Q Fakultat fir Informatik
Technische Universitat Minchen

A Unified Translation of
Linear Temporal Logic to w-Automata

Ben Salomon Maria Sickert

Vollstandiger Abdruck der von der Fakultat fiir Informatik der Technischen Universitat
Miinchen zur Erlangung des akademischen Grades eines

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Tobias Nipkow, Ph.D.

Priifende der Dissertation:
1. Prof. Dr. Francisco Javier Esparza Estaun
2. Prof. Orna Kupferman, Ph.D.,
The Hebrew University of Jerusalem

Die Dissertation wurde am 30.04.2019 bei der Technischen Universitdt Miinchen eingereicht
und durch die Fakultat fiir Informatik am 13.07.2019 angenommen.

Abstract

One of the predominant specification languages for reactive systems is linear temporal
logic (LTL) which is used to describe infinite traces of these systems. The leading tech-
niques for verification and synthesis of reactive systems using LTL as a specification
language are automata-based. The automata-theoretic approach fundamentally relies on
the translation of specifications given in LTL into a suitable type of w-automaton. These
translations and the resulting automata are a major factor for the applicability of these
automata-based algorithms: the number of states, the type and the branching degree
of the transition relation, the type and the size of the acceptance condition, and the
representation of the automata all influence the runtime of these algorithms and thus the
optimisation of such factors is an important goal.

Nondeterministic Biichi automata (NBA) gained considerable popularity amongst the
different types of w-automata, since they elegantly balance a simple acceptance condition
with fairly efficient algorithms and are still expressive enough to capture all w-regular
languages. Consequently, most of the effort has been spent on translating to NBAs and
the optimisations of these constructions. However, the simplicity of the Biichi condi-
tion is inseparably linked to the nondeterminism: this makes NBAs unsuitable for some
algorithms used for verification of probabilistic systems or synthesis. Thus NBAs are
often just an intermediate step, followed by additional constructions, on the way to the
desired automaton model. But this detour comes at a price. Since these subsequent steps
operate on NBAs, they cannot take advantage of the formula structure and the fact that
LTL only captures a subset of the w-regular languages.

We present a unified translation of LTL formulas into nondeterministic Biichi auto-
mata, limit-deterministic Biichi automata (LDBA), and deterministic Rabin automata
(DRA). The translations yield automata of asymptotically optimal size (double or single
exponential, respectively). All three translations are derived from one single Master
Theorem of purely logical nature. The Master Theorem decomposes the language of a
formula into a positive Boolean combination of languages that can be translated into
w-automata by elementary means. All three translations are direct and no intermediate
constructions are used. In particular, Safra’s construction, ranking constructions, and
breakpoint constructions used in other translations are not needed. Further, states are
semantically labelled, meaning the language of each state can be derived as an LTL for-
mula from the state label. Lastly, the special structure of the constructed LDBAs make
them suitable for the verification of probabilistic models and for the synthesis of reactive
systems.

iii

Zusammenfassung

Einer der vorherrschenden Formalismen fiir die Spezifikation reaktiver Systeme ist li-
neare temporale Logik (LTL), die benutzt wird um unendliche Abldufe solcher Systeme
zu beschreiben. Die fiihrenden Techniken fiir die Verifikation und die Synthese reaktiver
Systeme mit LTL als Spezifikation sind automatenbasiert. Der automatentheoretische
Ansatz hingt essentiell von der Ubersetzung der LTL Spezifikation in ein passendes w-
Automatenmodell ab. Die Ubersetzungen und die daraus resultierenden Automaten sind
ein ernstzunehmender Faktor fiir die Anwendbarkeit der automatenbasierten Algorith-
men: die Anzahl der Zusténde, die Art und der Verzweigungsgrad der Ubergangsrelation,
die Art und die Groke der Akzeptanzbedingung und die Darstellung der Automaten, all
diese Faktoren beeinflussen die Laufzeit der Algorithmen und deshalb sind Optimierun-
gen dieser Eigenschaften ein wichtiges Ziel.

Nichtdeterministische Biichi-Automaten (NBA) haben eine betrichtliche Popularitét
unter den verschiedenen Arten von w-Automaten erreicht, da sie auf eine elegante Art
und Weise eine simple Akzeptanzbedingung mit relativ effizienten Algorithmen verei-
nen und dabei immer noch ausdrucksstark genug bleiben, so dass sie alle w-reguléren
Sprachen darstellen konnen. Daher ist ein Grofsteil des wissenschaftlichen Aufwands in
die Entwicklung und die Verbesserung von Verfahren, die LTL zu NBAs iibersetzen,
geflossen. Jedoch ist die Schlichtheit der Biichi-Bedingung untrennbar mit dem Nichtde-
terminismus verbunden und dies macht NBAs ungeeignet fiir einige Algorithmen, die fiir
die Verifikation von probabilistischen Systemen oder fiir die Synthese verwendet werden.
Deshalb sind NBAs oft nur ein Zwischenschritt auf dem Weg zu dem eigentlich verwen-
detem Automatenmodel. Da die Konstruktionen, die der LTL-Ubersetzung folgen, auf
nichtdeterministischen Biichi-Automaten arbeiten, kbnnen sie nicht die Struktur der For-
mel und den Fakt, dass LTL nur einen Teil der w-reguldren Sprachen erkennt, zu ihrem
Vorteil nutzen.

Wir prisentieren eine uniforme Ubersetzung von LTL Formeln zu nichtdeterministi-
schen Biichi-Automaten (NBA), limit-deterministischen Biichi-Automaten (LDBA) und
deterministischen Rabin-Automaten (DRA). Die Ubersetzungen erzeugen Automaten
von asymptotisch optimaler Gréfe (doppelt bzw. einfach exponentiell). Alle drei Uber-
setzungen werden aus einem einzigen Master Theorem abgeleitet. Das Master Theorem
zerlegt die Sprache einer Formel in eine Boolesche Kombination von Sprachen, die mit ele-
mentaren Techniken zu w-Automaten {ibersetzt werden koénnen. Alle drei Ubersetzungen
sind direkt und bendétigen keine Zwischenkonstruktionen. Insbesondere sind Ansétze, wie
die ,,Safra‘‘-Konstruktion, ,,Ranking“-Konstruktionen oder ,Breakpoint“-Konstruktionen,
wie sie normalerweise in anderen Ubersetzungen verwendet werden, nicht notwendig.
Dariiberhinaus sind die Zustdnde mit semantischen Informationen versehen, so dass die
Sprache jedes Zustandes als LTL Formel abgeleitet werden kann. Die spezielle Struktur
der konstruierten limit-deterministischen Automaten macht diese auch nutzbar fiir die
Verifikation von probabilistischen Systemen und fiir die Synthese reaktiver Systeme.

Preface

I want to express my sincere gratitude to my doctoral advisor Javier Esparza for his
invaluable guidance and support. I always could rely on his mentorship and helpful
advice. I am also thankful to my undergraduate advisor Jan Kietinsky for the productive
academic discourse with him and for my early introduction to the world of research. His
work on LTL translations paved the way for the results presented in this dissertation.
Further, I want to thank Orna Kupferman and Jean-Frangois Raskin for hosting me in
Jerusalem and Brussels. The trip to Jerusalem, on which I accompanied Javier to meet
Orna and Moshe Vardi, gave me the initial ideas and insights that made the following
results possible.

Over the years I had the pleasure of working with researchers from various institutions
on projects related to my dissertation. I am thankful for these collaborations and the
things I learned from my co-authors, namely: Julian Brunner, Javier Esparza, Stefan
Jaax, Jan Kfietinsky, Michael Luttenberger, Tobias Meggendorfer, Philipp Meyer, David
Miiller, Jean-Francois Raskin, and Benedikt Seidl. Moreover, I want to thank my col-
leagues at the chair for the great atmosphere and the good times. A special thank you
goes to all colleagues that proofread bits and pieces of my dissertation and gave my
valuable feedback.

The moral support and the backing from my friends and my family was as essential as
the academic help and mentorship I received. I feel gratitude towards all those people
who accompanied me on this journey. Finally, I have to thank Tyche making me cross
paths with Micha who managed to catch a thief.

vii

Contents

Abstract
Zusammenfassung
Preface

Contents

1 Introduction
1.1 A Short History of LTL Translations

1.2 A Unified Translation of LTL to w-Automata
1.3 Structure of the Thesis
1.4 Preceding Publications L

2 Preliminaries
2.1 w-Languages and w-Automata . . .
2.1.1 Boolean Operations
2.1.2 Visual Representation . . .
2.2 Linear Temporal Logic
2.2.1 Propositional Semantics . .

2.2.2 Notable Fragments: uLTL, vLTL, GF(uLTL), and FG(vLTL)

3 The ‘after’-Function
3.1 Definition and Properties
3.2 afCongruences

3.3 Logical Characterisations of uLTL, vLTL, GF(uLTL), and FG(vLTL) .

4 The Master Theorem
4.1 p- and v-Stability
4.2 The Formulas ¢[X], and ¢[Y], . .
4.3 Utilising ¢[X], and ¢[Y],
4.4 Checking X CGFand Y CFG . .

4.5 The Master Theorem: Logical Characterisation of LTL

4.6 Variants of the Master Theorem . .
4.6.1 Restricted Guessing

4.6.2 Asymmetric Master Theorem
4.A Omitted Proofs

5 DRA Constructions

51 DRAs for uLTL, vLTL, GF(uLTL), and FGWLTL)

5.2 DRAs for Arbitrary LTL Formulas

vii

11
12
13
14
14

17
17
18
21

23
24
26
27
29
31
33
33
35
36

41
41
44

1X

Contents

6 NBA and LDBA Constructions
6.1 LDBAs for Arbitrary LTL Formulas
6.2 NBAs for uLTL, vLTL, GF(uLTL), and FG(wLTL)
6.2.1 Disjunctive Normal Form
6.2.2 Disjunctive af
6.2.3 Automata Constructions
6.3 NBAs for Arbitrary LTL Formulas

6.A Omitted Proofs

7 Optimisations of the Constructions

7.1 Restricted Guessing

7.2 Transition-Based Acceptance
7.2.1 Deterministic Automata
7.2.2 Nondeterministic Automata

7.3 Specialised Intersection Constructions
7.3.1 Generalised Biichi Acceptance
7.3.2 Interleaving
7.3.3 Formula Rewriting
7.3.4 Complexity Analysis

7.4 Augmented Propositional Equivalence

7.5 Various Optimisations
7.5.1 DRA Construction
7.5.2 NBA Construction

7.A Omitted Proofs

8 Experimental Evaluation

81 Method
82 Results.,
8.3 Discussion
8. A Omitted Results

9 Applications

9.1 Probabilistic Model Checking
9.2 Synthesis of Reactive Systems

9.A Markov Chains and Markov Decision Processes
10 Concluding Remarks

Bibliography

51
o1
56
57
58
59
63
67

71
71
71
71
73
76
76
7
78
79
80
81
81
82
84

87
87
89
90
95

103
103
106
108

111

113

1 Introduction

Logics and automata theory, two fundamental fields of theoretical computer science, are
remarkably intertwined. On the one hand, we use logical frameworks as a natural way to
reason about computations and their properties. On the other hand, automata with their
clear operational focus are a well-suited abstraction for computations themselves. Even
though they look remote to each other at first sight, it has been shown time and time
again that they are closely related: One of the earliest results that fall into this category
is due to Biichi. In his seminal work he used automata to characterise the expressive
power of monadic second-order logic with 1 successor (S1S) [Biic60; Biic66] and settle
the decidability of the logic. In the following decades more results connecting automata
theory and logics on other structures were discovered, e.g. see [Lee90| for some examples.

Verification and Synthesis. Software, hardware circuits, and more generally computer
systems often exhibit erroneous behaviour. Usually this is not detected during the de-
velopment of the system, and therefore it is necessary to spend a considerable amount
of resources for debugging and testing such systems. Nevertheless, these steps do not
guarantee correctness in general. Thus two fundamental questions arise when we build
systems that need to be reliable and are mission-critical:

First, the verification problem: Given a program, e.g. represented as state machine,
and a specification, e.g. expressed in a suitable logic, decide if the behaviour of the pro-
gram satisfies the specification. This idea can be traced back to Turing, who investigated
the halting problem, which is termination of a computation, on Turing machines [Tur37].

Second, the synthesis problem, already defined by Church and Kleene [Kle56; Chu57]:
Given a specification find an implementation, e.g. a circuit or a finite state machine,
that satisfies the specification, provided such an implementation exists. This goes a step
further than the verification problem. A synthesis procedure frees the implementor from
building the system and it is only necessary to come up with a description of the desired
behaviour. However, in practice just writing a complete specification is already a difficult
task in itself.

Note that we abstained in our descriptions from fixing a logic or representation of
programs. In fact the hardness and complexity of the two problems greatly depend on
the chosen formalisms. Initially the focus for the verification problem laid on proof-like
systems: Sequential programs were analysed line-by-line using annotations with pre- and
postconditions. This so called Floyd-Hoare paradigm [Flo67; Hoa69| was an immense
intellectual success for reasoning about programs. However, it requires at some steps
manual interaction for constructing the proof, and thus poses a scalability issue for large
programs. Further, it does not translate well to reactive systems. Reactive systems are
non-terminating, typically concurrent, programs that interact with an open environment.
Examples of reactive systems are circuits, resource arbiters, or distributed protocols.
This nonterminating, infinite behaviour make them incompatible with the Floyd-Hoare
paradigm. Temporal logics, by contrast, focus on the behavioural aspects of the system,

1 Introduction

and thus overcome some of the shortcomings of the Floyd-Hoare approach, as these logics
made it possible to reason about the infinite nature of such systems. Algorithmic progress
was then achieved due to the small model property, i.e. the model of a formula can be
represented by a ‘small’ and finite structure, that holds for several of these temporal
logics and the term model checking [CE81; EC82; CHVBI18| was coined. This instance of
the verification problem usually only considers programs abstracted to finite state graph
and logics that are effectively and efficiently decidable.

Let us now focus on temporal logics, which come in two flavours: linear and branching
time. In the linear-time setting we have a single timeline and the logic can only talk about
one future. By contrast, in the branching-time setting we can reason about different
possible futures. The most prominent logics of these two categories are Linear Temporal
Logic (LTL) [Pnu77; GPSS80; Pnu81| and Computation Tree Logic (CTL) [CE81]. An
in-depth discussion and a detailed overview on different temporal logics can be found
in [Eme90|. LTL and in particular its propositional variant gained immense popularity,
since it finds a good balance between expressiveness, and algorithmic complexity, and is
similar enough to natural language.

Automata-Theoretic Approach. The predominant techniques for automatic verifica-
tion and synthesis of reactive systems are automata-based and follow the same scheme:
First, the specification, given in a temporal logic, is translated to an automaton; second,
the graph abstraction of the reactive system and the automaton for the specification are
combined and analysed, e.g. via an intersection and an emptiness check. In the synthesis
case only the specification automaton is processed. The automata-theoretic approach
[VW86a| proved to be so successful because it separates the logic and its interpretation
from the graph-related questions. This approach is effectively robust to changes in the
logic, since most of time only the translation step needs to be adapted.

Depending on the inputs (reactive system and specification) we might have different
requirements on the resulting automaton for the specification. For example, model check-
ing probabilistic systems, such as Markov chains or Markov decision processes (MDP),
the specification automaton typically needs to be deterministic (or ‘almost’ determin-
istic). Thus a translation from LTL to a nondeterministic automaton does not suffice
and additional steps are required to obtain an automaton with suitable properties. How-
ever, all extra steps incur extra costs, e.g. in the size of the automata or in the running
time, and since almost all algorithms explicitly or implicitly construct a product auto-
maton, the size of the specification automaton is a crucial factor. Hence optimised and
efficient translations from the logic to the specification automaton are paramount to the
success of these approaches. Therefore, a substantial amount of research has gone into
the translation of LTL to automata, which we will summarise in the next section. We
then outline the main contribution of this thesis: a logical characterisation of LTL from
which compositional constructions for a wide variety of different automata are derived.

1.1 A Short History of LTL Translations

The Automata Zoo. In the realm of regular languages over finite words we differentiate
automata by their branching mode, e.g. nondeterministic, deterministic, universal, or
alternating. However, the acceptance condition is always the same: a word is accepted
if depending on the branching mode a sufficient amount of runs end up in a final state.

1.1 A Short History of LTL Translations

Automata over infinite words inherit this differentiation, but add a new dimension to
it. For w-automata the choice of the acceptance condition, e.g. Biichi, co-Biichi, Rabin,
Streett, and parity!, is crucial and can make a difference in expressiveness and size. The
Biichi automaton can be seen as the archetype of w-automata with its simple acceptance
structure: a run has to visit at least one accepting state infinitely often. However, this
simplicity comes at a price: nondeterminism is required to be able to recognise the whole
class of w-regular languages, and therefore deterministic Biichi automata (DBA) are
strictly less expressive than nondeterministic Biichi automata (NBA).

While NBAs can be used for model checking nondeterministic systems, other applic-
ations such as model checking probabilistic systems or synthesis usually require auto-
mata with a certain degree of determinism, such as deterministic parity automata (DPA)
[PR89] or deterministic Rabin automata (DRA) [BK08; CGK13|, limit-deterministic Bii-
chi automata (LDBA) [Var85; CY95; HLS+15; SEJK16|, or unambiguous Biichi auto-
mata [BKK+16]. The essential point here is that there exists no automaton model that
is suitable for all applications and it is unavoidable to have different models with different
trade-offs and translations.

The Central Hub: Nondeterministic Biichi Automata. The usual solution to this mul-
tiplicity of choice is to define translations from LTL to nondeterministic Biichi automata
and then use further automata conversions to arrive at the desired automaton model.
However, this approach has the inherent weakness that LTL cannot express all w-regular
languages, while NBAs can, and thus the subsequent conversions might have to solve a
harder problem.

The discovery of a translation of asymptotical optimal size from LTL to NBAs [VW86a]?
together with the automata-theoretic approach established the central role of NBAs.
Since the characteristics, e.g. size and representation, of the resulting NBA has a dir-
ect effect on the subsequent steps, a lot of effort has been spent on finding translations
with better practical characteristics, e.g. smaller size [GPVW95; Cou99; DGV99; EHO0O;
SB00; GOO01; GL02; Fri03; BKRS12; DLF}16|, symbolic representation [SchO1], or a
compositional structure [KPR98; PZ08|. Interestingly, it was discovered that LTL and
very-weak alternating co-Biichi automata (VWAA) are closely related — they capture the
same class of languages — and the translation from LTL to VWAA is straight-forward
[MSS88; Var94]. This in combination with the classic result of [MH84] also yields a LTL
to NBA translation. In fact [GO01] follows this approach and adds several optimisations
on top of it.

As noted before we sometimes need to apply a conversion step to arrive at the de-
sired automaton class. The most studied conversion in this context is determinisation:
The first translation [McN66| from NBAs to deterministic w-automata (with a differ-
ent acceptance condition) dates back to the 60’s. However, this construction left an
exponential complexity gap open. This gap was closed by Safra with an asymptotic op-
timal construction [Saf88], which has been refined several times, e.g. in [Pit07; Sch09].
In parallel, conceptually different approaches to determinisation have been proposed by
[MS95; KW08; FKVW15]. Interestingly, [LP19] unifies the constructions from Safra and
Muller-Schupp into a single meta-construction. So far we talked about determinisation
constructions that are correct for all NBAs. However, by restricting to certain subclasses,

'For a definition of these different acceptance types we refer to reader to Chapter 2.
2In fact the translation presented there is a special case of the technique shown in [WVS83].

1 Introduction

LDBA
[CY95: BDy [EKRS17]
LTL NBA DPA
[VW86a] + [Pit07; Sch09]+
[Var94; GOO1]+ [MEH84; GOOL] [Safsg]+ [L5d99; KMWW17]
VWAA DRA

Figure 1.1: Map of non-trivial translations centred around NBAs. Note that we do not distin-
guish between state- and transition-based acceptance and between generalised and
non-generalised acceptance conditions, e.g. a generalised nondeterministic Biichi
automaton is contained in the group NBA. We indicate by a ‘+’ if we left out some
references appearing in the text.

simpler constructions are possible, e.g. the construction of [MS08| operates on confluent
NBAs. Alternatively, one can also consider fragments of LTL such that a translation to
deterministic automata is simpler, as implied by [KVO1].

Continuing on the theme of relaxing requirements: for qualitative probabilistic model
checking it is not necessary to use deterministic automata and limit-deterministic suffice
[Var85; CY95].3 Thus we can use translations presented in [CY95; BDK+17] to obtain
LDBAs from NBAs. Similarly, for some scenarios it is enough to consider unambiguous
[BKK+16] or Good-for-Games automata [HP06; KMBK14]. Finally, one can also trans-
late LDBAs to DPAs [EKRS17] and DRAs to DPAs [L6d99; KMWW17]. An overview
of these translations is depicted in Figure 1.1.

Short-Cuts Around the Central Hub. Even though determinisation procedures were
successfully implemented for some applications such as probabilistic model checking
[KNP11], the situation remains unsatisfactory, since the combination of LTL-to-NBA
translations and of determinisation constructions does not scale well on larger specific-
ations in practice. This is believed to be due to the complexity of the state structure
that is well-known to make efficient implementation difficult, e.g. [KPV06]. This poses
a challenging problem, since specifications for interesting and non-trivial properties tend
to grow quite fast and the corresponding deterministic automata become quickly too
large. Consequently, the research community designed more efficient translations from
LTL to deterministic [KE12; KL13; BBKS13; EK14; EKS16; MS17; EKS18] or limit-
deterministic automata [KV15; SEJK16; KV17; EKS18|, skipping the intermediate step
through NBAs. It is has to be said that the early constructions of this series only apply
to ‘simple’ fragments of LTL and a complete translation was elusive at that time. One
can also derive deterministic parity automata (DPA) using the construction of [EKRS17]
that exploits the special structure of [SEJK16| to obtain small deterministic automata.

3[SEJK16] shows how to use a special family of LDBAs for quantitive probabilistic model checking, see
also Chapter 9.

1.2 A Unified Translation of LTL to w-Automata

LDBA

[EKRS17]

[SEJK16; KV17; EKS18]+

LTL NBA DPA
[EKS18]+

[KE12; BBKS13; EKS16; EKS18|+

[Var9d]+ [L6d99; KMWW17]

VWAA DRA

Figure 1.2: Map of direct translations. Note that we do not distinguish between state- and
transition-based acceptance and between generalised and non-generalised accept-
ance conditions, e.g. a generalised Rabin automaton is contained in the group DRA.
We indicate by a ‘4’ if we left out some references appearing in the text.

This translation is used with great success in [MSL18|. A map relating these translations
is displayed in Figure 1.2.

1.2 A Unified Translation of LTL to w-Automata

The contribution of this thesis is a unified approach to the translation of LTL to NBAs,
LDBAs, and DRAs enjoying the following properties that are absent in former trans-
lations: They are based on a unified logical framework, use semantic state labels, have
asymptotic optimality, are symmetric, are independent of syntactic restrictions, and have
practical relevance. The content of this thesis is a substantially extended version of our
results found in [EKS18] and rephrases our earlier results found in [SEJK16].

Unified Approach. Our translations rely on a novel Master Theorem, which decomposes
the language of a formula into a positive boolean combination of ‘simple’ languages?, in
the sense that they are easy to translate into automata. This approach is arguably
simpler than previous ones [EKS16; SEJK16|. Moreover, it provides a unified treatment
of DRAs, NBAs, and LDBAs, differing only in the translations of the ‘simple’ languages.
The automaton for the formula is obtained from the automata for the ‘simple’ languages
by means of standard operations for closure under union and intersection. It can be
thought of as a black box, where the user of the theorem provides translations to the
target language for simple fragments of LTL and obtains a compositional translation for
all LTL formulas.

Semantic Translation: Rediscovering Derivatives. Regular-expression derivatives are
an elegant, but seemingly forgotten, technique for translating regular expressions to
deterministic [Brz64| as well as nondeterministic [Ant96] finite automata. In order to

4Some of the languages can be attributed to the ‘recurrence’, ‘persistence’, and ‘safety’ class of LTL
according to [MP90; Sis94].

1 Introduction

distinguish the two types of derivates, the ones used for constructing nondeterministic
automata are called partial derivatives. The translations we present for the ‘simple’ lan-
guages are conceptually similar to these derivative constructions: States are essentially
LTL formulas and the successors are computed locally from the state-labelling formula.
The important point is that the language of a product state in the compositional con-
struction can be derived as an LTL formula by the simple means of conjunction and
disjunction. This is the pre-requisite for efficient semantics-based state reductions. For
example, based on this information states corresponding to equivalent formulas can be
merged. Note that these semantic-based reductions cannot be applied in general to
Safra-based constructions, because this semantic structure gets lost in translation. Fur-
thermore, this makes it easier to define a symbolic variant of the translation.

There have been several attempts to apply the idea of derivatives to w-regular expres-
sions in the deterministic setting [Red99; Red12|, but it seems that derivatives resist
a simple generalisation to an infinite setting [Par81| and major additional structure is
necessary for a correct construction. However, partial derivatives have been adapted
to w-regular expressions [TS15] with more success and in [ST18] well-known results for
LTL were reformulated using partial derivatives. In contrast, we apply the derivative
constructions only to fragments of LTL, where they can be easily be applied without
additional structure, and we then delegate the decomposition into the simple fragments
to the Master Theorem.

Asymptotic Optimality. Deterministic generalised Rabin automata are the most com-
pact among the deterministic automata used in practice®, in particular compared to
DPA. Previous translations to D(G)RA were either limited to fragments of LTL [KE12;
KL13; BBKS13|, or only shown to be triply exponential [EK14; EKS16]. Here we provide
constructions for all mentioned types of automata matching the asymptotic double ex-
ponential size for D(G)RAs and LDBAs, and the exponential size for NBAs. Thus the
construction we present here is the first direct translation from LTL to D(G)RAs with a
proven double exponential size bound.

Symmetry. The first direct translations [KE12; KL13| to deterministic automata used
auxiliary automata to monitor each F- (Finally) and G- (Globally) subformula. While
this approach worked for fragments of LTL, subsequent constructions for full LTL [EK14;
EKS16; SEJK16| could not preserve the symmetric treatment, thus we consider these
constructions to be asymmetric. They only used auxiliary automata for G-subformulas,
at the price of more complex constructions, e.g. break-point constructions similar to
[MH84]. Our translation re-establishes the symmetry and it treats F and G equally
(actually, and more generally, it treats each operator and its dual equally), which results
into simpler automata constructions.

Independence of Syntax. Previous translations were quite sensitive to the operators
used in the syntax of LTL. In particular, the only greatest-fixed-point operator they al-
lowed was G and operators such as R (Release) needed to be removed. Since formulas
also had to be in negation normal form, pre-processing of the input often led to unne-

°In theory Emerson-Lei automata can be more succinct [MS17], but they are not yet used widely in
practice.

1.3 Structure of the Thesis

cessarily large formulas. While our translations still requires negation normal form, it
allows for direct treatment of R, W (Weak Until), and other operators.

Practical Relevance. On top of its theoretical advantages, our translation is comparable
to previous NBA, LDBA, and DRA translations in practice.

Summarising, we think this work finally achieves the goals formulated in [KE12|, where
the first translation of this kind — valid only for what is in comparison only a small
fragment of LTL — was presented.

1.3 Structure of the Thesis

The thesis is organised as follows: Chapter 2 introduces fundamental terminology and
results about w-automata and LTL. Chapter 3 lays the theoretical groundwork for the
derivative-based constructions for fragments of LTL based on the ‘after’-function from
[EK14; EKS16; SEJK16]. Chapter 4 presents the central result — the Master Theorem
— that decomposes LTL formulas into simpler fragments. Chapters 5 and 6 derive from
the Master Theorem the promised automata constructions. These chapters follow the
same structure. First, we illustrate how to use the results from Chapter 3 to translate
four simple fragments of LTL to deterministic automata and nondeterministic automata,
respectively. Second, these translations are then used as building blocks to obtain DRAs,
LDBAs, and NBAs, respectively. Chapter 7 introduces a collection of possible optim-
isations to the presented constructions that are relevant for using these translations in
practice. Chapter 8 compares experimentally the newly defined translations with other
approaches and Chapter 9 discusses two possible applications for the proposed construc-
tions. In Chapter 10 we look at open questions and further ideas.

1.4 Preceding Publications

This dissertation is a comprehensive presentation of the results published in [EKS18|,
but extends that material considerably. Thus several chapters are in some parts textu-
ally based on [EKS18|, but have been adapted to fit in the general presentation. The

Publication [EKS18| [EKS16] [SEJK16] [LMS19]
Chapter Abstract, 1 - 6, 10 3 9 9

(a) Publications by the author containing results described in this dissertation and which served
as a textual basis.

Publication [KMS18] [KMSZ18| [SK16] [MSL18] [LMS19]
Chapter 8 8 9 9 9

(b) Publications by the author describing implementations that either have been used in a
chapter to perform experiments or contain implementations of the proposed applications.

Table 1.1: Preceding publications.

1 Introduction

most notable changes and additions are: the reduction of the LTL syntax; the introduc-
tion of af and -[],-congruences to make it clear which equivalence relations can be used
for constructing deterministic automata; a restricted version of the Master Theorem to
remove redundant guesses; a completely revised NBA construction; the inclusion of cor-
rectness proofs or proof sketches for all constructions; an extensive list of optimisation
for constructions derived from the Master Theorem; a detailed experimental evaluation;
and a adaption of the results from [SEJK16| to the LDBAs constructed through the
Master Theorem. Thus this dissertation contains text fragments and a selection of res-
ults from other publications of the author. Furthermore, the experiments presented in
Chapter 8 rely on [KMS18; KMSZ18| and the applications outlined in Chapter 9 have
been implemented in [SK16; MSL18; LMS19]. All implementations described in [KMS18;
KMSZ18; SK16; MSL18; LMS19| have been either developed or co-developed by the au-
thor. Tables 1.1a and 1.1b give an overview of the relation between each chapter and
each publication.

2 Preliminaries

Let ~ be an equivalence relation — a reflexive, symmetric, and transitive binary relation
— over a fixed set X. The equivalence class of an element z € X is denoted [z]. and
defined as [z]. = {y € X : z ~ y}. The quotient set of a subset Y C X is denoted Y.
and defined as Y, = {[y]~ : y € Y'}. Let ~ and = be two equivalence relations over the
same set X. We write ~ <~ if © ~ y implies x ~ y for all z,y in X. We write ~ <=
if ~<x=~ and ~#=~. Further let f : X — X be a function on the set X. If for each
z,y € X with x ~ y the function f satisfies f(z) ~ f(y), then there exists the canonical
lifting fo: X)o — X defined as fo([z]~) = [f(z)]~.

2.1 w-Languages and w-Automata

Let X be a finite alphabet. An w-word w over X is an infinite sequence of letters agajas . . .
with a; € ¥ for all ¢ > 0, and an w-language is a set of w-words. The set of all w-words is
denoted ¥¢. We denote the i-th letter of an w-word w (starting at 0) by w[éi]. The finite
infix wlilwli+1] ... w[j — 1] is abbreviated with w;; and the infinite suffix wlijw[i +1] ...
with w;. The following identities are useful when working with w-words: w;(;11) = wli],
W(i44) = € and wp;w; = w for all ¢, j > 0. Finally, we denote the infinite repetition of a
finite word o1 ...0, by (01...00)Y =01...0p,01...0,01

For the sake of presentation we focus on w-automata with acceptance conditions defined
on states rather than on transitions. Since nowadays the preferred type of acceptance
condition for implementations is transition-based [GL02; KK14; BBD+15; DLF-+16], we
sketch in Chapter 7 how to adapt the presented constructions to the transition-based
setting.

Let ¥ be a finite alphabet. A nondeterministic pre-automaton over X is a tuple P =
(Q, A, Qo) where Q is a finite set of states, A: Q x & — 29 is a transition function,
and Qo is a set of initial states. A transition is a triple (¢, a,¢’) such that ¢’ € A(q,a).
Depending on the context we might also view A C @ x ¥ x @ as a relation, which is
an equivalent description. A pre-automaton P is deterministic if () is a singleton and
A(q,a) is a singleton for every ¢ € @ and every a € X.

Acceptance Conditions over States. A state-run of P on an w-word w is an infinite
sequence of states 7 = qpq1q2 ... such that gy € Qo and ¢; 1 € A(g;, w[i]) for all i. We
denote the set of states occurring infinitely often in r by inf(r). An acceptance condition
on states is an expression over the syntax:

a == 1inf(S) | fin(S) |ar Vaz | ar Aag with S C Q

2 Preliminaries

Acceptance conditions are evaluated on runs and the satisfaction relation r = « is defined

as follows:
rE=anf(S) iff inf(r)NnS#0
rE=fin(S) iff inf(r)nS=10
rEaVay iff rEa orrEa
rEaANay iff rEa andr = o

An acceptance condition « is a
— Biichi condition if o = inf(S) for some set S C @ of states.
— co-Biichi condition if v = fin (S) for some set S C @ of states.

— generalised Biichi condition if o = /\f:1 inf(I;) for some k > 1 and some sets
I, 1o, ..., I C @Q of states.

— Rabin condition if a = \/le(ﬁn(Fi) A inf(1;)) for some k > 1 and some sets F7,
Ii,..., Fy, I C Q of states.

— generalised Rabin condition if o = \/le(ﬁn (F;) A /\é-i:1 inf(1;;)) for some k, Iy,
la, ...l > 1and somesets Fy, I 1, l12, ..., iy oo By D1y - Iy, © @ of states.

An w-automaton over ¥ is a tuple A = (Q,A,Qo,) where (Q,A, Qo) is a pre-
automaton over ¥ and « is an acceptance condition. A state-run r of A is accepting
if r = a. A word w is accepted by A if some run of A on w is accepting. The language
L(A) of an automaton A is defined as the set L(A) := {w € £“ : w is accepted by A}.
An w-automaton is a (generalised) Biichi (co-Biichi, Rabin) automaton if its acceptance
condition is a (generalised) Biichi (co-Biichi, Rabin) condition.

Acceptance Conditions over Transitions. We only need to slightly change the previous
definitions. A transition-run of P on an w-word w is an infinite sequence of transitions
r = totita... = (qo,w[0], q1)(q1, w[1], q2)(q2, w[2],q3) ... such that gy € Qo and ¢; 41 €
A(gi,wl[i]) for all i. We denote by inf(r) the set of transitions occurring infinitely often
in r. An acceptance condition on transitions has the same syntax as before and is an
expression over the syntax

az=inf(T)| fin(T)|aaVag | oy Aae withT C A

Acceptance of an w-word w and the acceptance conditions are defined analogously to
the acceptance conditions on states. Defining acceptance on transitions does not change
the expressivity of the w-automaton, but automata with transition-based acceptance can
be more succinct compared to automata with state-based acceptance. In the following
we just use the term run for both types of runs, state-run and transition-run.

Limit-Deterministic Biichi Automata. Intuitively, a nondeterministic Biichi automaton
(NBA) is limit-deterministic if it can be split into a nondeterministic component without
accepting states (or transitions), and a deterministic component. The automaton can
only accept by ‘jumping’ from the nondeterministic to the deterministic component, but
after the jump it must stay in the deterministic component forever. Formally, an NBA
B = (Q,A,Qo,inf(5)) is a limit-deterministic Biichi automaton (LDBA) if @) can be
partitioned into two disjoint sets Q = QW Qp such that

10

2.1 w-Languages and w-Automata

1. A(g,a) € Qp and |A(q,a)| =1 for every ¢ € Qp, a € 3, and
2. SCQp.

The definition for LDBAs with transition acceptance is analogous.

Notation for w-Automata Classes. We abbreviate the type of an w-automaton using
a simple, well-known scheme. We denote the branching mode by D (deterministic), LD
(limit-deterministic), or N (nondeterministic) and follow this by the acceptance condition:
B (Biichi), C (co-Biichi), R (Rabin), GB (generalised Biichi), or GR (generalised Rabin).
We suffix this string by A which stands for automaton.

Further Acceptance Conditions and Branching Modes. In this thesis we solely focus
on the deterministic and the nondeterministic (also called existential) branching modes
of w-automata. Other branching modes such as as alternating branching or universal
branching, which is dual to the existential branching mode and where every run needs
to be accepting, are not studied here. In the universal branching case a simple dual-
isation of the results for NBAs is sufficient and yields universal co-Biichi automata. In
the alternating branching case, there exists already a very natural relationship between
LTL and very-weak alternating co-Biichi automata [MSS88; Var94| and the approach we
outline later does not add an interesting perspective.

There are also more acceptance conditions than the ones we listed above, but beyond
the focus of this dissertation: parity acceptance, which can be seen as a restricted form
of a Rabin acceptance condition; Streett acceptance, which is the dual of the Rabin
acceptance condition; or Emerson-Lei acceptance, which is a symbolic encoding of the
Muller acceptance condition.

2.1.1 Boolean Operations

In the later chapters we rely on Boolean operations in the chosen automaton model
to assemble the final automaton. We survey several standard constructions for binary
intersection and union for deterministic and nondeterministic automata with acceptance
condition on states. Since these constructions are folklore, the correctness proofs are
skipped. Further, the generalisation to the n-ary case and to the case with acceptance
defined on transitions is straight-forward and left as an exercise for the reader.

We write AN B and A U B to denote the intersection and the union construction,
respectively, for the automata A and B. Since these constructions are not uniform over
all involved automata models, we always assume that the best construction or the best
combination of constructions from the following is chosen. Further, because we allow
blocking states in our automata definition, we assume that in the (synchronous) product
construction a trap state is implicitly added, when needed.

Proposition 2.1. Let A1 = (Q',AY,Q},at) and Ay = (Q? A% Q3,a?%) be two w-
automata over the same alphabet 3. We define the product pre-automaton Px as:

Px = (Q" x @ Ax, Q) x QF)
where the transition function Ay is given by:

AX(<q1aQQ>aa) = {<qiaqé> : qll € Al(q17a)aq/2 € AQ(Q%G)}

11

2 Preliminaries

The intersection-automaton Ay N Az over the alphabet ¥ recognising L(A1) N L(Az) is
Py equipped with the acceptance condition o' A o?. The union-automaton A; U As over
the alphabet X recognising L(A1) U L(Asg) is Py« equipped with the acceptance condition
at Vv a2, To make this operation well-defined we need to replace all occurrences of inf(S)
and fin (S) within ot by inf(Sx Q%) and fin (S x Q?). Analogously, all occurrences within
a? need to be replaced by inf(Q' x S) and fin(Q' x S).

