
Partial Order Reduction for Verification

of Timed Systems

Marius Minea

December 1999
CMU-CS-00-102

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee
Edmund M. Clarke, Chair

Randal E. Bryant
Jeannette M. Wing

Doron Peled, Bell Laboratories

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

c©1999 Marius Minea

This research is sponsored by the Semiconductor Research Corporation (SRC) under
agreements through Contract No. 99-TJ-684, the National Science Foundation (NSF) un-
der Grant Nos. CCR-9505472 and CCR-9803774, and the Defense Advanced Research
Projects Agency (DARPA) under Contract No. DABT63-96-C-0071. Any opinions, find-
ings, conclusions or recommendations expressed in this material are those of the author
and do not necessarily reflect the views of SRC, NSF, DARPA, or the United States
Government.

Keywords: formal verification, model checking, partial order reduction,
timed systems

Abstract

This dissertation presents solutions for the application of partial order meth-
ods to the verification of timed systems, with the purpose of reducing the
size of the explored state space.
Timed systems, which rely on timing information to operate correctly, pose
special difficulties for automatic verification. Not only does the size of their
state space grow exponentially with the number of components, as in any
concurrent system, but some of the history of past transitions becomes part
of the timed state. This hinders the use of partial order reduction, a technique
which is applicable if different transition interleavings lead to the same state.
We have given a partial order reduction algorithm for systems described as
networks of timed automata, which preserves formulas in a timed extension
of linear temporal logic. The algorithm is based on a modified local-time
semantics, which allows individual automata to execute independently except
for synchronization transitions.
More generally, we have investigated the application of partial order reduc-
tion in a continuous-time model whose semantics is defined in terms of timed
traces. We show how to separate the causal dependence of transitions from
their time ordering due to concurrency and how this leads to the applica-
tion of partial order reduction. As particular instances of this framework we
obtain improved algorithms for timed event/level structures and time Petri
nets, as well as our algorithm for timed automata.
We have evaluated the performance of our partial order reduction approach
on several timed automata benchmarks. The resulting reduction in state
space stems from two sources: the local-time model reduces the number of
generated time regions, while the partial order techniques applied from the
domain of untimed systems reduce the explored control state space.

Acknowledgements

I was fortunate and privileged to have Ed Clarke as my advisor. He shaped my
path to research by guiding me with his extensive knowledge, and at the same
time opened up doors so I could gain from the expertise of others. He has shown
enthusiasm for my progress and support when I was struggling, and it was Ed who
suggested this thesis topic, at a time when I had long been searching for one.

I owe a lot of gratitude to my thesis committee for their advice and patient
reading of my thesis. Doron Peled provided me with a lot of detailed research
expertise, and friendly but sternly brought me back on track when I was losing
focus. Jeannette Wing gave me insightful critical advice, both in overview and in
detail; meetings with her were always extremely stimulating. Randy Bryant has
been a model for solid, successful research, and it was always reassuring to hear
from him that I was on the right track.

This work would not have been possible without the environment in CMU’s
Computer Science department, with stimulating top-notch research, and at the
same time an atmosphere that I can hardly imagine friendlier. Thanks to everyone,
from Sharon to facilities, for doing everything in their power so we would feel well
here and give our best. And thanks to the virtual community of zephyr++.

My introduction to partial order methods came at Bell Laboratories where I
had a very productive summer working with Bob Kurshan, Vladimir Levin, Doron
Peled and Hüsnü Yenigün. I was kindly invited to Uppsala by Wang Yi, where
I benefitted from talks with Bengt Jonsson and Johan Bengtsson, among others.
At VERIMAG Grenoble I had insightful discussions with Joseph Sifakis, Stavros
Tripakis and Sergio Yovine.

Over the years, I’ve enjoyed working with many members of the model checking
group: Somesh, Xudong, Will, Vicky, Sergey and Yuan. I’ve had some of the best
time working with Sérgio Campos: it is with him that I started to work on real-time
systems, and both work and friendship have continued after his graduation.

Thanks to all my friends who shared my life away from work during these years.
To Dan, forever joyful and supportive, for everything. To Mihai and Raluca, for
the wonderful musical evenings at their place, and also, together with Ciprian, Ion
and Cristi, for making me feel closer to home. To my longtime officemates, Bruce
and Ralph, and later C.K., for making life between the concrete windowless walls
of Wean Hall not only endurable, but enjoyable. To Andrei and Dave, for the
joy of climbing, and to the volleyball group for a welcome weekly respite and for
friends like Darrell, Dushyanth and Edwin.

Finally, and most importantly, thanks to my parents, to whom I owe what

I am, who encouraged and supported me all these years, and who accepted the

hardships of being far away so that I could see this through.

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Thesis Approach and Contributions 5
1.3 Related Work . 6

1.3.1 Continuous and Discrete Time 6
1.3.2 Other Partial Order Approaches 8
1.3.3 Other Approaches to State Space Explosion 9

1.4 Outline . 12

2 Partial Order Reduction 13
2.1 Introduction . 13
2.2 Basic Notions . 15
2.3 Principles of Partial Order Reduction 18
2.4 Conditions for Partial Order Reduction 21
2.5 A Proof for Partial Order Reduction 25
2.6 Calculating Ample Sets . 28
2.7 Other Partial Order Reduction Methods 32
2.8 Static Partial Order Reduction 34

2.8.1 A Modified Cycle Closing Condition 36
2.8.2 Determining Sticky Transitions 38
2.8.3 Experimental Evaluation 40

3 Partial Order Reduction for Timed Automata 43
3.1 Introduction . 43
3.2 Timed Automata . 44

3.2.1 Definition . 44
3.2.2 Semantics . 46

3.3 The model checking problem 48

1

3.3.1 Effect of transition interleavings 50
3.4 Related Work . 51
3.5 A local time model . 54
3.6 The local-time zone automaton 58

3.6.1 Representation of local-time zones 59
3.7 Preservation of LTL∆ formulas 63
3.8 Building a finite model . 68
3.9 Partial order reduction . 70
3.10 Summary . 72

4 Reduction for Other Timed Models 73
4.1 Partial Order Reduction for the Region Graph Automaton . . 73
4.2 Partial Order Reduction

for Timed Event/Level Structures 77
4.2.1 Timed Event/Level Structures 77
4.2.2 State Space Exploration Using POSETs 78
4.2.3 An Improved Algorithm for TEL Structures 83

5 A Partial Order Reduction Framework for Timed Systems 88
5.1 Background and Motivation 88
5.2 Timed Structures and Traces 90
5.3 A Relaxed Timing Semantics 91

5.3.1 Preliminaries . 91
5.3.2 Traces with relaxed timing 93
5.3.3 Enforcing timing conditions 96
5.3.4 Exploration based on timed regions 98

5.4 Partial Order Reduction . 99
5.5 Discussion . 100

6 Experimental Results 103
6.1 Implementation . 103
6.2 Parameterized Benchmarks . 105
6.3 Case Studies of Timed Systems 107

7 Conclusions 111

2

Chapter 1

Introduction

1.1 Motivation

A significant part of today’s computer-related systems are time-critical. They
may rely on timing information to operate correctly, or their specifications
may require that certain actions be executed within given time limits. Exam-
ples of such systems are timed asynchronous circuits, network or communica-
tion protocols, and industrial controllers. Failure to satisfy these properties
may result in malfunction, system shutdown, significant financial costs, or
even risk to humans. It is therefore imperative that correctness of these
applications is guaranteed under all possible circumstances.

Moreover, the development of techniques that assist this correctness goal
can stimulate the use of designs that offer increased efficiency, but whose
behavior is more difficult to analyze. Such is the case, for example, with
asynchronous circuits which can achieve significant performance gains while
dispensing with some of the limitations of designs based on a synchronous
clock.

At the same time, timed systems often lack in robustness (a small change
in timing can result in a significant change in behavior), and their analysis
can be very complex, since they have a large family of possible executions.
The latter reason makes traditional methods such as testing and simulation
even less likely to deliver exhaustive correctness results than in the case of
untimed systems. In fact, with a dense view of time, the family of behaviors
for a timed system can be infinite.

3

Formal verification techniques approach the correctness problem by prov-
ing using mathematical formalisms that a system model satisfies its specifi-
cation under all possible circumstances. Within this category, model check-
ing [CE81] has emerged as a very successful technique, with the benefit that
it is completely automatic. However, its application to even larger and more
complex systems is limited by the so-called state space explosion problem:
for many types of systems, the number of possible states grows exponentially
with the number of component parts. This quickly leads to models whose
size exceeds the current capabilities of verification tools. For real-time sys-
tems, the space explosion problem is even more limiting, and is caused by
two different factors: complexity in the control space and complexity due to
the timing associated with the system.

To illustrate more precisely the causes of state space explosion in the case
of timed systems, consider a typical state exploration algorithm. A complete
state space search has to consider all transitions which could be executed
first from a given state, in order to generate all possible interleavings. In
an untimed concurrent system, this leads to a number of interleavings (and
explored states) which is exponential in the number of concurrent compo-
nents. In a timed system, the firing times of transitions become part of the
state space, since the future behavior of the system typically depends on the
relationship between them. This has two consequences. First, more informa-
tion is usually needed to describe a timed state, resulting in a higher amount
of memory used. Second, two transitions leading to the same state in the
underlying untimed control structure will generally lead to different timed
states, since the ordering of transitions is incorporated in the timed space.

Partial order reduction (e.g., [God90, Pel93, Val90]) is a well-established
method to reduce the complexity of state space exploration in systems con-
sisting of several parallel components. It explores a restricted number of
interleavings for independent concurrent transitions, while preserving the
verified property in the reduced model. This aspect makes it a very good
candidate for containing the state space explosion in timed systems. However,
partial order reduction considers two transition interleavings to be equivalent
only if they lead to the same state. Thus, for timed systems, the encoding of
transition ordering as part of the state, besides being one of the main causes
of complexity also prohibits the direct application of partial order reduction.
It is precisely this issue that we propose to address.

4

1.2 Thesis Approach and Contributions

This dissertation presents solutions for the application of partial order meth-
ods to the verification of various models of timed systems, with the purpose
of reducing the size of the explored state space.

The general approach followed is to define an alternate semantics for the
timed model under investigation, in which causal dependence of transitions
is separated from time ordering due to concurrency. This relaxed timing se-
mantics is characterized by a richer set of behaviors. Whereas the standard
semantics requires successive transitions to occur in a sequence of mono-
tonically increasing timepoints, in the new semantics some transitions can
be explored in an order which may be different from the original ordering
of their execution times. However, the behaviors of the new model are re-
stricted in such a way as to preserve the truth value of the specification. We
chiefly work in the context of specifications expressed in timed extensions of
next-time free linear temporal logic.

Performing the state space search using the modified semantics instead
of the original one can be advantageous because the relaxed time ordering
condition on transitions leads to the generation of fewer timed states. A
timed state no longer needs to encode the total order of transitions leading
to it, but merely a partial order representing causality. At the same time,
the commutativity of transitions which are independent in the underlying
untimed system is restored. This allows partial order reduction to be applied,
potentially leading to a yet smaller system model, this time due to a decrease
in the number of control states.

The main contributions presented in this dissertation are:

• A method for the application of partial order reduction to networks of
timed automata, based on a local-time model. In particular, we show
how to effectively search the state space of the system using a local-
time model, how to perform verification for a timed extension of linear
temporal logic, and we give conditions for the selection of a reduced set
of transitions during exploration. Our experimental results show that
using a local-time model for exploration leads to a significant reduction
in the number of timed regions, while partial order reduction results in
a further reduction of the control state space.

• A general formalism for the application of partial order reduction for
a class of continuous-time systems. We define a general timed model,

5

and a semantics based on execution traces which separates the issues
of transition causality from the ordering of their timestamps. We then
show how our semantics naturally allows the application of partial order
reduction and present an algorithm that performs a reduced state space
search on a model based on timed regions.

• An algorithm that applies partial order reduction to the exploration
of timed event/level structures, used in the modeling of asynchronous
circuits. Compared to the original algorithm which focuses on exploring
fewer timing regions, the new algorithm also reduces the number of
control states.

• A technique to apply partial order reduction statically at the time of
model construction. This represents joint work, presented in [KLM+98].
The method permits reduction to be separated from the model checking
algorithm and combined with other verification techniques, in particu-
lar with symbolic model checking.

• A proof for the correctness of partial order reduction with ample sets
using a weaker condition for independence between transitions.

1.3 Related Work

We present a brief selective overview of relevant related research in the veri-
fication of timed systems, first discussing various models, and then previous
work on applying partial order reduction to this domain.

1.3.1 Continuous and Discrete Time

To formalize the notion of time, two main directions have been pursued in
the literature. One of them considers a dense (continuous) model of time,
equating time with the set of real numbers R. In this model, an event (or
a transition) can occur at an arbitrary time point on the real scale. On the
other hand, the discrete model of time allows transitions to occur only at
discrete time quantums, modeling time using the set of integer numbers Z.
Throughout the history of verification for timed systems, the relative merits
of the two approaches have been compared and debated [AH91, HMP92].

6

A comparison of the two models can be made in terms of both expressivity
and efficiency. The continuous time model is strictly more expressive than
the one employing discrete time. Intuitively, continuous time can model
delays that are arbitrarily small. When modeling a system using the dense
time paradigm, one does not have to assume that the granularity of the
clock is appropriate for modeling all system behaviors. Furthermore, when
composing two discrete-time systems, one has to match the granularity of
the two clocks, an issue which does not occur with continuous time.

However, for some classes of timed systems, certain properties are pre-
served by discretization. Henzinger, Manna and Pnueli [HMP92] discuss
timed transition systems, i.e., state-transition graphs augmented with upper
and lower integer time bounds on transitions. They show that all qualitative
(or time-independent) properties, and some common quantitative properties
such as time-bounded invariance and time-bounded response are preserved
by a discrete-time semantics. Furthermore, if a property expressed in a cer-
tain timed logic holds in the continuous-time semantics, a weaker, derived
property is guaranteed to hold in discrete time.

On the other hand, there exist systems and properties which are not
preserved if a discrete-time model is used instead of continuous time. An
analysis for combinational circuits is given in [AMP98]. Again, the timing
constraints are expressed as bounded delays which are imposed on the output
of each gate. It is shown that for acyclic circuits, a discretization quantum
can be found such that qualitative behavior (i.e., event ordering) is preserved.
In these cases, a time quantum of 1/n, where n is the number of signals in the
circuit, is sufficient. However, there exist cyclic circuits whose continuous-
time qualitative behavior is not preserved by any discretization.

From an efficiency point of view, both discrete- and continuous-time mod-
els have their individual advantages and disadvantages, although in general,
practical results for discrete-time models have been better, as reported for
instance in [BMT99]. Discrete-time techniques allow efficient representation
techniques from the untimed domain to be used, such as binary decision dia-
grams [Bry86]. However, discrete time does not constitute an unconditional
improvement. Modeling a system in discrete time can already result in a
more complex model than by using a continuous-time semantics. Moreover,
discrete-time techniques tend to be more sensitive to the size of the constants
appearing in the model descriptions, and large constants can result in state
space explosion.

7

1.3.2 Other Partial Order Approaches

We discuss three of the most common models that have been used for the
description and verification of timed systems: timed automata, time Petri
nets and timed event/level structures, and the related work that has been
carried out to apply partial order reduction to these models.

The first partial order reduction procedure for a timed model seems to
have been presented in the context of time Petri nets by Yoneda, Schlingloff
et al. [YSSC93, YS97]. Their model is an extension of Petri nets in which
upper and lower time bounds may be placed on transitions [MF76]. Because
of their restricted timing conditions, time Petri nets are less expressive than
timed automata. On the other hand, converting a Petri net into a timed
automaton can potentially involve an exponential increase in the size of the
model. Hence, verification algorithms for time Petri nets are not subsumed
directly by those for timed automata. Yoneda and Schlingloff prove a partial
order reduction algorithm that preserves properties in a timed extension of
next-time free LTL. The fundamental idea of their approach is that only
transitions from the reduced set chosen for exploration need to be interleaved
in all possible time orderings. In Chapter 5 we show how this idea can
be generalized, and the required condition can be weakened. Sloan and
Buy [SB96, SB97] give a procedure similar to [YS97] for a more restrictive
model of simple time Petri nets, in which each transition has a static delay.
Lilius [Lil98] suggests an improvement that does not store the firing sequence
of transitions as part of a timed state, but can only applied to analyzing
reachability of place markings.

Timed automata [AD90, ACD90] are finite-state automata augmented
with a set of real-valued clocks that evolve at the same rate. Their transitions
are guarded by constraints on clocks or their differences. Combining a natural
description formalism with high expressive power, they have been extensively
studied in the literature (see [AD94] for a comprehensive survey).

The model checking problem for timed automata has been investigated for
powerful timed logics such as timed computation tree logic (TCTL) [ACD90]
and timed modal µ-calculus [HNSY92]. The worst-case complexity of model
checking is exponential in the number of clocks and the size of the max-
imal time constant in the model. However, model checking tools such as
Kronos [NSY92] and Uppaal [LPW95] have implemented efficient search
and representation techniques together with various optimizations that have
enabled the verification of a number of real-world examples.

8

The first approach to the application of partial order reduction for systems
composed of communicating timed automata is due to Pagani [Pag96, Pag97].
Her analysis shows however that the dependencies between the passage of
time and transitions that cause a state change reduce the independence of
transitions significantly compared to the untimed case and thus make the ap-
plication of partial order reduction difficult. An improvement which identifies
additional cases where reduction can be applied is presented in [DGKK98].

Bengtsson et al. [BJLW98] were the first to suggest a modified semantics
that allows the component automata of a network to execute individually,
synchronizing their local time scales only on synchronization transitions. Our
results for timed automata are based on their work. However, the only
preservation result proved for the new semantics was for local reachability.
Moreover, they did not present a concrete verification algorithm, since the
new model lacked an effective condition to decide the equality of two timed
regions (i.e., a stopping condition in the state space search). As our main
result, we show in Chapter 3 how to use this local-time model to perform
model checking for a timed extension of linear temporal logic.

Timed event/level structures [BM97] are a specification formalism tailored
to the description of asynchronous circuits, derived from the timed event/rule
structures of [Mye95]. A rule describes a causal relation between two events,
together with a separation interval (integer upper and lower time bounds)
between them. They are in essence similar to Petri nets but in addition allow
rules to depend on the value of signals. Belluomini and Myers [BM98] present
an algorithm that stores only partial ordering relations between events and
thus reduces the number of timed states generated during system exploration.
However, the term “partial order” here does not imply the exploration of a
reduced set of event or rule interleavings. In Chapter 4 we present how partial
order reduction (in the sense of exploring a restricted set of events) can be
added to their algorithm to also reduce the set of explored control states.

1.3.3 Other Approaches to State Space Explosion

Partial order reduction attempts to alleviate the state explosion problem for
timed systems by addressing one specific cause, the redundant exploration
of multiple transition interleavings. A wide variety of other methods have
been used to contain state space explosion by addressing orthogonal issues.
We mention some of the most relevant techniques, since many of them can
be used in a model checker together with partial order reduction.

9

For timed automata, one of the reasons for the large size of the state
space is the fact that during state space exploration, all pairs of clocks are
related to each other by clock constraints. However, not all clocks are used
at every point during the execution of the system. If a clock is not used in
any constraint prior to the next point when it is reset, its relation to other
clocks is irrelevant, and it can be removed from the representation of the
current state. This method, called clock activity reduction, was introduced
first by Daws and Yovine [DY96] and can significantly reduce the amount of
memory that is necessary to store a timed state.

Another approach that reduces the complexity related to timing is based
on the observation that not all the timing information in the description of a
timed system is usually needed to guarantee the satisfaction of a given prop-
erty. An approximation scheme which uses upper and lower bounds on the
set of reachable states is described in the Ph.D. thesis of Wong-Toi [Won94].
Approximations have also been studied by Balarin [Bal96], and are incorpo-
rated in the model checked RT-Cospan [AK95]. In the latter situation, the
underlying untimed description of the system is composed with an automa-
ton representing the time bounds. Only the bounds that are necessary to
verify the given property are successively introduced in the composition.

Time-abstracting bisimulations, which hide the quantitative aspects of
time, are discussed in the Ph.D. thesis of Tripakis [Tri98]. If a system’s
quotient is computed with respect to a time-abstracting bisimulation, efficient
methods from the untimed domain, such as minimization of the resulting
transition system, can be applied for verification. Methods for abstraction
of timed systems are also discussed in the thesis of Taşıran [Taş97].

Symbolic techniques based on BDDs have been investigated with great
interest in the domain of timed systems, due to their success in the untimed
and discrete-time case. Wong-Toi [Won94] reports successful use of BDDs
to encode control states that share the same timing information, especially
when used together with approximations. Balarin [Bal96] takes a different
approach and uses BDDs to encode the difference bound matrices which rep-
resent time zones. Bozga, Maler et al. [BM97, BMT99] show that in several
cases, BDDs together with discretization enable the verification of systems
with more components than using a standard difference bound matrix (DBM)
representation and continuous-time semantics. Belluomini [Bel99] uses BDDs
for the storage of the reached state sets, but converts to an explicit DBM
representation for the exploration algorithm. This modification makes the
exploration slower, but enables the verification of larger models.

10

In previous joint work [CCM+94, CCM97], later extended in the Ph.D.
thesis of Campos [Cam96], we have taken a different approach to the verifi-
cation of timed systems, by focusing on a discrete-time model with unit tran-
sitions. Although very simple, this model is applicable in many situations,
and has proved especially useful for systems whose components are naturally
scheduled to execute in discrete time intervals. Since the model only needs to
handle unit-time transitions, symbolic representation and analysis techniques
based on BDDs from the domain of untimed systems are directly applicable,
and show the same efficiency in practice. As a significant advantage, the
approach allows not only the verification of specifications in temporal log-
ics with or without explicit timing, but also the computation of quantitative
properties about the system behavior. These include precise lower and upper
bounds on execution times or on times spent in states that satisfy certain
conditions, and can be used for detailed assessment of system properties.

The fundamental difference between the above approach and the work
presented in this thesis lies in the application domain, and has consequences
for modeling and efficiency. Most of the examples analyzed with the ap-
proach of [CCM+94] are composed of interacting processes executing on a
single processor, or represent hardware and embedded systems where signals
are discretely sampled. For these, the unit-time model is very appealing,
and provides an efficiency that can likely not be matched for a continuous-
time model with multiple clocks. Our thesis presents a general approach to
reduction that is targeted mostly at asynchronous timed systems in which
discretization may not preserve the system behavior, or lead to state space
explosion.

More recently, two data structures have been defined that are specifi-
cally tailored to the representation of difference constraints that appear in
time zones. In both cases, one of the goals is to efficiently represent unions
of time zones in the reached state space, rather than having to represent
each time zone separately. Clock difference diagrams [BLP+99] are multi-
way decision diagrams, in which levels are indexed by clock pairs (i.e., clock
differences), and each lower-level node corresponds to an interval on the real
time scale for the corresponding clock difference. In difference decision dia-
grams [MLAH99], the decision is binary and is given by the truth value of
an atomic clock constraint. In addition, DDDs are the first data structure
that makes possible model checking of timed automata in a fully symbolic
fashion.

11

1.4 Outline

Chapter 2 starts by presenting the basic principles underlying partial order
reduction. We give a proof for the correctness of partial order reduction
using a weaker notion of independence. Next, we present a static approach
to reduction, in which the reduced model is generated at compile-time. The
next three chapters present our results concerning the application of reduc-
tion to timed systems. In Chapter 3, after introducing the local-time model
for networks of timed automata, we show how to apply partial order reduc-
tion to the model checking of a timed extension of LTL. Chapter 4 presents
a different reduction method, also for timed automata, but this time based
on the region graph construction. Then, we show how partial order reduc-
tion can be incorporated into an exploration algorithm for timed event/level
structures.

Chapter 5 presents our most general result. We identify the principles
underlying the reduction techniques presented so far and apply them to a
model of timed systems that can be particularized to either timed automata,
time Petri nets or TEL structures. Chapter 6 presents a performance evalu-
ation of the reduction method from Chapter 3 on systems modeled as timed
automata, the most expressive of the timed models analyzed so far with par-
tial order reduction. Finally, our conclusions and some directions for future
work can be found in Chapter 7.

12

Chapter 2

Partial Order Reduction

2.1 Introduction

The main obstacle for automatic verification methods based on state space
exploration is the fact that the systems to be verified often have prohibitively
many states for an exhaustive traversal. The state space of a system made
up of several components is the product of the state spaces of the individual
parts, and its size is therefore exponential in the number of components.
Thus, the size of the global system quickly becomes unmanageable, even if
each individual component is of relatively small size. This has been called
the state space explosion problem.

A wide array of techniques has been developed to alleviate this problem.
Methods based on compositional reasoning verify the system behavior based
on properties of the individual components, without having to construct the
global state space. Other methods are relatively independent of the modular
system structure. Abstraction techniques create smaller, high-level models
that approximate the original one, by removing irrelevant detail. On-the-fly
and local model checking techniques restrict exploration to only those parts of
the system state space which are relevant for the verified property. Symbolic
techniques use an implicit representation of the state space, which does not
bear a direct relationship to the number of states and can be significantly
smaller.

Partial order reduction is a technique that constructs a smaller state space
by addressing a specific reason behind the state space explosion, namely the
existence of many potentially equivalent execution traces. This method is

13

typically applied to asynchronous systems, which are described using an in-
terleaving model of computation. Concurrent events are modeled by allowing
their execution in all possible orders relative to each other. This serialization
creates a large number of possible states and paths. However, not all differ-
ent interleavings can be generally distinguished by a specification. Partial
order reduction techniques take advantage of this by generating and explor-
ing a model with only a reduced set of interleavings, and thus fewer states.
At the same time, the reduced model is guaranteed to contains at least one
representative from each class of equivalent behaviors, thus preserving the
truth value of the specification.

In this chapter, we first present the basic principles behind the partial
order reduction method. Next, we prove that a relaxed independence rela-
tion between transitions is sufficient to ensure the correctness of the ample
set method for partial order reduction. Finally, we present a variant called
static partial order reduction, which incorporates reduction into the model
in a preprocessing step and is thus independent of the model checking algo-
rithm. In particular, this method can be combined with symbolic state space
exploration techniques.

Several approaches that use the commutativity between selected tran-
sitions to reduce the state space of a system have been suggested in the
literature. The first such method seems to have been suggested by Over-
man [Ove81] in his Ph.D. thesis. However, it was restricted to models whose
state space did not contain loops. Later on, Katz and Peled [KP88] described
a proof system for concurrent systems that took advantage of commutativity
between transitions. This deduction system used as its core a set of proof
rules that asserted properties of sequences that are generated by exploring
certain subsets of successors from each state.

Over the last decade, several methods have been developed that apply
partial order reduction to model checking of finite-state systems. The com-
mon characteristic of all these methods is that they explore only a certain
subset of transitions from each state. They differ in the conditions imposed
on the reduced transition set in order to guarantee correctness. Such tech-
niques are the stubborn set method of Valmari [Val90], the persistent set
method of Godefroid and Wolper [GW91, God96], and the ample set method
of Peled [Pel93]. We will focus here on the ample set method, occasionally
borrowing ideas from the stubborn set technique.

The name partial order reduction reflects the fact that the initial versions
of this method used an explicit partial order semantics. Generally speaking,

14

a partially ordered execution is represented by a set of events and a causality
relation between them. The causality relation indicates which events have to
precede others in any system execution, whereas the remainder of the events
that are not restricted by this relation are independent and can occur in any
order. This view of the system is in contrast to a total ordering on events, in
which all events are serialized, i.e., any event either precedes or follows any
other event. There are versions of partial order reduction that are explicitly
based on the fact that the generated reduced state space includes at least one
completion into a total order for each partially ordered execution. However,
most current methods are no longer based on explicitly maintaining this
relation.

2.2 Basic Notions

We analyze systems that are modeled as state transition graphs. Let S be
the set of system states. A transition is identified with a particular action
that the system can execute and is given by a relation α ⊆ S × S, which
defines the pairs of states between which the action can be executed. A
state transition graph is a tuple M = (S, S0, T, L), where S0 ⊆ S is a set of
initial states, T is a set of transitions α ⊆ S × S, and L : S → P(AP) is a
labeling function that assigns to each state a subset of the set AP of atomic
propositions.

A transition α ∈ T is enabled in a state s if there exists a state s′ such
that (s, s′) ∈ α. Otherwise, α is said to be disabled at s. A transition is
deterministic if for any state s ∈ S there exists at most one state s′ ∈ S
such that (s, s′) ∈ α. In this case, α is in fact a partial function on S, and
we will use the notation s′ = α(s) instead of (s, s′) ∈ α. In the following,
we will restrict ourselves to systems with deterministic transitions. It is still
possible to model nondeterminism in such systems, since in general there can
be more than one transition enabled at a given state.

An execution sequence σ of a state transition graph is an infinite sequence
σ = s0

α0→ s1
α1→ . . . such that for all i, si+1 = αi(si). We denote by σi the

suffix of σ that starts at state si, i.e., σi = si
αi→ si+1

αi+1

→ si+2
αi+2

→ An
execution sequence σ is an initial execution sequence if s0, the first state in
the sequence, belongs to the set of initial states S0 of M .

In an asynchronous system, an execution trace serializes transitions re-
gardless whether they occur sequentially in the same component or concur-

15

rently in different components. Therefore, the number of transitions sepa-
rating two events has no direct relationship to the time delay between them.
Moreover, a transition which does not change the state labeling (also called a
stuttering step) and is concurrent with an observable event will be necessarily
serialized either before or after it. However, given the concurrent semantics of
the system, the serialization order should not affect the specification. These
observations argue (cf. [Lam83]) for a specification which cannot distinguish
between sequences of identically labelled states on an execution path of the
system.

Two infinite execution sequences are stuttering equivalent (Figure 2.1) if
they reduce to identical sequences of state labelings after in each of them,
any finite sequence of identically labeled states is collapsed to a single state.

In other words, two infinite paths σ = s0
α0→ s1

α1→ . . . and ρ = r0
β0→ r1

β1→ . . .
are stuttering equivalent if one can define two infinite sequences of integers
0 = i0 < i1 < . . . and 0 = j0 < j1 < . . . such that ∀k ≥ 0, L(sik) = L(sik+1) =
. . . = L(sik+1−1) = L(rjk

) = L(rjk+1) = . . . = L(rjk+1−1). The indices ik and
jk are the starting points of identically labeled subsequences of states in the
two paths, respectively. The stuttering equivalence relation between σ and
ρ is denoted by σ ∼st ρ.

