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PREFRCE

This preface provides an alternative and hopefully
somewhat broarder introduction to the following Ph.D.
thesis. The preface also presents us with an opportunity
to touch on some new experiences, which have been gained
since the submission of the thesis. It should be stressed
that the preface was not part of the submitted and
accepted thesis.

In recent years several equivalences between non-
deterministic and concurrent processes have been proposed
in order to capture different notions of the extensional
behaviour of a process. The proposed equivalences are
useful for relating process descriptions at different
levels of abstraction. In terms of design and verifica-
tion of concurrent systems each equivalence provides
a notion of correctness of an implementation IMP

(i.e. a concrete process description) with respect to
a specification SPEC (i.e. an abstract process descrip-

tion): to prove the correctness of IMP with respect
to SPEC simply consists in proving the equivalence
SPEC = IMP, where = 1is the equivalence under consi-
deration (see figure 1).
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Figure 1
(Correctness of IIMP wrt. SPEC)

Obviously, we do not in general expect to be able to
derive IMP directly from SPEC. Rather, we expect to
derive IMP +through a series of small and succesive
refinements of SPEC (so-called stepwise refinement).

In order to guarantee the equivalence ©SPEC = IMP, and
thus correctness of IMP with respect to SPEC, all the
intermediate and increasingly more refined versions of
SPEC introduced during the refinement process must be
proved equivalent to their predecessor (see figure 2
below):
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Figure 2
(Stepwise Refinement)

Each individual step of the refinement process consists of

a small refinement of the current version (see figure 3).
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I.e. some minor part ©p, which is considered too abstract
for an implementation, is replaced by a more concrete
"device" q. However, the bulk of the current version
(the context C in figure 3) is left unaffected by the
refinement step. To complete the refinement step it
remains to establish the equivalence between the new
refined version C[q] and it’s predecessor C[p]. We
may try to prove this equivalence directly by appealing to
the definition of the equivalence. However, for any
reasonable equivalence such a proof would have to deal
not only with the parts p and q, butlalso the common
context C. ©Since we expect C to be large relative

to p and q — and increasingly so as the refinement
process brings us closer to the final implementation —
this direct approach clearly involves rather more work

than we are willing to take on.

To provide an alternative approach, great care is
normally taken to ensure that the equivalence proposed
is in fact a congruence with respect to the wvarious

process constructing operations. If this is the case,
it will suffice to prove p = q 1in order to establish
the desired equivalence Cl[p] = Clq] (see figure 4).
Thus, our proof will deal exclusively with the parts p
and q and involve no considerations of the common
context C whatsoever. Unfortunately, from our past
experiences with correctness proofs in the framework of

CCS, it seems that this congruence approach may also lead

to unnecessarily long and complicated proofs.

Figure 4

(Congruence Approach)
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Firstly, it might be that p and g are not at all
equivalent even though the desired equivalence

Cc[p] =C[q] holds. This could happen if the subparts
distinguishing p and g are not accessible in the
context of C; In this case, the congruence approach will
obviously fail and we must therefore face the direct
approach. Secondly, even if p and q are equivalent,
the equivalence proof would have to deal with the full
behaviour of p and q including behaviour which is
inaccessible, hence irrelevant, in the context C. Thus,
we are proving more than necessary. In fact, we are
proving p and g interchangeable in any context not
Jjust in the context C.

To summarize, in the direct approach all of the context
C must be dealt with, whereas C will be totally
disregarded in the congruence approach. At present no
third alternative is available and a choice has to be
made between these two extreme and completely opposite
approaches. TFor the reasons given above we find this
situation very unsatisfactory. In fact, we should like
there to exist, not only a third alternative, but a whole
continuous spectrum of new alternatives, where it
suffices to prove an equivalence between p and q
using some appropriate amount of information about the
context C in which p and g are going to be placed
(see figure 5). In this setting the direct approach
corresponds to proving p=q using every possible

Partial information of C

Figure S
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information of C, whereas the congruence approach
corresponds to proving p=q using no information of
C at all.

To achieve this spectrum of alternatives, we assume
the existence of a set I containing all the possible
information relevant for any context. Also, for each
element e of I, a parameterized version, =, Oof =

must be provided in order to determine what it means

for processes to be equivalent relative to an element of
I. An element e can then be seen as partial information
about a context C Jjust in case C[p] =C[q] whenever
PE_q (see figure 6).

PrxPr
( )

Pr: set of processes
=g : equivalence relativetoe
=.={(p.9) | Clpl = Ciql}

Figure 6
(e partial information about C)

However, not all elements of I are equally informative.
Intuitively, if both e and f are partial information
of the context C and =p & 5., then e captures more
accuratly than f the notion of interchangeability in

C. Hence, we may consider e more informative than f
(see figure 7). In particular, we should like I +to
contain for each context C an element w(C) being

the most informative partial information of C. In

this case, an element e of I is partial information



PrxPr

Figure 7
of a context C Just in case = C EW(C)' I may also
contain a least informative element: in particular if
U is an element of I such that =y = %, then U

contains no information of any context whatsoever. Thus,

we may expect =;C =, for all e in I.

Let us at this point make a short digression in order
to point out some strong similarities to code optimiza-
tion and data flow analyses. Code optimization often
consists of replacing pieces of code with other, more

efficient pieces of code while at the same time main-
taining the semantics of the overall program. Consider
for example the following simple program Pl:

Pl = X:1=%2 § y:=5 § Xi=y+X j zZ:=y ; Z:=3
Obviously several optimizations are possible. In parti-
cular, we can replace the variable y with the constant
5 1n tThe third assignment and totally remove the fourth
assignment without altering the overall semantics

(i.e. assuming the semantics is a function from input-
state to output-state). Thus, P; 1is equivalent to the
following optimized program P2:

P
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The equivalence between Pl and P2 can of course be
proved directly by comparing their denotations. However,
the pieces of code being changed are in general magni-
tudes smaller than the overall program, so this seems a
pretty vasteful strategy and even more so if a sequence
of optimizations is to be performed. Instead we would
like to argue for the equivalence by comparing only

the pieces of code involved. In the above example these

are:

1}

old-code

new-code = x:=5+x

X:=y+X § z:=y

But, what is the connection between the two pieees of
code ? Clearly they are not equivalent, let alone
congruent. However, let us consider the context C in
which they are used:

The properties of C which are important in this situa-
tion — ©properties which could be calculated by some
data flow analyses — seems to be the following: first,

whenever execution reaches the hole in C +the variable
y must have the value 5. Second, when execution leaves
the hole of C +the value of the variable 2z has no
affect on the final state. Under these assumptions it

is easy to prove that old-code and new-code are
substitutive in C and hence that Pl and P2 are
equivalent.

Thus far we have tried to motivate the general idea
of parameterizing equivalences between processes or
programs with information of surrounding contexts. The
above digression demonstrates that this idea is already
being used for sequential programs, even though it might
not always be presented as such. In the thesis that
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follows we prusue this general idea in the case of the
bisimulation equivalence /P81B,Mil83/, and develop a

complete theory of parameterized bisimulation equivalence

between concurrent processes. In particular we give
answers to the following questions:

l. What is the set of context information I ?

For an element e of I what is the parameterized

|

equivalence S ?

When is an element e partial information of a

I\N

context C or equivalently: what conditions
COND will ensure soundness of the following inference

rule ?
IJEeq
(R1) 3 COND(C,e)

clp] = clq)

C[p] and C[q] may themselves be situated in some

outer context D of which some partial information
f 1is known. We are therefore also interested in
conditions COND which will make the following more
general inference rule sound:

P=_4q
(R2) ; COND(C,e,f)

¢[p] =5 c[q]

Given the context C and the outer environment Ty

=

there might exist a least discriminating environment
w(C,f) such that E)EW(Csf) q implies C[jﬂ Ef.C[q].
In this case we may take the condition of R2 simply
to be the inclusion =_C Ew(@,f)' This raises the
following questions: first, when does w(C,f)

exist and second, how can we determine inclusions

of the form =c € ¥y stating that f is more

informative than e ? By equating environments with
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predicates the environment w(C,f) becomes an
analogy to Dijkstra’s weakest precondition and

contexts are treated as predicate transformers.
We pursue these analogies further in the thesis.

Having developed a theory of parameterized bisimula-
tion equivalence it is paramount that we investigate
how the theory may facilitate design and verifica-
tion of concurrent systems. This involves extensive
case-studies of which the thesis provides the
beginning. The study of cases has continued after
the submission of the thesis. In particular, in
collaboration with Robin Milner we have recently
applied the techniques of the thesis to the Alterna-
ting Bit Protocol. The outcome of this experiment
makes us strongly believe in the potential usefulness
of our techniques. Case-studies planned for the
future include the class of Sliding Window Protocols
of which the Alternating Bit Protocol is a particular
simple example.

Through the study of examples it has become evident
that the analyses involved is often tedious and
delicate even for moderate size examples. Thus, it
is rather clear that computer assistence is essential;
not just to ensure the correctness of the proof but
even to make the analyses feasible. In January 1986
the Laboratory of Foundations of Computer Science

was founded in Edinburgh. The laboratory will be
engaged in developing systems for computer assisted
formal reasoning in general including a wide collection
of computer based tools for design and analyses of
concurrent systems. In relation to the very ambitious
projects undertaken by this new laboratory the
following thesis provides what can be seen as a
modest start. More precisely: a PROLOG-system for
deciding parameterized bisimulation equivalence
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between CCS-processes is developed and implemented.

It is shown that parameterized bisimulation equiva-

lence is polynomial-time decidable. ZFYor this reason
we expect our system — or similar systems —

to be of potential use even for larger examples.



ABSTRACT

In recent years several equivalences between nondeter-—
ministic and concurrent processes have been proposed in
order to capture different notions of the extensional
behaviour of a process. Usually the equivalences are
congruences wrt. the process constructing operations in
order to support hierarchic development and verification of
systems. With the purpose of achieving more flexible hie-
rarchic development methods we suggest parameterizing the
equivalences with information about contexts.

We carry this suggestion out in full for the bisimulation
equivalence, which we parameterize with a special type of
context information called environments. The resulting
parameterized equivalence is shown to have a large number
of pleasant properties including a useful characterization
of the information ordering on environments and a construc—
tion for producing the maximal environment identifying any

two given processes.

Based on an investigation of how contexts transform
environments it is shown how to reduce parameterized
equivalence problems over composite processes to paramete-
rized equivalence problems involving only the inner compo-—
nents of the processes. These results constitute the main
tools provided by this thesis for hierarchic verification of

systems.

All the results obtained for the parameterized bisimula-
tion equivalence are extended to a similarly parameterized
version of weak bisimulation equivalence. A worked example
demonstrates the use of these extensions in correctness

proofs.,



Complete proof systems for the parameterized bisimula-
tion equivalence for various combinations of the process
and environment system are presented, extending existing
proof systems for (unparameterized) bisimulation equiva-

lence.

Finally, a PROLOG system for constructing bisimulations
over CCS expressions has been implemented, verified and

demonstrated.
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CHAPTER 1

INTRODUCTION

BACKGROUND

A major
systems is
hierarchic

That is to
(not their

goal in the area of concurrent and sequential
to achieve semantic theories which support

and modular design and verification of systems.

say, given only the specification of components
implementation) it should be possible to deduce

whether the components in a particular context or configu-

ration will implement (or satisfy) some overall specifica-

tion.

For sequential systems such theories are by now well-

established. Perhaps most well-known is the theory of

Denotational Semantics, founded by Scott and Strachey,

which successfully has been used for describing the

semantics of many sequential programming languages and
systems /Gor79,Stoy77/. In Denotational Semantics,

programs are basically modelled as computable functions

from the domain of input values to the domain of output

values. Also, the semantics of a composite program is

expressed in terms of the semantics of its components

thus satisfying the requirement of modularity.



However, for concurrent Systems this semantic theory is
inadequate. A concurrent system may have many interesting
properties which cannot be described by an input-output
function semantics (e.g. liveness, deadlock). Indeed,
the purpose of a concurrent system may be entirely dif-
ferent from that of computing a function; €.8. an operating
system which, despite it being non-terminating, normally
is regarded as being a useful sSystem. Even if we were
to only consider the input-output function behaviour
of concurrent systems, the requirement of modularity would
fail to hold: there is simply no way of predicting the
input-output behaviour of a concurrent system from the
input-output behaviours of its components. 1In order to
determine the systems overall behaviour, it seems that
further information about pPossible intermediate states of
the subcomponents ig needed.,

Concurrent systems are obviously more difficult +o
design and analyse than sequential ones, because they can
exhibit very complicated behaviours. For this reason the
requirement of modularity becomes a must for any semantic
theory for concurrent Systems. Though many new theories
have been proposed recently, there is, as yet, no general
agreement as to what a suitable theory is. A main dis-
agreement seems to be whether the theory should be inten-
sional in the sense that concurrency is a basic notion
modelled in terms of causal independence and dependence

of events or extensional in the sense that concurrency is

viewed as unobservable and therefore indistinguishable
from a non-deterministic interleaving of events. Represen-

tatives of the intensional approach are Petri Net /Pet80/,
Event Structures /W80/ and Mazurkiewicz Traces /Maz?77/.

Spurred on by the success of the Scott~Strachey approach
for sequential languages, the notion of bower-domains - g

domain theoretic equivalent to powersets - was introduced
/Pl76,Smy78/ in order to allow for non-deterministic
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computations. Based on bowerdomains a notion of resump-
tions /P176/ (which contains information about the
intermediate states of a non-deterministic computation) was
used by Milne and Milner /MMil79/ to give an interleaving
based model of g system of processes and brocess construc-
tions. However, the model led to many unwanted identifi-
cations and was therefore abondoned in favour of an
operational-based semantics. Out of this early research
grew the calculus CCS /Mil80/ intended to serve the same
burpose for concurrent computation as the lambda caleulus

does for sequential computation,

The operational semantics of CCS is given in terms of
a labelled transition system /K75,P181/ describing the
observation, or action, capabilities of Processes and

the resulting dynamic evolution of processes. Based on
the operational semantics several equivalences and pre-

orders have in recent years been proposed in order to
capture different aspects of the extensional behaviour of
a process. This results in semantic theories where both

the requirements to a concurrent system (the Specification)

and its final realigzation (the implementation) can be

expressed in the same formalism, e.g. CCS. The only
difference, if any, in the two descriptions will be their
computational feasibility in whatever model of computation
of computation that is used. Based on the preorder and
equivalence of the theory, the correctness of the implemen-

tation with respect to the specification can be stated and
proved. Often the various theories provides (complete)
algebraic laws useful for proving such correctness asser-
tions. To achieve the goal of modularity great care is
normally taken to ensure that the preorders and equiva-
lences are substitutive with respect to the various process
constructing operations.

The following is a short account of some of the abstrac-
ting equivalences and breorders which have been proposed
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recently. Generally all the equivalences and preorders
are based on some idea of observation and how to use the
result of an observation to either distinguish or identify
processes.

String or Trace equivalence: This is the traditional

language-theoretic equivalence where two processes are
identified if they permit or accept the same sequences of
observations. The equivalence has been used as the

basis for a model of CSP /Ho81/, Unfortunately the equiva-
lence does not preserve deadlock broperties, and is there-
fore normally considered inadequiate.,

Failure equivalence: In order to repair the deficiency of

trace equivalence with respect to preservation of dead-

lock the failure equivalence was introduced /HoBroR84/,

In addition to traces (= sequences of observations) of a
process, also the set of observations which may fail

(= deadlock) after each trace is taken into account.

Testing equivalence: /NiHen82,Ni85/. Here the equivalence

of processes is determined by what tests a process can pass.
A test t 1is itself a process and applying t to a
process p 1is a simple execution of t in parallel

with p , i.e. plt. Then p can pass + in two diffe-

rent ways:
D may t e s |+ may, 1ln some execution, perform
the action success"
p must e "p |t must, in every execution,

perform the action success"

The two ways of passing tests give rise to the following
two preorders:

e ;lq_ e p may t = qmay t
I>§2q_ e p nmust t = g must ¢

11



Observational equivalence: This equivalence requires a

strong relationship between the intermediate "states" of
two processes in order for then to be considered equiva-
lent. As a result the observational equivalence is more
discriminating than any of the equivalences Previously
mentioned., Basically, two processes are observational
equivalent if they have the same set of potential (first)
observations and moreover can remain observational equi-
valent after the observation. The notion of observational
equivalence was originally introduced by Robin Milner
/Mi180/ as the intersection of a decreasing w-chain of
(binary) relations, However, it turns out that the func-
tional W used in constructing this chain is not conti-
nuous and the observational equivalence will therefore in
general not be a fixed-point of . For this reason a
slightly stronger equivalence (bisimulation equivalence),

being the maximal fixed-point of B , was introduced by
David Park /P81B/ and later investigated by
Michael Sanderson /5an82/ and Robin Milner /Mi183/,

Comparisons of (some of) the above equivalences and their

operational implications can be found in /BroR83/ and

/Ni85/,

Recently, attempts have been made to give an alternative

characterization of the abstract behaviours of processes

in terms of the (modal) broperties they enjoy. In this

approach properties can be seen as providing the specifi-
cations, and the correctness of an implementation with
respect to a specification is determined by the satis-
faction relation between brocesses and properties. Based
on the set of properties enjoyed (satisfied) by a process
this approach also generates (in the obvious way) an
equivalence (and preorder) between brocesses. Many of the
preorders and equivalences mentioned Previously have been
shown to be generated by some set of modal properties
/HenMilSB,Pn85,BlTr85,BroR85,GrSif84,GrSif85,Mi181/.
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In order for this approach to provide the required modu-
larity, sound and complete (compositional) proof systems
for the satisfiability problem have been given for various
combinations of process system (some subset of CCS8) and
property domain /St85,St85,St84,W85,W85B/.

MOTIVATION

The motivation for the work bresented in this thesis igs
the possibility of achieving more flexible and easy-to-use
hierarchic development methods for concurrent systems
by parameterizing the equivalences with information about

contexts. This idea of using information about contexts
has proved successful in other connections: In
/BK83,BKPn84/ a similar technique lead to decomposability
of temporal logic specifications, and in /St84/ a relati-
vized (with respect to information about other parallel
components) satisfaction relation is used in order to
obtain a sound and complete (compositional) proof system
for CCS with concurrent composition,

Now congider the following hierarchic development method,
the so-called stepwise refinement method: A specification,

SPEC, of some desired non-deterministic or concurrent
process has been given. The task is to find an implemen-
table version of SPEC, IMP, such that IMP=8PEC (= being
the equivalence under consideration), Using the stepwise
refinement method IMP is constructed in the following

way. First decide on which process construction, C, to use
and write down a sub-specification, SUBSPEC, such that

C[SUBSPEC]:iSPEC. Now find - using the stepwise refine-
ment method recursively if SUBSPEC is not computationally
feasible already - an implementation SUBIMP of SUBSPEC,

i.e. SUBIMP = SUBSPEC. Then taking IMP +to be C[SUBIMPU
will clearly give an implementation of SPEC under the
assumption that = 1s a congruence.
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Looking carefully at the stepwise refinement method as
stated above we notice that it requires SUBIMP and SUBSPEC
to be proved congruent, i.e, interchangeable in any context
and not just interchangeable in the context C in which
they actually are going to be placed. We are therefore
brought to prove more than seems necessary. Moreover,
the subspecification SUBSPEC may have to specify beha-
viour which is not at all relevant in the context (.

Again it seems that we are imposing a stronger requirement
than necessary,

In order to reduce this work, we will parameterize the

equivalence = with information about contexts. The

required proof of SUBINEQiSUBSPEC can then be replaced
by a proof of the more specific SUBIMPE%ESUBSPEC where
e 1is information about the context C., Now assume that

all the possible information relevant to Parameterizing our
equivalence = 1s collected in a domain of information I.

Then for any context C we may associate a subset Inf(C)
of I defined by:

eeInf(c) oA

"P,aPr. p=_q = C[p] =c[q]

where Pr is the set of processes. Thus any eeInf(C) can
be seen as valid information about C and can as such be

used in the proof of SUBIMP:;BSUBSPEC. However, not

all elements of lgi(c) contain the same amount of infor-
mation about C. In particular if e,feInf(C) such that
ingEe we would consider e as being more (or more

accurate, not less) informative than f since e agrees more
closely to the equivalence induced by (: namely that

of ”interchangéability in the context C". Thus we define

the preorder < on information as follows:

f{e A

=

I

i

]

We shall denote the opposite ordering of < by E, and
read eEf as "f is at least as discriminating as e".

14



Now define for any information eel the set of contexts
Con(e) of which e is valid information, i.e.:

Con(e) = {C 'eEIE£<C)_}

Let us assume that the domain of information LI does not
exceed the expressive power of contexts, in the sense that
incompatible information can be distinguished by some
context. Then the following is easily shown to hold:

eEf © Con(e) € Con(f)

i.e. e 1is at least as informative as f if and only if
any context for which e is valid information f is also
valid information. As such, if there exists an element U

in I such that Zy = = then U will be a member of
Inf(C) for any context C, since = 1is a congruence. Thus

U will be the maximal element under &£ or equivalently

for all elements e of L, =y € =g
Let us now return to the stepwise refinement method. As

already mentioned SUBIMP may itself have been obtained

by a stepwise refinement. I.e. for some context D

SUBIMP is DILSUBSUBIMP] where SUBSUBIMP is an implemen—

tation of SUBSUBSPEC with D[SUBSUBSPEC] = = SUBSPEC.

However, by using the bParameterized equlvalence we only

have to prove SUBIMP__ SUBSPEC so the above can be

replace by taking SUBIMP as D[SUBSUBIMP] where

D[SUBSUBIME] = D[SUBSUBSPEC] and D[SUBSUBSPEC] =, SUBSPEC.

When C is a context and e 1is information then we

define Inf¥(C,e)SI as:

deInf™(C,e) oA
VP,qePr. p=ya = clpl=_c[q]

(Note that Inf+ generalizes Inf since Inf(C)::Inf+(C,U)).

Then, ih order to obtain a proof of
DLSUBSUBIMP] =_ D[SUBSUBSPEG] it should be enough to
prove SUBSUBIMP =4 SUBSUBSPEC for some dsInf+(D,e).

15



So far we have tried to motivate the idea of paramete~
rizing process equivalences with information about contexts,
by indicating its use in the stepwise refinement method,
However, much is still left vague by the above description.
First of all, what is "information about contexts" and
secondly, how is this information used in parameterizing
existing equivalences ? Once these two questions have
been answered we must brovide ways of deducing when some
information e is valid with respect to a context C or
more generally when es£E£+(C,d) for a context € and
information d. In case there exists a minimal discrimina-
ting element, min(C,d), in ;g£+(03d) we can reduce this
problem to:

min(C,d)C e

since £E£+(C,d) is upward closed under L. Note, that
this reduction emphasizes the importance of the ordering L.
As an analogy to Dijkstra’s weakest precondition /Dij76/,

we could term the element min(C,d) the weakest inner

information of d under C, and view contexts as weakest

inner information transformers.,

Assume that the equivalence, =, considered is property
generated, i.e. two processes are equivalent if they enjoy
the same properties. Then, already at this early stage, we
can give some indication as to what s bParameterized version
of = could be. Intuitively a context relates properties
of processes placed inside it to outside properties of the
combined process. If an (inner) property is not related
to any non-trivial (outer) property under C it should
not matter whether an inner brocess of C had that property
or not. Thus, it seems that an appropriate information

domain 1l simply consists of sets of Properties,with two
brocesses being equivalent with respect to a set of proper-
ties A if they enjoy the same properties of A,
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OVERVIEW

The main object of this thesis is to find and investigate

suitable parameterized versions of the bisimulation equiva-—
lence /P81B,Mil83/,

It is well-known that bisimulation equivalence can be
generated from a set of modal Properties /HenMil85/, hence,
by the remarks from the previous section, we can obtain
a first parameterized version of bisimulation equivalence
by simply using sets of modal broperties as parameters.

In the next chapter (chapter 2) we shall parameterize the
bisimulation equivalence with another type of information
called environments. First we give a short description of

how to model processes and their operational behaviour in
terms of labelled transition systems. We Present and

investigate the (abstracting) notions of simulation and

bisimulation. The operational behaviour of environments

is also described in terms of a labelled transition system.
Intuitively, an environment is thought of asg consuming

(in & limited manner) actions produced by the inner
processes. Based on environment as action consumers a

notion of parameterized bisimulation and the rarameterized

bismulation equivalence it generates is introduced and
investigated. It turns out that this parameterized bisimu—
lation equivalence has all the properties expected in the
last section. A modal characterization of the parameteri-

zed bisimulation equivalence is given showing an agreement
between the two versions (environment contra sets of modal
properties as parameters) of parameterized bisimulation
equivalence, Finally, we present two main theorems. The

first theorem gives a useful and simple characterization

of the discrimination ordering, &, between environments,

The second theorem shows that there for any two processes
exists a maximal environment (with respect to the simulation

ordering) under which the +two Drocesses are identified.

17



In chapter 3 we look more closely at the way contexts
translate information. In order to make this investigation

easier and more general we give an abstract semantic
account of contexts as action transducers. As an example

it is shown how the standard CCS-contexts can be expressed
in this formalism. In case the information is given as
sets of modal properties we can for any context ¢ define
a function IC which maps (desired) "outer" properties

of C[p] to "inner" sufficient and necessary properties
of p. Extending IC to sets of modal properties gives
the desired weakest inner information transformer. The
function IC can also be used as a basis for complete,
compositional proof systems similar to thosge recently
given in /St85,St84,St85,W85,W85B/. For information given
as environments slightly weaker results are obtained
depending on the structure of the environment system.

In chapter 4 we present complete axiomatizations of the
(environment) parameterized bisimulation equivalence for

various combinations of the process and environment system.

Chapter 5 extends the definition and pProperties of
(environment) barameterized bisimulation equivalence to the
weak bisimulation equivalence, <, /Mil83/, A main problem
in performing the extension is that = is not preserved
by all contexts - especially not sum-contexts. This
makes the existence of weakest inner information (regardless
of how the parameterization is done) impossible in general.
Therefore conditions on the operational behaviour of
contexts ensuring preservation of =~ is given. All the
standard CCS-contexts except sum-contexts satisfy these
conditions. Finally, the parameterized weak bisimulation
equivalence is used in proving the correctness of a simple
scheduler (a simplification of the scheduler presented in
/Mi180/).
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In chapter 6 the complexity and implementation of the
(environment) parameterized bisimulation problem is
investigated. For general CCS-processes the problem is
undecidable, However, for regular processes and environ-
ments the (restricted) problem is shown to be solvable
in polynomial time, a Surprising resulst considering
that inequality of regular expressions is PSPACE-complete
/GJI79/. The polynomial complexity result is obtained by
a8 polynomial time reduction to a GENERALIZED PARTITIONING
problem, for which a Polynomial time algorithm has been
designed in /KasSm8%/., The GENERALIZED PARTITTIONING problem
1s used in /KaSm83/ to show that the weak bisimulation
equivalence problem can be decided in polynomial time for
regular processes. Finally, an alternative decision
procedure for bisimulation equivalence ig implemented
in PROLOG. A formal correctness proof of the implementa-
tion is given., A large subset of ccCs and its operational
semantics is also implemented in PROILOG. The usefulness
of the resulting system is demonstrated through several
examples,
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CHAPTER 2

PARAMETERIZED BISIMULATION

In this chapter we shall parameterize the bisimulation
equivalence /Mil80,Mil83,P81B/ with a special type of informa-
tion called environments. First, in section 2.1, we give a
short description of how to view processes and their
behaviour as labelled transition systems. We define and
investigate the notions of simulation and bisimulation
together with the (simulation) preorder and (bisimulation)

equivalence they generate.

