requested along an edge of lower priority than {id}. And in this case Pj also requests

for the withdrawal of it's communication request to the other process. Thus if a withdrawal

request is not immediately answered, there must have formed a chain of withdrawal

requests along some directed edges. This chain can be of length at most h. Hence it takes

time at most 2h. Tm before a withdrawal request is answered.

Assume there is a communication request from i to j. If the request to j arrives when Pj

is outside the while loop at statement 9, then it will be answered after at most one

137

communication i.e. within time T¢. If the request arrives while Pj is executing the loop at

statement 9, then a chain of requests forms. Let i, j, Jo' Jk' Jk+ 1'Jk+ 2 be the chain of

requesting processes. It is easily seen that the worst case occurs when there are no

withdrawal requests along the chain and the request of Jk to Jk+l arrives just when

communication along the edge {Jk+ 1' Jk+2} has begun. After the communication is over

Jk+ 1 answers Jk which in turn immediately answers Jk-1 and so on. Since the length of the

chain can be at most h, it takes time almost (To + 2h'Trn) before the request of i is

answered. !"i

THEOREM 7.4: The above algorithm ensures weak fairness and it has complexity

/.t< 2dE.(Tc + h'Tm).

Proof: Consider an edge e = (i,i) in the RW-graph such that cij = cji = 1 for

sufficiently long time starting from the instance 't'. Assume that e has least priority at this

instance at i as well as at j. If Pi chooses an edge ¢ at statement 1, then at that instance e

must be having higher priority than e. If e is an in coming edge then after the

communication along e it will have lesser priority than e. Assume e is an outgoing edge. If

the request along e is not withdrawn then after the request is answered it is given priority

lesser then e. Assume the request along e is withdrawn. Then this must have been due to a

request along an in coming edge e" of higher priority than e. In this case i immediately

establishes communication along e" and gives it the least priority. Thus we see that after a

request along e is answered, some edge which has higher priority than e before the request

will have lesser priority after the request is answered. From this it follows that within d

iterations of the main loop of Pi' Pi will request along e and this request will not be

withdrawn. If this request is denied by Pj then it must have been the case that j established

communication along an edge of higher priority than e at j (which will immediately be given

138

lesser priority than e at j). Hence after at most d such requests e will have highest priority

at j and communication will get established along this edge. Thus the complexity is

bounded by the time required to make d2 iterations of the main loop in Pi" The time

required to make one iteration is at most equal to the sum of the time required for getting

an answer to a request and the time for one communication (answering the other

withdrawal or communication requests takes time which depends only on Tp and is

negligible). Thus the complexity /x<_2dE.(T c + h'Tm). D

As before we can get RW-graph such that h<_(d+l). In this case,

/_<_2dE.Tc+ 2dE(d+ 1).T m. Clearly this algorithm has better complexity than the one

given in the previous section.

Even though the above algorithms guarantee weak fairness, in general they do not

guarantee strong fairness. Indeed any algorithm that uses an a priori defined RW relation

as above does not guarantee strong fairness in general. Assume G has cycles. Then there

exist a pair of nodes i,j such that i RW j but not vice versa. Now consider a computation in

which cij = I throughout the future and cji = 1 infinitely often: whenever i requests j for

communication at that instance Cji = 0 and j cannot keep the request of i waiting

indefinitely and hence j rejects the request of i. But Cjimay be 1 when there is no request

from i and id never establish communication.

7.5.2. An algorithm for strong fairness

We present a new algorithm that ensures strong fairness. In this algorithm there is no

constraint on which process should request which other process, as in the previous

algorithm. Instead any process can request any other process for communication.

139

The algorithm is a slight modification of the previous one. Each scheduler process Pi
tt

keeps two queues of edges Qi' Qi" Qi is used so that requests for communication are made
Be

in a fair way and it is maintained exactly as in the previous algorithm. Qi defines the

priorities among edges used in the algorithm. Whenever there is a communication along
ee tt

the edge e= {i,i} then e is given least priority at both i,i (i.e. e is placed at the end of Qi' Qj)"

Apart from the above change the modified algorithm has also the following changes. At

line 1, the earliest ready edge on Qi is picked. This ensures that communication requests

along the edges are made in a fair manner. At statement 2, it is checked if there is a request

along e, in this case statements 3 through 5 are executed, otherwise the control goes

statement 6.

At any instant of time let '>' be a relation defined among the edge of G as follows: Let

e1 = {ij}, e2= {i,k}. Then e1 > e2 iff eI has higher priority then e2 at node i. Since the
tt

priorities are dynamic, so is the relation >. We require that in the beginning all Qi are

initialized in such a way that > is acyclic.