Note that if both automata, A; and As, are deterministic, then also A; N Ao and
Aj; U Ay are deterministic. Further, observe that for Biichi automata the acceptance

condition obtained from this construction is not necessarily again Biichi. For the union-
automaton we simply use the following rewrite rule:

k k

\/ inf(I;) ~ inf (U Iz-)
i=1 i=1
But for the intersection-automaton we need to apply a degeneralisation construction to
obtain a Biichi automaton:

Proposition 2.2. Let A = (Q, A, Qo, /\f:1 inf(I;)) be a generalised Biichi automaton.
Then the following Biichi automaton over the alphabet ¥ recognises L(A):

k
A= (U{z’} x Q, A {1} x Qo, inf({k} x m)
=1

where the transition function A’ is given by:

{{((tmod k) +1,p) : p € A(g,a)} ifqel
{(i,p) : p € Ag,a)} otherwise.

A'((i,q),a) = {

Note that, again, if the automaton A is deterministic, then also A’ is deterministic.
Finally, if we want to construct the union of two nondeterministic Biichi automata, then
we can use a simpler construction than the product construction from before:

Proposition 2.3. Let Ay = (Q',AY,Q},at) and Ay = (Q? A% Q3,a?) be two non-
deterministic automata over the same alphabet ¥ and a disjoint set of states. Then the
following automaton over the alphabet X recognises L(A1) U L(Az):

AlUA = {q} wQ'wQ* Ay, {q},a' Va?)
where we define the transition function Ay as follows:
Ay =AU {(g,a,p") : g € Qp,a € B,p" € Al(gg,a)}
UA%U{(g0,a,p%) : g5 € QF,a € Z,p” € A%(q3, a)}

2.1.2 Visual Representation

In the following chapters we will deal with automata over alphabets of the structure
¥ = 2% for some finite set X. In this case we simplify the graphical representation of
transitions by the following symbolic notation:

@7{b}7{c}7{b9c}»{avbvc} a+be
q p

is replaced by q——>0p

We write a for all sets containing a, and @ for all sets not containing a. Furthermore, we
write ¥y for the intersection and i + x for the union of the sets represented by v and x.

12

2.2 Linear Temporal Logic

2.2 Linear Temporal Logic

Most authors introduce linear temporal logic (LTL) [Pnu77; GPSS80; Pnu81| with the
following reduced syntax:

pu=t|a|p|lenp| Xp| oUp

Left-out, but often used LTL operators are then added as abbreviations. This reduced
syntax captures the essence of LTL and has the advantage that only a few cases have
to be considered, e.g. in an induction. However, this reduced syntax can also be an
obstacle. The result we present requires two characteristics from an LTL syntax: First,
it is essential that in addition to U (until) we have a ‘weak’ version of it: W (weak
until). Second, all formulas need to be in negation-normal-form, i.e. negations only
occur in front of atomic propositions. Thus we introduce ff, —a, V and the temporal
operators R (release) and M (strong release) in order to remove the arbitrary negations
(=) from the syntax:

Definition 2.4 (LTL).
pu=tt|ffla[-alonp|eVe|Xe|pUp| M| Ry | oWy witha € Ap

Let w be a word over the alphabet 27 and let ¢ be a formula. The satisfaction relation
w = ¢ is inductively defined as follows:

w =t wEXe iff wEe

w = fF

wEa iff a € wl0] wE Uy iff Fk.w, E¢ andVj < k.wj =@
w = —a iff a ¢ wl0] wE oMy iff Jk.wg = and Vi <k owj =

wEEeANY iff wEeaandwkEY wEeRY iff Vekowg E Y orw E oMy
wEeVY iff wEporwkEY w = oW iff Vk.wg =@ orw = Uy

We denote by L(¢) == {w € (24P)¥ : w |= ¢} the language of ¢. Two formulas ¢, are
equivalent, denoted @ ~; 1, if their languages are equal. Formally:

p 1= (L(p) = L))

The semantics make it clear why W is called weak until: it behaves exactly as U,
but does not enforce that v is eventually satisfied. Similarly, M is called strong release,
because ¢ needs to be satisfied eventually. It is easy to see that every LTL formula (of the
reduced syntax) can be translated to an equivalent LTL formula in negation-normal-form
without an increase in size!. Lastly, we use the two common abbreviations Fy = tt Uy
(eventually) and Gy = ffRy (always) with well-known semantics:

wE=EFe iff 3k.wg =@ wkE Gy iff Ve.w, E ¢

! Assuming we consider a and —a being of the same size.

13

2 Preliminaries

2.2.1 Propositional Semantics

A subformula 1 of ¢ is called proper if it is neither a conjunction nor a disjunction, i.e.,
if the root of its syntax tree is labelled by either a, —a, or a temporal operator (U, R,
M, W, or X). We denote by sf(¢) the set of proper subformulas of ¢.

In addition to the interpretation over infinite words we often regard LTL formulas
as propositional formulas. Intuitively, this can be described with the following trans-
formation: Let ¢ be a formula. We replace every maximal proper subformula ¥ by a
propositional variable x, to obtain a propositional formula ¢,. We write Z |=, ¢ if the
propositional assignment Z: LTL — {tt,ff} satisfies ¢,. Note that depending on the
context we take the equivalent view of Z being a set of LTL formulas. Formally:

Definition 2.5 (Propositional Semantics of LTL). Let Z be a set of LTL formulas and let
¢ be an LTL formula. The satisfaction relation I =, ¢ is inductively defined as follows:

Tt T, X iff Xpel

T -y fF

ITkEpa iff ael T, oUy iff Uy el
Ty a iff rael T =y, oMy iff oMy € T

IThpeny iff TEppandI =y I, Ry iff pRY €T
IEpeVy iff TEpporIEpy I Ep eWy iff oWy €T

Two formulas ¢, are propositionally equivalent, denoted ¢ ~p, v, if

Ikpe<=Ikpv
holds for all propositional assignments L.

Example 2.6. Let ¢ = 11 V (2 A1) with 1 = Xb and 12 = G(aV XDb). Let T = {41}
and let J = {12} be two propositional assignments. We then have I |=p, @, but J =) .

Further, we have ¢ ~p 1. Thus Xb is propositionally equivalent to ¢ and Xb is an
element of the equivalence class [¢]~,,.

Notice that this definition maps LTL formulas to monotone Boolean functions. Thus
0 =p ¢ holds if and only if ¢ ~), tt and U }~, ¢ where U denotes the universe containing
all variables holds if and only if ¢ ~, ff. Furthermore, |= and =, interpret tt, ff, A, and
V in the same way:

Lemma 2.7. Let ¢ be a formula and let w be word. Then:

wkEe <= {Y:Yesflo)hwEP} Ep e

Proof sketch. This follows from a straight-forward structural induction on (. O

Example 2.8. Let ¢ = aV Fb and w = (0{b})¥. In this case we have w = ¢ and
{Fb} =p o

2.2.2 Notable Fragments: yLTL, vLTL, GF(uLTL), and FG(vLTL)

In the upcoming chapters the following four fragments of LTL will play a central role,
taking the role of in the introduction mentioned ‘simple’ languages:

14

2.2 Linear Temporal Logic

— The fragment LT L and the fragment v LT L.

uLTL is the fragment of LTL restricted to temporal operators U and M, on top
of Boolean connectives (A, V), literals (a,—a), and the next operator (X). vLTL
is defined analogously, but with the operators R and W. In the literature uLTL
is also called syntactic co-safety and v LT L syntactic safety.

— The fragments GF(uLTL) and FG(vLTL).

These fragments contain the formulas of the form GF¢, where ¢ € yLTL, and
FGy, where ¢ € vLTL, respectively.

We substantiate the claim that these languages are ‘simple’ by giving in Sections 5.1
and 6.2 straight-forward constructions. The reason for the names puLTL and vLTL
is that U and M are least-fixed-point operators, in the sense that their semantics is
naturally formulated by least fixed-points, e.g. in the p-calculus, while the semantics of
R and W is naturally formulated by greatest fixed-points.

15

3 The ‘after’'-Function

3.1 Definition and Properties

The ‘after function’ af(p, w), read ‘¢ after w’, [EK14; EKS16; EKS18] is the foundation
for the translations to automata presented in the following chapters. The function assigns
to a formula ¢ and a finite word w another formula such that, intuitively, ¢ holds for
ww' if and only if af(p, w) holds ‘after reading w’, that is, if and only if w’ = af{p, w).

Definition 3.1. Let ¢ be a formula and o € 2P a single letter. The formula af(p, o) is
inductively defined as follows:

E ; = tt afXp,0) =

=ff
af(a, o) =ifa € o thentt else ff af(pUy,0) = af(v),0) V (af(e, o) A pU)
(ﬂ o) =ifad¢o thentt elseff af(eMip,0) = af(p,0) A (af(p,0) V M)
(90 A ¢’) = af(go, U) A af(% U) (@Rwa) = a (1/)7 U) A (af(<707 U) \4 @Rﬂ))
aflo Vi, o) = aflp,0) V af(y,0) afleWip,0) = af(¥), o) V (af(¢,0) N p W)

Furthermore, we generalise af to finite words by defining af(p, €) = ¢ and af(p,ow) =
af(af(p,0),w) for every o € 24P and every finite word w. Finally, we define the set of
formulas reachable from ¢ as Reach(yp) = {af(¢,w) : w € (24P)*}.

Example 3.2. Let ¢ = aV (bUc) be a formula. We then have af(p,{a}) = tt Vv (ff Vv (ff A
bUc)), af(p,{b}) =V (ff v (tt AbUC)), and af(p,0) = £V (£ Vv (ff AbUc). We discuss
i Section 3.2 how to deal with the large amount of added constants and this example is
revised in Fxample 3.5 using such a method.

Lemma 3.3. Let ¢ be a formula, let w € (24P)* be a finite word, and let w' € (24P)* be
an infinite word. Then:

1. ww' = <= w' = af(p,w)
2. sflaf(p,w)) C sfle)

Lemma 3.3 was introduced in [EK14; EKS16| and describes the main purpose of af:
The first part can be read as L(¢)"” = L(af(p,w)), where L* denotes the derivate under
w of the language L, defined as L* := {w’ : ww’ € L}. Thus af computes the derivative
of a language, represented by a formula. The second part states that af(y,w) is always
a positive Boolean combination of proper subformulas of ¢ and af does not create new
proper subformulas. Thus propositional logic offers a way to approximate equivalence of
derivatives.

Proof of Lemma 8.3. (1) We show by induction on ¢ that for a single letter o € 24P the
property holds, where we just show two representative cases of the induction. The result

17

3 The ‘after’-Function

for arbitrary w is then proven by induction on the length of w. Let us now proceed with
proving the single-letter case:

oul o = w E afle,0)
— Case ¢ = a.

ow' Ea < a€o < af(a,0) =tt < ow [af(a,0)

— Case Y = ’(ﬁlUi/Jz.

ow' |= ¢
= ow EV (Y1 AXp) (LTL expansion)
— W' E af(a,0) V (af(¢1,0) A) (induction hypothesis)
— ' aflp,0)

(2) Intuitively this holds, since af does not create new elements in the syntax tree except
Boolean combinations of existing temporal subformulas. The formal proof proceeds by
induction on ¢ and then on the length of w. O

Related Work. The definition of af is almost identical to the transition relation of
very-weak alternating automata constructed from LTL formulas [MSS88; Var94|. Thus
af can be interpreted as a mechanism to track a run on such an automaton. This close
relationship stems from the fact that both approaches use ‘LTL expansion laws’ [BKO0S|
to construct the final result.

As mentioned in Chapter 1, regular-expression derivatives are an elegant, but seemingly
forgotten, technique for translating regular expressions to deterministic [Brz64| as well
as nondeterministic [Ant96| finite automata. The function af follows in these footsteps
for LTL and we will identify more conceptual similarities in the rest of this chapter.

Definitions for F and G. In examples we often use formulas containing F and G. In
order to keep the examples readable we add the following two shortened definitions:

af(Fp,0) = af(p,0) V Fp af(Gyp, o) = af(p,0) A Gy

Notational Conventions. In the dissertation we use the following notational convention
for af. We denote a change to the object it is applied by a subscript, e.g. af_ signals
that af operates on equivalence classes of ~ instead of formulas. We use a superscript to
denote changes to the computation of af itself, e.g. afF¥ hints at the fact that we added
a special case, e.g. afT¥(tt, o) = Fi).

3.2 af-Congruences

The automata constructions we define use formulas as states and af as the transition
relation. However, blindly applying af has two problems: it might yield an infinite state
space and, more importantly, it is unclear when a state should be considered accepting or
rejecting, since a simple test for tt or ff might not suffice, e.g. af(Fa,{a}) = tt VFa # tt.
Let us focus on the second question first: we want to determine in a simple way if £(¢p)

18

3.2 af-Congruences

is either (, (2‘41’)W7 or something in-between. For this we define the eval function which
returns tt if the language is (247)“, returns fF if it is (), and returns ? if it is something
in between:

Definition 3.4. Let ¢ be a formula and let {tt,ff,?} be the domain of a three-valued
logic. Then the constants-value eval(yp) is inductively defined as follows:

eval(tt) = tt eval(Xp) =7
eval(ff) =ff

eval(a) =7 eval(pUy) =7
eval(—'a) =7 eval(pMryp) =2
eval(o N\) = eval(p) M eval(v)) eval(pRy) =7
eval(p V) = eval(p) U eval(y)) eval(pWip) =2

n|ifE 7 U 7
ff |ff ff ff ff |ff 7
7 7 7 077t
tt | 7 tt tt |ttt tt tt
Two formulas ¢, 1 are constants-equivalent, denoted ¢ ~. ©, if ¢ = ¢ or eval(p) =

eval(vy) € {tt, ff}.

Example 3.5. Let ¢ = a V (bUc) be a formula. We then have af(p,{a}) ~. tt,
af(@,{b}) »#c bUc, afle, {b}{c}) ~c tt, and af(p,0) ~. 1F.

Note the conceptual similarity to Brzozowski derivatives [Brz64]: In that construction
states are marked as final if the regular expression r labelling the state recognises the
empty word e. For this [Brz64] introduces a syntactic check that works in the same way
as eval does.

Now let us reconsider the first problem: We need a way to decide if two computed
formulas af(¢, w) and af(p,w’) are equivalent and can be collapsed to the same state.
For this we coin the term af-congruence: An equivalence relation ~ is an af-congruence
if af (for a fixed o) can be applied to any element of an equivalence class af and the
resulting formulas are again all in the same equivalence class. This ensures the existence
of a canonical lifting of af to ~. Further, since we want that every af-congruence embeds
eval we require that ~. is a subset of ~. Finally, for obvious reasons we only consider
equivalence relations that are under-approximations of language equivalence (~;).

Definition 3.6. Let ~ be an equivalence relation on formulas. We call the equivalence
relation ~ an af-congruence if the following holds:

Lo ~e~ g

2. o~ = af(p,0) ~ af(1p,0) for all formulas ¢, and letters o.
Archetypical af-Congruences. All equivalence relations (~¢, ~p, and ~;) we have seen
so far are in fact afcongruences. The relation ~, marks one end of the spectrum.

It embodies a minimal check to determine if a state should be accepting or rejecting.
However, while being cheap to compute, it might generate an infinite state space. The

19

3 The ‘after’-Function

relation ~; marks the other end of the spectrum. It collapses as many formulas as
possible to one equivalence class, but deciding ~; is expensive and depending on the
decision procedure we might need to implicitly build an automaton. Thus we obtain
a circular dependency: to build the automaton we need to build an automaton. The
equivalence relation ~, balances this and provides an efficiently equivalence relation,
allows for a finite automaton construction, and embodies eval.

Lemma 3.7.
~e < Np < ~1

Proof. We need to prove (1) ~¢ < ~p, (2) ~p < ~, and the matching inequalities (3).

(1) It is sufficient to show [tt]., = [tt]., and [ff]., = [ff].,, since formulas not covered
by these two equivalence classes form singleton equivalence classes [¢)]~, = {¢} for ~.
We observed before that ¢ ~,, tt is equivalent to () =, ¢. We continue with) =, ¢ if and
only if eval(p) = tt which can be shown by a straight-forward induction on ¢. Taking
these two steps together we have [tt]., = [tt],. The second part ([ff]., = [ff].,) is
then proven in the same way.

(2) Let ¢, be two formulas and assume ¢ ~j, 1. We need to show ¢ ~; 1. For this
let w be a word such that w |= ¢. With Lemma 2.7 we follow {x € sf(¢) : w = x} =p ¢
Due to the monotonicity of =, we have {x € sflp) U sf(¢)) : w = x} F=p ¥ and we
can restrict it again to the proper subformulas of ¢: {x € sf(¢)) : w = x} =, . We
apply Lemma 2.7 again and are done with this direction. The other direction is proven
analogously.

(3) Finally, we have ~.#~), and ~,#~; due to a Ab % bAa, a Nb ~, bAa,
(Fa) V (F-a) #p tt, and (Fa) vV (F-a) ~; tt. O

c

Lemma 3.8. ~., ~,, and ~; are af-congruences. The set Reach(gp)/Nc can be infinite.
The sets Reach(p),~, and Reach(p),~, are finite and if the formula ¢ has n proper
subformulas, then Reach(p),~, and Reach(y),~, have at most cardinality M(n) < 22"
where M (n) denotes the number of monotonic Boolean functions of n variables (Dedekind
number).

Proof. We first observe that ~., ~,, and ~; all satisfy the first part of Definition 3.6 due
to Lemma 3.7. For the second part we begin with ~;. Let ¢, 1 be two formulas such
that ¢ ~; 1, let o be a letter, and let w be a word. Then:

wEaflp,0) <= ocwEy (Lemma 3.3)

= owgEY (p ~19)
<~ w k= af(¢,0) (Lemma 3.3)

Hence af(p,0) ~; af(y, o) and thus ~; is an af-congruence. We continue with ~,;:

Let ¢, ¥ be two formulas such that ¢ ~, 1 and let o be a letter. Note that afis a
substitution that only replaces literals (a, —a) and modal operators (M, U, R, W, X).
These substitutions are a congruence on ~, and thus we have in this particular case:
af(p,0) ~p af(1, o). Hence ~), is an af-congruence.

For the equivalence relation ~. we showed in the proof for Lemma 3.7 that [tt]., =
[tt]~, and [ff], = [ff]., hold. Either an equivalence class [p]~, is a singleton, in which
case the second condition trivially holds, or it is one of [tt]., and [ff].., in which case
we simply use the fact ~, is an af-congruence to show that the second condition holds.
Thus ~, is an af-congruence.

20

3.3 Logical Characterisations of puLTL, vLTL, GF(uLTL), and FG(vLTL)

We show that Reach(Fa),.. is infinite. Note that the set contains for each (™ a distinct
equivalence class (Reach(¢),~, 2 {[Fa]~,, [ff V Fa]., [ff V (ff V Fa)].,...}) and thus
is infinite.

Let ¢ be a formula with n proper subformulas. af does not create new temporal operat-
ors and maps only to Boolean combinations of existing proper subformulas (Lemma 3.3).
Thus each [¢]., € Reach(y),~, can be interpreted as a monotonic Boolean function over
n variables. There are at most M (n) many of these functions and thus |Reach(p) ., | <
M (n). Furthermore, M (n) can be bounded by 22", since there exist at most that many
Boolean functions over n variables.

The last missing piece — Reach(p) ., has at most M(n) elements — is an immediate
consequence of the bounds for Reach(¢),~, and Lemma 3.7. Thus we conclude that
Reach(y),~, is also finite and has at most M (n) many elements. O

3.3 Logical Characterisations of yLTL, vLTL, GF(uLTL),
and FG(vLTL)

We now detail how an af-congruence (Definition 3.6) can be used as mechanism to check
if a word w satisfies formulas from ‘simple’ LTL fragments. This generalises the corres-
ponding result of [EKS16].

Lemma 3.9. Let ~ be an af-congruence and let w be a word.
~ Let ¢ € pLTL.
1. wE @ <= i af(e,wy) ~ tt
2. w GFy <= Vi.3j >i.3k. af(Fp,wj) ~ tt
~ Let p e vLTL.
3. wEe <= Vi af(p,wg) ~ fF
4. wEFGy < 3i.Vj > i.Vk. af(Gp,w;;) ~ fF
Proof. Let ~ be an af-congruence, let w be a word, and let ¢ € uLTL.
(=1) Assume w | . We proceed by structural induction on ¢ to prove the exist-
ence of an i such that af(y,wp;) ~. tt, which implies af(,wp;) ~ tt by ~.<x~. We

only consider two representative cases of the possible cases: tt,ff,a, —a,v¥1 A Yo, 91 V

V2, X0, 1 Uy, 1 Mo
— Case ¢ = a. Since w = ¢ we have a € w[0] = wp1 and we get af(¢, wo1) = tt ~, tt.

— Case ¢ = ¥1Uty. By the semantics of LTL there is a k such that wy = o
and wy = Y for every 0 < ¢ < k. By induction hypothesis there exists for
every 0 < ¢ < k an ¢ > { such that af(11,wy;) ~. tt and there exists an i > k
such that af(i9,wg;) ~c tt. Let j be the maximum of all those i’s. We prove
af(1Urha, woj) ~. tt via induction on k.

— k=0.
af(1p1 Utha, woj)
= af(th2, wo;) V (af(yh1, wo;) A af(p1Uta, wij)) (Definition 3.1)
~e ttV (af(vr, woji) A af(v1 Urha, wiy)) (k=0 — af(12, wo;) ~c tt)
~, th

21

3 The ‘after’-Function

- k>0.
af(1p1 U2, wo;)
= af(v2,wo5) V (af(11, woi) A af(1p1 U2, w15)) (Definition 3.1)
~e af(P2,wo;) V (tt A af(y1 Urha, wyy)) (k>0 — af(i1,wo;) ~ec tt)
~e¢ af(a, woj) V (tE A tt) (induction hypothesis)
~e tt

(= =1 —) Assume w j= ¢. By Lemma 3.3 we have w; = af(p,wo;) for all 4, thus
af(¢, wo;) »; tt for all 4, and thus af(y, we;) ~ tt which we needed to prove.
(2) We derive this part by unfolding the LTL semantics of GFy and applying (1):

wkEGFyp < Vi.dj >i.w; EFp < Vi.3j >i.3k. af[Fo,w;) ~ tt

(=3) Assume w | ¢. By Lemma 3.3 we have w; = af(p,wp;) for all i, thus
af(¢, wop;) »; ff holds for any i, and af(, wg;) » ff which we needed to prove.

(m =3 —) Assume w [~ ¢. We proceed by structural induction on ¢ to prove the
existence of an i such that af(¢, wp;) ~. ff. We only consider two representative cases of
the possible cases: tt, ff, a, —a, Y1 A o, 11 V Yo, Xap, 101 Wi, b1 Rapo.

— Case ¢ = a. Since w = ¢ we have a ¢ w[0] = wo; and we get af(p, we1) = ff ~. fF.

— Case ¢ = 1)1 Wiy, By the semantics of LTL there is a k such that wy [= ¥
and wy P& 1o for every 0 < ¢ < k. By induction hypothesis there exists for
every 0 < ¢ < k an ¢ > (¢ such that af(ig, wy;) ~. ff and there exists an i > k
such that af(¢1,wg;) ~c ff. Let j be the maximum of all those i’'s. We prove
af(1 Wapa, woj) ~ ff via induction on k.

— k=0
af(1p1 Wiz, woj)
= af(¢2, woj) V (a,f(wl, w()j) A af(wlwwg, wlj)) (Deﬁnition 3.1)
~e BV (af(1, woi) A af(p1 Wipa, wyj)) (k=0 — af(x2, wi;) ~ fF)
~e BV (fE A af(hi Wipa, wiy)) (k=0 — af(1, wi;) ~c fF)
~, ff
- k>0.
af(v1 Wip2, woj)
= af(12,wo;) V (af(¥h1, wo;) A af(r Wiha, w;)) (Definition 3.1)
~ec af(1pa, wo) V (af(ih1, woj) A af(p1 Wipe, wi5)) (k>0 = af(ih2, wo;) ~c fF)
~e BV (af(11, wo ;) A1) (induction hypothesis)
~ fF

(4) We derive this part by unfolding the LTL semantics of FGy and applying (3):

wEFGy < 3.Vj >iw; =Gy < Fi.Vj > i.Vk. af(Gp,wj;) ~ ff

22

4 The Master Theorem

In this chapter we present and prove the Master Theorem: A characterisation of the
words satisfying a given formula from which we can easily extract deterministic, limit-
deterministic, and nondeterministic automata of asymptotically optimal size.

The essential insight of the Master Theorem is that given a formula ¢ we can partition
the universe into finitely many sets L; W Lo W - - - L,, = (24P)*, where two words w and
w’ are in the same partition L; if

1. each subformula of ¢ with the shape 1 Uy or 1)1 Mu)s is either satisfied infinitely
often by w and w’, or is violated almost always by w and w’, and

2. each subformula of ¢ with the shape 11 W1y or 11 Ry is either satisfied almost
always by w and w’, or is violated infinitely often by w and w'.

Intuitively, this means two words w,w’ € L; behave identically with regards to the
subformulas of ¢ when we consider the ‘limit’ of w and w’. How can we make use of
this way to partition the universe? Let us provide some intuition with the help of an
example.

Consider the formula ¢ = G((aRb) V (cUd)). Observe that ¢ does not belong to
any of the fragments mentioned in Section 2.2.2, namely puLTL, vLTL, GF(uLTL),
FG(vLTL), for which one can easily obtain automata.

Let L; be a partition containing words that satisfy infinitely often cUd. Assume we
now are promised that the word w is in L;, meaning that we are promised that along
the word w the subformula cUd holds infinitely often. For example, this is the case for
w = ({a,b}{d})¥. In particular, we then know that d holds infinitely often, and so we
can ‘reduce’ checking w = ¢ to checking w = G((aRb) V (¢Wd)), which belongs to the
fragment v LT L.

Let L; be a partition containing words that violate cUd almost always. Assume we
now are promised that the word w is in L;, meaning that we are promised that cUd
only holds finitely often. For example, because w = {d}*{b,c}*. Furthermore, we get
an additional promise that along the suffix ws the formula cUd never holds again. How
can we use this promise? First, w |= ¢ reduces to ws = af(p, wps) by the fundamental
property of af, Lemma 3.3. Further, a little computation shows that af(y, wes) ~; ¢,
and so w = ¢ reduces to ws = ¢. Finally, using that ¢Ud never holds again, we reduce
w = ¢ to ws = G(aRb V ff) ~; G(aRb) which belongs to the fragment vLT'L.

This example suggests a general strategy for translating ¢ to automata:

— Guess the partition w belongs to. To be more precise, guess the set of least-fixed-
point subformulas (11 M1y, 11 U1s) of ¢ that hold infinitely often, denoted by
GF%, and the set of greatest-fixed-point subformulas (41 Rpa, 11 Weby) that hold
almost always, denoted by FG 7.

23

4 The Master Theorem

— Guess a stabilisation point after which the least-fixed-point subformulas outside
GF5 do not hold any more, and the greatest-fixed-point subformulas of FG 2 hold
forever.

— Use these guesses to reduce w |= ¢ to problems w |= 1 for formulas v that belong
to the fragments introduced in Section 2.2.2 and for which we know how to build
automata as outlined in Sections 5.1 and 6.2 relying on af from Chapter 3.

— Check that the guesses are correct.

Since the number of such partitions is finite, we can replace guessing a partition by
enumerating all possible ones and ‘trying them all out’ in parallel. In the rest of the
section we develop the logical component of this strategy. In Section 4.1 we introduce
the terminology needed to formalise the stabilisation point. Section 4.2 shows how to
use a guess X for GF or a guess Y for FG¥ to reduce w = ¢ to a simpler problem
w = ¢[X], or w = [Y],, where ¢[X], and ¢[Y], are read as ‘¢ with GF-advice X’ and
‘o with FG-advice Y, respectively. Section 4.3 shows how to use the advice to decide
w = . Section 4.4 shows how to check that the advice is correct. The Master Theorem is
stated and proved in Section 4.5. We provide a useful restriction of the Master Theorem
in Section 4.6.1 and relate to preceding results in Section 4.6.2.

4.1 ;- and v-Stability

Fix a formula ¢. The set of subformulas of ¢ of the form 11 Uy and 91 M1)s is denoted
by u(p). So, loosely speaking, u(p) contains the set of subformulas of ¢ with a least-
fixed-point operator at the top of their syntax tree. Given a word w, we are interested in
which of these formulas hold infinitely often, and which ones hold at least once, i.e., we
are interested in the previously mentioned set GF and the now to be defined set F, :

Definition 4.1 (p-stability). Let ¢ be a formula and let w be a word. The set u(p) is
inductively defined as follows:

p(tt) =0 wXp) = pp)

p(f) =10

pla) =0 w(eUy) = {pU¥} U u(p) U p()
p(ma) =10 (eMy) = {oMy} U u(p) U pu(t)
(e Ab) = plp) U p(y) WeRY) = pu(p) U pu(y)

(e V) = p(e) U p() W) = pu(p) U p(v)

Then the sets GFy and F,f are defined as follows:
GFf ={¢: v € plp) Aw |= GF}
Fi ={v v € ple) Nw = Fo}
We say that w is p-stable with respect to o if GFRY = Fuf .

Example 4.2. For ¢ = Ga V bUc we have u(p) = {bUc}. Let w = {a}¥ and w' =
{b}{cH{a}¥. We have F¥ =0 = GFy and GF), =0 C {bUc} = F¥,. So w is p-stable
with respect to p, but w' is not.

24

4.1 p- and v-Stability

Dually, the set of subformulas of ¢ of the form 1R and 11 W1hs is denoted by
v(p). This time we are interested in whether these formulas hold everywhere or almost
everywhere, i.e., we are interested in the now to be defined set G and the previously
mentioned set FG2:

Definition 4.3 (v-stability). Let ¢ be a formula and let w be a word. The set v(p) is
inductively defined as follows:

v(tt) =0 v(Xp) =v(p)

v(ff) =

via) =0 v(eUy) =v(p) Uv(y)

v(na) =10 v(eMy) = v(p) Uv(y)

v(ip ANp) =v(p) Ur(y) v(eRy) = {pRa} Uv(p) Uv(y)
v(p V) =v(p) Uv(y) V(W) = {pWe} Uv(p) Ur(y)

Then the sets FGE and G, are defined as follows:

FGE = (v € vlp) Aw = FGy)
G2 = {6 v € v(g) Aw = Go}

We say that w is v-stable with respect to ¢ if FGE£ = Gp.

Example 4.4. Let go, w and w' as in Example 4.2. We have v(p) = {Ga}. The word
w 18 v-stable, but w’ is not, because }'gw, ={Ga} D0 = Q;ﬁ,.

So not every word is p-stable or v-stable. However, notice that the inclusions GF) C
Fi, and FG¥ O G hold for all formulas ¢ and words w. Moreover, as shown by the
following lemma, all but finitely many suffixes of a word are u- and v-stable. If the word
w; is p-stable and v-stable with respect to ¢, then we call ¢ a stabilisation point for w
with respect to .

Lemma 4.5. Let ¢ be a formula and let w be a word. Then there exist indices i,5 > 0
such that for every k > 0 the suffiz w;yy is p-stable and the suffix wjyy is v-stable with
respect to .

Proof. We only prove the p-stability part; the proof of the other part is similar. Let ¢
be a formula and let w be a word. For the following proof we will omit the superscript
p, as it is always .

Since GF,,, C Fy, for every ¢ > 0, it suffices to exhibit an index ¢ such that GF,, e 2
Fuwyyy, for every k Z 0. If GF, O F,, then we can choose i := 0. So assume F,, \ GF,, # Q)
By definition, every ¢ € F, \ GF, holds only finitely often along w. So for every
Y € Fy \ GF, there exists an index 4, such that w; otk K 4 for every k > 0. Let
i := max{iy : 1 € Fy}, which exists because F,, is a finite set. It follows GFwi i 2 Fuwi,
for every k > 0, and so every w;. is p-stable. O

Example 4.6. Let again o = Ga VvV bUc. The word w' = {b}{c}{a}¥ is neither pu-stable

nor v-stable with respect to ¢, but all suffizes wEQ‘f’k) of w' are both u-stable and v-stable
with respect to .

25

4 The Master Theorem

4.2 The Formulas ¢[X], and ¢[Y],

Assume we have to determine if a word w satisfies ¢, and we are told that w is p-stable.
Further, we are given the set X C u(p) such that GFY = X = FF. We use this oracle
information to reduce the problem w = ¢ to a ‘simpler’ problem w | ¢[X],, where
‘simpler’ means that ¢[X], is a formula of ¥LTL, for which we have simple automata
constructions (Sections 5.1 and 6.2) based on Lemma 3.9. In other words, we define a
formula ¢[X], € vLTL such that:

(GFF =X =F)) = (wke—wl=elX])

Observe that X C pu(p) but ¢[X], € vLTL, and so the latter, not the former, is the
reason for the v-subscript in the notation ¢[X],.

The definition of ¢[X], is purely syntactic, and the intuition behind it is very simple.
All the main ideas are illustrated by the following examples, where we assume GF} =
X =Fg:

— ¢ =FaAGband X = {Fa}. Since X = GF/, we have then Fa € GF;, which
implies in particular w = Fa. So we can reduce w = Fa A Gb to w = Gb, and so
o[X], = tt A Gb.

— @ =FaAGband X = (. Since X = FJ, we have then Fa ¢ F;J, and so
w = Fa. So we can reduce w = Fa A Gb to the trivial problem w | ff, and so
o[X], = ff A Gb.

— ¢ = G(bUc) and X = {bUc}. Since X = GF;, we have then bUc € GFf, and
so w = GF(bUc). This does not imply w; = bUc for all suffixes w; of w, but it
implies that ¢ will hold infinitely often in the future. So we can reduce w = G(bUc)
to w E G(bWc), a formula of vLTL, and so we define p[X], = G(bWc).

The formal definition is now as follows:

Definition 4.7. Let ¢ be a formula and let X C u(p) be a set of formulas. The formula
0| X, is inductively defined as follows for the interesting cases U and M:

(PUG)[X] = { (PXLIWOIXL) i 200 € X
otherwise.
(M) X, = {gm»mmm TNy € X
and for all other cases as a simple recursive descent:
tt[X], =t (Xe)[X], =X(p[X]))
ff1X], =ff
alX], =a
—a[X], = -a

(e ANY)[X]y = p[X], AP[X]y (PRY)[X], = (p[X],)R(Y[X]y)
(o V) [X], = [X]y VY[X], (W) [X], = (o[X])W (¥[X],)

We now introduce, in a dual way, a formula ¢[Y], € pLTL such that FG¥ =Y = G
implies w = ¢ +— w = p[Y],.

26

4.3 Utilising p[X], and ¢[Y],

Definition 4.8. Let ¢ be a formula and let Y C v(p) be a set of formulas. The formula
@[Y], is inductively defined as follows for the interesting cases R and W :

]t if Ry €Y
(PR, = {((p[Y]M)M(w[Y]#) otherwise.
]t if pWeY €Y
(PW)Y], = {(@[Y]M)U(w[Y]u) otherwise.
and for all other cases as a simple recursive descent:
(Y], =t (Xo)Y]u = X(e[Y])
fflY], =ff
alY]y =a (@UY)[Y]y = (e[Y])U@[Y]n)
—alY], =-a (M) Y] = (o[Y],)M(2[Y],)

(oA ¢)[Y]u = SQ[Y]u A ¢[Y]u
(VY] = Y], VY],

Definitions for F and G. We will often use in examples formulas containing F and G.
In order to keep examples readable we add the following two additional, shorter, and
language-equivalent! definitions:

tt fFpeX

ff otherwise.

(F)[X], = {

tt fGpeY

ff otherwise.

(Go)[Y], = {

Example 4.9. Let ¢ = ((aWb) A Fe) vV aUd. We have:

{Fc}], = ((aWb) Att) Vv fF ~p, aWb

2

[(b
e[{aUd}], = ((aWb)ANff)VaWd ~, aWd
@[0], = ((aWb) AfE) Vv fF ~p ff
o[{aWb}], = (tt AFc)VaUd ~p FeVvaUd
©[0], = (aUbAFc)VaUd

4.3 Utilising ¢[X], and ¢[Y],

The following lemma states the fundamental properties of p[X|, and ¢[Y],. As an-
nounced above, for a p-stable word w we can reduce the problem w |= ¢ to w = ¢[X],,
and for a v-stable word to w = ¢[Y],,. However, there is more: If we only know X C GF,,
then we can still infer w |= ¢ from w = ¢[X],, only the implication in the other direction
fails.

Wy ~; tt and f My ~; fF

27

4 The Master Theorem

Lemma 4.10. Let ¢ be a formula and let w be a word.

— Let X C p(p) be a set of formulas.
1 If Fy € X and w = o, then w = ¢[X],.
2. If X CGFRY and w = ¢[X],, then w = .
In particular:
3. If Ff =X =GFR), thenw = ¢ < w = ¢[X],.

— Let Y Cuv(p) be a set of formulas.
4. If FGL CY and w |= ¢, then w |= ¢[Y],.
5. IfY CGf and w = ¢[Y],, then w = .
In particular:
6. IfFGE =Y =G, thenw = ¢ <= w = ¢[Y],.
Proof. All parts are proved by a straightforward structural induction on ¢. We consider
for (1), (2), (4), and (5) only two representative cases of the induction. We moved the

parts for (2), (4), and (5) to Section 4.A, since the proofs are repetitive and do not give
additional insight.