��

��

p -

��

��

p -

��

��

-

��

��

p, q -

��

��

p -

��

��

-

��

��

p, q -

��

��

p, q -

��

��

p, q -

Figure 2.1: Stuttering equivalent paths

For assertions about the behavior of a program, we use the temporal logic
LTL [GPSS80]. Given a finite set of propositions AP , the formulas of LTL
are defined inductively as follows:

• p is a formula, for every p ∈ AP

• if ϕ and ψ are formulas, then so are ¬ϕ, ϕ ∧ ψ, X ϕ and ϕU ψ.

An execution sequence σ = s0
α0→ s1

α1→ . . . is said to satisfy an LTL
formula φ (denoted by σ |= φ) under the following conditions:

16

• σ |= p iff p ∈ L(s0), for p ∈ AP ,

• σ |= ¬ϕ iff not σ |= ϕ,

• σ |= ϕ ∧ ψ iff σ |= ϕ and σ |= ψ,

• σ |= X ϕ iff σ1 |= ϕ,

• σ |= ϕU ψ iff ∃i ≥ 0 such that σi |= ψ and ∀j . 0 ≤ j < i⇒ σj |= ϕ.

Let false stand as an abbreviation for p∧¬p, and true be an abbreviation
for ¬false. We also use the following abbreviations: ϕ∨ψ = ¬((¬ϕ)∧(¬ψ)),
F ϕ = true U ϕ, G ϕ = ¬F ¬ϕ.

For a given state transition graph M and LTL formula ϕ, the model
checking problem for M and ϕ is to verify that for every initial state s0 ∈ S0

and every path σ starting in s0, it is true that σ |= ϕ. We write M |= ϕ to
denote that the formula ϕ is true in model M .

An LTL formula ϕ is invariant under stuttering if for any two paths σ
and σ′ such that σ ∼st σ′, we have σ |= ϕ iff σ′ |= ϕ.

Recall that we have argued for the use of specifications that cannot distin-
guish between stuttering equivalent sequences. In general, an LTL formula
is sensitive to stuttering if it contains the next-time operator X . Denote by
LTL−X the subset of logic LTL that does not make use of the next-time op-
erator. It has been shown by Peled and Wilke [PW97] that an LTL property
is invariant under stuttering precisely if it can be expressed in LTL−X.

The notion of stuttering equivalence can be naturally extended from
paths to state transition graphs. Two state transition graphs M and M ′

labeled with the same set of atomic propositions are stuttering equivalent
if a correspondence relation can be established covering all their execution
sequences, such that corresponding execution sequences are stuttering equiv-
alent. Specifically,

• for each initial execution sequence σ of M there exists an initial exe-
cution sequence σ′ of M ′ such that σ ∼st σ′.

• for each initial execution sequence σ′ of M ′ there exists an initial exe-
cution sequence σ of M such that σ′ ∼st σ.

The fact that LTL−X formulas are stuttering invariant together with the
definition of stuttering equivalence of state transition graphs imply the fol-
lowing result:

17

If M and M ′ are stuttering equivalent state transition graphs,
then for any LTL−X formula ϕ, M |= ϕ iff M ′ |= ϕ.

This is the main result which justifies the use of partial order reduction,
since this method generates a reduced model that is stuttering equivalent to
the original one. In the next section, we describe the general principles that
stand behind the reduced state space generation.

2.3 Principles of Partial Order Reduction

The results about stuttering presented in the previous section imply that
when model checking a concurrent asynchronous system with respect to a
stuttering-invariant specification, one does not need to explore all behaviors
of the model. If the execution sequences are divided into equivalence classes
with respect to stuttering equivalence, it is sufficient to select just one be-
havior from each class as part of the reduced model in order to guarantee
correctness.

Consider an example that illustrates the importance of reduction. As-
sume that the system to be verified is composed of n concurrent processes,
P1, P2, · · · , Pn. Each process Pi has a transition αi enabled in some local
state si, such that αi(si) = s′i. The concurrent transitions αi can be ordered
in n! possible ways, resulting in the exploration of 2n different states. How-
ever, it is possible that the specification is a property that relates the initial
global state (s1, . . . , sn) with the resulting global state (s′1, . . . , s

′
n), without

depending on intermediate states, and the path taken between these. Thus,
it is much more efficient to consider only one particular ordering and the
corresponding n+ 1 states.

In most variants of partial order reduction, the reduced model of the
system is built by performing a modified depth-first search on an explicit-
state representation of the system. This is followed by a separate model
checking phase performed on the reduced state-transition graph. Another
option is to construct the reduced model on the fly, during model checking.
This has the advantage that the state space construction can be guided taking
into account the specification, and the size of the constructed model can be
reduced further. Another variant, described in detail later in this chapter
involves the use of breadth-first search, which has the potential of combining
partial order reduction with a symbolic representation. The essential aspect

18

common to all these approaches is that the reduced model is built directly,
without first constructing the full state graph of the original system. This
is a natural requirement, since the full model is typically too large to be
constructed in the first place, and an indirect approach would defeat the
purpose of the reduction.

The selection of representative behaviors is made by following from each
state only a subset of the enabled transitions, as opposed to an ordinary
search which would explore all of them. We denote by ample(s) ⊆ enabled (s)
the set of transitions which are explored from state s in the case of partial
order reduction.

The key to applying partial order reduction is a procedure that calculates
at each state s a suitable set ample(s) of transitions to be explored. On one
hand, this set should be small (significantly smaller than the set of all en-
abled transitions), in order to effectively reduce the searched state space. On
the other hand, the correctness of the verification result has to be preserved,
by including in the reduced state graph at least one equivalent execution
sequence for each execution of the original model. Finally, the overhead for
computing an ample set should be sufficiently small such that the verifica-
tion time is not increased compared to full state space search, offsetting the
benefits of the reduction.

In order to obtain such a procedure for selecting transitions, one has to
formalize the notion of transitions that can be reordered. Two key concepts
play a role in this process: the notion of transition independence relates to
the interaction between the execution of transitions in the model, whereas
transition visibility is determined by the properties examined by the specifi-
cation.

Two transitions α, β ∈ T are independent in a state s ∈ S if they satisfy
the following two conditions:

• Enabledness: If α, β ∈ enabled(s), then α ∈ enabled(β(s)) and sym-
metrically β ∈ enabled(α(s)).

• Commutativity: If α, β ∈ enabled(s) then α(β(s)) = β(α(s)).

The enabledness condition expresses the fact that two independent tran-
sitions that are enabled at a given state cannot disable each other. The
commutativity condition states that the execution of two independent tran-
sitions in any order (which is guaranteed to be possible by the enabledness
condition) leads to the same state. Two transitions that are independent at

19

each state s ∈ S are called globally independent. In the following, “indepen-
dent” implicitly stands for “globally independent”, unless a specific state is
mentioned. Two transitions are called dependent (at a particular state or
globally) if they are not independent.

��

��

s
�

�

�

�

�1α
��

��

s1
P

P

P

P

Pq

β

P

P

P

P

Pq

β
��

��

s2
�

�

�

�

�1

α
��

��

s′

Figure 2.2: Independent transitions

The independence relation can be pictorially represented using a diagram
such as the one in Figure 2.2, which depicts a simple fragment of a state
transition graph. Transitions α and β are independent in state s. A possible

reduction would consider only the execution sequence s
α
→ s1

β
→ s′, elimi-

nating the path s
β
→ s2

α
→ s′. However, this reduction is only correct if the

checked property cannot distinguish between the intermediate states s1 and
s2. (Additional conditions for the correctness of the reduction are needed,
and they will be described in the next subsection. For instance, eliminating
one of these states may prevent the exploration of its successors, which may
be significant for verification.)

The definition of independence given here requires independent transi-
tions not to disable one another. However, the execution of a transition can
enable the execution of another one, while maintaining independence. The
partial order reduction literature often uses a more restrictive version of the
enabledness condition that requires independent transitions to neither disable
or enable one another. Specifically, the more restrictive condition requires
that if α ∈ enabled (s), then β ∈ enabled (s) iff β ∈ enabled (α(s)), together
with the symmetric condition with α and β reversed (the commutativity con-
dition remains the same). In the stubborn set approach of Valmari [Val90]
the less restrictive condition is consistently used, whereas the persistent set
method of Godefroid et al. [God96] is defined using the more restrictive con-
dition. The papers describing the approach of Peled generally use the more
restrictive condition, save for [Pel94] (revised in [Pel96a] to the more restric-
tive condition) and [HP94]. In both of the latter cases, reference to proofs

20

made using the more restrictive condition is made. In the following we use the
less restrictive condition and prove that it is sufficient for handling LTL−X.

To examine what it means for a specification to distinguish between two
states, we introduce a second key notion, that of transition visibility. Recall
that one of the elements of the state transition graph is the labeling function
L : S → P(AP) which assigns to each state a set of atomic propositions. The
specification may not observe all atomic propositions in AP ; let AP ′ ⊆ AP
be the subset of atomic propositions which are actually used in the formula.
A transition α is called invisible with respect to AP ′ ⊆ AP if its execution
between any two states does not change the labeling with atomic propositions
from AP ′. Formally, the transition α ∈ T is invisible with respect to AP ′ if
for any two states s, s′ ∈ S with s′ = α(s) we have L(s)∩AP ′ = L(s′)∩AP ′.
A transition is called visible if it is not invisible. Since the set of atomic
propositions with respect to which we consider visibility is typically given
by the specification, in the following we will use the terms “visible” and
“invisible” without referring specifically to a set of atomic propositions AP ′.

2.4 Conditions for Partial Order Reduction

The notions of independence and visibility of transitions are the fundamental
properties taken into account when selecting a reduced set of transitions to
explore at a given state. The selected subset of transitions should be small,
in order to facilitate reduction. However, if at some state a reduced set
of transitions cannot be found, the search algorithm is safe in exploring all
enabled transitions. In this case, if ample(s) = enabled (s), the state is said
to be fully expanded.

In order to describe the most general reduction conditions, and at the
same time facilitate a natural proof of correctness, the reduced sets of transi-
tions at each state are not described operationally by means of an algorithm
to select them. Rather, a set of conditions is given that these transitions
must satisfy [Pel93]. Following these conditions, algorithms and heuristics
can be devised that actually construct an ample set for each state. Such
algorithms are reviewed in a later section.

The first trivial condition has to ensure that at each step some new state
can be explored in the reduced model if this is possible in the original model:

C0 (Emptiness) ample(s) = ∅ iff enabled (s) = ∅.
The next constraint ensures that any path of the original state graph can

21

be transformed into a path of the reduced model by commuting independent
transitions. This is a first step to guarantee that the reduced model will
contain a representative for each path in the full state space.

C1 (Faithful decomposition) For any execution sequence s0
α0→ s1

α1→ . . .
of M , and for any k ∈ N, if αi 6∈ ample(s0) for 0 ≤ i ≤ k, then αi is
independent of any transition β ∈ ample(s0) for 0 ≤ i ≤ k.

In other words, on any execution sequence of the original model start-
ing at some state s, no transition which is dependent on a transition from
ample(s) can occur before some transition from ample(s) is executed. Since
any transition in enabled (s)\ample(s) can be executed from s in the original
model, this implies immediately that any transition which is not in ample(s)
is independent from any transition in ample(s). This property has been
named “faithful decomposition” in [KP88], since the set of enabled transi-
tions at any state s is partitioned into two sets, ample(s) and its complement,
and neither of the transitions in one of the two sets can affect the execution
of a transition in the other set.

Condition C1 is used to show that for any execution sequence σ starting
at some state s0 in the original model, some transition in ample(s0) can be
taken without disabling any of the transitions in the given sequence. This
in turn, can be used as an inductive argument to construct an execution
sequence in the reduced state model from each execution sequence in the
original model (a complete proof is given in a subsequent section). We explain
informally why this condition holds and give a complete proof in a later
section. If the first transition is an ample transition, α0 ∈ ample(s0), the
property is trivially true. The following two cases remain:

��

��

s0

?

β

��

��

s′0

��

��

s1

?

β

��

��

s′1

��

��

sk−1

?

β

��

��

s′k−1

��

��

sk

?

β

��

��

s′k

-

α0

-

α0

-

α1

-

α1

-

αk−2

-

αk−2

-

αk−1

-

αk−1

Figure 2.3: Reordering of transitions based on commutativity

(a) σ contains some transition from ample(s0). Let the first such transi-
tion be β = αk, with k ≥ 1. By condition C1, αk ∈ ample(s0) is
independent of α0, . . . , αk−1 and commutes with all these transitions.

22

Thus, the transition sequence αkα0α1 . . . αk−1 can be executed in s0,
leads to the same state as the transition sequence α0α1 . . . αk, and can
be followed from this state by the remaining suffix σk of σ.

(b) σ does not contain any transition from ample(s0). Let β ∈ ample(s0)
be an arbitrary transition. By condition C1, β is independent from all
transitions in σ. Therefore, if s′1 = β(s0), then α0 ∈ enabled (s′1), and
inductively if follows that the entire transition sequence α0α1 . . . can
be executed from s′1.

However, the fact that each path in the full state space can be transformed
into a path which includes the same transitions and has a prefix which be-
longs to the reduced model is not sufficient in itself. One has to guarantee
that the specification is not affected, by ensuring that the generated path
is stuttering equivalent to the original one. This aspect is handled by the
following condition:

C2 (Visibility) If ample(s) contains a visible transition, then the state s
is fully expanded, i.e., ample(s) = enabled (s).

We explain the effect of this condition based on the cases (a) and (b)
presented for condition C1. In case (a), since α0 6∈ ample(s0), it follows
that state s0 is not fully expanded and thus all transitions from it must be
invisible. If we denote s′i = αk(si), for 0 ≤ i ≤ k (cf. Fig. 2.3 for β = αk),
then we have L(si) = L(s′i). Thus the two state sequences s0s1 . . . sks

′
k and

s0s′0s
′
1 . . . s

′
k−1s

′
k are stuttering equivalent, since a one-to-one correspondence

of labelings exists after collapsing sk with s′k in the first sequence and s0

with s′0 in the second. A similar argument holds in case (b). Here too, β
must be invisible, and after collapsing s0 and s′0, the prefixes s0s1 . . . sk and
s0s′0s

′
1 . . . s

′
k are stuttering equivalent for any k.

Note that one of the possible transformation cases described for condition
C1 (specifically, the second) does not consume any transition from σ while
generating an alternate execution sequence in the reduced state model. In-
stead, a supplementary transition from the ample set of the current state is
inserted. It is possible for this step to be repeated sufficiently often, so that
the inserted ample transitions closes a cycle in the state space of the reduced
(and original) model (see Figure 2.4). Then, a stuttering-equivalent path
for σ will not be generated, since the transition α0 will never be explored,
despite remaining continually enabled while executing the ample transitions.
This can affect the truth value of the specification, since α0 may be visible

23

or lead to parts of the state space which are not explored otherwise. The
following condition guarantees that no transition is ignored and the above
case does not occur:

��

��

sk

�

�

�

��

βk
�

�

��

α

��

��

s0 -

β0�

�

�*α

��

��

s1

@

@

@

@R

β1

X

X

Xz

α

��

��

s2�

β2

�

�

�) α

Figure 2.4: Cycle-closing condition

C3 (Cycle closing) A transition which is enabled in every state of a cycle
in the reduced state space belongs to the ample set of some state on the cycle.

The conditions for partial order reduction can be simplified if model
checking is done under fairness assumptions. Typically, the verified sys-
tem consists of multiple processes, and the usual notion of fairness states
that each process has to execute infinitely often. Noting that two transitions
enabled at the same local state of a process are dependent, this notion of
fairness implies the following condition [Pel94, Pel96a]:

F If a transition α is enabled in the starting state s of an execution
sequence σ, then σ must contain either α or a transition dependent on α.

The fairness condition F ensures precisely that case (b) discussed above
cannot happen. Indeed, if F is applied to α ∈ ample(s), then σ must contain
either α or some transition β dependent on it. In the latter case, C1 states
that some transition in ample(s) must appear in σ before β. In either case,
σ contains a transition from ample(s). In [Pel96a], the visibility condition
C2 is handled by including visible transitions in the dependence relation.
Since C1 implies that an ample transition is independent of all transitions
outside the ample set, it follows that an ample set that contains one visible
transition has to contain all of them. Thus, condition C1 subsumes C2 in
this case.

This completes the presentation of the conditions which characterize am-
ple sets. It can be shown that under these conditions, the constructed reduced
model is stuttering equivalent to the original one. In the next section, we give
a new proof that this result holds even if we use the less restrictive notion
for transition independence discussed in Section 2.3.

24

2.5 A Proof for Partial Order Reduction

The correctness proofs for the ample set given in the literature employ a
restricted definition of transition independence, which requires that two in-
dependent transitions neither disable or enable one another at any state.
However, the stubborn set method of Valmari uses the less restrictive ver-
sion presented in Section 2.3, which considers two transitions independent
even if one of them enables the other. Godefroid [God96] presents his per-
sistent set approach using the more restrictive independence condition, but
does not mention in his comparison to ample sets and stubborn sets whether
this difference is relevant or not.

A clear statement regarding the two different conditions is important,
since the weaker version allows the selection of potentially smaller ample
sets. Moreover, the weak version also forms the basis for existing criteria
and heuristics for ample set selection such as those used in the SPIN model
checker [HP94]. In the following, we prove the the correctness of ample set re-
duction for LTL−X model checking using the weaker independence condition.
An alternative, independent proof of this result is given in [CGP99].

We prove that for every transition sequence σ in the original state transi-
tion graph we can construct a stuttering equivalent sequence σ′ in the reduced
model. Let σ = s0

α0→ s1
α1→ · · · sn

αn→ · · · be an arbitrary transition sequence.
Given σ and a natural number i, we denote by σ≤i the prefix of σ formed by
taking the first i transitions, and by σ≥i the remaining suffix of the transition
sequence. We prove by induction on i that for prefixes of σ with length i ≥ 0
we can construct a sequence σ′

≤j of length j ≥ 0 which is stuttering equiva-
lent to σ≤i. Moreover, ∀k < j . α′

k ∈ ample(s′k), i.e., σ′
≤j is a finite sequence

of transitions which can be taken in the reduced model. In the course of the
induction proof, we will refer to i and j as the current points in σ and σ′,
respectively. At each point, σ′

≤j will contain all transitions of σ≤i (in some
order), with two possible types of transitions added:

(i) Ample transitions after the current point in σ may be executed earlier
(before the current point) in σ′. The finite ordered set (sequence) I ⊆ N
contains the indices of transitions beyond the current point i in σ that
have been already included in σ′. We call such transitions marked.

(ii) Additional ample transitions may be inserted in σ′ in order to ensure
that it is a legal transition sequence in the reduced model. We denote
the sequence of all such inserted transitions by δ.

25

Notation: If I ⊆ N is a finite increasingly ordered set of indices, we
denote by σ|I the transition sequence obtained by selecting from σ the tran-
sitions with indexes in I (in the given order). Similarly, we denote by σ|Ī the
sequence obtained by deleting from σ the transitions whose indices are in I
(here the ordering of I is irrelevant).

Our induction invariant relates σ, i, σ′, j, I , and δ as follows:

(a) The transition sequence σ′
≤j is stuttering equivalent to σ≤i. In partic-

ular, L(si) = L(s′j).

(b) If k ∈ I , then k ≥ i and αk is invisible and independent of αl, for all
l 6∈ I, i ≤ l < k. (A marked transition is invisible and independent of
all unmarked transitions past the current point in σ but preceding it.)

(c) The transition sequence (αk)|k ≥ i, k 6∈ I , obtained from the suffix σ≥i

by removing marked transitions, is enabled in s′j in the original model.

(d) Each transition in δ is invisible and independent of all transitions αk,
∀k ≥ i, k 6∈ I (all unmarked transitions past the current point in σ).

(e) si

σ|Iδ
→ s′j. That is, the marked transitions (comprising σ|I) together

with the inserted transitions (comprising δ) are exactly those that be-
long to σ′

≤j but not to σ≤i. Their sequence is enabled in si and takes
this state to s′j.

For the base case, choose j = i = 0, s′0 = s0, I = ∅ and δ = ǫ (the
empty sequence). All parts of the invariant are trivially satisfied: (a) is true
because both transition sequences consist of just the same initial state, (b)
is vacuously true, since I is empty, (c) is true since σ is enabled in s0, (d) is
vacuously true since δ is empty, and (e) is true since both σ|I = δ = ǫ and
s0 = s′0.

For the induction step, we consider the following cases:

1. i ∈ I . (The next transition in σ is marked.) Let i′ = i + 1 and I ′ =
I \ {i}. That is, we advance the current point in σ and delete αi from
the set of marked transitions, since it is now before the current point.
Since αi is invisible according to (b), we have L(si+1) = L(si) = L(s′j),
which maintains (a). Part (b) still holds since no transitions are added
to I , and αi is no longer relevant for the independence condition (since

26

i′ = i+ 1). For parts (c) and (d) the unmarked sequence of transitions
after the current point in σ remains the same (αi is no longer marked,
but it is now before the current point), and δ does not change either.
Finally, i = min I , so αi is the first transition in σ|I, therefore (e) can

be written as si
αi→ si+1

σ|I′δ→ s′j, the last part of which is exactly (e)
after this step.

2. i 6∈ I and αi ∈ ample(s′j), so αi is a legal transition in the reduced
model. We include αi in σ′, advance both counters (i′ = i + 1, j′ =
j + 1) and set s′j+1 = αi(s′j). By (b) and (d), αi is independent of
all transitions in σ|I and δ and therefore commutes with them. Since

si

σ|Iδ
→ s′j

αi→ s′j+1, it follows that si
αi→ si+1

σ|Iδ
→ s′j+1, which proves (e).

Moreover, L(si+1) = L(sj+1), so (a) is preserved. Part (b) is preserved
since I is the same (i′ = i+ 1 but αi 6∈ I), and αi no longer appears in
the independence condition. The transition sequence in part (c) is of
the form αiβ (with β some transition string). If αiβ is enabled in s′j,
then β is enabled in αi(s′j) = s′j+1. Finally, part (d) is weakened since
αi no longer appears.

3. i 6∈ I , αi 6∈ ample(s′j), and ∃k > i, k 6∈ I , such that αk ∈ ample(s′j).
That is, αi is neither marked nor ample, but there is an ample unmarked
transition αk later in the sequence. Let k be the smallest such index.
We mark transition αk and append it to σ′, i.e., I ′ = I∪k, j′ = j+1 and
s′j+1 = αk(s′j). Because αk is ample, σ′

≤j′ is a legal transition sequence
in the reduced model. Since αi 6∈ ample(s′j), s

′
j is not fully expanded,

and αk is invisible by C2. Thus L(s′j+1) = L(s′j) = L(si), and (a) still
holds. By condition C1, all transitions preceding αk in σ≥i|Ī (i.e., αl

with i ≤ l < k, l 6∈ I) have to be independent of αk, so (b) is preserved.
Independence implies commutativity, so αk can be executed as first
transition of σ≥i|Ī in s′j , and the remainder of this sequence remains
enabled in s′j+1, which proves (c). Part (d) still holds since δ is the
same, and there is one less unmarked transition. By substituting αk

for αl in (b), we obtain that αk commutes with all marked transitions
which occur later in σ, and because of (d) it also commutes with the

transitions in δ. Therefore, since I ′ = I ∪ k, si

σ|Iδ
→ s′j

αk→ s′j+1 implies

si

σ|I′δ→ s′j+1 (with αk inserted to preserve the increasing ordering of I ′)
and the final part of the invariant is proved.

27

4. i 6∈ I , and ∀k ≥ i, k 6∈ I , αk 6∈ ample(s′j). That is, there is no remaining
unmarked transition which belongs to ample(s′j). We need to insert
an ample transition so σ′ remains a legal transition sequence in the
reduced model. Select an arbitrary transition β ∈ ample(s′j) and let
j′ = j+1, s′j+1 = β(s′j). We also append β to the sequence of transitions
inserted so far, δ′ = δβ. Again, since s′j is not fully expanded, β has
to be invisible, so L(s′j+1) = L(s′j) = L(si), and (a) still holds. None
of the variables involved in (b) changes. Since β is independent of
all transitions in σ≥i|Ī , (c) remains valid as well, and β can also be

appended to δ without violating (d). Finally, si

σ|Iδ
→ s′j

β
→ s′j+1, therefore

si

σ|Iδ′

→ s′j+1, which proves (e).

To conclude the induction proof, we note that only a finite number of
steps of type (3) or (4) (for which the current point in σ is not advanced)
can be taken without performing either (1) or (2). Otherwise, the transition
sequence σ′

≥j eventually closes a cycle on which transition αi is always enabled
without ever belonging to an ample set, which contradicts C3. Therefore,
after a finite number of steps either (1) or (2) must be performed, which
advances the current point in σ by 1, i′ = i + 1. The above four cases
therefore guarantee a finite procedure that constructs in the reduced model
a stuttering equivalent prefix for σ≤i+1 starting from a similar prefix for σ≤i.
We also note that since every transition in σ≤i is included in σ′≤j, we have
i ≤ j, which ensures that j grows unbounded as i does. By induction, a
stuttering equivalent sequence σ′ exists in the reduced model for the entire
transition sequence σ, q.e.d.

2.6 Calculating Ample Sets

The established conditions for ample set reduction do not directly provide an
operational procedure that effectively determines an ample set of transitions
at each state. To apply partial order reduction in practice, a procedure which
computes ample sets has to be devised. On one hand, this procedure must
generate ample sets that are small enough so that the resulting state space is
significantly smaller than the original one. On the other hand, the algorithm
must be sufficiently simple so that it can be implemented easily, without
introducing significant overhead and slowing down verification. This section

28

reviews some selection criteria which are typically employed to ensure that
each of the given conditions is satisfied.

It is trivial to verify that the ample set is nonempty (condition C0).
Likewise, the visibility of a transition is immediately determined, and thus
for condition C2 it suffices to examine each transition in turn. In fact, in
order to obtain small ample sets, a single invisible transition is the ideal case.

In general, it is much more difficult however to check condition C1. First,
this condition describes a property of ample sets in terms of the execution
sequences of the full state-transition graph, and the principal aim of the
reduction technique is to avoid constructing this graph in the first place.
Furthermore, the execution sequences on which C1 would have to be checked
can extend arbitrarily far into the future, up to the occurrence of the first
ample transition. In general, checking condition C1 is at least as hard as
checking reachability for the full state transition graph, as has been shown
in [CGP99].

In practice, using an expensive algorithm that can verify condition C1
for an arbitrarily chosen set of ample transitions could be quite expensive.
Instead, partial order verifiers take advantage of the specific system structure
to generate ample sets of transitions for which C1 can be easily guaranteed to
hold. In particular, the ample set selection becomes much easier in the typical
case when the system is described as a composition of concurrent processes.
We present practical conditions that can be used for concurrent processes
with synchronous communication, a model which also forms the underlying
control structure for timed automata, and discuss how the introduction of
global data variables affects these conditions.

A system consists in this case of a set of processes, which are modeled as
state-transition graphs. Each process may also have a set of local variables
that can be changed only by transitions performed by that process. Control
states and local variables form the local state of the process, and the product
of the local states forms the global state of the system. A transition that only
changes the control state and local variables of a process is called an internal
transition.

In the synchronous communication model, the sender and the receiver
coordinate, and the sending and receiving transitions occur simultaneously.
This is the case, for example, in Communicating Sequential Processes [Hoa95]
and in the rendezvous model of ADA. The sending and receiving transitions
can therefore be considered as a common transition shared by the two pro-
cesses. We call such a transition a communication transition. Simultaneous

29

communication between more than two processes can be handled in the same
way. Assume that all transitions in the system are either local or communi-
cation transitions.

Two local transitions, each belonging to a distinct process, are clearly
independent, since the execution of each depends only on the local state of
its process and produces changes only in its local state. Two local transitions
enabled from the same state of one process are dependent, since executing
one will lead to a different local state, from which the other transition is
no longer enabled. Consequently, if at a given state, an ample set contains
a local transition, it must contain all other enabled local transitions of the
same process.

For communication transitions, the dependence relation is more complex.
If a process Pi is at a communication point (from which a send or receive
transition can be executed), the corresponding communication transition is
said to be locally enabled by Pi. More precisely, a communication transition
between two processes Pi and Pj is said to be locally enabled by Pi at state s
if it can be executed from some state s′ that has the same local state of Pi as
s. The transition is only enabled globally when the communication partner
of Pi is also at its corresponding communication point.

Locally enabled transitions must be considered in the computation of
ample sets even if they are not globally enabled. Consider a process Pi which
has two outgoing transitions at its current state: a local transition α and a
locally enabled (but globally disabled) communication transition β with some
other process Pj. Including only the enabled local transition in the ample
set of the current state is not sufficient, since the communication transition
(which is dependent on α, originating at the same state) may potentially
become enabled if Pj reaches its communication point after executing some
local transitions, which are not part of the ample set. This would contradict
condition C1.

Consequently, if the transitions enabled at the current state s in some
process Pi are included in the ample set for that state, so must be all en-
abled transitions of processes Pj whose communication transitions with Pi

are locally enabled in Pi at state s. Taking the transitive closure of this
operation, the following condition is obtained (cf. [Pel96b]):

Let ample(s) be the set of all transitions enabled at s in some set of
processes P with the following property: No process Pi ∈ P has a communi-
cation transition locally enabled in Pi with a process outside of P .

In practice, the rule is applied by first selecting a single process as a

30

member of P and then repeatedly adding the processes that communicate
with processes in P . If P grows to include all processes, the state is fully
expanded and no reduction is obtained at that state.

Consider now the case where the model is augmented to include global
variables, which can be tested by boolean guards associated to transitions,
and assigned as an effect of executing a transition. The dependence relation
now has to take global variables into account. If readv(α) and writev(α)
denote the sets of global variables written and read by a transition α, then two
transitions α and β in separate processes are still independent if there is no
read-write or write-write conflict between them, i.e., readv(α)∩writev(β) =
readv(β)∩ writev(alpha) = writev(α) ∩ writev(β) = ∅ (cf. [God96]).

An ample set can be determined similarly as above by taking into account
that shared variables are a form of communication. Thus, a transition dis-
abled at the current state in some process Pi because its guard is not satisfied
may become enabled if a global variable in its guard is modified by a tran-
sition in some other process Pj. Hence, one can choose as ample(s) the set
of all transitions enabled at s in some set of processes P with the following
property: No process Pi ∈ P has a communication transition locally enabled
in Pi with a process outside of P or has a transition whose guard reads a
global variable written to by a process outside of P .

The above conditions take a conservative approach to enforcing condition
C1, specifically in identifying when a transition may become enabled by a
transition from some other process. However, a more detailed analysis can
be used to produce smaller ample sets. For example, it is possible to weaken
the condition given above which selects a set of processes P . It is safe for
a process from P to have a locally enabled communication transition with
a process outside P if it can be determined that this communication cannot
actually take place in any state reachable from the current state.