In section 2.2 we introduce the concept of environments
as elements of a labelled transition system. An environment

consumes actions produced by an inner process. However,
an environment’s ability to consume actions may be limited,
hence only part of the inner process’ behaviour will be
exploited by the environment. Using environments as para-
meters we then define and investigate a notion of parame-

terized bisimulation and the parameterized (bisimulation)

equivalence it generates.

In section 2.3 we present a modal characterization of

the parameterized bisimulation equivalence pointed out to
us by Colin Stirling. The characterization extends in a
natural way the existing modal characterizations of the

simulation preorder and the (unparameterized) bisimulation
20



equivalence, /HenMil83%/.

In sections 2.4 and 2.5 we present two Main Theorems. The

first theorem gives an important and simple characteriza—
tion of the discrimination ordering, [E, between environ-
ments. The theorem simply says that the discrimination
ordering is nothing more that the simulation preorder
from section 2.1. Though easy to state the theorem was
by no means easy to prove: only after several months
search a proof was found. Unfortunately, the proof found
only applies to environments satisfying certain finiteness
conditions (the image-finiteness condition). Whether the
theorem holds for general environments is left as an open
problem. However, we prove that the present proof cannot
be extended (in a direct way) to general environments.

The second theorem shows constructively that for any

two processes there exist - in a sufficiently large
environment system - a maximal environment (with respect

To the simulation preorder) under which the two processes
are equivalent. Thus the question of equivalence in an
environment can be reduced to a question of simulation.
It turns out that we can extend any environment system to
a Heyting Algebra under the simulation ordering. We
indicate briefly how to use this extended system as the
interpretation for more complex formulas than merely

(parameterized) equivalences between processes.
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2.1 PROCESSES, SIMULATION AND BISIMULATION

2.1.1 TLabelled Transition Systems.

A major goal in the area of concurrency is to achieve
semantic theories that support hierarchic development and
modular decomposition of programs. That is to say, given
only the specification of a brograms components (not their
implementation) one should be able to deduce whether the
program will implement (or satisfy) some overall specifi-

cation.

For a sequential language a suitable semantic theory
would be a theory of state-functions computed by programs
written in that language. This is the view taken in
Denotational Semantics /Gor79,8toy77/. However, when
concurrency is introduced this semantic theory is no longer
adequate because of our modularity requirement: there is
simply no way to predict the state-function behaviour of
a concurrent program from the state-function behaviour of

its components.

Thus, new semantic theories are needed, and in recent
years a variety of such have been put forward. Under-
lying many of the proposed theories is the model of
labelled transition systems /K75/. Labelled transition
systems are a simple model of nondeterminism based on

the two primitive notions of state and transition. In

spite of (or maybe because of ) their simplicity, labelled
transition systems have proved an extremely general

model for defining operational semantics of programming
languages (see /P181,P182/).

By varying the definition of transition one can
obtain a whole range of semantic descriptions, ranging
from very concrete to more abstract. Also, various
preorders and equivalences between nondeterministic
programs, based on labelled transition systems, have
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been defined in order to abstract even further, /BroSBB,
Bro83, NiHen82, Ni85, HoBroR81, Mil80, Mils1/.

Definition 2.1-1: A labelled transition system 1s g
structure (St,Act,—3 ), where St is a set of states
(or configurations), Act is a set of actions (or labels

Oor operations) and —> cStxActxSt is the transition

relation. o

Notation 2,1-2: For (s,a,t)e—> we shall usually write
st which is to be interpreted "in the state s the
System can perform the action a and in doing so reach
the state t". Often we shall write s as an abbre-
viation for 3teSt. s=3t. Thus s reads: "in the
state s the system can perform the action a'.
Occasionally we shall extend — to strings of actions
using the following definition: sglé#ggét iff there
exists S5, O0<ig¢n, such that séléslégasg e sn_légat.
For complements of siat, s resp.

sélééégat we shall use the notation sf%ﬁz, &éb resp.
s§é¢=§£9t. For seSt and ace Act, S, S8t 1is the set

of a-successors of s, i.e. S, = {tsSt lsi5t} " (m]

Definition 2.1-3: Let R be a binary relation over the
set St. Then R 1is image-finite iff for each element
s of Bt the set {t lth} 1s finite. ]

Definition 2.1-4: We shall say that a labelled transition
System is image-finite in case for all actions a the
binary relation -2 = {(s,t) ’sigt} is image-finite. n

2.1.2 Processes, Simulation and Bisimulation.

As argued in the previous section we will model processes
and their operational behaviour by labelled transition
systems. We shall in this section introduce the general
notions of simulation and bisimulation as means of
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abstracting the operational behaviour of a process, and
we shall state some of their properties. For more
detailed treatments and motivation we refer the reader
to /Mil?71,Mil80,Mi183,HenMil83/.

Let ®= (Pr,Act,— ) be the labelled transition system
modelling the operational semantics of a system of
processes. We shall alternatively refer to the transition
relation, —, of P as the derivation relation. Now,

let p and q be two processes of P, We then say that
q simulates p or p is simulated by g 1if every

derivation of p can be simulated by a derivation
of q 1in such a way that the simulation property is
maintained. We can formalize this by the following:

Definition 2.1-5: A simulation R is a binary relation
on Pr such that whenever pRq and agAct then:

(i) pp” = 3¢°. B¢ & p 'R q’

A process q 1s said to simulate a process p if and
only if there exists a simulation R with pRqg. In this

case we write p<£q. o

Now for RgPr2 we can define fE(R)gPr2 as the set of
pairs (p,q) satisfying for all aeAct +the clause (i)
above. With this definition we can state the following

propertiess

Proposition 2.1-6: RgPr2 is a simulation iff R<SB(R).O

Proposgition 2.1-7: £ is a monotonic endofunction on
the complete lattice of binary relations (over Pr)

under inclusion. o

Using the standard fixed-point result, originally due
to Tarski /Tab55/, this implies:
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Proposition 2.,1-8: $ has a maximal fixed-point given
by LJ{Rl RgiE(Ri} . Moreover <€ equals this maximal
fixed-point. : ]

Proposition 2.1-9: < is a preorder on Prg.

Proof: Show that IdPr 1s a simulation and that com-
position of simulations yields a simulation. The propo-
sition will then follow from the definition of <. o

Note that the above definition of the simulation ordering
admits an elegant proof technique: to show that p<qg
it is sufficient and necessary to find a simulation
containing (p,q).

Example 2.1-10: Let X be given by the diagram below:

) [ S
v By a5 2

Then R = {(po,q )5 (P15a1), (5599, (P3595), (p4,q5)}

a simulation. Thus < . On the other hand q(34po
Assume namely that R is a simulation centaining (qo,po),
then either (ql,pl) or (ql,pg) must be in R. However,

in the former case ql—é bt pléé so if R is to be a
simulation (ql,pl) cannot be in R. Similarly it can be
argued that <q1’P2) is not in R. Therefore if R is a
simulation it cannot contain (qo,po). )

Definition 2.1-11: Let N be a function on a complete
lattice D with greatest lower bound (glb), [1, and least
upper bound (lub), U. Then ¥ is continuous iff for

every increasing sequence xlE:xgg ceeEx B, of D
elements EF(L&JXH> = UnEF(Xn). I is anticontinuous iff
for every decreasing sequence, xl-Z‘ X, ... an—:l cees

of D elements }F(ﬂnxn} = ﬂﬂﬁ%xnl o

22



Now, if & 1is anticontinouous on the complete lattice

of binary relations (with N as glb) it follows from
classical fixed-point theory that the maximal fixed-point,
<, is given as:

< =n, S (Pr)

where $° = Id and ESn+l= ESH°$. A sufficient condition
for & to be anticontinuous is that the transition
system P 1is image-finite (see definition 2.1-4).

Theorem 2.1-12: If P is image-finite then § is
anticontinuous.

Proof: Let RIQREQ...Q ﬁQ... be a decreasing sequence of
binary relations over Pr. We must proveﬁﬁ(an)=Q$KRn).
The "¢"-direction follows directly from the monotonicity
of & and nnRﬂ;Ri for all iew. For the "2"-direction

let (p,q)sﬂfﬁ(En)and let pDp°. We must find a matching
move for q such that (p',q')eﬂan. Now (p,q)sﬂ{%(Rn)
iff for all new, (p,q)eB(R_) Thus for all n there
exists some g such that ¢—=q_ and (p”,q,)eR . By
image-finiteness of P this means that there exists a q”
such that ¢=3q° and (p',q')sRn for infinitely many new.
Since R, 1s decreasing in n, (p”, q')sRn for all nsw and
thus (p',q')snan. By symmetry we conclude that

(p,q)SSS(Rn). (=]

Corollary 2.1-13: If P is image-finite then
< = n S%(Pr?). o

Now, two processes p and q could be considered equi-
valent if they simulate each other, i.e. p=~q iff
p<qg and q<p. However, this equivalence does not
preserve deadlock properties as is demonstrated in the
following example (see also /Mil80/).
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Example 2.1-14: TLet B be given by the diagram below:

d; Py
a 7N
a5 Py Dy
b b l
43 Pz

Then Ry = {(q;,p;) | i=1,2,3} and

R, = {(pi,qi)l i=1,2,5} U (p4,q21} are both simulations.
Thus p<£q and g€ p. However, p can perform an a-action
and reach a state where a b-action is imposéible,

whereas g cannot. Thus, p and q have different deadlock

properties. o

To obtain an equivalence that does preserve deadlock
properties the notion of bisimulation is introduced.

Under this notion, two processes are considered equiva-
lent if they have the same set of potential first actions
and can remain having equal potentiality during the course
of execution. More formally we have:

Definition 2.1-15: A binary relation R on Pr is a
bisimulation iff both R and R = {(p,a) | (g,p)eR}

are simulations. Two processes, p and g, are said to

be bisimulation eQuivalent iff there exists a bisimulation
R with pRq. In this case we write P~Q. o

Now for RePr® define F(R), B(R)SPr® as:
T\\T =
EB(R) = (SS(R )) and B(R) = S(R)NF(R)
Then we have the following properties:

Proposition 2.1-16: RG.Pr2 is a bisimulation iff
REB(R) .

Proof: By proposition 2.1-6 and definition of bisimula-

tion. o
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Proposition 2.,1-17: B is a mohotonio endofunction on

the complete lattice of binary relations over Pr.

Proof: By proposition 2.1-7 and the fact that N and

(—)T are monotonic functions. o

Proposition 2.1-18: B has a maximal fixed-

point which equals ~. o

Proposition 2.1-19: ~ is an equivalence relation.

Proof: IdPr is a bisimulation. Bisimulations are closed

under composition and (—)T. (u]

Proposition 2.1-20: If P is image-finite then B is
anticontinuous. Thus ~ = nIEBn(PrE) where B° = Id and
B . Bim.

Proof: From theorem 2.1-12 $ is anticontinuous when P
is image-finite. Both n and (—)T are anticontinuous so the
proposition follows since composition preserves anticon-

i ty. o

As for simulation the definition of bisimulation equiva-
lence provides an elegant proof technique due to proposi-
tion 2.1-18. This was first pointed out by David Park. To
prove that p~q it is sufficient and necessary to find a
bisimulation containing (p,q).

Example 2.1-21: Let P be given by the diagram below:

Then R = {(povqo> ’<pl’ql)’(pl’q2) a(P29q5> 7(p27q6),(p5,Q4),
(pa,q5)} is a bisimulation with pORqO. Thus Py ~qge In
example 2.1-14, R1¥I%§ so there is no reason to conclude

28



Py ~Qy. In fact it can be shown that the two processes,
py and a; of example 2.1-14 are not bisimulation equiva-
lert, o

The above example gives some indication of the relation-
ship between the simulation ordering < and the bisimulation
equivalence ~, The following proposition shows that ~

is smaller than =.

Proposition 2.1-22: If P~q then pxq.

Proof: p~q iff there exists a bisimulation B containing
(p,q). Since obviously B(R)c®(R) for all binary relations
R, B is also a simulation. Thus p<q. Since BT 1s also

a bisimulation and thus a simulation also gsp and hence

D2g . Q
Besides being an equivalence, ~ has been shown to be a
congruence wrt. all of the standard CC8-constructions /Mi180/.
Obviously this is an essential Property if hierarchic
development of systems is to be possible. From the results
of next chapter it will follow that ~ indeed is a congru-
ence wrt. any "natural" construction.

In Robin Milner’s original work on CCS /Mil80/, € and ~
were defined as <= rgw,%n(Prg) and ~= l,]QwB~3n(Pr2).
However, unless B is image-finite, neither € nor ~ will
in general be fixed-points if these definitions are used.
The definitions given here in terms of simulations and
bisimulations are due to David Park /P81B/ and - besides
defining fixed-points - have the distinct advantages

of providing useful broof techniques. Obviously the
originally suggested definitions of € and ~ yield coarser
relations than the versions suggested by David Park.
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Example 2.1-23: TLet p, g and r be processes with the

following behaviour:

Y q

: n
i.e p= ggwa 5

verified that for all new, qgnp and r~np where
gti:SSn(Prg) and ~n=E3n(Pr2) . However, q€p and rvp.
For the former assume namely that q<p . Then for some
kew, 2<a®, But this implies that for all nesw, a9l 5K
which is false when ndk. A similar argument applies in

the latter case, (=]

g=a® and r=p+q. Then it is easily

2.1.3 Modal Characterizations.

Matthew Hennessy and Robin Milner showed in /HenMil8%/
that both € and ~ can alternatively be characterized by
identifying a process with the properties it enjoys. For
image-finite processes the relevant properties are formulas
from the following modal languages: ILet the language
M (of formulas) be the least set such that:

(1) Tre M

(ii) FAGeM whenever F,GeM

(iii) <Fe M whenever FelM

(iv) <a)FeM whenever agAct and Fe M

Let L be the sublanguage of M consisting of the formulas
not containing -. In /HenMil83/ the authors define a
satisfaction relation kE SPrXM as the least relation such
that:

(i) pk Tr for pePr
(i1) P E FAG iff pE F and pEG
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(iii) pk -F iff p K F
(iv) pE (&)F iff 3p’. pi%p' & p’ kT

Now define for p&Pr the following two sets:
M(p) = {FeM|p k F}  and L(p) = {FeL|p F F}

Then  and ~ have the following characterizations:

Lemma 2.1-24: If P is image-finite then:

(1)  p~q iff M(p) = M(q)
(ii) pgq iff IL(p) < L(q)

Proof: See /HenMil83/. o

By extending the modal languages with an infinite con-
Junction the above modal characterizations can be shown
to hold for image-infinite process systems as well, /Mil84/.

Recently, complete proof systems for correctness assertions
of the form p k F have been given for various subsets

and variations of CCS /St85,St84,St85,W85,W85B/, with
special emphasis on obtaining compositional proof

systems. 1In the next chapter we will indicate how com-
plete compositional proof systems for new languages could
be obtained.
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2.2 PARAMETERIZED BISIMULATION

The previous section shows us that ~ is a property-
generated equivalence. As such we can apply the general
procedure suggested in the previous chapter to obtain our
first parameterized version of ~: as parameters we use
sets of modal properties from M and for ASM, ~a is simply
defined as:

P~ a e i M(p)nA = M(g)na

In this section we shall define a parameterized version

of ~ based entirely on operational considerations similar
to the definitions of < and ~ in 2.1-5 and 2.1-15. The
operational definition will give us a simple and elegant
proof technique similar to the proof techniques for £ and ~
~ o In the next section it will be demonstrated that this
parameterized version of ~ agrees with the above parame-
terized version of ~ based on subsets of M as parameters.

Following our initial motivation from chapter 1, ~
is to be parameterized with (partial) information about
contexts so that proofs of interchangability of processes
can be simplified. ZFor this purpose we shall introduce
the notion of environments as a mean of representing such

partial information about what behaviour (of an inner
process) a context is able to "explore".

Operationally we take the view that an environment
is an object with the ability to consume actions produced
by an inner process. However, an environment’s ability
to consume actions might be limited, so if piﬁp’ but
e is an environment which cannot consume the action a,
then the derivation pi§p' will never be considered when
p 1s executed in e. Similar to the assumption that a
process can change after having produced (performed)
an action we shall assume that an environment may change
after having consumed an action. Thus environments and
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their behaviour can be described by a labelled transition
system HE = (Env,Act,:%), where Env is the set of environ—
ments, Act is the set of actions (identical to the set of
actions used in the transition system of processes) and
= 1is a subset of EnvxActxEnv called the consumption

. a : X
relation. e==e” is to be read: "e may consume the action
a and in doing so become the environment e’",

Let us now approach the question of how to parameterize
~with environments. TIet e be an environment and let o)
and g be processes with behaviours given by the following:

In the environment e only a-actions can be consumed and

after the consumption of one a-action e will change into
an environment which is capable of consuming no actions

at all. It therefore seems natural +o expect p and g to
be equivalent in 8y Ls€s P~ Q. As the next example let
us consider the following slightly more complicated

behaviours:

NN AN

®1 P Bo 5
bl Cl, ?l il ?[ c
e5 e4 psa p-q_ q5 Q/_l_

In order to determine whether P~, 4 we consider in turn
all the possible ways e can consume an action., ILet us
consider the one consumption e§i$e1. For this particular
consumption only a—derivativesvof'p and g will be examined.
However, in order for P~ 14 to hold, for each a-derivative
q” of g (q5 say) p must have a matching a-derivative p”*
(here p2) in the senge that p'~é1q'. Similarly qQ must
have a match (under el) for each a-derivative of p.
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Following this procedure the reader should be able to
convince herself that p and q ought to be equivalent in
€. Similarly, it can be argued that p and q should be
distinguished in the following environment f:

T
a

c l\\f
2 I3

To satisfy the intuition indicated above we define a
parameterized version of ~ such that two processes, p and

4, are considered equivalent in an environment e if they
have the same set of potential first actions that can be

consumed by e and they remain having equal potentiality

during the course of execution under all environment

changes of e. More formally we define the parameterized

version of ~ as follows:

Definition 2.2-1: Let ¥ = (Env,Act,=>) be an environment
system. Then an H- parameterized bisimulation, R, is an

Env-indexed family of binary relations, RegPrzrfor egEnv,
such that whenever pReq the following holds:

TFor all acAct if e=23e’ then
s a. » ’ ’ ’ ’
(1) p=p” = 3¢”. ¢>9” & p'R_.q (*)
(ii) q£5q’ = Ip°s pi5p' & p’Re,q’

Two processes p and q are said to be equivalent in an
environment e iff there exists an FE- parameterized bisi-
mulation, R, such that pReq. In this case we write

~ n
P~ Q.

Since we shall be dealing with Env-indexed families and
operations on such extensively in the following we adopt
the following convenient notations. For Env-indexed
families R and S let:

- RS iff for all eegEnv, ReQSé
- RNS is the Env-indexed family with
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(RnS)e = RenSe.
- RUS is the Env-indexed family with

Now, for R an Env-indexed family of binary relations over
Pr, let B(R) be the Env-indexed family of binary relations
over Pr such that IB(R)e is the set of pairs (p,q)
satisfying (*) above. Then the following properties hold:

Proposition 2.2-2: An Env-indexed family R is an
- parameterized bisimulation iff ReB(R). o

Proposition 2.2-3: B is a monotonic endofunction on the

complete lattice of Env-indexed families of binary rela-
tions over Pr (ordered by componentwise inclusion). n)

Then, using the standard fixed-point result /Ta55/, we
get:

Proposition 2.2-4: B has a maximal fixed-point given
as U{R IRQ&B(R)} - lMoreover this maximal fixed-point
equals the Env-indexed family'{~e| esEnv} . a)

Proposition 2.2-5: For all eeEnv, e is an equivalence

relation,

Proof: Show that the Env-indexed family of relations Id,
with Ide being the identity relation on Pr, is an

F- parameterized bisimulation. Show that composition and
converse of IE- parameterized bisimulations (composition
and converse taken componentwise) are F- parameterized
bisimulations. The proposition will then follow from the
definition of parameterized bisimulation equivalence. O

As expected in chapter 1, ~e is for all environments e
a weaker (and thus perhaps easier to prove) equivalence
than the original (unparameterized) bisimulation equiva-
lence:
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Proposition 2,2-6: For all esEnv and all p, qePr, if

P~q then also P~, Q.

Proof: Take for all ee Env, Re=’~. Then R is an
- parameterized bisimulation. o

Note that proposition 2.2-4 provides us with a useful
proof technique: +to show that p~. a simply find an
- parameterized bisimulation, R, such that pReq.

Example 2.2-7: ILet us verify that our initial expectation
is fulfilled. $So let B and B be given by the diagrams
below:

! 7 7N\
by P2 q q2
Ji
93
Then the Env-indexed family with By {(p,q)}
{(pl,ql)} is a parameterized blslmulatlon. Thus,

as expected, p~_ q. o

Example 2.2-8: Let B and B be given by the diagrams

below:
q1/1
l J / AR ERIAYAY
e; i P5 q5 4 Qg q7
Then the Env-indexed family R with:
(2,59, } 63 CHPNCEE
=1(P1591),(pssa,), (P1,a5)f Ry= (pyrar), (p4,q4)
Reo=1(P25a5),(Py547), (psya5)
1s a parameteriged bisimulation. Thus po"¥x)qo. Note,
that po7‘qo. (]
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To insure anticontinuity of B only image-finiteness of

the process system P is required:

Proposition 2.2-9: If ™ is image-finite then B is

anticontinuous.

Proof: Let Rl;RgQ...QRnQ... be a decreasing sequence of
Env-indexed families., We must prove EB(%RH)==£¥B(RH).
The "&"-direction follows directly from monotonicity of
B and ﬂangRi for all iew. For the "2"-direction let

(p,q)e[ﬁnﬁB(Rn)je . We must show (p,q)s[}B(nan)]e . So
let e3¢’ and p->p°. We must find a matching move for

g such that (p”7, q')s[ﬂnﬂnje, = nn[(Rn)e']' Now,

(p,q)s[mﬁB(Rn)]e iff for all new (p,q)dB(Rn)e. Thus,

for all new there exists a a, sueht that q£§qn and
(p',qn)s(Rn)e, . Under the assumption of PP being image-
finite there exists a g’ such that g2»q” and (p',q')a(Rn)e,
for infinitely many n. Since (Rn)e' is decreasing in n,

(p',q’)s(Rn)e, for all n and thus (p',q')sﬂrikRn)e,j. By

symmetry (p,q)s[EB(OHRn)Je, . o
Corollary 2.2-10: If P is image-finite then ﬂnsw~}1 is
the maxi%al fixed-point of B, where for all ecEnv,

(~9)6=Pr and for nsw,'”n+l = B(~M. o

A particularly simple environment system is that of
language environments, IL, consisting of (all) deterministic

environments.

Definition 2.2-11: IL= (P(Act’),Act,=>) is the labelled
transition system, where => is the smallest relation
satisfying for all I€Act® and atcAct:

0L/0a # @ = L =233L/9a

where 8L/8a = {w [aWSL} " o

37



Obviously a language environment has at most one deriva-—
tive for any action, and is thus deterministic. Also:

Lemma 2.2-12: IL is image-finite. o

Now let for IEAcﬁ*, IP denote the prefixed closure of

Ly ie€a2

p ¥*
ue L e dJvelAcet . uvel

then the following properties are easily shown to hold:

Lemma 2.2-1%:
(i) P=0e L=0
(ii) (-)P is monotonic wrt. S w
(iii) LeLP
(iv) oa(zP)/0a = [aL/é a]P o

We can now give a simple characterization of simulation
between language environments based on their prefixed

closures:

Theorem 2.2-14: TFor language environments L and M:
LM iff IPcMP.

Proof: "«": We show that S::((L,M) II;@;MP} is a simula-
tion. So let (L,M)eS and assume T23L°, Then I,"=3I/9af O.
By lemma 2.2-13 (ii) and lemma 2.2-13 (iv),
@;é(aL/aa)pEE(aM/aa)p and hence by lemma 2.2-13 (i),
9M/8a #@. Thus, M§i>aM/Ba and obviously (8L/8a,0M/8a)eS.
"=": Assume Lpgbﬂh Then for some string v, veIlP but
v#Mp. Since MP is prefixed closed also vu#MP for any
extension, vu, of v. By induction on |lv| it is now
easily shown that Ll—_> but Mavr:) Thus LEL M .

O

Recall from chapter 1 the definition of the discrimination

ordering between environments:

Cf e ~., € ~
8 £ - e
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In some environment systems there are minimal and maxi—
mal environments wrt., C:

Lemma 2.2-15:

(1) If e is an environment such that for all asAct,
eéié then e is minimal wrt. C, Actually ~e==Pr2.

(ii1) If e is an environment such that for all ae Act,
eéi;e then e is maximal wrt. L, Moreover

~o="~. We shall call any environment with this

property a universal environment. m]

As a corollary of this lemma it follows that @ is a mini-
mal language environment and Act’ is a universal language
environment. We shall later, in section 2.4, vastly
improve our knowledge about L.
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2.5 MODAL CHARACTERIZATION OF PARAMETERIZED BISIMULATION

In this section we shall Present a modal characteri-
zation of the environment parameterized bisimulation
equivalence pointed out to us by Colin Stirling. ILet us
first recall the standard characterization results for
~ and € given in section 2.1.3. Provided P 1s image-
finite the following holds:

(A) p~q & M(p) =M(q)
(B) p<q & L(p)c L(q)

Now, P ~, 4 means that p and q are equivalent when exe-
cuted in the restricted environment e; l1.e. only certain
behaviours of p and g are being examined in e. From the
characterization result (4A) we expect a characterization
of = to be of the form:

P~ya © M(p)nH(e)= M(q)NnH(e)

where H(e) is a set of formulas corresponding to proper-
ties of processes which can be examined by e. From

lemma 2.2-15 we know two things about H already. First,
if e is the totally inactive environment, then P~,4a
holds for all p and g. Thus, we expect H(e) in this case
to have the same effect on M(p) for all processes p.
Secondly, if e is a universal environment, then P~.4a iff
p~q. Thus, we expect H(e) =M in this case. We now offer
Hs

Definition 2.3-1: For Fel define Ffem inductively as:

(1) 1" = {Tr, ~Tr
(ii1) (F.c) CAD, ~ (GaD) | CeF* and Deg* )
adF)* <adC, ~¢adc | cert } a

1l

(iidi)

Thus, F' is simply the set of formulas derived from F
by inserting arbitrary negations. We extend (-)* to sets
of L-formulas by defining for X<IL, X' = LJ{F+|:F5X}.
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We can now state the Modal Characterization Theorem:

Theorem 2.3-2: Provided P is an image-finite transition

system then for all Py QePr and eeEnv:

P~ a & M(PINL(e)* = M(g)nL(e)* o

Hence, the set H(e) is simply L(e)™. Intuitively this
seems correct since L(e)+ only contains formulas based

on what e can perform and thus detect. It also matchs

the two things we know already. If e is the empty environ-
ment then L(e)™t = {Tr,-nTr TraTr Tr,var,...} and if

€ is the universal environment then L(e)=L and therefore
clearly L(e)+ M. We now outline the proof of theorem
2.3=2:

Proof: "=": Suppose P~ q. We prove by induction on

F that FeM(p)nL(e)t iff FSM(q)ﬂL(e)+ We consider only
the cases F= -G and F=<{adG leaving the two simpler cases
to the reader:

F==G: If -GeM(p)NL(e)?t an easy argument shows that
GeL(e)™ and G#M(p). Thus GZM(p)NL(e)™ and therefore by
the induction hypothesis GEM(g)NL(e)*. Since GeL(e)™
G#M(q) and thus -GeM(q). Hence, = GeM(g)NL(e) ™

F=<ayG: If <adGeM(p)NL(e)™ an easy argument shows that
there exists a Cel such that <§>CSL(e) and Gec* Hence,
eS¢’ with e’kC for some e”’. Also p—ep with p kG for
some p°’. However, P~ Q. Hence q—eq with p“~ ,q for
some q°. We know GeC CI(e )" and GeM(p“). So by induc-
tion hypothesis GeM(q’). Hence <aGeM(q) and finally
{adGeM(g)NL(e) ™.