LEMMA 7.5" In the above algorithm) is always acyclic.

tt

Proof. The only situation when the priorities (i.e. Qi) are updated is whenever a

communication is established along an edge. After the communication, both the processes

on either side of the edge give least priority to that edge while preserving the relative

priorities of the other edges. This update clearly preserves the acyclicity of >. IZl.

Let L be the length of the longest path in G.

LEMMA 7.6: Any request is answered within time (Tc + 2 L.Tm).

140

Proof: First we have to prove that every request gets eventually answered. The only

problem comes when there is a circular chain of requests. In this case we want to show that

deadlocks do not occur.

Let i0, i1..... ik.1, i0 be a sequence of nodes along a cyclic chain of requests i.e. for

0 <j < k, ij has a communication request to i(i+ 1)roodk' Let ej = {ij,i0+ 1)modk}' Since > is

an acyclic relation among the edges, it is easily seen that there exists at least one vertex ij on

this cycle such that e0.1) roodk has higher priority then ej at this node. Thus ij will send a

withdrawal request to i0+ 1)roodk" This guarantees that the cycle gets broken.

Waiting chains of length at most L can form. Now the time bound can be proved as in

lemma 7.3. IZ!

THEOREM 7.7" The above algorithm guarantees weak fairness and has complexity/_

<_d2. (Tc + L. Tin). The algorithm also guarantees strong fairness.

Proof: The weak fairness and the complexity can be proved as in theorem 7.4. It is to

be observed that in the complexity bound there is no constant factor 2 as in theorem 7.4.

This is because if cij = cji = 1 for a time period d.(2T c + 2L'Tm) and if ij did not

establish communication then each of them must have requested the other at least once

during this time (instead of only one of them requesting as in the previous algorithm). The

strong fairness property is easily seen from the fact that any process can request any other

process. IZ!

The main disadvantage of the above algorithm is that it's complexity depends on the

size of the graph.

141

7.6. Conclusions

In this chapter we have considered the problem of achieving different fairness

properties in communicationamong CSP processes. For a natural class of algorithms we

have proved a lower bound on the time complexity for ensuring weak fairness. For special

cases we presented near optimal algorithms. We also presented interesting new algorithms

for ensuring weakand strong fairnessproperties. The algorithmswe gavefor strong fairness

are not real time. This makes us conjecture that there are no real time algorithms that

ensure strong fairness. The algorithms we presented can also be used for distributed

implementationof other formalconcurrent systemslike Millner'sCCS [Mi78].

142

Chapter 8

Conclusions

In this thesis we have addressed some important theoretical problems in the design and

verification of distributed systems. In chapter 2 we examined the complexity of decision

procedures for satisfiability of different versions of temporal logics. We gave a polynomial

space bounded decision procedure for the full Propositional Linear Temporal Logic and we

presented a decision procedure in NP for the logic that uses only the F(eventuality)

operator. These results justify the use of temporal logic in program verification instead of

first order language of linear order since it is known that the later logic is non-elementary.

In chapter 2 we also considered the problem of automatic verification of finite state

concurrent programs using specifications given in PTL. These results show that there may

not be efficient algorithms for this problem. An important problem for future research is to

investigate restricted versions of this logic for which there are efficient algorithms for

automatic verification of finite state concurrent programs. In chapter 3 we extended PTL to

QPTL by allowing quantifiers over propositions. We showed that the set of true sentences

of this logic which are in normal form with a quantifier prefix that has one alternation of

quantifiers, is EXSPACE-complete. We showed that for a weaker version of this logic

(WQPTL) there is a tight space complexity hierarchy with the number of quantifier

alternations for the set of true sentences that are in normal form. WQPTL is expressively

equivalent to the well known logic WS1S(Weak Monadic Second-order Theory of One

Successor). However WSIS is not known to exhibit such a nice hierarchy.

143

In chapter 4, we considered a branching time temporal logic for verifying concurrent

systems. We modified the semantics of this logic so that only fair computations are

considered. We presented efficient algorithms for automatic verification of finite state

concurrent processes using the specifications given in this logic. We showed it's application

to well known practical problems. We feel that this approach may be useful in the area of

developing robust protocols. It will be worthwhile to see if there are more expressive

branching time logics than the one used by us, for which there are efficient algorithms for

automatically verifying finite state concurrent programs. In this chapter we also considered

a branching time logic called CTL*. There are no good known decision procedures for this

logic. This is an important open problem.