However, checking that a transition is disabled in the future on any path
starting from a given state is again as hard as the model checking problem
itself. To avoid this problem, one can use an analysis procedure which is
able to identify some of the transitions that can no longer become enabled
starting from the current state, rather than all of them. To achieve this,
one can perform a separate reachability analysis for each process, relying
on the fact that a single process has a much smaller state space than the
global system. For the synchronous communication case discussed above, one
would check whether the matching communication transition can be reached
in the other process starting from its local state, assuming conservatively

31

that all communication transitions with other processes are enabled by those
processes. In the case of systems containing data variables, it is possible to
selectively or completely abstract away their values, and in the simplest case
perform only a static analysis of the control flow graph of the process.

This analysis can be performed in a preliminary stage of the reduction
algorithm, and the state transition graph may be annotated with informa-
tion that allows both the selection of smaller ample sets, and their faster
computation at run-time, thus increasing the performance of partial order
reduction both in terms of memory requirements and execution time.

2.7 Other Partial Order Reduction Methods

The ample set approach to reduction, as well as the related methods that
use stubborn or persistent sets generate a reduced model based on exploit-
ing information about the structure of the system, about enabled, disabled
and independent transitions. A different technique, the sleep set method
suggested by Godefroid [God90] for detecting deadlocks exploits instead in-
formation about the past of the search.

One potential limitation of ample sets is that they have to be transitively
closed with respect to dependency. This can lead to ample sets that contain
pairs of independent transitions, simply because each of them is dependent
on some other transition in the ample set. Since all transitions from an ample
set are explored, the algorithm will be forced to consider both interleavings
for two independent transitions, which is unnecessary and contrary to the
initial purpose of reduction.

The sleep set approach addresses this problem by maintaining for each
state s expanded by the algorithm, a set of transitions sleep(s). This set
contains the transitions which do not have to be explored from s. As a state
is expanded, all transitions explored from it are added one by one to its
sleep set. Part of these transitions are inherited by the successors of s as
follows: If transition α is explored from state s, leading to state s′ = α(s), all
transitions β ∈ sleep(s) which are independent of α are added to sleep(s′).
This can be done because exploring α and then β has the same effect as
exploring β followed by α, and β can be in sleep(s) for two reasons. First, β
did not need to be explored from s, and thus βα (and hence αβ) is also not
needed. Second, β has been already explored from s, and in the process also
the sequence βα. Therefore, the equivalent sequence αβ is no longer needed.

32

During the state space search, sleep sets for each state are stored. If a
state is reached again during expansion, a new sleep set is calculated for
it, and is compared with the previous value. If the old sleep set contains
transitions that do not belong to the new sleep set, the node is expanded
again with a sleep set which is the intersection of the new and the old sleep set.
This ensures that if a state is reached from several states, enough successors
are explored in all cases.

It has been shown [GW91] that the sleep set and persistent set reduction
methods are orthogonal and hence their benefits can be combined.

A conceptually different approach to partial order reduction is the unfold-
ing technique of McMillan [McM92, McM95]. This method is directly based
on the partial order model of execution and has been originally defined in the
context of Petri nets. In this approach, a structure of partially ordered local
states is constructed, with the order between events representing the causal
order of their execution. The unfolding algorithm generates a representation
of the checked system which is sometimes called an event structure. It thus
avoids generating the global states of the system altogether. The original
unfolding algorithm was designed for deadlock detection. Subsequently, ex-
tensions of this algorithm were developed for checking different properties,
e.g., by Esparza [Esp94]. The unfolding technique also stands at the basis
of some partial order reduction approaches for time Petri nets, for instance
in [Lil98, BF99].

Since partial order reduction is based on the assumption that a significant
number of the execution traces of the system differ only in the ordering of
transitions, it is not a technique which universally leads to good reduction re-
sults for all types of systems. Even for systems where partial order reduction
is efficient, supplementary benefits can still be obtained by employing addi-
tional reduction techniques. However, since partial order reduction implies
significant changes in the model checking algorithm, its applicability jointly
with other methods does not always follow in a straightforward fashion.

Partial order can be combined with on-the-fly model checking [Kur94], a
method in which the reduced state space is generated at the same time as the
search for counterexamples that falsify the checked property. Employing this
approach can result in significant space savings, since a counterexample may
be found before the entire (reduced) state graph is generated [Pel94, Val90].

Often, concurrent systems contain several identical components. In this
case, symmetry can provide stronger, supplementary reduction conditions.
Partial order reduction and symmetry have been combined in [EJP97].

33

Symbolic model checking [BCM+90, McM93], which uses BDDs to ef-
ficiently store and manipulate sets of states, has had a significant impact
on verification. Though mainly used for synchronous hardware systems, is
performs well for asynchronous systems as well and is thus a natural can-
didate to combine with partial order reduction. One method for the joint
use of these techniques was suggested in [ABH+97], using a reduction based
on breadth first search [CP96]. A different approach to combining these
methods, based on a static generation of the reduced model is suggested
in [KLM+97, KLM+98]. This approach is presented in detail in the next
section.

2.8 Static Partial Order Reduction

In the verification literature, partial order reduction has been used as a
method for verifying mainly asynchronous concurrent systems, and has been
traditionally implemented using explicit-state depth-first search. On the
other hand, significant advances in alleviating the state-space explosion prob-
lem have been obtained using symbolic model checking [BCM+90, McM93],
which uses an implicit representation of the state space. This method has
shown significant benefits especially in verification of synchronous hardware
systems. It appears natural to investigate whether the two methods can be
combined, since this approach offers several potential benefits.

First, there is the potential of combining the efficiency gain of both meth-
ods: partial order reduction decreases the size of the search space, whereas
symbolic techniques can further offer a compact representation with smaller
amounts of memory and efficient space traversal algorithms. Second, the
combined approach could exploit the advantages of the individual methods
for systems that comprise components from the application domains of both
methods: asynchronous hardware or mixed hardware-software systems. Fur-
thermore, the approach could be extended to address different application
domains.

The approach to partial order reduction presented here has been devel-
oped in a team working on a hardware-software co-verification project at
Bell Laboratories. The targeted models were embedded systems, in which
the software was written in SDL [SDL93]. The hardware was described in the
automata-based language S/R of the model checker COSPAN [HK90], which
can verify synchronous models and supports as an option BDD-based sym-

34

bolic search. With this purpose in mind, a partial order reduction procedure
was needed that satisfied the following goals:

• The reduction method should work efficiently for systems that are com-
posed of both hardware and software. In particular, it should be usable
in conjunction with BDDs and symbolic model checking.

• The reduction algorithm should be independent of the type of search
(e.g., depth-first or breadth-first search).

• The reduction should be performed as much as possible during the
generation of the system model.

• The reduction procedure should be adaptable to existing model check-
ing tools without requiring changes to their search engines.

The last requirement in particular was important not only in the initial
setting of this work, where an existing model checker had to be used as back-
end, but also in general. Since both partial order reduction algorithms and
model checking engines are quite complex, an approach which completely sep-
arates reduction from model checking greatly increases the ease of applying
reduction, as well as the possibility of combining it with other optimizations
brought to the model checking engine.

The partial order reduction approach of selecting a subset of the enabled
actions from each state to generate a smaller model is not inherently incom-
patible with a symbolic BDD-based search. However, model checkers that
incorporate partial order reduction have so far used mostly an explicit state
depth-first search, since this approach is suggested by the cycle-closing con-
dition C3. Recall that a transition which is enabled in every state of a cycle
has to belong to the ample set of some state of that cycle in order for the re-
duction to be correct. The stack maintained by a depth-first search provides
an easy means to check this condition.

Alternate means to ensure this reduction condition have been suggested
first by Holzmann and Peled [HP94]. They describe a static implementation
of the reduction conditions in the model checker SPIN [Hol92]. However,
despite being static, this approach required significant changes to the code of
the SPIN model checker in order to control its backtracking mechanism. Sub-
sequently, Chou and Peled [CP96], as a by-product to giving a mechanized

35

proof of the partial order reduction conditions, showed that the cycle-closing
condition could also be used with breadth-first search.

A first method for combining partial order reduction and symbolic model
checking using BDDs was given in [ABH+97]. This solution uses the set of
reached states as history and is based on a conservative approximation of
when a cycle may be closed during a breadth-first search. Essentially, when
an edge connects a node to another node that is at the same or a lower level
in the breadth-first search, it is assumed to close a cycle.

The static partial order reduction approach presented here is different and
more general in that all the information needed for performing the partial
order reduction is obtained during a compilation of the system model. The
partial order reduction step is effectively a preprocessing phase that takes
a system description and modifies it such that only a reduced number of
transitions are enabled at each state, corresponding precisely to an ample
set. The resulting model is still described in the same input language as the
original model and can be used as an input for the model checker without
requiring any changes to it. This is in contrast to usual partial order reduction
algorithms, which are applied on the internal representation of the system
used by the model checker and interact with its search algorithms. It is
precisely this separation of the reduction step that allows the combination
of partial order reduction with BDD-based algorithms and, in general, with
any optimization technique applied by the model checker.

2.8.1 A Modified Cycle Closing Condition

The cycle closing condition C3 guarantees that a transition which is enabled
in all states of a cycle is eventually chosen as part of an ample set. In practice,
a slightly stronger condition is used, which states that at least one state on
every cycle in the reduced state graph is fully expanded. This formulation
clearly implies C3, since a transition which is continuously enabled along a
cycle will be explored at the state that is fully expanded.

Typically, C3 is ensured during depth-first search by examining the suc-
cessors of all transitions that make up a candidate for an ample set. If any of
these states has not been completely explored yet (i.e., is still on the search
stack), the chosen set of transitions cannot be an ample set. Another candi-
date set has to be found at that state, or the state has to be fully expanded.

In devising a new means to enforce the cycle closing condition, we first
observe that both C2 and C3 limit the extent of the reduction: they define

36

cases where a state has to be fully expanded. Moreover, condition C2 can
help to ensure C3: on a cycle which contains a visible transition, C2 guaran-
tees that the originating state of that transition is fully expanded, and hence
the cycle also satisfies C3. This observation suggests that C2 and C3 can
be combined into a single condition C2’:

C2’ There exists a set of transitions Ts, which includes all visible tran-
sitions, such that any cycle in the reduced state space contains a transition
from Ts. If ample(s) ∩ Ts 6= ∅, then ample(s) = enabled (s).

In other words, any cycle in the state graph of M ′ must execute at least
one transition from Ts, and the originating states of any transitions in Ts

are fully expanded. The transitions in Ts have been called sticky transitions,
since they “stick” to all other transitions which are enabled at the same state
and force their exploration.

We have seen in Section 2.6 how to ensure condition C1 statically for
systems composed of communicating processes. It remains to devise a proce-
dure that determines a suitable set Ts of transitions which breaks all cycles
in the reduced state space. This cannot be done directly, since the reduced
state space itself depends on which transitions are chosen for exploration,
and implicitly on Ts. However, the problem can be reduced to a simpler one,
by observing that in a system composed of multiple processes, each cycle in
the global state space projects to a cycle in each of the component processes.
Conversely, a set of sticky transitions that breaks each local cycle is also
guaranteed to break each global cycle. Thus, it is sufficient that the removal
of all sticky transitions leave all component processes acyclic, a condition
which can be ensured statically and locally, without constructing the state
space of either the full or the reduced model.

Thus, condition C2’ can be strengthened to the following formulation:
C2” There exists a set of sticky transitions Ts which includes all visible

transitions, such that each local cycle of a component process contains at least
one sticky transition. If ample(s) includes a sticky transition, then s is fully
expanded.

Since a sticky transition forces a state to be fully expanded, it follows
that fewer sticky transitions will result in a better reduction. It is important
therefore to generate a small set Ts of sticky transitions. However, as with
the selection of ample sets, the actual efficiency of the reduction depends
on which transition are chosen to be sticky, and not solely on the number
of transitions. Likewise, it is important that the set of sticky transitions be
generated with a small overhead.

37

Assuming that a set of sticky transitions has been selected, a useful re-
duction strategy is to attempt at each state to find an ample set without
including a sticky transition, in order to postpone the full expansion of a
state as much as possible. Eventually, a sticky transition has to be selected,
since otherwise no cycle can be closed, and the current state is expanded
completely. However, it is likely that by giving priority to non-sticky tran-
sitions, the set of enabled transitions at that state contains many sticky
transitions which have been delayed so far. Thus, rather than having each of
them forcing the full expansion of a different state, only one state needs to
be expanded, and the effect of having many sticky transitions is compensated
to some extent.

Even with this heuristic, it is beneficial to generate a small set of sticky
transitions in the first place. The next section describes how this can be done
by analyzing the effects of transitions and their dependencies to determine
potential cycles in the state space. The procedure given in this section marks
transitions in order to satisfy the weaker condition C2’, resorting to the
stronger condition C2” only when no optimizations can be made.

2.8.2 Determining Sticky Transitions

We examine the common case of a system with a control structure defined by
parallel processes, and a set of data variables. Consider a finite state system
composed of processes P1, P2, · · · , Pn, each of which is described as a state-
transition graph, also called process control graph. In addition, the system
may contain a set V of variables which may be either global or local to a
process, and whose value may be changed by the transitions in the system.
The state of the system is thus composed of the control state of each process,
together with the values of the variables.

Let Tv be the set of visible transitions. Following condition C2”, it
suffices to find a set of transitions Ts ⊇ Tv, such that all process control
graphs become acyclic when the transitions from Ts are removed. Here, the
removal of a transition which changes the state in several processes means
the removal of all edges that are projections of the transition in the process
control graphs. After first removing the visible transitions, the remainder of
each process control graph can be made acyclic in linear time by removing
all back edges in a depth-first search. Yet, in the worst case, up to half of the
edges need to be removed, whereas our goal is to keep this set small. For the
general case, a somewhat better bound on the number of edges is presented

38

in [BS97], and [ELS93] gives a simple heuristic algorithm to find a small set of
such edges in linear time. In the following, we exploit the semantic structure
of the system in order to obtain a small set of sticky transitions.

As a preliminary observation, the projection of any global cycle onto a
process control graph has to belong to some strongly connected component
of the control graph. Thus, any transitions whose projections do not belong
to a strongly connected component can be ignored in the following analysis.

The key observation is that a cycle in the state space of the system has
not only to restore the control point of each process, but also the value of
each data variable. Assume that an ordering relation ≺v is defined on the
domain of a variable v. Then, if a cycle contains a transition that increases
the value of v (with respect to ≺v), this must be compensated by a transition
which decreases the value of v.

Consequently, we examine the effect of a transition α on a variable v.
If it can be established statically that all executions of α increment (or,
respectively, decrement) v, we denote effect (α, v) = +, and, respectively
effect(α, v) = −. If α always leaves v unmodified, we denote effect(α, v) = 0.
Finally, if the effect of α varies from one execution to another, or cannot be
determined statically, we denote effect (α, v) = ⋆.

If effect(α, v) = +, define Compensate(α, v) = {β | effect(β, v) ∈ {−, ⋆}}
as the set of all transitions whose effect on v is potentially opposite to
that of α, and likewise Compensate(α, v) = {β | effect (β, v) ∈ {+, ⋆}} for
effect(α, v) = −. It follows that if a cycle contains a transition α, it also has
to contain at least one transition from Compensate(α, v) in order to restore
the value of v.

The information about the effects of transitions on variables can be used
to remove additional edges from a process control graph, without having to
mark them as sticky, thus reducing the number of sticky transitions needed
to break all its cycles. First, let Tu be the set of uncompensated transitions
α, for which there exists a variable v such that Compensate(α, v) = ∅. Then
α cannot belong to any global cycle in the system state space, since no other
transition can restore the value of v. Thus, the transitions in Tu can be
removed from all process control graphs.

Second, suppose that Handled is the set of transitions for which we al-
ready know that any global cycle containing a transition from this set will also
contain a sticky transition. For instance, this is trivially true if Handled is
the set of sticky transitions selected so far; ultimately, we want all transitions
to be in Handled , which would guarantee C2’. For a transition α, we define

39

the predicate Covered(α,Handled) = ∃v ∈ V .Compensate(α, v) ⊆ Handled .
Then, any cycle which contains a transition α covered by Handled will also
contain a transition from Handled and thus a sticky transition. Again, α
can be removed from all process control graphs since all potential cycles
containing α already contain sticky transitions.

The notions and properties established so far lead to the following al-
gorithm for computing a set Ts of sticky transitions, given in Figure 2.5:

remove Tu and Tv from all process control graphs
Handled = Ts = Tv

for all strongly connected components C of process control graphs
C ′ = C
for all transitions α in C

if Covered(α,Handled) then C ′ = C ′ \ {α}
Ts = Ts ∪ BackEdges (C ′)
Handled = Handled ∪ transitions(C)

end

Figure 2.5: Algorithm for computing sticky sets

Initially, the visible and uncompensated transitions are removed from all
process control graphs, and the sets of handled and sticky transitions are
initialized with all visible transitions. Next, we consider in turn the strongly
connected components of all process control graphs. First, we compute the
set of transitions which always belong to cycles containing transitions handled
so far, and remove them from the strongly connected component C. Next,
all back edges of the resulting graph C ′ are found and marked as sticky. At
these point, any cycle with a transition from C contains a sticky transition,
and the transitions from C can thus be included in Handled . The algorithm
completes when all strongly connected components are analyzed.

2.8.3 Experimental Evaluation

Conceptually, static reduction cannot benefit from all the information which
is available to a dynamic reduction algorithm. In our framework, determining
when a cycle can be closed in the global state space is based on a conservative
analysis of the local cycles in all component processes. It is possible that

40

transitions are marked as sticky in order to break global cycles that never
actually occur during the execution of the system. In comparison, traditional
dynamic reduction techniques can use complete state information as well as
the history of the search in order to guide the selection of ample transitions.

A first evaluation of static partial order reduction is reported in [KLM+98]
after implementing static partial order reduction in a compiler from SDL to
S/R. Several typical benchmarks exhibiting concurrency have been analyzed,
including a concurrent sorting algorithm, a leader election protocol and an
asynchronous tree arbiter, all parameterized with various numbers of pro-
cesses. The results reported in [KLM+98] are presented here in Table 2.1.
A comparison of static partial order reduction with the traditional dynamic
algorithm, using explicit state search in both cases, has shown similar per-
formance in terms of the resulting state space. Thus, in practice the limited
information available to a static technique does not lead to performance
drawbacks if a good algorithm for selecting sticky transitions is employed.

Number of states
Experiments (no reduction) (static reduction)

Concurrent sort, N = 2 191 66
Concurrent sort, N = 3 4903 553
Concurrent sort, N = 4 135329 4163
Concurrent sort, N = 5 3940720 29541

Leader election, N = 2 383 107
Leader election, N = 3 11068 490
Leader election, N = 4 537897 3021
Leader election, N = 5 26523000 21856

Tree arbiter, N = 2 73 48
Tree arbiter, N = 4 18247 4916
Tree arbiter, N = 6 3272700 358352

Table 2.1: Experimental Results

The same examples show, as expected, that for small examples, a symbolic
search on the statically reduced models is more expensive than a traditional
explicit search with partial order reduction, and also more expensive than a
symbolic search with no reduction at all. This is not an intrinsic property of
static partial order reduction. It simply relates to the fact that for systems

41

which are trivial to analyze, using both reduction and symbolic representa-
tion are optimizations whose overhead does not pay off. The characteristic
profile of static reduction emerges as systems with a larger number of pro-
cesses are analyzed. As the state space increases, the symbolic search with
partial order reduction performs better than the symbolic search without
reduction. The combined use of both techniques enables the verification of
systems which are too large to be handled by either method alone.

Concluding, the main advantage of static partial order reduction is that
it can be performed as a preprocessing phase prior to verification and hence
is completely separate from the model checking engine. This enables a more
modular construction of a model checking environment, and specifically, the
use of partial order reduction with any existing model checker. As a resulting
benefit, the performance advantages obtained by reducing the state space
can be combined with optimizations specific to the target model checker.
In particular, results show that partial order reduction and symbolic model
checking, both techniques which have been long used independently, can be
combined, extending the limits of automatic verification.

42

Chapter 3

Partial Order Reduction for
Timed Automata

3.1 Introduction

Timed automata, originally defined by Alur and Dill [AD90] are a widespread
model for continuous-time systems. They are extensions of finite state au-
tomata with constraints on timing behavior. The underlying state-transition
graph of a timed automaton is augmented with a set of continuous-time
clocks. Transitions (and in some variants of the model, states) are labeled
with clock constraints that restrict the executions of the system in time.

The introduction of continuous time significantly increases the complexity
of the verification problem. The state space of timed automata is inherently
uncountable, but can be reduced to a finite model. The first such method is
the region graph construction of [ACD90], however, its complexity is expo-
nential in the number of clocks and of the largest constant in the model. A
different construction, the so-called zone automaton model is based on per-
forming computations on clock constraints [Dil89]. Though its theoretical
worst-case complexity is not lower, it has proved efficient in practice, and
has been used by a number of real-time verifiers [NSY92, Won94, LPW95].
Among the systems that have been successfully modeled and verified using
timed automata are asynchronous circuits, communication protocols, auto-
motive and manufacturing systems.

In this section, we show how to improve the efficiency of model check-
ing for a system composed of timed automata using partial order reduction.

43

First, we describe our model and related approaches to partial order reduc-
tion, including a local-time semantics [BJLW98]. In the remainder of the
section, we extend this approach. We show that the local-time semantics can
be modified to preserve the truth value of specifications in a timed extension
of next-time free LTL. We give a constructive proof that the resulting model
accepts a finite quotient, by presenting a condition for the equivalence of two
local-time zones, which forms the basis for a state-space search algorithm.
We discuss how the representation of time zones in the local-time semantics
can be improved, and how to select ample sets of transitions for partial order
reduction. The method leads to efficiency improvements on two counts: the
local-time model has as effect the generation of fewer time zones, whereas
partial order reduction leads to the exploration of fewer control states.

3.2 Timed Automata

3.2.1 Definition

Timed automata use a global and continuous notion of time. The clocks
used to describe a timed automaton are real-time variables that evolve at
the same rate:

Definition 1 (Clock; clock assignment) A clock is a variable over the set
R

+ of nonnegative reals. Given a set of clocks C = {x1, x2, . . . , xn}, a clock
assignment is a function v : C → R

+ which assigns each clock a nonnegative
real value. The set of clock assignments over C is denoted by V(C).

Definition 2 (Clock constraint) Let C be a finite set of clocks. A clock
constraint over C is a formula defined by the following grammar:

ψ ::= true | c ≺ x | x ≺ c | x− y ≺ c | ψ ∧ ψ
where x, y ∈ C are clocks, c ∈ Z is an integer, and ≺∈ {<,≤}. The first
four terms on the right hand side are atomic clock constraints. The set of
clock constraints over C is denoted by B(C).

Since a constraint is a conjunction of elementary inequalities, it always
represents a convex region in the space of clocks.

Definition 3 (Timed Automaton) A timed automaton is represented by a
tuple A = (S, S0, C, E, I, µ), where

44

• S is a finite set of nodes (also called control states or locations)

• S0 ⊆ S is the set of initial nodes

• C is a finite set of real-valued non-negative clocks

• E ⊆ S×B(C)×2C×S is a finite set of edges. Each edge e = 〈s, ψ,R, s′〉
has a clock constraint ψ called enabling condition and a set R ⊆ C of
clocks that are reset on traversing the edge

• I : S → B(C) associates each node with a clock constraint called the
invariant condition

• µ : S → P(AP) is a function labeling each node with atomic proposi-
tions from a set AP .

The clocks of a timed automaton allow the expression of timing prop-
erties. A clock that is reset by a transition can be subsequently used in a
timing constraint, allowing a reference to the timepoint when that transition
was taken. An enabling condition constrains the execution of a transition,
without forcing it to be taken. An invariant condition, on the other hand,
allows an automaton to stay at a certain state only as long as the constraint
is satisfied.

We reason about systems composed of several timed automata. We define
a general parallel composition parameterized by a synchronization function:

Definition 4 (Network of timed automata) Consider the timed automata
Ai = (Si, S0

i , Ci, Ei, Ii, µi) for 1 ≤ i ≤ n and a synchronization function
f :

∏n

i=1(Ei ∪ {ǫ}) → {0, 1}, where ǫ is a symbol denoting a null edge.
The network of timed automata A1 ‖ A2 ‖ . . . ‖ An is a timed automaton
A = (S, S0, C, E, I, µ), where:

• S = S1 × S2 × . . .× Sn

• S0 = S0
1 × S0

2 × . . .× S0
n

• C = C1 ∪ C2 ∪ . . . ∪ Cn (it is assumed that Ci ∩ Cj = ∅, for i 6= j)

• E contains a family of edges (called a transition) for each tuple of edges
with f(e1, . . . , en) = 1. The edges of transition a have ψ =

∧
i∈active(a) ψi

and R =
⋃

i∈active(a)Ri, where active(a) = {i | ei 6= ǫ}, and ei =

45

〈si, ψi, Ri, s′i〉. The components si and s′i of the edge endpoints are
given by ei for i ∈ active(a) and are arbitrary, but pairwise equal (sj =
s′j ∈ Sj) for j 6∈ active(a).

• I(s) =
∧n

i=1 Ii(si)

• µ(s) =
⋃n

i=1 µ(si) (it is assumed that the sets of atomic propositions
APi are pairwise disjoint).

In other words, a transition in the network of automata corresponds to the
synchronous traversal of edges in several of the component automata. The
synchronization function determines which automata execute (the active set
for the given transition) and which ones remain at their local state (those
for which ei = ǫ). A transition whose active set contains more than one
automaton is called a synchronization transition, otherwise it is called local.
The set of transitions is denoted by T .

The above definition allows the modeling of many common synchroniza-
tion paradigms. For instance, to model CCS-type communication one can
assume that the edges of the individual automata are labeled by action sym-
bols, and choose a synchronization function which has value 1 for tuples which
contain a pair of matching communication transitions, and ǫ-transitions oth-
erwise. Multi-way synchronization can be modeled in a similar fashion.

3.2.2 Semantics

Two basic operations are defined on clocks: incrementing and resetting. If
v ∈ V(C) is a clock assignment and d ∈ R+ a nonnegative real number, then
v+ d is the assignment given by (v+ d)(x) = v(x)+ d, for each clock x ∈ C.

Given a set of clocks R ∈ C, v[R 7→ 0] denotes the clock assignment that
agrees with v for all clocks in C \R, and is zero for all clocks x ∈ R. For a
clock constraint ψ ∈ B(C) and a clock assignment v ∈ V(C), denote by ψ(v)
the truth value of ψ for the clock assignment v.

The semantics of a timed automaton can be defined as follows:

Definition 5 (Semantics) A model of a timed automaton is a state-transition
graph S(A) = (Σ,Σ0,→), where

• Σ = {(s, v) | I(s)(v)} is the set of states whose clock assignment satis-
fies the node invariant

46

• Σ0 = {(s0, 0C) | s0 ∈ S0} is the set of initial states, where 0C is the
clock assignment with 0C(x) = 0, for all x ∈ C

• → is the transition relation defined as the union of delay (or time)

transitions
d
; and action (or event) transitions

a
→, as follows:

(s, v)
d
; (s, v+ d) if d ∈ R+ and I(s)(v+ d′) holds for all d′ ∈ [0, d]

(s, v)
a
→ (s′, v[R 7→ 0]) for a ∈ T if there exists an edge e =

(s, ψ,R, s′) ∈ a, such that ψ(v) is true and I(s′)(v[R 7→ 0]) holds.

In other words, a timed state in the model is a pair consisting of a node
and a clock assignment that satisfies the location invariant. Transitions are
of two types: a delay transition is caused by the elapsing of time in the same
control state, if the invariant condition remains satisfied throughout. An
action transition can be executed if the clock assignment satisfies the enabling
condition. The clocks in the set R associated with the edge are reset, whereas
the other clocks maintain their value (the transition is instantaneous). The
location invariant has to be satisfied in the resulting state.

Any timed automaton can be transformed into an equivalent automaton
whose state invariants only impose upper bounds on clocks, i.e., are composed
of constraints of the form xi ≺ c. This is true because constraints of the type
xi − xj ≺ c or c ≺ xi cannot be falsified by the passage of time and will
remain true in a control state if they were true upon entering it:

• xi − xj ≺ c⇔ (xi + d) − (xj + d) ≺ c, for all d ∈ R

• c ≺ xi ⇒ c ≺ xi + d, for all d ∈ R+

Therefore, it suffices to have these two types of constraints guaranteed at
the execution time of any transition entering the given location. Specifically,
consider the edge e = 〈s, a, ψ,R, s′〉. The conjuncts discussed above can be
incorporated into the enabling condition of the edge by splitting the invariant
into I(s′) = Iedge ∧Inode and rewriting the enabling condition for an arbitrary
clock valuation v as follows (we write E[R 7→ 0] for the clock expression E
in which the clocks belonging to R are replaced with 0):

ψ(v)∧ (Iedge ∧ Inode)(v[R 7→ 0])

= ψ(v)∧ Iedge(v[R 7→ 0]) ∧ Inode(v[R 7→ 0])

= ψ(v)∧ (Iedge [R 7→ 0])(v) ∧ Inode(v[R 7→ 0])

= (ψ ∧ Iedge [R 7→ 0])(v)∧ Inode(v[R 7→ 0])

47

The new enabling condition is therefore ψ ∧ Iedge [R 7→ 0], and the new in-
variant is Inode . We assume in the following that all timed automata have
been transformed to observe this property.

In addition, since all clock constraints are conjunctions and therefore con-
vex, the invariant holds in all intermediate states of a delay transition if it
holds at the endpoints. Assuming that the automaton has been transformed
as above (with invariants enforcing only upper bounds on clocks), the invari-
ant only needs to be checked in the resulting state:

(s, v)
d
; (s, v + d) if d ∈ R+, and I(s)(v+ d) holds

In our analysis of the system, we will observe its execution traces, defined
as follows:

Definition 6 (Execution trace) An execution trace of a timed automaton
is a finite or infinite sequence σ = (s0, 0C) → (s1, v1) → . . . → (sk, vk) . . .
starting from an initial location s0 ∈ S0.

We denote by σ(k) = (sk, vk) the kth state on the trace σ, by σk the finite
prefix of σ ending at (sk, vk) and by σk the suffix of σ starting at the same
state.