"&": We show that the E-indexed family R with:
{(2,0) I meNTCe)* - MCa)NL(e)*)

is a parameterized bisimulation. Assume not. Then for
some e, p and g pReq buty

e=3e” and pBp’ and vq'. g’ = - (p'R_.q")
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Using the image-finiteness assumption for P let
{ql,..,qﬁ} =-{q'| qqu'}. If this set is empty
<DTreM(p)nL(e)™ but & TréM(a)nL(e)™, contradicting
pReq. Otherwise BAl,...,AnsM and BBl,...,anL such that:

(i)  Vi. AisBi+

(ii) vi. BisL(e’)

(iii) vi. p'l:Ai and qib!Ai
Clearly BlA...ABnSL(e’) and by definition Ajnceenh &
(BlA...ABn)+. We know pE éb(AlA...AAn) whereas
qF <& (Ajae.end ). Moreover <é>(BlA...ABn)eL(e) and
(é)(AlA...AAn)s(<é)(BlA...ABn))+. However this contradicts
pReq. o

It is worth noticing that the above theorem establishes

an agreement between the environment parameterized version
of ~ from definition 2.2-1 and the general idea from
chapter 1 of parameterizing property generated equivalences
with subsets of properties.
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2.4 CHARACTERIZATION OF L

In this and the next section we shall present two main

theorems about the parameterized bisimulation equivalence.

The first theorem gives a characterization of the dis-~
crimination ordering under the assumption of image-finite-—
ness. The characterization will be very useful when we
axiomatize parameterized equivalence problems in chapter
4. Moreover, the characterization proved to be quite a
technical challenge despite its obvious appearence: only
after several months search a proof was found.

The second theorem shows constructively that for any
two processes there exist a maximal (wrt.<) environment
under which the two processes are equivalent. As such
the theorem gives a way of reducing parameterized equiva-
lence problems to problems of simulation.and can therefore
be used as the basis for an axiomatization of Parameterized
equivalence problems. Tt turns out that an (sufficiently
rich) environment system forms a Heyting Algebra under Lo
Thus we can use environment systems as the interpretation
for an intuitionistic propositional logic where the atomic
bPropositions are equalities between processes,

2.4.1 Preliminary Definitions.

In order to enable the various constructions in the
proofs of the two main theorems certain minimal structure
on the transition systems involved is required.

Let M= (T,Act,—) be a labelled transition system.
We say that M is closed under action prefixing, summation

resp. join if whenever aghct, <ti>isI is some indexed
family of states and t is a state then there exist an

2. & : - -
element a.t, isIti re&p. isIti in T with the opera
tional semantics of M satisfying:
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(a) a.t 2 t° iff t =t and a=b
(b) 2t. 2 t° iff 3Jiel. t, Bt

e

1l 1
& a ’ .
(c) 1SIt1 — t iff 3(t l>l€I
’ ’, &
(V:LSI. R N

We shall say that M is closed under finite sums (joins)
if (b) ((c¢)) only holds for finite index sets, I. We
shall use the following abbreviations:

_ o
0= 1<Ot1 tO4'tl - i<2ti
& _
U= 0% &ty = 52085

By (b) we see that O has no actions at all, which means
that © as an environment is minimal in the sense of lemma
2.2-18., By (c) it follows that U3U for all actions a.
Thus U is a universal environment in the sense of lemma
2.2-18.

Tt turns out that & and & are very special construc-
tions wrt. the simulation ordering <.

Lemma 2.,4-1: ILet M = (T,Act,—>) be closed under sum-

matlo%; Then Egltl is the least upper bound of (t. )18I
wrt. .

Proof: We must prove that (a) VvieI. ts E%Itl and
(0) (vieI. t.St)= ¢ Zt <t.

(a) follows from the fact that the set

- {(tj,l%ti) | jeI}UId, is a simulation. Similarly
(b) follows from the fact that
S {<1eI ;9%) | vieT., tiSt.}LJfS is a simulation. o

Lemma 2.4-2: Let M = (T,Act,—>) be closed under join.

Then %It is the greatest lower bound of (ti)

ieT wrt.
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Proof: We must show (a) vieT, &Itl\'ti and

(b) (VisI. t<t. ) = % éi%I t; . (a) follows from the
fact that S = {(RI 155 | jeI} is a simulation. (b)
follows from the fact that S {<tvlsI t3) | vieT.t <o,
1s a simulation. 8]

All three constructions - action prefixing, summation and
join - are monotonic wrt. €.

Lemma 2.4-3: ILet M be closed under action prefixing,

summation resp. join. Then whenever t. ,sisT for ieT,
t,88T and asAct the following holds:

(1) t€s ® a.t<a.s

(ii) (VlsI t; < s, )=> izs:‘ItiSES:IS:L
& &
(4ii) (VlSI. ti\si)ﬁ isItigiSISi

Proof: (i) follows directly from the operational seman—
tics of action prefixing. (ii) and (iii) follows from
lemma 2.4~1 and lemma 2.4-2, .

Lemma 2.4-4: Tet P be = Process system and let B be
an environment system closed under summation. Then:

[vieT. p~ ,a]= p~m_ g
1€ i

Proof: FolloWs directly from the operational semantics
of 2. o

From a later theorem the reverse direction will follow
as a corollary. Thus if FE is closed under summation

~é'will be continuous in e since:

~ = n ~
T8 el €5
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Lemma 2.4-5: TLet ® be a Process system closed under

summation and let . be an environment System. Then:
i ~ Z ~
[viel. e ]= 12D~ 2ty
i ~ Q. & p.~ L& q.
[vlsl‘ Py eql]=> ieI Pi~e ieT 4

Proof: Again directly from semantics of 2 and &. n)

For this lemma the reverse directions do not hold in
general. The definitions of simulation and bisimulation
(definitions 2.1-5 and 2.1-15) enables us only to compare
(the behaviour of) processes or environments from the

same transition system. However, the two notions are
easily generalized so that comparison of processes or
environments from different transition systems is possible.

Definition 2.4-6: ILet = (E,Act,-eE) and B = (F,Act,—eF)
be two transition systems over the same set of actions,
Act. A generalized simulation between I and ' is a
relation RSEXF such that whenever eRf and agAct then:

(i) <e—"’i>Ee’=> ar’, fi>Ff' & e’Rf’

If RSEXF is a generalized simuiation such that eRf we

write e<f. o

Definition 2,4-7: TLet B and W be two transition systems
over the same action set, Act. Then RSEXF is a genera-

lized bisimulation between FE and W if R is a generalized

simulation between FE and I and.RT is a generalized
simulation between B and B . TIf RCEXF is a generalized
bisimulation such that eRf we write e~f, o

Note that the notions of simulation (bisimulation) and
generalized simulation (bisimulation) between B and IE
coincide. We shall therefore simply use the term simula-
tion (bisimulation) instead of the more cumbersome gene—
ralized simulation (bisimulétion). Using the new notion
of generalized simulation we can relate the processes
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and environments in a parameterized equivalence:

Lemma 2.4-8: If P~, a4 and e<q then e<p.

Proof: Show that S={(e,p} | 3 qePr. P~, 4 A esq} is
a generalized simulation between T and I, 8]

Definition 2.4-9: ILet I = (E,Act,—eE) and H = (F,Act,—%ﬁd
be two transition systems over the same action set, Act.

Then W' is an extension of T provided B=F and
—)Fn(EkActKE)= — . o

Note if W 1is an extension of W then IdE is a generalized
bisimulation between FE and B,

2.4.2 Characterization of L,

Let P and ¥ be the Systems of processes and environ-
ments under consideration. Definition 2.2-1 then gives us
a& notion of equivalence between brocesses of PP relative
to environments of B . Based on an environment’s ability
to distinguish between Processes we can define the
discrimination ordering € as:

eCf © ~_ c~

We shall in this section show that provided I is image-
finite and P is sufficiently rich, L is nothing more than
the simulation ordering <.

Already at this point certain things indicate that this
is the right characterization of L: As a first weak in-
dication lemma 2.2-18, lemma 2,4-1 and lemma 2.4-2 shows
that minimality and maximality wrt T and < coincide.

More substantial evidence is given by the modal charac—
terization of parameterized equivalence in theorem 2,3=2
which shows that for image-finite process Systems:
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P~,a iff M(p)NL(e)" = M(q)nL(e)*

By the modal characterization of ( (lemma 2.1-24) we

know that e<f iff L(e)cL(f) provided the environment
system is image-finite. Since (=)7 clearly is monotonic
wrt. &, e<f therefore implies L(e) cL(f)? and hence -

by the modal characterization above - that p~.qa is more
likely to hold than P~ q or equivalently eEf . Thus for
image-finite processes and environment systems e<£f
implies ekf., This result is easily generalized to image-
infinite systems:

Theorem 2.4-10: e<f implies eEf.

Proof: Prove that the Env-indexed family R, with
Re = {(p,q)[ c eSf/\p~f‘q]- 1s an H -parameterized
bisimulation. Then if e<f and P~pq we have pReq and

thus p ~e d- =

Proving the reverse direction however turns out to be
far more involved and difficult as already hinted. There-
fore, as a warming-up exercise, let us give a direct
proof of the reverse implication in the simple case when
the environment system is that of language environments,
I, see definition 2.2-11.

Obviously the system of processes P must be sufficiently
rich (wrt. IL). If P only contains one process all
language environments will be the same wrt. £, but of

course not wrt. £.

Theorem 2.4-11: Let P contain an inactive process 0

and be closed under action prefixing. Let L and M be
two language environments. Then LEM implies I<M.

Proof: Assume IfM. By theorem 2.2-17 ILPg MP, thus for
some string ueIL® but for all extensions, uv, of u

uv@YMp. Since MP is prefixed closed ufe. Thus u is of
the form wa for some wSAct* and atAct. Define for ughct
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the process U inductively as: € = O and 34 = a.i.
Then - by induction on |w - it is easily shown that
W~y wa but Wi Wwa. Thus LM, O

Let us now return to the general problem, where P and
IE are arbitrary process and environment systems. We
want to prove that whenever e&f then also e<f or equiva-
lently that e£f implies egf, which is the same as:

(1) e#f implies 3 p,qgePr. P~ QA p7éeq

Thus, we must construct or at least prove existence of
a pair of processes , p and q, distinguished by e but
not f. Assuming image-finiteness of B, e&f holds if
and only if for some new egflf. Thus, we may attempt
constructing the processes p and q required in (1)
inductively in n:

For n=0 no construction is needed since egoifis false.

——

If egg‘f then eéé and fé%»for some action a. Hence, by
simply taking p=a.0 and q=0 the conclusion in (1) is
fulfilled.

If eg" f for some n>l, then for some atAct and e’eEnv,
4 4 ’ n-l 4
e>e’ such that whenever f<3f° then e 4 .

®

£ f

’ g n-1

®

Let {fl,...,fk} be the set of all a-derivatives of f.
Then we may apply the induction hypothesis to all the pairs
(e',fl),...,(e',fk) constructing k pairs of processes
(pl,ql),...,(pk,qk) such'that P; ~g5 Q4 Dut pi%e'qi

for all i=1..k. The task is then to uniformly construct
the required processes p and g distinguished by e but not
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f from the 2<k processes pl,...,pk,ql,....,qk. However,
from the knowledge of e£™ f and e'$f}4'fl,..,e'%n_lfk

alone, it seems impossible to find such a uniform/general

construction, though we succeeded in finding applicable
constructions for all the instances of e and f we considered.

Therefore, the construction has been divided into two
stages: a prestage where e and f are transformed into
two environments with a stronger relationship than merely
& and a construction stage where the two transformed

environments are used as the basis of the construction of

P and q. Let P be the predicate on pairs of environments
which describes the desired relationship between the trans—
formed environments. Assume P satisfies the following
properties:

(2) B(e,f) = eLf
(3) eXf = 3e’,f’, e¥e ~AIKET A P(e,f7)
(4) B(e,f) = 3p,q. p~ogq A P £, a

then we can conclude that (1) also holds:

Let e and f be environments such that e f. Then

by (3) there exist environments e’ and £~ such

that eCe, fgf’ and P(e”,f7). Apply (4) to e’ and
£’ gives processes p and q such that P~p- q and
;pf%, 9. However, since e’€e and f<f’ and we already
know < ¢ E (theorem 2.4-10) also P~rq and

P~ a.

Note, that by (=€ , if (4) is to hold then P(e,f) implies
egf. So if P satisfies (3) and (&4), (2) is automatically
satisfied too.

In the above strategy the choice of the predicate P is

obviously the key factor. On the one hand, we want P as
strong as possible, in order to make the construction in
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(4) as easy as possible. From past experience we know
that we want P(e,f) to be stronger than simple e<Lf. On
the other hand P cannot be to strong since the transfor-
mation in (3) is to be possible too.

The present proof of (1) requires E to be image-
finite. We shall later see what is required in order to
extend the proof to image-infinite systems. Also PP
must obviously have a certain richness
in order for (1) to hold. Thus we shall in the fol-
lowing assume that B is image-finite and that P is
closed under action prefixing and finite sums. Also, for
technical reasons we shall assume that W is closed
under action prefixing and finite sums and that for all
eeEnv and atAct there exist an environment e_aeEnv such
that e__25F iff bfa and eDf. Note that e_ B .
Fortunately, an environment system can always be exten-
ded to a system with these properties, and clearly if
(1) holds in the extended environment system it will
be even more true in the original one.

Let us first state the definition of the predicate

EEEhvgz

Definition 2.4-12:

Eo(e,f) always false
P (e,f) iff
JagAct. 3eo,..,em_l,fo,..,fm_l,gsEnv.
(%? e = a.(eo+...+em_l) :
(ii) £ = a'fO'+f"'+a'fm—1 + g 3
(iii) g
(iv) vicm.3k<n. Ek(ei,fi) g
(v) Vi,j<m. i#j = eié ej -

P(e,f) iff 3 n30. Eﬂ(e,f)
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Thus for P (e,f) to hold e and f must have the following

form:

where the ei's are mutually incompatible under <, for
all i Ek(ei,fi) holds for some k<n and g3 .

We state without proofs the following properties of

I

Lemma 2-4-15: @ = E'ngl—c— L g_]zng ® o o D

Lemma 2.4-14: For all new and e,feEnv:

Proof: By induction on n. (m]

Lemma 2.,4-15: If P(e,f) then e=a.e’ for some agAct
and e“eEnv. a

We want to show that P enjoys the following two proper-
ties:

(4) egr = 3e’,f". e’€e A FF’ A P(e’, %)
(B) E(e,f) = 3p,q. p~.q pA q
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Property (A):

In order to obtain property (A) we need to prove a stronger
result (stronger due to clause (4) below) :

Theorem 2.4-16: Let eo,fo,...,em l’fm 1 be m20 pairs
of environments such that:

s n
Vi<m. . .
i<m elg fl

Then there exists hgm pairs of environments

eé,fé,...,eﬂ_l,fﬁ_l such that:

(1) vj<h. B, (ef,£%)
(2) ¥j<h.3i<m. eJ<e

L
(3) vi<m.3j<h. f. <f5
(4) vi,j<h. i#j = e dej o

Applying theorem 2.4-16 to a single pair of environments
gives the following corollary from which property (4)
trivially follows.

Corollary 2.4-17: TIet e and f be environments such that
e€™ f. Then there exists e’ and £’ such that En(e',f'),
e’Ke and f<F’. ’ o

Proof (of theorem 2.4-16): The proof is by induction

on n with an inner induction on m:

Base n=0: Trivial since ei%O fi is false.

Step: As our induction hypothesis we assume the theorem
is true for all k<n. We prove the induction step using
a subinduction on m.

Subbase m=0: Then eo,fo,...,em 1’fm 1 is the empty
set. Take eo,fo,..., he1? h 1 to be the empty set

as well trivially satisfies the theoren.

Subbase’ m=1: ILet e, f be such that eg™f. Then:

38;36’. (e%e' & Vf’. féf’. elgl’l—l fl)
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Let {fo,...,fk_l} ={f | f§§f4} Iﬁgﬁlng the image-finite
property) then for all ik, e’ < f.. Thus we can
apply the induction hypothesis to the k pairs

. ’ . 5 + +
e ,fo,...e ’fk—l to obtain hgk pairs e+,f5,...,eh_l,f

h-1
such that:

. + ot
(a) Vi<h, Bn_l(ei,fi)

(b) Vich. eige’
(c¢) Vick. 3 j<h, fiéfg

(d) Vi, j<h. i#j= eflrg ez.

Now take:
+ + +
e’ = a.(eO E owbe + eh—l)
+ + +
' = a.fo + eee + a.fh_l + f—a

then e* and 7 satisfies (1)-(4) for e,f. Clearly
gn(e+,f+) by the definition of e and f* and (a). (2)
is e’ e which holds by (b). (3) is £<f* which holds by
(c) and the definition of fT. (4) is trivial since we
have only one pair.

End Subbase’

Substep: As our Sub-Induction Hypothesis we assume the
theorem is true for k€§n when we have at most m-1 pairs of
environments. As our Sub Induction Step we must prove the
theorem true for k<n when we have at most m pairs of
environments. So let eo,fo,...,em_l,fm_1 be m pairs of

environments such that:
. n
v . .
i<m. e, f.

By the Sub Induction Hypothesis we can apply the theorem
to eO’fO”"’em—2’fm—2 to obtain h€¢m-1 pairs of environ-

ments ea,fg,...,eg_l,fﬁ_l such that:

; + ot
(a) Vi<h., En(ei,fi)

(b) Vi<h. 3j<m-1. e'flrgea.
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(c) Vvj<m-1. 3 i<n, fj<f*i”
(d) vi,j<h. i#j = eig el

We can also apply the theorem (using the subbase’) to
the single pair em—l’fm—l to obtain a pair e+,f+ such
that:

(e) En(e+,f+)
(f) e'g en1
(g) £, _,<£*

If e does not simulate or is not simulated by any of the

environments eg,...,eg_l then the set:

+ oot +

+ + +
€ O""’eh—l’fh—l’e sk

will clearly make the theorem hold for eO’fO”"’em—l’fm—l'
Otherwise assume e’ is simulated by eg say. Since

+ + ot + .
En(eg,fo) and En(e , ) lemma 2.4-14 ang e+<eo gives:
+ N .+ +_M o+
eo.g fo and e0$ f
Since eg is of the form a.g (by lemma 2.4-15) we have:
+ Nt +
eog fo + £

Now, by the Sub-Induction Hypothesis we can apply the

theorem to the h€m-1 pairs eg,f64-f+,e1,f1,...,eg_l,f£_l

to obtain p<h<m pairs:

++ o+ ++ ++
€9 ,fo "”"ep-l’fp—l

such that:

. ++ 4+
(h) vi<p. _P_n(ei T )

(i) vi<p. 3 j<h. e;+<e;.
(3) 3i<p. f6+ f+£fi+ -and

¥V j.0<i<h. 3 i<p. f} Sfi++

1 J
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: - ++ L+t ++ ++
We claim that the pairs eq ,fo ""’ep—l’fp—l

the theorem hold for eO’fO""’em—l’fm—l' We only need
to check (2) and (3) since (1)e (h) and (4)e (k). Now
(2) follows from (i) and (b) and transitivity of <.
(3) follows from (c¢) and (3) using transitivity of <
together with the fact fggf8+ £,

will make

The case when e’ simulates some eS is similar.
End Substep.

End Step. =
Property (B).
We prove the following stronger theorem:
Theorem 2.4-18: If En(e,f) then there exists p and r
such that:

(1) p~ep+r

(2) e<r

(3) efp

(4) p<e

(5) r<e o

Then property (B) is easily obtained as a corollary:

Corollary 2.4-19: If P(e,f) then there exists p and q
such that p ~p 4 but p 74e q.

Proof: P(e,f) implies En(e,f) for some n}30. Thus theorem
2.4-18 gives p and T with properties (1)-(5). Now,

taking g=p+r will give the corollary. P~ q 1s simply
(1) and (2) and (3) together with lemma 2.4-8 gives

P¥, q. o
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Proof of theorem 2.4-18: The proof is done by induction

on n.
Base n=0: Trivial since go(e,f) is false,

otep: As induction hypothesis we assume the theorem is
true for all k<n. We must prove the theorem true for n
as well. 8o let e and f be environments such that

P (e,f). Thus:

Ja. 3 e f f

0+ sep 1:Tgseeesf 1,80
(1) e = a.(eO + sss & em-l) :
(ii1) £ = a.fy + oo+ a.f 1+ 83
(iii) VYi<m. 3 k<n. §k<ei,fi) 3

(iv) e ;

(v) Vi, j<m. i#j = eigej

By induction hypothesis there exists pairs PosTgoeees

Ppn_1°Fp—1 Such that:

(@) Py ~p Py +ry

(b) e; €Ty
(c) e;&p,
(d) p;<ey

(e) rigei

Now let for i<m q;=P; + ;. Then taking:

B = a.(po+-ql4-...+-qm_l) +
a.(qo+-pl+—...+-qm_1) ¥

a.(qo4—ql4—...+—pm_l) :
and r = a.(qo+-ql+-...+—qm_1) 3

will make the theorem hold for e and f. To see this let
us check that the properties (1)-(5) holds for p and r.

(1) P~p+r: The only way this could be false is by
fééfi and p+—r£%

. However:

7

S
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a
> qoa-...+-pi4-...4-qm_l
will match p+ r’s move, since Qi ~p; P; by (a). (and

P~gq and p'~, q° implies p+pi_q+q”)

(2) e<r: T.e. a.(eo+...+em_l)QEL(qO+...+qm_l). This
follows from (b) (eiérﬁ) and riéqi.

%) e : If m=o then e=a.0 and p=0 and clearly e«<p.
Otherwise we must prove that for all J<m:

Cgteeeter 1 £ qO+"'+pj+"'+qm—l

This will follow from ejﬁ'(%fn..+pj+...+q which,

m~-1
since e(j has the form a.es, will follow froms:

(x) Vikm. ifj = equi
(y) ejgpj

(y) is simply (c¢). To see (x) assume e.<<%_ for some
i£j. I.e. ejg;pi4—ri. Then from (d) and (e) we have
ejéeG_which contradicts En(e,f) clause (5).

(4) pSe: Again if m=0 the clause follows easily. Other-
wise we must show that for all Jj<ms:

qo+...+pj+...+qm_1 < egteeete 4

However, this follows trivially since piéea_ and riéei
by (d) and (e).

(5) r<{e: We must show that:
qo+...+qm_:l g eo+...+em_1
Again this follows from (d) and (e).

End SteE. o

Having now proved that P enjoys the two properties (4)
and (B) we can state the following Main Theorem:
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Theorem 2.4-20: If B is image~finite and P is closed

under action prefixing and finite summations then for
all environments e and f:

etf e e<f. o

Example 2.4-21: Tet e and f be environments with the

following behaviours:

| VN
A A

=

Obviously,ea%gfh We want to use the constructions of
theorem 2.4-16 and theorem 214-18 to find processes, p
and q, distinguished by e but not e

First we apply theorem 2.4-16 to find transformed

environments, e’ and f°, such that e’<e, £<f’ and

Eg(e',f'). Obviously, elgl f, and elgl fs, s0 we first
apply theorem 2.4-16 to find transformed environments
e;”,f] and €5 ,f5 such that el $el and f,<f: for
i=1.2.

For i=1 el%a) but £, . Thus ¢3"=d.0 and

fi = fl = b.0+c.0 are the transformed environments.

Similarly for i=2, eé':d.@ and fé = f5=c.0 are the

transformed environments.

In order to obtain pairs of environments making theorem

e 7

2.4-16 true for el,fl;el,f2 we must combine el',fl and

x4 4

e ,fé. We note that ei'geg' thus we must apply theorem
2.4-16 to the pair eé',fi+—fé; i.e. d.0,b.0+c.0+c.Q.
This gives d.0,b.0+c.0+ c.0Q (no changes) as the pair of

environments making 2.4-16 true for el,fl;el,fg.

To obtain a pair of environments making 2,4-16 true
for e, f we apply the construction of the subbase”,
giving 2.d.0,a.(b.0+c.0+c.0) as the transformed environ-
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ments e’ and £’

e’ £’
a él
d b e &

We can now apply theorem 2.4-18 to e’ ,f’ in order to
obtain a pair of processes distinguished by e’ (and
hence e) but not f° (and hence not f). For e’ , £
we find that p“=0 and r"=d.0 will make theorem 2.4-18
hold. Hence for e”,f” the pair p=a.p’=a.0 and
r=a.(p” +r')=a.(0+ d.0) makes 2.4-18 hold. Thus the

processes, p and q, distinguished by e but not f are:

p:

Example 2.4-22: TLet e and f be environments with the
following behaviours:

Obviously e%zil Moreover Eg(e,f) so we can apply the
construction in theorem 2.4-18 directly to obtain processes,
P and g, distinguished by e but not f:




2.4.% Extension to image-infinite case ?

A natural next step at this point would be to gene-
ralize the main theorem 2.4-20 to include the image-
infinite cases as well. However, we shall show that as
far as the present proof technique is concerned an exten-
sion is impossible. More precisely: we will show that
even with a generalization of the predicate P to include
image-infinite environments the property (A) fails to
hold. I.e. there exist environments e and f such that
e4f but there are no transforms e’ and £° such that
e’{e, £f<f’ and P(e”,f°). Thus either a new predicate
P with the preperties (A) and (B) or a totally new proof
technique is needed. However, as far as this thesis is
concerned the extension of the main theorem 2.4-20 to

image-infinite cases is left as an open problem.