(1) Assume Ff C X. Then F, C X for all i > 0. We prove the following stronger
statement via structural induction on ¢, where we consider one representative of the
‘interesting’ cases and one of the ‘straightforward’ cases:

Vi. (wi o) = (w;i = e[X]))

— Case ¢ = 1 Ut)g: Let ¢ > 0 arbitrary and assume w; = 91Uy, Then ¢ Uty €
Fu, and so ¢ € X. We prove w; = (1 Ut2)[X],:

w; = 11Uy
= w; = Y1 Wihy
= Vi wipy EvrV Ik < jowigr e
= Vj. wiy; E 1[X]y V3k < jowigr E Y2 X] (induction hypothesis)
= wi = (91[X],)W (92[X],)
= w; E (91 Us)[X], (¢ € X, Definition 4.7)

— Case ¢ = 1 V 1g: Let i > 0 arbitrary and assume w; = ¥ V ¢o:

w; =1V Py
= w; F 1V w; e
= w; = 1[X], Vw; Ea[X], (induction hypothesis)
= w; = (Y1 V2)[X]y (Definition 4.7)

O]

Lemma 4.10 suggests to decide w |= ¢ by ‘trying out’ all possible sets X. In fact (2)
shows that the strategy of checking for every set X if both X C GFF and w = ¢[X],
hold is sound.

28

4.4 Checking X C GF and Y C FG

Example 4.11. Consider ¢ = GFaV GF(bAGc). Since u(p) = {Fa,F(bAGce)}, there
are four possible X ’s to be tried out:), {Fa}, {F(bA Gc)}, and {Fa,F(b A Gc)}. For
X = 0 we get ¢[X], ~; fF, indicating that if neither a nor b A Ge hold infinitely often,
then ¢ cannot hold. For the other three possibilities (a holds infinitely often, b A\ Ge holds
infinitely often, or both) there are words satisfying p, like a®, {b,c}*, and {a,b,c}*.

However, there are still two questions open. First, is this strategy complete? Part (3)
of Lemma 4.10 shows that it is complete for p-stable words: Indeed, in this case there is a
set X such that GFf = X = FJ, and for this particular set w = ¢[X], holds. For words
that are not u-stable, we will use the existence of u-stable suffixes: Instead of checking
w = ¢[X],, we will check the existence of a suffix w; such that w; = af(p, we;)[X],. This
will happen in Section 4.5. The second open question is simply how to check X C GFJ
and we deal with it in Section 4.4.

4.4 Checking X C GFand Y C FG

Consider again the formula ¢ = GFaVGF(bAGc) from Example 4.11. If X = {Fa}, then
checking whether X is a correct advice (i.e., whether X C GF; holds) is easy, because
GFFa € GF(pLTL) and we have several automata constructions — deterministic, as well
as nondeterministic — on our hand for this fragment. In contrast, for X = {F(bA Gc)}
this is not so. In this case it would turn out to be useful if we had an advice Y = {Gc}
promising that Ge holds almost always, as is the case for e.g. §3({b,c}{c})*. Indeed, we
could easily check correctness of this advice, because FGGc € FG(vLTL), and with its
help checking GF (b A Ge) reduces to checking GF (b A tt) ~; GFb, which is also easy.

One of the main ingredients of our approach is that in order to verify a promise
X C GFy we can rely on a promise Y C FG# about subformulas of X, and vice versa.
There is no circularity in this rely /guarantee reasoning because the subformula order is
well founded, and we eventually reach formulas ¢ such that ¢[X], = ¢ or ¥[Y], = .
This argument is formalised in the next lemma. The first part of the lemma states
that mutually assuming correctness of the other promise is correct. The second part
states that, loosely speaking, this rely/guarantee method is complete: it can prove that
X =GR and Y = FG£ hold.

Lemma 4.12. Let ¢ be a formula and let w be a word.
1. For every X C u(p) and Y C v(p), if

v € X.w = GF($[Y],)
Vo € Y. w = FG(4[X],)

then X C GFy andY C FGE.
2. If X = GFS and Y = FGE, then:

Vi € X.w = GF($[Y],)
Vi € Y. w = FG(4[X],)

Proof. (1) Let X C p(p) and Y C v(gp). Observe that X NY = (. Let n == [X UY].
Let 91, ...,%, be an enumeration of X UY compatible with the subformula order, i.e.,
if 9; is a subformula of 1;, then ¢ < j. Finally, let (Xo, Yp), (X1,Y1),...,(Xy,Ys) be the
unique sequence of pairs satisfying:

29

4 The Master Theorem

N (XOa}/E)) = (®7@) and (XnaYn) = (Xv Y)

— For every 0 < i < mn, if¢; € X then X;\ X;_1 = {¢;} and Y; =Y;_1, and if ¢); € Y,
then X; = X;_{ and Y] \ Y, 1= {1/)1}

We prove X; C GFf and Y; C FG P for every 0 < ¢ < n by induction on i. For i =0
the result follows immediately from Xy = () = Y. For ¢ > 0 we consider two cases:

- yY;eY ie, X;=X;,_1 and Y] \ Y, 1= {¢Z}
By induction hypothesis and X; = X;_; we have X; C GF7 and Y;_y C FG£. We
prove ¢; € FG7 ie., w = FGy;, in three steps.
— Claim 1: 1/)1[X]l, = wl[XZ]l/
By the definition of the -[-], mapping, ¥;[X], is completely determined by
the p-subformulas of v; that belong to X. By the definition of the sequence
(X0,Y0),...,(Xn,Yy), a p-subformula of ¢; belongs to X if and only if it
belongs to X;, and we are done.
— Claim 2: X; C GF;, for every k > 0.
Follows immediately from X; C GFJ .
— Proof of w = FGu);.

By the assumption of the lemma we have w = FG(v;[X],), and so, by Claim
1, w = FG(¢4[X;],). So there exists an index j such that wjir = ;[X,
for every k > 0. By Claim 2 we further have X; C Q.Efj% for every j,k > 0.
So we can apply part (2) of Lemma 4.10 to X;, wjiy, and ¢, which yields
wjtr = 1 for every k> 0. So w = FG1);.

- € X, ie, X\ X;o1 ={¢;} and Y; = Y.
By induction hypothesis we have in this case X;—; C GFj and Y; C FG7. We
prove ¢; € GFy5, i.e., w = GF; in three steps.
— Claim 1: ¢;[Y], = ¥[Yi] .-
The claim is proved as in the previous case.
— Claim 2: There is an j > 0 such that Y; C Qéﬁk for every k > j.
Follows immediately from Y; C FG7.
— Proof of w = GF;.

By the assumption of the lemma we have w = GF(;[Y],). Let j be the
index of Claim 2. By Claim 1 we have w = GF(¢;[Y;],), and so there exist
infinitely many k > j such that wy = ¢;[Y;],. By Claim 2 we further have
Y; C G, So we can apply part (5) of Lemma 4.10 to Y;, wg, and 1;, which
yields wy, = v; for infinitely many k > j. So w | GF);.

(2) Let ¢ € GF5. We have w = GF, and so w; = ¢ for infinitely many i > 0. Since
FGo = FG for every i > 0, part (4) of Lemma 4.10 can be applied to w;, FG 7, and
1. This yields w; = [FGS], for infinitely many ¢ > 0 and thus w = GF(¢Y[FGZ],).

Let ¢ € FG,. Since w; |= FG1), there is an index j such that w;, |= 1 for every k > 0.
By Lemma 4.5 the index j can be chosen so that it also satisfies GF), =]-"f]. e = Q.Efj i

30

4.5 The Master Theorem: Logical Characterisation of L'TL

for every k > 0. So part (1) of Lemma 4.10 can be applied to fﬁfj+k, W4k, and . This
yields wjyy, = ¢Y[GFF], for every k > 0 and thus w = FG(¢[GFi). O

Example 4.13. Let p = F(a AG(bV Fc)), X ={¢}, and Y = {G(bV Fe)}.
— The condition Vi € X. w = GF(¢[Y],) becomes

w = GF (¢[Y],) = GF(Fa A tt) ~; GFa

— The condition Vi) € Y. w = FG(¢[X],) becomes

w = FG ((G(bV Fe))[X],) = FG(G(bV) ~, FGb

Applying Lemma 4.12 (1) to this we then obtain that w = GFa A FGb implies ¢ € GFf
and G(bV Fc) € FG 7.

4.5 The Master Theorem: Logical Characterisation of LTL

Putting together Lemma 4.10 and Lemma 4.12, we arrive at the core of the dissertation:
a decomposition of LTL formulas into simpler fragments, which we will use as ‘Master
Theorem’ for the construction of automata.

Theorem 4.14 (Master Theorem). Let ¢ be a formula and let w be a word. Then w = ¢
if and only if there exist X C u(p) and'Y C v(yp) satisfying:

1. Ji.w; = af(p, wo;) [X]y
2. V€ X.w = GF(¢[Y],)
3. Yy eY. wkEFGW[X],)

Before proving the theorem, let us interpret it in informal terms. The Master Theorem
states that in order to decide w |= ¢ we can guess two sets X C p(yp) and Y C v(p) and
an index i, and then proceed as follows: verify Y C FG? assuming that X C GF; holds
(3), verify X C GF} assuming that Y C FG¢ holds (2), and verify w; = af(p, wo;)[X],
assuming that X C GF; holds (1). The procedure is sound by Lemmas 4.10 and 4.12,
and complete because the guess where X = GFJ, Y = FG¥ and i is a stabilisation
point of w, is guaranteed to succeed.

Example 4.15. Let ¢ = F(a A G(bV Fc)) as in Example 4.13, and let ¢' = dU(e A @).
For X ={p,¢'}, Y ={G(bVFc)}, and i = 0 the Master Theorem yields that w |= ¢’ is
implied by

1. w= (dU(e A @))[X], =dW(e A p[X],) = dW (e Att) ~; dWe,

2. w = GF(¢Y],) = GF(F(a A tt)) ~; GFa,
w = GF(¢'[Y],) = GF(dU(e AF(a Att))) ~; GF(e AFa), and

3. wl= FG((G(bV Fe)[X],) = FG(G(bV ff)) ~; FGb.

31

4 The Master Theorem

For X' = {p}, Y = {G(bV F¢)}, and i’ = 0, condition (1) is not fulfilled, since
w = (dU(e A p))[X'], = fE. Logically this is sound, because w |= ff implies everything.
We just do not derive any useful information from this particular instance. The Master
Theorem does not promise that every correct guess for X and Y will give us an actual
chance to prove the property. Let us now choose i’ = 1 and let us assuming the word is
w[0] = {e}. Then the Master Theorem says that w |= ¢’ is implied by

1. w = (afldU(e A @), {e})[X], = (6 A (@ V...)) vV (] A @) [X7], ~ th,
2. wE= GF(p)Y'],) = GF(F(a A tt)) ~; GFa,
3w FG((G(bV Fe)[X'],) = FG(G(bV ff)) ~; FGb.

Thus theorem is offering us yet another possibility to prove w |= . One that is even
simpler than the first one.

Proof of the Master Theorem. (=) Assume w | ¢, and set X := GF} and Y := FGF.
Properties (2) and (3) follow from Lemma 4.12. For property (1), let ¢ be an index such
that 75, = GF4; this index exists by Lemma 4.5. By Lemma 3.3 we have w; = af(p, wo;),
and by Lemma 4.10 (1) w; = af(¢, wo:)[X]w.

(<) Assume that properties (1-3) hold for sets X C u(p), Y C v(p) and an index i.
By Lemma 4.12 (1) we have X C GFJ, and so X C GFy . From w; E af(p, we;)[X], we
obtain w; = af(y, wp;) with Lemma 4.10 (2). Finally, Lemma 3.3 yields then w = ¢. O

A blue-print for Automata Constructions. Observe that af(y, wo;)[X],, GF(¥[Y],),
and FG(¢[X],) are formulas of the LTL fragments vLTL, GF(uLTL), and FG(vLTL).
For these fragments we can build automata using Lemma 3.9 with af as a basis. The
constructions are presented in Sections 5.1 and 6.2. This suggests the following approach
to constructing automata for LTL formulas:

Let L’ ,x,y be the language of all words that satisfy condition (j) of the Master Theorem
for the formula o and the sets X and Y. The Master Theorem can then be reformulated
as:

U Ly xy MLy xyNL)xy
XCu(p)
Y Cu(p)
Therefore, given an automata model effectively closed under union and intersection, in
order to construct automata for all of LTL it suffices to exhibit automata recognising
Lgloﬂ XY L; XY Li, xy- In the following chapter we consider the case of DRAs, and then
we proceed to NBAs and LDBAs.

Remark 4.16. The formulation of the Master Theorem is almost symmetric and we
only have one impurity that breaks this symmetry: the advice function -[X], in condition
(1). Can we also use -[Y], at that location? Yes, the theorem is also true for -[Y], at
that location and the corresponding proof is almost identical to the one we have seen. So
why are we choosing -[X],? The application of -[X], yields a formula of the fragment
vLTL. The languages corresponding to this fragment are characterised by (finite) bad
prefixes. Whenever an w-word does not satisfy ¢[X],, we can learn this from a finite
prefir. Let us now consider -[Y],. The languages corresponding to the fragment -[Y],, are
characterised by (finite) good prefixes and if an w-word satisfies Y[Y],, then we know

32

4.6 Variants of the Master Theorem

this after reading a finite prefiz, but in general there is no finite prefix for proving that
Y[Y], is not satisfied.

This distinction allows us in the case of Y[X], to sequentially testi’s for condition (1),
since either we have not yet identified a bad prefix and thus the word can be continued
such that (1) holds, or we have found a bad prefiz and we can move to another candidate
fori. Lemma 4.20 shows how to do this efficiently. However, this argument does not work
for Y[Y], and in this case we need to check different i’s in parallel. This can be easily
done if nondeterminism is available, but it is non-trivial for a deterministic automaton.

4.6 Variants of the Master Theorem

4.6.1 Restricted Guessing

Let us consider the formula ¢ = F(a A G(bV Fc)) from Example 4.15 and some word
w. The Master Theorem (Theorem 4.14) dictates that we need to check all possible
selections of X C u(y) and Y C v(p) in order to determine w = ¢. However, some of
the guesses seem to be superfluous: consider for example X = {¢,Fc} and Y = v(y).
Why is it relevant that ¢ holds infinitely often? We are only interested in w = ¢ and
not in w = GFg. Obviously, it is unnecessary work to check a top-level F operator
for repeated satisfaction. Hence we discard all sets X that contain a least-fixed-point
operator that is not nested within a greatest-fixed-point operator, because only in the
context of a greatest-fixed-point operator we are interested in repeated satisfaction. We
also restrict Y analogously. We denote this restriction by {}(¢) and use |, to indicate
that we passed during the recursive descent on ¢ a greatest-fixed-point operator.

Definition 4.17. Let ¢ be a formula. The restriction sets {(¢) and |, (¢) are inductively
defined as follows:

dee) =0 1(Xp) =)

LE) =0

4(a) =0 $eUy) =) Ul)

Y(ma) =0 HeMy) =) Ud(¥)
Yeny) =Ue)Ui@) HeRy) = () Ul ()

e vy) =Ie)Ud) W) =Uu(p) Ud(y)

Uy (tt) =0 L(Xp) =du(p)

‘Ul/(ﬁ') =0

bo(a) = b (eUy) = u(pUy) Ur(pUy)
Yy(ma) =0 Yo (eMyp) = p(eMip) U v(pMy)
llzl((:o A w) = UV((/J) U bu(d)) (90) = Uu() U Uu(iﬂ)
UV(@ \ 7/}) = UV(@) U %W) (SDWW () U UV(T/J)

Proposition 4.18. Let ¢ be a formula and let w be a word. Then w = ¢ if and only if
there exist X C u(p) N (p) and Y Cv(p) N(p) satisfying:

1. Fiow; = af(e, woi)[X],

2. Y € X.w = GF(¥[Y],)
3. Vi eY. wkEFGW[X],)

33

4 The Master Theorem

This sharper version of the Master Theorem (Theorem 4.14) with its usage of || can
be intuitively understood as first peeling off a layer of least-fixed-point operators, since
repeated satisfaction is irrelevant for these, and then a layer of greatest-fixed-point op-
erators, since -[-],, does affect these and they do not appear within a potential advice X.
Thus we only need to consider the empty advice sets X = () and Y = () for a formula
with just one alternation of least- to greatest-fixed-point operators. Before we dive into
the proof, we have a look at two other things: First, we revisit and update Example 4.15.
Second, we introduce and discuss two small technical lemmas required for the proof.

Example 4.19. Let ¢ = F(a A G(bV F¢)) and let ¢ = dU(e A) as in Example 4.15.
We then compute:

() =) = UG VFe)) = 4 (bV Fe) = {Fc}

Thus we only need to consider the advice (X,Y) = (0,0) and the advice (X',Y') =
({Fc},0). Fori=0 condition (1) of Proposition 4.18 is not true for both possible guesses,
since we have w W= ¢'[X], = ¢'[X'], = ff, and thus we cannot determine w |= . Let
now i = 1 and assume w[0] = {a,b,c,d,e}. Then w = ¢ is implied by one of the two
following groups of conditions:

1w af((dU(e A), wl0])[X], ~ (GD)

2.~ wl=af{(dU(e A p), w[0)[X], ~ th
- w = GF(FcY'],) = GF(Fc) ~; GFc

Thus the number of advice pairs (X,Y) we need to consider is reduced considerably at the
expense of a longer ‘waiting time’ — meaning a larger index i — for w; = af(yp, we;)[X],
to become true.

The first technical lemma, which is also needed for the later presented DRA construc-
tions, basically states that applying -[-], in the context of property (1) can be arbitrarily
delayed. The corresponding proof can be found in Section 4.A.

Lemma 4.20. Let ¢ be a formula, let w be a word. If w = ¢[X],, then w; =
af(p, woi)[X1, for every index i.

The second technical lemma builds upon the first one and formalises the previous
intuition of ‘peeling off a layer of least-fixed-point operators’. The proof is again moved
to Section 4.A.

Lemma 4.21. Let ¢ be a formula and let w be a word. If w is u-stable with respect to
¢ and w = ¢, then there exits an index i such that w; = af(e, wo;)[GFE N (p)]y.

Using this we can now get back to the delayed proof of the sharper version of the
Master Theorem:

Proof of Proposition 4.18. (<) Immediate consequence of Theorem 4.14.

(=) Assume w | . Let X = GFf and Y = FG£. From Lemma 4.12 we know
that w = GF(¢[Y],) for all ¢ € X and w = FG(¢[X],) for all ¥ € Y. Let us define
restricted versions X = X N{(¢) and Y, =Y N {(p). We now want to prove:

1. Ji.w; = afle, woi)[Xyly
2. Vi € Xy.w = GF(¥[Yy],)
3. Yy €Yy w = FGW[Xyl,)

34

4.6 Variants of the Master Theorem

1. We obtain an index i from Lemma 4.5 such that w; is p-stable with respect to
¢ and thus also with respect to ¢ = af(¢,wp;) (Lemma 3.3). We then apply
Lemma 4.21 to ¢’ and obtain and index j such that w; = af(¢/, wij)[g]ifi/ N4
With the normalisation of the sub- and superscripts and unfolding of ¢ we have
wj = af(p, wo;)[GFE NI(¢')],. Observe that () = I(af(p, wo:)) = §(¢') holds
by Lemma 3.3 and we can proceed to w; = af(¢, wo;)[X N (p)],, which concludes
this part.

2. Let ¢ € Xy. Since ¢ € |(p), we have v(¢) C (). We then derive:

YY), =y[Y nv()], (elements not in v (1)) can be safely ignored)
=Py 0 (@) DY)y (v(¥) € Up))
=Yy, (elements not in v(1)) are ignored)

Thus V¢ € X w = GF(¢[Yy],).

3. This is proven analogous to the previous part.

4.6.2 Asymmetric Master Theorem

The translation from LTL to LDBAs presented in [SEJK16]| also relies on a decomposition
into ‘simple’ LTL fragments, but requires a restricted form of nondeterminism for the
automata construction. We compare our previous work with the Master Theorem by
reformulating the decomposition of [SEJK16] in our novel notational and theoretical
framework.

Proposition 4.22 ([SEJK16]). Let ¢ be a formula and let w be a word. Then w = ¢ if
and only if there exist i > 0 and Y C v(p) satisfying:

1. wi | af(p, woi) Y]y
2. Y (1Rapg) €Y. w; = G(¥a[Y],)
3. V(1 W) € Yow; | G(¥1[Y], V 42[Y],)

We consider this LTL characterisation to be ‘asymmetric’, since it only refers to
greatest-fixed-point operators and ignores least-fixed-point operators. Consequently, the
Master Theorem (Theorem 4.14) is considered to be ‘symmetric’, because greatest and
least fixed-points are used. The ‘asymmetric’ LTL characterisation has several draw-
backs compared to Theorem 4.14. First, it is ‘less’ compositional, since (1-3) all depend
on the same index . Second, it constructs formulas belonging to the fragments uLT L
and G(uLTL). As one can see in [SEJK16] the construction for formulas of the fragment
G(puLTL) is more involved compared to the one for GF(uLTL) presented in the next
chapter. Third, we could not find a DRA construction for (1) with asymptotic optimal
size that also synchronises with the automata for (2) and (3). Thus we could not come
up with a simple and compositional DRA construction based on Proposition 4.22, but it
can be used to build (NBAs and) LDBAs as shown in [SEJK16].

35

4 The Master Theorem

4.A Omitted Proofs

Proof of Lemma 4.10
Lemma 4.10. Let ¢ be a formula and let w be a word.

— Let X C p(p) be a set of formulas.
1 If Fy € X and w = ¢, then w = ¢[X],.
2. If X CGFS and w = ¢[X],, then w = ¢.
In particular:

3. IfFf =X =GR}, thenw = ¢ < wE ¢[X],.

— Let Y Cuv(p) be a set of formulas.
4. If FGL CY and w |= ¢, then w = ¢[Y],.
5. IfY C Gy and w = ¢[Y],, then w = ¢.
In particular:
6. IfFGE =Y =G, thenw = ¢ <= w = ¢[Y],.
Proof. We will now continue with the proof of the remaining parts (2), (4), and (5).

(2) Assume X C GF. Then X C GF, for all i > 0. We prove the following stronger
statement via structural induction on ¢:

Vi. ((wi = @[X]) = (wi k=)

— Case ¢ = Y Utha: If ¢ ¢ X, then by definition ¢[X], = ff. So w; & ¢[X], = ff for
all ¢ and thus the implication (w; = ¢[X],) = (w; | ¢) holds for every i > 0.
Assume now ¢ € X. Since X C GF; we have w; E GF¢ and so in particular
w; = Fi. To prove the implication assume w; = (¢¥1Uy)[X], for an arbitrary
fixed i. We show w; = 11 Uth:

w; = (Y1UY2)[X],

= w; = ([X)W (¥2[X)) (p € X, Definition 4.7)
= Vj.wiy; E1[X] V 3k < jowir = Yo X]y

= Vj. wir; =1V 3k < jowipr = (induction hypothesis)
= w; E Y1 Wi

= wi E 11Ut (wi = Fo)

— Case ¢ =901 V 1by: Let i > 0 arbitrary and assume w; = 1 V 1)2. We have:

Wy ': (wl \ 17[}2)[X]l/
= w; EW[X], V (w;i = X, (Definition 4.7)
= w; =1 Vw; =1 (induction hypothesis)
= w; ': 101 V ¢2

(4) Assume FGF C Y. Then FG7 C Y for all i. We prove the following stronger
statement via structural induction on ¢:

Vi. ((w; o) = (w; E[Y],))

36

4.A Omitted Proofs

— Case ¢ =)y Wibe: Let ¢ > 0 arbitrary and assume w; = ¢. If ¢ € Y then
@[Y], = tt and so w; |= ¢[Y], trivially holds. Assume now ¢ ¢ Y. Since FG . CY
we have w; = FGy and so in particular w; = Gi1. We prove w; = (1)1 Wip2)[Y]

w; = Y1 Wiy
— wi = 1 Uty (w; = G)
> Jj.witj F Y2 AVE < jowiyg 1
= Jj. wirj | V[Y]u AVE < jowigr = 1Y, (induction hypothesis)
= wi = (1[Y],)U(2[Y],)
= w; F (L1 Wa)[Y], (p ¢ Y, Definition 4.8)

— Case ¢ = 11 V pg: Let ¢ > 0 arbitrary and assume w; = 11 V ¥2. We have:

w; =11 Vo
= wi EY1Vwi =P
= w; E 1Y)V wi EelY], (induction hypothesis)
= w; | (Y1 V2)[Y], (Definition 4.8)

(5) Assume Y C Gj5. ThenY C Gy, for all i. We prove the following stronger statement
via structural induction on (:

Vi. ((wi = @[Y]y) = (wi f=)

— Case p =)1 Wihy: If p € Y, then since Y C G we have w; = G and so w; = ¢.
Assume now that ¢ ¢ Y and w; |= (1 W1p2)[Y], for an arbitrary fixed i. We prove

(o li ¢1W'¢2:
w; = (Vi Wiho)[Y],

= w; = (1[Y],)U[Y],) (p ¢ Y, Definition 4.8)
= Jj.witj E YalY]u AVE < jowigk iV,
= Jj. witj = Y2 AVEk < j.wisk En (induction hypothesis)

< W; ': ¢1U1/)2
= w; | Y1 Wi

— Case @ = 1 V 1h2: We derive in a straightforward manner for an arbitrary and
fixed i:

w; = (Y1 Vo) [Y]u
= w; = [Y]y Vw =Y, (Definition 4.8)
— w; Y1 Vw; | e (induction hypothesis)

<:>w2-|:z/}1\/¢2

37

4 The Master Theorem

Proof of Lemma 4.20

Lemma 4.20. Let ¢ be a formula, let w be a word. If w | ¢[X],, then w; E
af(, wo;)[X], for every index i.

Proof. Assume w = ¢[X],. It suffices to prove wi | af(p, we1)[X], for a single letter
wo1, since the general case immediately follows by an induction on 4. For the single letter
case we proceed by structural induction on ¢, and consider only some representative
cases:

— Case ¢ = a. Since w = a[X], = a, we have a € wo1. So af(a, we)[X], = tt[X], =
tt, and thus wy = af(p, wer)[X],.

— Case ¢ = ¥ Uy. Since w = ¢[X],, we have ¢[X], # ff, and so ¢ € X. We derive:

w = @[X],
— w k= (Y[X],)W(x[X],) (¢ € X, Definition 4.7)
= w = x[X]y v (D[X], AX((P[X])W (X[X]0))) (LTL semantics)
= w = X[X]o V @[X]o A X((UX)[X]) (¢ € X, Definition 4.7)
= w1 = af(x, wo1)[X, V (af(¥, wo1)[X], A ¢[X],) (induction hypothesis)
< w1 = (af(x, wor) V (af(v), wor) A ¢))[X], (Definition 4.7)
= w1 = af(p, wo)[X]y (Definition 3.1)

Proof of Lemma 4.21

Lemma 4.21. Let ¢ be a formula and let w be a word. If w is p-stable with respect to
¢ and w = ¢, then there exits an index i such that w; = af(¢, we)[GFE N U(0)]w-

Proof. We proceed by structural induction on ¢. We consider three representative cases:
first, 11 V 19 for the straight-forward cases (tt, ff, a, —a, 11 A2, 11 V 12, X1h); second,
11 Urpe for the least-fixed-point operators; third, ; Wa)o for the greatest-fixed-point
operators.

— Case ¢ = 11 V 9. Assume w | 11 V ¥ and p-stability. We proceed by case
distinction and assume w = 1. Since) is a subformula of ¢, w is also p-stable
with respect to v;. By applying the induction hypothesis we obtain an index ¢ such
that w; = af(yr, woi)[GF8* NU(¥1)]y. Thus w; E af(yr, woi)[GF8* N U(¥1)]y V
af(tha, wos) [GFL" N (1)), which is equivalent to w; = af(e, wei) [GFE" N (1),
Hence w; = af(p, wo;)[GFF N (¢)],. The other case is analogous.

— Case ¢ = 1 Utby. Assume w = 11Uty and p-stability. Thus there exists an
index @ such that w; | 4 for all j < i and w; = 9. Further, w; is p-
stable with respect to ¥; and w; is p-stable with respect to 2. We apply the
induction hypothesis for each j and ¢ and get indices j' and i’ such that the
property holds. Let k be the maximum of all these (finitely many) indices. By
Lemma 4.20 we then have wy = af(i/)l,wjk)[gfﬁf)jl NY(¢1)], for all j < ¢ and

wy = af(wg,wik)[g]:ﬁ’f;2 NJ(¢2)],. Normalising the sub- and superscripts yields:
wy, = af(r,win) [GFS N (@), for all j < i and wy, = af(e, wir) [GFS N 4(e)]w.
Recombining this to ¢ = 11 Uty yields wiy1 | af(1h1 Utho, wo(k+1))[gﬁf N (p)]w-

38

4.A Omitted Proofs

— Case ¢ = 1 W1ihy. Assume w =)1 Wihg and p-stability. In the case w = 11 Uty
the proof is analogous to the previous case. Hence assume w = Fio. Thus we have
w = Gt)1. Let now j be an arbitrary index with w; |= v1. Applying Lemma 4.10
we get w; |= wl[ﬂ,pjl] v and due to p-stability we also have w; = 11 [g]—:}f’;]y, which
we normalise to w; = 1[GFRF N u(1)],. Since u(1) € U(p), we rewrite this
to w; = ¥1[GFS Nd(p)],. Since we can do this to all indices j, we get w |
(1 Who)[GF5 Nl (¢)], and we are done.

O]

39

5 DRA Constructions

We now turn our attention towards constructing deterministic Rabin automata (DRA)
using the Master Theorem (Theorem 4.14). We proceed in the two steps outlined before:
First, we show in Section 5.1 that the function af can be used to construct deterministic
Biichi (DBA) and co-Biichi automata (DCA) for easy LTL fragments, namely uLTL,
vLTL, GF(uLTL), and FG(vLTL). Second, using these constructions we build in
Section 5.2 automata checking (1), (2), and (3) of Theorem 4.14 for fixed sets X and
Y and then assemble these parts with Boolean operations to obtain the final DRA.
An extended discussion of optimisations to the presented construction can be found in
Chapter 7.

5.1 DRAs for uLTL, vLTL, GF(uLTL), and FG(vLTL)

We construct DRAs for pLT'L and vLTL formulas by using af to track the ‘effect’ of
the word w on the formula ¢ and we obtain from Lemma 3.9 two simple criteria —
Ji. af(p, wo;) ~ tt and Vi. af(p, wo;) =~ ff — for deciding if the read word w is satisfying
or not, thus should be accepted or not. For formulas from GF(uLTL) and FG(vLTL)
we simply repeatedly check these criteria. Formally we have:

Proposition 5.1. Let ¢ € uLTL, and let ~ be an af-congruence.
— The following DBA over the alphabet 24P recognises L(p):

B = (Reach() /., af, [@l~, inf([tt]~))
— The following DCA over the alphabet 24P recognises L(p):

Ci = (Reach(g) /., af; [¢]~, fin ({[tt]~}))

~ The following DBA over the alphabet 24P recognises L(GFp):
Bép, = (Reach(Fp) .., of£7, [Fpl., inf([tt]))

[Fo]. if i~ tt

aF ~y,0) =
[P (W]~ 0) {[af(lﬂ,U)]N otherwise.

Let p € vLTL.
— The following DCA over the alphabet 24P recognises L(p):
Cl = (Reach(¢) /., af; [sp]~, fin ([f]))
— The following DBA over the alphabet 24P recognises L(ip):

By = (Reach(p) /. af., [¢l~, inf ({[f]~}))

41

5 DRA Constructions

— The following DCA over the alphabet 24P recognises L(FG):
Cha, = (Reach(Gy) ., afS7, (Gl fin ([fF]..))

G _ {[G¢]~ if Y~ ff
af ¥ ([Yl~, 0) = .
[af(¢,0)]~ otherwise.

First, note that instead of inf({q}) we write just inf(q) to make the notation more
succinct. Second, observe that By, and Cj7, as well as) and CJ/ share the same structure
and only differ in the definition of the acceptance condition. Cj can be understood as
first applying the classic complementation procedure from deterministic finite automata,
which simply swaps final and non-final states, on B}/ to obtain a Biichi automaton re-
cognising = and then flipping the acceptance condition to finally arrive at the co-Biichi
condition recognising ——¢ ~; ¢. This works, because in fact the automaton B is weak,
meaning that the states of every strongly connected component (SCC) are either all ac-
cepting or all rejecting. The same observation also holds for B and C/. Before proving
correctness of these constructions we look at several examples:

Example 5.2. Let ¢ = a AN X(bV Fe) € uLTL. The DBA BéFu constructed from
Proposition 5.1 using ~,, as the underlying equivalence relation recognising L(GF) is
depicted in Figure 5.1. Notice that from now on we label the states, which are in-fact
equivalence classes, by a representative of the respective class.

Example 5.3. Let ¢ = aWbV c € vLTL. The DCA CﬁGV constructed from Proposi-
tion 5.1 using ~; as the underlying equivalence relation recognising L(FG) is depicted
m Figure 5.2.

Proof of Proposition 5.1. Let ¢ be a formula of uLT L, and let ~ be an af-congruence.
We want to prove (1) L(p) = L(Bf), (2) L(p) = L(C]}) and (3) L(GFyp) = L(BG,,)-
Let w now be an arbitrary word.

(=1) Assume w = ¢. Using Lemma 3.9 we can find an index ¢ such that af(¢, wo;) ~ tt.
Hence the run r with r[i] = [af(¢, wo;)]~ starting in the initial state [¢]~. will reach [tt].
after reading wo;. After reaching [tt]. the run 7 loops in that state and thus r is accepting
and the word w is in L(B};).

(«<1) Assume w is accepted by Bj;. Then there exists an accepting run r for w and
this run visits the state [tt|. infinitely often. Let i be the index such that [tt]. =
af.([¢]~, woi) = [af(p, wo;)]~. Thus applying Lemma 3.9 to af(¢, wo;) ~ tt yields w = ¢
and we are done.

(2) Observe that B}, and C}; have exactly the same structure apart from the acceptance
condition. They are both weak and deterministic and thus all words accepted by B}, are
also accepted by Cj/ and vice-versa. Thus L(Bj) = L(C}) and (2) is an intermediate
consequence of (1).

(=3) Assume w = GFp. This is equivalent to Vi.w; = F¢ and with Lemma 3.9 we
get Vi. 3j. af(Fo,w;j) ~ tt. Since B 1 deterministic, there exists exactly one run r
for the word w. We now show that this run r is accepting. The run starts in 7[0] = [Fy]~
and let j > i be the smallest index for i = 0, such that af(Fy, wp;) ~ tt. Observe that
this is the first point where af., and aff ¥ diverge and the later one resets to [Fg].. Thus
after visiting the accepting state [tt]. the run r returns to the initial state [Fp|. and

42

5.1 DRAs for uLTL, vLTL, GF(uLTL), and FG(vLTL)

ac
FopVvFc

a
O a O abc

Figure 5.1: DBA BEFM for p = a AX(bV Fc) using ~,,.

abe

ab

O abe O ab
ab
b

b+c

Figure 5.2: DCA Cfg, for ¢ = aWbV c using ~;.

a a a
B P LA v I vy B

a
a a

tt

()

Figure 5.3: Infinite DBA B for ¢ = Fa using ~..

43

5 DRA Constructions

we can apply the same argument starting at r[j + 1] = [Fy]~. Repeating this argument
again and again we conclude that the run r is accepting and thus the word w is contained
in L(B&gp)

(«3) Assume w is accepted by BéFM. Then there exists an accepting run r for w
and this run visits the state [tt]. infinitely often. Provided we have shown Vi.3j >
i.3k. af(Fp,w;) ~ tt, we apply Lemma 3.9 to arrive at w |= GF¢ which we want to
show. We now focus on the remaining goal Vi.3j > i. 3k. af(Fp,w;;) ~ tt: Let i be an
arbitrary index. Since r is an accepting run, there exist infinitely many j’s, such that
r[j — 1] = [tt]~ and r[j] = [Fy]~. Let j be such an index with j > i. Since r is an
accepting run, there also exists some k > j such that r[k] = [tt]. and the run r has not
visited [tt]. in-between. Thus we follow af(¢, wji) ~ tt and fill the remaining gap.

We now move on to the second part concerned with vLTL. Let ¢ be a formula of
vLTL and let ~ still be an af-congruence. We want to prove (4) L(p) = L(C), (5)
L(p) = L(BY) and (6) LIFGy) = L(Ciq,)- The proof of (4) and (5) is analogous to the
proof of (1) and (2) and thus we are skipping it. Observe that Cfg,, mirrors the structure
of BéFu and the proof of (6) is also analogous to the one of (3). O

Complexity Analysis. The size is of the automata from Proposition 5.1 crucially de-
pends on the choice of ~ because it determines how Reach(p) is partitioned into equi-
valence classes. The spectrum ranges here from an optimal choice (doubly exponential)
up-to infinity: On the one hand with ~. we obtain a possibly infinite structures for which
an example can be seen in Figure 5.3. On the other hand the equivalence relation ~;
will produce the smallest automata that are still doubly exponential in the worst-case
[KV98; ALO04|. But this does not come for free, since deciding ~; is relatively expensive
operation. In our analysis we focus on the equivalence relation ~, that strikes a good

balance between the cost of deciding ~;, and the worst-case bounds.
In Lemma 3.8 we already determined the upper bound 221 o1 the cardinality of

Reach(p) -, Assume ¢ has length n. Then the DBAs and DCAs Bj, BY, C, and

C¥ have at most 22" states. Further BéFH and Cfg, have at most 92" ™! by the same
argument.

5.2 DRAs for Arbitrary LTL Formulas

Let ¢ be a formula of length n. We use Theorem 4.14 (restated below for reference) to
construct a DRA for £(y) with 227" states and at most 2" Rabin pairs. Since in this
chapter our goal is only to show that we can easily obtain automata of asymptotically
optimal size, we give priority to a simpler construction over one with fewer states. We
comment in Chapter 7 on optimisations that reduce the size of the automata.

Theorem 4.14 (Master Theorem). Let ¢ be a formula and let w be a word. Then w = ¢
if and only if there exist X C u(p) and'Y C v(yp) satisfying:

1. Fi.w; = af(p, we)[X]y
2. Vi € X.w = GF(¥[Y],)
3. Yy eY. wkFGX],)

For a fixed guess X and Y we first construct DBAs and DCAs checking (1-3), to which
we will refer by Cslo x> B% y» and Cg’(y- These automata are then intersected resulting in

44

5.2 DRAs for Arbitrary LTL Formulas

a DRA R, x,y with 229" tates and one single Rabin pair. We then construct a DRA
Apra(p) for L(p) by taking the union of all Ry xy. Proposition 5.1 provides us with
the tools to build Bg(’y and Cg’(’y, but cannot be immediately applied to Cglo, x- Thus
we need to delay the definition of Apgra(p) in order to figure out how to construct an
automaton for condition (1).