3.3 The model checking problem

Verification of timed automata models has been studied in several contexts.
The Kronos model checker [NSY92] is built for timed versions of CTL and
of the modal µ-calculus [HNSY92]. Uppaal [LPW95] accepts a logic for
safety and bounded liveness properties which can reference values of clocks.
However, partial order approaches have been so far restricted to less expres-
sive properties: Pagani [Pag96, Pag97] addresses the problem of deadlock
detection, whereas Bengtsson et al. [BJLW98] check local reachability within
one process.

We propose to use an extension of LTL that also allows atomic time
constraints to be used in place of atomic propositions. The logic is inspired
from the timed temporal logic for nets (TNL) of Yoneda et al. [YSSC93],
which was defined and used in the context of Petri nets. The inclusion of
atomic time constraints in the logic allows the real-time aspect of the system
to be captured: comparing the difference of two clocks that are reset by two
transitions permits reasoning about the time separation of the corresponding
two events.

48

The formulas of our logic, which we will call LTL∆, are defined as follows:

• an atomic formula ϕa is an atomic proposition p ∈ AP or an atomic
clock constraint x− y ≺ c, where x, y ∈ C, c ∈ Z and ≺∈ {<,≤}

• if ϕ1 and ϕ2 are formulas, then ¬ϕ1, ϕ1 ∧ϕ2 and ϕ1 Uϕ2 are formulas.

To maintain the correspondence with untimed systems, we will define the
semantics of LTL∆ only for infinite execution paths on which time diverges,
i.e., for which the sum of delays is infinite. This means disallowing Zeno
paths, on which an infinite number of transitions is taken in a finite amount
of time.

Definition 7 (Semantics of logic) For an infinite, time-divergent execution
trace σ = (s0, v0) → (s1, v1) → . . . → (sk, vk) → . . ., the semantics of an
LTL∆ formula is defined as follows:

• (s, v) |= p iff p ∈ µ(s)

• (s, v) |= x− y ≺ c iff v(x)− v(y) ≺ c.

• σ |= ϕa iff ϕa is an atomic formula and (s0, v0) |= ϕa

• σ |= ¬ϕ iff not σ |= ϕ

• σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

• σ |= ϕ1 U ϕ2 iff there ∃k ≥ 0 such that σk |= ϕ2 and σj |= ϕ1 for all
0 ≤ j < k

For a delay transition (s, v)
d
; (s, v + d), the automaton passes through

the continuous sequence of intermediate states (s, v + d′) with 0 ≤ d′ ≤ d.
Since both control state and clock differences are preserved in each of these
intermediate states (for any two clocks x, y ∈ C we have v(x) − v(y) ≺ c ⇔
(v+d′)(x)−(v+d′)(y) ≺ c, for all d′ ∈ [0, d]), they have the same truth value
for all atomic subformulas of a formula in LTL∆. Thus, the given semantics
of LTL∆ (considering truth values at transition endpoints) corresponds to
the intuitive meaning of continuous execution.

49

3.3.1 Effect of transition interleavings

The traditional reachability analysis algorithm for networks of timed au-
tomata explores all possible transition interleavings among the individual
components. A partial order method would select a representative from each
set of equivalent interleavings, exploring only a reduced portion of the state
space. However, in the given model, clocks advance simultaneously in all au-
tomata, causing dependencies between transitions in individual components.
Different interleavings may therefore produce different assignments to clock
values. The following simple example illustrates this problem.

Consider the system of two automata in Figure 3.1. The initial state is
given by 〈(r1, s1), x = y〉. From there, if transition a is executed first, the
system reaches the state 〈(r2, s1), x ≤ y〉 (clock x is reset on executing the
transition, so its value will not exceed that of y). Subsequently, on executing
b, clock y is reset, resulting in the state 〈(r2, s2), x ≥ y〉. On the other hand,
if b is executed first, the system reaches the state 〈(r1, s2), x ≥ y〉, and then,
after executing a, the state 〈(r2, s2), x ≤ y〉.

��

��

r1

?

a x 7→ 0

��

��

r2

��

��

s1

?

b y 7→ 0

��

��

s2

Figure 3.1: Effect of transition interleavings

The two interleavings lead to the same control state, but to different clock
zones and therefore different states in the zone automaton. Thus, the two
transitions are not independent and the partial order reduction techniques
developed for untimed systems cannot be applied in this case.

Note that after executing both transitions in either interleaving, the sys-
tem state belongs to the union of the two zones, 〈(r2, s2), x ≥ y ∨ x ≤ y〉 =
〈(r2, s2), true〉. If the verified property is insensitive to the relative ordering
of x and y, the two interleavings are still equivalent. In such cases, a partial
order reduction procedure should produce a zone containing the timed states
reachable by all transition interleavings, while exploring only one interleav-
ing, and thus fewer states.

50

3.4 Related Work

Partial order reduction techniques have been first investigated in the context
of timed Petri nets by Yoneda, Schlingloff et al. [YSSC93, YS97]. Their
model has earliest and latest firing times associated with transitions and is
thus less expressive than timed automata. For specifications, they defined
an expressive timed extension of next-time free LTL, which is the source
for our logic LTL∆. Their reduction method is based on stubborn sets, and
they show that only the transitions in the reduced set chosen for exploration
need to be ordered in time. Lilius [Lil98] suggests an improvement where the
transition firing order need not be stored in the timed state. This reduces
the complexity of the timing constraints and the branching in the generated
graph. He also shows how the unfolding prefix of McMillan [McM95] can be
used to select reduced sets of transitions for exploration.

For timed automata, the first approach to partial order reduction appears
to be the work of Pagani [Pag96, Pag97]. Her thesis analyzes the dependence
relation between transitions in a network of timed automata and the cases
when partial order reduction can be applied. We briefly present the main
results, in order to illustrate the issues that restrict the application of partial
order reduction for this timed model. Pagani observes that there are the
following elementary dependence cases among action and delay transitions:

•
t
; disables

a
→ if there exists a state 〈s, v〉 and t ∈ R+ such that

a
→ is

enabled in 〈s, v〉 but not in 〈s, v + t〉 .

•
t
; enables

a
→ if there exists a state 〈s, v〉 and t ∈ R+ such that

a
→ is

not enabled in 〈s, v〉 but is enabled in 〈s, v + t〉 .

•
a
→ disables

t
; if there exists a state 〈s, v〉 and t ∈ R+ such that time t

can pass in 〈s, v〉 but not in 〈s′, v〉 (where s
a
→ s′).

•
a
→ enables

t
; if there exists a state 〈s, v〉 and t ∈ R+ such that time t

cannot pass in 〈s, v〉 but can pass in 〈s′, v〉 (where s
a
→ s′).

The above elementary relations induce dependence relations between the
transitions of the zone automaton, which model the joint effect of action and
delay transitions. Pagani identifies seven dependence cases for transitions
occurring in different component automata. One of these cases can be dis-
missed by using the weaker notion of independence which allows transitions
to enable one another. The remaining dependences cases are as follows:

51

1.
t
; enables

a
→ and

t
; disables

b
→.

2.
t
; enables

a
→ and

b
→ disables

t
;.

3. Ra 6= ∅ and Rb 6= ∅.

4. Ra 6= ∅ and
t
; enables

b
→.

5. Ra 6= ∅ and
t
; disables

b
→.

6. Ra 6= ∅ and
b
→ disables

t
;.

Case 1:

��

��

?

a x≥4

��

��

��

��

?

b y≤3

��

��

-

x

6

y

�

�

�

�

�

x ≤ y

-

a

-

x

6

y

�

�

�

-

b

-

x

6

y

�

�@

@

-

b

-

x

6

y

�

�

�

�

�

-

a

-

x

6

y

�

�

�

Case 5:

��

��

?

a x 7→0

��

��

��

��

?

b y≤5

��

��

-

x

6

y

�

�

�

�

�

x = y

-

a

-

x

6

y

�

�

�

�

�

-

b

-

x

6

y

�

�

�

�

�

�

�

�

-

b

-

x

6

y

�

�

�

�

�

-

a

-

x

6

y

�

�

�

�

�

Figure 3.2: Dependent transitions in the zone automaton

52

The first two cases in the definition above violate the enabledness condi-
tion of independence, whereas the last four cases violate the commutativity

requirement. For instance, in case (1) it may be possible to execute
b
→ and

after some time
a
→, but if

a
→ is executed first, the amount of time that needs

to pass may disable
b
→. In case (3) (discussed in the previous section), the

relative value of the clocks in Ra and Rb will depend on the order in which

they were reset, i.e., on the execution order of
a
→ and

b
→. In case (5), if

b
→ is executed after

a
→, the relative difference between x and y is limited as

a consequence. Thus, the set of timed states reached after one interleaving
includes all states reached when the other interleaving is executed. Overall,
the analysis of Pagani shows that the number of independent transitions is
significantly reduced by timing.

The approach of Dams et al. [DGKK98] eliminates some of these depen-
dencies by using the asymmetric notion of covering instead of independence.
A transition b covers a transition a if all timed states reached by executing
a
→ followed by

b
→ can be reached by executing

b
→ and then

a
→, such as in case

(5) depicted above. Thus, to account for all the states, it is still sufficient to
choose just one interleaving, but while for independent transitions the choice
is irrelevant, here the covering transition needs to be explored first. However,
the approach is limited to the situation where the covering transition does
not reset any clocks.

Belluomini and Myers [BM98] also use a model with lower and upper
time bounds associated to transitions. They use partially ordered sets of
events, thus generating typically a single timed state for each control state.
However, the full set of control states is still explored.

Bošnački and Dams [BD98] describe an extension of the Spin model
checker with discrete time, which is compatible with the original partial or-
der reduction algorithms. The result follows from the restrictions imposed on
the timing extensions: clocks cannot be used in specifications, and passage
of time is possible only if no other transitions are enabled.

The approach on which we draw most is that of Bengtsson, Jonsson,
Lilius and Wang [BJLW98]. They define a local-time semantics based on
desynchronized execution of the component automata and local time delays,
with additional reference clocks to model synchronization. In this model the
same independence conditions as in the untimed case apply, and an algorithm
is given to decide the reachability of a local control state.

53

3.5 A local time model

In this section we revisit the local time model of Bengtsson et al. [BJLW98]
using a somewhat different notation and prove several results which underlie
its use for model checking.

To analyze the causes of dependence among transitions in a network of
timed automata, consider the effects of action and delay transitions in each
component automaton. From the definition of parallel composition one can
see that the enabling of an action transition and the resulting state change
only depend on the state of the automata in its active set. Moreover, the
states in the other automata are not changed by the transition. Conse-
quently, two action transitions involving two disjoint sets of automata are
independent, just as for composition of untimed systems.

On the other hand, a delay transition changes the state in all automata
by incrementing the values of all clocks (and is henceforth called a global
delay transition). It becomes therefore dependent on any action transition
that also changes clock values (for which R 6= ∅). However, one can view a
global delay transition as a set of simultaneous transitions with equal delay in
all component automata. This suggests that time-induced dependencies can
be removed by separating a global delay transition into individual transitions
for each component automaton, without requiring their simultaneity. To this
effect, local passage of time is introduced as follows:

Let v ∈ V(C) be a clock valuation. For d ∈ R and i ∈ 1, n, define the clock
valuation v+i d by: (v+i d)(x) = v(x) + d for x ∈ Ci and (v+i d)(x) = v(x)
otherwise.

A local delay transition
d
;i increments only the clocks in automaton Ai.

We associate such a transition with a pair (d, i) ∈ T∆ = R

+ × 1, n, define

active(
d
;i) = {i} and denote by Tl = T ∪ T∆ the set of action and local

delay transitions of A. For i ∈ 1, n, define the functions delay i : Tl 7→ R

+

as follows: delay i(
d
;i) = d, delay i(

d
;j) = 0 for i 6= j, and delay i(

a
→) = 0

for a ∈ T . They indicate the delay caused by a transition in a component
automaton.

Definition 8 (Local time model) The local time model L(A) for a network
of timed automata A = A1 ‖ A2 ‖ . . . ‖ An is a state-transition graph
with state set Σ, initial state set Σ0 and execution traces σ = (s0, v0)

τ1→

(s1, v1) . . .
τk→ (sk, vk) . . . starting from a state (s0, v0) ∈ Σ0 and satisfying

one of the following conditions for any k ≥ 1:

54

• τk = (d, i) ∈ T∆, sk = sk−1, vk = vk−1 +i d, and Ii(sk
i)(v

k−1 + d′) holds,
for all d′ ∈ [0, d], or

• τk ∈ T , (sk−1, vk−1)
τk→ (sk, vk), and

∑k−1
l=1 delay i(τl) =

∑k−1
l=1 delay j(τl)

for all i, j ∈ active(τk)

In the first case, automaton Ai takes a local delay transition, denoted by

(sk−1, vk−1)
d
;i (sk, vk). The second case corresponds to an action transition

(sk−1, vk−1)
τk→ (sk, vk), with the additional constraint that the elapsed time

(the sum of delays) is identical for all automata in the active set. (For a local
action transition, with only one active automaton, this additional constraint
is void). In both cases, a transition τk that satisfies the given conditions is
said to be enabled after the execution of σk−1. Denote by enabled (σ) and
enabled ∗(σ) the set of transitions and transition sequences, respectively, that
can follow a finite trace σ.

For a finite execution trace σ = (s0, v0)
τ1→ (s1, v1) . . .

τk→ (s, v), let
timei(σ) = t0 +

∑k

l=1 delay i(τl) where t0 ∈ R

+ is an arbitrary value de-
noting the timepoint at which the execution of σ starts. Then, timei(σ) (or
simply time i, when σ is understood from the context) denotes the timepoint
reached in Ai after executing the transitions in σ. The local configuration
of Ai reached by σ is the tuple cfg i(σ) = (si, vi, timei), where vi is the re-
striction of v to the clocks of Ai. The global configuration of A is the tuple
cfg(σ) = (cfg1(σ), cfg2(σ), . . . , cfgn(σ)), also written as cfg(σ) = (s, v, time)
with time = (time1, time2, . . . , timen). The set of all configurations is then
ΣC = Σ × (R+)n.

The definition of the local time model expresses the enabling of an action
transition in terms of the trace executed so far. The following proposition
shows that a configuration contains sufficient information to completely de-
termine the subsequently enabled transitions.

Proposition 1 The following properties hold in the local time model L(A)
for finite execution traces σ and σ′ and transition τ ∈ enabled (σ):

• if cfg i(σ) = cfg i(σ
′) for all i ∈ active(τ), then τ ∈ enabled (σ′) and

cfg i(στ) = cfg i(σ
′τ) for all i ∈ active(τ)

• cfg j(στ) = cfg j(σ) for all j 6∈ active(τ), where στ denotes the trace
obtained by extending σ with the transition τ .

55

Proof: For the first part of the proposition it suffices to show that the en-
abledness of a transition and its effect depend only on the local configurations

of the automata in its active set. For a local delay transition
d
;i in automa-

ton Ai, its enabledness is a function only of the local invariant in state si and
the clock valuation vi. The only state change is the increment of valuation
vi by d, which is again independent of other components.

For an action transition (s, v)
a
→ (s′, v′), the definition of parallel com-

position implies that its enabledness in S(A) depends on the local states
(si, vi) and the invariants of s′i for i ∈ active(a). For L(A), the additional
constraint is written as timei(σ) = time j(σ) for i, j ∈ active(a), which also
depends only on cfg i(σ) for i ∈ active(a). The state change is a function of
the local state only: for i ∈ active(a), s′i is given by the edge 〈si, ψi, Ri, s′i〉
in automaton Ai, and v′i = vi[Ri 7→ 0]. For j 6∈ active(a), we have s′j = sj by
definition and v′j = vj since no clocks in Aj are reset.

Finally, for the time component, we have timei(στ) = timei(σ)+delay i(τ)
for all i ∈ 1, n. Therefore time i(σ) = timei(σ′) ⇒ timei(στ) = timei(σ′τ).
Since the definition of delay ensures that delay j(τ) = 0 for all j 6∈ active(τ),
this implies timej(στ) = timej(σ) for j 6∈ active(τ). 2

As a consequence, two finite execution traces leading to the same config-
uration have the same set of enabled transitions. For a configuration γ ∈ ΣC

one can thus define enabled (γ) = enabled (σ), where σ is an arbitrary ex-
ecution trace with cfg(σ) = γ. Likewise, the successor configuration of γ
by a transition τ ∈ enabled (σ) is defined as the configuration reached when
extending the trace σ by transition τ : succτ(γ) = cfg(στ). This is again
independent of σ and we write γ

τ
→ succτ (γ).

We are now ready to prove the desired independence properties for tran-
sitions in L(A). In general, two transitions are called independent if neither
disables the execution of the other, and the same state is reached by executing
them in either order. This notion is formalized as follows:

Definition 9 (Independence) Two transitions τ1 and τ2 are independent iff
for any finite execution trace σ such that τ1, τ2 ∈ enabled (σ) the following
two conditions hold:
Enabledness: τ2 ∈ enabled (στ1) ∧ τ1 ∈ enabled (στ2)
Commutativity: fin(στ1τ2) = fin(στ2τ1)∧ enabled ∗(στ1τ2) = enabled ∗(στ2τ1)
where fin(σ) denotes the last state on the trace σ.

The following theorem then holds (cf. [BJLW98]):

56

Theorem 1 Two (action or local delay) transitions τ1, τ2 ∈ Tl that involve
disjoint sets of automata (active(τ1) ∩ active(τ2) = ∅) are independent.

Proof: If j ∈ active(τ2), then j 6∈ active(τ1) and cfg j(στ1) = cfg j(σ) for all
j ∈ active(τ2). Thus, τ2 ∈ enabled (σ) ⇒ τ2 ∈ enabled (στ1), and symmetri-
cally for the second conjunct.

For commutativity, since active(τ1) ∩ active(τ2) = ∅, each of the local
configurations is changed at most once, either by τ1 or by τ2, independently
of their ordering. Therefore, cfg(στ1τ2) = cfg(στ2τ1). In particular, this
means fin(στ1τ2) = fin(στ2τ1), and furthermore, since the enabledness of
transitions depends only on the reached configuration, enabled ∗(στ1τ2) =
enabled ∗(στ2τ1). 2

A finite trace σ in L(A) is called synchronized if timei(σ) = timej(σ)
for all i, j ∈ 1, n, i.e., if all automata have executed for the same amount of
time, denoted by time(σ). The following theorem relates the reachable state
spaces of the standard and local time models (cf. [BJLW98]):

Theorem 2 Each state (s, v) reachable in S(A) is also reachable in L(A).
Moreover, each state reached by a synchronized trace σl in L(A) is also reach-
able in S(A).

Proof: For the first part, note that any execution trace in S(A) yields an

execution trace in L(A) by replacing each global delay transition
d
; with the

sequence of local delay transitions
d
;1 . . .

d
;n.

The reverse implication follows by induction on the number of action
transitions in σl. For the base case, if σl is synchronized and contains only
local delay transitions, they sum up to the same total delay d. Then, fin(σl)

is reachable in S(A) by executing the global delay transition
d
;.

For the induction step, consider the action transition a in σl executed at
the latest timepoint, ta ≤ t = time(σl). Then, in every automaton, σl ends
with local delay transitions totaling at least t − ta. Removing this delay in
every automaton yields a synchronized trace σ′

l with time(σ′
l) = ta. In σ′

l,
a is the last transition in all participating automata. Its removal results in
the synchronized execution trace σ′′

l with fewer action transitions. By the
induction hypothesis, the state fin(σ′′

l) is reachable in S(A), and fin(σl) is

reachable from it by executing
a
→ followed by

t−ta
; . 2

57

3.6 The local-time zone automaton

In the global-time semantics, sets of timed states can be represented using
clock constraints, resulting in a quotient structure called the zone automaton.
In [BJLW98], this approach is adapted to the local-time model. Using our
notations, a local-time zone is a convex set of configurations z ∈ ΣC with the
same control state. A transition is enabled in a zone iff it is enabled in some
configuration belonging to the zone. We denote this set by enabled (z) =
{τ ∈ Tl | ∃γ ∈ z . τ ∈ enabled (γ)}. The successor of a zone z by a transition
τ ∈ enabled (z) is succτ (z) = {succτ (γ) | γ ∈ z ∧ τ ∈ enabled (γ)}.

For the standard zone automaton, an exploration step consists of an ac-
tion transition followed by a delay transition of arbitrary amount. For the
local-time model, we combine an action transition with subsequent delay
transitions in all automata belonging to its active set, and prove that any
reachable local-time state can be generated in this way. Specifically, we show:

Proposition 2 For any finite execution trace σ, there exists a trace σ′ with
the same final configuration, which starts with a local delay transition in
each component automaton, after which every subsequent action transition is
followed by local delay transitions in all participating automata.

Proof: A delay transition
d
;i commutes with any other delay transition, and

with action transitions a such that i 6∈ active(a). Thus, delay transitions can
be moved towards the beginning of the execution trace σ, while merging
consecutive delay transitions in the same automaton, until the preceding
action transition involves the same automaton, or until it precedes all action
transitions. 2

Based on this result, we choose a zone successor operation that first per-
forms an action transition

a
→, followed by arbitrary delay transitions in the

automata belonging to its active set:

succZ
l (z, a) = {γk ∈ ΣC | ∃γ ∈ z, ∃di1, · · · , dik ∈ R+ . γ

a
→ γ′

di1
;i1 . . .

dik
;ik γk}

where active(a) = {i1, i2, . . . , ik}. The independence of local delay transitions
ensures the uniqueness of the above definition irrespective of the ordering of
indices in active(a). An initial local-time zone is the set of all configurations
reachable from an initial state by a sequence of delay transitions:

initZ
l (s0) = {cfg(σ) | ∃di1, · · · , din ∈ R+ . σ = (s0, 0C)

di1
; . . .

din
; (s0, vn)}

58

If succ∆
i (z) = {γ′ | ∃γ ∈ z, ∃d ∈ R+.γ

d
;i γ′} is the successor by an arbitrary

local delay, then initZ
l (s0) = (succ∆

n ◦ . . . ◦ succ∆
1)(s0, 0C)) and succZ

l (z, a) =
(succ∆

ik
◦ . . . ◦ succ∆

i1
◦ succa)(z), where ◦ denotes function composition. The

local-time zone automaton can now be defined as follows:

Definition 10 (Local-time zone automaton) The local-time zone automa-
ton Zl(A) for a network of automata A is a tuple (Zl, Z0

l , succ
Z
l), where

Z0
l = {initZ

l (s0) | s0 ∈ S0} is the set of initial local-time zones, succZ
l is

the successor relation defined above, and Zl is the set of all local-time zones
reachable by successive application of succZ

l from an initial zone.

Together with Proposition 2, this definition implies directly the following:

Theorem 3 A state is reachable in the model L(A) iff it belongs to a zone
z which is reachable in the local-time zone automaton Zl(A).

3.6.1 Representation of local-time zones

In [BJLW98], a representation of local-time zones as difference bound matri-
ces [Dil89] is given which uses one additional variable per automaton. For a
class of timed automata, we derive an improved representation which does
not need additional space compared to the standard zone automaton.

In the standard zone automaton, zones are represented using difference
constraint on the clocks of the automaton. Atomic constraints between two
clocks are invariant to global delay transitions. However, in the local-time
model, the difference between two clocks in different automata is affected

by a local delay transition in either of these automata. A transition
d
;i

increments both the clocks in Ci and the value of timei. Instead of reasoning
about the value vi(x) of a clock x ∈ Ci, this suggests considering the value
timei − vi(x). Indeed, this value represents the timepoint at which clock x
was last reset, and is consequently invariant to any delay transitions.

Consider the new variables ti for i ∈ 1, n, and tx for all clocks x ∈ C.
Denote Ti = {tx | x ∈ Ci} for i ∈ 1, n, T+

i = Ti ∪ {ti}, T = {tx | x ∈ C} =⋃n

i=1 Ti, and T+ =
⋃n

i=1 T
+
i . Given a configuration (s, v, time), define the

valuation v̄ : T+ → R

+ by v̄(ti) = timei for i ∈ 1, n (ti is the reference time
in automaton Ai) and v̄(tx) = timei − v(x) for x ∈ Ci (tx is the last reset
time of x). Conversely, v̄ uniquely determines v and time, and (s, v̄) is an
alternate representation for a configuration.

59

Any atomic clock constraint appearing in the description of A can be
rewritten as a difference constraint on two variables in T+. Indeed, in a
difference constraint x − y ≺ c, both clocks belong to the same automaton
Ai, and therefore x−y = (ti−tx)−(ti−ty) = ty−tx. Likewise, the constraints
x ≺ c or c ≺ x can be rewritten as ti − tx ≺ c or c ≺ ti − tx, respectively.

A local-time clock zone is the set of valuations belonging to a local-time
zone. A zone is then written as 〈s, ψl〉 where s is the control state and ψl is
the clock zone. We prove:

Proposition 3 A local-time clock zone can be written as a difference con-
straint on the variables in T+: ψl =

∧
tu,tw∈T+ tu − tw ≺ cuw, with cuw ∈Z.

Proof: In an initial configuration, tx = ti = t0, ∀x ∈ Ci, i ∈ 1, n. Thus,
ψl =

∧
tu,tw∈T+(tu = tw).

For an action transition (s, v̄)
a
→ (s′, v̄′), we have v̄′(tu) = v̄(tu) for u 6∈ Ra

and v̄′(tx) = ti for x ∈ Ra (where ix identifies the automaton Aix contain-
ing x). We denote this by v̄′ = v̄[tx 7→ tix]x∈Ra and extend the notation
to clock zones. Also, the enabling condition ψa holds for v̄ and the refer-
ence times in Ta = {ti | i ∈ active(a)} have equal values. Thus, we have
succa(ψl) = {v̄′ | (s, v̄)

a
→ (s′, v̄′)} = (ψl ∧ψa ∧

∧
ti,tj∈Ta

ti = tj)[tx 7→ tix]x∈Ra,

or equivalently succa(ψl) = [∃Xa . ψl ∧ ψa ∧
∧

ti,tj∈Ta
ti = tj] ∧

∧
x∈Ra

tx = tix,

with Xa = {tx | x ∈ Ra} and ∃Xa denoting quantification over all variables in
Xa. Difference constraints are closed under conjunction and quantification,
therefore suca(ψl) is a difference constraint.

For a local delay transition (s, v̄)
d
;i (s, v̄′), we have v̄′(ti) = v̄(ti) + d

and v̄′(tu) = v̄(tu) for all tu ∈ T+ \ {ti}. Denote this by v̄′ = v̄ +i d and let
ψl ⇑i= {v̄′ | ∃v̄ ∈ ψl, ∃d ∈ R+ . v̄′ = v̄ +i d} be the zone obtained from ψl

after an arbitrary delay
d
;i. If e[y/x] denotes substitution of y for x in e,

then we have ψl⇑i= [∃d ∈ R+ . ψl][ti/ti + d] = [∃ti ∈ R+ . ψl ∧ t′i ≥ ti][ti/t′i].

Since (s, v̄)
d
;i (s, v̄′) iff v̄′ = v̄ +i d and Ii(si)(v̄′) holds, we obtain that

succ∆
i (ψl) = ψl⇑i ∧Ii(si), which is again a difference constraint.

Combining action and delay steps, we obtain:
succZ

l (ψl, a) = ([∃Xa . ψl ∧ ψa ∧
∧

ti,tj∈Ta
ti = tj] ∧

∧
x∈Ra

tx = tix)⇑
i1 . . . ⇑ik

∧
∧

i∈active(a) Ii(s′i). 2

Despite the desynchronization introduced by the local-time model, the
representation of a local-time clock zone is still monolithic and relates reset

60

times of clocks to reference times in all automata. We prove that for a class
of networks the following simpler representation holds:

Proposition 4 If every synchronization transition in network A resets at
least one clock in each participating automaton, a local-time clock zone has
the form ψl = ψ∆(T)∧

∧n
i=1 ψi(Ti, ti), where:

• ψ∆(T) =
∧

tx 6=ty∈T tx − ty ≺ cxy, with cxy ∈Z

• ψi(Ti, ti) =
∧

tx∈Ti
(ti − tx ≺ cix ∧ tx − ti ≺ cxi) with cix, cxi ∈Z

In this case, we call A a sync-reset network of automata. The special form
for a clock constraint in this case signifies that there is no need to explicitly
maintain constraints that relate the reset time of a clock to the local time
of a different automaton. The constraint is composed of a global constraint
ψ∆(T) that relates pairs of any two reset times, and of one local constraint
ψi for each process, comparing the reset times in the automaton Ai to its
local clock ti. A network of automata A may satisfy this additional property
if each synchronization transition determines the future timing behavior of
both automata involved, and it is thus necessary to refer to its execution
time by means of a clock reset in both automata.
Proof: The initial zone can be written as: initZ

l (s0) =
∧

x,y∈C(tx = ty) ∧∧n

i=1 Ii(s0
i). In the expression of succZ

l from Proposition 3 the term ψl ∧
ψa ∧

∧
ti,tj∈Ta

ti = tj has the required form, save for the equalities ti = tj.
Quantification over Xa introduces constraints between tx and ti, for tx ∈ T
and i ∈ active(a). By assumption, for every i ∈ active(a) there exists a
clock x ∈ Ra ∩ Ci that is reset, and the new value of tx is ti. Therefore,
constraints on ti and ty can be replaced with constraints between tx and
ty, which are incorporated in ψ∆. Finally, executing ⇑i for i ∈ active(a)
removes the equalities ti = tj, and adds inequalities of the form tu − tj =
(tx − ti) + (ti − tj) ≺ui cui + 0 with u 6∈ Cj. However, if y ∈ Ra ∩ Cj, this
inequality can already be obtained considering (tu−ty)+(ty−tj), both terms
already present in the desired form. 2

We give an example to show that the reduced representation is not suf-
ficient in the general case. Consider automata A1 and A2, with clocks x
and y, that synchronize on transition a. After executing the synchronization
transition, the full representation of the corresponding clock zone would be
t1− tx > 3∧ t2− tx > 3∧ t1− ty ≥ 0∧ t2− ty ≥ 0. Then, transition b can only
be executed if t2 − ty < 2, which given that t2 − tx > 3, implies tx − ty < 1.
However, the constraints t2 − tx > 3 and t1 − ty ≥ 0 cannot be part of the

61

simplified representation. If these constraints are ignored, the system could
execute transition b regardless of the relation between tx and ty, leading to
extraneous behaviors.

��

��

r1

?

a? x > 3

��

��

r2

��

��

s1

?

a!

��

��

s2
��

��

s2

?

b y < 2

��

��

s3

Figure 3.3: Synchronization transitions and zone representation

Clock difference constraints are generally represented as difference-bound
matrices [Dil89], which are indexed by clock variables whose elements are
bounds, i.e., pairs of the form (≺, c) corresponding to an atomic clock con-
straint. The component ψ∆ of a local time zone can be represented as a
difference bound matrix with |C| rows and columns. Each constraint ψi re-
quires 2∗ |Ci| additional time bounds, for a total of 2∗ |C|, i.e., an additional
row and column. Thus, ψl can be represented by a matrix with |C|+ 1 rows
and columns, the same size as the DBM used in the standard algorithm.