Let us first see why property (A) does not hold in the
image-infinite case with the present definition of P.
For this purpose consider the following two environments:

From example 2.1-2% we know that e f but e f for all
new, Now assume e’ and £’ are transformed versions of
e and £, i.e. e’€e, ff" and P(e’,f"). I.e. for some
new _lf’_n(e',f') which by lemma 2.4-15 implies e’“rf”.
However, this contradicts e’<e, f<f’ and e f for all

new,

A possible reason for the above failure might be that
for image-infinite environments the definition of P is
not continuous and P is therefore not a fixed-point of
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its own definition. However - as we shall show -
extending P to be a fixed-point of its definition will
not make (A) hold for the above environments e and f.

Definition 2.4-2%: Tet IR : @(Envg) ——)03(EnV2) be defined
as:

(e,f)eR(R)  iff
JaeAct, 3 (e )

(1) e = a.

]
M
3
[
+
o

(ii) ¢
(iii) g
(iv) VvieT, (ei,fi)SR 3

(v) Vi,jel. ifj = eiiej : o

It is easily shown that R is monotonic on @(Envg) and
as such has a least fixed-point, LR, We shall use this
least fixed-point as our generalized predicate B

— — @
Now, define the dual of R, ®, as T(R) - (R

Using apvq = P q, R satisfies:

(e, f)eR(R) iff
VasAct., V(e i )ISI ¥ &
I @) e=a 2.
(i1) £ = igI a.f; + g

(iii) g
then (iv) 3 ieT. (ei,fi)SR or

(v) 31i,jeT. ifj A eiQeJ. :

Obviously ® is monotonic since R is. Also, if R is
a fixed-point of R, R° is a fixed-point of ®. Thus
if AW is the maximal fixed-point of ® then W= (hR)C.
Note, since pR is a least (pre) fixed-point, if R(R)SR
then ulRCR. Also, since WI® is a maximal (post) fixed-
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point, if RER(R) then RoHR .
In order to show that the environments 2* and
n%wan cannot be transformed into environments with the
relationship P (i.e uR ) we show the following lemmas:

Lemma 2.4-24: If (e,f)epR then e<Lf .

Proof: This is equivalent to: if e<f then (e, e .
Let R = {(e,f) l eSf}. We show that R is a postfixed-point
of M. Thus let (e,f)eR and assume:

—e=a.Z

& e.
ie T 71

= I = f::la.fi+g
- &>

for some atAct, (ei,fi) and g. We must show that

ieT
either:
- 3JieT. (ei,fi)sR
or - 3i,j. i#4J A eiéej

Since e<f and g:?':} there must exist ieI such that
ig_I ei<fi and hence eiﬁfi . Thus (ei’fi>sR° -

Lemma 2,4-25: For all £, (a°,f)¢ P .

Proof: Since P = MR this is the same as for all f,
(a®,£)enR . This follows from the fact that

R = {(a“,f)' fSEnv}' is a postfixed-point of . So let
(a®,f)eR and assume:

—a‘*’:a.ze
- f = ;:'a.f. + g

- g

Obviosly |I| =1 with aw=a.aw, f=a.f" +g and g .
Thus all we have to show is (aw,f')q{ which is trivial. g
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Lemma 2.4-26: Assume e<a” and for some feEnv that
(e,f)eP. Then for some \ew+l, e=a>\.

Proof: The above is equivalent to: if e%ax and e<a”

then for all feEnv, (e,f)e R . Thus we simply show that
{(e )| feEnv A vAewtl. e%a A e<zai} is a postfixed-

point of R. Thus let (e,f)eR and assume:

be 21 e;

-f= 2 bt +g

1eT
- s>

- €

for some beAct, (ei’fi)isI and g. We must show that
either:

(1) 3ieI. (e;,f,)eR
or (2) 1,581, 345 A ei<ej

Obviously, since e<a” s b=a. Assume that (1) does not
hold. T.e. for all ieI there exist some ). sw+1 such that
= —axi. If |I| =0 then e=a and thus (e f)#Iimmlch is

a contradlctlon. If |I|=1 then e=a.a"1 and therefore
(e,f) #R. Again a contradiction. If |I|> 1 consider

e =axl and e2=a)\2 then obviously efge. iff xig %j' Hence

1
(2) holds. Thus either (1) or (2) holds. (u]

We are now ready to prove that there are no transforms
corresponding to the two environments:

e

Theorem 2.,4-27: TLet e=a" and f = ﬁ%&an. Then there
are no environments e’ and f” such that e’Se, f<f’
and P(e”,£7).,
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Proof: Assume e’ and f° are such that e’Se, f<£f’ and
P(e’,f"). By lemma 2.4-26, e’=ad for some X\ g w+l.

Since f<f’ obviously f’=§i$» for all new. Thus, since
P(e’,f") implies e’ f” (lemma 2.4-24), e’=5" ,

However, by lemma 2.4-25 P(a”,£") does not hold for any
£?. Thus, we have obtained a contradiction. a

Theorem 2.4-27 shows that the technique used in
proving the Main Theorem 2.4-20 for the image-finite
case does not generalize to the image-infinite cases.
However, it does not show that the Main Theorem 2,4-20
is false in the image-infinite case. This is still an
open problem (which the author conjectures to be true).

As a matter of fact, even though we cannot find
transforms of the two environments e=8" and f=I§;9n
it is quite easy to find brocesses, p and q, distinguished

by e but not f: +take namely p==rgg a”+ a® and
q= Zi.aﬁ then it is easily shown that p and g are

new
identified under f but not €.

2.5 MAXIMAT, ENVIRONMENT

We shall now show that for any two processes, p and
4, there exists - in a sufficiently large environment sys-—
tem - a maximal (wrt. <) environment, /p,q/, under
which p and q are equivalent. This means that a para-
meterized equivalence problem P~,a can be reduced
to the simulation problem e</p,a/ . With the maximal
environment construction, /p,q/, we can reformulate
theorem 2.4-20 from the Previous section as:

whenever e« f then there exist processes
P and g such that f</p,q/ but eg /p,q/.

Thus - provided the conditions of theorem 2.4-20 is met -
this says that the maximal environments, /P,a/, are "dense"
in H .
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Obviously, for /p,q/ to exist in general the environment

system I needs to have a certain richness relative to

the system of processes P: 1let consist of the four
environments {U 8.0,b.0 @} and let P contain the two
processes p=a.a.0 and g=a.0 (with the obvious operational
semantics) then clearly both a.0 and b.0 identify p

and q, whereas U does not. Thus, in B there is no

maximal environment under which P and q are identified.

Let us now give an informal description of the be-
haviour of /p,q/. The description consists of three
cases depending on the behaviour of p and q:

If péh and qﬁﬁ then we can safely let /p,q/§§ without
distinguishing p and q. To obtain maximality we let

/D,q/231.

If pib» and q;h- or péb and q£5 we cannot allow
/p,q/§§ since this would lead to P and g being distin-
guished in /p,q/.

If both p—+ and q—+ we allow /p, q/§§ Clearly if only
/p,q/=¢-® D and q will be identified in /P,a/. However
this will in most cases not give maximality. Thus let

us assume /p,qﬁiée for some e. What bounds on e will
eénsure equivalence of p and q in /Psq/ Obviously,

for the equivalence to hold there must exist a total
surjective relatlonoﬂip *q, such that whenever (p’,q’)ec
then p’ ~ q . Thus for all (p',q')sd we must have
e</p5q/ or equivalently e.\<p . >€G/p g4/ =

Thus, if e (p &q )Sc/p »d4°/ for some total surjective

relation oSp 5 %4g then /p,q/ééee will maintain equivalence
of p and q. To obtain maximality of /p,q/ we let

&
/P,Q/—é'cp q )Sg/p »a”/ for all total surjective

relations agpaxqa (using lemma 2.4-1 and lemma 2.4~4
in a Jjustification). We can now formally define the
environment system in which these maximal environments
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exist.

Definition 2.5-1: Let = (Pr,Act,—») be a system of
pbrocesses. Then define the environment system

E(P) = (EP,Act,=é) as the transition system where E
is the smallest set such that:

P

() P,qePr = /p,q/eE,
&

(ii) (VieI. eisEP) = ieT 5 eEp
(iii) (VisI. eiaEP) = j%%:eisEP
(iv) agAct, eeEy = a.eekp

and = is the smallest relation on EPXActXEP such that:

(a) a.ese
(b) e B eiliey
& NN & o’
ieI%i =2 ie1%4
e I
() al j ieT
Z& Lo
pP=0 g =0
(d) a - a
/P,q/ =T
() P70 q #0 Tep,€>q,

/50 B 0 Cey /D707

where for any two sets A and B A¢«>B 1is the set of

all total surjective relations between A and B, i.e.
ceAe>B iff o¢SAXB and vasA.3beB. (a,b) ec  and
VbeB.JagA. (a,b)eo, o

From the above definition FE(P) is clearly seen to
be closed under action prefixing, summation and Jjoin
(se section 2.4,1). Also, if P is image-finite then
/P,q/ is an image~finite environment for all processes
p and q (since there are finitely many total and surjective
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relations between p, and qa). /P,a/ is easily seen to
satisfy the following:

Proposition 2,5-2:

/p,é/

= a.U +
2:9,=p, =0
&
/P a7/
‘q %G
where = 1is the direct equivalence in the Sense of
/Mil80/. I.e. e=f iff VagAct,VYgeEnv. e orde, o

We can now verify that /P,q/ indeed is a maximal environ-
ment identifying p and 9. l.e. if e is an environment
from any environment system such that p~,q then eg/p,q/,
where € is the generalized simulation of deflnltlon
2.4-6, Flrst, however, let us show that p and q are
actually identified in the environment /D,q/:

Theorem 2.5-3: p'j/p’q/,q .
Proof: We show that the family R with:

- {2, ¢</p,a/ } for eekp

is an H(®P)-parameterized bisimulation, Thus let

(p,q)sRe, e>f and p—ap - Since e</p,q/ also /p,q/>.
Since p=¢, e %@ and therefore also g %@ This means

that /p,q/ only has a-moves caused by the (e)-rule.
+ 4+ .
Thus for some TED >q, /p,q/=9 CP, q+)so/p ,q4 / with

g(p+;§+)sa/p+,q+/. Since ¢ is total and surjective

(p’,q9")e0 for some q’sq - We must show that (p’,q )sR
or equivalently that f</@),q,/ However this is tr1v1al

since (p+,q+)80/p 24 /Q/P',q'/- =
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Theorem 2,5-4; Let FE be any environment system and

let e be any environment of g such that P~ d. Then
e</p,q/.

Proof: We show that the relation:

{(e’lslf ) | vieTI. £.=U or
( =/P;+9;/ and p; ~_ l)}

is a simulation between I and E(®P). Obviously if
P~ q then (e,/p,q/)eS and thus - provided S is a
simulation - eg/p,q/.

Let (e,;&/f.)eS and let eBe’. Tet J be the set of
indices, j, of I such that fj=/p.,q./. Then we need to
find a move .%_f. é%g such that (e’ ,g)SS Sinee for all

Jed—J
Jed, pJ 5 qJ, either pJ——-) and qJ—-—) or p —%-) and
qjég Thus we write J as JUJ’” where J° is the subset

of J such that the former is the case and J’° is the
subset of J where the latter is the case. For j&g””

we have by (d) /pj,qj/§§tl Thus we have reduced the
problem to find a move JSJ,/p ,q_/’éérq sueh that
(e”,g")es. TFor Je€J° there must ex1st some total surjec-
tive relation UJS(pJ) ee(q ) such that whenever

(p L t)e o5 then pa~ 'qa- By (e):
a& & ,.r .
/pj,qj/ = Uj/pa-,qj/
and thus by the rule for Jjoin:
& a, & & PR
JSJ'/pJ7qJ/ =>ng' o'J' /PJ,QJ/

which is the matching move. (m]

Example 2.5-5: Recall example 2.4~22, where e and f

are the environments:

e
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and p and q are the processes:

We want to show that P~rQ but pyﬂaq. By theorems 2.4-20,
2.5~4 and 2.4-10 we know that it is necessary and
sufficient to show that f</p,a/ and e« /p,q/. Let us
therefore calculate /p,q/ using proposition 2,5-2.

During this calculation we find:

/P1,97/ =T /Pssay/ = fb,ct .U
/p17Q2/ >~ {b,C}C.U /p2,q2/ =T
/Pl,qa/ B {C}C.U /p2,q5/ ~ o1 %.u

where for mSAct and esEP m.e 1is an abbreviation for
;;%Ia.e. It is then easily calculated that:

/50/ =~ @0 + a.$08%.U + a. (] C.U

from which it is obvious that e¥/p,q/ and L/ D8/ o

We state without proof the following algebraic properties
of /p,q/:

Proposition 2,5-6:

(i)  /a.p,b.q/ =~

fa,bf ©.U ; a#b

{afc.U + a./p,q/ ; otherwise
(ii) /p,p/ = U

(iii} /p7Q/ e /Q9p/

(Av)  /P1,91/ & /Ppras/ € /P1+P55q1+4,/

() /p1,99/ & /p55a,/ < /P1&P55q&0,/ o

More complete laws than (iv) and (v) can be obtained
by introducing sumforms.
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Not only does the maximal environment construction
provide a way of deciding parameterized equivalence
problems it also allow us to consider more complex
questions; e.g. the Horn Clause:

"Is it true that whenever
P1=qy and wes and,pn=qn
in an environment then also

p=q "
is equivalent to:

/P191/ & eoo & /D a0/ £ /Dya/

To deal with even more complex broblems with possible
nested implications we can extend E(P) to a Heyting
Algebra (see /Go79,Da8l/) by introducing an implication
construction, > , being the right adjoint to &. We
shall in the following briefly indicate how to extend
E(®P) and demonstrate its potential use. However,
a-more complete investigation is left as future work.

The extended environment system,EECEQa.= (EP,Act,=$)
is obtained by adding an implication construct, —.
Thus we add the rule:

(V) eafSEP = (e*f)SEP

The operational semantics of (e =) is given by the
following rules very similar to the rules (d) and (e)

for /p,q/:

e_=0
(£) s
(e->f)=U

ea¥® fa%g Taea—éfa

(g)
(e>f) & Ce”, %,)ST@'» £)

where for two sets A and B A—B is the get of functions
from A to B.
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Similar to the proofs of theorem 2.5-3 and 2e5-4

it can be shown that (e=>f) is the maximal environment
wrt. £ such that:

e & (e—>f) £ ¢

Thus ¥E(P)_, is a Heyting Algebra with @ as zero, & as
conjuncion and - as the relative DPseudo~complement

(see /Go79/). As such the following (among many other)
property holds:

e<f iff (e=-f)>T
Define =e = (e =-0) then:

AU~ 0 x> q(e—>e)
and -0 = (0-0)x U

We can now useiEKEP)* to "interpret" an intuitionistic
propositional logic with connectives viny 2 and = and
with environments and equalities of processes as atomic
propositions. The semantics of s sentence, ¢ , is an
environment [[¢l]l defined inductively as:

[[e] = e

HP=QI| = /pP,a/

[erd T =[e] & (o]
Lot ] =0e] + [o]
Le=¢] =Mel-[¢1]
[-¢ ] =[e]-0 = =[]

We say that a sentence ¢ is valid in W(®P), iff
K¢]:=U'in which case we write Fe¢ . Thus, by the
property above:

]

e<f iff g eof
Since P~ q iff e</p,q/ we also have:

P~a 1Iff [ e> (p=q)
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Since HE(®P), is a Heyting Algebra all the theorems
of Intuitionistic Propositional Logic are valid in m(®)_ .
Also, Modus Ponens preserves validity in B(®)_ (if
[e]~[¢>¢]~ U then by above property [Lpﬂg[[q;ﬂ . Thus
[¢]~ U). Thus, we know that (among many other) the
following are valid sentences:

(1)  k <¢:¢>A<¢:a>}:<¢:6>
(i1) & (p2¢)a (62¢) > (pud D)
(111) F [ (620D a ($25) | 5(¢ = pnb)

Let us indicate how these valid sentences can help us
in formulating interesting properties of paramete-
rized equivalence:

If we in (i) let p=e, ¢ =F and § =(p=q) we get the
instance:

F [(e2) A (£5(p=a))] 5 (e 5(p=q))

which means that:

et and P~pa implies P,

In (dii) let P=eq, 6=e2 and ¢ =(p=q) then we get the
instance:

F (12 0=0)) ~ (e, (p=a))] =
((eqv e5) 2 (p=q))

which "translated" gives lemma 2ol=1:

p’\/

elq and p~egq implies 2

q
1t

Since the reverse implication of (ii) is also a theorem
of IPL we also have:

implies P~, q@ and P~, g

b~ q
€1+, 5
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In (iii) let b=e, ¢=(p1=ql) and 6=(p2=q2) then we get
the instance:

FLe=a)n (e 5(ppma,0) ] =
(e2((pr=a) (py=a,)))
From proposition 2.5-6 (v) we know that:
}: [(p]_:ql)’\ (p2=Q2)] > (pl&p2 = ql&Q2)
thus by (i):
= [(erv(pl=ql>)A (e>(py=a)) | o
(e:°<p1&P2==q1&q2>)

which means:

Py ~e 4 and Ps ~e 95 implies pl&p2 ~e ql&q2

From proposition 2,5-6 (iv) we know that:
F ((P1=a7) ~ (py=a,)) (P1+p5 = q;+a,)
Thus:
F Lo (p1=a))n (e 2 (ppma,)] o
(e:%Pf@2=Qrw2U

which says nothing more than lemma 2,4-5:

p:L == ql and p2 T q2 implies pl+p2 Gt ql+q2

Obviously, none of the above derived Properties of
parameterized equivalence are new or could not have been
Just as easily established by other means. However, it
might be that there are Oother theorems of IPL which
would bring new insight into the Parameterized bisimula-
tion equivalence. This remains a subject for future work.
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CHAPTER 3

CONTEXTS

So far we have put forward two parameterized versions
of the bisimulation equivalence, ~§ One version -
mentioned in section 2.2 - parameterized with subsets of
the modal property domain M, and another version - studied
at length in the last chapter - which uses environments
as parameters. The Modal Characterization Theorem (theorem
2.3=2) demonstrates an agreement between the two versions
in the sense that parameterizing ~ with environments is
the same as parameterizing ~ with certain subsets of M.

Now recall the initial motivation from chapter 1 and
especially the stepwise refinement method described in
that chapter. According to this we want parameterized
congruence laws, which for any given context C and
information i (in our case the information i is given
either as an environment or as a set of modal properties)
will describe some information Jj such that for all
processes p and q the following holds:

(1) p~a = C[pl~ clq]

Moreover, in order to make the proof p'?jq as easy as
possible we will prefer j to be as weak as possible with
respect to the discrimination ordering (i.e.‘~j 1s as weak
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as possible).

As an analogy to Dijkstra’s weakest precondition

/Dij76/, we shall call the weakest information j satisfy-
ing (1) for the weakest inmer information of i under C.

The purpose of this chapter is to investigate the existence
of such weakest inner information when the information
used is either an environment or a set of modal formulas.

However, before the above investigation can be undertaken
a deeper understanding of contexts as autonomous semantic
objects is needed. In section 3.1 we describe contexts
semantically as action transducers., . This description
enables us to derive the operational behaviour of a
combined process, C[p], from the behaviours of the context
C and the inner process P. As an example it is shown
how a class of CCS-contexts is represented in this frame-
work,

In section 3.3 we consider contexts as transformers of
modal properties. It is shown, that for any context C
there exist a function IC which maps "outer" properties
to "inner" sufficient and necessary properties, i.e.
for any property F and process p C[plEF ifr pk:IC(F).
Extending IC to sets of modal properties turns out to
give the desired weakest inner information transformer
associated with C.

In section 3.4 we investigate contexts as environment
transformers. In this case slightly weaker results are
obtained: given a context C and an environment e we
search for environments f such that for all processes jo)
and q:

(2) P~pa = LG =, {0,

where <C,p>?i§<0,q> informally means that Cfb]“~eC[q]
with C interacting identically with p and d. The existence
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of weakest (wrt. the discrimination ordering) environments
satisfying (2) depends heavily on the structure of the
environment system. For environment system closed under

a non—swallowiné_context system there always exists a
weakest environment satisfying (2). For environment systems
not closed, we give conditions sufficient for ensuring

the existence. Finally, a denotational semantics of
CCS-contexts in terms of how they transform language
environments is given.

+ The notion of non-swallowing context Systems will
be defined later. Informally it means that a context

cannot consume an (inner) action without producing
an (outer) action.
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5.1 OPERATIONAL SEMANTICS OF CONTEXTS

5.1.1 Context Systems.

We shall in this section study contexts as abstract
semantic objects/agents on the same footing as processes
and environments. This will make the problem of how
contexts translate environments/subsets of modal formulas
much easier to deal with as we shall see in the following

sections.

If C 1is a context and p is a process, then we
want C[p] to be a process whose behaviour can be derived
from the behaviours of p and C. But what is the behaviour
of a context ? Informally, in the behaviour of the process
C[p] the context C acts as an interface between an exter-
nal environment experimenting on the combined process
C[p] and the internal process p in the sense that C
consumes actions produced by the internal process p in
order to produce actions for the external environment.
Thus, we shall semantically describe contexts as action
transducers (similar to the concepts of transducers from
Automata Theory —-- see for example /AU72/ vol 1).

If pjﬁp', and C by consuming the a-action can produce
a b-action, we will expect C[p] to be able to produce a
b-action. Similar to the assumptions made about processes
and environments it seems reasonable to assume that a
context may change as a result of consuming and producing
actions. This is reflected in the way we expect the
process C[p] to change: if C can change to C’ after having
consumed the action a and produced the action b, we will
expect C[p] Dyae (p7].

In order to obtain a sufficiently general notion of
contexts, which will enable us to express the operational
behaviour of all the standard CCS-contexts, we shall allow
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a context to produce actions on its own without the need
for consuming any actions produced by an internal process.
Also, for reasons of symmetry, we shall allow a context
to consume inner actions without producing any actions
for the environment. Thus, processes and environments can
be viewed as two extreme types of contexts: Processes
correspond to contexts which totally ignore the internal
brocess and environments correspond to contexts which
never produces any actions. If C can produce the action
b and change to C’ in doing so without consuming any
inner actions, we will expect C[p]J%C'[p]; i.e. the
internal process p is unaffected. On the other hand,

if piip’ and C can consume the action a changing to C*
without producing any outer actions, the process C[p] can
change to the process C[p’] without producing anything.
Thus, if C'[p’]gq then also C[p]—b->q, We shall assume
that a context can always produce nothing by consuming
nothing.

Formally, the operational semantics of contexts is

described by a labelled transition system of the form

@ = (Con,ActoxActo,b—»), where Con is the set of contexts,
Act is the set of actioms, éggo==AUﬁb} where 0 is a
distinguished no-action symbol (OgA), and +—s is the
transduction relation satisfying (C,(0,0),C)e— for all

contexts C.

For (C,(a,b),C )et— we will usually write C&gac’ which

for a,beAct is to be read: "the context C can by consuming
an inner action a produce the outer action b and become
the context C” in doing so".

For beAct, o»gac' is to be interpreted: "C may produce
the outer action b without consuming any inner action
and become the context C° in doing so",

Similarly, for asAct, 0s§>0’ is to be read: "C may consu-
me the inner action a without producing any outer action
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action and become the context C’ in doing so".

5.1.2 Contexts and Processes.

We now know what the operational behaviour of contexts
is. It remains therefore only to formalize how the
behaviour of a combined process, C[ﬁ], can be derived
from the behaviours of C and P. First let us extend the
transduction relation to a relation over ConXAct Xhct XCon
in the natural way: For u vsAct and C,CeCon deflne
Ci—+C iff |ul=|v|] and u=a 1...an, V=bl"’bn and for some

) b2
contexts Cl""’cn-l’ CEET’Clk_E’CQ . C— lk—-»C

Then define the relation k% cConxAct xAct*xCon as:

(3#%%»0 o

Bu,vsActg} U=X A V=Y A Ciﬁ%éc'

where ::Ath—aAct* is defined inductively as: =& and
au=u if a=0 and &U=a 1 otherwise. (Thus _ simply cancels
all occurrences of O in a string).

We can now introduce the concept of a process system
being closed under a context system in order to formally
express how the behaviour of C[p] is derived from the
behaviours of C and P2

Definition 3.1-1: A process system IP-= (Pr,Act,—) is
closed under a context system &= (Con,Act xAct ,he)
with respect to the map [ ]:ConxPr — Pr 1f whenever
P,q&Pr, b&Act and Ce&Con the following holds:

(1) chl>q o
BusAct*.Bp'sPr.HC'sCon.

b .,
CRCT &
P=5p’ &
qa = C[p7]
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where — has been extended to strings over Act as defined
in notation 2.1-2. s

We shall later show that any process system can be
extended to a closed system under a given context system.

Lemma 3,1-2: For all contexts C,C’‘gCon, U Uy, veEAct™:

(1) Clul§925>0" o
,u2

* ’ ul s
3VysVyeAct .3CeCon., V=V 1V, A ClEESC H=»C

(11) Crgrr»c’” @
. V2

*x , _ vl 70,
3vl,v28Act .3C"eCon. V—VlVEIA(thﬁbC F>C

Proof: Direct from the definition of —s. o

We can now extend condition (i) of definition 3.1-1
to strings:

Lemma 3.1-3: Tet PP be a process system closed under

the context system . Then for all p,qePr, veAct™ and
CeCon:

clpl > q o

*
JueAct .3Ip ePr.3C’eCon.

v 2
CH» C° &
p=p° &
q = C[p]

Proof: 1Induction on |v| with (i) for the base case
(lvl=1) and use lemma 3.1-2 in the induction step. o

Note that the above lemma does not hold for v=¢& (especial-
ly not the "& "-direction). The next lemma says that if
& process system is closed wrt. two different maps

_[_], _(_):ConxPr-—’Pr then there is a very strong
connection between the two maps:
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Lemma 3.1-4: Let P be closed under @ wrt.
_[_]:ConxPr —Pr and _{_ ):ConxPr —Pr then for all pePr
and CeCon: C[p]~C<p> .

Proof: Show that R=={(C[p],0<b>)[ pePr, CsCon} is a
bisimulation using clause (i) of definition 3.1-1. o

We can now verify that our expectations for the behaviour
of C[p] in terms of the behaviours of C and p indeed has
been fulfilled by the above defintion:

Proposition 3.1-5: Let P be a process system closed

under the context system & . Then for all p,p’,qePr,
a,beAct and C,C’eCon the following holds:

(1) pBp’ & crber = o] Bo[pe]
(ii) crde’ = cfpld ¢ [p]

(1i1) pBp’ & cvde’ & 0’ [pTRq = o[p] Do
Proof: Direct from definition 3.1-1 (i) and the
definition of k=, o

The next definition and proposition shows that any process
system can be extended to a closed system under a given
context system:

Definition 3.1~6: Let PP = (Pr,Act,—) be a process
system and let @ = (Con,ActOXActo,k—a) be a context
system. Then we define H&) to be the process system
(PrCon’
fying:

Act,—> ) where Proon 1s the smallest set satis—

(a) Pr gPrCon

(b) psProon & CeCon = (C,p)sPrCon

and — is the smallest relation on PrconxActxPrcon
satisfying for p,p’ePr, q,q'sPrcon and C,C’eCon:
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p-3p
(1) = =
pP—p
u ’ b ’
0 =3 C=»C %
(ii) ™ 2 ; beAct, uthct
(09Q)'_>(C"q’) o

Proposition 3.1-7: H&) is closed under @ with
__Lj:ConxPrCon—a-Proon defined as:
C[p] = (Cap)

Proof: That condition (i) of definition 3.1=1 is satis-~
fied follows directly from the definition of _[_] and

rule (ii) of definition 3.1-6. s

We can now prove the longstanding claim that any
"natural” process construction preserves bisimulation
equivalence, ~, provided "natural" is interpreted as:
"can operationally be described by a context system".