Interlude: An Automaton for Condition (1)

We need to define an automaton that accepts a word w if and only if w; = af(y, we;) [X],
for some suffix w;. It is intuitive that if we have an automaton identifying such an index
i we immediately obtain that (1) of Theorem 4.14 holds. However, the other direction
is not immediately clear, since there is no nondeterminism for guessing a suitable i. We
address this by resorting to the previously seen Lemma 4.20, which allows us to postpone
checking w; = af(p,we;)[X], by an arbitrary number of steps and thus the automaton
cannot miss the right moment.

Lemma 4.20. Let ¢ be a formula, let w be a word. If w | ¢[X],, then w; |=
af(e, wo;)[X], for every index 1.

Loosely speaking, Ci,’ y — the automaton responsible for checking (1) — starts by check-
ing w = ¢[X],. For this it uses the construction of Proposition 5.1 on the v LT'L formula
©[X],. Intuitively, if that automaton rejects, then it rejects ‘after finite time’. If the for-
mula becomes equivalent to ff after, say, 7 steps, then w [~ ¢[X],, and C;,X proceeds to
check w = af(yp, we;)[X],. In order to perform this reset, C;X needs to know af(p, wo;),
and so it also maintains af(y, wp;) in its state. In other words, after j steps Ci% x 1sin
state:

(af (¢, woj) , af ((af (¢, woi) [X]o), wi))

where ¢ < j is the number of steps after which C ! y had to reset for the last time. If the
second component of the state becomes ff, then the automaton uses the first component
to determine which formula to check next. The accepting condition then states that the
transitions leading to a state of the form (¢, ff) must occur finitely often, which implies
that eventually one of the checks w = ¢;[X], succeeds.

We formally define this idea in two steps: first, we integrate -[-], into our use of af
congruences and coin the term -[-],-congruence; second, we base the formal definition
and the correctness proof of C}O’ on this definition.

Definition 5.4. Let ~ be an equivalence relation. We call ~ an -[-],-congruence if the
following holds for all formulas ¢ and :

p o~y = X, ~YX],

Looking at our three equivalence relations ~, ~,, and ~; we realise that only two of
them are actually -[-],-congruences and ~; is unfortunately ruled out for the construction
of C; - Observe that ~; is still suitable for the construction of the other components.

Lemma 5.5. ~. and ~, are -[],-congruences. ~; is not an -[-],-congruence.”

n fact the definition of -[-],-congruence can be relaxed a bit as seen in Section 7.4.

45

5 DRA Constructions

Proof sketch. (~¢, ~p) Notice that -[-], is in-fact a substitution only replacing proper
subformulas. Thus constants (tt, ff) and the Boolean connectives (A, V) are not replaced
in the syntax tree. Observe that ~. and ~, are congruent on such substitutions and,
since -[-], is a special case, we are done.

(~;) The following counterexample shows that ~; cannot be an -[-],-congruence. Let
¢ = FGa and ¥ = FGa V Ga be two formulas. Then we have ¢ ~; ¢, but:

ol0], = ff »; Ga ~; ff vV Ga = [0],
O]

Proposition 5.6. Let ~ be an af- and -[-],-congruence, let ¢ be a formula, and let X be
a set of formulas. Then the following DCA over the alphabet 24P recognises exactly the
words w such that Ji. w; = af(e, wo;)[X], holds:

C‘}DJ(= (Qv 9, <[90]~7 [@[X]u]~>,ﬁn (a))

where we define the states @, the transition function &, and the rejecting states « in the
following way:

- Q = Reach(¢)/~ % Uyepeach(p) Reach(Y[X]v)/~. That is, a state is a tuple of
equivalence classes [-]~, where the second tracks the formula after applying -[-],.

([af(€; 0)]~, [af(€, o) [X)) if ¢~ fF
([af(€, o)~ [af(C, 0)]~) otherwise.

That is, a transition either resets a failed attempt to prove w; = af(yp,we;)[X], for
some © or continues unfolding both equivalence classes using af.,.

6(([¢]~: [C]), 0) = {

— a = Reach(p) /. x {[ff]~}.

The reader might have noticed that the -[-],-congruence property is actually only neces-
sary for the first component, since we apply it only to states from that component and the
second component could use a different af-congruence. We will see in Section 7.5.1 how
to adapt this insight into a more involved, but potentially more succinct construction.

Example 5.7. Let ¢ = G(aUbVFc) be a formula and let X = {aUb} be a guess. Hence
o[X], = G(aWbVI). The DCA C;X from Proposition 5.6 for o is shown in Figure 5.4
and for this particular example we use the special af- and -[-],-congruence ~q based on
~p that is be introduced in Section 7.4. For the time being the reader can think of ~¢ as
~1, but with the important difference that ~4 is also an -[-],-congruence. In the context
of our example we thus can assume that p[X], ~¢ ¢[X], AaWb and ¢ ~; p A (aUbVFc)
hold.

Let us now consider two words w and w'. For w = (abc)((abc)(abe))” we have X =
GFS. On the one hand the word w is accepted, since the run eventually loops in the initial
state. On the other hand, we have w1 = af(¢, wo1)[X], ~; G(aWb). For w' = (abc)” we
have X # gf;,f,. The word w' is rejected, since the run alternates between the initial state
and the rejecting state ([¢]~, [ff]~), and we also have w] = af(p, w;)[X], ~ G(aWDb)
for all suffizes w}.

46

5.2 DRAs for Arbitrary LTL Formulas

a+b

0

(oot
abe abe
c a+b+c

abe

Figure 5.4: DCA C/, x for ¢ = G(aUbV Fc) and X = {aUb} using the yet-to-be-defined ~.

Proof of Proposition 5.6. (=) Let w be a word such that w; = af(p, we;)[X], for some
1. We need to show that the run r induced by w is an accepting run on C;,’ x- Then by
Lemma 4.20 we now that all following j > i have the same property (w; = af(y, wo;)[X],).
Let r be the run on Cgla, y corresponding to w. We prove that there is at most one
k > i, such that r[k] € a and thus w € E(C;X). Assume k; is the first index lar-
ger then ¢ where r[k;] € «. If there is no such element we are immediately done.
Thus rlk1 + 1] = (af(e, wo,+2)); (af(w, Wok,+2)))[X]v). Since k1 + 2 > i we have
Wiy 12 F af(, wogr, 4+2))[X]y, thus due Lemma 3.9 we have that the second compon-
ent never reaches ff again.

(<) Assume w is accepted by C;’ y- Then the corresponding run r visits the set of
state v only finitely often. Let ¢ be the time last time were the run r encounters [ff].
in the second component or —1 if there is never one. Then the second component is
af(p, wo(i4+1))[X]y at r[i + 1]. Since this component never sees [ff]. again after i, we can
apply Lemma 3.9 to obtain w;1 = af(¢, wo(it1))[X]v, which concludes the proof. O

Complexity Analysis. For the analysis we focus only on ~, as the underlying congru-
ence. As seen before Reach(y),~, has at most size 22" where n is the length of the
formula. Interestingly Uye geqen(p) Reach(v[X]y) /. can also be bounded by 22", This set
is a subset of all (positive) Boolean functions over at most n variables, since -[-], only
replaces existing proper subformulas by other subformulas of the same (or smaller) size
or the constant ff. Thus the total number of states of C, x is bounded by (22n)2 = 22",

The Complete DRA

Finding a way to check (1) was the last missing piece and we can now assemble DRAs
for arbitrary formulas by means of union and intersection applied to automata from
Proposition 5.1 and Proposition 5.6:

Theorem 5.8. Let ¢ be a formula and let ~ be an af- and -[-],-congruence. We define
for each X C u(p) and each Y C v(p) the following, from the equivalence relation ~
constructed DBAs and DCAs:

47

5 DRA Constructions

- C;X 1s the DCA from Proposition 5.6.

- ngy = nweX Bé[;i“ 18 the intersection of DBAs from Proposition 5.1.

X1y
- Cg{,y = ﬂweY Cgé:u]

1s the intersection of DCAs from Proposition 5.1.

Let Ry xy be the intersection DRA of the DBAs and DCAs C(;X, Bg(’y, and Cg(,y with
exactly one Rabin pair:

Roxy =Cpx NBYy NCy

Then the following DRA over the alphabet 24P recognises L():

Apra(p) = U Ry X,y

XCu(p)
Y Cu(yp)

Example 5.9. Let ¢ = G(aUbV Fc) be the formula from Example 5.7. We now build
the DRA R, xy (Theorem 5.8) for the guess X = {aUb} andY =0. The DRA R, xy

is the intersection of the DCA C}O’X (Figure 5.4) and the DBA ng:) (Proposition 5.1).
For this particular example we use again the special af- and -[-], -congruence ~4 mentioned
in Example 5.7.

Let us again consider the two words w and w'. For w = (abc)((abe)(abc))” we have
X = GFJ. On the one hand the word w is accepted, since the run eventually alternates
between the initial state and the accepting state (blue-shaded 1, on the right-hand side of
the initial state). On the other hand, we have w = G(aUbV Fe). For w' = (abc)*® we
have X # ij. The word w' is rejected, since the run alternates between the initial state
and the red-shaded x, rejecting states at the bottom of the figure. Further, the run never
visits the accepting state on the right of the initial state showing X # GF.,. Observe that
in this case we still have w' = G(aUbV Fc) and the word is accepted by another DRA
component. More precisely by the DRA Ry x1y+ with X' = {Fc} and Y' = .

Proof of Theorem 5.8. Let ¢ be a formula, let Apgra(p) be the corresponding automaton
constructed from a suitable equivalence relation ~, and let w be a word.

(=) Assume w is in L(p). By Theorem 4.14 there exist X and Y such that (1-3) hold.
We show that w € L(Apra(¢)) by proving that the run 7 for w on Ry x,y is accepting.
This run is accepting if there exist accepting runs for w on C;’ e Bg(yy, and Cg’(yy. In
order to show this we simply need to apply Proposition 5.6 to (1) and Proposition 5.1 to
(2-3) and we are done.

(<) Assume w is accepted by Apra(y). Thus there exists an accepting run r for w
on R, x,y for some X C u(yp) and Y C v(p). Thus C;,)o Bg(yy, and Cg’(yy accept w
and applying Proposition 5.6 and Proposition 5.1 yields (1-3) for X and Y. Hence the
right-hand side of Theorem 4.14 is fulfilled and so w is in L(¢p). O

Complexity Analysis. For the analysis we focus again on ~,, as the underlying congru-

ence. Let ¢ be a formula of length n. We have seen before that Cglo, y has at most 22"

states. By Proposition 5.1, L(GF(¢[Y],) is recognised by a DBA with at most 92"
states. Recall that the intersection of the languages of k¥ DBAs with s1,..., s, states is

48

5.2 DRAs for Arbitrary LTL Formulas

ol

Figure 5.5: DRA R, xy for ¢ = G(aUbV Fc), X = {aUb}, and Y = () using the yet-to-be-
defined ~;. The DRA R, x,v has only one Rabin pair: fin (%) A inf().

49

5 DRA Constructions

recognised by a DBA with k- H?:l s; states. Since | X| < n, the intersection of the DBAs
Bg{,y for the formulas GF(1[Y],) yields a DBA with at most

n- <22n+1>n _ 2n2n+1+(10g2 n) < 22”+(1082 n)+2

states. Dually by Proposition 5.1, L(FG(v¢[X],) is recognised by a DCA with at most
22"*" states. Recall that the intersection of the languages of k DCAs with s1,..., sk
states is recognised by a DBA with H§:1 s; states. Since |Y| < n, the intersection of the
DCAs Cg’(yy for the formulas FG(¢[X],) yields a DCA with at most

n+1\ M n+1 n+(logg n)+1

states. Thus the intersection DRA R, xy has at most

22n+1 . 22n+(log2 n)+2 . 22n+(10g2 n)+1 < 22n+(log2 n)+4 c 22O(n)

states and one Rabin pair. Taking the union of all these yields a DRA Apra(y) with at
most

n

<22n+(10g2 n)+4>2 o 22n.2n+(log2 n)+4 . 222n+(log2 n)+4 c 220(n)

states and at most 2" Rabin pairs. Observe that this matches asymptotically the known
double exponential lower bound |[KV98; ALO4].

50

6 NBA and LDBA Constructions

In this chapter we proceed in the same manner as before: we first define constructions for
LTL fragments and then assemble a translation for arbitrary LTL formulas from these
components. However, we postpone this familiar program and begin with a construction
for a special subclass of nondeterministic Biichi automata (NBA), the limit-deterministic
Biichi automaton (LDBA). LDBAs can be partitioned into an initial component, which
might contain states with a nondeterministic transition relation, and an accepting com-
ponent that contains all accepting states (or transitions) and is deterministic. If a run
enters the accepting component via a so-called ‘jump’, it cannot leave this component
anymore. We begin with the LDBA construction, since it has the same structure of
the final NBA construction®, but is built from the known constructions from Chapter 5.
Then we adapt the function af to the nondeterministic setting and return to the roadmap
of the previous chapter: the translation to NBAs with (asymptotically) optimal size for
fragments and arbitrary LTL formulas based on the Master Theorem.

6.1 LDBAs for Arbitrary LTL Formulas

The primary challenge for building LDBAs with the Master Theorem is that in the ac-
cepting component it is impossible to construct DBAs for some of the formulas required
by Theorem 4.14, such as FGa. However, we can make use of the available nondetermin-
ism to ‘guess’ when Ga holds and use the DBA construction for v LT L. Using this initial
idea we rephrase Theorem 4.14 and break the symmetry of the Master Theorem in or-
der to reduce ‘guessing’ to exactly one point ¢ in the run. Specifically, we ‘synchronise’
checking (1) and (3), which results in the following corollary:

Corollary 6.1. (Variant of the Master Theorem) Let ¢ be a formula and let w be a
word. Then w = ¢ if and only if there exist X C u(p), Y Cv(p), and i > 0 satisfying:

1. wi = af(p, woi)[X]y
2. Vi € X. w; = GF(¢[Y],,)
3. Vi €Y. w; = G([X],)

Proof. Clearly, the existence of an index i satisfying (1’-3’) implies that conditions (1-
3) of Theorem 4.14 hold. For the other direction, assume conditions (1-3) hold. By
Lemma 4.20 the index i stemming from condition (1) can be chosen arbitrarily large.
Furthermore, since w | A,cx FG(¢[X])), we can choose i so that it also satisfies

wi = Ayex G@WIX],). =

The LDBA construction tracks in the initial component af(p, wq;), i.e. after reading a
finite word wo; the initial component is in state [af(¢, wo;)]~. The states [af(p, wo;)]~ are
then connected to the accepting component by jumps that guess sets X and Y and the

!The translation to NBAs presented in [EKS18] is different from the construction we present here.

o1

6 NBA and LDBA Constructions

stabilisation point 2. The jump leads to the corresponding initial state of the intersection
automaton (Bxy) of three DBAs, which are in charge of checking (1’), (2'), and (3'),
and we refer to these automata by B}(, Bg(’y, and Bg’(jy, respectively.

To be more precise: recall that af([p]~,woi)~ € Reach(p),~ for every word w and
every i > 0. For every [1)]. € Reach(y),.. and for each pair of sets X,Y we construct a
DBA By, x,y recognising the intersection of the languages of the formulas:

P[X], A GF@[Y],) N\ G[X],)

PpeX Pey

These formulas belong to vLTL, GF(uLTL), and vLTL, respectively, and so we can
obtain DBAs for them following the recipes of Proposition 5.1. Note that DBAs By, xy
and B, xy have on common states the same transition relation and accepting states. We
take advantage of this and combine all By x y into a single structure that we call Bx y.
Formally, we construct a semi-deterministic?> Biichi automaton — a Biichi automaton
with a deterministic transition relation, but with potentially multiple initial states —
recognising the union of all By, x y by taking the (potentially non-disjoint) union of states,
transitions, initial states, and accepting states. Consequently, Bx y has a set of initial
states Qo x,y containing for each [1)] € Reach(y),~ an initial state ([¢[X],]~, 5, q5) €
Qo xy- Summarising, we obtain:

Theorem 6.2. Let ¢ be a formula and let ~ be an af- and -[-],-congruence. We define
for each X C p(p) and each Y C v(yp) the following, from the equivalence relation ~
constructed, DBASs:

Xl s the (semi-deterministic) union of DBAs from Pro-

¥
- B = U[w]NEReach(cp)/N By
position 5.1.%

Y
- Bg{,y = ﬂwex Bé[ij

1s the intersection of DBAs from Proposition 5.1.
- Bg’(’y is the DBA for \,cy G(¢[X],) from Proposition 5.1.
Let Bxy be the (semi-deterministic) intersection of the DBAs B, Bgij, and B%(,Y"
Bxy = (Qx,y,0x,y,Qox,y, inf(axy))
Then the following LDBA over the alphabet 24P recognises L(p):
Avpealp) = (Q, 6, [¢]~, inf(a))

where we define the states @), the transition relation &, and the accepting states o in the
following way:

2The term appears in [VW86b| and coincides with the above mentioned definition. However, later pub-
lications might call an automaton semi-deterministic, when it is limit-deterministic or deterministic-
in-the-limit. In our case semi-determinism is stricter than limit-determinism and these terms are not
interchangeable.

3Similar to Proposition 7.13 ~ needs to be an -[-],-congruence to ensure that the application of -[-], is
well-defined for the transition to the accepting component. However, after the transition -[-], is not
used anymore, thus any af-congruence ~ with ~ <~ can be used for constructing B, B%yy, and
B y.

52

6.1 LDBAs for Arbitrary LTL Formulas

- Q = Reach(p);~ U U{Qxy : X C u(p),Y C v(p)}. That is, a state is either
an equivalence class (]~ or a product state ([¢]~,q’,q") € Bxy from one of the
accepting components.

~0=uaf Ud~ Ubxy. That is, a transition is either within the initial component
(af.), within an accepting component (0x)y), or it is a jump (5~) from initial to
accepting component. Let 6, be defined for each state [{)]~. € Reach(p),~ and each
letter o € 247 as:

o]~ 0) =
U{0xy(90,0) = @0 = ([W[XTo]~s 600 45) € Qoxyy s X € plp), Y S ()}

—a=Ulaxy : X Cule),Y Cr(p)}.

Note that the automata BY and Bg’(,y are in-fact weak, meaning that the states of every
strongly connected component (SCC) are either all accepting or all rejecting. Intersecting
a DBA with a weak DBA is simpler compared to the general case and it suffices to use
the classical product construction for automata on finite words. This means it is not
necessary to add additional information to the product states to track the progress of
the Biichi acceptance conditions, e.g. multiple copies of the state space or a round-robin
counter. Before we move on to the proof of the theorem, we illustrate the construction
using an example:

Example 6.3. Let ¢ = FaVFGb. The LDBA A pga(yp) constructed from Theorem 6.2
using ~yp as the underlying equivalence relation is depicted in Figure 6.1. Further, we use
the following simplified versions of -[-], and -[-], to enhance readability:

tt ifFyYeY

ff otherwise.

tt ifGyeX

ff otherwise.

(Fy)[Y], = { (GY)[X] = {

Observe that transitions within the upper half (initial component) and the lower half
(accepting component) are deterministic and only transitions from the upper to the lower
part add nondeterminism. In this drawing we omitted several accepting components, e.g.
X = {Fa},Y = {Gb} or X' = {FGb},Y' = {}, and some non-accepting states. We
mark these omissions by dashed outgoing transitions.

This example illustrates already some potential optimisations for an implementation:
First, B}(and Bg’(y can be combined into a single component, since both are in charge
of accepting formlilas from vLTL. Second, the optimised version of the Master Theorem
(Proposition 4.18) allows the removal of redundant components. In this example the
component By g would be enough, since it is sufficient for recognising all words of the
language L(p).

Proof of Theorem 6.2. Let ¢ be a formula, let A pga(¢) be the corresponding automaton
constructed from a suitable equivalence relation ~, and let w be a word. Further, we
denote by ¢y x,y € Qo x,y the initial state of Bxy with [x]~ = [¢[X],]~ in the first
component for every reachable state [¢]. € Reach(¢),. and for all sets of formulas
X C p(p) and Y C v(p). We denote by L(gy,x,v) the language accepted from gy xy

93

6 NBA and LDBA Constructions

b
<-| tt, (Ftt), Gb

X = {FGb}

X=0
Y = {Gb} Y =0

Figure 6.1: A pga(p) for ¢ = Fa vV FGb. Omitted states and transitions are indicated by
dashed arrows.

o4

6.1 LDBAs for Arbitrary LTL Formulas

on the automaton By y and using Proposition 5.1 we can characterise the language
L(gy,x,y) in terms of LTL:

Vo. v € L(gyx),,xv) <= v EY[X]
AYY € X. v = GF(@Y],)
AV € Y. v = GHIX],)

(=) Assume w is in L(¢). By Corollary 6.1 there exist i, X, and Y such that (1’-3)
hold. We now construct an accepting run r on A pga(¢). The run r follows for the first
i — 1 steps the initial component and reaches af_([¢]~,wo;) = [af(¢, woi)|~ = [¢]~ for
some 1. The run then branches off to the accepting component By y. Notice that (1’-3)
exactly matches the right-hand side of our characterisation of £(gy(x),,x,y) and thus we
have w; € E(qw[X]u,X,Y)~ Thus there exists an accepting run r’ for w; on By y starting in
qy[x],,x,y- Observe that the we can reach from [¢)]~ the same states as qy[x],, X,y Since
S [V~ wli]) NQxy = dx,v (qy[x),,x,v» w[i]). Thus r simply follows the accepting run
r’ from this point on and we are done.

(<) Assume w is accepted by Aipga(p). Then there exists an accepting run r and
since every accepting state is located in some By y the run r eventually transitions to
some Bxy. Let now i be the time at which the run moves to Bx y for some [¢)]. =
[af(p, woi)]~ = af_([¢]~,woi), some X C p(p), and some Y C v(p). Since the run
7 is accepting and 6 ([¢)]~, w(i]) N Qxy = dxv(qy[x),,x,v>w[i]), we can construct an
accepting run r’ on Bxy for w;:

Pl = d DXy ifj=0
rli + j] otherwise.
Thus w € E(qw[X, x,y) and using our characterisation of this language we end up with
(1’-3”) of Corollary 6.1. Consequently w |= ¢ and we are done. O

Complexity Analysis. We base our analysis on the equivalence relation ~,,. Let ¢ be a
formula of length n. Since A pga(¢) is an union and intersection of several components,
the number of states can be bounded by the size of the components:

[Reach() v, |+ Y (1Q%] 1Q% v 1Q% v)
XCp(p)
YCu(y)

We bound the size of each of these components by a doubly-exponential function. In
the case of B}(it is not immediately clear from the previous results how to do this,
because B} contains for each element of Reach(y) /~, @& potentially 22" _sized automaton.
However, observe that all equivalence classes in Qk correspond to a Boolean function
over the same set of proper subformulas of size at most |sf(¢)| < n and so Q) has at most
22" elements. Bg(y is an intersection of | X|-many automata with at most 22" states.

We bound | X| by ()| < n and thus the number of states is at most n - (22")" =
g2 Hllosa it (lonz losa L Bg’(yy is constructed from the formula A,y G(¢[X],). This
formula has at most |sf(¢)| + |v(¢)| proper subformulas and thus the automaton has at

sfle)|+1v (el

most 22 < 22%" states. Going back to our initial bound and inserting the upper

95

6 NBA and LDBA Constructions

bounds for the components we obtain:
22n i 2‘#(90)|+‘V(<P)|(22n ' 22n+(log2 n)+(logg logg n)+1) 22271) < 22n i 224n+2 < 224n+3 c 220(n)

This construction can be further refined by replacing components, especially ngy,
by smaller components as described in Chapter 7. Recall that the lower bound for the
blowup of a translation of LTL to LDBA is double exponential [SEJK16].

The definition of an LDBA allows the initial component to be nondeterministic. How-
ever, in our construction we make it deterministic and thus every accepting run has
exactly one nondeterministic step. This (and some other technical details) make this
LDBA usable for quantitative (and not only qualitative) probabilistic model checking,
as described in [SEJK16| and Section 9.1.

6.2 NBAs for uLTL, vLTL, GF(uLTL), and FG(vLTL)

Before we start building NBAs for general LTL formulas (Section 6.3), we define construc-
tions for fragments of LTL. For this we adapt in this section af to the nondeterministic
setting by putting the result of applying af into disjunctive normal form. This step re-
duces the size of the automata for ‘simple’ languages from being double exponential to
just exponential by using nondeterminism to guess the clause of the formula that is going
to be satisfied. From this newly defined af,, we then obtain the automaton constructions.
Thus we have three subsections: first, we define what we mean by disjunctive normal
form; second, we introduce af, and prove fundamental properties about this function;
third, we give the automata constructions.

But before jumping into technical definitions and lemmas, let us start with some
informal intuition: Consider the formula ¢ = GX(a V b). In the automaton obtained
from Proposition 5.1 we find states for the formulas ¢ and af(¢, {a}) and the transition:

[Pl~ > [afle, {a})]~ = [p A (a V b))~

Putting af into DNF means that we rewrite ¢ A (a V b) to (¢ Aa) V (p Ab) and instead
of a single transition, we now have two transitions:

Lpa—b>g0/\a and cpa—bﬂp/\b

In other words, the nondeterminism is used to guess which of the two disjuncts of the
DNF is going to hold. To be more precise, we replace the equivalence classes by clauses,
sets of modal operators and literals, that represent conjunctions. Thus we will find in
the NBA for ¢ the following two transitions:

{0} {p,a} and {p} D {o,b)

As previously mentioned af deterministically tracks the current run-DAG level of the
for an LTL formula canonical VWAA [MSS88; Var94|. Similar af, nondeterministically
tracks the current level of the run-DAG which resembles the idea used in tableau con-
structions [GPVW95]. However, the NBAs that we obtain for arbitrary LTL formulas are

56

6.2 NBAs for uLTL, vLTL, GF(uLTL), and FG(vLTL)

based on a product construction and are structurally different to the automata obtained
through previously known tableau constructions.

6.2.1 Disjunctive Normal Form

We now introduce the standard definition of a disjunctive normal form and the related
notation. By X ® Y == {AUB : A € X,B € Y} we denote the pair-wise union of
two sets of sets. This intuitively corresponds to computing the set of satisfying assign-
ments for a conjunction given satisfying assignments for both conjuncts. We denote by
®{X1,X2, .. Xn} = {Al UAsU---UA,: A1 € X1,A € Xo,... A, € Xn} the lifting
of ® to finite sets. Further, we also lift U to finite sets, denoted by (J{ X1, X2,... X} =
X1uUuXeU---UX,.

In general Boolean functions do not possess a unique, minimal? disjunctive normal
form. However, in our context we interpret LTL formulas as monotone Boolean functions,
i.e., a and —a are mapped to distinct variables z, and x—,, and in this specific context
there exists a unique minimal disjunctive normal form for each formula. We compute
the minimal set of satisfying assignments using min(X) = {A € X : VB € X. B ¢ A}
where X is a finite set. We then use the following shorthands: X Ui, Y = min(X UY),
X @min Y =min(X ®Y), and Q),,,, X = min(Q X).

When working with these definitions the following identities are useful and allow easier
compositional reasoning: @, .. 0 = {0}, Q,,.,{X} = min(X), and ,,;,(X¥ UY) =
(Q,inX) Dmin (Q,,;,Y) where X, X',), and the elements of X and Y are finite sets.
Lastly, for each set A one can ‘trace-back’ the contribution a particular X in X made to
A Ae @, XNXeX = IB e X. BC A where X, X, and the elements of X’ are
finite sets. We are now equipped with necessary tools to define the minimal disjunctive
normal form and state the well-known relation to satisfying assignments:

Proposition 6.4 (Minimal Disjunctive Normal Form). Let ¢ be a formula. We recurs-
ively define the minimal disjunctive normal form dnf(yp) as follows:

dnftt) = {0} dnf(Xe) = {{Xp}}
dnf(ff) =10

dnfla) ={{a}} dnfleUy) = {{xUv}}
dnf(-a) = {{~a}} dnfleMy) = {{eMy}}

dnf(p N) = dnf(thr) @min dnf(1a) dnflpRep) = {{eRap}}
dnf(p V) = dnf(spr) Umin dnf(pz) dnfloWy) = {{x Wy }}

Further, let I be a propositional assignment. Then:
IkEpp < IVCI. Ve dnfle)

Proof sketch. This is proven by a straight-forward structural induction on (. O

P

Example 6.5. Let ¢ = a V ((a ANXb) VF(bVc)). We then compute dnfla) = {{a}},
dnfla A Xb) = {{a,Xb}}, and dnf(F(bV c)) = {{F(bVc)}}. Then

dnf(y)) = {{a, Xb}, {F(bV c)}}

4Minimal in the sense that there exists no other clause representation of the Boolean function with
fewer clauses.

o7

6 NBA and LDBA Constructions

and finally:

dnflp) = min({{a}} U {{a, Xb},{F(bV c)}})
= min({{a}, {a, Xb},{F(bV c)}})

= {{a}, {F(0V o)}}

6.2.2 Disjunctive af

We now define based on dnf from the preceding subsection the disjunctive version of af.

Definition 6.6 (Disjunctive af). Let W be a set of formulas and let o be a letter. We
then define af., as:
af, (¥, 0) = Qldnflaf(v,0)) : v € ¥}

Furthermore, we generalise the definition of af,, and define the set of reachable clauses.
Let ¢ be a formula and let w be a finite word. We then define:

af, (¥, €) = {T}
afy, (U, wo) = | J{afy (¥, 0) : W' € af (¥, w)}
of, (o, w) = | J{af, (¥, w) : U € dnfle)}
Reachy(p) = U{afv tw € (27)*}

Example 6.7. Let ¢ = XaVX(aAb). Let us now compute af,(p,{}) and af, (o, {}{b}):

af(e, 1) = U {ah (2.4} © € dnflp)}
= U{ar(Xa} 01, af, ((X(@n b)) 1) }
= J{dnfta), dnfta n)}

U{{{a}} {a.0}}} = {{a}, {a.0}}

af, (¢, {}{b}) = ... — in the same manner as before
U{af ({ad, (8), of, ({a, b, {01)}
= | { ant), dnf{fE) & puin dnf(EE) |
-U{{1 0} =0

In fact with the words {} and {}{b} we discovered most of the clauses. The last, unex-
plored clause () can be reached with the word {}{a}. Thus the set of all from ¢ reachable
clauses is: Reachy () = {{Xa}, {X(a Ab)}, {a, b}, {a}, {}}.

We now transfer the knowledge we have about af to af,,, which will be useful when we
prove correctness of the derived constructions. Ideally we want to prove:

dnflaf(p, w)) = af, (¢, w)

o8

6.2 NBAs for uLTL, vLTL, GF(uLTL), and FG(vLTL)

Such a statement would put (minimal) satisfying assignments of af(¢, w) and the clauses
of af,(¢,w) in a direct relation. Unfortunately, this statement is not true: Let ¢ =
Xa V X(a A b) from Example 6.7 and let o be an arbitrary letter. On the one hand, we
have af(¢,0) = aV (a Ab) and thus dnf(af(p,0)) = {{a}}. On the other hand, we have
o, (,0) = UL af, ({Xa}, 0), of, ({X(aV b))} = {{a}, {a b}}, which is not equal.

While our hypothesis turned out to be wrong, this counterexample gives us the insight
that af,, (¢, w) might over-approximate the set of (minimal) satisfying assignments, but
dnf(af(¢,w)) is always a subset. Thus we arrive at the following lemma:

Lemma 6.8. Let ¢ be a formula, let w be a finite word, and let T be a propositional
assignment. Then:

Ty af(p,w) <= IV C L.V e af,(p,w)

In order to keep the section short the proofs of Lemmas 6.8 and 6.9 are moved to
Section 6.A. Applying Lemma 6.8 to the counterexample we see that af,,(p,0) only
contains satisfying assignments (Z = {a}, J = {a,b}) for af(¢, o). Further, propositional
assignments that do not satisfy af(p, o) such as K = {b} are not in af,(p,0) and all
subsets (0)) of K are also not an element of af, (p,).

Based on Lemma 6.8 we establish more results, most notably: (a) the empty set ()
precisely reflects when af is propositionally equivalent to tt or ff, (b) af, decomposes
the language into a union of intersections, and (c) that -], commutes with af, in the
expected way. Let us now denote with W[X], := {¢[X], : ©» € U} the application of -[-],
on each element of V.

Lemma 6.9. Let ¢ be a formula, let w be a finite word, let X C p(p) be a set of
subformulas, and let T C sf(p) be a propositional assignment that only contains proper
subformulas. Then:

1. af,(p,w) C 25%)
2. 0 € afy(p,w) <= af(p,w) ~p tt

3. afy(p,w) =0 <= af(p,w) ~, ff

4o Liafie.w) = U{Nyeo L&) : ¥ € afy (0,w) }

5. 1 =p aflp,w)[X], <= V. V[X], CTAY € af,(p,w)

6.2.3 Automata Constructions

We first describe how to construct NBAs for the LTL fragments of Section 2.2.2. For the
sake of completeness we also give a construction for FG(vLTL), but we do not use it
later.

Proposition 6.10. Let p € uLTL.

— The following NBA over the alphabet 24P recognizes L(p):

Bj = (Reachv(p), af,, dnfl¢), inf({0}))

99

6 NBA and LDBA Constructions

— The following NBA over the alphabet 24P recognizes L(GFp):

B, = (Reachy(Fo) U {{Fo}}, afy?, {{Fp}}, inf({0}))

af,(U,0) otherwise.

of 5 (W, 0) = {{{Fw}} if U=

Let ¢ € vLTL.

— The following NBA over the alphabet 24P recognizes L(p):
B = (Reachy(p), afy, dnfle), inf(Reachy(¢)))
— The following NBA over the alphabet 24P recognizes L(FG):
Bfa, = (Reachy(Gy) U{{FGe}, {Gp}}, af? {{FGy}}, inf(Reachy (Gy)))

Sy [UFGSL (G} W= (FGy)
v ’ af, (¢, 0) otherwise.

Example 6.11. Let ¢ = a A X(bV Fc), the formula for which a DBA was given in
Example 5.2. The NBA BéFu for ¢ is shown in Figure 6.2. Compared to the DBA of
Example 5.2, the NBA has a simpler structure, although in this case the same number of
states.

Example 6.12. Let ¢ = \/?:1 F(a; N XFb;). In Example 6.11 we showed that the NBA
has a simpler structure, but the number of states stayed the same. In this example we
look at the formula @, which yields a polynomial-sized nondeterministic automaton for ¢
(Figure 6.3), while we obtain an exponential-sized deterministic automaton (Figure 6.4).

A closer look at this is taken in the complexity analysis paragraph of Section 5.1 and
Section 6.2.

Proof of Proposition 6.10. Let ¢ be a formula of uLTL. We want to prove (1) L(p) =
L(Bf) and (2) L(GFy) = L’(BéFu). Let w now be an arbitrary word.

tt
tt c
L
—[(Fp} {Fe}
e - 7

Figure 6.2: NBA Bip, for ¢ = a A X(bV Fc). Notice the different self-loops on {Fy} and
{Fc}. In the first state the automaton guesses nondeterministically when to track
o and in the second state the construction already resolves the nondeterminism.

60

6.2 NBAs for uLTL, vLTL, GF(uLTL), and FG(vLTL)

=

—> {F(Ch/\XFbl)} L {Fbl}

e {F(CLQ A XFbQ)}

5
Sk

— {F(ag A\ XFbg)}

Figure 6.3: NBA B for ¢ = \/f’=1 ¥; with ¥; = a; A XFb;. Notice that this NBA repeats for
each v; the same structure and has in total 2n + 1 = 7 states.

aijazas

b1babs

TG Fb1 Va2 V3
Q v aiazas ¥

| | O
;ﬁ;:i:::::j’”'___—_“““\~\\$ Drashs
H (v B Vs Fby V1)V Fbs |—— | Fby v Fby v Fby
arazas ‘ ‘
FTEa00 M M / l b1 +ba+ b3
albzbg
wl Vv ’lﬁz VvV Fbs ¢1 V Fbs V Fbs

Fby V Fby V 13

bl b2a3

! !
v ¥

aiaz2as3

tt

Figure 6.4: DBA By for ¢ = \/f':1 ¥; with ¢; = a; A XFb; from Proposition 5.1 using ~; as
the underlying equivalence relation. Omitted transitions are indicated by dashed
arrows. This automaton has 2" + 1 = 9 states.

61

6 NBA and LDBA Constructions

(=1) Assume w = ¢. Using Lemma 3.9 with ~, we have af(p, wp;) ~, tt for some
i and also 0 € af, (¢, wp;) using Lemma 6.9. Hence there exists some a path from the
initial states to () labeled wq;. Let 7 be the run that follows this path and loops in state
() afterwards. Thus r is accepting and the word w is accepted by Bj;.

(<1) Assume w is accepted by Bj;. Then there exists an accepting run r for w and
this run visits the state () infinitely often. Let be i be the index such that) € af,, (i, wo;).
Applying Lemma 6.9 we have af(, wo;) ~p tt and with Lemma 3.9 we also have w = ¢.

(=2) Assume w |= GFy. This is equivalent to Vi. w; = Fo and Vi.3j. af(Fp, w;;) ~) tt
(Lemma 3.9). By applying Lemma 6.8 we obtain Vi.3j.0 € af,,(Fyp,w;;). From this we
now construct an accepting run r piecewise. We start by setting r[0] = {Fe}. Let j > i
be the smallest index for ¢ = 0, such that) € af,,(Fg,wp;). Then the run follows this
path to reach @ for the segment wg; and thus r[j] = 0. After visiting the accepting state
the run returns to the initial state and we repeat this from r[j 4+ 1] = {Fp}. Applying
this construction again and again we obtain an accepting run and thus the word w is
accepted by BéFu'

(<2) Assume w is accepted by BéFu' Then there exists an accepting run r for
w and this run visits the state () infinitely often. Provided we have shown Vi.35 >
i.3k. af(Fp, wji) ~p tt, we apply Lemma 3.9 again to w = GFy. We now focus on the
remaining goal Vi.3j > i.3k. af(Fy, wji) ~, tt: Let i be an arbitrary index. Since r is an
accepting run, there exist infinitely many j’s, such that r[j —1] = 0 and r[j] = {Fp}. Let
j be such an index with j > 4. Since r is an accepting run, there also exists some k, such
that r[k] = () and the run r has not visited () in-between of j and k. Thus) € af,, (¢, wji)
and with Lemma 6.9 we fill the remaining gap.