However, the computations performed on this matrix must take into ac-
count that segments of the additional row and column correspond to different
automata and thus different reference times. The successor computation for
a transition is performed first on the submatrix corresponding to the clocks
of the active automata together with their reference times (which have to be
equal in this case). If any constraints between clocks are strengthened in this
process, the |C| × |C| submatrix corresponding to ψ∆ is canonicalized. This
may strengthen constraints between clocks in an automaton Ak outside the
active set of the transition, which may in turn strengthen constraints in ψk

between the clocks in Ak and the reference time tk.
If some automata in the network have synchronization transitions that

do not reset clocks, one solution is to introduce in each of these automata
an additional clock that is reset on such synchronization transitions. In this
way, the network of automata is transformed into a sync-reset network, with
potentially fewer than n additional time variables.

62

In the general case, a smaller difference bound matrix can also be obtained
using the clock activity reduction of [DY96]. In this case the dimension of
the DBM changes dynamically at each state, by eliminating the clocks that
will be no longer used before their next reset. Using the same approach in
the local-time model, we can also eliminate reference times in some cases. If
all transitions entering local state s in automaton Ai reset clock x, then the
strongest constraints at s on the reference time ti are ti ≥ tx, together with
any local invariant of s. Thus, it is possible to represent the local-time zone
at s as a DBM without ti, and add the above-mentioned constraints when
the next local transition from s is explored.

3.7 Preservation of LTL∆ formulas

In the local-time model L(A) the executions of the component automata
are decoupled from each other, except for synchronization transitions. Con-
sequently, L(A) accepts a richer set of behaviors than S(A). This section
establishes restrictions on the local-time model which ensure that each of its
traces is equivalent with respect to a given LTL∆ formula ϕ to a trace of the
standard model.

The semantics of LTL∆ is extended to the local time model by defining
the satisfaction of an atomic time constraint in a local-time configuration:

(s, v̄) |= x− y ≺ c iff v̄(ty) − v̄(tx) ≺ c
We have v̄(ty)− v̄(tx) = (timej − v(y))− (timei − v(x)), assuming x ∈ Ci

and y ∈ Cj. Thus, in a synchronized configuration (timei = time j) the
semantics is the same as for the standard model.

Since next-time free LTL formulas are invariant under stuttering, the
transitions which affect the truth of the specification are identified as follows:

Definition 11 (Visibility) A transition (s, v) → (s′, v′) is invisible with re-
spect to a specification ϕ if every atomic subformula of ϕ has the same truth
value in (s, v) and (s′, v′). A transition which is not invisible is called visible.

Then, a transition in L(A) is visible if it connects two states which dif-
fer by at least one atomic proposition in the specification (visibility in the
control space) or it resets at least one clock in the specification, affecting the
truth value of a difference constraint (visibility in the time domain). Delay
transitions are invisible, since they do not change the control state and do
not reset clocks.

63

For a network of timed automata A and a formula ϕ in LTL∆ denote by
Fϕ(A) the set of those traces of L(A) which satisfy the following properties:

• Ordering (O): Visible transitions occur in increasing order of their exe-
cution times. That is, in any trace σ ∈ Fϕ(A), for visible transitions τk
and τl with k < l, we have time(τk) ≤ time(τl) (where time(τ) = timei

for some i ∈ active(τ) is the timepoint at which τ is executed).

• Fairness (F): Time progress is unbounded in all component automata.
That is, for any trace σ ∈ Fϕ(A), automaton Ai and time M ∈ R+,
there exists k ∈ N with timei(σk) > M .

Theorem 4 Given an LTL∆ formula ϕ, for any execution trace in the model
S(A) there exists an execution trace in Fϕ(A) which has the same truth value
for ϕ and vice versa.

Proof: The direct implication is straightforward: from a trace σ in S(A)

construct a trace σl in L(A) by replacing each global delay transition
d
;

with the sequence of local delay transitions
d
;1 . . .

d
;n. The trace σl also

satisfies O, since no action transitions are reordered, and F, since the same
delay transitions are executed in each automaton. Since delay transitions are
invisible, this transformation does not change the truth value of the LTL∆

formula ϕ, and σ |= ϕ iff σl |= ϕ.
For the reverse implication, we construct σ from σl by reordering all

transitions so they occur in increasing order of their timepoints. The ordering
condition O guarantees that no visible transitions are reordered, and the
truth value of the formula is not changed. In this transformation, delay
transitions may be split and reordered so every action transition is preceded
by equal delays in all automata. The fairness condition F guarantees that for
all automata, local delay transitions totaling the needed amount exist in σl.
Finally, all local delay transitions between two consecutive action transitions
are merged into a global delay transition, resulting in a trace σ of S(A). 2

Based on the above theorem, we proceed as follows: We first define a
restricted local-time model Lϕ(A) whose traces satisfy the ordering condition
O. Next, we construct a zone automaton Zϕ

l (A) whose states are local-time
atoms, i.e., sets of configurations with the same truth value for all atomic
subformulas of ϕ. We show a correspondence between the traces of Lϕ(A) and
Zϕ

l (A), and then impose a fairness condition corresponding to F to ensure

64

equivalence with the standard model. Finally, we apply a maximization of
the atoms in Zϕ

l (A) to obtain an automaton Mϕ
l (A) which is guaranteed to

be finite and therefore amenable to model checking.
To preserve the ordering of visible transitions, we introduce an additional

reference variable tv, which denotes the timepoint of the last executed visible
transition. The domain of the valuation v̄ is extended to include tv. In the
initial configuration, v̄(tv) = 0. The model Lϕ(A) is defined in the same way
as L(A), but with the additional restriction v̄(tv) ≤ time(a) for the execution
of a visible transition

a
→, and v̄′(tv) = time(a) in the resulting configuration.

This guarantees that each visible transition is executed at a later timepoint
than the previous one, and thus ensures condition O.

With these additional constraints, the zone successor for a visible transi-
tion becomes: succv

a(ψl) = [∃Xa∃tv . ψ ∧ ψa ∧
∧

ti,tj∈Ta
ti = tj ∧

∧
ti∈Ta

tv ≤ ti]

∧
∧

ti∈TA
tv = ti ∧

∧
x∈Ci∩Ra

tx = ti. For invisible transitions, the successor
operation remains the same.

To perform model checking on the local-time zone automaton, one has to
consider zones in which all configurations satisfy the same atomic subformulas
of the specification ϕ (cf. [YS97]):

Definition 12 (Atom) Given a timed automaton A and an LTL∆ formula
ϕ, an atom is a zone 〈s, ψl〉 such that ∀v̄1, v̄2 ∈ ψl . v̄1(ty) − v̄1(tx) ≺ c ⇔
v̄2(ty) − v̄2(tx) ≺ c for any constraint x− y ≺ c in ϕ.

Consequently, two configurations (s, v̄1) and (s, v̄2) in an atom 〈s, ψl〉 have
the same truth value for all atomic constraints in formula ϕ. We introduce the
additional atomic propositions qk ∈ Q, qk = tyk

− txk
≺k ck for each atomic

clock constraint in ϕ and thus reduce ϕ to a next-time free LTL formula
ϕq. The atoms comprising 〈s, ψl〉 are given by the nonempty intersections
between ψl and all constraints tyk

− txk
≺k ck, either in positive or negated

form:
atϕ(〈s, ψl〉) = {〈s, φ〉 | φ = ψl ∧

∧m

k=1 q
′
k, φ 6= ∅, with q′k = qk or q′k = ¬qk}.

Define transitions between atoms as follows: z
a
⇒ z′ if a ∈ enabled (z)

and z′ ∈ atϕ(succZ
l (z, a)), and z

ǫ
⇒ z if all local states si of z have a trivial

invariant Ii(si) = true, for 1 ≤ i ≤ n. Only in this case, the automaton
can remain at that state forever. If at least one local control state has an
invariant with an upper bound, the system will be forced to a different global
state as the local state in that automaton changes. Then, the atom graph
corresponding to A and formula ϕ is defined as follows:

65

Definition 13 (Atom graph) The atom graph Aϕ(A) of a timed automaton
A with respect to formula ϕ is a state-transition graph (Zϕ

l , Z
0
l ,⇒), with Z0

l

the set of initial local-time zones, ⇒ the atom transition relation and Zϕ
l the

set of atoms reachable from Z0
l by repeated application of ⇒.

Then, our problem reduces to LTL model checking:

Proposition 5 For each execution trace σl of Lϕ(A), there is an atom se-
quence in Aϕ(A) that has the same truth value for ϕq as σl has for ϕ and
vice versa.

Proof: The proof is based on reordering the delay transitions in trace σl

as done in the proof of Proposition 2. Any delay transition
d
;i for which

σl contains a subsequent action transition in the same automaton Ai can
be moved towards the beginning of σl (possibly merging consecutive delay
transitions in the same automaton), until either the preceding action tran-
sition involves Ai, or there is no preceding action transition. Let σ′

l be the
execution trace obtained by this transformation. We have σ′

l |= ϕ iff σl |= ϕ,
since delay transitions are invisible and their permutation does not change
the truth value of the formula.

We now establish by induction a correspondence between the execution
trace σ′

l and an atom sequence ρ = α0 ⇒ α1 ⇒ α2 If s0 is the initial
control state in σ′

l, then α0 = initZ
l (s0) is the first atom of ρ. Indeed, if

γ0 is the configuration reached in σ′
l from (s0, 0C) by executing any delay

transitions before the first action transition, then γ0 ∈ α0.
For the induction step, consider the subsequence of σ′

l starting at config-
uration γk ∈ αk with k ≥ 0, ending at a configuration γk+1, and consisting of
an action transition

ak→ followed by any delay transitions up to the next action
transition in σ′

l. These delay transitions must occur either in automata from

the active set of
ak→, or in automata which have no subsequent action transi-

tion in σl. For the latter transitions, the invariant at the local state must be
trivially true, since time advances to infinity in σ′

l. Thus, taking these tran-
sitions leads to configurations in the same atom. The delay transitions in
automata from the active set of

ak→ are included in the definition of the zone
successor for ak, and consequently, we have we have γk+1 ∈ succZ

l (αk, ak).
Thus, we can define αk+1 as the atom from atϕ(succZ

l (αk, ak)) to which con-
figuration γk+1 belongs, preserving the induction invariant.

Finally, if σ′
l contains only a finite number of action transitions, it means

that the resulting state has trivial invariants at each local state. Then we can

66

extend the atom sequence (αk) with an
ǫ
⇒ transition for each delay transition

in σ′
l following the last action transition. Since by construction γk ∈ αk, it

follows that σ′
l and ρ have pointwise the same truth values for all atomic

propositions in P ∪Q (the delay transitions in σ′
l and the

ǫ
⇒ transitions in ρ

are stuttering steps).

For the reverse step, since α
a
⇒ α′ iff every configuration in α′ is reachable

from some configuration in α by executing
a
→ followed by delay transitions,

it follows by induction that any atom sequence ρ has a witness trace of
configurations. Since the constructed configurations belong pairwise to atoms
in ρ, the two sequences must have the same truth value for the formula ϕ. 2

It remains to restrict the zone execution sequences such that the included
execution traces satisfy the fairness condition F. Otherwise, the local-time
model may contain traces that do not require all automata to execute, and
do not correspond to any trace in the standard model. The fairness condition
F is violated if in one of the component automata the execution trace cannot
make indefinite time progress. This is the case if, starting from some point in
the zone sequence, there exists a clock on which each zone imposes an upper
bound due to its invariant. The negation of this condition means that any
clock which is infinitely often limited by an invariant has to be reset infinitely
often, allowing time to diverge. Consequently, the fairness constraint can be
written as a temporal logic formula in terms of the underlying state-transition
structure of the automaton,

∧
x∈C GFx.bounded ⇒ GFx.reset. The model

checking problem on the initial network of automata is thus reduced to LTL
model checking of a finite Kripke structure with a set of fairness constraints.

The fairness constraint can also be enforced by a more restrictive def-
inition of allowable successor transitions, while also providing a guarantee
that the local-time atom graph will not contain more zones than the one
constructed for a global-time model. Note that allowing each automaton to
execute decoupled, in its own local time scale can lead to some automata
overtaking the others and some lagging behind in time. In particular, this
may lead to the exploration of control states that do not appear in the original
model, because the local reference times do not coincide. This does not affect
the correctness of our result, since we have restricted visible transitions to
their initial ordering. However, it may cause the local-time model (to which
partial order reduction will be applied) to contain more enabled transitions
at each state (since they do not have to be executed in time order), and thus
more control states.

67

A local-time zone 〈s, ψl〉 is called synchronizable if it contains at least
one synchronized configuration, with v̄(ti) = v̄(tj) for all i, j ∈ 1, n. In other
words, 〈s, ψl〉 is synchronizable iff ψl ∧

∧
i6=j ti = tj is satisfiable. A transi-

tion is firable in zone 〈s, ψl〉 if it is enabled in 〈s, ψl〉 and succZ
l (〈s, ψl〉, a) is

synchronizable. If the atom graph is generated using only firable transitions,
this ensures that a transition can be taken in the atom graph iff it can be
taken in the original zone automaton. Clearly, this also ensures the fairness
conditions, since the time progress of at least one automaton (due to the non-
Zeno assumption) together with synchronization implies the time progress of
all components towards infinity. In terms of efficiency, this approach trades a
potentially smaller size of the model before reduction against a more complex
test for firability of a transition.

3.8 Building a finite model

In general, the local-time zone automaton can be infinite, since the difference
bounds on clocks can become arbitrarily large. The original formulation of
the local-time model [BJLW98] gives a proof that the infinite number of
local-time zones can be divided into a finite number of equivalence classes,
based on the standard region-graph equivalence. However, this proof is non-
constructive. In particular, it gives no concrete means of determining the
equivalence of two unsynchronized local-time zones, which is needed to ensure
termination of the state space search.

In this section, we show that, just as in the case of the standard zone
automaton, the actual value of the bounds on clock differences does not
affect the enabledness of transitions, once a certain value is exceeded. Each
local-time zone can therefore be normalized in order to obtain a finite model.

We adapt the maximization operation used, e.g., in [Won94] to the local-
time model. Let cmin and cmax be the minimum and maximum constants in
the description of the automaton A and the formula ϕ (assuming all con-
straints are given in canonical form, tu − tv ≺ d). We adapt the region graph
construction of [ACD90] to the local-time model as follows:

Definition 14 Two valuations v̄ and v̄′ are called region-equivalent (denoted
by v̄ ≃reg v̄′) if for any time variables tu, tv ∈ T+, one of the following
conditions holds:

68

(a) cmin ≤ ⌊v̄(tu) − v̄(tv)⌋ = ⌊v̄′(tu) − v̄′(tv)⌋ ≤ cmax , and
v̄(tu) − v̄(tv) ∈Z⇔ v̄′(tu) − v̄′(tv) ∈Z

(b) ⌊v̄(tu) − v̄(tv)⌋ < cmin and ⌊v̄′(tu) − v̄′(tv)⌋ < cmin

(c) ⌊v̄(tu) − v̄(tv)⌋ > cmax and ⌊v̄′(tu) − v̄′(tv)⌋ > cmax

Region equivalence can be extended naturally to configurations by defin-
ing (s, v̄) ≃reg (s′, v̄′) iff s = s′ and v̄ ≃reg v̄′. Regions are the equivalence
classes induced by ≃reg on the set of configurations ΣC. The following lemma
holds:

Lemma 6 Let v̄ ≃reg v̄′. Then:

1. For any constraint ψ in A or in the specification ϕ, v̄ ∈ ψ iff v̄′ ∈ ψ.

2. For any clock set R, v̄[R 7→ 0] ≃reg v̄′[R 7→ 0].

3. For i ∈ 1, n and d ≥ 0 there exists d′ ≥ 0 such that v̄+i d ≃reg v̄′ +i d′.

The proof reduces to the known result for the (global) region graph con-
struction, with the following two observations. First, the local-time model
adds the implicit constraints ti = tj for synchronization transitions, but the
constants in this constraints are 0, and do not influence cmin and cmax . Sec-
ond, when performing a local-time delay in automaton Ai, the only variable
that changes its valuation is ti. Therefore, the other reference times tj, with
j 6= i are indistinguishable from ordinary reset times tx, with x ∈ C, and
the situation is identical to the global time model, for which the property is
known to hold.

Since the execution of any transition is expressed in terms of conjuncting
with the constraints of A, resetting clocks and advancing local time, Lemma 6
implies the following property (cf. [ACD90]):

Proposition 7 Let γ ≃reg γ′ be two region-equivalent configurations in ΣC .

1. If γ
a
→ γ1, there exists γ′1 ≃reg γ1 such that γ′

a
→ γ′1.

2. If γ
d
;i γ1 with d ∈ R+, i ∈ 1, n, there exists d′ ∈ R+ and γ′1 ≃reg γ1

such that γ′
d′

;i γ′1.

69

We define the maximization max(z) of a zone z as the set of configurations
which are equivalent to some region-equivalent configuration in z: max(z) =
{γ′ ∈ ΣC | ∃γ ∈ z . γ ≃reg γ′}. A maximized zone is therefore a convex
union of regions, since by including one configuration of a region it has to
include all others. It is easily seen that a maximized zone is obtained from
the canonical representation of a zone by modifying all constraints outside
the range [cmin, cmax]: tu − tv ≺ c with c < cmin becomes tu − tv < cmin and
tu − tv ≺ c with c > cmax becomes tu − tv <∞ (trivially true). Furthermore,
by point (1) of Lemma 6, a maximized atom is in turn an atom. Define
succM

l (z, a) = max(succZ
l (z, a)) and let Mϕ

l (A) be the atom graph induced by
succM

l through repeated application from an initial zone. Since the constants
in a maximized zone are bounded, it follows that Mϕ

l (A) is finite.
By Proposition 7, the same transitions are enabled in every point of a

region. Since a maximized atom is the closure of an atom with respect to
region equivalence, this implies that the atom graph Aϕ(A) and the maxi-
mized atom graph graph Mϕ(A) are bisimilar. Putting the previous results
together, we obtain the following theorem, which reduces our initial problem
to LTL model checking with fairness constraints on a finite model:

Theorem 5 The model Mϕ
l (A) with the fairness constraint F is equivalent

to the standard model S(A) with respect to the formula ϕ.

3.9 Partial order reduction

Having established the visible transitions in the model Mϕ
l (A), one needs

to determine the transition dependence relation in order to apply partial
order reduction. Bengtsson et al. [BJLW98] give a purely structural de-
pendence relation, identical to that for untimed parallel composition: two
transitions are independent if the two sets of automata involved in each
of them are disjoint. Indeed, Theorem 1 shows that this condition is suf-
ficient for the local-time model L(A). Since transitions in the zone au-
tomaton are composed of action and local delay transitions in the local-
time model, the independence condition also follows for the zone automaton:
a and b are independent if active(a) ∩ active(b) = ∅, and then we have
succZ

l (succ
Z
l (z, a), b) = succZ

l (succZ
l (z, b), a).

However, in the local-time zone automaton, just like in the standard
zone automaton, one needs to take into account the fact that transitions

70

which are both enabled in a zone may actually be enabled in different sets
of configurations belonging to that zone.

To see this, consider automata A1 and A2 with clock sets {x, u} and
{y, v} respectively and assume that the current zone has been reached after
executing two synchronization transitions, one resetting x and y, and the
second resetting u and v. Thus, we have tx = ty and tu = tv. Assume now
that transition a in A1 has enabling condition x − u = tu − tx < 2 and
transition b in A2 requires y − v = tv − ty > 3. Since tu − tx = tv − ty
due to the previous synchronizations, the two conditions cannot be satisfied

simultaneously. Exploring either of
a
⇒ and

b
⇒ restricts the current local-time

zone to a fragment where the other transition is no longer enabled. Thus,

even though
a
⇒ and

b
⇒ are independent, selecting only one of them as an

ample set would violate condition C0.

Consequently, when selecting a set of ample transitions, one needs to
make sure that condition C0 is observed and at least one ample transition is
enabled in every configuration that has a transition enabled in the unreduced
model. Let guard(a) be the enabling condition of

a
→ in the local-time model,

i.e., ψa ∧
∧

i,j∈active(a) ti = tj. If ψl is the current local-time zone at state s,

we require ψl ∧
∨

a∈enabled(s) guard(a) = ψl ∧
∨

a∈ample(s) guard(a).

A simpler, sufficient condition can be given as follows. Let Tample be
the set of all time variables (clock reset times and reference times) in the
automata that contain transitions from the current ample set. The remaining
enabled transitions do not involve any of these automata and thus depend
only on variables in T+ \ Tample . If the set of configurations from which an
ample transition is enabled, ψl ∧

∨
a∈ample(s) guard(a), contains any possible

combination of variables in T+ \ Tample allowed by ψl, then there are no
configurations in ψl for which transitions outside the ample set are enabled,
while transitions in the ample set are not. Thus, condition C0 is preserved.
The corresponding relation is: ∃Tample

ψl ∧
∨

a∈ample(s) guard(a) = ∃Tample
ψl. In

particular, this relation is easy to check if the ample set contains a simple
transition: it means that after conjuncting with its guard, the projection of
the local-time zone onto the remaining automata is unmodified.

The ample set reduction is done according to the criteria outlined in Sec-
tion 2.6: a set of automata (ideally, a single one) with no locally enabled
communication to automata outside the set is found. The cycle closing con-
dition can be ensured both using the traditional depth-first search or using
static partial order reduction, based on analyzing the cycle structure of the

71

individual automata. Finally, if at the current point all local control states
have trivial invariants, one takes into account that an infinite sequence of
self-loop transitions

ǫ
⇒ is possible from this state.

If a local state with a nontrivial invariant is explored, one must make sure
that when the upper bound of the invariant is reached, at least one of the
transitions is enabled, otherwise, deadlock occurs since time cannot progress.
If this invariant is of the form (xi1 ≤ di1) ∧ . . . ∧ (xik ≤ dik), the outgoing
transitions are a1, · · · al and the current clock zone is ψl, it has to be true
that ψl∧((xi1 = di1)∨ . . .∨(xik = dik)) ⇒ (ψa1

∨ . . .∨ψal
). A similar test can

be made in the limit if the invariant inequalities are strict. This is generally
considered a correct design issue and is checked statically, with ψl = true,
however, this requirement may be relaxed in favor of dynamic checking.

Since by introducing the auxiliary atomic propositions qi, the LTL∆ for-
mula has been reduced to LTL, the ample set method can be used to construct
a reduced model for the automaton Mϕ

l (A), and perform model checking by
composing it with the tableau for the LTL formula either using a complete
construction [VW86] or on the fly [GPVW95].

Although our discussion has been limited to LTL∆, a similar approach
can be taken for a branching time logic, such as CTL without the nexttime
operator. In this case, one can use the result of [GKPP99], which gives an
additional condition for partial order reduction: each state which is not fully
expanded must have an ample set with a single transition.

3.10 Summary

We have presented a method that allows the application of partial order
reduction to systems modeled as a composition of timed automata. The
method results in reduction in the state space, as well as in the number of
clock zones that are generated for each control state. Compared to previous
related work, we have shown that partial order reduction can be used for
model checking of properties described in a timed extension of linear temporal
logic, rather than just for local reachability analysis. We have also proved
that the state space of the local-time zone automaton admits a finite quotient
by identifying when two zones are equivalent, and thus made a state space
search algorithm possible. For a certain class of automata, we show that the
local time zones can be represented as efficiently as standard clock zones.
Finally, we give practical conditions for selecting ample sets.

72

Chapter 4

Reduction for Other Timed
Models

4.1 Partial Order Reduction for the Region

Graph Automaton

We have so far investigated partial order reduction for timed automata by
using the zone automaton construction. There are other ways in which a
finite quotient for the timed state space of a timed automaton can be built.
The first such construction described in the literature is the region graph
automaton [AD90, ACD90]. Although the region graph is in general more
finely-grained than the zone automaton, it abstracts away from the passage
of time and can be encoded as a simple finite-state machine.

Recall that a timed automaton is a tuple A = (S, S0, C, E, I, µ), where S
is the set of states, S0 the set of initial states, C the set of clocks, E the set of
edges, I the invariant function for each node and µ a function labeling states
with atomic propositions. The standard model of a timed automaton has
timed states of the form (s, v), where s ∈ S is a control state and v : C → R

is a clock valuation.

The region graph is the quotient structure induced by an equivalence
relation on the timed states of a timed automaton: two states with the same
control location are equivalent if all clock values agree on their integral parts
and have the same ordering of their fractional parts. Clocks that exceed
a certain value (which can be taken as the maximal constant cmax in the
description of the automaton) are considered equivalent. Formally, we have:

73

Definition 15 Two clock valuations v and v′ are equivalent (v ≃reg v′) iff
they satisfy the following three conditions:

1. For all x ∈ C, ⌊v(x)⌋ = ⌊v′(x)⌋ or both v(x) > cmax and v′(x) > cmax .

2. For all x, y ∈ C with v(x) ≤ cmax and v(y) ≤ cmax , {v(x)} ≤ {v(y)} iff
{v′(x)} ≤ {v′(y)}.

3. For all x ∈ C with v(x) ≤ cmax , {v(x)} = 0 iff {v′(x)} = 0.

It is easily shown that the above conditions define an equivalence relation.
A clock region is an equivalence class of clock valuations with respect to ≃reg.
We denote by [v] the clock region to which valuation v belongs. A region is
then a pair 〈s, [v]〉 of a control state s and a clock region [v].

It can be shown that the region equivalence relation is stable, that is, two
timed states that belong to the same regions have the same set of enabled
transitions. Consequently, one can then define a transition relation between
two regions as follows:

• 〈s, [v]〉
a
→ 〈s′, [v′]〉 iff (s, v)

a
→ (s′, v′)

• 〈s, [v]〉
δ
→ 〈s, [v′]〉 iff ∃t ∈ R+ such that (s, v)

t
; (s, v′),

and the interval [0, t] can be partitioned into two intervals I1 and I2,
such that [v + t′] = [v] for t′ ∈ I1 and [v + t′] = [v′] for t′ ∈ I2.

In the first case, two regions are connected by an action transition if there
exists such a transition between two representative timed states, one from
each region. For the second case, recall that a timed automaton allows tran-
sitions of arbitrary amount, as long as the state invariant is satisfied. In the

second case, a transition
δ
→ exists between two regions if there exists a de-

lay transition between two representative timed states that does not traverse
other regions. (In an alternate definition for the region graph automaton, a
transition between regions corresponds to the combination of an action and
delay transition in the underlying timed automaton).

The fine granularity of the regions leads to state space explosion in the
region graph automaton, compared to the zone automaton which is more
coarse-grained and generally smaller. Consider, for instance, a clock valua-
tion v such that {v(x1)} < {v(x2)} < . . . < {v(xn)}, and the clock valuation
v+1 obtained from v after passage of one time unit. The intermediate clock

74

valuations on this delay transition belong to 2|C| different regions, as each
of the fractional parts of xn, · · · , x2, x1 becomes successively zero, and then
nonzero but smallest in sequence.

This is a significant increase in the number of transitions. In the zone
automaton, an action transition is followed by an arbitrary amount of time.
However, in the region graph, a number of delta transitions can be executed
successively, each advancing to a new region, until eventually an action tran-
sition is taken. The exploration of some interleavings between action transi-
tions and those that correspond to passage of time can be avoided by using
partial order reduction.

Consider an action transition
a
→ that does not reset any clocks. We first

examine in detail the circumstances under which transitions
a
→ and

δ
→ can

disable one another:

Proposition 8 The enabling of action and delay transitions in successor
regions is related as follows:

•
a
→ can disable

δ
→ in 〈s, [v]〉 iff one of the following holds:

– the successor state s′ with respect to a has an invariant of the form
x ≤ c, and v(x) = c.

– the successor state s′ with respect to a has an invariant of the
form x < c, ⌊v(x)⌋ = c − 1, {v(y)} > 0 for all y ∈ C and
{v(x)} ≥ {v(y)} for all y ∈ C.

•
δ
→ can disable

a
→ iff one of the following holds:

–
a
→ has a constraint of the form x ≤ c, and v(x) = c.

–
a
→ has a constraint of the form x < c, ⌊v(x)⌋ = c− 1, {v(y)} > 0
for all y ∈ C and {v(x)} ≥ {v(y)} for all y ∈ C.

Proof: Since
a
→ does not reset any clocks, the clock valuations in s and s′

after executing a are the same. We examine first the cases where
a
→ disables

δ
→. This means that passage of time, which is allowed in control state s, is
no longer allowed in state s′. This occurs when the advance of some clock x
is limited by an invariant of the form x ≺ c in state s′, and when advancing

time to the next region by means of transition
δ
→ would result in a region

that no longer satisfies this invariant. If the constraint in the invariant is

75

nonstrict, x ≤ c, [v] has to be a boundary region with v(x) = c, otherwise
an incremental advance of time to the next region will still satisfy v′(x) ≤ c.
If the constraint in the invariant is strict, x < c, the invariant will no longer
be satisfied if the successor region is the boundary region with v′(x) = c.
This happens when ⌊v(x)⌋ = c− 1, and {v(x)} is the next fractional part to
wrap around to zero, i.e., {v(x)} ≥ {v(y)} for all y ∈ C. In addition, the
current region must not itself be a boundary region with some {v(y)} > 0.
Otherwise, the next region is obtained by an infinitesimal advance of time,
which increases {v(y)} from 0 to positive while maintaining v(x) < c.

For the case when
δ
→ disables

a
→, the given conditions are analogous,

with the enabling condition of the transition replacing the invariant of the
destination state. The argument is completely similar. 2

Proposition 9 If
a
→ and

δ
→ are two transitions enabled in region r, none

of them disables the other, and
a
→ does not reset any clocks, then

a
→ and

δ
→

are independent in region 〈s, [v]〉.

Proof: The proof follows from the fact that for any t ∈ R+, the transitions
a
→ and

t
; commute in (s, v) if neither disables the other and

a
→ does not

reset any clocks. This is obvious, since
a
→ only changes the control location

and
t
; only changes the clock valuation. 2

Based on this dependence relation, partial order reduction can be used
in the construction of a smaller region graph for a given timed automaton.
Ordinarily, even at a state where only a single transition is enabled, the region
graph construction would have to consider either executing the transition or
advancing time to the next region. For transitions that do not reset clocks,
this method allows the exploration of only one possibility, except for the
case when the execution of the transition is forced at the end of its enabling
interval. (The other case, where a time invariant is strengthened in the
successor state rarely appears in practice).