In chapter 5, we extended temporal logic in a novel manner by introducing spatial

modalities in addition to the temporal modalities. This logic allows us to reason about

temporal and spatial behavior in a unified formal system. We have given applications for

this logic from wide areas of multiprocessor networks such as VLSI. We showed that the

validity problem for this logic is undecidable. It is an interesting open problem if certain

restricted versions of this logic are decidable. Another important problem to investigate is

the use of this logic in verifying some algorithms.

In chapter 6, we considered the possibility of characterization and axiomatization of

buffered message passing systems in temporal logic. We showed that all bounded buffers

are characterizable and axiomatizable in temporal logic. We also proved that unbounded

FIFO buffers are in general not axiomatizable while unbounded LIFO, unbounded

unordered buffers are axiomatizable. These results answer some questions regarding the

possibility of obtaining complete proof systems in temporal logics for the correctness of

concurrent programs that use message buffers for interprocess communication.

144

Finally, in chapter7 we explored the problem of distributed implementation of CSP

that ensures certain fairness properties. The two fairness properties we considered are weak

fairness and strong fairness. For a natural class of algorithms that ensure weak fairness, we

proved a lower-bound on the time complexity of any algorithm in this class. We presented

near optimal algorithms in special cases. In a slightly different model we presented

algorithms for weak fairness which have better complexity. We also presented algorithms

for strong fairness. For the model we considered it may be possible to improve our lower-

bound. Other than time complexity, number of messages may be another complexity

measure. It will be interesting to study this problem using this complexity measure.

145

References

[Be73] C. Berge, Graphs and Hypergraphs, North-Holland Publishing Company,
1973.

[BeS0] Arthur J. Bemstein, Output guards and nondeterminism in
"Communicating Sequential Processes", ACM Transactions on
Programming Languages and Systems, Vol. 2, No. 2, April 1980.

[BMP81] M. Ben-aft, Z. Manna, A. Pnueli, The temporal logic of branching time,
8th ACM Symposium on Principles of Programming Languages, 1981,
Williamsburg, VA.

[BS83] G.N. Buckley, A. Silberschatz, An effective implementation for the
generalized input-output construct of CSP, 1983.

[BSW69] K.A.Bartlet, R.A.Scantlebury,P.T.Wilkinson, A note on reliable full-
duplex transmission over half-duplex links, Communications of ACM 12,
5(1969) 260-261.

[CE81] E.M. Clarke, A. Emerson, Design and synthesis of programming skeltons
using branching time temporal logic, IBM Conference of Logics of
Programs, 1981, May.

[CES83] E.M.Clarke, A.Emerson, A.P.Sistla, Automatic verification of finite state
concurrent systems using temporal logic specifications: a praciical
approach, Proceedings of POPL 83.

[Co69] S.N. Cole, Real time computations by n-dimensional iterative arrays of
finite state machines, IEEE Transactions on Computers, 1969, 18, page
349-365.

[Ch] Ernest Chang, Echo algorithms: depth parallel operations on general
graphs University of Toronto.

[ECS0] E.A.Emerson, E.M.Ciarke, Characterizing properties of parallel programs
as fixpoints, Proceedings of the 7th International Colloquium on
Automata, Languages and Programming, Lecture notes in Computer
Science #85,1981.

[EH83] E.A.Emerson,J.Y.Halpern, Sometimes and not never revisited: on
branching versus linear time, POPL 83.

146

[ES83] E.A.Emerson,A.P.Sistla, Deciding branching time temporal logics,
Workshop on logicsof programs, Carnegie-MellonUniversity, June 6-8,
1983.

[FL79] M. Fischer, R. Ladner, Propositionaldynamic logic of regularprograms,
JCSS, 1979,18(2).

[GPSS80] D. Gabbay, A. Pnueli, S.Shealah, J. Stavi, Temporalanalysisof fairness,
Seventh ACM Symposium on Principles of Programming Languages,
1979,Las Vegas,NV, December.

[Ho78] C.A.R.Hoare, Communicating sequentialprocesses,Communications of
the ACM 21,8(August1978)666-667.

[HO80] B.T.Hailpern,S.Owicki,Verifyingnetwork protocolsusing temporallogic,
Tech. Report 192, Computer systems laboratory, Stanford university,
June 1980.

[HR81] J.Y. Halpem, J.H. Reif, The Propositionaldynamic logicof deterministic,
well-structuredprograms,22nd Symposium on Foundations of Computer
Scinece,1981,Nashville,TN.

[KL78] H.T.Kung, C.E.Leiserson, Symposium on Sparse Matrix Computations
and their Applications,Knoxville,Tennessee, Nov. 1978.

[Ko69] S.R. Kosaraju, Computations on iterative automata, University of
Pennsylvania,1969,Ph.D. Thesis.