We now move on to the second part concerned with vLTL. Let ¢ be a formula of
vLTL. We want to prove (3) L(¢) = L(BY) and (4) L(FG¢) = L(Bgg,)- Let w now be
an arbitrary word. The proof of (3) is analogous to the proof of (1) and we are skipping
it. Observe that Bfg, adds to the structure of BS¥ just one additional, non-accepting
state with a self-loop and a transition to {Gy}.

(=4) Assume w = FGep. Then there exits some i such that w; E Gyg. An accepting
run just stays in FGe up to ¢ and then moves to Gy. From this point on there exists a
continuation according to (3) that is accepting.

(<4) Assume w is accepted by B{iGy. Let r be the corresponding accepting run. r
eventually leaves at some point ¢ the state FGy and moves to {Gy}. By (3) we know
that then w; = Gy and hence w = FGo. O

Complexity Analysis. The elements of Reachy(p) are sets of proper subformulas of ¢,
i.e. Reachy(p) C 25f(#) Since the number of proper subformulas is bounded by the
length of the formula, we immediately obtain |Reachy ()| < 219l < 27 where n is the
length of ¢. Thus all NBAs have at most O(2") states. More precisely, the NBAs for
pLTL and vLTL have at most 21%(¥) the NBAs for GF(uLTL) have at most 2/5[(#)1+1]
and the NBAs for FG(vLTL) have at most 2/%(¥)+1 11 states. Observe that the blow-up
in translating LTL to NBAs for formulas constructed just using literals (a, —a), Boolean
connectives (A, V), and the modal operator X is already exponential, see e.g. [BKO0S|.

62

6.3 NBAs for Arbitrary LTL Formulas

6.3 NBAs for Arbitrary LTL Formulas

Equipped with NBA constructions for LTL fragments we go back to the construction in
Theorem 6.2 and revise it such that we obtain NBAs of exponential size for arbitrary
LTL formulas. We achieve this by simply replacing the deterministic building blocks
(DBAs) with nondeterministic (NBAs) ones.

Theorem 6.13. Let ¢ be a formula. We define for each X C p(p) and each' Y C v(p)
the following NBAs:

- B}(= U\I,eReaChv(@) BQ\P[X]” 18 the union of NBAs from Proposition 6.10.

- Bg(’y = nweX Bé[gi” is the intersection of NBAs from Proposition 6.10.
- Bg’(’y is the NBA for \,cy G(¢[X]y) from Proposition 6.10.
Let Bxy be the intersection of the NBAs B}O Bg(’y, and Bg’(,ys

Bxy = (Qx)y,0x,y,Qoxy,inf(axy))

Then the following NBA over the alphabet 24P recognises L(p):
-ANBA((P) = (Qv 9, dnf(cp), mf(oz))

where we define the states @), the transition relation &, and the accepting states v in the
following way:

- Q = Reachy(p) U UH{Qxy : X C pu(p),Y C v(p)}. That is, a state is either
a clause U or a tuple of clauses (¥, V', U") € Bxy from one of the accepting
components.

-0 =af,Ud~ Udxy. That is, a transition is either within the initial component
(af,), within an accepting component (dxy), or it is a jump (0~) from initial to
accepting component. Let 0~ be defined for each state ¥ € Reachy(p) and each
letter o € 24P as:

6~ (W, 0) = J{0x,y (@0, 0) - g0 = (P[X],, W', ¥") € Qoxy . X C plp), Y S ()}

“a=Uaxy : X Cule),Y Crip)}.

Note that the automata B}(and Bg’gy are in-fact weak, meaning that the states of every
strongly connected component (SCC) are either all accepting or all rejecting. Thus as
with the DBAs in the LDBA construction, intersecting a NBA with a weak NBA is sim-
pler compared to the general case and it suffices to use the classical product construction
for automata on finite words. Again, this means it is not necessary to add additional in-
formation to the product states to track the progress of the Biichi acceptance conditions,
e.g. multiple copies of the state space or a round-robin counter.

Furthermore, in the same manner as before we integrate several automata into the
same structure B}(without making the different state sets distinct. Last, note how this
definition deals with the issue arising from ¢ [X], = ff, meaning we can have a ¥ and a
X such that ff € W[X],. In that case we have no matching initial state in By y, since
dnflby N+« NFEAN - ANby) = 0. Before we move on to the proof of the theorem, we
illustrate the construction in the following example:

63

6 NBA and LDBA Constructions

|
o [}
b

[0 D0 [podf D
T

b

0. ({Ftt}), {Gb) [{Gb}, ({Ftt). {Gb}]
X = {FGb} X =0
Y = {Gb} Y =0

Figure 6.5: Anga(p) for ¢ = FaVFG). Omitted states and transitions are indicated by dashed
arrows.

Example 6.14. Let us revisit the formula ¢ = FaVFGb previously used in Example 6.3.
The NBA Anga(p) constructed from Theorem 6.13 is depicted in Figure 6.5. Further,
we use the following simplified versions of -[-], and -[-], to enhance readability:

tt ifFyeY

ff otherwise.

tt ifGyeX

ff otherwise.

@WWhZ{ (GMMhZ{

Compared to the LDBA in Figure 6.1 the transition structure is simpler. We can apply
stmilar optimisations as before, such as the removal of redundant components by replacing
Theorem 4.14 with the restricted version of it: Proposition 4.18.

Proof of Theorem 6.13. Let ¢ be a formula, let Anga(p) be the corresponding auto-
maton, and let w be a word. Further, we denote by Qu/ xy € Qo x,y the initial states of
Bx,y with ¥ = ¥[X], in the first component for every reachable state ¥ € Reachy(p)
and for all sets of formulas X C u(p) and Y C v(p). We denote by L(Qu’ xy) the
language accepted from the states QQg’ xy on the automaton Bxy and using Proposi-
tion 6.10 we can characterise the language £(Qu x,y) in terms of LTL:
Yv.v € ﬁ(Q\Iﬂ’XJ/) — VY € v v ': w
AV e X. v = GF(@[Y],)
AV €Y. 0 G(Y[X],)

64

6.3 NBAs for Arbitrary LTL Formulas

(=) Assume w = ¢. By Corollary 6.1 there exists 4, X, and Y such that (1-3") hold. We
now construct an accepting run r on Anga(y) and thus show w € L(Anga(y)). Let now
Z = {¢ € sflaf{,wn:)[X],) : wi = 1} be a propositional assignment. From (1’) and
Lemma 2.7 we follow Z =, af(¢, wo;)[X], and thus we can apply Lemma 6.9 to obtain a
clause ¥ € af,, (¢, wo;) such that U[X], C Z. Thus the run follows for the first i steps a
matching path in the initial component to arrive at . Assume we have w; € L(Qw xy),
then the run r branches off from the clause ¥ via 0 to the accepting component Bx y
and follows the accepting run belonging to w;.

Thus it remains to show that right-hand side of the characterisation of L(Qu’ xy)
holds for w;. (2’) and (3’) match the second and third conjunct and we only need to
prove Vi) € W' . w; = 1. However, this follows immediately from the definition of Z and
the subset relation ¥/ = ¥[X], C Z and we are done.

(<) Assume w is accepted by Anga(p). Then there exists an accepting run r. Let
now 7 be the index at that the run transitions via - to Bx,y for some ¥ € af,, (¢, wo;),
X C u(p), and Y C v(p). This has to happen, since every accepting state is in some
accepting component By y. Because the run r is accepting, w; is in L(Qu xy) for
U’ = ¥[X], and we obtain the following from the LTL characterisation:

Ve UX]w by wiE N\ GF@YL) wikE)\ GWIX])

pex YeEY

From the second and third fact, we can immediately follow (2’) and (3’) of Corollary 6.1
and for showing w = ¢ we only need to prove the remaining (1’): w; = af(y, we;)[X],.
Let now Z = {9 € sf(af(p,wo;)[X],) : w; = 1} be a propositional assignment. Observe
that from the first fact we can follow W[X], C Z. Then we apply Lemma 6.9 and get
T &= af(p, wo;)[X],. Using Lemma 2.7 we derive (1’) and we are done. O

Complexity Analysis. Let ¢ be a formula of length n. Since Anpa(p) is constructed
from unions and intersections of several components, the number of states can be bounded
by the size of the components:

|Reachy(9)|+ > (1Q%|- Q% v+ Q% y])
XCu(p)
YCu(p)

We bound the size of each of these components by an exponential function. B}(is a
combination of exponentially many automata with size O(2") and thus blindly applying
the upper bounds of the preceding section gives a O(2" - 2") = O(2?") upper bound.
However, observe that the number of proper subformulas of that formula is at most
|sfl¢)] < n and so QY has at most 2" elements. Bg(’y is an intersection of |X|-many
automata with at most 27! states. We bound |X| by |u(¢)| < n and thus the number
of states is at most n - (2"T1)" = gn’+ntlog,(n) including the necessary round-robin
counter. B;’Y is constructed from the formula A ;- G(¥[X],). This formula has at most
|sf(0)| + |v()| proper subformulas and thus the automaton has at most 2/#(P)I+F (@)l <
227 states. Going back to our initial bound and inserting the upper bounds for the
components we obtain:

on 4 o)+ (gn . gn4n-loga(n) . 920y < gy gni+5n-logs(n) < gn®+6n+loga(n) ¢ 9O(n?)

65

6 NBA and LDBA Constructions

We will later refine the construction in Section 7.3.4 by replacing Bg{,y by a component
of size n - 2"*! and thus reduce the upper bound on the size to O(2°") C 20,

Alternative Construction. Note that in [EKS18] the NBA construction is derived in the
same way as the DRA construction. Here, we followed the LDBA construction, i.e. we did
not replace components in the DRA construction by their nondeterministic counterparts,
but we replaces the components of the LDBA construction. The advantage of basing
the NBA construction on the LDBA construction is that nondeterministic guessing is
centralised to a single point, which seems to be saving states in several scenarios.

66

6.A Omitted Proofs

6.A Omitted Proofs

Proof of Lemma 6.8

We first show how to obtain a satisfying propositional assignment for ¢ from a satis-
fying assignment for af(p, o). Second, we establish Lemma 6.8 for a single letter o in
Lemma 6.16 and then generalise it to arbitrary words.

Lemma 6.15. Let ¢ be a formula, let o be a letter, and let T be a propositional assign-
ment. Then:

T Ep aflp,0) = {¢ € sflp) : T =p af(,0)} Ep

Proof. The result follows from a straight-forward induction on ¢. O

Lemma 6.16. Let ® be a set of formulas, let o be a letter, and let T be a propositional
asstgnment. Then:

Vipe .75, af(,0) <= FV CIL. ¥ € af,(P,0)

Proof. (<) Assume there exists a subset W C 7 of the propositional assignment Z with
U € af,(P,0). Further, let ¢ € ® be an arbitrary element of the set ®. We unfold the
definition of af,, and follow from the properties of ®y,;, that there exists some ¥/ C ¥
with W' € dnf(af(1), o)) that contributed to ¥ for ¢ € ®. Since ¥’ is an element of the
DNF we have ¥’ =, af(y),0) (Proposition 6.4) and due to the monotonicity of =, we
also have Z =, af(¢y, o).

(=) We prove this direction by an induction on the size of ®.

— Base |®| = 0. Then the right-hand side evaluates to af,,(®,0) = {0}. Because the
empty set is always a subset, this side also holds for all Z.

— Step |®| = n + 1. Let @ be a set of size n with & = & & {1p}. Assume now that
T t=p af(¢p, o) for all formulas ¢ € ®. First, this also holds for the subset ® and
applying the induction hypothesis to ® yields 3¢’ C Z. ¥’ € af,,(®',0). Let now
U’ be such a set of formulas. Second, with Proposition 6.4 applied to 1) we obtain
a set U C T with U € dnf(af(1),0)). Taking these two steps together we have
V'Uv” e (af,(?,0)) @ (af,({1},0)). Hence there exits some subset ¥ C ¥ U ¢”
that is contained in (af, (®’,0)) Qmin (af, ({10}, 0)) = af,(P’,0) and we are done.

O]

Lemma 6.8. Let ¢ be a formula, let w be a finite word, and let T be a propositional
assignment. Then:

T =p af(p,w) <= IV C L.V € af,(p,w)
Proof. We prove the statement by induction on the length of w.

— Base w = e. Simplifying the statement we see that we need to prove: 7 |=), ¢ <=
U C Z.¥ € dnf(p). This immediately follows from Proposition 6.4.

67

6 NBA and LDBA Constructions

Induction Hypothesis

'—7 ':P af((p7w/) E|¢‘ g jq) S af\/((p7w/)
Lemma 6.15 Lemma 6.16
T =, af(p,w) I C TV € af, (p,w)

Figure 6.6: Induction step proof structure of Lemma 6.8

— Step w = w'oc. We prove both directions separately and the proofs follow the

structure sketched in Figure 6.6. For both directions we define the propositional
assignment J = {¢ : Z =, af(¢,0)}.

(=) Assume Z =, af(¢,w) holds. Applying Lemma 6.15 gives us J =, af(¢, w')
and with the induction hypothesis we obtain a set ® such that ® C J and ¢ €
afy (p,w'). By definition of J we have Z =, af(1, o) for all ¢ € J and thus also all
¢ € ®. Hence we can apply Lemma 6.16 and have 3V C Z. ¥ € af, (®,0). Since
® € af, (¢, w'), we have af, (®,0) C af,(p,w'o) and are done.

(<) Let ¥ and 7 be sets such that ¥ C 7 and Z € af,,(p, w). Further let ® be a set
such that ® € af, (¢, w’) and ¥ € af, (P,0). Assuming we proved & C 7, we can
simply apply the induction hypothesis and Lemma 6.15 to obtain at Z =, af(p, w).
Thus it remains to show: & C 7. Let ¢ an arbitrary formula from the set ®. In
order to show the inclusion, we need to establish Z k=, af(1),0), but this exactly
follows from Lemma 6.16 and we are done.

O]

Proof of Lemma 6.9

Lemma 6.9. Let ¢ be a formula, let w be a finite word, let X C p(p) be a set of
subformulas, and let T C sf(p) be a propositional assignment that only contains proper
subformulas. Then:

1. af (¢, w) C 2%)

2. @ € af\/(@vw) — af(%w) ~p tt

aofy(p,w) =0 <= aflp,w) ~p

4o L(afe,w)) = U{Nyew L) : ¥ € af (pw)}
5. I =p aflp,w)[X], <= V. V[X], CTAY € af,(p,w)

Proof. (1) This holds intuitively, because all involved steps either construct singleton
sets from subformulas or combine existing sets without adding new literals or modal
operators. Formally this is shown by an induction on the length of w and a structural
induction on ¢.

68

(2) We obtain this by two simple steps:

af((pvw) ~p tt — @ }:P af(907w)
<~ (€ af,(p,w) (Lemma 6.8)

6.A Omitted Proofs

(3) Let U be the universe, meaning it contains all formulas, and thus U sets every
propositional variable to tt. Then:

aflp,w) ~p i <= U &, af(, w) (E=p is monotone)
— YU CU. T ¢ af,(p,w) (Lemma 6.8)
= YU. V¥ ¢ af,(p,w) (every set of formulas is a subset of U)

= afy(p,w) =0

(4) Let w’ be an arbitrary word and let Z = {¢) : w’' = ¢} be a propositional assign-
ment. We then show (4) by proving the following equivalence:

w' € L(af(p,w)) = w E af(p,w) (Lemma 3.3)
= I af(p,w) (Lemma 2.7)
— V.V e af,(p,w) NV CT (Lemma 6.8)

<= JV. VU € af,(p,w) ANV € V. E
= w' € U{Nyew £(8) : ¥ € afy (¢, w)}

(5) We base our proof on following claim:
Let x be a formula. Then:

T p XXy = {¢:¢[X], €T} Fpx

Proof of the claim. Intuitively this holds, because in the propositional view on LTL we can
apply on both sides of =, — meaning on the formula and point-wise on the propositional
assignment — a propositional substitution preserving the truth of =, as long as we do
not substitute with ff. Further -], is a substitution replacing proper subformulas by
either ff or other proper subformulas, but since ff ¢ Z we never replace by ff. Formally,
this is proven by a straight-forward, structural induction on .

(=5) Assume 7 |=, af(¢,w)[X],. Hence the assignment J = {¢ : ¥[X]|, € Z} is a
satisfying assignment of af(p,w), i.e. J [=p af(p, w), which follows from the previous
claim. By Lemma 6.8 the exists some ¥ such that ¥ C J and ¥ € af, (¢, w). Thus
U[X], €7 and we are done.

(<5) Assume V[X]|, € 7 and ¥ € af,(p,w). Further, let J = {¢ : ¢¥[X], € T}.
Then ¥ C J and we can apply the other direction of Lemma 6.8 to get J =) af(p, w).
Applying the claim we obtain 7 =, af(p, w)[X], and we are done. O

69

7 Optimisations of the Constructions

In Chapters 5 and 6 we focussed on the essential ideas and favoured simplicity over
optimality. Consequently, we missed several opportunities to obtain smaller automata
by using technically-involved constructions. We now discuss techniques that apply to
all three constructions, namely: the removal of redundant components using Proposi-
tion 4.18, transition-based acceptance that removes ‘trivial’ states, i.e. states that rep-
resent tt and ff, and specialised intersection constructions for Bgmf and C;ﬂ(’y. We follow
this then by improvements specific to a subset of constructions: an augmented version
of propositional equivalence and various minor state space optimisations. Keep in mind
that, while we do not explicitly mention it in the following section, all of the presented
optimisations can be combined.

7.1 Restricted Guessing

A crucial weakness of the presented constructions lies in the need to check exponentially
many guesses for X and Y. The reduction of these guesses is paramount to obtaining
small automata. We reduce them by using the restricted version of the Master Theorem
(Proposition 4.18) as a basis, i.e. X and Y are now chosen from a smaller domain
X Cule)Ni(p) and Y C v(p) N{(p), respectively. Especially, for formulas with a flat
structure, i.e. that only have at most one alternation between greatest- or least-fixed-
point operators, this reduces the possible guesses for X and Y considerably. An NBA
with such a reduction is depicted in Figure 7.5.

7.2 Transition-Based Acceptance

7.2.1 Deterministic Automata

The constructions for GF(uLTL) and FG(vLTL) defined in Proposition 5.1 use the
states [tt]. and [ff]. to signal success and failure while checking a LTL formula. The
acceptance condition then uses these states for the Biichi and co-Biichi condition as ac-
cepting and rejecting state, respectively. From these states runs always return to the
initial state effectively dropping one letter of the word. When we use a state-based ac-
ceptance condition, these states in general cannot be avoided, but with a transition-based
acceptance condition we are able to skip and remove these states. Similarly, we can apply
this to automata obtained from Proposition 5.6, where states of the shape ([¢]~, [ff].)
are used to signal failure before resetting. After the augmentation of all components
of the DRA with transition-based acceptance conditions we consequently obtain a DRA
construction for all LTL formulas with transition-based acceptance condition. While
these savings might seem minor at first sight — we just remove a single state after all
— the final DRA is a product automaton and these savings accumulate, e.g. shrinking

71

7 Optimisations of the Constructions

a two-state automaton to a single-state component can effectively halve the size of the
product. Formally!:

Proposition 7.1. Let ~ be an af-congruence.
~ Let ¢ € pLTL. Then the following DBA over the alphabet 247 recognises L(GF):
Bér, = (Reach(Fp) ., aft?, ofS2([Fl,0), inf(a))

where the transition function af® and the accepting transitions a are defined as:

[Fo] if af(,0) ~tt and af(Fp,0) ~ tt
WP (] 0) = { [f(Fip,0)]. otheruise if af(ih,o) ~ th

[af(1p,0)]~ otherwise.
a={(W]~,0,[X]~) € aff? : afy), o) ~ tt}

~ Let ¢ € vLTL. Then the following DCA over the alphabet 24P recognises L(FG):
Chay = (Reach(G) /. afS%, afS%([G], D), fin ([fF]-))

where the transition function afS¥ and the rejecting transitions B are defined as:

[Gep] v if af(1h,0) ~ fF and af(Gy, o) ~ fF
afS?(,0) = { [af(Gp,0)]~ otherwise if af(v, o) ~

[af(1), 0)]~ otherwise.

I~

B =A{([W]~r0,[x)~) € afS¥ - af(v), 0) ~ £}

Proof sketch. The proof is analogous to the proof of Proposition 5.1 with index tweaks
and a minor change: the automata defined in Proposition 7.1 implicitly read an @ to
compute the initial state. However, this does not change the recognised language, since
w = GFy «— ow = GFy and w = FGy «— ow = FGo. O

Besides removing [tt]. and [ff]. we avoid the construction of a transient initial state
by implicitly reading the letter () in the beginning. In the following example we effectively
remove? with this technique two states from the component.

Example 7.2. Let us consider the two short formulas v1 = a and p2 = (a <> Xa) where
U < x 1s an abbreviation for (Y Ax)V (= A=x). The result of applying Proposition 5.1
and Proposition 7.1 with ~, as af-congruence to @1 and @2 is depicted in Figure 7.1.
Notice that not only [tt]~ is removed in Figure 7.1d, but also the state [Fa]~

Let us now proceed to Proposition 5.6 and revise the construction in the same way:

Proposition 7.3. Let ~ be an af- and -[-],-congruence, let ¢ be a formula, and let X be
a set of formulas. Then the following DCA over the alphabet 24P recognises exactly the
words w such that Ji. w; = af(e, wo;)[X], holds:

Cox = (@0, ([¢]~s [9[X])n), fin(a))

where we define the states Q, the transition function &, and the rejecting transitions « in
the following way:

! Acknowledgment: Proposition 7.1 has been revised after a discussion with Alexandre Duret-Lutz.
2Technically we do not remove states, but make them unreachable from the initial state.

72

7.2 Transition-Based Acceptance

~ Q = Reach(p),~ X UweReach(<p) Reach(y[X],)/~. That is, a state is a tuple of
equivalence classes [-]~, where the second tracks the formula after applying -[-],.

([af€, 0)]~, [af(€ o) [X]]~) if af(C o) ~ fF
([af(&, 0)]~s [af(C, 0)]n) otherwise.

That is, a transition either resets a failed attempt to prove w; = af(yp,we;)[X], for
some © or continues unfolding both equivalence classes using af.,.

- a=A{(([g~ [C~), 0, (€]~ () € 6 aflC, o) ~ £

Proof sketch. The proof is analogous to the proof of Proposition 5.6 with minor index
tweaks. O

6(([¢]~ [C]~), 0) = {

Example 7.4. Let us now revisit Example 5.7 where we picked ¢ = G(aUb V Fc),
X = {aUb} and let us apply Proposition 7.3 to it. In comparison to the automaton
depicted in Figure 5.4 this construction can save one state as one can see in Figure 7.2.

We finally can bring now the pieces together and reexamine Fxample 5.9. The DRA
R, x,p with transition-acceptance is shown in Figure 7.3. Here one can see how these little
savings accumulate: the automaton depicted in Figure 7.3 using transition-acceptance has
two states, while the automaton depicted in Figure 5.5 has five states.

7.2.2 Nondeterministic Automata

As in the case for DRAs we are able to remove () and transient initial states for automata
built for GFy with ¢ € uLLT L using a transition-based acceptance condition. To be more
precise we use the following revised construction, illustrated in Figure 7.4 and Figure 7.5:

Proposition 7.5. Let ¢ € uLTL. The following NBA over the alphabet 2P recognises
L(GFy):
Bép,, = (Reachy(Fp), afy?, ofy;*({F},0). inf(c))

where the transition relation af\l/w and the set of accepting transitions a are defined as:

{{Fe}} if 0 € afy(¥,0) and) € aof,({Fe},0)
- aff“o(\ll,a) =< af,({Fe¢},0) otherwise if O € af,,(¥,0)
af, (¥, 0) otherwise.

o= {(,0,0) € a0 € af, (V,0)}

Proof sketch. The proof is analogous to the proof of Proposition 6.10 with minor index
tweaks and a small change: the automaton defined in Proposition 7.5 implicitly reads an
() to compute the initial state. However, this does not change the recognised language,
since w = GFp «— ow = GFo. O

73

7 Optimisations of the Constructions

a
o
—[re)—==
tt

a) DBA BZL. (state-based).
GFu

(c) DBA B&y,, (state-based).

0
Y

(b) DBA B&y,, (transition-based).

|
)

a a
n 0
R)

a

(d) DBA B&%,, (transition-based).

Figure 7.1: Comparison of automata from Proposition 5.1 (state-based) and from Proposi-
tion 7.1 (transition-based) using ~,, as af-congruence.

()
e D

Figure 7.2: DCA C] y from Proposition 7.3 for ¢ = G(aUbV Fc) and X = {aUb} using the

yet-to-be-defined ~g-

74

7.2 Transition-Based Acceptance

ab bt abc*

000

—(erelxLe), (Flavm). 0

c* n “ abc*

(o e), (F(aUD).)

U

Figure 7.3: DRA R, xy for ¢ = G(aUbV F¢), X = {aUb}, and Y = () using the yet-to-be-
defined ~, based on constructions with transition-acceptance. The DRA R, x v
has only one Rabin pair: fin (x) A inf (7).

o o] (e e o]
U U 1 U
b b ! b tt
X = {FGb} ! X=0
Y = {Gb} | Y =0

Figure 7.4: Anga(p) for ¢ = Fa vV FGb built from components with transition acceptance
(Proposition 7.5). Omitted states and transitions are indicated by dashed arrows.

75

7 Optimisations of the Constructions

|
o [

b

b (| {Gb}

1m0 (0.0.0]
3 U U
| b t

X = {FGb}
Y = {Gb}

X
Y

0
0

Figure 7.5: Axga(p) for ¢ = Fa V FGb built from components with transition acceptance
(Proposition 7.5). Further the number of accepting components is reduced by
applying the restrictions of Proposition 4.18.

7.3 Specialised Intersection Constructions

In the presented constructions (Theorems 5.8, 6.2 and 6.13) we rely several times on
intersections to obtain automata B% - for checking (2) and C% y for checking (3) of

Theorem 4.14:
Y[Y P[X]w
Bg(,Y = m BG[F/.]LM C§(,Y = ﬂ FL;V]
PpeX Pey

In these cases we simply resorted to the general-purpose intersection constructions
for Biichi and co-Biichi automata without taking the special structure of the involved
components into account. In fact there are several, partly folklore, ways to specialise
this intersection to reduce the size of the resulting automata. We will now consider
three different approaches to reduce the number of states and conclude this section with
updated upper bounds on the constructed NBAs and DRAs.

7.3.1 Generalised Biichi Acceptance

When we intersect Biichi automata, usually one needs to have bookkeeping in the states,
e.g. a round-robin counter, additionally to the product construction in order to track
which Biichi automaton is the next that owes a visit to the accepting states. This added
bookkeeping can be elided by moving this requirement to the acceptance condition, called
generalised Biichi acceptance, where a run is accepting if at least one state (or transition)
of each Biichi set is visited infinitely often.

76

7.3 Specialised Intersection Constructions

ab
n .
\

ab[
:
" a

b
2R 2 Pu R T E— P
- tt
ab U U
ab b
(a) General-purpose Biichi intersection. (b) Interleaved Biichi intersection.

Figure 7.6: Intersection constructions for DBA B% ; with the set of formulas X = {Fa,Fb}
and using Proposition 5.1 with ~; as af-congruence.

In the deterministic setting we obtain an intersection DBA for a set of formulas such
as X = {Fai,Faq,...,Fa;} that has only a single state, assuming we use a transition-
based acceptance construction. This propagates up the construction hierarchy and the
final product automaton has a generalised Rabin acceptance condition. Analogously, we
get for the other two constructions (NBA, LDBA) generalised Biichi automata.

7.3.2 Interleaving

Observe that Bg(y recognises an intersection of languages £(GF1)) and the correspond-
ing formulas are satisfied by a word w if and only if there are infinitely many suffixes
w; that satisfy . However, it is not necessary to identify all suffixes for proving sat-
isfaction, it is enough to identify an infinite subset. Thus we can serialise checking the
formulas GF1, ... GF, and whenever the current automaton visits an accepting state,
we suspend it and move to the next one in a round-robin fashion. This effectively re-
duces the maximal size of B% y from k - Hle |Q;] to Z?Zl |Q;| in the deterministic and
nondeterministic case. Formaily, we define:

Proposition 7.6. Let X = {p1,p2,...,0r} be a finite set of uLTL formulas and let ~
be an af-congruence. The following DBA over the alphabet 2P recognises ﬂle L(GFy;):

Bér, = (Q, ofS™, (L, [Fou]), inf (k. [tt])))

where the states Q and the transition function af¥X are defined in the following way:

7

7 Optimisations of the Constructions

-Q = Ule ({z} X Reach(FgD,;)/N). That is the states are a tagged union of the
reachable states of the components.

_ ofFX o) — ((i mod k) + 1, [F(i mod k)+1]~) if ~ tt
({6, W), o) {(z, [af(1, 0)]~) otherwise.

Proof sketch. The proof is analogous to the proof of Proposition 5.1, but we need to
additionally take care of the interleaving. Observe that, if w = GFyy all suffixes w;
satisfy w; = Fyg. Thus an automaton in ‘suspension’ might miss the next point where
. might hold, but there are infinitely more to come and that automaton is eventually
re-enabled. On the other hand, if w = GFpy holds for some k, one of the components
eventually gets stuck and the whole automaton is never reaching (k, [tt].) again. O

Example 7.7. Let X = {Fa,Fb} be a set of uLTL formulas. Using the general-purpose
Biichi intersection in combination with Proposition 5.1 to construct BX we arrive at
the automaton depicted in Figure 7.6a. However, when we switch to the construction of
Proposition 7.6 we construct the simpler and smaller automaton shown in Figure 7.6b.
Observe that we could further remove two more states by using transition acceptance
(Section 7.2.1).

Finally, we apply the same idea also to the NBA intersection:

Proposition 7.8. Let X = {¢1,p2,...pr} be a set of uLTL formulas. The following
NBA over the alphabet 24P recognises ﬂle L(GFy;):

BGF;L (Q,CL 7<17{F<)01}>77/nf(<k7@>))
where the states () and the transition relation af\fx are defined in the following way:
- Q=UL ({i} x Reachy (Fgy))

{<(Z mod k) +1 {ng(z mod k)+1}>} Zf‘ll = (D

- o7 0),0) = {{ i} x af, (¥, 0) otherwise.

Proof sketch. The proof follows the idea as Proposition 7.6 and is analogous to the proof
of Proposition 6.10. O

7.3.3 Formula Rewriting

The last alternative to the intersection is to work on the logical level instead of the
automaton level. We can construct B% - (Theorem 6.13) and C% - (Theorem 5.8) in
one-step without an intermediate intersection using the two LTL equivalences:

k k
/\ Gvi ~ G (/\ w) N\ FG@[X],) ~ FG [A ¢[X
i=1 i=1 YEY YEY

The resulting formulas have at most n + 1 proper subformulas. Thus, the NBA Bg’(’y
obtained through Proposition 6.10 has at most 2"*! states and the DCA Cg(?y obtained

through Proposition 5.1 has at most 22" gtates.

78

7.3 Specialised Intersection Constructions

|

HW:) —| G(Ga A Gb)

7* N\ :
e

(a) General-purpose co-Biichi intersection. (b) Formula Rewriting.

Figure 7.7: Intersection constructions for DCA Cj - with the set of formulas Y = {Ga, Gb}
and using Proposition 5.1 with ~; as af-congruence.

Example 7.9. Let Y = {Ga, Gb} be a set of vLTL formulas. On the on hand, we
obtain with the general-purpose DCA intersection construction the automaton depicted
in Figure 7.7a. On the other hand, we construct with Proposition 5.1 for the rewritten
formula FG(Ga A GA) the simpler and smaller automaton shown in Figure 7.7b.

7.3.4 Complexity Analysis

A careful analysis shows that the intersection construction using a generalised Biichi
acceptance condition is a double-edged sword: For some instances choosing this in-
tersection construction in combination with a transition-based acceptance condition is
clearly the best option: the set F,, = {Faj,Fas,...,Fa,} is translated to a single-
state generalised Biichi automaton with n Biichi sets, while the interleaving intersec-
tion obtains an automaton with n states and a single Biichi set. However, for the set

= {F(a1NXXb1),...,F(anANXXb,,)} the interleaving construction yields an automata
with a polynomial number of states in n, while the intersection using generalised accept-
ance conditions is growing exponentially in n. In order to have the best of both worlds
an implementation could choose heuristically one of the approaches trying to avoid ‘bad’
cases. Thus let us focus on the other two approaches in the revised complexity analysis:

DRA Construction. According to the preceding analysis the recommended choice from
the upper-bound perspective is to use the interleaving intersection construction for Bg(’y
and the formula rewriting approach for C§(Y. Let n be the length of formula ¢ and
let ~, be again the underlying equivalence Telation. These changes then amount to a
construction for the DRA R, x y that uses has at most

n4+1 n+1 n+2 n+3 n+(logg logg n)+3
277 22T 27T = 02T = P

states and one Rabin pair. Taking the union of all these yields a DRA Apra(y) with at

most o
n+(logg logg n)+3 n 9n+(logg logg n)+3 2n+(logg logg n)+3 O(n)
(22) = =22 € 22

states and at most 2" Rabin pairs. While this did not change the upper bound by much,
in practice these changes have a considerable effect.

79

7 Optimisations of the Constructions

NBA Construction. As in the DRA case the recommended choice is to use the inter-
leaved intersection for construction BEQY and the formula rewriting approach for Bg(’y.
This yields the following new upper bound for a sufficiently large n, i.e. n > 4:

on 4 2|M(90)|+|V(90)|(2n . gntlogy nt1 2n+1) < gn y gdntlogynt2 gbn 90(n)

7.4 Augmented Propositional Equivalence

In Section 3.2 we have seen the three af-congruences, namely: d ~, ~,, and ~;. While ~.
is also an -[-],-congruence, it is not suitable for constructing automata, since Reach(y) .~
might be infinite. At the other end of the spectrum we have a similar situation: ~;
generates a finite state space, but it is expensive to compute. More importantly: it is
not an -[-],-congruence and thus cannot be used for constructing C; x- Only ~,, is an af
and -[-],-congruence, produces a finite state space, and is relatively cheap to compute.
We will now define an augmented version of ~,, called? ~gq with the same properties but
closer to LTL equivalence, i.e. ~, <~4 <~ holds. In fact we already used ~, in some of
the previous examples to obtain automata that are small enough for non-trivial formulas
to be depicted with a few states. (Examples 5.7, 5.9 and 7.4).

Let us consider the following examples, where we wish that equivalence would hold,
but does not for ~,: a V —a <, tt and G(aUb) », G(aUb) A aUb. In the first example
the issue is that ~,, does not relate proper formulas and their negations. While we cannot
have this for all proper formulas without sacrificing -[-],-congruence, we can safely add
it for literals. This motivates a revised propositional encoding (=), where all modal
operators (X, U, W,R,M) are encoded as distinct propositions z, but literals a and
—a are expressed using the same variable x, and -z, respectively. In the second example
~p is oblivious to LTL expansion rules. To address we expand all formulas by using the
normalisation procedure {nf from [EKS16].

Proposition 7.10. Let Z be a set of formulas and let ¢ be a formula. The satisfaction
relation I =, ¢ is inductively defined as:

I):p/tt I}:p/XQO iff Xpel
T ey fF

I):p/a iff a€l I}:plgoUi/J iff Uy el
They—a iff a¢l Ty oMy iff oMy el
Thy ot iff ThyeandT by v Thy oRY iff pROEI
TEy VY dff TEyporIEyy TEy oWy iff oWy el

Let ¢ and v be formulas. The equivalence relation ~,y is defined as:
(,ONp/’(ﬁ Z:VI.I)ZPIQO < I':p/¢
Then ~ is an af- and -[-],-congruence.

Proof sketch. The proof is analogous to the proof of Lemma 3.8 and Lemma 5.5. 0

3We name the equivalence relation ~, since it is an improved version of ~, and q comes after p in the
alphabet.

80

7.5 Various Optimisations

Observe that this definition has a fundamental difference to |=, even tough the defin-
ition for =, only differs for the case —a. The satisfaction relation =, can always be
interpreted as a positive monotone Boolean function, while for =, this is not true any-
more.

Definition 7.11 ([EKS16]). Let ¢ be a formula. Then the expanded formula Unf(p) is
inductively defined as:

Unf(tt) =tt Unf(Xep) = Xop

Unf(fF) =fF

Unfla) =a Unf(pUrp) = Unf(y)) V (Unf(p) A ©UY)
Unf(-a) =-a Unf(pMyp) = Unf(yh) A (Unf(p) V oMy)
Unf(p A) = LUnf(p) A Lnf() Unf(eRep) = Unf(y) A (Lnf(p) V pRY)
Unf(e V) = tnf(p) V Lnf(1)) Unf(eW1ep) = tnf(yh) V (Unf(p) A o W)

Proposition 7.12. Let ¢ and 1) be formulas and let ~, be defined as:

P ~q 1= Unf(p) ~p Unf(e))
Then ~p, < ~q <~y holds and ~, is an af- and -[],-congruence.*

Before discussing the proof let us go back to our motivating examples: We have 4Unf(aV
—a) = aV —a and T =y a V —a for all propositional assignments Z. Thus (a V —a) ~g tt
holds. Applying LUnf to the second example yields:

Unf(G(aUD)) ~p G(aUb) A (bV (a A (aUb))) ~p Lnf(G(aUb) A (aUb))

Since the formula does not contain —a or —b, =, and =, coincide and we have G(aUb) ~,
G(aUb) AaUb. If we look closer at this phenomenon, it turns out that ~ collapses ‘sus-
pendable’ [BBD+13] formulas to a single equivalence class, since GFy ~; af(GFo,w)
and FGy ~; af(FGy,w) holds for all formulas ¢ and finite words w.