As opposed to the local time model, this method does not make use of
the structuring of a system into components, and can be used on a single
timed automaton. Furthermore, the region graph, being time-abstract can
be represented symbolically using binary decision diagrams (BDDs). Thus,
if a static technique is used for partial order reduction, this method can
potentially combine partial order reduction and symbolic model checking.

76

4.2 Partial Order Reduction

for Timed Event/Level Structures

A model of timed systems which is well suited for describing hardware cir-
cuits, in particular asynchronous ones, is provided by the so-called timed
event/level (TEL) structures. This model can express both event causality,
as well as dependence on signal levels. Early work by Rokicki and My-
ers [RM94] gave an algorithm that reduced the number of geometrical tim-
ing regions generated during state space search. This approach was later
extended by Belluomini and Myers [BM98] using so-called partially ordered
sets of events (POSETs). We show how to apply partial order reduction to
this model and obtain additional savings in the generated control state space.

4.2.1 Timed Event/Level Structures

We start with a presentation of timed event/level structures and the POSET
algorithm, following the account given in [BM98]. A timed event/level (TEL)
structure is a tuple T = 〈N,S0, A, E,R,#〉, where:

• N is the set of (boolean) signals,

• S0 ⊆ {0, 1}N is a set of initial states, specified by a boolean value for
each signal,

• A ⊆ N × {+,−} ∪ $ is the set of actions,

• E ⊆ A×N is the set of events, where N is the set of natural numbers,

• R ⊆ E × E × N × (N ∪ {∞}) × B(N) is the set of rules, where B(N)
is the set of boolean functions b : {0, 1}N → {0, 1},

• # ⊆ E ×E is the (symmetric) conflict relation between events.

An action a ∈ A can be either a rising or a falling transition of a signal
x ∈ N . There is also the dummy action $ which does not result in any signal
transition. An event e ∈ E is a pair 〈a, i〉, with a ∈ A and i ∈ N, denoting
the ith occurrence of action a. A rule r ∈ R is a tuple of the form 〈e, f, l, u, b〉,
where e is the event enabling the rule, f is the event enabled as effect of the
rule, (l, u) is a pair of upper and lower integer time bounds, and the enabling
condition b ∈ B(N) is a boolean function on signal values.

77

The semantics of TEL structures can be described informally as follows:
A rule becomes enabled once its enabling event has occurred and its boolean
enabling condition is true for the current signal assignment. After the lower
time bound l passes since the enabling of a rule, the rule is called satisfied ;
from this time point on, the rule can fire. After the passage of the upper time
bound u since its enabling, a rule becomes expired. In the absence of conflicts,
an event has to occur after all rules enabling it are satisfied, and before any
of them expires. Should a rule’s boolean enabling condition become false
after the rule is enabled, this constitutes a hazard and represents a failure
during verification.

The conflict relation # can be used to model choice and disjunctive be-
havior. If two events e1 and e2 are marked as being in conflict, e1#e2, one
of the two can occur, but not both. If two rules r1 and r2 have the same
enabling event e, but conflicting events e1#e2 as effect, then only one of the
rules can fire, causing the corresponding effect to occur. This models nonde-
terministic choice. Conversely, if an event e appears as an effect of two rules
with conflicting enabling events, only one of these events needs to happen
(and only one rule needs to fire) for the effect e to occur.

4.2.2 State Space Exploration Using POSETs

We next describe the data structures and the exploration algorithm used
in the POSET approach of Belluomini and Myers [BM98], to establish a
comparison point for the application of partial order reduction. In TEL
structures, a timed state is represented as a tuple (sc, Rm,M,Rf), where:

• sc is the control state representing the values of the signals,

• Rm is the set of marked rules, whose enabling event has occurred,

• M is the constraint matrix, a difference bound matrix containing the
maximum differences between the enabling times of all enabled rules

• Rf is the set of rules that have already fired

The set of marked rules Rm together with values of the signals in sc

determine the set of enabled rules Ren. These are the rules for which timing
information is maintained in the constraint matrix M . For the fired rules
in Rf , no timing information about them needs to be maintained in the
constraint matrix, but the fact that they have fired must be recorded.

78

A state space exploration step in a TEL structure consists of determining
the set of satisfied rules Rs, choosing a satisfied rule to fire, and comput-
ing the resulting new timed state. A depth–first search of the state space
would consider in turn the firing of each rule among the satisfied rules in Rs.
However, each interleaving of rule firings would typically generate a different
constraint matrix M (that is, a different timing region), leading to an ex-
ponential number of different timed states. The POSET method generates
a timed state space consisting of fewer and larger timing regions. To this
effect, the algorithm maintains in addition to the constraint matrix (which
contains separation times between enabled rules) another difference bound
matrix, called POSET matrix, which keeps track of relationships between
event firing times that are allowed by the given rule firing sequence. As a
result, the timing behaviors represented in the constraint matrix are only
constrained by the causality in the firing sequence, and no longer by its total
order, resulting in a significantly reduced number of timed states.

However, the method still requires multiple rule interleavings to be ex-
plored, even though with the use of POSETs the same timing region is gener-
ated in the state space. Also, some computation steps for the constraint ma-
trix still take into account the chosen total order of rule interleavings, which
results in unnecessary overhead. In the following, we present the POSET al-
gorithm by working through an example which showcases both its strengths
and limitations, and finally present an improved algorithm which takes ad-
vantage of partial order reduction.

The POSET algorithm decouples rule firing from event firing: A rule can
fire as soon as it is satisfied, i.e., it has been enabled for at least its lower time
bound. An event fires only once all its enabling rules have fired. The causal
rule rc for an event e is therefore the last rule that fires and consequently
enables the event. Conversely, the causal event for a rule r = 〈ec, e, l, u, b〉 can
be either the enabling event ec or some later event that causes the enabling
condition b to be satisfied. Finally, note that the causal event ec of an event
e is the causal event of its causal rule rc, and the minimum and maximum
separation times between ec and e are consequently given by rc.

Taking these causality relations into account, the POSET algorithm pro-
ceeds as follows: from the timed state (sc, Rm,M,Rf), the set of satisfied
rules is computed and a rule r that can fire first among these is selected.
The rule r is removed from the set of marked rules Rm and added to the set
of fired rules Rf . Next, the algorithm checks whether as a result of firing r
any event can fire. If yes, the untimed state is updated, the enabling rules

79

of the event are removed from Rf , and any conflicting rules are removed
from Rm and Rf . Finally, the POSET matrix is updated and the new event
separations are used to update the constraint matrix.

When adding a new event e to the POSET matrix, the separation times to
the events that influence e (and therefore exist in the POSET matrix) must
be taken into account. This includes the causal event of e, the enabling events
of any rules that enable e, and the events occurring in the boolean conditions
of these rules. Determining these separation times is straightforward and is
described in detail in [BMH99]. The separation times between the new event
e and any other events in the POSET matrix are simply a consequence of
existing separation times and are computed by canonicalizing the matrix
using the all–pairs shortest paths algorithm. After this step, all events which
are no longer relevant to the evolution of the system (i.e., are not causal for
any of the marked rules in Rm) are removed from the matrix.

As a last step, all rules enabled by the firing of the new event need to be
added to the constraint matrixM . Since the enabling time of a rule is simply
the timepoint of its enabling event, the needed minimum and maximum
separation times between the new rules and the existing ones can simply be
copied from the POSET matrix. The constraint matrix is then canonicalized,
which can further constrain some of its entries, since the age of a rule cannot
exceed its maximum bound u. Finally, the rule whose firing caused this
computation step (and which is thus no longer in Ren) is removed from the
constraint matrix.

We illustrate the application of the POSET algorithm by means of a small
example, taken for purposes of comparison from [BM98]. Figure 4.1 depicts
a timed event/level structure, in which events are represented as nodes and
rules as directed edges (labeled with time bounds) connecting them. For
simplicity, no level dependencies are included in this case, which means that
all boolean conditions of the rules are true. Thus, the sole triggering condition
for a rule is its enabling event.

Initially, event A has just fired, and the set of marked (and enabled)
rules is Ren = {〈A,B〉, 〈A,C〉} (we can unambiguously denote a rule by its
triggering and resulting events). The POSET matrix is trivial and contains
the single event A. The constraint matrix compares the ages of the enabled
rules, i.e., the amount of time passed since each rule has been enabled. These
are quantities that increase at the same rate with passage of time, just like
the clocks in a timed automaton. Similarly, the matrix contains a dummy
clock which has always age 0.

80

�

�

�

�

A

[3,7] �
�

�	

[2,5]@

@

@R
�

�

�

�

B

[1,2]

@

@

@R

�

�

�

�

C

[6,10]

�

�

�	

[2,10]

@

@

@R
�

�

�

�

D
�

�

�

�

E

��

[2,5]

� �

?

Figure 4.1: Sample timed event/level structure

The representation defined in [BM98], which we observe for reasons of
consistency, defines the matrix entry mij to be cj − ci, where ci is the age of
the rule ri. Thus, rows and columns are swapped compared to the usual DBM
representation. In an alternate view, we can state that mij = t(ei) − t(ej),
where ei is the causal event for rule ri and t(ei) its firing time. In this case,
the zero row and column denotes the current time t, and m0i = t− t(ei).

The entries in row 0 are thus set to the maximum possible age for each
rule, given by its upper bound u, since the constraint matrix contains rules
which have not yet fired. In this case, both rules are enabled by the same
event A and therefore have identical enabling times, mAB,AC = mAC,AB = 0.
We have t− t(A) ≤ 7 = m0,AB due to rule 〈A,B〉, and t− t(A) ≤ 5 = m0,AC

due to rule 〈A,C〉. The latter bound is stronger and thus constraining for
both rules, after the matrix is canonicalized. The elements of column 0 are
0, since the only constraint on the ages of rules is that they be positive. The
state of the TEL structure is therefore as follows:

Constraint matrix POSET matrix
0 〈A,B〉 〈A,C〉

0 0 5 5
〈A,B〉 0 0 0
〈A,C〉 0 0 0

A
A 0

Next, either rule 〈A,B〉 or rule 〈A,C〉 can fire. Consider first the firing
of 〈A,B〉 which causes event B to occur. Event B is added to the POSET
matrix, with rule 〈A,B〉 giving the minimum and maximum separation times

81

of 3 and 7 from event A: 3 ≤ t(B) − t(A) ≤ 7. Rule 〈B,D〉 triggered by
the new event B is added to the constraint matrix and rule 〈A,B〉 which has
fired is removed. The new constraints are t(A) − t ≤ mAC,0 = −3 (at least
3 time units have passed since A, since B has fired), m0,BD = 2 (maximum
firing time of rule 〈B,D〉), and t(A) − t(B) ≤ mAC,BD = −3 (again, due to
the firing of B after A). The remaining entry mBD,AC = 5 is obtained from
canonicalization, which reduces it compared to t(A) − t(B) ≤ 7 from the
POSET matrix. The resulting state is:

Constraint matrix POSET matrix
0 〈A,C〉 〈B,D〉

0 0 5 2
〈A,C〉 -3 0 -3
〈B,D〉 0 5 0

A B
A 0 -3
B 7 0

In this state, either rule 〈A,C〉 (implying event C) or rule 〈B,D〉 can fire
and we explore the firing of the former. Event C is added to the POSET
matrix, with a separation time from A between 2 and 5, given by the fired
rule. At this point, all rules triggered by A have fired and the event can
be removed from the POSET matrix. The remaining separations in this
matrix are: t(B) − t(C) = (t(B) − t(A)) − (t(C) − t(A)) ≤ 7 − 2 = 5 and
t(C)−t(B) = (t(C)−t(A))−(t(B)−t(A)) = 5−3 = 2. Likewise, the fired rule
〈A,C〉 is removed from the constraint matrix and the two rules newly enabled
by event C are added to it. The new constraint is t − t(B) ≤ 2 = m0,BD,
from the upper firing bound of rule 〈B,D〉. By canonicalization, we obtain
m0,CD = m0,BD + mBD,CD = 2 + 5 = 7. Finally, the last two rows and
columns are identical, since their rules have the same causal event.

Constraint matrix
0 〈B,D〉 〈C,D〉 〈C,E〉

0 0 2 7 7
〈B,D〉 0 0 5 5
〈C,D〉 0 2 0 0
〈C,E〉 0 2 0 0

POSET
matrix

B C
B 0 5
C 2 0

Two characteristics of the POSET method become apparent at this step.
First, even though in the current rule firing sequence B happens before C,
the POSET matrix does not contain this restriction. The separation times
between B and C in the POSET matrix are only determined by their causal

82

dependence on A. Second, this is also true of the constraint matrix, which
also contains all timing assignments allowed by the causality in the firing
sequence, in particular, assignments where C fires before B.

The exploration process would continue here using the same algorithm.
Once both rules 〈B,D〉 and 〈C,D〉 have fired, event D fires, and in this case
two cases must be analyzed, depending on whether B or C is causal. We
will return to this example in the next section, to illustrate how the POSET
algorithm can be improved by using partial orders.

4.2.3 An Improved Algorithm for TEL Structures

Besides its improvements in reducing the number of generated timing regions,
the POSET algorithm still suffers from inefficiencies. First, the method still
has to exploit redundant interleavings of rule firing sequences. For instance,
in the example above, after choosing 〈A,B〉 to fire ahead of 〈A,C〉, the
algorithm still has to consider the alternate interleaving, which in the POSET
approach leads to the same timing region. A second overhead resulting from
firing rules in a total order is that time separations which are copied from
the POSET matrix to the constraint matrix have to be adjusted to account
for the fact that the age of a rule cannot exceed its upper time bound. In
fact, the constraint and POSET matrices duplicate a significant amount of
information. We address these issues in a new algorithm. Optimizations
to remove redundant rule interleavings are also discussed in the thesis of
Belluomini [Bel99], with the goal of generating only one POSET matrix per
causal rule. However, they seem limited to certain timing conditions, whereas
we address the problem in the general framework of partial orders.

As before, denote by sc the state of the signals in the model, by Rm the
set of marked rules (whose enabling event has fired), and let Em be the set of
events enabling these rules. An event is added to Em as it fires, and removed
when all the rules enabled by it have either fired or expired. We maintain
information about the time separation of events from Em in a difference
bound matrix Me which we call event matrix and which serves the same role
as the POSET matrix in the approach presented above. Since the separation
time between rules is determined directly by the separation times between
the corresponding events, we will attempt as much as possible to avoid the
inclusion of rule timings in the data structures describing a state.

To apply partial order reduction, we next need to define the key notion of
visibility and dependence for system transitions (i.e., event occurrences). We

83

focus on the verification of next-time free linear temporal logic, and assume
that the atomic propositions are defined in terms of signal values and time
differences between events. Then, a visible transition is either an event on
a signal mentioned in the specification, or an event that appears in a time
constraint in the specification. All other events produce changes in the timed
state that are the specification cannot observe.

Let us examine the dependence relation between events. Clearly, two
events are dependent if they are defined as being in conflict, e1#e2. (If they
are both caused by a rule with the same enabling event, the conflict rela-
tion specifies that only one of them can happen). Whether this completely
defines the dependence relation depends on the disabling or non-disabling
semantics [BM97] adopted for the TEL structure. In the non-disabling se-
mantics, once a rule is enabled, it cannot become disabled because of a change
in state. In the disabling semantics, an enabled rule can become disabled be-
cause of another event that causes its boolean condition to become false. In
the latter case, for an event to fire, all of the rules causing an event need to
be continuously enabled up to its firing time.

Denote by disable(e) the set of events that can disable an event e. In
the non-disabling semantics, we have disable(e) = {e′ | e#e′}, since except
for choice conflicts, nothing can disable any of the rules causing e, once
they are enabled. In the disabling semantics, e can also be disabled by an
event that falsifies the boolean condition on a rule enabling e. We approxi-
mate this conservatively with the set of all events on the signals appearing
in the boolean conditions of these rules (a more detailed analysis of these
conditions may restrict this set on a case by case basis). Formally, define
disable(e) = {e′ | e#e′} ∪ {s± | (e′, e, l, u, b) ∈ R and s appears in b}, where
s± denotes an arbitrary rising or falling event on signal s. We call events e1

and e2 independent if e2 6∈ disable(e1) and e1 6∈ disable(e2). Here, the defini-
tion of disable ensures the enabledness condition, whereas the commutativity
condition is trivially satisfied since the effect of an event on a state is merely
to toggle a signal.

Having defined the notions of visibility and dependence, we can proceed
to define an ample set of transitions to explore at a given state s. We need
to ensure condition C1, i.e., that a transition which conflicts with an ample
transition is either enabled and included in the ample set, or disabled and
cannot be enabled without executing an ample transition. To guarantee this,
we adapt the approach taken by Valmari for stubborn sets [Val90] and then
by Yoneda et al. [YS97] for time Petri nets.

84

An event e′ is relevant for the execution of another event e at a given
state if either e and e′ are dependent or if both are visible. To handle relevant
events which are disabled at the current state, we say that a set of events
En is necessary for a disabled event e at a given state if e cannot be enabled
without executing an event from En first. In general, an event e is enabled
by multiple rules. If these rules have non-conflicting enabling events, then
by definition, all of these events have to fire in order for e to fire. Thus, any
enabling event of e forms a necessary set by itself. If some of the enabling
events are conflicting, several of them may have to be chosen to form a
necessary set.

For every event e′ which is relevant to another event e we consider a set
necessary∗(e′) which contains e′ and is transitively closed under necessity,
i.e., if e′′ ∈ necessary∗(e′) is disabled, there exists a set of events En which
is necessary for e′′ and included in necessary∗(e′). Finally, a set of events
dependency(e) is called a dependency set for e if for any event e′ which is
relevant for e there exists a set necessary∗(e′) for which all enabled transitions
belong to dependency (e).

In general, including dependency (e) in the ample set together with any
ample event e is sufficient to guarantee condition C1. However, a timed
system has characteristics that make it possible to define smaller ample sets
than in the untimed case [YS97]. Specifically, of all the events that can occur
at a given timed state, only a subset can occur before any other event. We
call such an event firable, since it can fire first, before any other event. Since
an event sequence executed from a given timed state can only start with an
event which is firable at that state, our ample set will also consist only of
firable events. We can therefore modify a procedure to select an ample set
in an untimed system as follows:

1. Start with a ample(s) = {e} for some firable invisible event e. If there
is none, simply return the set of all firable events as an ample set.

2. For any event e′ that belongs to dependency (e) for some e ∈ ample(s), if
e′ is firable before all events from ample(s), add e′ to ample(s). Iterate
until a fixpoint is reached.

Every event added to ample(s) by the above algorithm is firable. The
transitive closure operation in step 2 ensures that all firable events which
might eventually lead to an event dependent of an ample event belong to the

85

ample set, and C1 is satisfied. Likewise, the ample set contains at least one
invisible transition if one exists, and includes in step 2 all visible transitions
if one is included. This ensures condition C2. Condition C3 is ensured dy-
namically in case of depth–first search, or using static partial order reduction.

We can also choose an ample set that contains non-firable events if all
events in the ample set are invisible. In this case, the invisibility condition
ensures that no additional behaviors are added by exploring a non-firable
event first. However, with such a choice, an actual reduction of the state
space is not guaranteed, since the ample set algorithm may explore transitions
which are not firable in the original system.

With the selection of ample sets in place, the partial order exploration
proceeds as follows. A timed state is a tuple (sc, Rm, Em,Me), consisting of
the signal state, the set of marked rules, the marked events and the event ma-
trix containing their time separations. From this timed state, one determines
the set of enabled events and an ample set. Each event e in the ample set
is selected in turn for firing, assuming a depth–first search. Once the event
fires, it is added to Em and to the event matrix Me with the appropriate
timing separations given by its enabling rules. Next, these rules are removed
from Rm and the rules whose enabling event is e are added to Rm. Finally,
any event that is no longer enabling for any of the rules in Rm is removed
from Em and the event matrix.

Our algorithm no longer considers the rule firing times explicitly and
separately from the firing of events. However, it still has to take into account
which rule is causal to the firing of an event. Recall that a rule can fire
anytime after it has been enabled for its lower time bound, and before its
upper time bound expires. An event fires at the same time as its last enabling
rule. In our algorithm, this is done as follows. Consider an event e enabled by
k rules, ri = 〈ei, e, li, ui, bi〉, with 1 ≤ i ≤ k, and let t(ri) be their firing times.
Since the event e fires after all of its enabling rules, we have t(e) ≥ t(ri),
and the lower bounds on the rules imply t(e)− t(ei) ≥ t(ri) − t(ei) ≥ li, for
1 ≤ i ≤ k. Potentially, each of the rules ri can be causal, in which case we also
have t(e) = t(ri), and the upper bound implies t(e)−t(ei) = t(ri)−t(ei) ≤ ui.
Considering each causal rule separately, we generate potentially k different
successor regions (some may be empty, overlap or generate convex unions).
This procedure shows another advantage of our approach: if multiple rules
enable the same event, we only need to distinguish which rule fires last,
instead of generating all interleavings.

To illustrate the algorithm using the same example as in the previous

86

section, consider the state reached after firing B and C. We have Em =
{B,C}, Rm = {〈B,D〉, 〈C,D〉, 〈C,E〉}, and the event matrix is:

B C
B 0 5
C 2 0

Next, eventsD and E can fire, and either of them can fire first. If we select
D, we need to analyze the possible causal events, B and C. If B is causal,
the bounds on the rules imply 1 ≤ t(D) − t(B) ≤ 2 and 6 ≤ t(D) − t(C).
The upper bound on t(D) − t(C) is obtained by canonicalizing the matrix,
t(D) − t(C) = t(D) − t(B) + t(B) − t(C) ≤ 2 + 5 = 7. If C is causal,
we have 1 ≤ t(D) − t(B) and 6 ≤ t(D) − t(C) ≤ 10, and t(D) − t(B) =
t(D) − t(C) + t(C)− t(B) ≤ 10 + 2 = 12 is obtained from canonicalization:

B causal to D C causal to D
B C D

B 0 5 -1
C 2 0 -6
D 2 7 0

B C D
B 0 5 -1
C 2 0 -6
D 12 10 0

In this particular case, the region obtained is a superset of the one above.
In both cases, since all rules with enabling event B have fired, B can be now
removed from the event matrix.

A note about the computation of ample sets. Since we need to ensure
that each ample event is firable, this entails adding all enabled events to
the the event matrix (which contains all relevant fired events) and checking
which event can fire first. Of all enabled events, only the one currently fired
needs to be retained in the matrix, yet all others may need to be added
again when the check for firable events is done in the next exploration step.
To avoid the recomputation of separation times, we can manipulate during
state space search a matrix that contains separations between both past
events and currently enabled rules (events). However, only the event matrix
proper (containing fired events) needs to be stored in the set of reached states.
This results in savings over the use of the constraint matrix in the POSET
approach.

87

Chapter 5

A Partial Order Reduction
Framework for Timed Systems

5.1 Background and Motivation

In this chapter, we present a general method for applying partial order re-
duction to timed systems. Our goal is to compare and unify the various ap-
proaches to partial order reduction that have been employed so far for models
such as time Petri nets, timed automata and timed event/level structures.
We identify a common approach to partial order reduction, and present how
some of the discussed algorithms could benefit from it.

We use a general timed model, for which we present a trace-based se-
mantics which relaxes some constraints on the time ordering of transitions.
This avoids unnecessary dependencies related to timing. We show how this
relaxed semantics can be used with an exploration algorithm based on timed
regions, and how the semantics naturally leads to the application of partial
order reduction. Finally, we discuss how this framework can be particularized
for some commonly used timed models.

The approaches to partial order reduction for timed systems have so far
been quite diverse, and at the same time heavily dependent on the choice
of the model. We briefly reexamine and compare the commonalities and
differences in some of these methods.

One of the first approaches has been presented by Yoneda, Schlingloff
et al. [YSSC93, YS97] for time Petri nets, which have a lower and upper
firing bound associated with each transition. Time variables are introduced

88

for firing times of transitions and for the timepoints when a place receives
or loses a token. The state space exploration algorithm operates on regions
(called atoms) which consist of a marking of the net and a conjunction of
difference inequalities over the time variables of the net. The reduced set
of transitions chosen for exploration (called ready set) is adapted from the
stubborn sets of Valmari [Val90] for untimed Petri nets.

Despite exploring a reduced set of transitions, the partial order algorithm
still accounts for all execution sequences by using less restrictive timing con-
straints. Without partial orders, each explored transition has to fire at an
earlier time than any other enabled transition. This serialization constraint
causes the generation of a distinct timed region for each transition interleav-
ing. In contrast, the partial order algorithm only requires a transition from
the ready set to fire earlier than any other transition from the ready set.

Avoiding a specific time ordering for independent transitions is a very
general approach. However, the correctness proof in [YS97] relies heavily on
the particular form of the constraints in time Petri nets. Moreover, the proof
is complicated by the fact that the state space explored using partial orders
is not a subset of the original one. Lilius [Lil98] proposes to obtain better
reduction by not storing any information on transition firing order in the
timed state. However, this approach only preserves the reachable markings
of the net, and not the timing information.

The POSET approach to the verification of timed event/level structures
operates, as its name states, on partially ordered sets of events. However,
as discussed in Chapter 4, it is still effectively based on exploring a total
order of rule firings, a fact which is reflected in its dual data structures for
rules and events. Optimizations presented in [Bel99] avoid redundant rule
interleavings in some cases, but are based on specific details of the event/level
model, rather than on a general notion of partial orders.

For timed automata, the initial approaches of Pagani [Pag96, Pag97] as
well as of Dams et. al [DGKK98] offer relatively little potential for reduction,
because the global passage of time leads to inherent transition dependencies.
The local time model of Bengtsson et al. [BJLW98], extended in Chapter 3
removes this synchronization and restores the transition independence of the
underlying untimed system. It applies the same general principle as [YS97],
allowing independent transitions to be explored without being serialized in
time. Yet, the approach relies on the system’s structure as product of parallel
components, setting it off from Petri nets and TEL structures. Moreover, it
depends on the fact that clocks cannot be shared between automata.

89

In the following, we define an approach to partial order reduction tech-
nique which encompasses and refines the fundamental ideas mentioned above,
and apply it to a generic timed model, which uses the basic notions of timed
states and timed transitions.

5.2 Timed Structures and Traces

Definition 16 A timed structure is a tuple Q = (St, S0
t , T,N), where:

• St is a set of timed states

• S0
t ⊆ S is a subset of initial timed states

• T is a finite set of transitions

• N : St × (R+ × T) → St is a partial next-state function that defines a
set of timed transitions (t, a) with t ∈ R+ and a ∈ T .

Consider a state s ∈ St, a transition a ∈ T and a timepoint t ∈ R+.
If (s, t, a) ∈ dom N , we say that transition a can be taken from state s at

timepoint t, and leads to state s′ = N(s, t, a). We denote this by s
t,a
→ s′.

A timed transition (t, a) is enabled at state s ∈ St if for some state

s′ ∈ St we have s
t,a
→ s′. As before, we denote the set of all such transitions

by enabled (s). A transition a is future enabled at state s and time t if it can
be executed at some timepoint t′ ≥ t. We denote this set by enabled+(s, t) =
{a ∈ T | ∃t′ ≥ t . (t′, a) ∈ enabled (s)}. The upper bound on the firing time
of a at s is denoted by firemax(a, s) = sup {t ∈ R+ | (t, a) ∈ enabled (s)}. We
write t ≺ firemax(a, s) to denote a strict inequality if the upper firing bound
is not reached, and a non-strict inequality otherwise.

A model for a timed structure Q is a state-transition graph, defined by
means of its execution traces, on which we impose two conditions. First,
the execution times of transitions have to form a monotonically increasing
sequence. Second, an enabled transition has to fire if it is not disabled before
its maximum firing time. Consequently, some transition has to fire at a state
before the maximum firing time of any enabled transition elapses.

For example, assume that the system has reached the timed state s at
timepoint t = 1, and that the enabled transitions are a and b with upper
bounds of 5 and 7, respectively. Then, the next transition has to be executed

90

from state s before or at timepoint 5, which is the smallest of the two upper
bounds. For instance, the next transition cannot be b at timepoint 6, since
a would have had to fire earlier than that.

Thus, if state s is reached at time t, the firing time t′ of the next transition
has to satisfy t ≤ t′ ≺ firemax(a, s), for all a ∈ enabled+(s, t).

Definition 17 The family Ls(Q) of execution traces of a timed structure Q

contains all infinite sequences σ = s0
t1,a1→ s1

t2,a2→ s2 . . .
ti,ai→ si . . ., such that

ti ≤ ti+1 ≺ firemax(a, si) for all i ≥ 0, a ∈ enabled+(si, ti) (where t0 = 0).

In the following, we restrict our attention to non-Zeno traces, in which
only a finite number of transitions can occur within any finite interval. Con-
sequently, in any non-Zeno trace, time grows unbounded towards infinity.

5.3 A Relaxed Timing Semantics

5.3.1 Preliminaries

In practice, state space exploration algorithms operate on sets of timed states,
usually called timed regions, which are represented using timing constraints.
Requiring a strict time ordering of explored transitions causes transitions
to be serialized even if they are independent. As a result, supplementary
constraints on transition ordering are added to the representation of a timed
region. Thus, a distinct timed region is generated for each interleaving of
transitions, leading to an explosion in the number of generated regions.

We approach this problem by defining a modified semantics for a timed
structure, which relaxes some of the time ordering constraints specified for

the traces in Ls(Q). Recall that in a trace σ = s0
t1,a1→ s1

t2,a2→ s2 . . .
ti,ai→ si . . .

from Ls(Q), each subsequent timed transition
ti+1,ai+1

→ has to satisfy:
• a relative ordering condition on transition timings: ti ≤ ti+1

• a bound on the firing time: ti+1 ≺ firemax(a, si), for all a ∈ enabled+(si, ti)
We will now give similar, but less restrictive conditions for our new se-

mantics, and discuss them intuitively before giving a formal proof.
First, the relaxed semantics must preserve time ordering due to causal-

ity. Given an execution trace σ = s0
t1,a1

→ s1
t2,a2

→ s2 . . .
tn,an
→ sn . . . we define

caused(ai) to be the set of transitions which become enabled as a result of
executing ai: caused(ai) = {a ∈ T | a 6∈ enabled (si−1) ∧ a ∈ enabled (si)}.

91

We say that transition ai is causal to aj, with i < j, if aj ∈ caused(ai) and
aj ∈ enabled (sk) for i ≤ k < j. In other words, aj is not enabled prior to
the execution of ai, but becomes enabled at si and remains enabled until
executed. (A self-loop transition which disables and re-enables another tran-
sition, such as in Petri nets, is considered causal to the affected transition).
If ai is causal to aj we naturally require that it occur earlier: ti ≤ tj. (1)

Next, we consider transitions which are independent, in the same sense
used previously with partial order reduction. If transition (t, a) is enabled in

state s, and s
t,a
→ s′, we denote the successor state s′ with succt,a(s).