[La77] R. Ladner, The computational complexity of provability in systems of
modalpropositionallogic,SIAMJ. Comp. 6, 1977,467-480(A9-Z).

[Le81] Charles Eric Leiserson, Area-efficient VLSI computation, Ph.D. Thesis,
Department of Computer Science, Carnegie-Mellon University,
Oct.1981.

[Ly80] Nancy A. Lynch, Fast allocation of nearby resources in a distributed
system,Proceedingsof ACM Symposiumon Theory of Computing,1980.

[Mi78] R. Milner, Synthesis of communicating behavior, 7th Symposium off
Mathematical Foundations of Computer Science, Zakopane, Poland,
1978.

[MP81] Z. Manna, A. Pnuelli, Verification of concurrent programs, The
CorrectnessProblem in Computer Science, International Lecture Series
in Computer Sciences,1981,AcademicPress, London.

147

[MW81] Z. Manna, P.Wolper, Synthesizing concurrent programs from temporal
logic specifications, IBM Conference on logics of programs,1981.

[OLS0] S.Owicki, L.Lamport, Proving liveness properties of concurrent programs,
Stanford University Technical Report 1980.

[Ow76] S.Owicki, A Consistent and complete deductive system for verification of
parallelprograms, 8th Annual Symposium on Theory of Computing, 1976

[Pn77] A. Pnueli, The temporal logic of programs, Proceedings of the Eighteenth
Symposium on Foundations of Computer Science, 1977, Providence, RI,
November.

[PV79] F.P. Preparata, J. Vuillemin, The cube connected cycles: a versatile
network for parallel computation, FOCS, 1979, page 140-147.

[QS81] J.P.Quielle, J.Sifakis, Specification and verification of concurrent systems
in CESAR, Proceedings of 5th International Symposium in Programming
1981.

[QS82] J.P.Quielle, J.Sifakis, Fairness and related properties in transition systems
IMAG, 292(March 1982).

[Ro] Edward L.Robertson, Structure of complexity in Weak Monadic Second
Order Theories of the Natural numbers,1977.

[RS81] J.H. Reif, P.G. Spirakis, Distributed algorithms for synchronizing
interprocess communication in real time, Proceedings of 13th ACM
symposium on Theory of Computing, Milwaukee, Wisconsin, May 1981.

[RSi83] J.H. Reif, A.P.Sistla, A multi-processor network logic with spatial and
temporal modalities, Proceedinds of International Conference on
Automata, Languages and Programming 1983, Barcelona, Spain.

[Sa70] W.J.Savitch, Relationships between nondeterministic and deterministic
tape complexities, J. Computer and Systems Sciences 4:2, 177-192.

[Sc] Jerald Schwarz, Distributed synchronization of communicating sequential
processes, DAI Research Report No. 56), Department of Artificial
Intelligence, University of Edinburg.

[Sc80] J.T. Schwartz, Ultracomputers, ACM Transactions on Programming
Languages and Systems, 1980, Vol.12, No.4, October, page 484-521.

148

[SCFG82] A.P. Sistla, E.M. Clarke, N. Francez, Y. Gurevich, Are message buffem
characterizable in linear temporal logic, Proceedings of the Symposium
on Principles of Distributed Computering, 1982,Ottawa, Canada, 1982.

[SC82] A.P. Sistla, E.M. Clarke, The complexity of propositional linear temporal
logics,ACM Symposium on Theory of Computing, 1982, Page 159-167.

[Si79] Abraham Silberschatz, Communication and synchronization in distributed
systems, IEEE Transactions on Software Engineering, Vol. SE-5, No. 6,
Nov. 1979.

[Si] D.P.Sidhu, Rules for synthesizing correct communication protocols, PNL
Print, To appear in SIGCOMM.

[Sp81] Paul George Spirakis, Probabilistic algorithms, algorithms with random
input_ and random combinatorial structures, TR-33-81, Center for
Research in Computing Technology, Harvard University, 1981.

[St71] H.S. Stone, Parallel processing with the perfect shuffle, IEEE Transactions
on Computers, 1971, Vol. c-20, No. 2, February.

[Wo81] P. Wolper, Temporal logic can be more expressive, Proceedings of 22nd
Symposium on Foundations of Computer Science, 1981, Nashville, TN,
October.

[Wo82] P.Wolper, Ph.D. Thesis, Stanford University, 1982.

[Za80] P.Zafiropulo, C.West, H.Rudin, D.Cowan, D.Brand, Towards analyzing
and synthesizing protocols, IEEE Transactions on Communications
COM-28(April 1980), 651-671.