Since the proof is almost exclusively concerned with technicalities of propositional
logic, we moved it to the appendix of this chapter (Section 7.A). The only noteworthy
detail is the relaxation we need for making ~ an -[-],-congruence: we require ¢ ~) =
o[X], ~ ¢¥[X], only for formulas ¢ and ¢ that are in normal-form. This means every
formula ¢ is implicitly converted to ¢’ such that ¢’ is in normal-form before we apply
:[-]o- This normal-form is computed by a normalisation function f with ¢ ~ ¢’ = f(y).
In the case of ~ this function is Unf. In the case of ~. and ~,, it is the identity.

7.5 Various Optimisations

7.5.1 DRA Construction

Immediately after Proposition 5.6 we already noted that -[-],-congruence is actually only
needed for the first component and the second component can use another equivalence
relation that is not necessarily a -[-],-congruence. We now give a formal definition for
this:

“In the proof we introduce a minor relaxation to the definition of -[-],-congruence in order to make this
true. Examples 5.7, 5.9 and 7.4 are chosen in such a way that this relaxation is not relevant for the
construction of the automata.

81

7 Optimisations of the Constructions

Proposition 7.13. Let ~ be an af- and -[-],-congruence, let = be af-congruence with
~ <=2, let ¢ be a formula, and let X be a set of formulas. Then the following DCA over
the alphabet 24P recognises exactly the words w such that 3i.w; = af(p, wo;)[X], holds:

Cox = (Q.0,([¢]ns [9[X]]w), fin(a))

where we define the states @, the transition function &, and the rejecting states v in the
following way:

- Q = Reach(p) /. X UyeReach(p) Reach(¥[X]y))~. That is, a state is a tuple of

equivalence classes [-|~, where the second tracks the formula after applying -[-],.

5({[€]. [Cleb. o) = {<[af<s,)]~ [afl€,0)[X])x) if ¢~ fF

([af(§, o))~ [af(C, 0)]~) otherwise.

That is, a transition either resets a failed attempt to prove w; = af(p,we;)[X], for
some i or continues unfolding both equivalence classes using af., and af,,, respect-
wely.

— a = Reach(p) /. x {[ff]~}.

Proof sketch. The proof is analogous to the proof of Proposition 5.6 with the small addi-
tion that we also need to show that switching from ~ to ~ is well-defined. We can follow
this immediately from our assumption ~ < = which guarantees a surjective mapping of
equivalence classes of ~ to equivalence classes of =.]

7.5.2 NBA Construction

LTL Fragment Detection. A practical approach to reduce the number of states in the
constructed NBA is to monitor the current state U and detect if the state is in a specially
supported fragment, e.g. if ¥ CvLTL or ¥ C uLTL, then the Proposition 6.10 can be
used without the need for a full accepting component. The NBA from Figure 7.5 can
be reduced by another two states, since the initial states belong to ‘simple’ fragments.
The result for such an optimisation is illustrated in Figure 7.8. Furthermore if the clause
¥ only contains formulas without U, M, R, and W, a deterministic construction as in
Proposition 5.1 can be used to obtain smaller automata, e.g. the formula X(aVXbVXXc)
is translated to a smaller DBA than NBA.

Contradictory or Universal Clauses. From Lemma 6.9 we know that the a clause de-
scribes a language. If by some reasoning, e.g. LTL reasoning, we determine that the
language of a clause is empty or universal, we are allowed to either remove it or replace
it by 0.

Suspendable Formulas and Simulation-based Techniques. Further, special handling
for FGy and GFy formulas can be added in the style of [BBD+13|, where such formulas
are replaced by a placeholder and checking these formulas is delayed to accepting SCCs, in
our case the accepting component. Lastly, there is substantial work done on simulation-
based reductions, which can be added as a post-processing step.

82

7.5 Various Optimisations

<o
Il

=2 S

X = {FGb}
Y = {Gb}

Figure 7.8: Anga(p) for ¢ = Fa V FGb built from components with transition acceptance
(Proposition 7.5). Further, LTL fragment detections for clauses is applied.

83

7 Optimisations of the Constructions

7.A Omitted Proofs

Proof of Proposition 7.12

Before we dive into the proof of Proposition 7.12 let us collect some useful facts about
Unf. Also notice that, since ~;, and ~,, are almost identical, most of the results (with
the exception of monotonicity lemmas) we have about ~,, also apply to ~,y. Thus in the
following we often invoke results for ~;, that can also be proven for ~,, without detailing
the corresponding proof.

Lemma 7.14. Let ¢ be a formula. Then the following holds:

1. @~ Unf(p)
2. $nf(p) ~p Unf(nf(e))
3. @~y b = Unf(p) ~p Unf(y)

Proof sketch. (1) and (2) follow from a straight-forward induction on ¢. For (1) one has
to observe that Lnf just rewrites the formula using classic LTL expansion rules. For (2)
the only interesting cases are the binary modal operators. We look at one representative
case (¢ = ¥ Uyx) and derive:

(3) Notice that {nf is in-fact a substitution only replacing binary modal operators. Thus
constants (tt, ff), literals (a, —a), the next operator (X), and the Boolean connectives
(A, V) are not replaced in the syntax tree. Observe that such substitutions are congruent
on ~,y and, since Unf is an instance of such a substitution, we are done. O

Proposition 7.12. Let ¢ and v be formulas and let ~4 be defined as:

P ~vq P = Unf(p) ~pr Unf())

Then ~p, < ~q <~y holds and ~y is an af- and -[],-congruence.’
Proof. We have to prove the following four points: (1a) ~p, < ~yg, (1b) ~g < ~y, (2) ~yq is
an af-congruence, and (3) ~y is an -[-],-congruence.

(1la) We start by noting ~, < ~,y. By Lemma 7.14 we also have ~,y < ~, and imme-
diately by transitivity we obtain ~j, < ~. It remains to show ~,7#~,, which is directly
proven by tt ~, aV —a ~, tt.

(1b) ~g < ~;. Let ¢, 1 be formulas. Assume ¢ ~¢ 1. We now need to prove ¢ ~; 1.
For this let w be an arbitrary word and let Z = {9 € sf(y) : w |= ¢} be the set of all

®In the proof we introduce a minor relaxation to the definition of -[],-congruence in order to make this
true. Examples 5.7, 5.9 and 7.4 are chosen in such a way that this relaxation is not relevant for the
construction of the automata.

84

7.A Omitted Proofs

satisfied proper subformulas.

wE e <= wkE=Unf(p) (Lemma 7.14)
= T =y Unf(p) (Lemma 2.7 for):p/)
= Ty nj() (¢ ~q ¥)
— w | Unf(y) (Lemma 2.7 for):p)
= wEY (Lemma 7.14)

Again we need to show that ~; is not ~;, which is immediately clear from tt ~,
Xa V X—a ~j tt.

(2) The first requirement for being an afcongruence (~. <~y =< ~;) follows from (1)
and transitivity. For the second requirement we need to show ¢ ~; ¥ = af(p,0) ~,
af(p, o) for all formulas ¢, 1 and letters . For this we prove af(p, o) ~p af(tinf(p), o)
for all formulas ¢ and letters ¢ by induction on ¢. We then derive our second requirement
with following steps:

P g = Unf(p) ~p Unf(y)

= af(tnf(p),0) ~p af(tinf(v)), o) (Proposition 7.10)
— af(@a U) ~p af(d’ﬂ)
= af(p,0) ~q af(¥,0) (~pr <)

(3) In fact ~y is not -[-],-congruence for the existing definition, e.g. FGa ~; FGa Vv
(GaAa), but (FGa)[l], =ff ~, ffV(GaAa) = (FGaV (Ga A a))[0],. We solve this by
requiring ¢ ~ 1 = ¢[X], ~ ¥[X], only for formulas ¢ and v that are in normal-form.
This means every formula ¢ is implicitly converted to ¢’ such that ¢’ is in normal-form
before we apply -[-],. This normal-form is computed by a normalisation function f with
¢~ ¢ = f(¢). In the our case this function is {nf. We then derive:

P g) = Unfp) ~p Unf(y)
= (Unf(p))[X]y ~p (Lnf(y))[X] (Proposition 7.10)
= (4nf(0))[X]o ~q¢ (Enf(¥))[X]y (~p <)
= (f()[X]o ~q (f(¥))[X]y

This is exactly what we needed to show for -[-],-congruence and we are done. O

85

8 Experimental Evaluation

We provide experimental evidence showing that the better theoretical properties of con-
structions derived from the Master Theorem are not obtained at the expense of poor
performance in practice. We support this claim by comparing sizes of automata pro-
duced by other translations to the sizes of our translation approach. Note that we do
not include a resource consumption analysis, i.e. measurements of computation time and
allocated memory. These values are highly dependent on implementation details and
do not affect the quantities we want to measure as long as the computations terminate
within reasonable bounds, which is the case for our experiments.

8.1 Method

Translations

We compare each translation derived from the Master Theorem to an alternative trans-
lation for that specific automaton model. In previous chapters we used the terms NBA,
LDBA, and DRA also for generalised versions of these acceptance conditions, since there
are no conceptual differences for the presented constructions. However, for our evaluation
we measure the number of states and acceptance sets and these quantities can change
when we consider generalised acceptance conditions. Consequently, we sharpen our ter-
minology and for this chapter we refer with the term NBA only to nondeterministic
Biichi automata and with the term NGBA to nondeterministic generalised Biichi auto-
mata. The same applies also to the terms LDGBA and DGRA. Further, in our evaluation
we only consider automata with the acceptance condition defined on transitions.

For each translation target (NBA, NGBA, LDBA, LDGBA, DRA, DGRA) we select
another translator that is known to be competitive or particular good for that automaton
class. We focus here only on translators that support full LTL and not only fragments.
Further, we disable for all tools in the comparison the applied post-processing steps
in order to avoid artefacts due to automata-based reduction techniques. We select the
following tools to compare against:

— NGBA:

1t12tgba! [DLF+16] is a mature and well maintained tool to translate LTL to
nondeterministic transition-based generalised Biichi automata.? We do not com-
pare the translation to NBAs, because the built-in degeneralisation only translates
to state-based nondeterministic Biichi automata. We disable post-processing steps
that are independent of the translation by the invocation 1t12tgba -any -low -H
as recommend by the documentation.

'We use the version 1t12tgba (spot) 2.7.2.
2In recent years it also acquired the capability to produce deterministic parity automata by applying a
determinisation construction.

87

8 Experimental Evaluation

— LDBA and LDGBA:

1t121dba and 1t121dgba from the Rabinizer 4 distribution [KMSZ18|implement-
ing the translation to LDBAs and LDGBAs from [SEJK16]. Since the translations
based on the Master Theorem and these translations are both based on [KMS18§],
some of the optimisations from Chapter 7 are also retroactively added to the ori-
ginal construction of [SEJK16|.

— DRA and DGRA:

1tl2dra and 1tl2dgra from the Rabinizer 4 distribution [KMSZ18| implement-
ing the translation to DRAs and DGRAs as described in [EKS16]3. All available
optimisations to the translation itself are switched on. In our comparison we enable
for this group of tools the reduction of Rabin pairs with rules from [EKS16| and
de-generalise DGRAs to DRAs, since the construction of [EKS16] does not support
the construction of DRAs directly.

We implement translations based on the Master Theorem with the optimisations
presented in Chapter 7 in tools named: 1tl2nba, 1tl2ngba, 1t121dba, 1tl2ldgba,
1tl2dra, and 1t12dgra. To be more precise we use the Master Theorem with restricted
guessing (Proposition 4.18), the equivalence relation ~,, and the specialised intersection
constructions: interleaved intersection, formula rewriting, and generalised Biichi accept-
ance conditions, depending on the context.

Since these implementation occupy the same source-code repository? as [KMSZ18;
KMS18|, the user needs to disambiguate between the implementations using the flag
--symmetric which selects translations based on the Master Theorem and the flag
--asymmetric which selects the previously mentioned translations. This naming scheme
is due to the symmetric nature of the Master Theorem, where least- and greatest-fixed-
point operators are considered, and the asymmetric nature of the other translations,
where only greatest-fixed-point operators play a role.

It is notable that we do not include tools, such as 1tl2dstar [KB06| or seminator
[BDK+17|. The reasons for this are twofold: first, in previous work it was shown that the
approach implemented in Rabinizer 4 [EKS16; SEJK16| often outperforms automata-
based translations from NBAs, e.g. implemented by 1tl2dstar; second, as noticed in
[BDK+17] most of the tested formulas are already translated to limit-deterministic (or
even deterministic) automata by the used LTL translator 1t12tgba which we already in-
clude in the comparison. Further, we do not compare our implementations to translations
targeting deterministic parity automata (DPA) that are a subclass of Rabin automata.
We do this because DRAs can be more succinct than DPAs and thus a comparison
is most likely skewed towards the DRA side. Furthermore, the approaches of [EKRS17;
KMWW17] use DRAs and LDBAS from translations implemented in Rabinizer 4 which
is already included in the comparison.

Formula Sets

We base the evaluation on three sets of formulas: the first set consists of the well-known
‘Dwyer’-patterns [DACIS8| that collects 55 LTL formulas specifying common properties;

3This is the revised and corrected version of the translation proposed by [EK14].
“We evaluate the state of the implementation found in the repository of [KMS18] defined by commit
30dd44558e10fbae2134bc335bfbc69492b7£2b1E.

88

8.2 Results

X1n = (.. ((aang)Uag) . Uan+1) X2n = alU((IQU(. .. (anUanJrl) -))
X3n = G(a1 = a1 U(... (an A anUap1))) Xan = Nieq(Fa; V Gajgr)

X5n = /\?:1 FGa; X6n = /\?:1 GFa;

x7m = (N1 GFa;) — GFb xs;m = (AiL; GFa;) <> GFb

X9n = /\?Zl(GFai Vv FGaiJrl) X10,n = GF(CL <~ X”a)

X1t = Vieo FG((=)'a v X'b)

Table 8.1: Parametrised formula set.

the second set is extracted from ‘BEEM’ [Pel07], a collection of benchmarks for explicit
model checkers containing 20 formulas; the last set is obtained by instantiating the 11
parametrised formulas from Table 8.1. These families are partly taken from [TRV12;
GHO06; MS17] or are simple combinations of U, GF, and FG formulas. The last set of
formulas is useful to isolate and analyse strong- and weak points of the compared transla-
tions. For completeness we also evaluated the translations on the sets from [EH00; SB00],
but, since these two set did not bring major additional insights to the analysis, we left
them out from the analysis and moved them to the appendix of this chapter. Further-
more, we abstained from using randomly generated formulas, because in our experience it
us unclear what this implies for practice, since formulas from real-world examples usually
have a high degree of structure compared to randomly generated formulas.

The formula sets are obtained by executing genlt1® with the corresponding paramet-
ers. Each formula and its negation is then added to the set of formulas. We take the
following steps to reduce the influence of specific simplification rules and to de-duplicate
entries: first, we bring formulas into negation normal form; second, we apply a standard
set of LTL simplification rules® allowing us to turn-off or at-least restrict the LTL sim-
plifier in the evaluation; third, we normalise the literal names and remove formulas that
are equal modulo literal renaming. This pre-processing has the effect that the number of
formulas we consider is less than the number of formulas of the corresponding original
publication. For example |[DAC9S8| lists 55 formulas, but we remove six entries. For
example only one of Ga, G—a, and Fa is added to the formula set. Note that we always
evaluate the translation also on the negation of each formula. However, we do not remove
duplicates across two different formula sets.

8.2 Results

The measured automata sizes for the LTL formulas are listed in Tables 8.2 to 8.5. We
refer by ¢ to formulas of the ‘Dwyer’ set, by 1 to formulas of the ‘BEEM’ set, and by
x to formulas of the parametrised set. To reduce the noise we filter out rows that we
consider ‘minor’ and moved them to Section 8.A. ‘Minor’ rows are pairs of rows, i.e., the
row for a formula and the row for its negation, such that the difference in the number of
states between compared translators is at most 3. We label columns by the respective
tools: ‘NBA’, ‘NGBA’, ‘LDBA’, ‘LDGBA’, ‘DRA’, and ‘DGRA’ refer to translations
derived from the Master Theorem; ‘NGBA (Spot)’ denotes the translations implemented

Sgenltl is a component of Spot [DLF+16] to generate LTL formulas from existing patterns. We use
the version genltl (spot) 2.7.2.

SWe refer the interested reader to [EHO00; SB00; BKRS12; Sicl6; MS17] for some material on LTL
formula rewriting.

89

8 Experimental Evaluation

by 1tl2tgba; ‘LDBA (Rab. 4)’, ‘LDGBA (Rab. 4)’; ‘DRA (Rab. 4)’, and ‘DGRA
(Rab. 4)’ refers to the ‘asymmetric’ translations from [SEJK16| and [EKS16]|. Columns
are grouped by the pairs we compare. The smallest number of states and the smallest
number of acceptance sets in each group are printed in boldface type. Lastly, we save
space by writing @ instead of —¢.

8.3 Discussion

It is remarkable that in the ‘Dwyer’ set the differences for roughly 50% of the formula
pairs are considered ‘minor’. In the ‘BEEM’ set this percentage is even higher (70%).
Inspecting the appendix shows that for most of these ‘minor’ cases the automata are
of equal size or only differ in size by an optional rejecting trap state. Thus already on
a large percentage of tested formulas the unified construction does not construct larger
automata. Let us move on to the cases with ‘major’ differences. For these we can see
several interesting patterns in the data:

~ uLTL + vLTL

If a formula is either from puL'T'L or v LT L, then the translations generally speaking
all produce automata of the same (or roughly) the same size. However, the trans-
lators ‘DRA (Rab. 4)" and ‘DGRA (Rab. 4)’ seem to have difficulties with deeply
nested R operators as seen in x5 and xg. This is probably due to the inability
to support R in the construction and the necessity to rewrite it to My V G.
Further, the translators ‘NBA’ and ‘NGBA’ also have troubles with the same two
formulas, but this is probably due to a different reason, and not inherent to the
Master Theorem, as the other translations based on it are unaffected.

— Nesting of U-operators

One fascinating pattern is the effect of nesting U-operators within the scope of a G-
operator. The formulas @13, ¥14, Y28, VY29, P39, P44, P48, P49 from the ‘Dwyer’ set,
Y17, Y18 from the ‘BEEM’ set, and the instantiations xs, xg all have in common that
translations based on the Master Theorem tend to produce disproportionally large
automata compared to alternative translators. Surprisingly, for the negation the
situation reverses and the Master Theorem produces in the LD(G)BA and D(G)RA
groups smaller automata than the comparison. Thus it would seem that deep
nesting of smallest-fixed-point operators is problematic for the Master Theorem.
However, there are cases, such as 33, @37, and (sg, where deep nesting does not
have this effect. We speculate that the number of fixed-points that are considered
can be reduced for cases where we nest smallest-fixed-point operators.

— Disjunctive Normal Form

Formulas with a large disjunctive normal form (DNF) apparently pose a problem
for the translations based on the Master Theorem, especially in combination with
the F- and G-operators. This can be seen in X171 and x12. Note that the negation
which has a small DNF does not exhibit this size blow-up. This pattern can also be
observed for the formulas x22, Xx23, and x24. However, this observation cannot be
generalised, since yo7 has a large DNF, but automata based on the Master Theorem
are smaller. We think that an approach to reliably obtain small automata for such

90

8.3 Discussion

formulas is to use a compositional construction as the one proposed by [MS17] and
to transform the obtained Emerson-Lei acceptance condition into a generalised
Rabin acceptance condition.

— X-operators within a GF and FG scope

In the parametrised set we observe that for the formulas from yo9 up-to xs3 the
DRAs and DGRAs from the Master Theorem are smaller than the automata from
the Rabinizer translators. We think that this is due to the interleaved intersection
construction that is able to ‘suspend’ tracking of some of the formulas containing
X operators. Notice that for LDBA and LDGBA groups the numbers are identical,
since all implementations use the same optimisations.

— Improvable NBA and NGBA implementations

The NBA and NGBA translations based on the Master Theorem tend to produce
large automata compared to either 1t12tgba or even in some cases the translators
for deterministic automata. This is not surprising, since these NBA and NGBA
translators implement only a small fraction of the translation optimisations for
NBAs and NGBAs that have been proposed over the last two decades: for example,
it is clear how to implement a heuristic that obtains a single state NGBA for 19 or
if we apply the reduction techniques implemented 1t12tgba with autfilt --small
to NGBA for xs we shrink the automaton from 19 to 7 states.

The collected data demonstrates that on this selection of formulas, coming from a
variety of sources, the simplicity and generality of our new constructions does not lead to
a general penalty in practice. For most benchmarks our construction produces automata
of similar size to those computed by Rabinizer 4, in a few cases even slightly smaller
ones, e.g. for (33. In other cases, notably for formulas with a deep nesting of U-
operators, the new constructions still perform poorly. However, we feel confident that
further analysis of these cases leads to an optimised version addressing this issue.

In comparison to 1t12tgba the translators based on the Master Theorem for NBAs
and NGBAs fall behind. We think that for some classes of formulas the used two-stage
construction with an initial and accepting component comes with additional costs. It
seems a second implementation using the single-stage construction from [EKS18| could
be beneficial. Further, we believe that a portfolio approach as implemented by 1t12tgba
selecting different translation strategies depending on the input has advantages and could
close the size gap.

91

8 Experimental Evaluation

S -
é“\ @Fw F . *Q'v
ol N T X) 2 ~ I 3

S ot 2 2 X R & < h I 2 ol
S & £ £ 958§ 85§ §F 85 g &
4 7] 3 7 6 7] 6 7 4 (4) 3 (4) 4(3) 3(3)
P17 4| 4 4 4 4| 4 4 4(2) 4(2) 4 4
¢13 | 151 7(5) 151 14 116 | 14 116 22(4) 32(4) 22(3) 32(3)
P13 8| 8 8 8 8| 8(2 8 22 (2) 8(2) 22 8
014 | 243 | T(4) 243 14 122 | 14 122 11(6) 677(28) | 11(4) 677(28)
Pz | 16| 7(3) 15(2) | 45 16 | 41(3) 15(2) | 16(2) 7(2) 16 (5) 7 (4)
©1s 10| 3 10 6 8| 6 8 4 (4) 4 (4) 4(3) 4(3)
P18 4| 4 4 4 4| 4 4 4(2) 4(2) 4 4
w3 | 16| 4(2) 13(2) | 7 13| 7 10(2) | 4(4) 6 (6) 4(3) 3(6)
B33 4| 4 4 8 4 8 4 4(2) 4(2) 4 4
a4 8| 3 8 8 8| 8 8 6 (6) 3 (4) 6 (6) 3(3)
Bo1 4| 4 4 7 6 7 6 4(2) 4(2) 4 4
a1 6| 4 6 5 5| 5 5 4(2) 5 (2) 4 5
B 4| 4 4 11 7112 7 5(2) 4(2) 5 4
wos | 46 | 6(2) 38(2) | 10 28| 10 25 (2) 8(4) 27(8) 8(3) 18(6)
B8 5| 5 5 9 5 9 5 8 (2) 5(2) 8 5
w20 | 46 | 4 38 (2) 9 20| 9 18 (2) 4(4) 20(8) 4(3) 11(6)
P39 4| 4 4 18 4| 18 4 6 (2) 4(2) 6 4
®33 32 | 6 32 14 13 | 14 13 20 (8) 6 (4) 20 (9) 6 (3)
P33 5| 5 5 6 6| 6 6 6 (2) 6 (2) 6 6
w3 | 48 | 8 48 19 15 | 19 15 8(12) 13 (4) 8(9) 13 (3)
P32z | 11| 10 11 12 6 | 12 6 6 (2) 6 (2) 6 6
¥35 10 | 8(2) 9(2) | 11 8 | 11 7(2) 4 (6) 7(4) 4 (6) 5 (4)
P35 3| 3 3 6 5 6 5 4(2) 4(2) 4 4
36 9 | 12 9 11 7|11 7 6(2) 6 (2) 6(2) 6
@36 4| 4 4 5 5| 5 5 5(2) 5(2) 5 5
w37 12| 9(2) 11(2) | 13 10 | 13 9(2) | 11(6) 9 (4) 11 (7) 6 (4)
Ba7 4| 4 4 7 6 7 6 5(2) 5(2) 5(2) 5
©38 80 | 12(3) 48(3) | 27 39 | 27 24(3) | 20(4) 55(12) | 20(3) 14 (12)
P38 5| 5 5 18 9 | 18 9 8(2) 8 (2) 8 8
030 | 216 | 10(2) 134(3) | 40 69 | 40 42 (3) | 54(18) 838(12) | 54 (18) 263 (16)
P39 | 103 | 5 91(2) | 20 48 | 20 42(2) | 29(6) 22 (6) 29 (11) 16 (5)
a2 7| 3 7 7 (¢ 7 4(2) 3 (4) 4(3) 3(3)
P12 4| 4 4 5 5| 5 5 4(2) 5 (2) 4(2) 5
a3 53 | 6(3) 37(3) 9 34| 9 23 (3) 6(4) 21(8) 6 (3) 7 (6)
rEy 5| 5 5 19 5 | 19 5 8 (2) 5(2) 8 5
e G(aVbVv GbV cUD)
013 | GaVGbV (bARUDBYV (bAUBY (bABUDV (bAc)UbYVEUD)))))
14 | GlaVv (®ADU(cV (bABU(cV (bAB)U(cV (bAT)U(cV GbV bWC)))))
w18 | G(avbV GbV cU(bVd))
w23 | G(aVvbV GbV (cVbU(DbAd)UD)
w24 | GlaVbV (cVvbU(bAdI))Wb)
w27 | GaVaU(aVv GbVbU(bAcAX(bUd)))
w28 | G(aVGbVcUBYV (cAdAX(cUe))))
w29 | G(aVGbVbHU(cV (bAdAX(bUe))))
w33 | GaVvGbV (bVeVX(R(bVA))UDV e))
@34 | GlaVG(BVXGe)V (bVdVX(dR(cVd)U@V e))
¢35 | G(aVvXGbV XF(bAFc))
w36 | GaV (bVX(aRe)V X(aU(c A Fd)))Ua
w37 | G(aV G(bVXGeV XF(cAFd)))
w38 | G(aVGbV (cVX(bRd) vV X(bU(d A Fe)))Ub)
w39 | G(aV (bV X(cRd)V X(cU(dAFe)))U(cV G(bV X(cRd) VX(cU(d A Fe)))))
pa2 | G(aV G(bV (cAXFd)))
w43 | G(aV GbV (cVDU(bAdAX(bUe)))Ub)

Table 8.2: Automaton sizes for the ‘Dwyer’-formula set (1/4). z (y) denotes that the number
of states is # and the number of (non-trivial) acceptance sets is y.

92

8.3 Discussion

» SN
é\ Q;Q :"9. » “Q'v
od ot T 3) el N~ T N
S ot Y 2 QR < < h I % oo
S & £ £ 58§ § § & & § &
s | 179 | 12(3) 132(3) | 19 79 | 19 61(3) | 20(6) 543 (16) | 20 (6) 103 (16)
Par | 27| 11(2) 27 27 21 | 27(2) 21 18 (14) 14(6) | 18(16) 14 (5)
P45 7| 4(2) 7 8 6 8 6 4(2) 5 (4) 4(2) 5(3)
05 3| 3 3 11 5| 11 5 5 (8) 5 (2) 5 (8) 5
a7 8| 3 8 7 8| 7 8 4(2) 3(4) 4(3) 3(3)
red 4| 4 4 5 6| 5 6 4(2) 5 (2) 4(2) 5
¢as 53 | 6(3) 37(3) 9 34| 9 23 (3) 6(4) 21(8) 6 (3) 7 (6)
Pis 5| 5 5 19 5| 19 5 8(2) 5 (2) 8 5
w10 | 269 | 12(3) 192(3) | 19 103 | 19 80(3) | 20(6) 822(22) | 20(6) 139 (22)
Qa9 | 40 | 12(2) 40 30 23| 30 23 26 (14) 19(6) | 26(14) 19(5)
pa1 | G(aV (bVEUEA dAX(EUe))U(cV G(bV (dAXFe))))
pas | G(aVF(bAcAX(cUA)))
pa7 | GlaVG(DBV (cAdAX(dUe))))
was | G(aV GOV (cVDUBAdAeAX((bAe)UF)))Ub)
¢10 | GlaV (bVEUE@AdAeAX(EA)UN))U(CV GbV (dAeAX(EUF))))

Table 8.3: Automaton sizes for the ‘Dwyer’-formula set (2/4). z (y) denotes that the number

of states is # and the number of (non-trivial) acceptance sets is y.

»
D » S » Q.@
o ~ . >
w@Q v ¢ J@ Q" & f v
o 3 R Y O & 3 N < &

S & £ £ 8§55 § & 5§ 5§ §F &
w7 | 39 | 4 39 9 23| 9 23 7@ T@®) | T 7T(4)
W7 | 10 | 5(2) 10 10 10 | 10(2) 10 6(2) 5(4) 6(2) 5(3)
Pio | 9| 2 8 (2) 4 5| 4 5(2) | 2(2) 2(6) 2(2) 2(5)
Yo | 2| 2 2 4 3 4 3 2(2) 2(2)| 2 2
Yz | 7|3 7 6 7] 6 7 4(4) 3(4) | 4(3) 3(3)
D1z | 4| 4 4 4 4| 4 4 4(2) 4(2) | 4 4
P17 | 10 | 3 10 6 10| 6 10 3(2) 3(4) 3(2) 3(3)
Y7 | 4|4 4 9 71 9 7 4(4) 4(2) | 4(4) 4
s | 52 | B 52 10 45 | 10 45 7(2) 15(4) 7(2) 15(3)
PYis | 6|6 6 20 11 | 20(2) 11 13(4) 6(2) | 13(3) 6
oo | 10 | 1(2) T7(2) | 4 4| 3(2) 3(2)| 204) 2@)| 1(5) 1(5)
a0 | 4|3 4 3 4| 3 4 14 3(2)] 1(2 3

Y7 | G(aVvbUDBU(b A CRD)))

Y10 | G(aVFbVFc)

P13 | G(aV GbV cUD)

P17 | G(aVvdUGBU(A ¢)))

s | G(avoUOBUGBUOBU (D A)))))

20 | (GFaV GFb) A (GFbV GFc)

Table 8.4: Automaton sizes for the ‘BEEM’-formula set (1/2). z (y) denotes that the number

of states is « and the number of (non-trivial) acceptance sets is y.

93

8 Experimental Evaluation

>
D » 5 » .9
S s & . ¥
& & = I~ &
> & ¥ Cébv C@g v& T & &
~ \od 2

S &£ £ £ 9§ 8§ § 8 & & & &
X5 4| 4 4 4 4| 4 4 4(2) 4(2) 4(2) 4
X5 8| 4 8 4 4| 4 4 5(2) 4(2) 5(3) 4
X6 5| 5 5 5 5| 5 5 5 (2) 5 (2) 5 (2) 5
X6 16| 5 16 5 5| 5 5 11 (2) 5(2) 11 5
X8 23| 3(2) 19(2)| 8 20| 8 16 (2) 5(2) 11(6) 5 (2) 7(3)
X5 5| 5 5 15 9| 15 9 6 (4) 5(2) 6 (4) 5
xo | 109 | 5(3) 101(2) | 20 83 | 20 71(2) | 15(2) 195(10) | 15(2) 137 (9)
Xo 9| 8 9 43 17 | 43 17 26(8) 13(2) | 26(9) 13
X11 25 | 18 25 27 38 | 27 38 18 (2) 36 (2) 18 (2) 36
X1t 6 7 6 23 20 | 23 20 17(2) 17(2) 17 (2) 17
xi2 | 66 | 42 66 67 112 | 67 112 42 (2) 115(2) | 42(2) 115
X2 8 9 8 49 45 | 49 45 41 (2) 41(2) | 41(2) 41
X15 2| 2 2 2 2| 2 2 1(2) 1(2) 1 1
X15 5| 1 5 6 6| 6 6 1(10) 1(10) 1(10) 1(10)
X1s 6| 1(5) 2(5) | 6 6| 2() 2(B)]| 5(2) 5(2) 1 (6) 1 (6)
Xis| 10| 6 10 6 6| 6 6 1(10) 5(2) 1(5) 5
X22 8| 856) 6(3)| 6 7| 43 5() | 3(6) 7 (4) 1(10) 3(5)
X2 7| 94 6(2) | 5 12| 4(2) 11(2) | 2(6) 14 (4) 1(7) 13 (5)
X23 11 | 10(6) 8(4) | 8 12| 5(4) 9(4) | 4(8) 21 (4) 1 (20) 7 (6)
X33 | 10 | 11(5) 8(3) 7 26| 5(3) 23(3) | 3(8) 57 (4) 1(10) 45 (6)
xo4 | 14 | 12(7) 10(8) | 10 21| 6(5) 17(5) | 5(10) 56(4) 1(34) 15(7)
Xo1 | 13| 13(6) 10(4) | 9 54| 6(4) 47(4) | 4(10) 201 (4) 1(13) 145 (7)
Xx26 | 20| 27(6) 16(3) | 13 13 | 9(3) 9(3) | 6(10) 10(10) 1(13) 1(13)
X6 6| 7(6) 6 4 4| 4 4 1(6) 1(6) 1(8) 1(6)
x27 | 44 | 81(8) 32(4) | 290 29 | 17(4) 17(4) | 96(16) 58 (16) 1(24) 1(24)
Xo7 8| 9(8) 8 5 5| 5 5 1(8) 1(8) 1(11) 1(8)
X29 8 | 27 8 17 17 | 17 17 25(4) 16 (4) 25(4) 16 (4)
Xas | 15 | 15 15 15 15 | 15 15 25(2) 15(2) 25 15
X30 10 | 81 10 33 33| 33 33 65(4) 42 (4) 65(4) 42 (4)
X3 | 31| 31 31 31 31| 31 31 65(2) 31(2) | 65 31
xs2 | 10| 8 10 8 8| 8 8 5 (6) 7(2) 5 (3) 7
X3z 7] 63 6@ | 8 8| 72 7(2) | 15(2) 7(2) 5 (4) 6 (3)
x3s | 19 | 16 19 16 16 | 16 16 19(8) 15(2) | 19(4) 15
X33 | 11| 30(4) 10(2) | 16 16 | 15(2) 15(2) | 61(2) 15(2) 19 (5) 14 (3)
X5 aU(bU(cUd))
X6 aU((bU(cU(dUe)))
X8 G(aVvaU(bAbUc))
X9 G(aVvaU(bAbU(cAcUd)))
x11 | (FaV Gb) A (FbV Ge) A (FeV Gd)
x12 | (FaV Gb) A (FbV Ge) A (FeVv Gd) A (FdV Ge)
x15 | FGa AFGbAFGcAFGdAFGe
x18 | GFa A GFbA GFcA GFdA GFe
x22 | (GFa A GFbA GFc)V (FGe A (FGa Vv FGb))
x23 | (GFa A GFbA GFcAGFd) Vv (FGe A (FGa VvV FGbV FGd))
x24 | (GFa A GFbA GFcAGFdAGFe)V (FGeA (FGa Vv FGbV FGd V FGe))
x26 | (FGaV GFb) A (FGcV GFa) A (FGdV GFc)
x27 | (FGaV GFb) A (FGcV GFa) A (FGdV GFc) A (FGe V GFd)
x20 | GF(a A XXXa)V GF(a A XXXa)
x30 | GF(a A XXXXa)V GF(a A XXXXa)
x32 | FG(aVb)VFG(@V Xb) VFG(aV XXb)
x33 | FG(aVb) VFG(@V Xb) VFG(a vV XXb) vV FG(a V XXXb)

Table 8.5: Automaton sizes for the parametrised formula set (1/2). x (y) denotes that the
number of states is x and the number of (non-trivial) acceptance sets is y.

94

8.A Omitted Results

8.A Omitted Results

The following tables contain results that have been moved to the appendix of this chapter
because either only minor differences in size are present or the formulas are from [EH0O|

and [SB00].

»
D » o » .9
3 =l & < 5
& & - - & &
\od ol < < Y 2 3 <
) ol 2 oY QR < < N N oot &

S &£ £ £ 58§ 8§ § §F §F 58
& 4 5 4 7 3| 7 3 3(2) 3(2)|3(2 3
&6 5 8 5 5 5| 5 5 4(2) 4(2) |42 4
&s 4 5(4) 4 3 3| 3 3 1(4) 1(4) | 1(4) 1(4)
£ 5 9(4) 4(2)| 4 4| 3(2) 3(2) |24 20 |14 1@
12 12 7(2) 1 10 8 | 10 8 6(2) 5(4) | 6(2) 5(3)
&12 2 4 2 7 6| 7 6 5(2) 5(2) | 5 5
&7 | 107 | 18 (2) 94 (2) 9 21 9 18(2) | 5(2) 8(2) | 5(3) 6
&7 | 11| 5(2) 11 6 7| 6 7 5(2) 5(2) |5 5
€18 10| 4(2) 92| 8 91 7(2) 8(2) | 8(2) 5(2) | 4(3) 4(4)
&8 | 10 | 17 10 6 6| 6 6 4(4) 5(2) |42 5
& | (FaAGb)V (FbA Ga)
¢ | (FGa A GFb)V (FGbA GFa)
€12 | G(aV Fb) A ((Xa)UbV X(aR(a Vv b)))
&7 | (a AXDR(X(((cUd)Ra)U(cRa)))
&8 | GaVv GbV ((GaV GFc) A (GbV GFe))

Table 8.6: Automaton sizes for the formula set from [SB00] (1/2). z (y) denotes that the number
of states is « and the number of (non-trivial) acceptance sets is y.

=~
o » ~o'w w »
& N 8 . ~
& S = v &
< Q" 3 Ab‘”k 5 C@g C@bv v@ % <& <&
N
S & £ £ 5§ 8§ & 8 S s 3§
3 7|7 7 12 12 | 12 12 12(2) 12(2) | 12(2) 12
(3 | 20| 12 20 12 12 | 12 12 16 (6) 12(2) | 16(10) 12
10 6 1(5) 2(5) 6 6| 2(5) 2(5) 5(2) 5(2) 1(6) 1(6)
(0 | 10 6 10 6 6 6 6 1(10) 5(2) 1(5) 5
Ci11 7| 2 7 2 2 2 2 2 (2) 2 (2) 2 2
1| 2] 2 2 2 2| 2 2 2(2) 2(2) 2 2
G2 | 27| 4 27 8 11 8 11 8(4) 12(6) 8(6) 12(6)
Ci2 | 13| 6(3) 12(2) 9 10| 8(2) 9(2) 8(2) 7(2) 6(3) 6(4)
C3 aUbAX(cANF(dAXF(e NXF(f AXFg)))))
¢10 | GFaAGFbA GFc A GFdA GFe
¢11 | aU(bUc) v bU(cUa) V cU(aUdb)
(12 G(a\/bU(GCVGd))

Table 8.7: Automaton sizes for the formula set from [EHO00] (1/2). z(y) denotes that the
number of states is x and the number of (non-trivial) acceptance sets is y.