Definition 18 Two timed transitions (t, a) and (t′, a′) are independent iff
for any timed state s such that (t, a), (t′, a′) ∈ enabled (s) the following re-
lations hold: (t, a) ∈ enabled (succt′,a′(s)), (t′, a′) ∈ enabled (succt,a(s)) and
succt′,a′(succt,a(s)) = succt,a(succt′,a′(s)). Two untimed transitions a and b
are independent if the timed transitions (t, a) and (t′, a′) are independent for
any t, t′ ∈ R+, and are dependent otherwise.

The goal of our relaxed semantics is to ensure that each execution trace
is stuttering equivalent to a trace of the original model. Consider the timed

transitions
t,a
→ and

t′,a′

→ , with t ≤ t′. It is clear that the interleaving which

explores
t′,a′

→ followed by
t,a
→ is equivalent with the original one if a and a′ are

independent and at least one of the two transitions is invisible.
To characterize the opposite situation, we define conflict(a) = {b ∈ T |

a and b are dependent or a and b are visible}. Thus, conflict(a) is the set of
all transitions that are dependent on a, to which the set of visible transitions
is added, if a itself is visible. If ai and aj in trace σ are in conflict, our
second requirement is that they be explored in the order of their execution
timepoints: i < j ⇒ ti ≤ tj. (2)

The ordering conditions (1) and (2) are the less restrictive version of the
strict time ordering enforced on Ls(Q). We next examine a counterpart for
the restriction on the next transition firing time.

For an execution trace σ, denote by σi the prefix containing the first i

transitions: σi = s0
t1,a1→ s1 . . .

ti,ai→ si. Denote by enabled ∗(σi) the set of
finite or infinite transition sequences ρ = ai+1ai+2 . . . such that for some

ti+1, ti+2, · · · the trace σ′ = s0
t1,a1→ s1 . . .

ti,ai→ si

ti+1,ai+1

→ si+1 . . . satisfies condi-
tions (1) and (2). Then, let firemax(ak, σiρ) be the upper bound on the firing
time tk of transition ak over all such execution traces σ′. We also use the
shorthand ak ∈ ρ to denote that transition ak is part of the sequence ρ.

92

Our final condition requires a transition ai+1 to fire before the last en-
abling time of any conflicting transition that could occur on a continuation
of the trace prefix σi. That is, ti+1 ≺ firemax(b, σiρ) for all b ∈ conflict(ai+1)
and b ∈ ρ ∈ enabled ∗(σi). This ensures that condition (2) is feasible: if the
firing time of ai+1 were greater than the maximum firing time of transition
b ∈ conflict(ai+1), then b could not be explored subsequently while observing
tai+1

≤ tb, required by (2).

5.3.2 Traces with relaxed timing

We are now ready to define our semantics in which not all timed transitions
have to be executed in the order of their timestamps.

Definition 19 A relaxed timing semantics for a timed structure Q is given
by a family Lr(Q) of traces over the state space St, starting at an initial state

in S0
t , where each execution trace σ = s0

t1,a1→ s1
t2,a2→ s2 . . .

tn,an
→ sn . . . satisfies

the following conditions for all i, j ≥ 1:

(1) ai causal to aj ⇒ ti ≤ tj

(2) aj ∈ conflict(ai) ∧ i < j ⇒ ti ≤ tj

(3) ti+1 ≺ firemax(b, σiρ) for all b ∈ conflict(ai+1), b ∈ ρ ∈ enabled ∗(σi)
together with the following fairness constraint:

(F) a ∈ enabled (si) ∧ firemax(a, σi) <∞ ⇒ ∃k ≥ i . (a 6∈ enabled (sk) ∨ a = ak)

The first three conditions have been discussed in turn. The fairness con-
dition F prohibits an indefinite postponement of a transition a which has a
finite upper firing bound.

With this definition, we can now prove:

Theorem 6 The set of relaxed traces Lr(Q) is a superset of the set of stan-
dard traces Ls(Q). Moreover, each relaxed trace is stuttering equivalent to
some standard trace.

Proof: It is clear that all traces of Ls(Q) are also traces of Lr(Q). Indeed,
in Ls(Q) a timed transition has to be firable with respect to all transitions
enabled at that state, and the ordering condition between timepoints holds
between all pairs of transitions. The fairness condition is ensured in Ls(Q)

93

by the non-Zeno assumption: time eventually exceeds any bound, and thus a
perpetually enabled transition with a finite firing bound is forced to execute
when this bound is reached.

Let us consider a trace σ ∈ Lr(Q) and construct a stuttering-equivalent
trace σ′ ∈ Ls(Q). We prove by induction over k ∈ N that we can successively
construct the execution traces σ0, σ1, . . . , σk . . . ∈ Lr(Q) from σ by permuting
transitions, such that σk ∼st σ, and the first k transitions from σk can be
executed in the standard semantics. Specifically, σk starts with the first k
transitions of σ in order of their timepoints, with ties broken in favor of the
transition explored earlier. For the base case k = 0 we trivially take σ0 = σ,
since the initial states are the same in both trace families.

For the induction step, assume the property is true for some k ≥ 0. Let
(tj, aj) be the transition in σk with the next smallest timepoint after the
transitions a1, a2, · · · , ak of σk. If j = k + 1, we trivially take σk+1 = σk.
Otherwise, for k < i < j, condition (1) guarantees that ai is not causal for
aj, otherwise ti ≤ tj and we would have chosen ai instead of aj. Likewise,
condition (2) ensures that ai is not in conflict with aj, since otherwise again
ti ≤ tj. Consequently, ai and aj are independent for k < i < j and thus aj can
be successively commuted with aj−1, . . . , ak+1, resulting in a new execution
sequence σk+1. Furthermore, since aj and ai are not in conflict, either aj is
invisible, or all ai with k < i < j are. In either case, σk+1 ∼st σk ∼st σ.

We still have to prove that σk+1 ∈ Lr(Q). It suffices to show that commut-
ing adjacent non-conflicting transitions into time order preserves conditions
(1) through (3). This is clear for conditions (1) and (2), since the transitions
which are commuted now occur in increasing time order. For condition (3),

we examine the case where the fragment s
t2,a2→ s1

t1,a1→ s′ of σk, with t1 < t2, is

permuted to s
t1,a1→ s2

t2,a2→ s′ in σk+1. We need to show condition (3) at states
s and s2, where the explored transitions differ in σk and σk+1 (Figure 5.1).

For state s, consider a transition b in conflict with a1, such that a transi-
tion sequence ρb can be executed at s. Moreover, choose ρ to be minimal, in
the sense that each transition in ρ is necessary to cause b. If a2 is independent
of all transitions in the sequence ρb, this sequence remains enabled at s1 after
executing a2, and t1 ≺ firemax(b, s1ρb), since condition (3) holds at s1 in σk.
Otherwise, a2 is in conflict with some transition c in the sequence ρb, and
thus t2 ≺ firemax(c, sρb), by condition (3) at s in σk. Since c and b are con-
nected by causality, we have tc ≤ tb and thus firemax(c, sρb) ≤ firemax(b, sρb).
Since t1 ≤ t2, we obtain by chaining the inequalities that t1 ≺ firemax(b, sρb).

94

p p p - c

s
�

�

�

�

�

�1

P

P

P

P

P

Pq

(t2, a2)

(t1, a1)

�

��

�

��

�

��

�

��

c

b

c

s1
�

�*

�

�*

�

�*

�

�*

c

b

c

s2

H

Hj

H

Hj

H

Hj

H

Hj

b

P

P

P

P

P

Pq

�

�

�

�

�

�1

(t1, a1)

(t2, a2)

c

s′
- p p p

Figure 5.1: Commuting non-conflicting transitions preserves condition (3)

Thus, condition (3) holds at s.
For state s2, if the transition sequence ρb (where b conflicts with a2) is exe-

cutable from s2, then the sequence a1ρb is executable from s. Applying condi-
tion (3) at state s in σk we obtain that t2 ≺ firemax(b, sa1ρ) = firemax(b, s2ρ),
which is precisely the condition needed at state s2.

It remains to show that tj is a legal firing time in the standard semantics.
Consider a transition b enabled in sk, after the first k transitions of σk+1. If
b has an infinite firing bound, we have nothing to prove. Otherwise, if the
upper bound on the firing time of b is finite, the fairness condition F ensures
that b either fires or is disabled at some point. In the first case, if tb is the
firing time of b, we have tj ≤ tb, otherwise, b would have been chosen instead
of aj in the induction step. In the second case, b must be disabled by some
transition al, thus tl ≺ firemax(b, sl−1), and again tj ≤ tl because of the choice
of aj. In both cases, tj does not exceed the maximum firing time of b and
thus satisfies the standard semantics. 2

In the relaxed timing semantics defined above, it is possible to fire a
transition ai+1 from a state si even though the minimum firing time of ai+1

exceeds the maximum firing time of some other transition b enabled at si. If
b does not conflict with ai+1, this does not violate condition (3). However,
ai+1 is not firable from si in the standard semantics, since b has to be fired
first. This means that the number of untimed transitions which can be fired
from a given state in the relaxed semantics can be larger than the number of
transitions firable in the standard semantics. Thus, a state search algorithm
based on timed regions, which makes one exploration step for each untimed
transition from T enabled at a state, may explore more transitions in the
relaxed semantics than in the standard semantics.

95

To ensure that the partial order reduction procedure does not operate on
a larger state graph than initially, we can restrict the enabledness condition
in the relaxed semantics. Namely, a transition (ti+1, ai+1) is firable after
trace σi only if ai+1 can be fired earlier than the maximum firing time of all
enabled transitions, i.e., ∃t′ ∈ R+ such that (t′, ai+1) ∈ enabled (σi) and t′ ≺
firemax(b, σi) for all b ∈ enabled (σi). In contrast to the standard semantics,
this condition does not restrict the maximum firing time of ai+1, it merely
requires that ai+1 be firable before all other enabled transitions. With this
modification, a transition from T is firable in the relaxed semantics iff it is
firable in the standard semantics, with no penalty in state space increase.

5.3.3 Enforcing timing conditions

The familyLr(Q) of traces with relaxed timing is characterized indirectly by a
set of conditions. A state-space exploration needs an explicit definition of the
transitions that can be explored at any given state. Of the given conditions
(1) through (3), the third is difficult to ensure directly, since it is restricts
the firing time with respect to all possible future conflicting transitions. To
obtain a condition which can be enforced in practice, we draw on the approach
of [YS97], which in turn is based on the stubborn set technique of [Val90].

Let b be a transition which is not enabled in the timed state s. A set of
transitions is necessary for b at s (denoted necessary(b, s)) if b cannot be exe-
cuted on any trace from s without executing some transition in necessary(b, s)
first. That is, for any sequence of transitions a1, a2, · · · , ak starting at s with
ak = b there exists i < k such that ai ∈ necessary(b, s). Let necessary∗(b, s)
be a set of transitions which contains b and is transitively closed under ne-
cessity, i.e., for any c ∈ necessary∗(b, s) disabled in s, there exists a subset of
transitions necessary(c, s) ⊆ necessary∗(b, s) which is necessary for c at s.

Let a be a transition in enabled (s). A set of transitions in enabled (s)
is a dependency set for transition a at state s (denoted dependency (a, s))
if for any transition b ∈ conflict(a) there exists a set necessary∗(b, s), such
that all its transitions that are enabled at s belong to dependency(a, s).
Thus, no transition in conflict with a can be enabled starting from s without
first executing a transition from dependency (a, s). For both necessary and
dependency sets, multiple choices may be possible. In the following, these
notations always denote a specific choice of such a set.

The computation of necessary sets depends on the chosen description
model. For Petri nets, one can choose the input transitions of an unmarked

96

input place of the disabled transition [YS97]. For communicating processes,
a necessary set for a locally enabled communication transition consists of all
transitions that precede the corresponding communication points in other
processes. For a system containing data variables, a a transition disabled by
a false guard has as necessary set all transitions which modify that guard.
This can be refined by analyzing the effects of specific variables [Val90].

Let us discuss the enforcement of condition (3) using these notions. We
know that in order for any transition b ∈ conflict (ai) to fire in the future, an
enabled transition aj ∈ necessary∗(b, si−1) (and thus in dependency (ai, si−1))
must fire first. Assume that we are requiring ti ≤ tj for all j ≥ i such
that aj ∈ dependency (ai, si−1) (and aj is continually enabled in si−1 through
sj−1). Since aj is necessary for b, aj is the start of a sequence of causal
transitions ρ leading to b, and thus ti ≤ tj ≤ tb. Thus, ti ≺ firemax(b, σi−1ρ).
Consequently, conditions (2) and (3) can be replaced with:

ti ≤ tj for i < j and aj ∈ dependency(ai, si−1)
This analysis can be refined in two ways. First, one can consider tran-

sition firing times in the definition of necessary and dependency sets. A
transition b which conflicts with an enabled transition a need not affect the
firing conditions of a if b cannot fire before the maximal firing time of a.

As a second refinement, the condition ti ≤ tj for aj ∈ dependency (ai, si−1)
can be made less restrictive if a relation between the firing time of a transition
b ∈ conflict(ai) and the firing time of a transition aj ∈ necessary(b, si−1) can
be computed. If this relation is of the form tb = f(si−1, tj), for some function
f , then we can require ti ≤ f(si−1, tj) for aj ∈ dependency(ai, si−1), which
replaces conditions (2) and (3).

This second refinement can lead to a reduced branching in the state space.
For example, consider a system in which transitions a and b are enabled at
the current state, b is in the dependency set of a because it can cause the
execution of d ∈ conflict (a) with td ≥ tb + 2, and a is in the dependency set
of b because it can cause transition c ∈ conflict(b) with tc ≥ ta +1. However,
if −1 ≤ ta − tb ≤ 2 we obtain tb ≤ ta + 1 ≤ tc and ta ≤ tb + 2 ≤ td, so
under these conditions both a and b can fire, without affecting each other.
With our refinement, the timed region −1 ≤ ta − tb ≤ 2 is obtained in the
relaxed timing semantics regardless of the exploration order between a and
b, and can be explored as a whole. With the first definition of dependence
sets, taken from [YS97], the interleavings ta ≤ tb and tb ≤ ta have to be
considered, and thus two regions, −1 ≤ ta − tb ≤ 0 and 0 ≤ ta − tb ≤ 2, are
obtained and further explored separately.

97

5.3.4 Exploration based on timed regions

We have seen that an execution trace with relaxed timing has to satisfy
conditions of the form ti ≤ tj or ti ≤ f(tj) for i < j. These inequalities are
enforced either when aj is caused by ai or when aj is in the dependency set or
conflict set of ai. To this effect, the transition execution times ti have to be
part of the timed state, or have to be temporarily added to the timed state
as auxiliary variables, for as long as it is needed to enforce such inequalities.

In time Petri nets or TEL structures, the firing time of a transition or
event appears explicitly as part of the timed state and the transition relation:
a transition fires within specified time bounds of the transition that enabled
it. In timed automata, the current time appears as auxiliary variable in the
form of the zero clock. The advancing of time after each transition serves to
enforce the order among sequentially executed transitions.

A practical state space exploration algorithm does not explore an infinite,
uncountable number of timed traces, but operates instead on sets of timed
states called timed regions. An exploration step for a given transition a
consists in computing the successor region containing all timed states reached
by executing that transition from the states of the current timed region r:

succa(r) = {s′ ∈ St | ∃s ∈ r, t ∈ R+ | s
t,a
→ s′}

We also write r
a
→ r′ if r′ = succa(r). Then, a sequence of timed regions

r0
a1→ r1 . . .

ai→ ri . . . accounts for all timed traces σ = s0
t1,a1→ s1 . . .

ti,ai→ si . . .,
where r0 is the region containing all initial states s0. Typically, as we have
seen for timed automata, time Petri nets and TEL structures, the description
of the timed system contains a set of time variables, and timed regions are
represented using difference inequalities on those variables.

To incorporate conditions of the form ti ≤ tj or ti ≤ f(tj) into the region
successor operation, two basic possibilities exist. A first solution retains the
firing time ti of a transition ai as part of a timed state (and thus, timed
region), as long as there are enabled transitions aj for which a relative con-
straint between ti and tj may need to be enforced. Once no such enabled
transitions remain, ti is removed from the representation of the timed region
by existential quantification.

A second solution introduces, upon firing ai, time variables for all po-
tential future transitions aj whose firing time tj is related to ti. Then, ti is
quantified out, being no longer needed, and likewise the time variables for the
transitions which become disabled as a result of firing ai. Thus, the current
timed region contains a time variable for each enabled transition. This is the

98

solution adopted in [YS97, BM98].
The relative tradeoffs of the two approaches depend on the analyzed

model. If the branching factor at each state is high, tracking all enabled
transitions may lead to a large number of unneeded time variables, since not
all enabled transitions are executed. If only past transition times are main-
tained, no unnecessary variables are introduced. However, the time of a past
transition may have to be retained long after its exploration, as long as there
are unexplored transitions that need to be related to it.

5.4 Partial Order Reduction

The exploration step succ for exploring a transition defines a state-transition
graph (region automaton) R(Q) whose states are timed regions. We restrict
ourselves to the case when the number of timed regions is finite. The particu-
lar models analyzed so far (timed automata, time Petri nets, TEL structures)
admit a finite quotient, since their timing is described by elementary differ-
ence constraints with integer constants.

Partial order reduction can be applied to the region automaton by find-
ing an ample set of transitions which is sufficient for exploration at each
state. We construct the ample sets based on the dependency sets discussed
in Section 5.3. This notion can be naturally extended to regions, by defining
b ∈ dependency(a, r) iff ∃s ∈ r . b ∈ dependency (a, s). For C0, C2 and C3,
we use the standard formulation of the ample set conditions. For C1, we
require of any region r ∈ R that:

C1’ a ∈ ample(r) ⇒ dependency(a, r) ⊆ ample(r)
In other words, the ample set of a region is closed with respect to the

dependency relation. Thus, an ample set can be computed by choosing an
enabled transition and successively adding any transitions in the dependency
set of an ample transition to the ample set, until a fixpoint is reached.

We can easily show that condition C1’ subsumes the faithful decomposi-
tion condition C1 required for ample sets.

Proposition 10 If for every timed region r, the ample set ample(r) satisfies
condition C1’, then no transition which is dependent on a transition from
ample(r) can be executed before a transition from ample(r).

Proof: The result is a consequence of the correspondence between the re-
gion automaton and the underlying infinite family of timed traces Lr(Q).

99

A transition b dependent on a ∈ ample(r) can be executed in R(Q) only
if a corresponding timed transition (tb, b) can be executed in Lr(Q). How-
ever, by the definition of dependency sets, some enabled transition from
necessary∗(b, r) has to be executed before b, and this transition belongs to
dependency (a, r) ⊆ ample(r). This completes the proof. 2

5.5 Discussion

Of the existing approaches to partial order reduction for timed systems, our
formalism draws most from the work of Yoneda and Schlingloff [YS97] on
time Petri nets. We present the main differences of our approach below.

First, the formalism presented here is significantly more general. The
notion of timed state is generic, and the timed transition relation between
two states can be more complex than a time separation with lower and upper
bounds, as in time Petri nets. In fact, the only conceptual restriction for our
model of timed structures is that the resulting region automaton be finite.
This is true if the timed transition relation is based on atomic difference
constraints between time variables, such as in timed automata. However,
the generality does not introduce unnecessary complexity. In fact, for time
Petri nets our approach results in an algorithm similar to that of [YS97],
with potential improvements discussed below.

Another difference consists in the approach taken to design and prove
the algorithm. In [YS97], a region-based state space exploration algorithm
without partial order reduction is given first. Then, the time ordering of
transitions in the region-based model is relaxed, as a prerequisite to partial
order reduction. As a consequence, the proof is quite complex, because the
state space obtained using partial orders is not a subset of the original state
space. Furthermore, the proof makes extensive reference to the particular
representations of transition constraints and timed regions.

Our approach has been to relax time ordering on the family of timed traces
underlying the system model. As a result, ensuring stuttering equivalence by
enforcing constraints on transitions from a dependency set leads naturally to
the selection of a reduced set of transitions for exploration. Consequently,
the main burden of the proof falls onto proving stuttering equivalence for
timed traces. The application of partial order reduction to the resulting
region-based model is straightforward.

The algorithm of [YS97] requires an ample transition to fire before all

100

other transitions from the ample set. The algorithm given here is less re-
strictive, and requires only the firing before all enabled transitions in the
dependency set, which is a subset of the ample set. Since an ample transi-
tion is independent from the transitions in the difference of these two sets,
fewer timed regions can be generated if a time ordering between these transi-
tions does not need to be enforced. Furthermore, if the firing time of a future
conflicting transition can be determined from the firing time of a currently
enabled transition, the branching in the state space can be further reduced,
as shown in the end of section 5.3.3.

The correspondence to timed event/level structures is direct and quite
similar to time Petri nets. Time variables in this case are the firing times
of events. Causality conditions are expressed directly as part of the rules,
and the analysis of dependency relations is done in the same way as for time
Petri nets. Similarly, an event time is retained as a part of the timed state
as long as events caused by it can still be enabled; it can be quantified out
subsequently.

In comparison to our local-time approach for timed automata, the main
difference lies in the firing semantics of transitions. Using the terminology
of [BST99], which defines three types of urgency for transitions, in our model
of timed structures transitions are delayable. They are required to fire before
their enabling interval expires; within this interval they can fire at any given
time. In timed automata transitions that are not constrained by a state
invariant are lazy : it is possible for them not to fire even if enabled throughout
their firing interval. Transitions on which the state invariant imposes an
upper firing bound are delayable just like in timed structures. (A third type,
eager or urgent transitions which execute immediately when enabled can be
handled by performing a special check for such transitions at any state).

Lazy transitions can be incorporated in our framework without significant
changes. We have chosen to discuss delayable transitions only in order not
to complicate the presentation. The only change refers to the requirement
that a transition execute at a prior time compared to all transitions in its
dependency set. This ensures that if a transition from the dependency set
is actually executed, the resulting trace sequence is still consistent with the
standard semantics, without conflicting with previously explored transitions.
However, since lazy transitions are not forced to execute, they are not subject
to this condition. Thus, a transition only needs to fire before all delayable
transitions from its dependency set.

For timed automata, causality is modeled by advancing the local time in

101

each automaton after a transition. Thus, the new local time represents a
possible legal firing time for a new transition, and its advancement ensures
that the new transition takes place at a later time than the previous transition
in the same automaton. At the same time, our general approach points
out an alternative representation of local time. Instead of maintaining one
reference time for each automaton (representing a potential time for a future
transition), it is possible to maintain the time of the last transition in each
automaton instead. With this approach, the number of auxiliary variables
needed to represent a timed zone can be less than the number of automata at
some states, because several automata can share a synchronization transition
as last executed transition.

Concluding, we see as the main benefit of our general approach the fact
that it identifies the conditions and the potential for partial order reduction at
the elementary level of timed traces, to which a large variety of timed models
can be reduced. The fundamental idea is to distinguish between transition
causality and serialization due to timing, and to define a semantics which
eliminates unnecessary serialization and branching in the state space. The
reduction procedure itself is given in terms of several generic notions, such
as the enforcement of transition ordering, the computation of dependency
sets and the representation of timed regions. To obtain a practical model
checking algorithm, the characteristics of the given time model can be taken
into account to particularize this method into an efficient implementation.

102

Chapter 6

Experimental Results

6.1 Implementation

We have evaluated the performance gains that can be obtained by partial
order reduction for systems modeled as networks of timed automata. We have
concentrated on this particular model both since it is the most complex and
expressive among those studied, and because no practical results concerning
partial order reduction for timed automata have been reported so far.

In order to isolate the effects of partial order reduction, we have imple-
mented both a standard state space exploration algorithm using timed zones
and an algorithm that uses the local-time model described in Chapter 3. In
both cases, we represent clock constraints using difference bound matrices,
implemented simply as two-dimensional arrays.

To facilitate the comparison with other tools and the analysis of bench-
marks commonly used in the literature, the tool that we have implemented
operates on timed automata models which are described in the input lan-
guage of the Uppaal verifier [LPW95]. The model adopted by Uppaal

extends the definition of networks of timed automata (as presented in Chap-
ter 3) by allowing the system to be augmented with integer variables. These
can occur in transition guards and can be assigned as a result of a transition.
This extension is useful in a large number of practical cases, and allows a
natural modeling of more complex timed systems. It also introduces addi-
tional dependencies between the components and transitions of the system.
We show in the following how to extend our results concerning partial order
reduction to handle shared variables in the model.

103

If a variable is shared by several components of the system, the usual
cases of read-write and write-write dependencies appear. To maintain the
correct semantics, we have to ensure that write accesses to the variable are
serialized with respect to both reads and other writes in the order of their
occurrence in time. That is, if transitions ai and aj in a timed execution
trace (t1, a1), (t2, a2), . . . , (tn, an), . . . are in conflict with respect to variable
v, then i < j if and only if ti < tj.

One option for ensuring this property is to introduce an auxiliary time
variable tv for each global variable v in the model. This variable would be set
by each transition that accesses (reads or writes) v to the execution timepoint
of that transition. All such transitions would then become dependent and
would be serialized by ensuring that tv grows monotonically. However, this
approach quickly becomes expensive if the model contains many variables.
Moreover, it unnecessarily serializes all transitions that read the variable,
even though they have the same effect regardless of their relative order.

Instead, we have chosen the following approach. For each variable, the
two sets of processes that can read and, respectively, write that variable are
statically determined at the time of building the model. If the variable is
local to a single process, nothing need be done. Otherwise, if a transition
that accesses variable v is added to an ample set, all enabled transitions in
the other automata that access v need to be selected as well. Moreover,
when selecting such a transition for exploration, its execution timepoint is
serialized with respect to the processes that potentially contain a transition
which conflicts with respect to v.

Thus, if we use local reference times for each process, as in the local
time model of Chapter 3, then a transition a which reads v will be restricted
with the conjunct

∧
i∈write(v) ti ≥ ta, and a transition b which writes v is

restricted by
∧

i∈read(v)∪write(v) ti ≥ tb, where read(v) and write(v) are the sets
of process indices which read and write v, respectively. This ensures that in
the other relevant processes, the reference time has already advanced past
the execution point of the considered transition, and thus any conflicting
transitions explored subsequently are serialized in the correct order. If we
use instead variables denoting the last transition in a given process, as in
Chapter 5, then for a read transition a we require

∧
i∈write(v) ta ≥ tlasti, and

for a write transition b we require
∧

i∈read(v)∪write(v) tb ≥ tlasti. Here, the
inequalities ensure that the transition occurs at a timepoint which is later
than that of the last executed transition in any potentially conflicting process.

104

6.2 Parameterized Benchmarks

Our first comparison is made on a set of benchmarks which has been used
in [BMPY97] to compare continuous-time techniques based on difference
bound matrices with discrete-time techniques based on numerical decision
diagrams (NDDs). The same examples are used in [BM98] to compare the
efficiency of the POSET method for TEL structures. These benchmarks
highlight specific extreme-case scenarios which appear in the exploration of
timed systems.

Benchmark A (Figure 6.1) consists of a series of N independent timed
automata, Ai each with a single state and one clock Ci. Each of the n states
has an invariant Ci < ui and a self-loop transition with a lower bound Ci ≥ li
which also resets Ci. Thus, the global system has a unique control state, but
the set of possible time configurations becomes more and more complex as the
system evolves, eventually covering the entire possible space of clock values.
In [BMPY97] it is shown that standard DBM techniques cannot handle more
than 5 of these automata composed together. Our results, shown in Table 6.1
are consistent with those obtained in [BM98] using POSETs. It can be seen
that with the local time model, only relatively few timed states need to be
generated before the entire state space is finally covered. Since the example
contains only one control state, partial order reduction is not applicable, and
the improvements are due entirely to the local time model.

��

��

x1 <u1

��

?

x1 ≥ l1, x1 7→ 0

A1

��

��

x2 <u2

��

?

x2 ≥ l2, x2 7→ 0

A2

��

��

xn <un

��

?

xn ≥ ln, xn 7→ 0

An

Figure 6.1: Benchmark A

To preserve consistency with the results of [BMPY97], in this example, as
well as in the remainder of the benchmarks in this section, the time constants
in the model have been generated randomly from the interval [0..7].

A second benchmark B (Figure 6.2) consists of N two-state automata,
between which the automaton switches in a time interval [li, ui). Such an
automaton represents a boolean signal for which two successive changes in
value are constrained by a lower and an upper time bound. An array of such

105

N 16 32 48 64 80 96 112 128

states 72 158 229 226 298 382 439 469
time (s) 0 1.4 7.2 15.7 40 84.8 154 252

Table 6.1: Exploration of example A using a local-time model

automata would be necessary to model the behavior of a circuit under all
possible inputs. Again, the results for reachability analysis are similar to
those obtained with the POSET method, and significantly better than the
standard exploration, which cannot handle more than 4 stages. This model
is significantly more complex than the previous one, and the number of timed
states increases much faster (the number of control states is 2N).

��

��

x1<u1

?

x1≥l1

x1 7→0

6

x1≥l1

x17→0

��

��

x1<u1

A1

��

��

x2<u2

?

x2≥l2

x2 7→0

6

x2≥l2

x2 7→0

��

��

x2<u2

A2

��

��

xn<un

?

xn≥ln

xn 7→0

6

xn≥ln

xn 7→0

��

��

xn<un

An

Figure 6.2: Benchmark B

Due to the independence of its transitions, this model is the ideal candi-
date for partial order reduction. Table 6.2 presents the comparative results
for state space search with and without reduction (using the local time model
in both cases). The reduction results are given for the best case with no visi-
ble transitions (this is the case if B is part of a model being verified either for
deadlock detection or with respect to other visible properties). With partial
order reduction, the number of states increases linearly rather than expo-
nentially: 80 automata are analyzed in less time and a fraction of the space
compared to 13 automata without reduction.

The final example of this section is an asynchronous circuit consisting
of N XOR gates with delays, connected in a ring, in which gate i outputs
xi after some bounded delay, and has as inputs the (delayed) values of xi

and xi−1. Each gate can be represented by a 4-state timed automaton, with
states encoding the actual and hidden value of the output signal, and a clock
that models the delay [MP95].