We shall in the next section show that all the standard
CCS-constructions are indeed "natural® in this sense and
as such preserve ~. However, as we shall demonstrate
later, there are ("unnatural”) constructions whose
operational behaviour cannot be described by any context
system.

Theorem 3.1-8: ILet P be a process system closed under

a context system @ . Then, whenever D~q and C is a
context, also C[p]~C[q].

Proof: We prove that the relation:

= {(c[p],0[a]) | p~a)

is a bisimulation. So let C[p]-r. By definition
3.1-1 (i) then CF%» C’ and piép' with r= C'[p ] for some
C’yr” and u. Since p~q, a-3q° for some q” with p"~q”.
Again by 3.1-1 (i), C[q}—é ¢’[q° ] which is the matching

move, (m]
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5.1.3 Contexts and Environments.

So far we have described how to derive the operational
behaviour of a combined PEOCESE, C[p], from the behaviour
of the inner process, p, and the behaviour of the context
C. However, contexts are semantically viewed as inter-
faces between external enviromments and internal pro-
cesses. Thus, an execution of a combined process, C[p],
in an environment, e, may = from the internal process”’
point of view - alternatively be viewed as an execution
of p in a combined environment, e[C].

But what is the behaviour of this combined environment,
e[C], in terms of the behaviour of the outer environment,
€, and the behaviour of the context C ? Our answer to
this is completely dual to the answer given for the
behaviour of a combined process. Thus, we define the
(dual) notion of an environment system being closed
under a context system.

Definition %3.1-9: An environment system ¥ = (Env,Act,=>)
is closed under a context system & = (Con,ActoxActo,F—a)
with respect to the map _[ J:EnvxCon—sEnv if

whenever e,feEnv, beAct and CeCon the following holds:

(i) e[c]Dr o

HusAct*.He'sEnv.BC'sCon.

e e’ &
T 2

Cﬁ?ﬂ) &

f = e'[C']

where => has been extended to strings over Act as
defined in nobation 2.1-9, o

As a dual to lemms 5.1=%3 we can extend the condition (i)
in the above definition to strings:
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Lemma 3.1-10: Let F be an environment system closed

under the context system & Then for all e,feknv,
veAct™ and celon:

e[C];} f =

* 'd ' d
JueAct .3e’e¢Env.3C eCon.

e He’ &
u ’
cHise &
f=e"[C7] a

As a dual to proposition 5.1-5 we have:

Proposition %3.1-11: ILet ® be an environment system

closed under the context system @ . Then for all
e,e’,feEnv, a,bgAct and C,C’sCon the following holds:

(1) eBe’ & cs0r o e[0]B e’[0]
(i1) Cr>C” = e[c]B efc”]
(1i1) eBe’ & 010" & e[l Bt = o[l s o

Again as a dual we can extend any environment system to
a closed system under s given context system:

Definition 3.1-12: TLet E= (Env,Act,=3) be an environ-
ment system and let @ = (Con,ActoxActo,F—é) be a context
system. Then we define EQw to be the environment

system (Envcon,Act,=%) where Env, ~is the smallest
set satisfying:
(a) Envc EnvCon

(b) eeEnvCon & CeCon = (e,C)gEnvCorl

and = is the smallest relation on EnvCOHXActXEnvCon
satisfying for e,e’eEnv, f,f'sEnvCon and C,C”&eCon:

e Be’ (in Env)

(1) R
e =3¢ (in EnVCOn)
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i cﬁﬁ»o'
(£,0) Z(£7,c”) o

(i1)

Proposition 3.1-13%: BQE is closed under @ with
__[_]:EnvCOnxConn—eEMVCOn given as:

e[C] = (e,0) o

5.1.4 Composing Contexts.

If C[p] is to be a process whenever C is a context
and p is a process, then given a second context Dy
D[C[p]] must also be a process. In some sense, the two
layers of contexts surrounding p act as one single
combined context. In order to express this formally we
may assume that there is a binary composition, °, on
contexts such that:

p[c(p]]

D-C[p]
Since then:

E[p[c[p]1]

(E-D)- C[p]

E-(D-C)[p]

it seems natural to assume that ¢ is associative.

The question is now: what is the behaviour of D-(C
in terms of the behaviours of D and C ? The most
straightforward way of combining behaviours of contexts

seems to be the following:

Definition 3.1-14: TLet @ = (Con,ActoxActo,r—e) be a
context system. Then -:ConXCon—Con is a context
composition iff ° is associative and for all C,D,EeCon
and a,caActo the following holds:
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(i) C°DI—§—)E o

HbsActo.BD',C'aCon.

[¢] ’
CHBDC &
Dy e
DF§§D &
E = C’eD” o

In order to insure C[D[p]] = C°D[p] we define the following

notion of closure:

Definition %.1-15: A process system P is said to be
closed under a context system & with composition ° iff
P is closed under & and for all pePr and C,DeCon,

c[nlp]] = c-nlp]. o

We can extend the condition (i) in definition 3.1-14 to

strings over Act:

Lemma 5.1-16: Let @ be a context system with composition
° . Then for all X,zsAct*, C,D,EeCon:

CoDHEnE o
X

Iyelhct .3C”,D’% Con.

CEE»C’ &
&
DHLsD” &
X
E=¢"D
Proof: "=": Easy by the definition of FI» and condition

(i) of definition 3.1-14.
Yels Tt Dﬁ%»D' and Cﬁ?»c'. By definition of —» then

*
for some u,v',v,wSActO:
/
DD’
u
W ,
Ckvéc

Unfortunately, we cannot compose D’s and C’s move
directly since there is no guarantee that v=v’. However,
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if we can find u',v",w'gAct: such that:
Dh>sD’ &
Cﬁgrrac' & u'=x, v''=y, W=z

then by applying (i) repeatedly we get:
C°D%;-)C'°D'

and hence by definition of F—»:
CeDp=»C D’

By definition of context systems we can always add

O-moves into a transduction, i.e. ifiDQéngéD' with

ul u
[vil=luil i=1,2, then also DHEEI¥E,p-,

Thus, if y=bl...bn, then by adding O’s we can for any

k>|v| obtain:

k k

b1 0K b2...bn 0

'd

u

D2 s D’

for some u” (dependent of k) and similar for any 1> (v’
w’ ,
Ct > C
ol v1olv2...onol

for some w”. Thus by taking l=kdmax {|v|,|v’|} we obtain
the desired common v’’ as 0X bl 0¥b2...bn oK. o

Now let us assume P 1is a process system closed under
a context system @ with composition o . Then for all
p€Pr and C,DeCon C[D[p]] = C°Dfp]. By definition 3.1-1
and lemma 3%.1-3% we have:

c[p[p]] Bsq

ire [307. 010% & g=0"[[p]] ]
or -
[:BusAct+.3v€Ac€iHC',D'sCon.Ep'sPr.

be s
C E2C &
DD’ &
v
p-Lp’

&
a=c[o[p]] ]
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and by definition 3.1-1 and lemma 3.1-16:

codlpl 2q
iff Ju,veAct  .3C’,D’ Con.3p ePr.

b ,

Chf»C) &

DS D7 &
v

p-zép' &

q = CD'[p”]

From this it follows that in general it is not possible
for C[D[pl] and C-D[p] to have the same behaviour: If
(3@%»0' then in C[D[p]] D and p are left unaffected
whereas D and p may change in Conp] in case D has a
move of the form DH%»ZD'. Thus, it seems that if there
is to exist any closed process systems wrt. a context
system & with composition, °, the contexts of & must
have the property that they never produce a no-action, O,
from a real action, i.e. for all asActo, all C,C’eCon:

c;%o' 5  8=0 & (C=C

(Note, that the reverse implication is always satisfied

by the definition of a context system). Fortunately,

we shall later see that all CCS-contexts have this

property. We call a context with this property non-swallowing.

Now as a dual to definition 3.1-15 we could define the
notion of an environment system being closed under a
context system with a composition. However, this would
impose the following dual restriction on contexts: for
all ashct  and all C,C’eCon:

CL—%—)C' > a=0 & (C=C’

i.e. if a context is producing an (real) action it must
have consumed some (real) action. PSince this restriction
is not fulfilled by all CCS-contexts we shall not

introduce this dual notion. However, we can manage
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without it: if B is an environment system closed under
a context system & in the sense of definition 3.1-9

and @ moreover is equipped with a composition, ° , there
is a sufficiently strong relationship between combined
environments of the forms (e[C])[D] and e[ceD].

Lemma 3.1-17: Let B be an environment system closed
under a context system . Then whenever f,e,e’eEnv,
uaAct and C,C"&Con the following holds:

(1) e<f = efc]s< r[c]
(ii) [eé)e' & CI—ISL»C'] = e'[C'] < e[C]

Proof: (i) Show that §={(e[cl,£[c]) | e<f} is a
simulation using definition 5.1=9,

(ii) Assume e'[Cf]iéi‘ Then by definition 3.1-9,
e’Le’”, ¢’ 5?90" with f= e"[C"] for some e°7, ¢*°
and v. Obviously e=2+%e’ and by lemma 3.1-2, Cﬁaﬁ»(J"
Thus by definition 3.1- -9, e[C]=$i‘ as well. o

Lemma 3.1-18: Let FE be an environment system closed
under the context system & and let - be a composition
for @ . Then, whenever eebnv, C,DeCon the following

holds:

(eleD[n] ~ e[c-D]
Proof: "<": We prove that:
= {((e[C])[D],e[C°ﬁD | e¢Env, C,Decon }
is a simulation. Assume (e[C])[D]igi‘. Then either:
(a) DHE»D® & £ = (e[c])[D"]
for some D’ or:
(b) ebe’ & Cr>C” &
DD’ & £ = (e’[¢])[D]
for some ¢”,C’,D" and VsAcﬁ*, ughet™,

In (a), C° DQ%»'C D’ since Ck8>C Thus, since e<se,

e[C“D]:é e[C°D ‘] which is the matching move.
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In (b), CoDIT)-» C’s D’ Thus, since e=se”’ s
e[C D]=> e [C D] which is the matching move.

">": We prove that:

8 = {(e[c-D],[D]) | e[c]< £ }
is a simulation. So assume e[C-D]Lsf. Then:

eBe’ & 01—1‘1—» c* & Dl%—» D’ & f=e’[C% D]

*
for some ¢”,C",D” and v,uchct .

If u=¢ then by lemma 3.1-17 (ii), e’[c’] < e[c]g

Dl—b—» p’, £[D]2& £[D7] which is a matching move.

If u#e then by lemma 3. 1-10, e[C]=> e'[C'] Since
e[Cl€f, &’ for some £’ with e ‘[c]sf’. Since
Djgs> D’ D] £ ‘ID’] which is the matching move.
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3.2 CCS8S

In this section the syntax and operational semantics
of CCS-processes and -contexts will be introduced
formally. ZFor more motivation and a full treatment of
CCS (-processes) the reader is refered to /Mil80/, in
particular chapters 5 and 7. As the main results of the
section it 1s shown that CCS-contexts are equipped with a
composition and that CCS-processes are closed under
CCS-contexts with this composition.

The system of CCS-processestis closed under action-
prefixing together with binary summation and Jjoin.
Beyond this, CCS-processes are build up from a number
of operators one of which is the parallel operator, |.
The | operator represents the parallel composition of
two processes, enabling communication to occur between
them, and at the same time allowing thelr behaviours to
interleave freely. Together with the | operator a
structure on the action set Act is introduced: it is
assumed that Act is a disjoint wunion of three sets
A, A and a singleton {1} . The two sets, A and A, are
isomorphic and for asA (aeA), 2eA (aeA) is the
complementary action where ~ denotes both isomorphisms.

Hence, whenever ae AUA, a=a. Communication of two
processes in parallel may then take place if they can
perform complementary actions. As a result of the
communication the combined system will produce a l-action
(a so-called "silent" or "internal" action).

Another class of operators is the restriction opera-

tors, F'S for ScAct, which restrict a process’ actions
to a set 8. Normally it is assumed that 1leS and that
S is closed under ~. A restriction operator is useful
for ensuring that certain communications of processes

composed by the | operator occur internally.

+ The system of processes defined here is really a slight
extension of the standard CCS processes as defined in
/Mi180/ due to the presence of the &-operator.
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The last class of operators is the renaming operators,

[2], where ® is a function Act —>Act. A renaming
operator relabels an inner process' actions according to
a function @:Act —s Act, Normally it is assumed that

® preserves 1 and ~. For reasons which will be explained
later we shall assume that & is co-image finite, i.e. for
all aedct the set {b| #b=a} is rinite.

Using the above six operators processes with quite
complex behaviours can be defined, but the behaviours will
in all cases be finite. In order to obtain processes
with infinite behaviours s form of recursion is intro-
duced: when x is a variable and p is a brocess with x
as a possible free variable, px.p is a pProcess which
behaves as a solution to the equation x~p.

We can now introduce the syntax of CCS process expres-—

sion; QECCS

p ::= ®|X|a.plp+p'|p&p'|

plo” I pls | plel | px.p

where xeVar (a set of variables), asAct (the set of
actions), ScAct and & ig a3 co-image finite function
Act — Act.

In px.p the prefix mx binds every free occurrence of
X in p. The concepts of free and bound variables are
defined as usual. p{a/x} stands for the substitution of
the expression g for the variable x in the expression p.
The definition of substitution is as usual with bound
variables of p being renamed when eapturing of free
variables of q can occur (see /Mil182/).

In order to obtain an image~finite Pprocess system a
syntactic restriction is imposed on MX.p, that x is
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guarded in p: every free occurrence of x in p is within
some subexpression a.q of Ds

Let PCCS be all closed CCS brocess expressions. Then

we define the process system EECCE§ as the transition
System (PCOS,Act, — N (PCCSxActxPCCS) ), where — is
the smallest relation on PECCSXActXPECCS satisfying the

following rules:

ACT a.p —zi)p
’ a ’
p; p; Dy D5
SUM e ——
P17 = py P1#Po=>pp
a s, a ’
D;==$D D~
p— 1P 2P

m p-p] D25
a ’ a ’
P1lPo = p{lps Py [Po = Dy Ip5
a ’ 5. ’
P17py Po=Dp5
| T
P1lpp = p{[p]
p3p°
REST = 5y aesS
oIS & p’ls
REN »5p’
ple] 22 p[s]
a
p{px.p /x} > q
REC

px.p B g

A CCS-context is a brocess expression with free variables
contained in the singleton set {Lﬁ (thus we assume there
is a distinguished variable []). Our goal is to make
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CC8-processes closed under CCS-contexts with a combined
process, C[p], simply being the process obtained by
substituting p for the place-holding variable, [],

in C; i.e. C[p] = C{p/T]}.

However, if this goal is to be achieved we cannot
accept all process expressions with free variables
contained in {fﬁ as contexts. In particular we must
avoid expressions of the form [1&l] ang []l[] :  the
obvious semantics of the context []&[] is
[]&[]}é?»[]&[] for all asActo. Now consider a combined
process of the form ([]&[])[p] then by definition 3.1-1
and the above semantics of []&[] the Dbehaviour of

([]&[j)[p] must satisfy:

CTe[Dml 2 q -

3p’. pBp” & a=([]e[D[p]

However, if we insist that clp] is given by C{p /[]? then
the above becomes:

p&p 2 q <
4 b 4 'd 4
ip°. p—=p° & g=p’&p

which is false in general, since the two instances of i8]
in p&p might choose different b-derivatives.

Also, to avoid the above situations (1&l1, 01103 )
to occur during an execution, we shall not allow [] to

occur inside a recursion (this restriction can be loosened

slightly so to allow certain expressions with [] ocurring
inside a recursion as contexts; e.g. kx.(a.x+[])).
The grammar specifying CCS-contexts, C

cCs? is as follows:

C::= p|[]] a.C | c+D |
p&C | ce&p [ clp |plc)

cfs | cfe]
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where aeAct, ScAct, & is a co-image finite function
Act —> Act and ngCCS' We can now define the context
System QQXXS as the transition system (CCCS,ActOXActO,L-a)
where > is the smallest relation on CCCSXActOXActOXCCCS
satisfying the following rules:

NOACT C=C

CONST

ID [15[]

ACT a.Cl—g-)C

SUM 2 = ; b#A0O

a
JOIN i

PAR

REST be S

clsrcts
b, ..
> 0

C
cle]+s ¢s]

REN

5 b#0

The operational semantics of p&C and p’C are given by
rules symmetric to JOIN and PAR,
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Now, let @, be the endofunction on CD(PECCSxActxPECCS)
defined by the rules for —. I.e if
REZPECCSXActXPECCS then (p,a,p')ei?(R) iff there is some
rule with p->p’ as conclusion and such that if — is
replaced by R the premisses of the rule holds. Then
op is monotonic wrt. < and — is the smallest fixed-point
of Op . As such if R is another relation over
PEqog*XActxPEyng closed under the rules, i.e. o5(R)SR,
then —cR . This gives us a way of proving properties of
— . (similar to the bisimulation proof technique).
It is easily seen that all the rules of —> are finitary.
Consequently op is continuous (for more information
about inductive definitions we refer the reader to
/A83/). Thus, — zlJn&J—én where-—éo==® and
-—an+l= @Po—én). This allow us to prove properties of
—> by "the number of rules applied".

Similarly, an endofunction, oy, On
@YCCCSXActOXActOXCCCS) can be derived from the rules of
> , such that > is the least fixed-point of &.. A1l
the rules of +3 are finitary. Henee, @b is continuous

and + = U__ > with —>,=90 and == @C(l—>n).

new n

We can now prove some properties of — and s :

Proposition 3.2-1: For all CCS process expressions,
p, the set {(a,p'}l p-gép'} is finite.

Proof: By structure on p. The only non-trivial case is
the recursion-case, i.e. when p is of the form PX.T «
Since x is guarded in r it is easily shown - by structure
on r - that rfux.r/x} 2 g iff for some r’, 5’
and q=:r'ipx.r/’xé. Since r by the induction hypothesis
is supposed to have finitely many derivatives so has
r{px.r /x} and hence px.r. o
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For the above proposition to hold it is crucial that
the guardedness condition for recursive definitions is
fulfilled, e.g. for the process px.(a.0 |x) , the propo-
sition fails to hold.

Corollary 3.2-2: The process system_IPCCS is image-

finite. =

Proposition 3.2-3: For all CCS contexts C,C” and asActO:

c:%c' = a=0 & (0=C*

Proof: By structure of C. o

Proposition 3.2-4: For all CCS-contexts C and actions
ashct_ the set {(b,C”) | c% ¢’} is finite.

Proof: By structure on C using the previous proposition
5.2=1. We prove three cases leaving the rest to the

reader:

CONST: C=p: Then the set {(b,c”) | Cl—b—>C'} is equal to
either @ (if a#0) or {j(b,p')! p-Eapé} which by proposi-
tion %.2-1 is finite.

JOIN: C=D&p: Then the set { (b,0")| C+30”) is equal

to {(b,D'é%p')l DkgaD’ & p-Eap'} which is finite since
(b,p") | p-Eap' is finite by proposition 3.2-1 and

{(b,D')I DrgéD'% is finite by induction hypothesis.

REN: C=D[¢]: Then the set { (b,¢") | CH>c’} is equal to

{(ib,D'[@])l D}E}D'} which is easily seen to be finite

by the induction hypothesis. o

Proposition 3.2-5: For all CCS-contexts C and actions
beAct the set { (a,0") | CHC” )} is finite.

Proof: For b=0 the above set is Just the singleton
{(O,C)} by proposition 3.2-3, For beAct the proof is by
induction on the structure of C. We prove three cases
leaving the rest to the reader.
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OONST: C-p: Then the set {(a,C’)| c%o'} is equal to
{(O,p') ]p—b%p'} which as a consequence of proposition
%.2-1 is finite.

JOIN: C=D&p: Then the set {(a,C') l c;-;l;c’} is equal
to { (a,0"&p")| DI2D” & p 207} which is finite by
induction hypothesis and proposition 3,2-1.

REN: C=DLgl: Then the set {(a,c*y | c%c’} is equal
to {(a,D’[8])| 3ceAct. DF5D’ & b=ac } or:

u (a,D’[2]) | DD’
cEAct.‘I’c=£ ’ 1 a }

For each c the corresponding set is finite by the induction
hypothesis. By the Co-image finiteness of & there are

only finitely many ceAct such that &c=b. Thus the full

set 1is finite. (m]

Let f:Act xAct —s P(Act™) be the shuffling operator
defined by:

edy =iyt
X e ={x}
a(x#oy)u blax¥#y) Ul(x ¥y) 3
ax# by = if a=b

a(x #by) Ub(ax#y) 3 Otherwise

with action prefixing generalized to sets of strings.

Proposition 3.2-6: The following equivalences hold for

CCS-contexts, when veActt:

(1) p}-E—»C' ® u=e¢ & 3Ip°%, plp' & p’=c¢C”
(1) [Ikper ® v-u & []=c-
(iii) a.Ckc” @ 3w, CHC’ & v =aw
(iv) C+D%)E & C%»E or D}—E»E
(v) C&phkyc” & 3077, p”. CRMC” & pLp” & C’=C"" &p”*
(vi) C |pE»C” @ 3C°7, b7, x,7. c%%x:" & pLp’ &
vex#y & C’=C”° | p’
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(vii) Cfsk’ & ws* & 3077, CHIC’ & C’=C”I's
(viii) C[e] k¢’ & 3C°°, w. CHEBC’ & v=aw & C’=C"Ta]
Proof: From the definition of 3 and the rules for

— . 0

Proposition 3.2-7: For all CCS-contexts C and bgAct
the set {(u,C')[ OPE»C'} is finite.

Proof: By proposition 3.2-3 and definition of j—s» ,
[u|<1 and cy%»c’. By proposition 3.2-4 we then conclude

that the set is finite.

Note, that the opposite proposition does not hold. T.e.
it is not in general true that the set {(u,C')[ CF%»C'}
is finite for a CCS~-context C and action a. The reason
is that the opposite proposition to 3.2-3 does not
hold for CCS-contexts. o

We can now prove that(ECCS is equipped with a
composition, which is nothing more than substitution.

Proposition 3.,2-8: TIet O:CCCSXCCCS‘—>CCOS be defined by:

CeD = C{D/LT}

Then - is a composition for(ECCS.

Proof: We must verify the conditions of definition 3,1-14.
Obviously - is associative by properties of substitution.
It remains to show +that for all C,D,ESCCCS, and a,cSActO:

CDFEBE o
a
HbsActO.HD',C'sC

cﬁ%c' &

D%%D’ &

CcCs*

E=C’D’

This is easily proved by the structure of ¢ using properties
of substitufion. The details are routine, o
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Theorem %.2-9: :EbCS is closed under(DCCS with °, by
defining the map _[_las C[p]= C{p/T]z .

Proof: We must verify the conditions of definition 3.1-15

and definition 3.1-1. Obviously, by properties of substi—
tution, ¢[D[p]]= c-D[p]. That:
cfp] Bq =
Ju.3p* 307,
C}%-»C' & p-5p” & q=C"[p"]

is shown by induction on C using properties of substitu-—
tion and proposition %.2-6. The details are routine. (u]

As a corollary to theorem 3.1-8 and the above theorem
5.2-9 we can conclude that all the CCS operations preserve

~
o

Corollary %.2-10: TIet p,q,pl,pg,ql and a5 be CCS-proces-

ses such that p~q, P71 ~qq Po~ase Then:

(i) a.p~a.q
(1) Py +py~a; +a,
(ii1) pi&py~a; &a,
(iV) pl I p2~ql ’ q2
(v) pls~qls
(vi) plel~ q[e]

where SSAct and @ is a co-image finite function Act—sAct.

Proof: TLet us just prove (iii). The remaining clauses
are proved similarly. By definition of _[ ] and theorem
5.,1-8:

pl&p2 = (pl&[])[pé}\’ (pl& []) [qE_l = pl&q2
and:

pr&ay = (Llaa)[p]~ ([Taqy)[q] - q; & a,
Hence, by transitivity of ~ 5 pl&p2 ~ql&q2. O
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5.3 CONTEXTS AS MODAL PROPERTY TRANSFORMERS

In this section we shall investigate how contexts
transform modal properties. More specifically, the fol-
lowing two problems will be treated:

A: Assume we want to construct a brocess r such that
T satisfies some given property FeM and such that r is
a combined process of the form Clp] where ¢ is a given
context. We shall constructively show that there exists
a8 property GE&M (depending on C and F) such that a
necessary and sufficient condition for clp] to satisfy

F is that p satisfies G. The construction of G from

C and F can be used as the basis for complete, decompo-
sitional proof systems of correctness assertions, pkF,
similar to those recently presented in /St84,St85,W85,W85B/.
Our construction is actually a generalization of the
decomposition of assertions given in /W85B/.

B: Recall the parameterized version of ~ where the para-
meters simply are subsets, A, of the property domain M,
with ~ defined by:

P~a o  M(p)nA = M(g)na

Given a context C and a set AcM we want to reduce the
parameterized equivalence problem, c[p]~3AC[Q], to a
parameterized equivalence problem involving the inner
processes: i.e. we want to find a set B=M such that for
all p and q:

(*) p~ga = clpl~, cld]

In order to make the proof of P~3q as easy as possible
we prefer B as small as possible wrt. the discrimination
ordering, L , between sets of modal properties. Using
the construction from problem A it turns out that we can
find a set BEM such that for all processes p and q:
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(*%) p~ga & ofp]~, c[q]

Obviously, this set B is the (desired) least discriminating
set satisfying (¥*).

We shall for the remainder of this section assume
that P is a process system closed under a context system
@ . In order to make the construction in A possible the
following finiteness restriction on contexts is imposed:

(F) Whenever C is a context and beAct,
the set:

{(u,C’)sAct*xCon ICFE%C' }
is finite.
Note, that by proposition 3.2-7 all CCS-contexts satisfy
the above restriction. By extending the modal language M

with an infinite conjunction the construction of A can
be generalized to arbitrary context systems.

Definition 3.3-1: For a context C define the transformer

IC :M—>M mapping "outer" properties to "inner" properties
inductively as:

(1) I (m) = T2
@) T = Y w1 (P)
C)h?bD

(3) Io(Fa @) Io(F) A I, ()
() I(=2F) = - I(®

where Fu G 1s an abbreviation for =(=Fa4G) and for
ueAct’ and FeM, {upPeM is defined inductively as:
(DF=F and <audF = (DWDF. Also inJ F. = Tr by

convention,

Note, that our finiteness restriction (F) on contexts
ensures that the above definition is welldefined:
especially that the disjunction in (2) is finite and thus
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expressible in M.