95

8 Experimental Evaluation

(Sb
%,
"y

e
8y
&, o)
o
8y

AR of

S N)
N R g &
o1 | 1)1 1 1 1|1 1 1(2) 1(2) |1 1
7T | 2|2 2 2 2|2 2 2(2) 2(2) | 22 2
w2 | 3|4 3 4 4|4 4 3(2) 3(2) |3 3
% | 3|3 3 3 33 3 3(2) 3(2) |32 3
©3 22 2 2 2|2 2 2(2) 2(2) | 2 2
%5 | 3|3 3 3 33 3 3(2) 3(2) |32 3
os | 2|2 2 2 22 2 2(4) 2(2) | 23 2
% | 3|3 3 3 33 3 3(2) 3(2) |32 3
v | 2|2 2 2 2|2 2 2(2) 2(2) | 2 2
%6 | 2|2 2 2 2|2 2 2(2) 2(2) |22 2
or | 4|5 a4 4 4|4 4 3(2) 3(2)|3(2) 3
p7 22 2 2 2|2 2 2(2) 2(2) | 2 2
es | 2|2 2 2 2|2 2 2(4) 2(2) | 203) 2
% | 3|3 3 3 3|3 3 3(2) 3(2) | 3(2) 3
wo | 5|2 5 4 5|4 5 2(2) 2(4) | 2(2) 203)
% | 3|3 3 5 5|5 5 3(2) 3(2) |3 3
v0| 5|5 5 5 5|5 5 5(2) 5(2) | 5(3) 5
P | 7|6 7 6 6|6 6 6(2) 6(2)|6(2) 6
o1 | T8 7 8 8|8 8 7(2) 7(2) |7 7
Pi1 | 8|7 8 7 TI7T@2) 7 8(2) 7(2) | 8(12) 7
e | T|6 7 7 oT|7 7 6(2) 6(2) | 6(3) 6
| 7|7 T |7 T|7 72 |72 7@ | 7@ 7
o5 | 2|2 2 2 2|2 2 2(2) 2(2) | 2 2
75| 2|2 2 2 2|2 2 2(2) 2(2) |22 2
o6 | 3|4 3 4 4|4 4 3(2) 3(2) |3 3
P | 3|3 3 3 33 3 3(2) 3(2) |32 3
»1 Ga
©2 Ga VvV bUa
®3 G(aV Gb)
5 G(aVbVcWb)
e aW (a Ab)
o7 Ga V F(aANFb)
vs G(aVbVbW(bACc))
©9 G(aVbVvbU(AC))
P10 | aW(aW (@W(aW(Ga))) i i
p11 | GaVv(@Ab)U(aV (@Anb)U(aV (@Ab)U(aV (@Ab)U(aVbUa))))
p12 | GavaU(a A bW (bW (bW (bW (GD)))))
v15 | aWb
pi6 | GavbU(aVc)

Table 8.8: Automaton sizes for the ‘Dwyer’-formula set (3/4). z (y) denotes that the number
of states is « and the number of (non-trivial) acceptance sets is y.

96

8.A Omitted Results

= -
s ~o'® F > “Q.v
Q ? &) J
S g g g S
o F F FFSSSE g5 5§

N < < SN OSSN Q Q Q Q
o7 | 45 4 7 7|7 7 4(2) 4(2) | 4(3) 4
Zi7 | 6|32 6 5 6|5 6 3(2) 3(4) | 3(2) 303
pl0 | 2|2 2 2 2|2 2 2(4) 2(2) |23 2
7o | 3|3 3 3 3|3 3 3(2) 3(2) | 3(2) 3
w0 | 4|2 4 4 4|4 a 2(2) 2(4) | 2(2) 203)
730 | 2|2 2 4 3|4 3 2(2) 2(2) | 2 2
po1 | 45 4 4 4|4 4 3(2) 3(2) | 3 3
| 3|3 3 3 3|3 3 3(2) 3(2) |3 3
@0 | 6|3 6 6 6|6 6 4(2) 3(4) | 4(3) 3(3)
P | 3|3 3 6 4|6 4 3(2) 3(2) |3 3
pos | 4| 3 4 4 4|4 a 3(2) 3(2) |3 3
v | 3|3 3 3 3(3 3 3(2) 3(2) | 3 3
w6 | 4|5 4 5 5|5 5 4(2) 4(2) | 4 4
P36 | 4| 4 4 4 4|4 a 4(2) 4(2) | 42 4
w30 | 4|5 4 5 5|5 5 3(4) 3(2)|3(5 3
P30 | 4| 4 4 3 3|3 3 3(2) 3(2) | 3(2) 3
ps1 | 5|6 5 8 8|8 8 5(2) 5(2) | 54) 5
Zar | 4|4 4 5 5|5 5 5(2) 5(2) | 5(2) 5
¢32 | 6|5 6 s 7|8 7 4(2) 5(2) | 4(4) 5
73| 5|5 52) |7 7|7 62 |42 4(2) |42 4
P40 714(2) 6(2) | 8 6|8 5(2)|4(2) 64) | 4(2) 34
70| 3|3 3 6 5|6 5 3(4) 5(2) | 3(2) 5
on | 6| 7 6 5 5|5 5 4(2) 4(2) | 4 4
P | 4|4 4 4 4|4 4 6(2) 4(2) | 6 4
a6 | 6| 7 6 5 5|5 5 4(2) 4(2) | 4 4
7| 4|4 4 4 4|4 4 6(2) 4(2) | 6 4
p17 | GaVvF(aAbWc)
v19 | GlaVvbVcW(bVd))
p20 | G(aV Fb)
w21 | GaVv(bvaU(aAc))Ua
p22 | G(aV G(bV Fc))
w25 | GaVaU(aAbAX(aUc))
w26 | GaVvbU(aV (bAcAX(bUd)))
w30 | aUbV G(aV XGc)
w31 | GaV(aVvbVX(aR(aVe)))U(aVd)
p32 | GaVvaU(aA (bUcV G(bV XGd)))
w40 | G(aVF(bAXFc))
w41 | GavVv (bvaU(aAcAX(@aUd)))Ua
pas | GaVv(bvaU@AcAndAX((@and)Ue)))Ua

Table 8.9: Automaton sizes for the ‘Dwyer’-formula set (4/4). z (y) denotes that the number
of states is z and the number of (non-trivial) acceptance sets is y.

97

8 Experimental Evaluation

»
D ,9 ey » Q
3 o & s ¥
@ & = g N
v & Qy‘”k Q" § & g y & &
N

S £ & £ 58 85 8§ 5§ 5 & &
1 4| 2 4 4 4|4 4 2(2) 2(4) |22 213
D1 2| 2 2 4 3|4 3 2(2) 2(2) | 2 2
b2 5(4(2) 5 4 4|4 4 1(6) 2(4) |14 2(3)
Do 3122 2123 3122 212 |22 212 |13 1)
b3 5| 2 5 4 5| 4 5 2(2) 2(4) | 2(2) 23
D3 33 3 5 5|5 5 3(2) 3(2) |3 3
o 3|2 3 2 2| 2 2 2(2) 2(2) |22 2
Da 1|1 1 1 1|1 1 1(2) 1(2) |1 1
s 2|1 2 3 33 3 1(4) 1(4) |1(4) 1(4)
¥s 2| 2 2 2 2| 2 2 1(2) 1(2) |1 1
b6 4|4 4 6 716 7 4(2) 4(2) | 4 4
D6 4|4 4 4 4|4 4 4(2) 4(2) | 4(2) 4
s 2| 2 2 2 2| 2 2 2(4) 2(2) |23 2
Ps 33 3 3 33 3 3(2) 3(2) |32 3
g 1|1 1 2 2| 2 2 1(2) 1(2) | 1(2) 1(2)
Dy 2| 2 2 2 2| 2 2 1(2) 1(2) |1 1
P | 2| 2 2 2 2|2 2 2(4) 2(2) |23 2
P11 | 3| 4 3 3 3|3 3 3(2) 3(2) |3(2 3
P12 | 3| 4 3 4 4| 4 4 3(2) 3(2) |3(2 3
Y2 | 2| 2 2 2 2| 2 2 2(2) 2(2) | 2 2
g | 2| 2 2 2 2| 2 2 2(4) 2(2) |23 2
Pia | 3|3 3 3 3|3 3 3(2) 3(2)|3(2 3
s | 2| 2 2 2 2| 2 2 2(4) 2(2) |23 2
P15 | 3|3 3 3 33 3 3(2) 3(2) |32 3
Pie | 4| 2 4 4 4|4 4 2(2) 2(4) | 2(2) 23
Y6 | 2| 2 2 4 3|4 3 2(2) 2(2) | 2 2
Yo | 3132 3 3 3|3 3 1(4) 1(4) | 1(3) 1(3)
Do | 2| 2 2 2 2| 2 2 1(2) 1(2) | 1(2) 1(2)
1 | G(aVFb)
2 FGaV FGbV GFc
3 G(aV (bAcUQd))
s | FaVFb
s | GFaV GFb
e Ga V bRc V aUd
g G(a V bRc)
9 | GFa
Y11 | (@aVbhRecAG(dV (aVb)Re)
Y12 | FaVv Gb
P14 G(aVIR(bVC))
P15 G(EVb\/bR(a\/b))
P16 G(CLVF(b/\C))
P19 | FGaV GFb

Table 8.10: Automaton sizes for the ‘BEEM’-formula set (2/2). x (y) denotes that the number
of states is z and the number of (non-trivial) acceptance sets is y.

98

8.A Omitted Results

W SN
D @ Z,S. » ~Q'v
g g & o ¥
<« ¢ > v & g
N4 X X X 2 Y N4 N4
S 4 LR o o A g & &
& £ £ 958§ § §F 5§ § &
Y1 4| 4 4 4 4| 4 4 4(2) 4(@2) | 42 4
x| 3| 3 3 4 4| 4 4 4(2) 4(2) | 4(3) 4
X2 8| 8 8 8 8| 8 8 8(2) 8(2)| 8(2) 8
x| a4l a4 4 8 8| 8 8 8(2) 8(2)| 8(8 8
xs | 16 | 16 16 16 16 | 16 16 16 (2) 16(2) | 16(2) 16
X5 5| 5 5 16 16 | 16 16 16 (2) 16(2) | 16 (10) 16
X4 3| 3 3 3 3| 3 3 3(2) 3(2)| 32 3
xi | 4| 3 4 3 3| 3 3 3(2) 3(2)| 3 3
X7 5 2 5 4 5 4 5 2(2) 2(4) 2(2) 2(3)
x> | 3| 3 3 5 5| 5 5 3(2) 3(2) | 3 3
xo | 9| 8 9 11 13 | 11 13 8(2) 11(2) | 8(2) 11
Xio| 4| 5 4 11 8| 11 8 72 T2 | T2 7
xis | 2| 2 2 2 2| 2 2 1(2) 1(2)| 1 1
Xz | 8| 1 3 4 4| 4 4 1(6) 1(6) | 1(6) 1(6)
xia | 2| 2 2 2 2| 2 2 1(2) 1(2)| 1 1
Xz | 4| 1 4 5 5| 5 5 1(8) 1(8) | 1(8) 1(8)
xio | 4] 13 20| 4 4| 23 20| 3 32 | 19 1)
Xic | 6] 4 6 4 4| 4 4 16) 3(2)| 13 3
xir | 5] 1(4) 20@) | 5 5| 2@ 2@)| 4(2) 4(@2)]| 1(6) 1(5)
X7 | 8| 5 8 5 5| 5 5 1(8) 4(2) | 1(4) 4
xio | 5| 42 5 4 4| 4 4 1(6) 2(4) | 1(4) 2(3)
Xo | 3| 2@ 2@ | 3 3| 2@ 2@ | 2@ 2@ | 13 1(3)
X20 7 5(2) 7 5 5 5 5 1(8) 3(4) 1(5) 3(3)
Xoo | 4| 238 23| 4 4| 2B 2@ | 312 3@ | 1(4) 1)
xa1 | 9| 6(2 9 6 6| 6 6 1(10) 4(4) | 1(6) 4(3)
ot | 5| 2(4) 2@ | 5 5| 200 2@ | 412 4@ | 1(6) 1(5)
x5 | 9| 9(4) 8(2)| 6 6| 5(2) 5(2)| 2(6) 2(6)| 1(6) 1(6)
X5 | 4| 5(4) 4 3 3| 3 3 1(4) 1(4) | 1(5) 1(4)
X8 | 6] 9 6 9 9| 9 9 9(4) 6(4) | 9(4) 6(a)
X | T o7 7 T 7| 7 7 9(2) 72| 9 7
xs1 | 5| 4 5 4 4| 4 4 2(4) 3(2)| 2@ 3
X31 4 2(2) 3(2) 4 4 3(2) 3(2) 4(2) 3(2) 2(3) 2(3)
X1 (aUb)Uc
X2 ((aUb)Uc)Ud
X3 (((aUb)Uc)Ud)Ue
X4 aU(bUc)
X7 G(a Vv aUb)
x10 | (FaV Gb) A (FbV Ge)
x13 | FGa AFGbAFGe
x14 | FGa AFGbA FGe A FGd
X16 GFa N GFbA GFc
x17 | GFa A GFbA GFcAGFd
xio | FGaVFGbV GFec
x20 | FGaV FGbV FGcV GFd
x21 | FGaVFGbV FGecV FGdV GFe
x25 | (FGaV GFb) A (FGcV GFa)
x2s | GF(a A XXa) vV GF(a A XXa)
x31 | FG(aVb)VFG(aV Xb)

Table 8.11: Automaton sizes for the parametrised formula set (2/2). x (y) denotes that the
number of states is z and the number of (non-trivial) acceptance sets is y.

99

8 Experimental Evaluation

»
D 9 ~ » .&\
v@ o w@ ot Q" Q" @@ v& h
S Sl 2 2 QR < < Ny Ny ol ot
S & £ £ 585 85§55 §F &5 & &
& 2| 2 2 2 2| 2 2 2(2) 2(2) | 212 2
I3 2| 2 2 2 2| 2 2 2(2) 2(2) | 2 2
& 3|3 3 3 3|3 3 3(2) 3(2) |32 3
£o 4|3 4 3 3|3 3 3(2) 3(2) | 3 3
& 3132 3 3 33 3 1(4) 1(4) | 1(3) 1(3)
&3 2| 2 2 2 2| 2 2 1(2) 1(2) | 1(2) 1(2)
& 4| 4 4 3 3|3 3 2(2) 2(2) | 2 2
&1 5|3 5 5 45 4 2(4) 2(4) | 2(3) 2(3)
&s 4|4 4 4 4|4 4 4(2) 4(2) | 4 4
&5 4|4 4 5 5|5 5 4(2) 4(2) | 4(2) 4
&7 2| 2 2 2 2| 2 2 1(2) 1(2) | 1(2) 1(2)
&7 31302 3 3 3|3 3 1(4) 1(4) | 1(3) 1(3)
& 2|2 2 2 2|2 2 2(2) 2(2) | 2 2
&9 2| 2 2 2 2| 2 2 2(2) 2(2) | 212 2
10 1)1 1 1 1|1 1 1(2) 1(2) |1 1
£10 0|1 0 0 oo 0 1 0 1 0
§1 5|5 5 4 5| 4 5 3(2) 3(2) | 3 3
11 0| 2 0 0 oo 0 2 0 2 0
€13 4| 2 4 4 4|4 4 2(2) 24) |22 20
&3 | 2|2 2 4 3| 4 3 2(2) 2(2) | 2 2
14 3|3 3 3 3|3 3 3(2) 3(2) 312 3
Eia| 2|2 2 2 2|2 2 2(6) 2(2) | 2(6) 2
€15 3112 2(2) | 3 312(2 2(2) | 2(2) 2(2)] 1) 1(3)
&5 | 43 4 3 3|3 3 1(4) 2(2) | 12 2
€16 4|4 4 4 4|4 4 4(2) 4(2) | 4(2) 4
16| 213 2 3 3|3 3 3(2) 3(2) | 3 3
&19 7|6 7 5 6|5 6 4(2) 3(2) | 4(2 3
€19 | 10 | 9(4) 10 6 6|6 6 4(4) 4(4) | 4(4) 4(4)
§20 3|4 3 3 3|3 3 3(2) 3(2) | 3 3
0 | 5|4 5 4 4|4 4 4(2) 4(2) | 4(2) 4
§21 1)1 1 1 1)1 1 1(2) 1(2) |1 1
€1 | 2|2 2 2 2| 2 2 2(2) 2(2) |22 2
22 3|2 3 2 2|2 2 2(2) 2(2) | 22 2
€22 | 3|2 3 2 2|2 2 2(2) 2(2) | 2 2
&1 aUb
&2 aU(bUc)
& | FGaVv GFb
& | (Fa)U(GY)
&s FaA (aV Gb)
& | FGaAGFb
&o aR(a V b)
10 | t
&1 | (Xa)UbvV X(@R(a V b))
&13 | G(aV Fb)
€14 F(a N X(bUC))
&15 | GFa A GFb
(16 | FaAFa
€19 | GaVGbV ((GaVFGc) A (GbV FGe))
&0 | G(aVvXGb)AG(cVXGb)
€21 Ga
€22 | aVbUa

Table 8.12: Automaton sizes for the formula set from [SB00| (2/2). z(y) denotes that the
number of states is z and the number of (non-trivial) acceptance sets is y.

100

8.A Omitted Results

»
D ,%'\ e » .9
5 5 N . s
& & - - & &
3 ol v X 2 Y N 3
o X Q ¥ o < < N N & <&

S & £ £ 5§y 8§ §F §F §F
G 2|2 2 5 415 4 3(2) 3(2) | 3 3
& 7| 4 7 6 716 7 4(2) 54) | 4(2) 503
¢2 3|3 3 4 4| 4 4 4(2) 4(2) | 4(2) 4
(2 4|4 4 4 4|4 4 4(6) 4(2) | 4(6) 4
Ca 2|2 2 3 3|3 3 2(2) 2(2) | 2 2
Ca 4|2 4 5 4|5 4 2(2) 24) | 2(2) 203
¢ 4|4 4 5 5|5 5 5(2) 5(2) | 5(2 5
I 4|3 4 4 4| 4 4 4(2) 4(2) |44 4
o 3|3 3 3 3|3 3 3(2) 3(2) |32 3
I 2|2 2 2 2|2 2 2(6) 2(2) | 2(6) 2
¢r 3|32 3 3 3|3 3 1(4) 1(4) | 1(3) 1(3)
I3 2|2 2 2 2|2 2 1(2) 1(2) | 1(2) 1(2)
(s 5| 2 5 4 5| 4 5 2(2) 24) | 2(2) 2(3)
(s 3|3 3 5 5|5 5 3(2) 3(2) | 3 3
Co 411 2(3)| 4 41203 203)|3(12 312 |14 1@4)
Co 8|5 8 5 5|5 5 2(8) 4(2) | 2(5) 4
¢1 aU(b A Ge)
¢ | aU(bAX(cUd))
¢4 | F(anXGb)
¢ | FlanX(bAXFc))
Ce F(a A X(bUc))
¢z | FGaVv GFb
(s G(a Vv bUc)
¢o | GaAGFbAGFcAGFd

Table 8.13: Automaton sizes for the formula set from [EHO00] (2/2). «(y) denotes that the
number of states is x and the number of (non-trivial) acceptance sets is y.

101

9 Applications

In this chapter, we take a brief look at two applications of the limit-deterministic Biichi
automata (LDBA) obtained through the unified construction (and the deterministic con-
structions for fragments) to model checking and synthesis. They are suitable due to their
special structure for quantitive model checking of probabilistic systems where arbitrary
LDBASs in general cannot be used. Furthermore, we focus here on the lesser known LD-
BAs and skip applications of nondeterministic Biichi automata and deterministic Rabin
automata, since their applications are well-known and extensively studied in the existing
literature.

9.1 Probabilistic Model Checking

The problem of model checking probabilistic systems against an LTL specification [BKO0S|
is to determine the probability that an LTL formula ¢ holds on the infinite paths gen-
erated by a given Markov chain M, written PrM(cp), or more generally, for a Markov
decision process M to determine the mazrimal probability! that ¢ is satisfied, written
SUPg PrMe (), where & ranges over strategies resolving the nondeterminism of M, and
M is the Markov chain resulting from the application of & to M.? Probabilistic model
checking has two commonly discussed variants: The first variant is qualitative probabil-
istic model checking, where one is interested in whether the satisfaction probability is 0,
1, or neither. The second variant is quantitative probabilistic model checking, where one
is interested in the exact satisfaction probability.

The automata-theoretic approach to quantitative model checking of Markov decision
processes (MDPs) proceeds in the following steps: (1) construct the product M®.A4 of the
given system M and an automaton A for the given LTL formula, (2) find all mazimal end
components (MECs) in the product, (3) determine which MECs are accepting, and (4)
compute the maximal probability to reach the accepting MECs. However, as opposed to
the non-probabilistic model checking case, in general the automaton A cannot be used
if it is nondeterministic. Intuitively, resolving nondeterminism of the automaton may
depend on the yet unknown, probabilistically given future.

In the qualitative case it is known [Var85; CY95] that LDBAs can be used and a fully
deterministic automaton is not necessary, but it was unclear until [HLS+15; SEJK16] if
in the quantitative case deterministic automata could also be replaced by LDBAs. The
advantages of LDBAs compared to DRAs are that they are easier to construct, they can
be considerably smaller, and determining for a MEC if it is accepting for Biichi conditions
does not require an iterative analysis as it is necessary for Rabin conditions.

'One can also consider the minimal probability, but there are no substantial differences in the tech-
niques.

2We give a short overview of notation and results on Markov chains and MDPs relevant for this part
in Section 9.A.

103

9 Applications

We now show that LDBAs of Theorem 6.2 can be used in the quantitative setting by
slightly adapting the product construction of (1). But be aware of the fact that general
LDBAs are not usable in such a way for quantitative probabilistic model checking and
this only works because of the special structure of the automata from Theorem 6.2.

The key insight is that all by Mg generated words are v- and p-stable once a bottom
strongly connected component (BSCC) is reached. Thus we can extend the strategy & in
such a way that it resolves the nondeterminism of the LDBA by moving to the accepting
component once a BSCC is reached.

Definition 9.1. Let M = (S, Act, P, tinit, Ap, L) be a finite Markov decision process, let
© be a formula over the set of atomic propositions Ap, and let A = (Q, 6, qo,3) be the
LDBA for ¢ obtained from Theorem 6.2. We denote the states in the initial component
by Qinit = Reach(¢), C Q, and denote the states in the accepting component for some
X C u(p) and Y C v(p) by Qxy C Q. Further, we abbreviate the deterministic
transition relation within Qe with dip; and we abbreviate the deterministic transition
relation within the accepting component with 4. We then extend the set of actions by
using X and Y as subscripts:

Act' = ActW{axy :a € Act, X C u(p),Y Cv(p)}
Finally, the product MDP is defined as follows
M@ A= (S X Q7 ACt/a Plv Linit, Qv L/)

where we define for all states (s,q),(s',q') € S x Q, actions o € Act, and sets X C u(yp)
and Y Cv(yp):

P(s,a,s") if ¢ = binit(q, L(s")) or ¢" = dace(q, L(s'
SR (s g (o)) = 4SS Jini (0 1(5) (¢, L(s"))
0 otherwise
P(Svaa 5,) if ¢ € Qinit and q/ S 5(q,L(3/)) N QX,Y‘?
0 otherwise

- P (<$,q>,OéX7Y, <3/7q/>) = {

-0

/ ((5,)) = {Lmit(s) if ¢ = Sinit(qo, L(5))

init 0 otherwise
- L'({s,q9)) = {q}

Observe that — opposed to building a product MDP M ® D with a DRA D — we
add additional nondeterminism which needs to be resolved by a strategy. In the DRA
case we have a one-to-one correspondence of strategies for M and M ® D. Given a
strategy for one MDP, we can always define a new strategy for the other MDP by means
of projection (ignoring the automaton states) and by deterministic tracking of the DRA
for the formula ¢, respectively. Hence every strategy for M or M ® D is part of a pair
S and &' such that

Prte (s |=) = PrMOP)er | (5,6(q0, L(s)) = \/ (0O-L; ADOK;)

0<i<k

3Notice that this intersection is either empty or a singleton set.

104

9.1 Probabilistic Model Checking

Thus we reduce the question about ¢ to a question of repeatedly reaching (and avoid-
ing) states in the product MDP. While we lose this one-to-one correspondence in the
LDBA setting, we can prove a slight variation that is sufficient for quantitive model
checking;:

Theorem 9.2 ([SEJK16]|). Let ¢ be a formula, and let A = A pga(p) be the LDBA
from Theorem 6.2 with a set of accepting states F'. Let M be a finite MDP with a set of
states S, and let Acc = S X F be the set of accepting states. Then for any state s € S
we have:

sup Pre (s |=) = sup PrM@Ne (s, 8,11 (g0, L(s))) | OO Acc)
S S

Proof Sketch. (>) This direction is analogous to the DRA case. Indeed, every strategy
over M ® A induces by projection a strategy over M. Let p = (sg,r9)(s1,71)... be a
path. We then define the path p’ = sgsy ... on M and the runr = 797y ... on . A. Observe
that whenever a path p is in O Acc, then r is accepting and thus p’ is a path satisfying
. Thus the probability on the left-hand side is lower-bounded by the probability on the
right-hand side.

(<) We begin by formalising our previous intuition that we have v- and p-stability
once a BSCC is reached. For this we define a random variable indez which maps a path
p of M to the minimal number of steps until stability is reached. Further we denote the
trace belonging to the path p by w,. Thus we have (w,)[i]| = L(p[i]) for all i. Formally
we define index as follows:

indez(p) == min{i : (w,); is v- and p-stable with respect to ¢}

We call a state s of a Markov chain M’ decided if almost surely every path p starting in
s has indez(p) = 0. In other words, almost surely every path of M’ starting in s is v-
and p-stable with respect to .

— Claim: Let C be a BSCC of a Markov chain M’. Then all states of C are decided
and almost surely all paths p have the same unique X = Q}"qu and Y = G -

For this proof we will drop the superscript M’ from Pr. In order to show this
claim we need to prove that we have Pr(c = Gv¢) = Pr(c = FG¢) € {0,1} and
Pr(c = Fx) = Pr(c = GFx) € {0,1} for all ¢ € C, for all ¢ € v(p), and for all

X € u(p).

— Let ¢ € v(p). If Pr(c = Gy¢) =1 for all ¢ € C, then we are done. Let now
¢ € C be such that Pr(c = Gv¢) < 1. We show that for all d € C, we have
Pr(d = Gv) = 0, thus also proving Pr(d = FGv) = 0. Since Pr(c = Gy < 1,
we have Pr(c = F—1)) > 0. Therefore, with every visit of ¢ there is a positive
probability p that ¢ will be violated in the next n steps for some n € N. Since
¢ is in a BSCC it will be visited infinitely often with probability 1 from any
d € C. Consequently, Pr(d = G¢) < limy_y00(1 — p)*¥ = 0.

— Let ¢ € p(p). If Pr(c E F¢) = 0 for all ¢ € C, then we are done. Let
now ¢ € C be such that Pr(c = F¢) > 0. We show that for all d € C, we
have Pr(d = Fv) = 1, thus also proving Pr(d = GFv) = 1. Since we have
Pr(c = Fv) > 0, with every visit of ¢ there is a positive probability p that ¢
will be satisfied in the next n steps for some n € N. Since ¢ is in a BSCC it will

105

9 Applications

be visited infinitely often with probability 1 from any d € C'. Consequently,
Pr(d = Fy) > 1 — limg_oo(1 — p)F = 1.

We are now ready to prove the inequality ‘<’. From Proposition 9.6 we know that a
finite-memory strategy for the left-hand side supg suffices. Thus let & be finite-memory
strategy, such that the following holds:

PrMs (s |= ¢) = sup Pr!e (s |= o)
6/

We derive from this a strategy &’ for M ® A such that
PrMe (s = ¢) < PriM@Ae (00 Ace)

The strategy & follows the behaviour of & up to the point where a BSCC is reached in
Mg. A path in Mg will almost surely reach some BSCC in Mg, since & is a finite-
memory strategy and thus Mg is a finite Markov chain. Let ¢ be the first visited state
in a BSCC of Mg. By the claim, ¢ is decided and thus there exists the same X and Y
for a set of paths with probability 1, and &’ then chooses the unique action axy if &
would choose the action a. Having performed the switch to the accepting component, the
strategy &’ then continues to follow the behaviour of & indefinitely. Note that apart from
emulating &, the constructed strategy & only decides when to switch to the accepting
component and with which X and Y.

Notice that by construction every path p in Mg corresponds to a path p’ in (M ®A)e
with equal transition probabilities. It thus only remains to show that if a trace of p is
accepted by ¢ then the corresponding path p’, projected to the second component, is
also an accepting run on A. For this notice that when p reaches m at point ¢ it has
indez(p;) = 0 and thus the trace of p; is v- and pu-stable. Hence switching to the
matching accepting component does not change acceptance of the trace of p. O

Implementation: MoChiBa. Using this theorem one can show that the LDBAs ob-
tained through Theorem 6.2 can be used for quantitative probabilistic model checking.
We implemented a prototype, called MoChiBa [SK16]|, experimentally supporting the
claim that LDBAs are useful and can yield better performance. Notice that at that time
only the LDBA construction of [SEJK16| existed and thus we tested in MoChiBa only the
usefulness of that construction. It remains open how the LDBAs from Theorem 6.2 com-
pare, but the results from Chapter 8 indicate they should be similar or even sometimes
better.

9.2 Synthesis of Reactive Systems

Synthesis of reactive systems refers to the problem of finding for a formal specification
of an input-output relation a matching implementation [PR89|. Concretely, let ¢ be a
specification given as an LTL formula and let the atomic propositions Ap = I W O be
partitioned into inputs I and outputs O. Then the synthesis problem is to decide if there
exists and, if so, to compute a strategy & : (27)* — 29 such that for every sequence of
inputs w; = ogoy - - - € (27)%, there exits a sequence of outputs wo = &(00)&(0goy) -+ - €
(29)“ such that the point-wise union of letters from w; and wo satisfies :

<g(()UL:)> (6((7;;1)) <6(;(?0L1Joz)> (6(0?.9. O'i)> Ee

106

9.2 Synthesis of Reactive Systems

If such a strategy exists, we call ¢ realisable. For realisable formulas we then extract an
implementation of &, e.g. represented by a Mealy machine.

Algorithmically there are several approaches to reactive synthesis and most of them rely
in some way on a translation of the specification to an automaton. The original solution
proposed by |[PR89| relied on a translation of LTL to deterministic Rabin automata
that is followed by a reinterpretation of the DRA as a tree-automaton and a language
emptiness check of that structure. While this procedure is known to be asymptotically
optimal, tools able to deal with large specifications have been elusive. This is, besides
other points, attributed to the usage of automata that suffer from the ‘messy state space’
[Kup12| of Safra’s determinisation [Saf88| hindering efficient implementations. Thus
alternative approaches have been devised [KPV06; FFT17; BBF+12; KJB13; Ehl11] to
avoid the complicated state space and to alleviate the immanent state explosion problem
for deterministic automata.

We, on the other hand, can address the ‘messy state space’ by the newly developed
Master Theorem that gives rise to a collection of ‘Safraless’ LTL translations. In particu-
lar recent work [EKRS17| discovered that LDBAs from [SEJK16] and Theorem 6.2 can be
efficiently translated to deterministic parity automata (DPA), a subclass of Rabin auto-
mata, for which the emptiness problem on tree-automata is efficiently solvable [GTW02].
Since the determinisation procedure of [EKRS17| has access to the semantic labelling —
the LTL formulas the states are labeled with — of LDBAs ([SEJK16], Theorem 6.2), effi-
cient approximative language inclusion checks can be used to remove redundant states.
The procedure without the pruning might be seen as a special case of the Muller-Schupp
determinisation procedure, but focusing on a particular structure allows to have simpli-
fied construction and adding specialised optimisations is easier.

Implementation: Strix. The DPA translation and the translations for fragments of LTL
to DCAs and DBAs from Chapter 5 were successfully put to test in the reactive synthesis
tool Strix [MSL18; LMS19]. Strix decomposes the specification using heuristics and
translates each part of it using Owl [KMSI18| to a deterministic automaton. Then it
recombines these automata relying by means of union and intersection and solves the
non-emptiness problem on the resulting on-the-fly constructed deterministic parity tree
automaton — choosing the parity game interpretation — in a forward-search manner with
an improved implementation of [ML16|. The decomposition here is a crucial part of the
approach, since it reduces work by detecting isomorphic subformulas and by picking more
efficient translations for fragments as seen in Chapter 5 even-though the whole formula
might not belong to such a fragment. For an extended description of the approach the
reader is referred to [MSL18; LMS19].

107

9 Applications

9.A Markov Chains and Markov Decision Processes

In this section we collect well-known standard terminology and results on Markov chains
(MC) and Markov decision processes (MDP) from [BKO08| for reference with slight modi-
fications to enhance readability for our specific use-case. For an extended discussion of
these formalisms we refer the interested reader to [BKO0S].

Definition 9.3 (|[BK08|). A Markov chain is a tuple M = (S, P, tinit, Ap, L) where
- S is a nonempty set of states,
- P: xS —[0,1] is a transition probability function such that for all states s € S

Z P(s,s') € {0,1},

s'eS

~ Linit: S — [0,1] is an initial distribution with) g tini(s) = 1,
— Ap is a set of atomic propositions, and L : S — 247 is a labelling function.

We call a Markov chain finite if S and Ap are finite. Further, we denote the probability of
eventually reaching some set B C S of states from some state s € S by PrM(s E OB), the
probability of repeatedly reaching B by PrM(s = OO0B), and the probability of eventually
staying within B by Pr™ (s |= OOB). The probability of satisfying an LTL formula ¢
over the set of atomic propositions Ap from some state s € S is written PrM(s E o).
Lastly, we write Pr'™(X) as an abbreviation for Y seg Linit(s) - PrM(s = X) where X is
some term.

Definition 9.4 (|[BKO08|). A finite Markov decision process is a tuple

M = (S, Act, P, tini, Ap, L)

where
- S is a set of states,

— Act is a set of actions,

- P: S x Act x S — [0,1] is a transition probability function such that for all states
s € S and actions o € Act:

Z P(s,a,s") € {0,1},

s'esS
~ Linit: S — [0,1] 4s an initial distribution with) g tini(s) = 1,
— Ap is a set of atomic propositions, and L : S — 247 is a labelling function.

We call an Markov decision process finite if S, Act, and Ap are finite. An action « is
enabled in a state s if and only if Y- g P(s,a,8") = 1. We denote the set of enabled
actions in s by Act(s). For any state s € S, it is require that Act(s) # (.

108

9.A Markov Chains and Markov Decision Processes

Observe that any Markov chain M can be seen as an MDP by associating each state s
with a singleton set Act(s). The other way round, an MDP can be seen as a Markov chain,
if Act(s) is a singleton set for all states s. Further, we can resolve the nondeterminism
introduced through the actions by a strategy that resolves the nondeterministic choice:

Proposition 9.5 (|[BK08|). Let M = (S, Act, P, tinis, Ap, L) be a finite MDP. A strategy
for M is a function & : ST — Act such that &(sos1 ... 8,) € Act(sy) for all sos1...5, €
S*t. The strategy & induces a Markov chain Mg = (ST, Ps, tinit, Ap, L') where for
p = 5081 . ..Sn we define:

Pa(p, psni1) = Plsn, &(p)sue1) and L'(p) = L(sy)
A finite-memory strategy & for M is a tuple S = (Q, act, A, start) where
- Q is a finite set of states,
- A:Q xS = Q is a transition function,

- act: Q x S — Act is a function that selects an action act(q,s) € Act(s) for any
state ¢ € Q and state s € S,

- and start: S — Q is a function that selects a starting state for state s € S.
For a finite-memory strategy & the induced Markov chain Mg is finite.

Proposition 9.6 ([BKO08|). Let M = (S, Act, P, tinit, Ap, L) be a finite MDP, and let
B C S be a set of states. There exists a finite-memory strategy & such that for any
seS:

Pro(s =) = supPr (s =)

Definition 9.7 (|[BKO08|). Let M = (S, Act, P, tinit, Ap, L) be a finite MDP, and let
D = (Q,6,q0,) be a DRA over the alphabet 247. The product MDP is defined as:

M@D:=(S%xQ,Act,P' 1, Q, L")
where we define for all states (s,q),(s',q') € S x Q, and actions o € Act:

P(S’ a, 8/) if q/ = 6(% L(‘S/))

0 otherwise

- P (<37Q>7a7 <S,7q,>) = {

— s ((s,q)) = {Lmit@) if ¢ = 9(qo, L(s))

0 otherwise

- L'({s,q9)) = {q}

109

10 Concluding Remarks

The Master Theorem we presented provides a decomposition of LTL formulas from which
one can derive LTL translations in a straight-forward way. This result builds upon work
from a series of publications [KE12; KL13; EK14; EKS16; SEJK16]. In particular,
the idea that a word eventually stabilises with respect to a formula and the idea of
inductively checking complex LTL expression by delegating to auxiliary automata are
already outlined there. Other translations such as the translation to LDBAs of [KV15;
KV17] or the obligation sets of [LPZ+13; LZZ+18| follow similar ideas.