106

N 8 9 10 11 12 13
states 1214 3463 9623 18634 36320 71442

time (s) 0 0.5 2 4.85 11.7 27.7

N 8 16 32 48 64 80
states (red.) 75 262 653 1312 1394 2844

time (s) 0 0 0.5 3 6.8 20.8

Table 6.2: Exploration of example B using a local-time model

The system is strongly coupled: each change in one of the signals poten-
tially cascades to cause changes in all gates in the ring, and the feedback
loops create a high complexity of the resulting state space. We present the
results of computing all timed states that are reachable from the initial unsta-
ble state in which all signals have the value 1. Several variations of the state
space search have been employed. In Table 6.3, sync denotes a local-time
exploration in which only synchronizable states are explored (cf. Chapter
3). Lines marked with act denote results obtained using the clock activity
reduction of [DY96], eliminating clocks which are no longer used before they
are reset. For a gate modeled as a timed automaton, this reduction occurs at
the stable states, from which the clock is reset when switching to an excited
state that subsequently causes a change in output.

The results show that, even though the number of timed states is expo-
nential in the number of gates for both standard and local-time exploration,
the performance using the local-time model degrades more gracefully, with
a factor of more than 20 in running time for 6 gates distinguishing the two.
Moreover, it is of significant advantage to restrict the exploration to synchro-
nizable states. Not surprisingly, clock activity reduction improves efficiency
for the local-time model as well, and individually it performs even better
than the restriction to synchronizable states.

6.3 Case Studies of Timed Systems

We have evaluated the behavior of our local-time state space exploration
algorithm in practice by analyzing several models of timed systems that have
been presented as case studies in the literature. All of the systems presented
here have been previously modeled and analyzed using the Uppaal verifier.

The first model is a description of the Philips audio control protocol, de-

107

4 gates 5 gates 6 gates
Method time states time states time states
standard 0 1104 0.9s 10992 795s 469706

local 0 1384 2s 12778 >10min >400k
local + sync 0 1047 0.7s 6901 38s 95087
local + act 0 444 1s 5285 29s 52190

local + act + sync 0 444 1s 5133 27s 49482

Table 6.3: Exploration of a ring of XOR gates

veloped in order to exchange control information using Manchester encoding
between audio equipment components. The protocol is modeled using four
timed automata, communicating via 12 channels and using four integer vari-
ables and two clocks. The input automaton generates valid bit sequences
for the sender automaton, which encodes them, determining the necessary
delays for the encoding voltage signal. The receiver automaton decodes the
bit stream from the sender by measuring the delay between two subsequent
signals. Finally the output acknowledgement automaton checks the bits de-
coded by the receiver. In this model, the components are quite strongly
synchronized. After taking variable dependencies into account, there is one
single state which has a local transition that can form an ample set by itself.
As a consequence, the same results are obtained using the standard and local
model, with or without partial order reduction.

States standard loc + syn loc + syn + po
control 145 145 145
timed 151 151 151

Table 6.4: Philips Audio Control Protocol (without bus collision)

The box sorter is a simpler example describing a system, consisting of four
timed automata, representing a controller, the behavior of a box travelling
through the system, as well as a piston and an observer that interact with
the box.

In this example, the network of automata is also quite strongly coupled,
with a high density of synchronization transitions, and few possible inter-
leavings, as can be observed directly from the description, or simulating the
systems using Uppaal. Partial order reduction together with the local time

108

States standard local loc + po loc + syn loc + syn + po
control 61 89 66 61 56
timed 558 277 233 226 216

Table 6.5: Box Sorter

model result in a reduction of the state space with a factor of about 2.5,
with the local-time model accounting for the greater part. Using the unre-
stricted local-time model, without regard for synchronizable states, leads to a
somewhat higher number of control states (some of which are not reachable
in the standard semantics). At the same time, the total number of timed
states decreases. Restricting the model to synchronizable states is beneficial,
a characteristic which we have observed for all our examples.

The next example is a model of a manufacturing plant. It represents the
timing and synchronization mechanism of two robots that transport boxes
between a service station and a belt, in either direction. Analyzed with the
standard reachability algorithm, the system turns out to be quite complex,
resulting in more than 80,000 timed states, even with just five processes
and five clocks. The reason for this large state space resides in the time
constants that appear in the model: several guards with large integer bounds
(> 100) result in a significant number of possible time assignments. The
local-time model is especially efficient here, resulting in a 66-fold reduction
in the number of timed states, with a small additional gain for partial order
reduction.

An implementation variant of the search algorithm concerns testing for
inclusion between timed zones. The results presented so far test only whether
the newly reached zone is included in one which has been already explored.
Conversely, replacing a previously explored zone can be replaced if it is in-
cluded in the current one, after which the search is continued as usual. This
solution may save space, potentially at the expense of time in additional
checks. For this example, the space savings due to reduction are increased,
while using comparable time.

Finally, we have run our tool on a model of the bounded retransmission
protocol, a version of the alternating bit protocol over a lossy communications
channel, with a bounded number of retransmissions of any given packet. The
protocol is described using a total of seven processes, which model a sender
and a receiver (each with its own channels), two lossy communication lines,
and an abstraction of the transmitted file. The model contains 5 clocks, 10

109

Search States standard loc + syn loc + syn + po
no inclusion control 211 211 175

timed 70338 1065 895
with inclusion control 211 211 173

timed 63119 926 597

Table 6.6: Manufacturing Plant Model

integer variables and more than a dozen communication channels. Runs have
been made with two different sets of model constants, both with and without
the double inclusion test. Partial order reduction achieves gains of up to 1/3
even though just two states have ample sets with one local transition.

Variant States standard loc + syn loc + syn + po
C1 control 2477 2513 2038

no incl. timed 25986 22929 17287
C1 control 2477 2508 2036

with incl. timed 18612 15581 12315
C2 control 6577 6590 5982

no incl. timed 120738 122008 112789
C2 control 6552 6574 5966

with incl. timed 70897 65469 60830

Table 6.7: Bounded Retransmission Protocol

In summary, our results for these models, whose characteristics are repre-
sentative of typical systems targeted for verification, show that the local-time
model, when restricted to synchronizable states, always leads to a clear im-
provement in the size of the reachable state space. In addition, further savings
can be obtained by selecting a reduced set of transitions for exploration and
applying partial order reduction techniques from the untimed domain. As
expected, the gains obtained during the latter step are highly dependent on
the structure of the model: small improvements (10% - 20%) are obtained
for models which are tightly synchronized and have few internal transitions,
but the gains can be orders of magnitude if there are a significant number of
mutually independent transitions.

110

Chapter 7

Conclusions

In this dissertation we have presented solutions for the application of partial
order methods to the verification of timed systems. We have given a partial
order reduction algorithm for networks of timed automata which preserves
formulas in a timed extension of linear temporal logic. The algorithm is
based on a modified local-time semantics, which allows individual automata
to execute independently except for synchronization transitions. Timed au-
tomata constitute the most expressive timing formalism for which partial
order reduction has been investigated so far.

More generally, we have investigated the issues that underlie the appli-
cation of partial order reduction in a continuous-time model. For a general
model whose semantics is defined in terms of timed traces, we show how
to separate causal dependence of transitions from time ordering due to con-
currency and how to obtain general conditions for the application of partial
order reduction. As particular instances of this framework we obtain im-
proved algorithms for timed event/level structures and time Petri nets, as
well as the algorithm for timed automata based on the local-time model.

We have evaluated the performance of our partial order reduction ap-
proach by building a tool which implements the reduction algorithm for net-
works of timed automata and analyzing several examples. The resulting re-
duction in state space stems from two sources: the local-time model reduces
the number of generated time regions, while the partial order techniques ap-
plied from the domain of untimed systems reduce the explored control state
space.

111

Future Work

The research issue that seems most immediately appealing is the combina-
tion of partial order reduction and symbolic model checking in the context
of timed systems. Symbolic approaches for the representation of the large
number of time zones resulting from state space exploration have long been
an issue of special interest in real-time verification. However, due to the dif-
ferent nature of the operations performed on control states and time regions,
symbolic representations that are applicable to both components have been
difficult to find.

Recently, two data structures inspired by BDDs, clock difference dia-
grams [BLP+99] and difference decision diagrams [MLAH99] have been pro-
posed. The latter data structure provides a unified framework for handling
control and timing information, and algorithms to perform conjunction, sub-
stitution and existential quantification, the elementary operations of the state
space exploration algorithm for timed automata. Moreover, first reported re-
sults, although so far only for systems with a very regular structure, have
shown that fully symbolic model checking can significantly outperform the
traditional algorithms for timed automata.

The state-space exploration algorithm based on the local-time model can
be implemented without difficulty using DDDs, since it is based on the same
basic operations as the standard zone-based exploration. Also, it is in this
context that static partial order reduction can be used to its best advantage,
given its independence of the underlying exploration algorithm. Instead of
encoding the exploration of all outgoing transitions from a given state, the
symbolic representation of the transitions relation will merely contain those
transitions which have been selected for execution by the reduction algorithm.

It is well known that the size of a symbolic representation does not bear
a direct relation to the number of states represented. Therefore, the combi-
nation of partial order reduction and symbolic model checking is not auto-
matically a more efficient technique. However, the main goal of a symbolic
representation is to efficiently store and process a set of individual states,
whereas the local-time model already coalesces individual time regions into
coarser ones. Thus, it can be expected that the local time model would
already carry out in part the task of the symbolic algorithm, and further-
more that the selection of a reduced number of transitions may decrease the
complexity of a symbolic exploration step.

A second direction of research concerns the applicability of partial order

112

reduction to more expressive models. The present framework for the use of
partial order reduction for timed systems depends essentially on the fact that
time advances at the same rate in all components of the model. A next step
would be to investigate this technique for systems with multi-rate clocks and
more generally for hybrid systems, which combine continuous and discrete
evolution.

Yet another question concerns the applicability of partial order reduction
jointly with other state space reduction techniques. In particular, we have
seen partial order reduction applied to two different quotient models: the
zone automaton and the region graph automaton. But other models that
can be used for efficient verification exist, in particular the quotient with
respect to a time-abstracting bisimulation, which can be much smaller. An
interesting question is whether partial order reduction can be applied to-
gether with this minimization, and in particular with on-the-fly techniques.

Ultimately, the goal of this, as of any other verification technique, is
the successful application to practical designs. Even though many different
formalisms are used for the modeling of timed systems, we have shown that
a quite general principle for the application of partial order reduction can
be found. Algorithms for a partial order state space exploration can be
extracted based on the particular characteristics of the chosen model, using
the same representation as a search without reduction or a slightly modified
one. Our results for timed automata, together with prior results for other
timed models show that partial order reduction is a feature which can result
in significant gains when implemented in a verification system.

113

Bibliography

[ABH+97] R. Alur, R. K. Brayton, T. A. Henzinger, S. Quadeer, and S. K.
Rajamani. Partial-order reduction in symbolic state space ex-
ploration. In Grumberg [Gru97], pages 340–351.

[ACD90] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-
checking for real-time systems. In LICS90 [LIC90], pages 414–
425.

[AD90] Rajeev Alur and David Dill. Automata for modeling real-time
systems. In M. S. Paterson, editor, Automata, Languages, and
Programming. 17th International Colloquium Proceedings, vol-
ume 443 of Lecture Notes in Computer Science, pages 322–335,
Coventry, UK, July 1990. Springer-Verlag.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, April 1994.

[AH91] Rajeev Alur and Thomas A. Henzinger. Logics and models of real
time: A survey. In J.W. de Bakker, C. Huizing, W.-P. de Roever,
and G. Rozenberg, editors, Real-Time: Theory in Practice. REX
Workshop Proceedings, volume 600 of Lecture Notes in Computer
Science, pages 74–106, Mook, Netherlands, June 1991. Springer-
Verlag.

[AK95] Rajeev Alur and Robert P. Kurshan. Timing analysis in
COSPAN. In R. Alur, T. A. Henzinger, and E. D. Sontag,
editors, Hybrid Systems III. Verification and Control, volume
1066 of Lecture Notes in Computer Science, pages 220–231, New
Brunswick, NJ, USA, October 1995. Springer-Verlag.

114

[AMP98] Eugene Asarin, Oded Maler, and Amir Pnueli. On discretization
of delays in timed automata and digital circuits. In Sangiorgi
and de Simone [SdS98], pages 470–484.

[Bal96] Felice Balarin. Approximate reachability analysis of timed au-
tomata. In RTSS96 [RTS96], pages 52–61.

[BCM+90] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J.
Hwang. Symbolic model checking: 1020 states and beyond. In
LICS90 [LIC90], pages 428–439.

[BD98] Dragan Bošnački and Dennis Dams. Integrating real time in
Spin: a prototype implementation. In Stan Budkowski, Ana
Cavalli, and Elie Najm, editors, Proceedings of FORTE/PSTV
’96. IFIP Joint International Conference on Formal Description
Techniques for Distributed Systems and Communication Proto-
cols, and Protocol Specification, Testing and Verification, pages
423–438, Paris, France, October 1998. Kluwer Academic Pub-
lishers.

[Bel99] Wendy A. Belluomini. Algorithms for Synthesis and Verification
of Timed Circuits and Systems. PhD thesis, University of Utah,
1999.

[BF99] Burkhard Bieber and Hans Fleischhack. Model checking of time
petri nets based on partial order semantics. In Baeten and Mauw
[BM99], pages 210–225.

[BJLW98] Johan Bengtsson, Bengt Jonsson, Johan Lilius, and Yi Wang.
Partial order reductions for timed systems. In Sangiorgi and
de Simone [SdS98], pages 485–500.

[BLP+99] G. Behrmann, K.G. Larsen, J. Pearson, C. Weise, and W. Yi.
Efficient timed reachability analysis using clock difference di-
agrams. In Nicolas Halbwachs and Doron Peled, editors,
Computer Aided Verification. 11th International Conference,
CAV’99. Proceedings, volume 1633 of Lecture Notes in Com-
puter Science, pages 341–353, Trento, Italy, July 1999. Springer-
Verlag.

115

[BM97] Wendy Belluomini and Chris J. Myers. Timed event/level struc-
tures. In ACM/IEEE International Workshop on Timing Issues
in the Specification and Synthesis of Digital Systems, December
1997.

[BM98] Wendy Belluomini and Chris J. Myers. Verification of timed
systems using POSETs. In Alan J. Hu and Moshe Y. Vardi,
editors, Computer Aided Verification. 10th International Con-
ference, CAV’98. Proceedings, volume 1427 of Lecture Notes
in Computer Science, pages 403–415, Vancouver, BC, Canada,
June/July 1998. Springer-Verlag.

[BM99] Jos C.M. Baeten and Sjouke Mauw, editors. CONCUR’99: Con-
currency Theory. 10th International Conference. Proceedings,
volume 1664 of Lecture Notes in Computer Science, Eindhoven,
Netherlands, August 1999. Springer-Verlag.

[BMH99] Wendy Belluomini, Chris J. Myers, and H. Peter Hofstee. Veri-
fication of delayed-reset domino circuits using ATACS. In Pro-
ceedings. Fifth International Symposium on Advanced Research
in Asynchronous Circuits and Systems, pages 3–12, Barcelona,
Spain, April 1999. IEEE Computer Society Press.

[BMPY97] Marius Bozga, Oded Maler, Amir Pnueli, and Sergio Yovine.
Some progress in the symbolic verification of timed automata.
In Grumberg [Gru97], pages 179–190.

[BMT99] Marius Bozga, Oded Maler, and Stavros Tripakis. Efficient ver-
ification of timed automata using dense and discrete time se-
mantics. In L. Pierre and T. Kropf, editors, Correct Hardware
Design and Verification Methods. 10th IFIP WG 10.5 Advanced
Research Working Conference, CHARME ‘99, volume 1703 of
Lecture Notes in Computer Science, pages 125–141, Bad Her-
ranalb, Germany, September 1999. Springer-Verlag.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers, C-35(8):677–
691, August 1986.

116

[BS97] Bonnie Berger and Peter W. Shor. Tight bounds for the maxi-
mum acyclic subgraph problem. Journal of Algorithms, 25(1):1–
18, October 1997.

[BST99] Sébastien Bornot, Joseph Sifakis, and Stavros Tripakis. Modeling
urgency in timed systems. In W.-P. de Roever, H. Langmaack,
and A. Pnueli, editors, Compositionality: The Significant Differ-
ence. International Symposium, COMPOS ’97. Revised Lectures,
volume 1536 of Lecture Notes in Computer Science, pages 103–
129, Bad Malente, Germany, September 1999. Springer-Verlag.

[Cam96] Sérgio Vale Aguiar Campos. A Quantitative Approach to the
Formal Verification of Real-Time Systems. PhD thesis, Carnegie
Mellon University, September 1996.

[CCM+94] S. Campos, E. Clarke, W. Marrero, M. Minea, and H. Hiraishi.
Computing quantitative characteristics of finite-state real-time
systems. In Proceedings. Real-Time Systems Symposium, pages
266–270, San Juan, Puerto Rico, December 1994. IEEE Com-
puter Society Press.

[CCM97] Sérgio Campos, Edmund M. Clarke, and Marius Minea. Sym-
bolic techniques for formally verifying industrial systems. Science
of Computer Programming, 29(1–2):79–98, July 1997.

[CE81] E. M. Clarke and E. A. Emerson. Design and synthesis of
synchronization skeletons using branching time temporal logic.
In Logic of Programs: Workshop, Yorktown Heights, NY, May
1981, volume 131 of Lecture Notes in Computer Science, pages
52–71. Springer-Verlag, May 1981.

[CGMP99] E. M. Clarke, O. Grumberg, M. Minea, and D. Peled. State
space reduction using partial order techniques. Software Tools
for Technology Transfer, 3(1), 1999. Springer-Verlag.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. MIT Press, 1999.

[CK90] E. M. Clarke and R. P. Kurshan, editors. Computer Aided Verifi-
cation. 2nd International Conference, CAV’90. Proceedings, vol-

117

ume 531 of Lecture Notes in Computer Science, New Brunswick,
NJ, USA, June 1990. Springer-Verlag.

[Cou93] Costas Courcoubetis, editor. Computer Aided Verification. 5th
International Conference, CAV’93. Proceedings, volume 697 of
Lecture Notes in Computer Science, Elounda, Greece, June 1993.
Springer-Verlag.

[CP96] Ching-Tsun Chou and Doron Peled. Formal verification of a
partial-order reduction technique for model checking. In T. Mar-
garia and B. Steffen, editors, Tools and Algorithms for the Con-
struction and Analysis of Systems. Second International Work-
shop, TACAS ’96. Proceedings, volume 1055 of Lecture Notes
in Computer Science, pages 241–257, Passau, Germany, March
1996. Springer-Verlag.

[DGKK98] Dennis Dams, Rob Gerth, Bart Knaack, and Ruurd Kuiper.
Partial-order reduction techniques for real-time model check-
ing. In Jan Friso Groote, Bas Luttik, and Jos van Wamel, edi-
tors, Proceedings of the Third International Workshop on Formal
Methods for Industrial Critical Systems, pages 157–169, Amster-
dam, The Netherlands, May 1998.

[Dil89] David L. Dill. Timing assumptions and verification of finite-state
concurrent systems. In J. Sifakis, editor, Automatic Verifica-
tion Methods for Finite State Systems. International Workshop.
Proceedings, volume 407 of Lecture Notes in Computer Science,
pages 197–212, Grenoble, France, June 1989. Springer-Verlag.

[Dil94] David L. Dill, editor. Computer Aided Verification. 6th Interna-
tional Conference, CAV’94. Proceedings, volume 818 of Lecture
Notes in Computer Science, Stanford, CA, USA, June 1994.

[DY96] C. Daws and S. Yovine. Reducing the number of clock variables
of timed automata. In RTSS96 [RTS96], pages 73–81.

[EJP97] E. A. Emerson, S. Jha, and D. Peled. Combining partial order
and symmetry reduction. In Tools and Algorithms for the Con-
struction and Analysis of Systems. Third International Work-
shop, TACAS ’97. Proceedings, volume 1217 of Lecture Notes

118

in Computer Science, pages 19–34, Enschede, The Netherlands,
April 1997. Springer-Verlag.

[ELS93] Peter Eades, Xuemin Lin, and W. F. Smyth. A fast and ef-
fective heuristic for the feedback arc set problem. Information
Processing Letters, 47(6):319–323, October 1993.

[Esp94] Javier Esparza. Model checking using net unfoldings. Science of
Computer Programming, 23(2–3):151–195, December 1994.

[GKPP99] Rob Gerth, Ruurd Kuiper, Doron Peled, and Wojciech Penczek.
A partial order approach to branching time logic model checking.
Information and Computation, 150(2):132–152, May 1999.

[God90] Patrice Godefroid. Using partial orders to improve automatic
verification methods. In Clarke and Kurshan [CK90], pages 176–
185.

[God96] Patrice Godefroid. Partial-Order Methods for the Verification of
Concurrent Systems, volume 1032 of Lecture Notes in Computer
Science. Springer-Verlag, 1996.

[GPSS80] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi.
On the temporal analysis of fairness. In Conference Record of the
Seventh ACM Symposium on Principles of Programming Lan-
guages, pages 163–173, 1980.

[GPVW95] Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper.
Simple on-the-fly automatic verification of linear temporal logic.
In Proceedings of the Fifteenth IFIP WG6.1 International Sym-
posium on Protocol Specification, Testing and Verification, pages
3–18, Warsaw, Poland, June 1995. Chapman & Hall.

[Gru97] Orna Grumberg, editor. Computer Aided Verification. 9th In-
ternational Conference, CAV’97. Proceedings, volume 1254 of
Lecture Notes in Computer Science, Haifa, Israel, June 1997.
Springer-Verlag.

[GW91] Patrice Godefroid and Pierre Wolper. Using partial orders for the
efficient verification of deadlock freedom and safety properties. In
K. G. Larsen and A. Skou, editors, Computer Aided Verification.

119

3rd International Conference, CAV’91. Proceedings, volume 575
of Lecture Notes in Computer Science, pages 332–342, Aalborg,
Denmark, July 1991. Springer-Verlag.

[HK90] Zvi Har’El and Robert P. Kurshan. Software for analytical devel-
opment of communication protocols. AT&T Technical Journal,
69(1):45–59, Jan.-Feb. 1990.

[HMP92] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What
good are digital clocks? In W. Kuich, editor, Automata, Lan-
guages, and Programming. 19th International Colloquium Pro-
ceedings, volume 623 of Lecture Notes in Computer Science,
pages 545–558, Wien, Austria, July 1992. Springer-Verlag.

[HNSY92] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Ser-
gio Yovine. Symbolic model checking for real-time systems. In
Proceedings of the Seventh Annual IEEE Symposium on Logic in
Computer Science, pages 394–406, Santa Cruz, CA, USA, June
1992. IEEE Computer Society Press.

[Hoa95] C. A. R. Hoare. Communicating Sequential Processes. Prentice
Hall, 1995.

[Hol92] Gerard J. Holzmann. Design and Validation of Computer Pro-
tocols. Prentice–Hall, 1992.

[HP94] Gerard J. Holzmann and Doron Peled. An improvement in for-
mal verification. In D. Hogrefe and S. Leue, editors, Formal
Description Techniques VII. Proceedings of the 7th IFIP WG 6.1
International Conference, pages 197–211, Bern, Switzerland, Oc-
tober 1994.

[KLM+97] R. P. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenigün.
Verifying hardware in its software context. In Proceedings
of IEEE International Conference on Computer-Aided Design,
pages 742–749, San Jose, CA, USA, November 1997. IEEE Com-
puter Society Press.

[KLM+98] R. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenigün.
Static partial order reduction. In Bernhard Steffen, editor, Tools

120

and Algorithms for the Construction and Analysis of Systems, 4th

International Conference, TACAS’98. Proceedings, volume 1384
of Lecture Notes in Computer Science, pages 345–357, Lisbon,
Portugal, Mar.–Apr. 1998. Springer-Verlag.

[KP88] Shmuel Katz and Doron Peled. An efficient verification method
for parallel and distributed programs. In J. W. de Bakker, W.-P.
de Roever, and G. Rozenberg, editors, Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency.
School/Workshop, number 354 in Lecture Notes in Computer
Science, pages 489–507, Noordwijkerhout, The Netherlands, May
1988. Springer-Verlag.

[Kur94] Robert P. Kurshan. Computer-Aided Verification of Coordinat-
ing Processes: The Automata-Theoretic Approach. Princeton
University Press, 1994.

[Lam83] L. Lamport. What good is temporal logic? In R.E.A. Ma-
son, editor, Information Processing 83. Proceedings of the IFIP
9th World Computer Congress, pages 657–668, Paris, France,
September 1983. North-Holland.

[LIC90] Proceedings. Fifth Annual IEEE Symposium on Logic in Com-
puter Science, Philadelphia, PA, USA, June 1990. IEEE Com-
puter Society Press.

[Lil98] Johan Lilius. Efficient state space search for time Petri nets. In
P. Jancar and M. Krétinsky, editors, Proceedings of MFCS’98
Workshop on Concurrency, Brno, Czech Republic, August 1998.
Elsevier.

[LPW95] Kim G. Larsen, Paul Pettersson, and Yi Wang. Model-checking
for real-time systems. In Fundamentals of Computation Theory.
10th International Conference, FCT’95. Proceedings, volume 965
of Lecture Notes in Computer Science, pages 62–88, Dresden,
Germany, August 1995. Springer-Verlag.

[McM92] Kenneth L. McMillan. Using unfoldings to avoid the state ex-
plosion problem in the verification of asynchronous circuits. In
G. v. Bochmann and D. K. Probst, editors, Computer Aided

121

Verification. Fourth International Workshop, CAV’92. Proceed-
ings, volume 663 of Lecture Notes in Computer Science, pages
164–177, Montreal, Canada, June 1992. Springer-Verlag.

[McM93] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Aca-
demic Publishers, 1993.

[McM95] Kenneth L. McMillan. A technique of state space search based
on unfolding. Formal Methods in System Design, 6(1):45–65,
January 1995.

[MF76] P. Merlin and D.J. Faber. Recoverability of communication pro-
tocols. IEEE Transactions on Communication, COM-24(9):381–
404, 1976.

[Min99] Marius Minea. Partial order reduction for model checking of
timed automata. In Baeten and Mauw [BM99], pages 431–446.

[MLAH99] Jesper Møller, Jakob Lichtenberg, Henrik R. Andersen, and Hen-
rik Hulgaard. Fully symbolic model checking of timed systems
using difference decision diagrams. In SMC’99. First Interna-
tional Workshop on Symbolic Model Checking. Proceedings, pages
89–108, Trento, Italy, July 1999.

[MP95] Oded Maler and Amir Pnueli. Timing analysis of asynchronous
circuits using timed autaomata. In CHARME’95, 1995.

[Mye95] Chris J. Myers. Computer-Aided Synthesis and Verification of
Gate-Level Timed Circuits. PhD thesis, Stanford University,
1995.

[NSY92] Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Compiling
real-time specifications into extended automata. IEEE Transac-
tions on Software Engineering, 18(9):794–804, September 1992.

[Ove81] W. T. Overman. Verification of Concurrent Systems: Function
and Timing. PhD thesis, University of California at Los Angeles,
1981.

[Pag96] Florence Pagani. Partial orders and verification of real-time sys-
tems. In B. Jonsson and J. Parrow, editors, Formal Techniques in

122

Real-Time and Fault-Tolerant Systems, pages 327–346, Uppsala,
Sweden, September 1996. Springer-Verlag.

[Pag97] Florence Pagani. Ordres partiels pour la vérification de systèmes
temps réel (Partial orders for verification of real-time systems).
PhD thesis, Centre d’Études et de Recherches de Toulouse,
September 1997.

[Pel93] Doron Peled. All from one, one for all: on model checking using
representatives. In Courcoubetis [Cou93], pages 409–423.

[Pel94] Doron Peled. Combining partial order reductions with on-the-fly
model checking. In Dill [Dil94], pages 377–390.

[Pel96a] Doron Peled. Combining partial order reduction with on-the-fly
model checking. Formal Methods in System Design, 8(1):39–64,
January 1996.

[Pel96b] Doron Peled. Partial order reduction: Model-checking using rep-
resentatives. In W. Penczek and A. Szalas, editors, Mathematical
Foundations of Computing Science 1996. 21st International Sym-
posium, MFCS’96. Proceedings, number 1113 in Lecture Notes
in Computer Science, pages 93–112, Cracow, Poland, September
1996. Springer-Verlag.

[PW97] Doron Peled and Thomas Wilke. Stutter–invariant temporal
properties are expressible without the next–time operator. In-
formation Processing Letters, 63(5):243–246, September 1997.

[RM94] Tomas G. Rokicki and Chris J. Myers. Automatic verification of
timed circuits. In Dill [Dil94], pages 468–480.

[RTS96] Proceedings. 17th IEEE Real-Time Systems Symposium, Los
Alamitos, CA, USA, December 1996. IEEE Computer Society
Press.

[SB96] Robert H. Sloan and Ugo Buy. Reduction rules for time Petri
nets. Acta Informatica, 33(7):687–706, 1996.

[SB97] Robert H. Sloan and Ugo Buy. Stubborn sets for real-time Petri
nets. Formal Methods in System Design, 11(1):23–40, July 1997.

123

[SDL93] Functional Specification and Description Language (SDL). ITU–
T Recommendation Z.100. Geneva, 1993.

[SdS98] D. Sangiorgi and R. de Simone, editors. CONCUR’98: Con-
currency Theory. 9th International Conference. Proceedings, vol-
ume 1466 of Lecture Notes in Computer Science, Nice, France,
September 1998. Springer-Verlag.

[Taş97] Serdar Taşiran. Compositional and Hierarchical Techniques for
the Formal Verification of Real-Time Systems. PhD thesis, Uni-
versity of California at Berkeley, 1997.

[Tri98] Stavros Tripakis. L’Analyse Formelle des Systèmes Temporisés
en Pratique (Formal Analysis of Timed Systems in Practice).
PhD thesis, Université Joseph Fourier, Grenoble, 1998.

[Val90] Antti Valmari. A stubborn attack on state explosion. In Clarke
and Kurshan [CK90], pages 156–165.

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic ap-
proach to automatic program verification. In Proceedings of the
Symposium on Logic in Computer Science, pages 332–344, Cam-
bridge, MA, USA, June 1986. IEEE Computer Society Press.

[Won94] Howard Wong-Toi. Symbolic Approximations for Verifying Real-
Time Systems. PhD thesis, Stanford University, December 1994.

[YS97] Tomohiro Yoneda and Bernd-Holger Schlingloff. Efficient verifi-
cation of parallel real-time systems. Formal Methods in System
Design, 11(2):197–215, August 1997.

[YSSC93] Tomohiro Yoneda, Atsufumi Shibayama, Bernd-Holger Schlin-
gloff, and Edmund M. Clarke. Efficient verification of parallel
real-time systems. In Courcoubetis [Cou93], pages 321–332.

124