Our next theorem shows that IC(F) is the construction

required in A, i.e. a sufficient and necessary condition

for a property F to hold of C[p] 1s that IC(F) holds of
P

Theorem 3.2-2: C[p]EF iff pEIL(F) .

Proof: By structure on F.
F=Tv: Sincec IC(Tr)==Tr this clearly holds.

F=<b>G: Clp] E<pdG
iff (defn g)
30. C[p]Fq & qke
iff (IH, defn 3.1-1)

3C7,p%,u. CF%»C' & p-5p” & p'#:IC,(G)
iff (defn g )
307, OR23C” & Pk <udI,. (@)

iff (defn 3.3-1 (2))
Pk I,(Kb>G)
F=GAG’: clplEGaG’
iff (defn k)
Clplk G and c[p]ka”
iff (IH)
PEI(G) and PEI,(G")
iff (defn E)
PEI,(G) A I,(67)
iff (defn 3.3-1 (3))
PFIC(GAG’)
F= = G: Clp)EAG
iff (defn )
clplf @
iff (IH)
P¥ I,(G)
iff (defn =)
Pl = I,(G) iff (defn 3.3-1 (4)) pk I.(-&) o
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Proposition 3.3-3:

holds:

For CCS-contexts the following

v

(1) Iy =F
Tr 3 pEF
(2) Ip<F) = 2 Tr ;3 otherwise
~Tr 3 b#£a
(3) Ia.C<<b>F) = IC(F) 3 otherwise
() Lo pKE) = I, (KBF) vI (b))
= Tr H b,iS
() IgpgDdE) = {IC(<b>F) ; otherwise
® I =\ 1@
(7 IgpKedE) = \g/ pOARHINED
C =30
% .
p—5p folpr ™)
[c\f%/é“ﬂc" - () ]b=l
pZ5p°

(8) I, ((OXF)

where F=G

Proof:
proposition 3%,2-6,

1]

iff VYpePr. pEF @ pkG.

By structure of F using definition 3.%=1 and

n]

Example 3.3-4: (From /St83/) Using the above proposition
%.3=% let us verify that:

8P +Db.q k(DT A BYTr A () Tr

By theorem 3.3-2 it is sufficient and necessary to prove
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that:
b.q k Ia.p+[][<a>Tr" <BPTr A =<{cHTr :l

We calculate, using proposition %.3-% and definition

%.5=1:
Ia.p+[][ ) Tr A D) Tr A =< Tr ]

(<PTr) A I (4<{c>Tr)

Ia.pﬂ:] (&)Tr) A Ia.pﬂ:]

(Ia.p(<a>Tr)v IE](<a>Tr)) A
(Tq,p(OXTR) L T (KopTr) ) A
- ( I,.p(<Tr) « Iy ((c)Tr))

(Tr, <(a)Tr) . (4Tz. {BYTr) A =(=Tr o {c)Tr)

a.p+[]

n

I

Y Tr o =< Tr
Thus, we must prove:

beq E {)Tr. &) Tr

By theorem 3.%-2 it is sufficient and necessary to prove
that:

a E Ib.[] [<b>TI'/\ -|<C>’I‘I':|
We calculate again:
Ib .[] [<b>TI‘A -|<C> T :'

= Ib.[j (<b>TI') A -rIb.[] (<C>TI‘)
Tr A~ =(ATr)

mn

I

Tr
Obviously, gk Tr. This concludes the proof, (m)
According to theorem %.%=-2, definition 3.3-1 gives a

uniform and universal way of translating modal properties
of a combined process into sufficient and necessary
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properties of the inner process. As such we have the
basis for a complete axiomatization of correctness asser-
tions, pkEF, as long as the process constructions opera-
tionally can be described as contexts. The axiomatization
would simply have a rule of the form:

P F I.(F)
cle] F 7

for each ("basic") context. For an acceptable system

it still remains to find an expression for IC(F), uniform
in F and structurally defined in C without any explicit
reference to the operational behaviour of C. However,

we know what the expression should be semantically and
have thus a guide for our search.

From theorem 3,3-2 g solution to the second problem,
B, is easily obtained. Extending IC to subsets (of modal
formulas) in the usual way we have the following lemma:

Lemma 3.3-5: Tet C be a context and B a subset of M.
Then for all processes P and q:

pNIC(B) q “:’ C[P] "BC[Q]

Proof: p'wIc(B) qQ 1iff M(p)nIC(B) = M(q)ﬂIC(B) iff

VFeB. PEI(F) © ak I,(F)  iff (thm 3.3-2)
vFeB. C[p]EF & cf[q] EF  ifr ¢[phgclal . o

From the above lemma it follows immediately that A=IC(B)
gives the least discriminating set of formulas such
that whenever p and q are processes then:

P~ya = cfp]~cld]

Corollary 3.,3-6: Iet C be a context and B a subset of M.
Then for all processes P and q:
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@ prpsya = clpl~gold]

Moreover, if A is a subset of M such that (1) holds, then
A is more discriminating than IC(B). T.e. whenever p
and q are brocesses, then:

Example 3.3-7: Consider the CCB=context:

= (ux.a.x | LI {a}

We want to prove that C[pl~C[q]for all processes p and
q (and thus C[p]~C[0]~ux.a.x for all processes D).

We first note that the operational behaviour of C is
given by:

o%o and C%C

Now C[p]~C[q] iff ¢[p] ~y Clal so by lemma 3.3-5 a
necessary and sufficient condition is:

D~ q
T,(m)

We prove by structure that for all formulas F-either
IC(F)EETr or IC(EO =5Tr. The only interesting case is
when F is of the form <bdaG:

If a#b then IC(<b>G) -« Tr., Otherwise T ((q)G)

<a>IC(G) VIC(G) By induction hypoth631u either T (G) Tr
or T (G)=1Tr. In the former case I ((a)G) Tr. . Otherw1se
I (<d>G) {&)-Tr v+Tr = 4Tr, since <§>1Tr-ﬂTr.

Thus I (M)_C_{F' Vp. DEF v Yp. p};!F} and therefore
always p ~ (M) Qe (n]
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5.4 CONTEXTS AS ENVIRONMENT TRANSFORMERS

In this section we shall investigate how contexts
transform environments. More specifically, we are
interested in the following problem:

Given a context, C, and an (outer) environment, e,
we want to find an (inner) environment, f, such that
for all processes P and q:

(%) P~ya = C[p]~,clq]

Preferably the environment, f, described is as small
as possible wrt. the discrimination ordering C,

From the results of the previous section and the modal
characterization result of section 2.3, £ will satisfy (*)
iff:

IC(L(e)+) C o)t

However, we know very little about the discrimination
ordering between sets of modal broperties so the above

condition will be difficult to verify in general. Instead
we would like a condition baged directly on the operational

behaviours of e,f and C and ideally a condition of the
form:

min(C,e) C f

where min(C,e) is a minimal environment wrt., C satisfying
(*). Such a condition should be simple to check since
(for image-finite environments) we know by theorem 2.4-20
that E =K.

Now, by the very definition of parameterized bisimu-
lation (definition 2.2-1), in the antecedent of (*), £
must interact identically with p and q, whereas the
equivalence C[p]~é<3fq] may hold by C interacting diffe-
rently with p and q (see example 3.3-7 for such a
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situation). For this reason we expect the behaviour of
min(C,e) — when and if it exists - to be extremely com-
plicated. We shall therefore instead look for a weakest
environment f (wrt. E ) such that for all processes p and

q:
(**) p ~ a = <Cap> Ee <C,Q>

where (C,p>2i3<0,q> roughly means that Cfp]~¥30[q] with
C interacting identically with p and q. Thus any

environment, f, satisfying (**) will also satisfy (*).

We shall call the weakest environment (wrt. E ) satis-
fying (%) the weakest inner environment of e under

C, and use the notation wieEE(Cie). The questions to be
investigated in the following are then: "When does
wieEE(C,e) exist ?" and if it does exist: "What is

its behaviour ?" Clearly, the answers will depend upon

the environment system, FE , in question.

For environment system, H , closed under a non-swal-—
lowing context system it turns out that we can find

an environment f such that for all processes p and q:
(***> p"'f q & <C,p> Ee <C9q>

In this case f is obviously a suitable choise for
WieEE(C,e).

For cases when FE 1is not closed under C we give
various sufficient conditions which will ensure existence
of wieEE(C,e). It is shown that language environments,
IL , satisfies these conditions wrt. (a subset of)
CCB—contexts.

+ If C does not interact identically with p and g we
would not expect to be able to reduce an equivalence
between C p and C q to an equivalence between p and
g anyhow.
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S.4.1 Wie for Closed Environment Systems.

First let us formally define the (parameterized)
relation, =, used in (**),

Definition 3.4-1: Tet = (Pr,Act,—) be a process
system and let @ = (Con,ActOXActOJ—a) be a context
system. Then define the process system P-C as
(ConxPr,ConxActxAct*,-—é}, where for all ¢,C”,C"’eCon,
p,p’ePr, beAct and uzAct*, —> satisfies:

<c,pd> L8 ’b’u2%<b',p’> &
Crr=C’ & cp%»o' & pLp’ o

The intuition is that we eéncode information about the
interaction between C and P in the labelling of derivations
of {C,p> (following a suggestion by Peter Aczel).

Definition 3.4-2: Tet - (Env,Act,=9) be an environment
system and let @ = (Con,ActOxActo,}—a) be a context
system. Then define the environment system HE-C as
(Env,ConxActxAct®, =), where for all e,e’eEnv, CeCon,
beAct and ueAct™, = satisfies:

e—&’—-i-\bgée' e e%e' u)

Since B~ 1is an environment system over the same

action set as P-C we have the notion of an HE-C-parame-
terized bisimulation (definition 2.2-1) over P-C. We
shall write <C,p>EiB<C,q> 1ff there is an E-E-para-
meterized bisimulation, R, over ™-@ such that

(<C7P>,<C,q>)gRe.

By the construction of the action set and the restric-
tions made on the derivation relation of P-C it is
clear that if <C,p>EQB<C,q>, then C must interact
identically with P and g. Thus, we might have a situ-

ation where C[p]*130[q] but not <C,Q>Ee<@,q>.
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Example 3.4-3: TRecall example 3,%-7, That is, let C
be a context with the operational behaviour given by the

two rules:

CHpC and CH>C
Then we know from %.3="7 that C[a.@]'ﬁjcf®]. However,
in the above equivalence C does not interact identically
with a.0 and 0: in the behaviour of C[0] the transduction
c;éac is never used whereas it can be used in the
behaviour of C[a.@]. For this reason we would expect
C,a.007;<C,0>. To verify this, note that v LCagy8) 4
and <C,a.®>19-ﬁiﬁl><c,®> (since CHExC and a.p-250)
but <C,@>-£9z§¢il> (since 0-2). (a}

On the other hand if <C,p)?§e<b,q> has been established
then CEp]'\e(}Eq] will also hold:

Theorem 3.4-4: Tet B be closed under @ . Then when-
ever <C,pD = <C,a> also c[p] e clql.

Proof: It is easily shown that the Env-indexed family, R,
with:

Re = {(lp1,0 T 1<0,052, <0,a> )

is an M- parameterized bisimulation. )

If ¥ is closed under @© and & 1is non-swallowing, then
for any context C and environment e, we can find an
environment f such that for all processes p and q:

~ra @ L= L0,

Not surprisingly, it turns out that s suitable choice
for f is simply the combined environment e[C] (see
definition 3,1-9),

Theorem %3.4~5: Tet be closed under @ . Then when-
ever CeCon, p,qePr and eeEnv the following holds:

(D prgre = <0,0d=.<0,0)
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If @ moreover is non-swallowing then also:
(2) <C7p>;e<07Q> = p'”e[‘cj q

Note that the system of CCS-contexts, CBCCS s 1S non-
swallowing.

Corollary 3,4-6: If FE is closed under @ and @ is
non-swallowing then for all contexts C and environments

e, we can define wieEE(C,e) = a[0],

Proof (of theorem 3.4-5);

(1) We show that R with R_ = {CCRYRCEY lp~etcj q }
is an W-EC-parameterized bisimulation.

So let ({g,p>,@,q>)sRe. Assume e=£g=é£ég%§e' and
<c,p>—(C ’b’u?-><o',p'>. Then e ¢ (in ), ¢’’=C”

CP%»C' and p-Eép'. There are two cases to consider:

Uze : Then p=p” and by lemma 3,1-17 e‘[c7lgelc]. Thus

: C’,b,& , ;
also P~grrge@. Obviously, &, {5 a)> is
a matching move.,

Ufe: Then by lemma 3%.1-10 e[clSe’[c]. Since
p'~e[0f1, Q-29Q' with p"we,[Cqu' for some q”*. Hence,

<C,q>-£951212%§<p',q'> which is a matching move.

(2) Recall that a context C is non-swallowing iff
ChC’ = 80 & 0=C’. e show that with:

Re = {(,0)| 30.3e. £2e[0] & <0,pd=_(C,qp)

is an - parameterized bisimulation. So let (p,q)sRe[C].
Assume e[C]:géf and p-2>p’. Then for some usAct*,
e”eEnv and C’eCon, e Be”, CHMC’ and f=e’[C7]. Since

C is non-swallowing [u]|>1.

Then in - e:égzégéggée' and in B~

<C,p>-£9-421229<C',pf> (we have actually extended =3
and — to be labellad with elements of ConxAct*XAot*

in the obvious way)
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Since (C,p)':'e <C,q7, therefore {C,qd M(C’,q')

with <C',P'>T—-‘er<C',q'> for some q° such that q;-baq',

This is obviously a matching move for q. (m]

It is important to realize that the second part of
theorem 3.4-5 only holds provided & is non-swallowing.
Let namely:

0 a
Coblz» Ok C)
a,
€0 => €1

then both (Co,a.®> and (CO,®> has no moves at all. Hence
trivially <C,,a.0)=_<C.,0>. However, e [C.] & , ang
O €9 0 0=~"0

therefore a.®7leorccp 0.

S.4.,2 Wie for General Environment Systems.

In the previous section we showed that wieEE(C,e)
always exists provided the environment system T is
closed under the context system € , and & is non-swal-—
lowing. If F is not closed under @ the weakest inner
environment may not exist. We shall in this section give
(sufficient) conditions which will insure existence of
wieEE(C,e) in such cases.

Our strategy is very simple: first close T under
@ (which is assumed to be non-swallowing) giving the
extension E%D (see definition %.1-12). From the previous
section we know that wieE%D(C,e} exists and is simply

e[C]. Since W 1s an extension of wieEa(C,e) exists
iff there is a smallest environment, f, of B with respect
to & such that e[C]Cr.

Now assume we can find a smallest (wrt. <) environment
T of ® such that e[C]<f. We shall use the notation
9§§E<Czez (best approximation) for this environment.
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Since ¢ & (theorem 2.4-10) we always have e[C]EbaEE(C,e).

If moreover E%D is image-finite, then by the Main
Theorem 2,4-20,CLcg ., Hence if g 1s any environment of
E such that e[C]Cg then by the property of bag (C,e)
also baEE(C,e)Egg Thus baEE(C,e) is the smallest
environment of ® wrt. T such that e[C]EbaEE(C,e) and we
can therefore take wieEE(C,e)==baEE(C,e). Note, that
if the Main Theorem 2.4-20 should extend to image-infinite
cases, we can in all cases take wieEE(C,e) to be baEE(C,e).

What remains to be done now is to find conditions
which will ensure image-finiteness of E%D and existence
of baEE(C,e). For the former the following will suffice:

Lemma 3.,4-6: TIf I is image-finite and for all contexts,
C, of @ and actions beAct the set {ku,c')l CF%»C'} is
finite, then.E@E is image-finite.

Proof: Directly from lemma 3.1-10, O

Unfortunately not all CCS-contexts have the above
property, especially not contexts involving the | opera-
tors let C= (px.a.x |[1) then obviously for any new:

Cbg%g;C which violates the above broperty. However, for
CCB~contexts with no occurrences of | the property can

be shown to hold. What we really need in order to allow
all CCS-contexts, is to extend the Main Theorem 2.4-10 to
image-infinite cases. However - as we have mentioned
earlier - such an extension is left as an open problem
(which we conjecture to hold).

For existence of baEE(C,e) it suffices that B is closed
under &:

Lemma 3,4-7: If W is closed under & then:

ba_, (C,e) ~ f
" feEnv.e[C]<f
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Proof: TFollows directly from the greatest lower bound

property of & wrt., <. o

Now let (Li)iSI be any family of language environments.
Then:

& N n P
1eT Iy ieT T4

n b .
'sIIG_ 1s a greatest lower

since it is easily shown that
bound (wrt. £) of <Li)isI using the characterization of
< for language environments given in theorem 2,2-17.

Thus, IL is closed under & and from the previous lemma

baﬂL(C’L> therefore always exists.

As a simple generalization of theorem 2.2~17 it can
be shown that if e is any environment and L is any
language environment, then:

e<L &  D(e)cIP
where D(e) is the "language" of e, defined by:
D(e) = {usAct*| g =iy }

(Note, D(e) is always prefixed closed). Hence, from
lemma 3,4~7 and proposition 3.4-8 it follows that for C
a context and L a language environment:

ba]I. (C,L) ~ & M

@
D
&

~ D(L[C])

Using lemma 3.1-10 we have:

Il

p(1.[c]) {e}u {uenct™| averct”. 1.5 ¢ CHD }

{uesct™ [3verP, cpls }
u
Thus, we can simply define:
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Definition %.4-9;: baﬂl(C,L) = {usAct | EVELP. CH%%> } o

From this definition it is easily shown that baBL(C’L)
satisfies the following:

Proposition 3,4-10:
C 1y B
(14) baIL(C, glﬁ) = .gbaH;(C,Li)

(iii) bay (C, QLi) = QbaIL (C,Li)
(iv) ba (C°D,L) = bar (D,bar (C,L)) a

For CCS-contexts the following holds:

Proposition 3.4-11:

(1) pag (C,1) = {e} ir []#rree(c), LAY
(i1)  bag (C1,1) = 1P

(iii) baIL(a.C,L) = baH;(C,aL/aa)

(iv) bay (C+D,I) = bar (C,L) Ubay (D,L)
(v) baE (C&p,I)
(vi)  bag (C|p,L)
(vii) ba (Cfs,1)
(viii) bay (¢[s],L)

bar, (C,D(p)nIP)

Par(C,{u| (u#D(@)NIP #2} )
bag (C,IPn %)

bay (C,87H(1P))

where # and ¢Tl have been extended to sets of strings in
the obvious ways.

Proof: Direct from definition 5.4=9 and proposition
5.2—60 n

Example 3.4-12: We want to show:

[:HX;(a.b.x)l HX.(&.W.B.X)][{w,i} ~
[:HX.(a.b.x)l ux.(a.w.b.x + B.@)] r{w,i}
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Let C::[Hx.(a.b.x)] []]r{w,l}. Then it is sufficient to
prove that:

X.(a.W.B.X) £ Xoe a.WoBoX -+ 5.@
a bay (C,Act*) ¥ ( )

So let us calculate baHL(C,Act*) using proposition 3,4-11.
x*
*
bar ([p.x.(a.b.x)][]],{w,l} )= )
(ul w#E)Dnfw,3* #0) -
[({w,l}*.a.{w,l}*}g)*] b
Let M denote the above language. Then the behaviour of M
is given by the following diagram:

It is easily verified that R, with:
Ry ={j(px.(§.w.5.x) , bX. (2. w.b.x + B.@))}

Ryr= {(W.B.MX.(Q.W.E.X>\,W.E.HX.(g.W.E.X + 5.@)) g
(54¢x.(5.w.5.x) s DopXe (Zow.Dox + 5.@)) }

Rr =03 L#AM and L#M’

is an IL- parameterized bisimulation.
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5.5 CONCLUDING REMARKS

In this chapter we have studied contexts as objects
which semantically behaves like action transducers.
This view has enabled us to define the behaviour of a
combined process, C[p], from the behaviours of the context
C and the inner process p.

As an example a class of CCS-contexts - being certain
CCS-process expressions with free variables contained in
{[]} - has been described operationally, and it has been
shown that the behaviour of a CCS-process of the form
C{p/[]? is exactly that expected of the combined process

clp].

In section 3.3 it is shown how contexts transform modal
properties: under certain finiteness conditions (satis-
fied by all CCS-contexts) on the context C, a property
transformer IC has been defined such that for any property
F and process p:

C[P]FF e PFICCF>

Furthermore for all p,q Pr and ASM:
Pr1,a)d ¢ Clpl~,clal

which shows how to reduce a parameterized equivalence
problem involving combined processes to a parameterized
equivalence problem involving only the inner processes.

For the environment-parameterized version of ~, &
slightly weaker result has been obtained in section 3.4
(weaker maybe because environments are less expressive
than sets of modal properties): for environment systems
closed under a non-swallowing context system (satisfied
by all CCS-contexts) there exists an environment trans-
former, wieEE(C,_), such that for any p,qePr and et Env:
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p’\WieEE (C,e) q e <Cap> ;e <CaQ>

where <C,p>2ia<c,q> roughly means that C[p]*nac[q] with
C interacting identically with P and q. The transformer
WieEE<C’—> is simply the map WieIE(C’—>: e}—&e[b].

For environment Systems not closed under the context
system, conditions have been given which ensure the
existence of an environment transformer, wieEE(C,_), such
that for any p,qePr and eeEnv, wieEE(C,e) is the weakest
(wrt. £ ) environment such that:

b NWieEE (C,e) q. = <C9P> Ee <C,Ci>

Our notion of (action) transduction as the semantics
of contexts has strong similarities to the causality
'relation, —>, defined in /San82/: For contexts C,D and
actions a,b /San82/ defines:

C-%)D iff whenever a proof of p-ééq is given it is
possible to construct a proof of
c[v] >Lq].

C-EéD iff it is always possible to construct a
proof of Cfp]-éaD[p] for any process p.

However, the causality relation in /8an82/ is defined and
investigated only for (a subset of our) CCS-contexts, and
1s used for finding conditions ensuring unique solutions
to equations of the form C[p] ~p, where ~ is the weak
bisimulation equivalence (see also chapter 5}« In
contrast to this we have been working with a general and
abstract notion of context (of which CCS~contexts is an
example). Thus our results hold for any (future) process
construction as long as the construction can be described
operationally as an action transducer (=context).
Normally a process construction, 0, is introduced
semantically by a (finite) set of inferencerules describing
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the behaviour of combined brocesses of the form 0(p)

(or O(pl,...,pn) if O is an n-ary process construction).
As such there is no a priori guarantee that 0O can be
described as a context. In fact it is very easy in
this way to introduce constructions which can not be
described as contexts; e.g. let the semantics of O be
given by the following rule:

p—§>p' besort(p)
0(p) Z0(p”)

where sort(p) is the set of all actions occurring in the
syntax of p. The only possible semantics of O as

a context is OF%;O and thus we should have O(p)—éaO(p')
whenever p-i)pf However, this is not true since O makes
certain demands to the syntax (structure) of the inner
brocess p. It seems that for a brocess construction to
be describable as s context, it must only exploit the
inner process’ ability to produce actions and not its
structure.

An interesting future problem would be to find conditions
on the type of inference rules allowed for a construction
in order to énsure describability as a context. The
conditional behaviour rules examined in /Sim85/ seems a

good candidate for such conditions. It is also interes-
ting to note that a set of METIJE-SCCS contexts (called
architectural expressions)is introduced in the above

paper which is very similar to the CCS-contexts studied
in section 3.2: an architectural expression is a
brocess expression such that eévery free variable occurs
at most once and outside the scope of recursive definij-
tions.

An obvious limitation in our work is that only unary
contexts have been considered. A natural extension
would be to consider n-ary contexts as well, where

intuitively an n=-ary context produces an external action
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by consuming (up to) n inner actions. Thus, the
operational semantics of a set of n-ary contexts, Cn’
could be described by a transduction relation with the
following functionality: l——)SCnxActhActOXCn. With this
extension we should be able to describe the + and &
operator as dyadic contexts with the following operational
semantics:

a 2 a 2
tHEo> Bl o, B
a
& =5 &

where:
2 2

a 2 a
Pllfa,o? Pl P2‘EO,a§ P2
Such an extension is left for future work,

Since the operational behaviour of contexts is
described by a transition system of the form
@& = (Con,ActoxActo,b-a) we can apply the general notion
of bisimulation equivalence, ~ 4, to . The modal property
transformer associated with a context suggest another
equivalence, ~1 between contexts:

C~;D e Is2T

1 C
where I, =T, iff VFeM.{pl pl:IC(F)} ={pl DE ID(F)}.
Finally, we have an equivalence, ~os between contexts
based on their extensionality. I.e.:

C~,D e vp. c[p] ~D[p]
An interesting (future) problem is to determine the
relationship between these three equivalences., Provided
the assumptions for theorem 2,3-2 and theorem 3.3-2 hold
it is easy to show thatf~1:=~2. It is also easy to prove
that ~c~,, whereas the inclusion‘~2§’~ - not unexpec-
tedly - seems hard to prove. Maybe a technique similar to
the one used for the Main Theorem in section 2.4.2 can be
used.
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CHAPTER 4

COMPLETE PROOF SYSTEMS

In this chapter we shall present complete proof
systems (or inference systems) for the (environment)
parameterized equivalence problem, D~ Qs for various

combinations of the environment and process systems.

In section 4.1 a complete proof system for finite envi-

ronments and processes is given, extending the complete

axiomatization for the corresponding unparameterized
equivalence problem in /HenMil83/. It is also shown how
to derive a (relative) complete proof system for language
environments and finite processes.

In sections 4.2 and 4.3 two alternative complete proof
systems for regular environments and processes are presented.

The first system extends the complete system for the
corresponding unparameterized equivalence problem in
/Mil82/. The second system is based on a reduction of
parameterized equivalences involving regular environments
and processes to corresponding parameterized equivalences,
where the environments are finite. The reduction defined
is similar to the results concerning Moore experiments on
finite automata /Mo56,Con71,3al66/.
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For reasons of notational convenience we gshall through-
out the remainder of this chapter use a linearised version
ekFp=gq, for P~ q. The notation suggests that an
environment acts as an assumption (made about an outer
context) under which two brocesses are equivalent.

9
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4.1 COMPLETE PROOF SYSTEMS FOR FINITE AND
DETERMINISTIC BEHAVIOURS

First let us define the two transition systems of

finite processes and environments, HE. and EQE: Let
P, = (Pf,Act,-—>) where P, consists of the following
terms:

Pi:= O a.p| p+p”

and the operational semantics (—) is the standard one
(see section 3.2). TIet E. be Hﬂ; extended with a univer-
sal environment U, i.e,: B, = (Ef,Act,==>) where
Ef=PfU{U} and = = -—>u{(U,a,U)| asAct} .