The Master Theorem is made possible by the addition of the operators W and M to
the core LTL syntax which makes it complete in the sense that for every modal operator
there exits a weak and strong variant. The essential novelty is that the mappings -[-],
and -[-], exploit the existence of these variants and that applying these mappings to an
arbitrary formula ¢ yield a simpler formula, but not in the sense one might expect. In
particular, ¢[Y], might be stronger than ¢. For example, the information that, say, the
formula aWb does not hold infinitely often reduces to a check of the stronger formula
aUb = (aWb)[0],. However, this lends the Master Theorem its practical benefit: The
formulas ¢[X], and ¢[Y], are simpler to translate. This completeness of the syntax is
the basis of the symmetric treatment of modal operators, where we deal with greatest-
and least-fixed-point operators in a dual way. Such a symmetric treatment of greatest-
and least-fixed-point operators is present in [KE12; KL13|, but could only be applied to
F and G operators. In some sense the result presented in this dissertation successfully
finishes the journey started in [KE12]: a single theorem provides an arguably elegant
(unified, symmetric, syntax-independent, not overly complex) and efficient (asymptotic-
ally optimal, practically relevant, direct) translation of LTL into an w-automaton of your
choice.

Open Questions and Future Work. We focussed in this dissertation on three classes
of automata, namely NBAs, LDBAs, and DRAs, and did not investigate other classes.
Consequently, the obvious follow-up questions are how constructions for other classes
would be defined. It is open if we can obtain a (direct) translation to deterministic
parity automata using techniques of [EKRS17| or [L6d99] that is better than chaining the
involved construction. Further, a translation to non-deterministic Emerson-Lei (NELA)
or Rabin automata (NRA) could be of interest, since a translation to NRAs or NELAs is
able to save states compared to NBA constructions. For example the formula FGa can
be translated to a single-state NRA with transition-acceptance, but the smallest NBA
with transition-acceptance for that formula has two states.

Furthermore, one could look deeper into the finer details of the congruences used. It
seems to be interesting to search for another suitable and practical equivalence relation
between ~, and ~; and for an equivalence relation between ~. and ~, that yields a
finite state space and is significantly simpler to compute than ~,. Moreover, we think a
further investigation of the results from Chapter 8 could lead to more restrictive version

111

10 Concluding Remarks

of the Master Theorem, in the form of revised Proposition 4.18. Further, The presented
constructions have a highly regular structure compared to the DRAs obtained through
determinisation constructions, such as Safra’s or similar constructions, and thus we be-
lieve that the translations to LDBAs and DRAs are a perfect fit for a representation as
symbolic automata and a symbolic translation.

Finally, we think other applications of the decomposition provided by the Master
Theorem could be:

— Bounded-Alternation Normal-Form for Linear Temporal Logic

Let us consider the following normal-form where each formula is a Boolean combin-
ation of modal operators with at most one alternation of the fixed-point operator
types whit-in their scope, i.e. every path starting a the root of the syntax tree
can be split into two segments such that in one only greatest-fixed-point operators
are present and in the other only least-fixed-point operators are present. We be-
lieve that such a normal-form can be obtained through the Master Theorem and
indeed (2) and (3) already have the necessary shape and only (1) needs a bit of
extra work. Further, we think that such a normal-form can be obtained by mere
syntactic rewriting.

— Intuitive Explanations for Linear Temporal Logic on Lasso Words

The challenges applying formal methods in an industrial context are often underes-
timated. In particular, explaining findings to the user poses an immense challenge.
Consider for example that it might not be obvious why a counter-example (repres-
ented as a lasso word w = wv®) violates the given specification. The approach of
[BBT18] proposes the use of proof-trees for a step-by-step analysis of the problem
by the user. We think that extending this approach by clearly separating the origin
of the problem could help the user: Does the violation of the property occur in the
finite part u? Are my assumptions about the recurring infinite behaviour correct?
Is the problem in the infinite loop? Notice that the Master Theorem provides an-
swers to this, since we can simplify if the shape of w is uv“. The index i from the
Master Theorem can be set to a fixed value depending on the length of uv and
X,Y can be computed recursively on the lasso v. We believe that in combination
with [BBT18| we can provide intuitive and helpful explanations.

While this dissertation spent a considerable amount of space to identify optimisations
to the proposed constructions, it should not to be forgotten that the Master Theorem
is a blue-print for decomposing LTL formulas, giving a common and unified basis for
translations to automata. Consequently, one can easily customise existing translations
or even devise new translations for a specific use from it. Moreover, we see opportunities
for using the Master Theorem besides the translation of LTL to automata and are looking
forward to explore these ideas.

112

Bibliography

|ALO4|

[Ant96]

[BBD+13]

[BBD+15]

[BBF+12)

[BBKS13]

[BBT18)]

IBDK +17]

[BKOS]

[BKK+16]

[BKRS12|

[Brz64]

Rajeev Alur and Salvatore La Torre. ‘Deterministic generators and games
for LTL fragments’. In: ACM Trans. Comput. Log. 5.1 (2004), pp. 1-25.
DOI: 10.1145/963927.963928.

Valentin M. Antimirov. ‘Partial Derivatives of Regular Expressions and
Finite Automaton Constructions’. In: Theor. Comput. Sci. 155.2 (1996),
pp- 291-319. DOI: 10.1016/0304-3975(95)00182-4.

Tomas Babiak, Thomas Badie, Alexandre Duret-Lutz, Mojmir Kfetinsky
and Jan Strejéek. ‘Compositional Approach to Suspension and Other Im-
provements to LTL Translation’. In: SPIN. 2013, pp. 81-98. por: 10.1007/
978-3-642-39176-7_6.

Tomas Babiak, Frantisek Blahoudek, Alexandre Duret-Lutz, Joachim Klein,
Jan Kfetinsky, David Miiller, David Parker and Jan Strejéek. ‘The Hanoi
Omega-Automata Format’. In: CAV. 2015, pp. 479-486. DOI: 10.1007/
978-3-319-21690-4_31.

Aaron Bohy, Véronique Bruyére, Emmanuel Filiot, Naiyong Jin and Jean-
Frangois Raskin. ‘Acacia+, a Tool for LTL Synthesis’. In: CAV. 2012,
pp. 652-657. DOIL: 10.1007/978-3-642-31424-7_45.

Tomas Babiak, Frantisek Blahoudek, Mojmir Kietinsky and Jan Strejcek.
‘Effective Translation of LTL to Deterministic Rabin Automata: Beyond
the (F, G)-Fragment’. In: AT'VA. 2013, pp. 24-39. DOI: 10.1007/978-3-
319-02444-8_4.

David A. Basin, Bhargav Nagaraja Bhatt and Dmitriy Traytel. ‘Optimal
Proofs for Linear Temporal Logic on Lasso Words’. In: AT'VA. 2018, pp. 37—
55. DOI: 10.1007/978-3-030-01090-4_3.

Frantisek Blahoudek, Alexandre Duret-Lutz, Mikulas Klokocka, Mojmir
Kfetinsky and Jan Strejcek. ‘Seminator: A Tool for Semi-Determinization
of Omega-Automata’. In: LPAR. Vol. 46. EPiC Series in Computing. Easy-
Chair, 2017, pp. 356-367.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
MIT Press, 2008.

Christel Baier, Stefan Kiefer, Joachim Klein, Sascha Kliippelholz, David
Miiller and James Worrell. ‘Markov Chains and Unambiguous Biichi Auto-
mata’. In: CAV. 2016, pp. 23-42. DOI: 10.1007/978-3-319-41528-4_2.
Tomas Babiak, Mojmir Kfetinsky, Vojtech Rehak and Jan Strejcek. ‘LTL
to Biichi Automata Translation: Fast and More Deterministic’. In: TACAS.
2012, pp. 95-109. pOI: 10.1007/978-3-642-28756-5_8.

Janusz A. Brzozowski. ‘Derivatives of Regular Expressions’. In: J. ACM
11.4 (1964), pp. 481-494. DOI: 10.1145/321239.321249.

113

https://doi.org/10.1145/963927.963928
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1007/978-3-642-39176-7_6
https://doi.org/10.1007/978-3-642-39176-7_6
https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/978-3-319-02444-8_4
https://doi.org/10.1007/978-3-319-02444-8_4
https://doi.org/10.1007/978-3-030-01090-4_3
https://doi.org/10.1007/978-3-319-41528-4_2
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1145/321239.321249

Bibliography

[Biic60]

[Biic66]

[CES1]

|CGK13]

[Chub7|

[CHVB18]

[Cou99|

[CY95]

[DACOS)

[DGV99)

[DLF+16]

[EC82]

[EHOO]
[Ehl11]

[EK14]

114

J.R. Biichi. ‘Weak second-order arithmetic and finite automata.” In: Z.
Math. Logik Grundlagen Math. 6 (1960).

J. Richard Biichi. ‘Symposium on Decision Problems: On a Decision Method
in Restricted Second Order Arithmetic’. In: Logic, Methodology and Philo-
sophy of Science. Vol. 44. Studies in Logic and the Foundations of Math-
ematics. Elsevier, 1966, pp. 1-11. DOI: 10.1016/S0049-237X (09) 70564-6.

Edmund M. Clarke and E. Allen Emerson. ‘Design and Synthesis of Syn-
chronization Skeletons Using Branching-Time Temporal Logic’. In: Logics
of Programs. 1981, pp. 52-71. DOI: 10.1007/BFb0025774.

Krishnendu Chatterjee, Andreas Gaiser and Jan Kretinsky. ‘Automata
with Generalized Rabin Pairs for Probabilistic Model Checking and LTL
Synthesis’. In: CAV. 2013, pp. 559-575. DOI: 10.1007/978-3-642-39799-
8_37.

Alonzo Church. ‘Applications of recursive arithmetic to the problem of
circuit synthesis’. In: Summaries of the Summer Institute of Symbolic Logic
(1957).

Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith and Roderick
Bloem, eds. Handbook of Model Checking. Springer, 2018. po1: 10.1007/
978-3-319-10575-8.

Jean-Michel Couvreur. ‘On-the-Fly Verification of Linear Temporal Logic’.
In: FM. 1999, pp. 253-271. DOI: 10.1007/3-540-48119-2_16.

Costas Courcoubetis and Mihalis Yannakakis. ‘The Complexity of Probab-
ilistic Verification’. In: J. ACM 42.4 (1995), pp. 857-907. pOI: 10.1145/
210332.210339.

Matthew B. Dwyer, George S. Avrunin and James C. Corbett. ‘Property
specification patterns for finite-state verification’. In: FMSP. 1998, pp. 7—
15. DOI: 10.1145/298595.298598.

Marco Daniele, Fausto Giunchiglia and Moshe Y. Vardi. ‘Improved Auto-
mata Generation for Linear Temporal Logic’. In: CAV. 1999, pp. 249-260.
DOI: 10.1007/3-540-48683-6_23.

Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud
Michaud, Etienne Renault and Laurent Xu. ‘Spot 2.0 - A Framework for
LTL and w-Automata Manipulation’. In: ATVA. 2016, pp. 122-129. DOLI:
10.1007/978-3-319-46520-3_8.

E. Allen Emerson and Edmund M. Clarke. ‘Using Branching Time Tem-
poral Logic to Synthesize Synchronization Skeletons’. In: Sci. Comput.
Program. 2.3 (1982), pp. 241-266. DOI: 10.1016/0167-6423(83)90017-5.

Kousha Etessami and Gerard J. Holzmann. ‘Optimizing Biichi Automata’.
In: CONCUR. 2000, pp. 153-167. DOI: 10.1007/3-540-44618-4_13.

Riidiger Ehlers. ‘Unbeast: Symbolic Bounded Synthesis’. In: TACAS. 2011,
pp. 272-275. DOIL: 10.1007/978-3-642-19835-9_25.

Javier Esparza and Jan Kfetinsky. ‘From LTL to Deterministic Automata:
A Safraless Compositional Approach’. In: CAV. 2014, pp. 192-208. DOLI:
10.1007/978-3-319-08867-9_13.

https://doi.org/10.1016/S0049-237X(09)70564-6
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1007/978-3-642-39799-8_37
https://doi.org/10.1007/978-3-642-39799-8_37
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/3-540-48119-2_16
https://doi.org/10.1145/210332.210339
https://doi.org/10.1145/210332.210339
https://doi.org/10.1145/298595.298598
https://doi.org/10.1007/3-540-48683-6_23
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1007/3-540-44618-4_13
https://doi.org/10.1007/978-3-642-19835-9_25
https://doi.org/10.1007/978-3-319-08867-9_13

[EKRS17]

[EKS16]

[EKS18]

[Eme90]

[FFT17]

[FKVW15]

[Flo67]

[Fri03|

|GHO6]

[GLO2]

|GOO1]

|GPSSS0]

[GPVW95]

Bibliography

Javier Esparza, Jan Kietinsky, Jean-Francois Raskin and Salomon Sick-
ert. ‘From LTL and Limit-Deterministic Biichi Automata to Deterministic
Parity Automata’. In: TACAS. 2017, pp. 426-442. por: 10.1007/978-3-
662-54577-5_25.

Javier Esparza, Jan Kfetinsky and Salomon Sickert. ‘From LTL to determ-
inistic automata - A safraless compositional approach’. In: Formal Methods
in System Design 49.3 (2016), pp. 219-271. por: 10.1007/s10703-016-
0259-2.

Javier Esparza, Jan Kretinsky and Salomon Sickert. ‘One Theorem to Rule
Them All: A Unified Translation of LTL into w-Automata’. In: LICS. 2018,
pp. 384-393. DOI: 10.1145/3209108.3209161.

E. Allen Emerson. ‘Temporal and Modal Logic’. In: Handbook of Theor-
etical Computer Science, Volume B: Formal Models and Semantics. Ed.
by Jan van Leeuwen. Elsevier and MIT Press, 1990, pp. 995-1072. DOI:
10.1016/b978-0-444-88074-1.50021-4.

Peter Faymonville, Bernd Finkbeiner and Leander Tentrup. ‘BoSy: An
Experimentation Framework for Bounded Synthesis’. In: CAV (II). 2017,
pp. 325-332. DOI: 10.1007/978-3-319-63390-9_17.

Seth Fogarty, Orna Kupferman, Moshe Y. Vardi and Thomas Wilke. ‘Pro-
file trees for Biichi word automata, with application to determinization’.
In: Inf. Comput. 245 (2015), pp. 136-151. DOI: 10.1016/j.ic.2014.12.
021.

Robert W. Floyd. ‘Assigning meanings to programs’. In: Proc. Sympos.
Appl. Math., Vol. XIX. Amer. Math. Soc., Providence, R.I., 1967, pp. 19—
32.

Carsten Fritz. ‘Constructing Biichi Automata from Linear Temporal Logic
Using Simulation Relations for Alternating Biichi Automata’. In: CIAA.
2003, pp. 35-48. DOL: 10.1007/3-540-45089-0_5.

Jaco Geldenhuys and Henri Hansen. ‘Larger Automata and Less Work
for LTL Model Checking’. In: SPIN. 2006, pp. 53-70. por: 10. 1007 /
11691617_4.

Dimitra Giannakopoulou and Flavio Lerda. ‘From States to Transitions:
Improving Translation of LTL Formulae to Biichi Automata’. In: FORTE.
2002, pp. 308-326. DOI: 10.1007/3-540-36135-9_20.

Paul Gastin and Denis Oddoux. ‘Fast LTL to Biichi Automata Transla-
tion’. In: CAV. 2001, pp. 53-65. DOI: 10.1007/3-540-44585-4_6.

Dov Gabbay, Amir Pnueli, Saharon Shelah and Jonathan Stavi. ‘On the
Temporal Analysis of Fairness’. In: POPL. 1980, pp. 163-173. DOI: 10.
1145/567446.567462.

Rob Gerth, Doron A. Peled, Moshe Y. Vardi and Pierre Wolper. ‘Simple
on-the-fly automatic verification of linear temporal logic’. In: Protocol Spe-
cification, Testing and Verification XV, Proceedings of the Fifteenth IFIP
WG6.1 International Symposium on Protocol Specification, Testing and
Verification. 1995, pp. 3—18.

115

https://doi.org/10.1007/978-3-662-54577-5_25
https://doi.org/10.1007/978-3-662-54577-5_25
https://doi.org/10.1007/s10703-016-0259-2
https://doi.org/10.1007/s10703-016-0259-2
https://doi.org/10.1145/3209108.3209161
https://doi.org/10.1016/b978-0-444-88074-1.50021-4
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1016/j.ic.2014.12.021
https://doi.org/10.1016/j.ic.2014.12.021
https://doi.org/10.1007/3-540-45089-0_5
https://doi.org/10.1007/11691617_4
https://doi.org/10.1007/11691617_4
https://doi.org/10.1007/3-540-36135-9_20
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1145/567446.567462
https://doi.org/10.1145/567446.567462

Bibliography

[GTWO02]

[HLS+15|

[Hoa69|
[HPOG|

IKBOG|

IKE12]

[KJB13]

IKK14]

[KL13]

[Kle56]

[KMBK14]

[KMS18]

[KMSZ18]

[KMWW17]

[KNP11]

116

Erich Gradel, Wolfgang Thomas and Thomas Wilke, eds. Automata, Lo-
gics, and Infinite Games: A Guide to Current Research. 2002. DOI: 10 .
1007/3-540-36387-4.

Ernst Moritz Hahn, Guangyuan Li, Sven Schewe, Andrea Turrini and Lijun
Zhang. ‘Lazy Probabilistic Model Checking without Determinisation’. In:
CONCUR. 2015, pp. 354-367. DOL: 10.4230/LIPIcs.CONCUR.2015.354.

C. A. R. Hoare. ‘An Axiomatic Basis for Computer Programming’. In:
Commun. ACM 12.10 (1969), pp. 576-580. DOI: 10.1145/363235.363259.

Thomas A. Henzinger and Nir Piterman. ‘Solving Games Without De-
terminization’. In: CSL. 2006, pp. 395-410. DOI: 10.1007/11874683_26.

Joachim Klein and Christel Baier. ‘Experiments with deterministic w-
automata for formulas of linear temporal logic’. In: Theor. Comput. Sci.
363.2 (2006), pp. 182-195. DOI: 10.1016/j.tcs.2006.07.022.

Jan Kretinsky and Javier Esparza. ‘Deterministic Automata for the (F,G)-
Fragment of LTL’. In: CAV. 2012, pp. 7-22. DOI: 10.1007/978-3-642-
31424-7_7.

Ayrat Khalimov, Swen Jacobs and Roderick Bloem. ‘PARTY Parameter-
ized Synthesis of Token Rings’. In: CAV. 2013, pp. 928-933. DOI: 10.1007/
978-3-642-39799-8_66.

Zuzana Komarkova and Jan Kretinsky. ‘Rabinizer 3: Safraless Translation
of LTL to Small Deterministic Automata’. In: ATVA. 2014, pp. 235-241.
DOI: 10.1007/978-3-319-11936-6_17.

Jan Kfietinsky and Ruslan Ledesma-Garza. ‘Rabinizer 2: Small Determ-
inistic Automata for LTL \ GU’. In: ATVA. 2013, pp. 446-450. DOI: 10.
1007/978-3-319-02444-8_32.

S. C. Kleene. ‘Representation of Events in Nerve Nets and Finite Auto-
mata’. In: Automata Studies, Annals of Math. Studies 34. Ed. by C. Shan-
non and J. McCarthy. New Jersey, 1956.

Joachim Klein, David Miiller, Christel Baier and Sascha Kliippelholz. ‘Are
Good-for-Games Automata Good for Probabilistic Model Checking?’ In:
LATA. 2014, pp. 453-465. DOL: 10.1007/978-3-319-04921-2_37.

Jan Kretinsky, Tobias Meggendorfer and Salomon Sickert. ‘Owl: A Library
for w-Words, Automata, and LTL’. In: ATVA. 2018, pp. 543-550. DOLI:
10.1007/978-3-030-01090-4_34.

Jan Kfetinsky, Tobias Meggendorfer, Salomon Sickert and Christopher Zie-
gler. ‘Rabinizer 4: From LTL to Your Favourite Deterministic Automaton’.
In: CAV (I). 2018, pp. 567-577. DOI: 10.1007/978-3-319-96145-3_30.

Jan Kretinsky, Tobias Meggendorfer, Clara Waldmann and Maximilian
Weininger. ‘Index Appearance Record for Transforming Rabin Automata
into Parity Automata’. In: TACAS. 2017, pp. 443-460. DOI: 10.1007/978-
3-662-54577-5_26.

Marta Z. Kwiatkowska, Gethin Norman and David Parker. ‘PRISM 4.0:
Verification of Probabilistic Real-Time Systems’. In: CAV. 2011, pp. 585—
591. DOI: 10.1007/978-3-642-22110-1_47.

https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.4230/LIPIcs.CONCUR.2015.354
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/11874683_26
https://doi.org/10.1016/j.tcs.2006.07.022
https://doi.org/10.1007/978-3-642-31424-7_7
https://doi.org/10.1007/978-3-642-31424-7_7
https://doi.org/10.1007/978-3-642-39799-8_66
https://doi.org/10.1007/978-3-642-39799-8_66
https://doi.org/10.1007/978-3-319-11936-6_17
https://doi.org/10.1007/978-3-319-02444-8_32
https://doi.org/10.1007/978-3-319-02444-8_32
https://doi.org/10.1007/978-3-319-04921-2_37
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-319-96145-3_30
https://doi.org/10.1007/978-3-662-54577-5_26
https://doi.org/10.1007/978-3-662-54577-5_26
https://doi.org/10.1007/978-3-642-22110-1_47

[KPR9S|

[KPVO06|
[Kup12]

[KV01]

[KV15]

[KV17|

[KV98]

[KW0S]

[Lee90]

[LMS19]

[L&d99]

[LP19]

[LPZ+13]

[LZZ+18]

[McNG66|

Bibliography

Yonit Kesten, Amir Pnueli and Li-on Raviv. ‘Algorithmic Verification of
Linear Temporal Logic Specifications’. In: ICALP. 1998, pp. 1-16. DOLI:
10.1007/BFb0055036.

Orna Kupferman, Nir Piterman and Moshe Y. Vardi. ‘Safraless Composi-
tional Synthesis’. In: CAV. 2006, pp. 31-44. DOI: 10.1007/11817963_6.

Orna Kupferman. ‘Recent Challenges and Ideas in Temporal Synthesis’.
In: SOFSEM. 2012, pp. 88—98. DOI: 10.1007/978-3-642-27660-6_8.

Orna Kupferman and Moshe Y. Vardi. ‘Model Checking of Safety Proper-
ties’. In: Formal Methods in System Design 19.3 (2001), pp. 291-314. DOIL:
10.1023/A:1011254632723.

Dileep Kini and Mahesh Viswanathan. ‘Limit Deterministic and Prob-
abilistic Automata for LTL \ GU’. In: TACAS. 2015, pp. 628-642. DOLI:
10.1007/978-3-662-46681-0_57.

Dileep Kini and Mahesh Viswanathan. ‘Optimal Translation of LTL to
Limit Deterministic Automata’. In: TACAS. 2017, pp. 113-129. DOI: 10.
1007/978-3-662-54580-5_7.

Orna Kupferman and Moshe Y. Vardi. ‘Freedom, Weakness, and Determ-
inism: From Linear-Time to Branching-Time’. In: LICS. 1998, pp. 81-92.
DOI: 10.1109/LICS.1998.705645.

Detlef Kéahler and Thomas Wilke. ‘Complementation, Disambiguation,
and Determinization of Biichi Automata Unified’. In: ICALP (I). 2008,
pp- 724-735. DOIL: 10.1007/978-3-540-70575-8_59.

Jan van Leeuwen, ed. Handbook of Theoretical Computer Science, Volume
B: Formal Models and Semantics. Elsevier and MIT Press, 1990.

Michael Luttenberger, Philipp J. Meyer and Salomon Sickert. ‘Practical
Synthesis of Reactive Systems from LTL Specifications via Parity Games’.
In: CoRR abs/1903.12576 (2019). arXiv: 1903.12576.

Christof Léding. ‘Optimal Bounds for Transformations of w-Automata’.
In: FSTTCS. 1999, pp. 97-109. DOT: 10.1007/3-540-46691-6_8.

Christof Léding and Anton Pirogov. ‘Determinization of Biichi Automata:
Unifying the Approaches of Safra and Muller-Schupp’. In: ICALP. 2019,
120:1-120:13. por: 10.4230/LIPIcs.ICALP.2019.120.

Jianwen Li, Geguang Pu, Lijun Zhang, Zheng Wang, Jifeng He and Kim
Guldstrand Larsen. ‘On the Relationship between LTL Normal Forms and
Biichi Automata’. In: Theories of Programming and Formal Methods -
Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday. 2013,
pp. 256-270. DOIL: 10.1007/978-3-642-39698-4_16.

Jianwen Li, Lijun Zhang, Shufang Zhu, Geguang Pu, Moshe Y. Vardi and
Jifeng He. ‘An explicit transition system construction approach to LTL
satisfiability checking’. In: Formal Asp. Comput. 30.2 (2018), pp. 193-217.
DOI: 10.1007/s00165-017-0442-2.

Robert McNaughton. ‘Testing and Generating Infinite Sequences by a Fi-
nite Automaton’. In: Information and Control 9.5 (1966), pp. 521-530.
DOI: 10.1016/50019-9958(66)80013-X.

117

https://doi.org/10.1007/BFb0055036
https://doi.org/10.1007/11817963_6
https://doi.org/10.1007/978-3-642-27660-6_8
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1007/978-3-662-46681-0_57
https://doi.org/10.1007/978-3-662-54580-5_7
https://doi.org/10.1007/978-3-662-54580-5_7
https://doi.org/10.1109/LICS.1998.705645
https://doi.org/10.1007/978-3-540-70575-8_59
https://arxiv.org/abs/1903.12576
https://doi.org/10.1007/3-540-46691-6_8
https://doi.org/10.4230/LIPIcs.ICALP.2019.120
https://doi.org/10.1007/978-3-642-39698-4_16
https://doi.org/10.1007/s00165-017-0442-2
https://doi.org/10.1016/S0019-9958(66)80013-X

Bibliography

[MH84]

[ML16]

[MP90)

[MS08]

[MS17]

[MS95]

[MSL18]

[MSS88)|

[Par81]

[Pel07]

[Pit07]

[Pnu77]
[Pnu8l|
[PRRY]

[PZ08)]

118

Satoru Miyano and Takeshi Hayashi. ‘Alternating Finite Automata on
omega-Words’. In: Theor. Comput. Sci. 32 (1984), pp. 321-330. DOI: 10.
1016/0304-3975(84)90049-5.

Philipp J. Meyer and Michael Luttenberger. ‘Solving Mean-Payoff Games
on the GPU’. In: ATVA. 2016, pp. 262-267. DOI: 10.1007/978-3-319-
46520-3_17.

Zohar Manna and Amir Pnueli. ‘A Hierarchy of Temporal Properties’. In:
PODC. 1990, pp. 377-410. DOI: 10.1145/93385.93442.

Andreas Morgenstern and Klaus Schneider. ‘From LTL to Symbolically
Represented Deterministic Automata’. In: VMCAIL 2008, pp. 279-293.
DOI: 10.1007/978-3-540-78163-9_24.

David Miiller and Salomon Sickert. ‘LTL to Deterministic Emerson-Lei
Automata’. In: GandALF. 2017, pp. 180-194. DOI: 10.4204/EPTCS. 256.
13.

David E. Muller and Paul E. Schupp. ‘Simulating Alternating Tree Auto-
mata by Nondeterministic Automata: New Results and New Proofs of
the Theorems of Rabin, McNaughton and Safra’. In: Theor. Comput. Sci.
141.1&2 (1995), pp. 69-107. DOI: 10.1016/0304-3975(94)00214-4.

Philipp J. Meyer, Salomon Sickert and Michael Luttenberger. ‘Strix: Ex-
plicit Reactive Synthesis Strikes Back!” In: CAV (I). 2018, pp. 578-586.
DOI: 10.1007/978-3-319-96145-3_31.

David E. Muller, Ahmed Saoudi and Paul E. Schupp. ‘Weak Alternating
Automata Give a Simple Explanation of Why Most Temporal and Dy-
namic Logics are Decidable in Exponential Time’. In: LICS. 1988, pp. 422—
427. por: 10.1109/LICS.1988.5139.

David Michael Ritchie Park. ‘Concurrency and Automata on Infinite Se-
quences’. In: Theoretical Computer Science, 5th GI-Conference. 1981, pp. 167—
183. DOI: 10.1007/BFb0017309.

Radek Pelanek. ‘BEEM: Benchmarks for Explicit Model Checkers’. In:
SPIN. 2007, pp. 263-267. DOI: 10.1007/978-3-540-73370-6_17.

Nir Piterman. ‘From Nondeterministic Biichi and Streett Automata to
Deterministic Parity Automata’. In: Logical Methods in Computer Science
3.3 (2007). DOI: 10.2168/LMCS-3(3:5)2007.

Amir Pnueli. ‘The Temporal Logic of Programs’. In: FOCS. 1977, pp. 46—
57. DOI: 10.1109/SFCS.1977.32.

Amir Pnueli. ‘The Temporal Semantics of Concurrent Programs’. In: Theor.
Comput. Sci. 13 (1981), pp. 45-60. DOI: 10.1016/0304-3975(81)90110-9.

Amir Pnueli and Roni Rosner. ‘On the Synthesis of a Reactive Module’.
In: POPL. 1989, pp. 179-190. DOIL: 10.1145/75277.75293.

Amir Pnueli and Aleksandr Zaks. ‘On the Merits of Temporal Testers’. In:
25 Years of Model Checking - History, Achievements, Perspectives. 2008,
pp- 172-195. por: 10.1007/978-3-540-69850-0_11.

https://doi.org/10.1016/0304-3975(84)90049-5
https://doi.org/10.1016/0304-3975(84)90049-5
https://doi.org/10.1007/978-3-319-46520-3_17
https://doi.org/10.1007/978-3-319-46520-3_17
https://doi.org/10.1145/93385.93442
https://doi.org/10.1007/978-3-540-78163-9_24
https://doi.org/10.4204/EPTCS.256.13
https://doi.org/10.4204/EPTCS.256.13
https://doi.org/10.1016/0304-3975(94)00214-4
https://doi.org/10.1007/978-3-319-96145-3_31
https://doi.org/10.1109/LICS.1988.5139
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.2168/LMCS-3(3:5)2007
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1016/0304-3975(81)90110-9
https://doi.org/10.1145/75277.75293
https://doi.org/10.1007/978-3-540-69850-0_11

[Red12]

[Red99]

[Saf88]
[SBOO]

[SchO1]

[Sch09)]

[SEJK16]

[Sic16]
[Sis94]

[SK16]

[ST18]

[TRV12)

[TS15]

[Tur37]

[Var85]

[Var94|

Bibliography

Roman R. Redziejowski. ‘An Improved Construction of Deterministic w-
automaton Using Derivatives’. In: Fundam. Inform. 119.3-4 (2012), pp. 393—
406. DOI: 10.3233/FI-2012-744.

Roman R. Redziejowski. ‘Construction of a deterministic w-automaton
using derivatives’. In: ITA 33.2 (1999), pp. 133-158. DOI: 10.1051/ita:
1999111.

Shmuel Safra. ‘On the Complexity of omega-Automata’. In: FOCS. 1988,
pp. 319-327. DOI: 10.1109/SFCS.1988.21948.

Fabio Somenzi and Roderick Bloem. ‘Efficient Biichi Automata from LTL
Formulae’. In: CAV. 2000, pp. 248-263. DOI: 10.1007/10722167_21.

Klaus Schneider. ‘Improving Automata Generation for Linear Temporal
Logic by Considering the Automaton Hierarchy’. In: LPAR. 2001, pp. 39—
54. DOI: 10.1007/3-540-45653-8_3.

Sven Schewe. ‘Tighter Bounds for the Determinisation of Biichi Auto-
mata’. In: FoSSaCS. 2009, pp. 167-181. DOI: 10.1007/978-3-642-00596-
1_13.

Salomon Sickert, Javier Esparza, Stefan Jaax and Jan Kfietinsky. ‘Limit-
Deterministic Biichi Automata for Linear Temporal Logic’. In: CAV. 2016,
pp- 312-332. DOI: 10.1007/978-3-319-41540-6_17.

Salomon Sickert. ‘Linear Temporal Logic’. In: Archive of Formal Proofs
(2016).

A. Prasad Sistla. ‘Safety, Liveness and Fairness in Temporal Logic’. In:
Formal Asp. Comput. 6.5 (1994), pp. 495-512. DOI: 10.1007/BF01211865.

Salomon Sickert and Jan Kretinsky. ‘MoChiBA: Probabilistic LTL Model
Checking Using Limit-Deterministic Biichi Automata’. In: ATVA. 2016,
pp. 130-137. DOI: 10.1007/978-3-319-46520-3_9.

Martin Sulzmann and Peter Thiemann. ‘LTL Semantic Tableaux and Al-
ternating w-automata via Linear Factors’. In: ICTAC. 2018, pp. 11-34.
DOI: 10.1007/978-3-030-02508-3_2.

Deian Tabakov, Kristin Y. Rozier and Moshe Y. Vardi. ‘Optimized tem-
poral monitors for SystemC’. In: Formal Methods in System Design 41.3
(2012), pp. 236-268. DOIL: 10.1007/510703-011-0139-8.

Peter Thiemann and Martin Sulzmann. ‘From w-Regular Expressions to
Biichi Automata via Partial Derivatives’. In: LATA. 2015, pp. 287—298.
DOI: 10.1007/978-3-319-15579-1_22.

A. M. Turing. ‘On Computable Numbers, with an Application to the
Entscheidungsproblem’. In: Proceedings of the London Mathematical Soci-
ety s2-42.1 (Jan. 1937), pp. 230-265. DOI: 10.1112/plms/s2-42.1.230.

Moshe Y. Vardi. ‘Automatic Verification of Probabilistic Concurrent Finite-
State Programs’. In: FOCS. 1985, pp. 327-338. DOIL: 10.1109/SFCS.1985.
12.

Moshe Y. Vardi. ‘Nontraditional Applications of Automata Theory’. In:
TACS. 1994, pp. 575-597. DOL: 10.1007/3-540-57887-0_116.

119

https://doi.org/10.3233/FI-2012-744
https://doi.org/10.1051/ita:1999111
https://doi.org/10.1051/ita:1999111
https://doi.org/10.1109/SFCS.1988.21948
https://doi.org/10.1007/10722167_21
https://doi.org/10.1007/3-540-45653-8_3
https://doi.org/10.1007/978-3-642-00596-1_13
https://doi.org/10.1007/978-3-642-00596-1_13
https://doi.org/10.1007/978-3-319-41540-6_17
https://doi.org/10.1007/BF01211865
https://doi.org/10.1007/978-3-319-46520-3_9
https://doi.org/10.1007/978-3-030-02508-3_2
https://doi.org/10.1007/s10703-011-0139-8
https://doi.org/10.1007/978-3-319-15579-1_22
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1109/SFCS.1985.12
https://doi.org/10.1109/SFCS.1985.12
https://doi.org/10.1007/3-540-57887-0_116

Bibliography

[VW86a|

[VW86b]

[WVSS83|

120

Moshe Y. Vardi and Pierre Wolper. ‘An Automata-Theoretic Approach to
Automatic Program Verification (Preliminary Report)’. In: LICS. 1986,
pp- 332-344.

Moshe Y. Vardi and Pierre Wolper. ‘Automata-Theoretic Techniques for
Modal Logics of Programs’. In: J. Comput. Syst. Sci. 32.2 (1986), pp. 183—
221. DOI: 10.1016/0022-0000(86)90026-7.

Pierre Wolper, Moshe Y. Vardi and A. Prasad Sistla. ‘Reasoning about
Infinite Computation Paths (Extended Abstract)’. In: FOCS. IEEE Com-
puter Society, 1983, pp. 185-194. DOI: 10.1109/SFCS.1983.51.

https://doi.org/10.1016/0022-0000(86)90026-7
https://doi.org/10.1109/SFCS.1983.51

	Abstract
	Zusammenfassung
	Preface
	Contents
	1 Introduction
	1.1 A Short History of LTL Translations
	1.2 A Unified Translation of LTL to -Automata
	1.3 Structure of the Thesis
	1.4 Preceding Publications

	2 Preliminaries
	2.1 -Languages and -Automata
	2.1.1 Boolean Operations
	2.1.2 Visual Representation

	2.2 Linear Temporal Logic
	2.2.1 Propositional Semantics
	2.2.2 Notable Fragments: LTL, LTL, GF(LTL), and FG(LTL)

	3 The "after"-Function
	3.1 Definition and Properties
	3.2 af-Congruences
	3.3 Logical Characterisations of LTL, LTL, GF(LTL), and FG(LTL)

	4 The Master Theorem
	4.1 - and -Stability
	4.2 The Formulas [X] and [Y]
	4.3 Utilising [X] and [Y]
	4.4 Checking X GF and Y FG
	4.5 The Master Theorem: Logical Characterisation of LTL
	4.6 Variants of the Master Theorem
	4.6.1 Restricted Guessing
	4.6.2 Asymmetric Master Theorem

	4.A Omitted Proofs

	5 DRA Constructions
	5.1 DRAs for LTL, LTL, GF(LTL), and FG(LTL)
	5.2 DRAs for Arbitrary LTL Formulas

	6 NBA and LDBA Constructions
	6.1 LDBAs for Arbitrary LTL Formulas
	6.2 NBAs for LTL, LTL, GF(LTL), and FG(LTL)
	6.2.1 Disjunctive Normal Form
	6.2.2 Disjunctive af
	6.2.3 Automata Constructions

	6.3 NBAs for Arbitrary LTL Formulas
	6.A Omitted Proofs

	7 Optimisations of the Constructions
	7.1 Restricted Guessing
	7.2 Transition-Based Acceptance
	7.2.1 Deterministic Automata
	7.2.2 Nondeterministic Automata

	7.3 Specialised Intersection Constructions
	7.3.1 Generalised Büchi Acceptance
	7.3.2 Interleaving
	7.3.3 Formula Rewriting
	7.3.4 Complexity Analysis

	7.4 Augmented Propositional Equivalence
	7.5 Various Optimisations
	7.5.1 DRA Construction
	7.5.2 NBA Construction

	7.A Omitted Proofs

	8 Experimental Evaluation
	8.1 Method
	8.2 Results
	8.3 Discussion
	8.A Omitted Results

	9 Applications
	9.1 Probabilistic Model Checking
	9.2 Synthesis of Reactive Systems
	9.A Markov Chains and Markov Decision Processes

	10 Concluding Remarks
	Bibliography