We recall the complete axiomatization of the unparamete-

rized bisimulation equivalence for ERE given in /HenMil83/,

Theorem 4.1-1: The bisimulation equivalence ~ over

EE. is exactly the congruence induced by the following

axioms:

(A1) p+(a+1) = (p+q) +r

(A2) p+q=q+p

(A3) p+p =p

(A4) p+0 = p a]

In the proof of the above theorenm it is used that any

process, p, (of ERE) can be (provably) brought into sum-
. form: an expression P is on sumform iff for some
ao,...,an_lsAct and po,...,pn_lst, p 1s of the form:

p = ao.po + o oo o0 +an_l.pn_l

where for all i<n, p; is on sumform as well. By cenvention
p=0 if n=0. Note that by (A1)-(A3) the above notation
is unambiguous up to provable equivalence,

We now present the proof system, S

Sreo for parameterized

equivalence over Eﬂf and.IPf:
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SUM S1. [Ikp+(q+r)=(p+q)+r
S2. [Ikp+q==q+p

S5. Uk p+p =p
She U p+0 = o)
EQUIV El. e}l p = P
ek p=gq
E2.
ek a=rp
ek p=g e€kag=r
E3,
ek p=r
CONG UkFp=g
€l.
UF a.p = a.q
ek Dp=gqg
C2.
a-el'"aop——-a-q
ekFDp=gq
C3,
e}-r+p==r+q
CONS et f+p=gqg
el p=gq
NIL OFp=q
COMB e Fop = q frrp=gq
e+f Fp=g
ANNTHTTL a#£b

b.e[—aop = @

( The system See )
shall write e FF P=qg if e} p = q 1is provable

Seee
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Theorem 4.1-2: (Soundness of S
For all eeEf and p,qeP

ff)

et
e FF P = & implies ek p=gq

Proof: We must show that each axiom of §ff 1s valid and
that each rule of §ff preserves validity.

For S1-84 use soundness of the system in theorem 4,1-1
and the fact that ~g T e For E1-E3 appeal to proposi-
tion 2.2-5. All the rules of CONG are of the general form:

wie(C,e)  p = g
e  C[p] = C[q]

Hence preservation of validity follows from the general
parameterized congruence law, theorem 3.4-5 ang theorem
5.4-4, TFor CONS appeal to theorem 2.4-10. OCbviously 0@
is a minimal environment. Hence NIL is sound. For COMB
use lemma 2.4-4, Validity of ANNIHIL is immediate, (m]

Example 4.,1-3: Recall examples 2.4-22 and 2,4-32 where e=a.b.0
+ 8.c.0, p=a.b.0+a.c.Q and d=a.b.0+a.c.0+a.(b.0+c.0),
We want to establish e FF P =q:

c#£b
ANNTHTT,
Ced F b = 0
C3,34
Ce@ F co® = b0 +c.0
. : ce
: 8eCe | a.,c.,0 = 8.(b.0 +c.0)
. C3
: am&DFp+amdD=p+a&bw+cm)
S3,E3,CONS
a.b.0 I p = g a.c.0 p =g
COMB
ekFDp=gq

(n

As 1t stands the proof systeym §f

relative complete wrt. true assertions of the form, e<f,

£ is actually only

where e and f are finite environments, However, these
assertions are easily axiomatized as indicated below:
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Theorem 4.,1-4: The simulation ordering, £, over E.is

exactly the substitutive preorder induced by the following
axioms:

(A1) e<U

(A2) e+ (f+g) >~ (e+f)+g
(A3) e+f ~f+e

(A4) e+e ~ce

(A5) e+0 ~ e

(A6) e L e+fT

(tlztg is an abbreviation for the two rules tls t5 and
tzétl).

Proof: Validity of the axioms (A2)-(A5) follows from
theorem 4.1-1 and the fact that ~< <. Validity of (Al)
and (A6) is immediate. By proposition 2.1-9 we know that
£ 1is a preorder. Lemma 2.4-3% ensures that £ is substi-

~

tutive.

For completeness assume e{f. If f=U then | egf

follows from (Al). If e=U then also f=U (otherwise e f)
and hence again b+ egf by (Al). If neither e nor f is
U we can find sumforms e’ and f' such that:

+

F exe and - f~ £

+ + . .
where e = Znai‘ei and T "Zmbj‘fj‘ We prove by induction

on the size of e’ that e'<f" implies + e¥¢r™.

le*| =0: Then et=0 and F © < ¥ follows from (A6) and
(A5).

Ie+ | >0: Consider the first term of e+, 8je€7e Then
al.eléf+. Thus for some f7, f+ﬂ‘-> £f7 and elgf' .
But £’ must be fj for some j<m, with bj=al, and by

induction | ey ¢ fj' By substitutiveness of <« then

= al.elg al‘fj’ and hence using (A6) and (A4)

- a;.e:< al‘fj +f7~ £, Thus we can obtain - ai.eig £F

for all i<n and it follows therefore that [} e+< £r, o
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Now add the axioms and inferencerules for the above
axiomatization of < over qu to §ff and we obtain a genuine
complete proof system, §;f.

Theorem 4.1-5: (Completeness of §+
For all esEf and p,qSPf:

efkEp=gq implies e kg pP=g

+
where FE means provability in the extended system, §ff.

Proof: For e=U, e FE P =g follows immediately since

§;f is an extension of the System in theorem 4,1-1. Thus

if +p =g follows from (A1)~-(A4) of theorem 4.1-1
together with congruence properties then U k§ P = Q.

Otherwise (e #U), e can be brought on sumform, i.e,:
F exe

+ . - .
where e ==z%ck.ek. Using (8S1)-(s4), EQUIV and CONG with
e=U we can (provably) transform p and g to sumforms,
p+ and q+, l.e.:

Uk p=ropt and U F; q=q"

with p*=Za..p. and q+:=z%bj.qj. By the transitivity
rule of EQUIV and CONS clearly:

ebpp=aq iff e” bt = gt

So if we can establish e FF o) ==q+ we are done., The

+ ° +—
le |=1: Then e "il'el for some cl,el. If al;!cl then
by ANNTHITL Cy-€y FF al.pl==® and hence

g -
Cqe€q FF P = a2’p2'+”"+an-l‘pn—l by EQUIV. Repeating
this procedure we can cancel out all terms of p+ not
prefixed with €4+ Thus we get:
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+ _+
Cl'el FF P =9

and similarly for q+:

Il
Q

+ _+
Cqe€y FF q

where p'* is of the form zg,cl.pi and similarly q*t ig
of the form E%,cl.qj.

By soundness Cie€q Eptr=q™. 1r p"" =0 then also

Q" =0 and so from reflexivity we have Cpeeq FE = g™,
Otherwise let cl.pi be a term of p™*. Then - bg the very
definition of parameterized bisimulation - q++-—l>q' for
some q° with e E pi::qi. But q° must be qj for some

j<m”. By induction hypothesis then:

4

+ s
€1 Fp P{ = af

J ‘
+ ’ ’
(c2) Ci.€q FF Cqep] = Cl‘qj
(C3) Cie€q kg q++l+cl.pi = q++-+cl.q3
(sUM) Cieeq F% q++-+cl.pi = gt

By repeating this procedure for all i<n’ we get
Cqe€q FE q+++p++ = q*" ang by symmetry

+ o+ o + 5t +
cree) Fp 7T = g and hence Cie€q Fp P = q .

le+[>l: Split e7 up into two smaller subterms and apply

the induction hypothesis to them. Use COMB to get the

result for e+. o

finite processes and language environments is given below.

A proof system, Sfl’ for parameterized equivalence for

The system is sound and relative complete wrt. true
assertions of the form McL, where M and I are languages
over Act., . §fl is very similar to §ff and the completeness
proof (which we ommit) is analogous.

Note: +there is obviously no rule corresponding to COMB

of §ff in §fl' The two rules, NIL and ANNTHIL, of §f

replaced by a single rule, ANNTHIL, in §fl'

p» are
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SUM Sl. Act” F p+(q+r) = (p+q) 41
S2. Act® b p+q=q+p
83. Act® Fp+p = p
She Act® F p+0 = p
EQUIV El. Lfop=p
Lkp=gqg
B2
Lka=0p
Lilp=4g LFag=r
E3.
LEFEFp=r
CONG oL/8a F p = g
Cl.
Ll-a-p=a.q
Lkp=gq
.
LFr+p=m1r+q
CONS MPc TP Lkp=gq
MFD=gqg
ANNTHIT 9L/da = ¢
Ll-wa.p=<D
( The system Seq1 )
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4.2 A COMPLETE PROOF SYSTEM FOR REGULAR BEHAVIOURS

Let us define the two transition systems of regular
processes and environments,.Hz? and I : B = (Pr,Act,—9}
where P consists of the following terms'

p::= O] x| a.p | p+aq | uXeD

where xeVar and asAct. The operational semantics (—>) of
¥, 1is the standard one (see section 3.2). However, in
contrast to the notion of recursion introduced for CCS

in section 3.2, we shall not insist on the guardedness

restriction here,

The system of regular environments, Eﬂr, is simply

ERP extended with a universal environment. I.e.
B = (Er,Act =>) where »=P U{U}

== —> U {(U a,U)| asAct} Let P resp. E. be the
set of closed process express1ons resp. closed environment
expressions and let H? and EE be the corresponding
restricted transition systems. We want to axiomatize the
barameterized equivalence problem for EP and EE
However, it seems necessary to widen the ax1omat1zatlon
to allow for general - process expressions over EP o For
this reason we refine the notion of parameterlzed bisimu-
lation (similar to the refinement of bisimulation in
/Mi182/) in order to take account of the possibility of
free variables in a brocess expression. ILet UG gp) be the
set of unguarded variables in the process expression P.
We then define:

Definition 4.,2-1: Tet R be an Ec—indexed family of binary

relations over P . Then R is a refined barameterized

bisimulation if R is a parameterized bisimulation and
whenever pR q then TUG(p) =UG(q). We write e Ep=gq

if there ex1sts a refined parameterized bisimulation, R,
with PR q. 3]
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Note, that for closed process expressions the notion of
refined parameterized bisimulation coincides with that

of parameterized bisimulation. It is easily shown that
propositions 2.2~2 — 2,2-6, 2.2-9 extend to refined
parameterized bisimulation in the obvious ways. We shall
throughout the remainder of this chapter use the term
parameterized bisimulation for refined parameterized bisim-

ulation.,.

4,2.,1 Properties of ERP and E%?.

Before presenting any proof systems let us state some
fundamental properties of the derivation relation —» in
ERP. Since Eﬁr is a simple extension of ERP it is easily
shown that all these properties hold for the consumption
relation, =%, of E&P as well.

et p{f,’i} , where T = (rl,...,rm) and
X = (Xl,...,xm), stand for the simultaneous substitution

of expressions T for variables X in the expression p.
Let p=q 1if p and q are expressions equal up to renaming
of bound variables. Then the following is easily shown to
hold:

(PL) Whenever p{q/%X}-3r then either
for some p’:
p3p’ and I‘:P'{a/i}
or for some i<m:
XigUG<p> and q. =1

(P2) Whenever xisUG(p) and qi-éar then:
p{3 /x} Br

(P3) Whenever p-3p’ then for some r:
p{a/Z}Dr and r=p"{3/%}
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If all a; “s are closed expressions, then = can be replaced
by 81mple syntactic equality in (Pl) and (P3), since no
renaming of bound variables of P in p{q,/x} is needed

in this case.

From the operational behaviour of ux.p it now follows
that:

(P4) Whenever ux.p->r +then for some p’:
a 'd 4
P—=p’" and r=p{ux.p/x}

(P5) "henever p-éap’ then for some r:
LX.D T with rip’{px.p/x}

Again we can replace = with simple equality if ux.p
is a closed expression.

As a slightly stronger result than (P4) and (P5) it
can be shown that there is a 1-1 correspondence between
derivatives of p and derivatives of pX.P. From this it
follows by structural induction that EP is image-finite
and for all processes p of EP the set
{p | 3sedct . pSp } is flnlte.

The properties (P1)-(P5) only determines derivatives of
processes from EP up to "=". For this reason the following
concept of parameterlzed blslmulatlon up to "=" is often
useful: (see /Mil83/ for an analogous notion of bisimula-
tion up to "~"), An E® —1ndexed family of binary relations
over P o R, is a parameterized bisimulation up to "="

if and only if = oRo- is a parameterized blSlmulatlon,
where (—’) == for all esE If R is a parameterized
blslmulatlon up to "=" and pR qQ then by the reflexivity of

= 1t follows that p*» a. A necessary and sufficient
condltlon for R to be a parameterlzed bisimulation up

to "=t iz thab R(ZBMf— 8 Ress ) ( a condition we shall be
u51ng repeatedly in the following).
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Finally, we shall need a few basic properties of substi-
tution:

(P6) If no x. is free in p then p{T / X} B

(P7) If X and Y are disjoint then:
ola/zHz /5 = o{afE /5% /%, 5/5)

4.2.2 The proof system §M4

Let us start by recalling the complete proof system,
here called §M’ for the unparameterized equivalence
problem over Bﬂ? given in /Mi182/.

EQUIV El. p=1p
D=4
E2.
qa=2>
b =2aq qQ=1r
EB.
D=r
CONG P =g T = 1’
Cl. = ===
{F/%} = ofF/ 7}
Pp=2aq
cz2.
'J,X.p = HX.q
SUM Sle pP+q = q+0p

S2. p+(a+1r) = (p+q) +r
8%. pP+p = b
She p+0 = p

REC Rle pux.p =py.p§y/x} 3 v not free in LX.D
R2. px.p = piux.p/x}
R3. px.(p+x) = uXeD
p = af{p / x}
R4, , s xZUG(q)
D = pX.q

( The system Sy )
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We shall write FM P =49 1if and only if D=g 1is provable
in §M' The completeness proof of E@Iis based on the
following two important theorems (see /Mil82/):

Theorem 4,2-2: (Unique Solution of Equations)

Let X = (Xl,...,x ) and ¥ = (yl,...,yn) be distinct
variables, and D = (pl,...,p ) expressions with free
variables in (X,y) in which each X5 is guarded. Then
there exist expressions 7T = (rl,...,r )  with free
variables in ¥ such that:

Moreover, if the above also holds for expressions
T’ (rl,...,r ) with free variables in Y, then:
FM r{ = r; (ig<m) O

Theorem 4.2-3: (Equational Characterization in SM)

For any expression P, with free variables in y, there
exist expressions Piseee,Dy (h21) with free variables in
v, satisfying h equations:

m(i) n(i)
P Py = Jé %15°Pr(i,9) * ;‘f{ Yg(i,3)

(i<h}
and moreover:

Fy P =Py o

The complete proof system §M is closely analogous to
that of Salomaa /Sale6/ for equality of regular sets of
words. A close comparison of §M with Salomaa’s system
is made in /Mil182/.
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4.2.32 Wie and its properties.

We are searching for an extension of Milner’s System,
Sy» which will be sound and complete wrt. parameterized
equivalence over‘ERr and.EEi. It turns out that in the
final extended system most of the rules of §M are used
directly with only minor changes. The only two rules
of §M which requires more careful alterations are the

congruence rule, Cl, and the recursion rule R4,

We notice that in p{f,/i}, P acts as an m-ary

(i==(xl,...,xm)) context with Togeee,Tp as inner
processes. In light of the previous chapters results it
seems therefore natural to replace Cl with a paramete-

rized congruence law of the form:

el p=rp’ wie(p,e) F T = ©*
e R p{F/%} = p'{f'/;‘c}

where %EE?B:ET is the weakest (wrt. ) m-tuple of
environments which will make the above rule sound

(if we make the additional requirement that p and p’
must interact identically with T and r’). Since our
results from chapter 3 only applies to unary contexts
a special treatment is needed.

The recursion rule, R4, gives conditions which
ensures that a recursive equation has a unique solution.
In the extended system, R4, will be replaced by a more
general rule ensuring unique solutions to recursive
equations in an environment. This new rule will also

be using the wie-construct.

@ ; . g
Now for xeVar, pePr and esEr we define wie e sEr

as follows:
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wie_(p,e) = Z f
stX(p,e)

* s
where IX(p,e) = {f| IJsAct . exF &
Gp’. p5p” & xeUG(p)))

Note, that since e has only finitely many derivatives,
Ix(p,e) is finite. Thus wieX(p,e) is indeed expressible
in EC. The intuition behind the set I.(p,e) is loosely
that:EgIX(p,e) if and only if when executing p{q/x}

in e it is possible to reach a situation where g may

be executed in f. With this definition of wie_(p,e)

it is easily shown that the following algebraic proper-
ties hold:

Proposition 4.2-4:
(1) wieX(®,e)::®

0 ; if x#y

(i1) wieX(y,e)z{
e § otherwise

(iii) wieX(p,®)==®

i i U s if is T i
(iv) WleX(p,U)::< y LI X 1' ree in p
O ; otherwise

(v) wieX(p-+q,e):=wieX(p,e) + wieX(q,e)
(vi) wieX(p,e+-f):=wieX(p,e) + wieX(p,f)

(Vll) WieX(a.p ,b.e)}{wieX(P,e) o if a=b
) 3 Otherwise

(viii) wie (uy.p , e)~ wie (p{uy.p/3} , e)
(ix)  wie (p,uy.e)~wie (p,efuy.c/3}) o

Proposition 4.2-5: wieX(p,e) is monotonic in e with

respect to £ . o
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Lemma 4.2-6: (Derivations Temma)
If p-Bp° and e e’ then wieX(p',e')gwieX(p,e).

Proof: TFollows from IX(p',e')g IX(p,e). O

Lemma 4.2-7: (Substitution Lemma)

wieX(p{f,/i} y€) =~
1-;mwiex(ri ,wieXi(p,e))

E+ wiex(p,e)]

x¥x
Proof: Show, using (P1)-(P3) and wieX(p,e): wiex(q,e)
if p=q, that:

L (p{T/%},e) =

ingX(ri ’W1eXi(p’ e) )

[U IX(p,e)] e -

Lemma 4.2-8: If x#y, wiey(p,f)ge and wiey(q,e)ge
then:

wie (pfey.a/y 3, £)< wie (p,f) + wie (g,e)

Proof: TLet gsIX(p{py.q/y} s ). I.e. for some seAct”
some g and r:

iEgég and. pﬁ¢y.q/y?-§ér with xeUG(r)

We prove by induction on |s| that gg,wiex(p,f)-+wiex(q,e).
By the least upper bound property of summation the
lemma will then follow.

Basis, s=£: Then g is s r=:p{py.q/y? and xeUG(r).
Now, xeUG(r) iff either xeUG(p) or yeUG(p) and xeUG(q).
Thus, also xUG(p{a/y}). Obviously p{q/yf-iapiq/y}

SO0 we have:

< wie (pfa/yy, £)
(&4.2-7) ::wieX(p,f) + wieX(q,wiey(p,f))
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(4.2-5) < wie (p,f) + wie (q,e)

Step, s=as’: Then for some h and r°: f Sn é}g and
piuy.a/yi Br’ Sr. By (P1)=(P5) either:

(A) For some r°°, p-3r’’ and I"ir"{p. y.a/y}

or (B) yeUG(p) and for some r’°:
a-3r’’ and r’=r’{py.o/y%

We will show that in both cases wiey(r",h)ge (and
of course wie_(g,e)<e)in order to invoce the induction
hypothesis. Clearly gsIX(r',h). So:

g wie (r7,h)
~ wieX(r"{py.q/y} , h)
(IR) < wieX(r",h) + wieX(q,e)

rpe) £ wieX(p,f) 4 wieX(q,e) ;3 in (4)
) wieX(q,f) + wieX(q,e) ; in (B)

But in (B) fgwiey(p,f)g e so by lemma 4.2-5;:
< wieX(p,f) + wieX(q,e)

in both (A) and (B). It remains to verify that
wiey(r",h) <e in both (A) and (B). In (A) we have
from the Derivation Lemma 4.2-6 that:

wiey(r" ,h) < wiey(p,f) e

In (B) we have fg< e, since ye UG(p) and wiey(p,f)g e,
Thus by Derivation Lemma 4.,2-6 and monotonicity 4.2-5:

wiey(r" ,h) < wiey(q,f)
<w1ey(q,e)ge 0

Corollary 4.2-9: (Recursion Lemma)
If x#£y and wiey(q,e)ge then wieX@y.q . e)zwieX(q,e)

Proof: Using proposition 4.2-4 (viii) and the Substi-
tution Lemma 4.2-7 we have:
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wie (py.q,e)

10

wieX(q{py.q/y} , €)

1

wieX(q,e) + wieXQly.q ,wiey(q,e))
2 wieX(q,e)
To prove wie (py q,e)<wie (q,e) we apply the previous

lemma 4.2-8 w1th p=y and f=e, Obviously then the condi-
tion w1ey(p,f)\_ is fulfilled so we can conclude:

wiex(py.q, e)
~ wie (y§uy.a/y3 ,e)
< wieX(y,e) + wieX(q,e)

>~ WieX(q’e) o

4.2.4 The proof system Srr and its soundness.

We can now present the proof system S for parame-
terized equivalence over P, and EE (see next page).
As we predicted Previously most of the rules of Srr
are carried over from S (or even S f), with a few
minor changes. Only the rules Cl and R4 seem to need
further justifications. Tn C1 wie= (P,e) LT =71’
is an abbreviation for the m assertlons

Xi(p,e) Fr; =rl (i<m).
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EQUIV El. ek p = p
ek p =g
E2.
ek qg=0p
ek p =g ek g=r
B5.
ek ps=mr
CONG ebp=rp’ wie=(p,e) - r = ¢°
— 1. =
e F p{f/i} = p'{f'/i?
UFp=np’
ca. .
U b px.p = px.p
CONS et fFp=gq
€ekFpP=2ag
NIL UG(p) = UG(q)
OFp=gq
COMB el p=gq fFrp=g
e+f b p =g
ANNTHIL af£b
b.e  a.p = 0
SUM Sl. UFp+gq = g+p
S22, U,—p+(q+r)=(p+q>+r
83. Ul p+p =p
S4h. UFp+0 =p
y not free
REC Rl. Ul px.p =py.p{y/x} ; inp.
R2. U F ux.p = p{px.p,/x}
RZ. U b ux(p+x) = LX.D
e+ p = gip/x wie_(q,e)ge
R, te/xf X xAUG(q)
€ F P = ux.q

( The system §rr )
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We shall write e FR P=q iff e} q = q is provable
in §rr using all true assertions of the form e<f as

axioms. The following theorem broves the validity of
Cl.

Theorem 4.2-10: (Substitution Theorem)
Let % o= (Xl,...,X ), T = (r ,...,r ) and
(r' ey T ). If ek p=p° and WieX.(p,e) E r.=r
3
for 1<m then:

e b p{F/E{ = p’{F"/x}
Proof: It suffice to prove that the Eg—indexed family,
R, with:

= {{E/7} , 0 {F/Z) le k pep’ &
Vigm, wieX_(p,e) E ri==r£:}

is a parameterized bisimulation up to "=V,

Let (pir/x ,p {r /X})eR . Then UG(p)=UG(p") and for all
ism, UG(r;)=UG(r{). Hence, UG(p{E/z})=Uc(p"{F*/5}).

Since p_p 1mp11es UG(p)=UG(p”") it follows that
whenever (p,p”’ )s—oR o= then UG(p)=UG(p’). Now, let

e 2 and p{r/xi-—aq. By (P1) either:

a -— -
(A) for some P,s P—=>p, and q5p+§r/X}
or (B) for some i<m, XiSUG(p) and ri-§>q

R.o= for p'{f'/i}

We must find a matching move in o=

in both cases.

(A): Since efE p=p° , P’ -—ép for some p with

fE B, -—p' By (P3) then for some o R o %r /XZ-—éq
with g =p {r /X} In order for (q,q” )s—oRfo— it
suffice to prove (p ir/X} s D {r /X})sR However, this
will follow if w1e (p+,f) E », -—rl for all i<m. But
by the Derivation Lemma 4.2-6, wi (p f)s;wieXi(p,e)
and by assumptions wie (p,e) E r. -rl for all i<m.

Thus W1eXi(p+,f) E r; =r; follows.

(B): DNow x.eUG(p) implies eel (p,e) and thus e<wie .(p,e).
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Thus we have e ri=:r£. Hence, for some q°, ri-géq'
with f E g=q° or equivalently f E xi{§/§}==xi{§’/i%
where q = (gy...,9) and gq°= (q¢",...,9°). Since

WieX,(Xi,f) - {@ ; lf l#a
dJ f 3 otherwise

we have for all j<m, Wier<Xi,f> E g=q° and hence

(a,q97) = (Xifa/i},xifa'/i})aRf. Since e F p=p’ also
XiSUG(p). By (P2) therefore p'{f'/i}-ééq'. The above
shows that this is the matching derivation. ]

The rule R4 claims that provided wieX(q,e)ge, then
the parameterized recursive equation e k p=gqg{p/x} has

exactly one solution, px.q. The condition wieX(q,e)ge
express an invariant property of e wrt. q similar to the
wellknown loop-invariant for sequential while-programs.
It is easily shown that without this condition R4 will

become invalid:

Example 4.2-11: Let e=a.b.0, g=a.x, Pp=b.0 +2a.b.0
and pl=a.a.®. Then it is easily shown that:

g Pi = qul/X3 i=o7l
From e kE p==q§p/x} and wieX(q,e)ge it follows by

repeated use of the Substitution Theorem 4.2-10 and
CONS that for all new:

e kE p=q"§p/x}

where q1=q and qn+1=q§qn/X3. Since x is guarded in
q we expect qngp/x} to converge to pux.q and hence
that e F p=px.q. This is formally verified in the
following:
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Theorem 4.2-12: (Invariant Theorem)
If x£UG(q), e k p=qip/x} and wie (g,e)<e then
e = p=px.q .

Proof: ZFrom soundness of R2 and CONS it is enough to
show that if e k p =qfp./x} and e f py =a{p;/x}
then e k p =p;. Thus, let R be the Eg-indexed family
given by:
Re = {(®5,p7) 137, £k pl=rip,/x} (i=0,1) &
wie (r,f){e &

X,éUG(r)}

We want to show that R is a parameterized bisimulation.
Since (po,pl)aRe (choose r=q) we will then have

e E p0=p1.
Note, that UG(pi)==UG(r{pi/x})==UG(r) since x is guarded
in r. Thus UG(po)==UG(p1).

It remains to prove that Rc<B(R). So let (pé,pi)st,
f3g and pé-éépg'. Since f gk p6==r{po/x} and x is
guarded in r it follows from (P1l) and =c~ that

r 2331’ for some r’ with g E p6'=:r'{po/x}. Using (P3)
also ripl/xf-éa i'r'{pl/xi, and since f E pi==r{pl/x3
therefore pi-§>pi' for some pi' with g kE pi'==r'{pl/xf.
We shall prove that this is a matching move for pi.
From the Derivation Lemma 4.2-6 it follows that
wieX(r',ngieX(r,f) €e. Thus using the Substitution

Theorem 4.2-10:

g E p£'==r'{r{pi/x},/x} i=0,1
or by properties of substitution:
g F pi" =r"{r/x}{p;/x} i=o0,1

Note, that wiex(r'{r/x},g)::WieX(r,wieX(r',g) ) <
wiexﬁrye) e, by the Substitution Lemma 4.2-7 and mono-
tonicity. Since obviously x is guarded in r'{r/x}
therefore (po 2D )gRg. o

We can now state the soundness of Sopt

145



Theorem 4.2-13: (Soundness of S )
For all esE and p,qur:

e FR p =g implies ekp=9g

Proof: We must show that each axiom of S is valid and
that each rule of S  Preserves valldlty.

For 02,81—84 and Rl-RB soundness follows from the
soundness of SM and ~y=~ . For E1-E3 appeal to propo-
sition 2.2-5. Cl preserves validity by the previous
Substitution Theorem 4.2-10., For CONS appeal to theorem
2.4-103 NIL is valid since 0 is obviously a minimal
environment; and for COMB use lemma 2,4-4, Validity of
ANNTHTIL is immediate. Finally, R4 preserves validity by
the previous Invariant Theorem 4,2- 12, (u]

4.2.5 Restricted completeness of S..-

In order to obtain a completeness result for S we
shall extend the Unique Solution Theorem 4,2-2 (used
in the completeness proof of _M) to systems of recursive,
Darameterized equations. Just as theorenm 4.2-2 is a
generalization of the rule R4 of §M’ so will its extension

be a generalization of R4 of S -

Theorem 4.2-14: (Unique Solution of Parameterized Equations)
Tet X = (Xl,...,X ) and ¥ = (yl, ces ¥y ) Dbe distinct
variables. ILet p = (pl,-.-,p ) be expressions with

free variables in (X,Y) in which each X5 is guarded. Let

= (el,...,em) be (closed) environment expressions such
that for all i,j<m, wi (pl, l)<ej. Then there exist

expressions T = (rl,...,rm) with free variables in
such that:

Es }"R T =p{f/§} (igm)

Moreover, T is unique up to provable equivalence, i.e.
if r = (r 1,...,rm) with free variables in § also
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satisfies the m equations then:

e: kg ri = (igm) o
The proof of the above theorem is closely analogous to
the proof of the theorem 4.2-2 in /Mil82/ except for the
additional difficulties caused by the parameterization
of the equations. To cope with these special difficul-
ties we shall repeatedly appeal to the Properties
established in section 4.2.3.

Proof (of theorem 4.2-14):
The proof is by induction on m:

For m=1 take T1=pXq.P7. Then from R2 and CONS clearly
ey kg rl==p1{r1/xl}. Since by assumption, .
W1eX1(pl,e1)£el, if eq g r1==p1{r1/xl} then by R4,

e Fp r1==pxl.pl‘ and hence eq FR r{=Tq.

Step: Assume the result holds for m and let

D = (pl,...,pm)_ and Em+l be expressions with free
variables in (x,xm+l,Y) in which each x; (igm+1) is
guarded, and let & = (el,...,em) and e ., be (closed)
environment expressions such that for all i,Jj<m+1
w1eX_(pi,ei) gej. We first deal with existence of

expréssions T = (rl,...,rm) and r ., sSuch that:
(1) e; bp ; = 0. {F/%, T0i1/ %18 (igm+1)
For this burpose, first set:
(@) Gne1 = BXpypePpyg
(5) ql = Pigqm+l/Xm+l} (lgm)

Obviously each q; has free variables in (x,y) with X
guarded. In order to appeal to the induction hypothesis
we prove that e is indeed invariant wrt. d, i.e. for
all i,jKm, Wiexj(qi’ei>$;ej' We calculate:
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(w) wier(qi,ei) =

Wiexj(pi{qm+l/xm+l}’ei) = (4.2-7)
wie_ (p.,e.) +
e (b0, 00 € (AT52Y3
wie_ (q wie D, €. 4.2-5
X3 m+1? X4l 1273
ej * Wlexj<qm+l’em+l)
e; + Wler(”Xm+1'pm+l’em+l) ~ (4.2-9)
ey + Wiexj(pm+1’em+l) < (assum)
e.
J

Now we can apply the induction hypothesis to
= (ql,...,qm) and e to obtain expressions

Bl Ql

= (ry5+++,r,) such that:
(5) e; kg vy = q /%Y ( igm)
Nowvtake rm+l==qm+l{f/§} and rewrite (5) using (3):
(&) °i bp Ty = Pifag,y/m g HEF/ED (ism)
which by distinctness of x_ . and ¥ and (P7) gives:
(7 °3 br Ty = Pi{F/R 5, (TR, 0} G

which by definition of Th+l is nothing more than:

(8) es kg 7y = Dy {F/R , 1y 0 /% of (i<m)

Now, rm+l::qm+l§f/§?:=(“Xg+l'pm+l){f/§%:=“Xm+l'(pm+l{f/§3)
since X1 is neither in X nor free in T. By R2 then

(9 Ubg mpy1 = pm+l{r/x?§rm+1/xm+l?
and since Xnel is not free in T and em+1éih
(10) ®n+1 FR Tpy1 = pm+l{r/X ’rm+1/Xm+i}

as required (we are actually using p=q implies
U FR p=q - which follows from R1).
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For uniqueness assume that (1) is also satisfied by

expression T’= (ri,...,ré) and r’ with free

m+1
variables in y. Then by (P6) and (P?7) (and P=q implies

Ubkp p=q):
(11) ®m+1 l'R Tme1 = pm+1{r /X}{rm+1/xm+i}

Now Xn41 1s suarded in pm+1{r /X3 and:

(12) wie (p {f'/}—c} e |
Xm+l m+1 P "m+1
Z wie (ri,wie_ (p e )) X is
’ X i X. "m+1° "m+1 m+1
ism m+1 4 ~ not free
+ Wiex (pm+l’em+1> l? "1
m+1 (igm)

wie (p g o4 &
Xm+1 m+1°"m+1 =

e
m+1

So by the recursion rule R4 we have:

(13) ®m+l PR Tpe1 = #Xp,q-(2p, 1 IF7 D)

Again let Up+1 = P¥peqoPpyn e Since X .1 1s not in %
and not free in T¢

<14) ®nt1 PR Tpe1 = qm+1{r /X}

Since wie (p;se.)ge we can by the congruence
*mep T

rule Cl replace ré+l with qm+l{f'/§} in the equation for

m+1

ri. I.e.:

i
(15) g kR r{ - pi{f'/i ’qm+l{5'/§?/xm+l}
(ism)
or by (P7):
(16) °s kg 71 = pi{ap, /%, S3F/FS (isa)

Now let qi==pifqm+l/xm+1§ for i<m. Then:

(17) e; kg rf = q, 47 /%% (i<m)
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We want to apply the induction hypothesis to & and
q = (Qy5e0090,)- Bo we calculate for i,j€<m:

(18) wier(qi,ei) =
Wier(pi{“Xm+l'pm+l} ,ei) < (4.2-8)
wieX_(pi,ei) + wier(pm+1,em+1) < (assum)
°3

Thus by induction hypothesis we have:
(19) e; kg i =1 (igm)

By 4.2-9 we have Wlexi(qm+l’em+l) = WleXiQ¢Xm+l'pm+l’em+l)
~ wieXi(pm+l,em+l)s;ei. So we can substitute T’ for

T in (14) obtaining:
(20) ®n+1 FR Tme1 = qm+1{r/X}
and hence by definition of Thal’

(21) Snal Fg Tm+1l = Tme1

which completes the proof. (]

§rr is obviously an extension of §M in the sense that
if Fy P=q then U Fp P=q: for every application of
a rule or axiom of §M in the proof of FM P=q simply
use the corresponding rule of §rr with the environment

e instantiated to U (note that with this instantiation
the invariant condition in R4 of S,.. becomes trivially
true). The equational characterization theorem 4.2-3%

therefore generalizes to S, in the following way:

Theorem 4.2-15: (Equational Characterization in §rr)

For any expression p with free variables in y, there
exist expressions PyseeesDy (h21) with free variables
in y, satisfying h equations:

150



and moreover:
UFRP'_'pl o

Unfortunately we have only been able to pbrove a resgtric-
ted completeness result for S ¢ 1f ef p=q and e

is deterministic then also e FR P=q. We shall in

the next section show how to extend S o to a complete
proof gystem. Whether S  1tself is complete or not is

left as an open problem.

An environment e is deterministic if e=U or there

exist environment expression el,...,ek satisfying k
equations:

o(i) ‘
e. ~ b 5 igk
S SRR NS
and moreover:
e ~ e

such that for all i<k and all j, Co(i) if b. i bij'
then j=j°. Thus if b.e. and b. eJ, are summands of the
righthand side of the equation for e;, then j=j’.

Theorem 4.2-16: (Restricted Completeness for S )
If e is deterministic and e E p=p° then e FR p=p’

Proof: If e=U then the theorem follows by the complete-
ness theorem for §M’ ~ =~y and FM P=q implies

U FR P=4g. Otherwise, there exist k equations such
that:

(ik)

'd

with e~e; and for all i<k, j,j’Ko(i), if b, o blj

then j=3j’. By theorem 4.2- -15 there are provable
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equations U FR P=py, U FR p'::pi and

m(i) n(i) .
, oG n’(i) o

Now let I = {<il’i2’i5>l ei5}=pil==p£2} - Then obviously

(1,1,1)eI. For (i 51s,1,)eT define:
127273

Tiaya, = {(1sdp0d5) |
ailjlzaiejzzbi535
(£(i1331)55" (30 3,)30(05,5,)) e }
Note, that for all 35-<o(15),
i, 1{(313,35) | 37 <m(i)) & Jo€m’(i)}  gives a

total surjective relationship between:
b.

lljl= 1535;}

and {jgl jgfgm'(ig) & aigjz=bi335}

{311 3,¢n6i)) & a.

(This is a direct consequence of the definition of para-
meterized bisimulation). We now consider the following formal
equations, one for each <i1’i2’i5>SI:

o Z ailjl'Xf(iljl)f'(iEJg)h(1535>
(3132J5)8Jili2i5

n(ig)
" 5%{ yg(ilj)

where the X. . . are not in Fs
1151,
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First, we claim that the formal equations are satisfied

when each X. . . is instantiated to p. . To see this
i1isiy i
note that the typical equation becomes:
e; F p; =
iz i~
(e 3 Z ) ?iljl.pf(iljl>
dydodzleds -
1v2v3 1, 215
P
" Yg(i13)

=1

which is provable in §rr: using the already proven
equation for pil in U we can use ANNIHIL and COMB (or
NIL) to cancel out all terms on the righthand side not
relevant in e; - By the totality of Jiligi the result
of this will give an equation for p; which™is identical
to the one above except for a difference in the way
summands are repeated.

Second, by the surjectivity of Jili ) it can be
argued that the formal equations are satisfied when each

Xiligi 1s 1nstantiated to P; - Let us write the
equation (*) for (iligia)sI as:

e.: FX. . . =RS. . .

iz 111515 111515
We want to appeal to the Unique Solution Theorem 4.2-14
for this system of parameterized equations. Obviously

each leJEJB in RSi11215 is guarded. We must verify that
for each (il,ig,iB), (ii,ié,ié)slz
wieX_ o (RSi i » €5 ) < e,

LEFEEANE] olz ? Tiz 3

By the form of RS.

i3 and the equation for e.

13
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wieX_ o (RS-

1

) {eh(ia,j) |3<o(iz) &
bi5j°Xi]'_ EEE
of Rs.lizi5 }

is a summand

1

1

) {eh<ia,j>"jfofi§> .
3<31J2J5)8Jili215' ailjlz 53 &
(2031310457 (19230 10(3535))

= (iiaiéai%) }

B
L

Assume the above set contains e, ,. .ne Then for some
< B
(J13~d2)ET. . . a, - =b. . and (i7,if,is) =
1v2¢3 111213 i394 153 1*72773
(f(lljl),f (1232),h(1535)). By definition of J,
b. .=b. . =a. . and hence by determinism, Jj=j,.
153 1535 llal %

Hence, e Thus as required:

h(iz,d) = h(iz,dz) ~ eig .

WleXi’ili’(RS
pipds

. .2 s ) Le..
111515, 15) S iz

Thus, uniqueness of solutions to the formal parameterized
equations (*), follows from the Unique Solution Theorem

e: by p. = DI
15 R 1l 12

and especially:

ey kg Pp = P
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M

4.2.6 The proof system §rr¢

In the above proof, the determinism of the environment
e is absolutely necessary for the condition
WleXiiiéié<RSili2i5 ’eiB) < eié to hold, and hence
necessary for the subsequent appeal to the unique solution
theorem 4.2-14 to be valid. We have not been able to
generalize the restricted completeness theorem for S to
non-deterministic environments nor have we been able to
find any counter-examples for such a generalization. The

(full) completeness of S, 1s as such an open problem.

However, as we shall see in this section, grr can be
extended to a fully complete proof system. The extended
system 1s based on the fact that any parameterized equi-
valence problem, e  p=gq, is equivalent to a
problemn, &P = pC==qC, where eD is a deterministic version
of e (obtained by "tagging" identically labelled "branches"
in e) and pC and q~ are "multiplied" versions of p and g.
In order to perform the "tagging" and "multiplication"
operations we shall assume that the action set, Act,
satisfies the following equation:

Act = ActB + ActXN

where N is the set of natural numbers and ActB is some
set of basic actions (if Act does not satisfy this equation
already we can always find an extension that does).

For acAct and ieN let a't Act denote the action inr(a,i).
For any nginN we now inductively define the following
two syntactic operations:

S,
C Y s B =>E

TS Q) : E. —E,
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x> = X TSX = X
1.8 Balewe § 2T for
(a.p)” = igéa =P /rs(a.e) = TS " some ieS
S S =g
(P+a)” =1~ + g ) 3 otherwise
S _ S
(HX-P) = KX, (p ) TS(e+f> = TSe + Tsf
Tgwx.e) =px.(fge)
U _ {(D ; if S=0¢
B U ; otherwise

Obviously ( ) is a copying operation and TS( ) is a
de-tagging operation (in some sense the inverse of ( ) e

An easy induction on size shows that (_)S and Ts(_)
distribute over substitution in the following sense:

(p{z/xP® = p°f/xd
Ts(e{f/x}) =’rse{TSf/X}

Hence, by induction on the number of rules applied, it can
be shown that the operational behaviours of pS and Tse
have the following characterizations:

Lemma 4.2-17: pS-éar iff for some ieS, beAct and

qeP .: a=bl, r:qS and p-an. o

Lemma 4,2-18: T =§;f iff for some ieS and gSEr:

f= ng and ez}g. (=]

We then have the following theorem:

Theorem 4,2-19: TSe Ep=q iff e E pS==qS
Proof: "=": We show that the indexed family, R, with:
S 8
R, = {(®°,d™) | dee k p=gq }
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is a parameterized bisimulation. Since UG(p) UG(p )
obviously whenever (p »Q )sR then UG(p )= UG(q ). Now
let e:E;f and p -—ar. Then for some 1&S, p” and b:
a=bi, r=p’S and p-gap « This e===>f and hence
Tse=2>TSf. Since T o E p a, q-géq with T fEkp'=q’

for some gq”. Thus also q ====$ q #2 which is the matching

move,

" ": We show that the family, R, with:
S 8
Rp = {(p,q)|i3e.'TSe=f & eF p°=q°}

is a parameterized bisimulation. Since UG(p)=UG(pS)
obviously UG(p) UG(q) whenever (p,q)aR Now let

f:gég and p-—>p . Then for some e,e” and 188 f= T =
g_T e’ and e==;>e Sigee p3p’ also p By , and
since e E p ==qS, S-E;ar with e’k p’®=r for some
r. However, r= q’S for some q° with qﬁééq'. This is

obviously a matching move. o

To obtain a complete proof system we simply add the
following (macro) rule, M, to 8.t

S
ek p° =g

M
- Tse F p

5 S%

—fin N

q

By the above theorem 4.2-19 this rule is obviously sound.
Now, let S denote the extended system and write

. . . M :
e FRM P=q 1ff e} p=g is provable in §rr using all
true assertions of the form e<f as axioms. We then
have the following completeness result:

Theorem 4.2-20: (Completeness of S )
If ek p=q then e FRM P=g.

Proof: For e=U the theorem follows from the restricted
completeness theorem, 4.,2-16, for §rr’ Otherwise e has
an equational characterization (using theorem 4.,2-3 and
soundness of §):
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o(1i)
(D e; ~ géibij'eh(i,j) (igk)

with e~e . Now, let e{,...,eg be expressions satig-—

fying the following derived system of equations:

o(i) .
(2) e;.: = élbig.e£<i,j> (igk)

and let e+=eI. By the structure of the derived system

et is obviously deterministic. Tet S::{l,...,max{o(i)]iskg.
Then, by the definition of TS(_) and since e~f implies
Tse~«TSf, 456{,...,¢Se£ will satisfy the original

equations (1). 3By uniqueness (theorem 4,2-2 ang soundness
and completeness of §M) therefore e;~ Tsei for all iKk

and especially el"~TSeI. Since ~= < we can therefore
conclude from theorem 4.2-19 that:

efkE p=g iff e+}=p’S=qS

Since et ig deterministic we can apply the restricted
completeness theorem, 4.2-16, giving:

+ S S
e )-RMP =g
Now, use the new rule M to obtain:
+ —
'T\Se Foy P = q
and finally, by CONS, since es§T8e+:

e]—RMp=q o

Example 4.2-21: Tet us illustrate the completeness proof

above with an example. Tet e=ux.(a.b.x-&a.c.®),
pP=tx.(a.b.x+a.c.0) and q=ux.(a.b.x-+a.c.®-Fa.®). We
want to prove e Fp=q. Obviously the environment e is
not deterministic and the restricted completeness proof
of §rr is therefore not applicable. However, let:

e’ = ux.(al.bl.x + 85.C1.0)
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p’ = Hx;(al.(bl.x-Fbe.x) + a2.(bl.x-+b2.x)
+ al.(cl.®-+02.®) + ag.(cl.®-+02.®) )
q’ = “X.(al.(bl.x-&bg.x) + ag.(bl.x-kbg.x)

+ al.<01.®-F02.®) g a2.(cl.®-+02.®)
+ al.® + a2.® )

piL,2F _ .

Then it is easily seen that 'Bi 2}8' = e, D
9

{1’2}==q'. Hence, by theorem 4.2-19,

and q
eFp=qg 1iff e’k p’=q’. Since e’ is obviously
deterministic, we can apply the restricted completeness

proof for S..to e Fp“=q”’. (m]

An obvious way of demonstrating full completeness of
the system §rr would be to prove that the new rule M is
a derived rule in §rr’ i.e. to prove that:

e by p° = ¢°  implies Tee by D = q

However, an attempt of proving this by the obvious induc-
tion on the number of rules applied for e FR p’S::qS
with a case-analysis on the last rule applied fails on
the rule E3 of §rr (it does not seem possible to appeal
to the induction hypothesis in this case). Thus, full

completeness of §rr remains open,

By the definition of e PRM P=q it follows that
§¥r is only complete relative to true assertions of the
form egf, where e,fsEg. However, a complete proof system
for these assertions is easily derived from the proof
system for “’§M’ and thus a genuine complete proof system
for parameterized equivalence over P aﬂd.Eﬁé can be
obtained.
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4.2 AN ALTERNATIVE PROOF SYSTEM FOR
REGULAR BEHAVIOURS

In this section we shall Present an alternative
axiomatization of parameterized bisimulation over EP
and EE The proof system is based on a reduction of
parameterlzed equivalences involving regular environments
and processes to parameterized equivalences where the
environment is finite. This reduction corresponds closely

to the results which hold for Moore expreriments on finite
automatas (see /Mo56,Con71/), and the final proof system
is analogous to Salomas’s (alternative) proof system,

F3, for egualities between regular expressions /Salé6/.

First, we claim that a proof system consisting of SM
with all equalities being parameterized with U, and the
rules CONG, CONS, NIL, COMB and ANNIHIL of Sff will give
a sound and complete proof system for parameterized

equivalence over Eﬂ? and.EEf;_ The completeness proof is
closely analogous to the proof of theorem 4,1-4 , the
only difference is that an equational characterization
instead of a sumform (as in 4.1-4) for the processes has
to be used. The proof proceeds - as the proof for 4,1-14 -
by induction on the size of the sumform for the environ—
ment. We leave it to the reader to formally verify the
details involved. ILet S f denote this proof system.

We shall in the following extend S L to a complete proof
system for parameterized equivalence over B? and EE

The extended system is based on the follow1ng way of
approximating a recursive environment expression with
non-recursive ones:

Definition 4.3-1: For all new define the (syntactic)
futictien app : EEV_>Er inductively as follows:

appof =0
and for nd0:
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appn(D = 0

app, X = X

app, (f+g) = app f + app, g
app,(a.g) = a.(app__; &)

app, (px.f) = [appnffji

where for an expression g we define g}i: ® and
n+1 n
&x = g{gx/x} y

Obviously for any new and any expression f, appnf
is a non-recursive expression, and if f is closed so is

app, £ . The idea is that app, £ is a (finite) non-re-
cursive n’th approximation of £ with respect to <. This
is formally justified by the following lemmas:

Lemma 4,%-2: For all esEr: app, e <e .

Proof: By induction on the structure of e. For the
recursion case use that whenever e<e’ then

fi{e/xt< £ie’/x}.

n
Lemma 4,3-3: For all eek : eg app, e .

Proof: By the structure of €. All cases except the
recursion case is trivial. For e =px.f we have:

3PP, e = app, (ux.f) = [app £ |2
Let us prove by induction on k that:
(%) px.f gk [appnfj}li for kgn

The base case, k=0, is trivial. For the induction step
assume (*) holds for all J<k, and let ux.f %g. T.e.
by (P4), for some £, £ 37 with g=f"{ux.f/x} . By
the structural induction hypothesis we have fgn appnf
and thus, since kgn, f{k app, f . Hence appnfé £’
for some f£°° with f'gk_lf". By (P3) then:

[app, 2% = (app_ ) {[appn £]5x) Bon
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where hf:f"{[éppnff i_l/k} . We claim that this is a
matching move. To see this note that f'gﬁQ{lf” and
by induction hypothesis px.fgfﬁl[%ppnffji-l. Since
£<"g and £’<Mg’ implies f%f'/x}gg{g'/xf we
conclude:

g:fﬁﬁmfﬁﬂ gbi f”ﬂ}mhfjgdhﬁz h a)

Combining lemma 4,3-2 and 4.3-3 we have e:ﬁlappne .
Due to the Dossibility of unguarded recursion the stronger
relationship e~}1appnea fails to hold.

The consequence law, theorem 2.4-10, can be refined
by introducing indices:

Lemma 4,%-4: Whenever p~?q and e<nf then also
P~ a.

Proof: An easy induction on n. o

Since H%? is image-finite we can conclude the following
as an easy corollary:

p~eq I VDNew » p~2q e Vhew, p~ q

app e

Hence as a firgt attempt of extending §

S.¢ We might add

the following infinitary rule:

app_e F p=gq appie F p=q ..., app.e F p=q ...

etk p=gq

However, this rule can be replaced by a finitary one,
since - as we shall show in the following - only finitely
many approximations of e needs to be considered. To see
this, let for SCP and USES, Sy be the ES-indexed
family of binary relations over Pr defined by:

(s.) SXS 53 if eseU
S =
Ure @ 3 otherwise
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A set SQPr is —-closed iff whenever peS and p-§>p’
then p’eS. Similarly, a set USE, is = -closed iff
whenever eeU and e=£>e' then e‘eU.

Lemma 4.,3-5: If S;Pr 1s —-closed and UEEE is => -closed
then for all E;—indexed families of binary relations over
P R:

I,,
BB(RHSU)OSU = B(R)OSU
Proof: Only the "DM"-direction is non-trivial, Since

(SU)e=@ for efU we only need to prove:
[(Br)ns, ], < [Brospns, ],

for esU. TLet Cp,q)sEB(R)ﬂSU:tE with eeU. It suffice
to prove (p,q)sBB(RﬂSU)e. So let e 2 f and p-3p’. Then
q-§>q' with (p',q’)st for some q’. Since S is —> -closed
(P7,a”)eSxS and since U is = -closed (SU)f==SXS. Thus
(p',q')s(RﬂSU)f and hence by symmetry (p,q)sEBCRﬂSU)e. ()

Lemma 4,%3-6: If SQPr 1s —-closed and U;E; 1s =>-closed

and  ~Png,= g Sy then for all men, ~Fng - ~Ty Sy =
~ ﬂSU.

Proof: An easy induction on m-n using the previous
lemma 4,3-5, o

The following theorem is closely analogous to the
theorem for finite automata which says that any two
distinguishable states of a finite automata with n States
can be distiguished by some experiment of length at most
n-1 (see /Mo56,Con71/).

Theorem 4.3-7: Iet S;fin
be =3 -closed. Then for all (P,2)e3xS and eslU:

o c
Pr be — -closed and U"finEr

P~od ©® Dp~_g

when N 2[S||u] - |u
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Proof: "=": obvious.
"&": Consider the decreasing chain:

o} 1 n
r\,ﬂSUQ’\« nSUQ ...‘QNQSUQ 000‘2 NnSU

Let for eeU, Ce(n) be the number of equivalence classes
of (~nnsU)e = ~§n(sxs) and let C_(«) be the number of
classes of ('VFWSU)e (< |s] since there can not be more
classes than there are elements in 8)., Tet:

C(n) = Zce(n> (<L Isl = Is l-lul)
eel et U

then:

Ul

Thus there must be a smallest N such that C(N) = ¢(N+1)

and hence ~pﬂSU = ~n+lﬂSU. We therefore have:

o

Ul = clo) g€ ... <)< s

lul = coy<c)<..... <cm (sl lul

and so |U] +Ngc) g Islyl, implying Ng IsHul - |ul.
By the previous lemma 4.3-6 we conclude that for all
m> SHUl =10l Fogy o LS =Tolyg g

for all (p,q)es%s, eeU and mylsl|-lu] - [0] -

(Pr,de~ & (P,de(~Ngy), =

®,e(~ g, »  (p,q)e I =
&
Corollary 4.3-8: Tet nginfgr be —-closed ang U’EfinEr

be =>-closed. Then for all (P,q)E SX3 and eeq:

P~a © “appye

where N 2 [s]-Ju]| - |u] . o
It follows from this corollary that if we for all
processes psPr and environments esE; can find finite and

closed sets S and U, with peS and eelU, then we have 1
e
way of removing recursive environments in parameterized
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equivalences. But for peP (esEg) the set DER(p) =
{p'l Isedct . p-§>p'} (DER(e) ={e'l 3 sedct . e=s>e'})
has exactly these properties. The following function
ND: P.—N gives an upper bound on IDER(p)|

ND(O) = 1

ND(x) = 1

ND(a.p) = 1+ND(p)

ND(p +g) = ND(p) + ND(q)
ND(px.p) = ND(p)

The upper bound for px.p is justified since there is g
1-1 correspondance between derivatives of MX.DP and p.
We therefore have the following theorem:

Theorem 4,3-9: For p,qur and esE;:

¢ FPp=gq = 8PPy €F pP=g
where N > (ND(p)-+ND(q)-—l)'ND(e).

Proof: Apply corollary 4.3-8 with S =DER(p) U DER(q)
and U=DER(e). Note |S|<ND(p) + ND(q) and |U| < ND(e). g

Then adding the Tollowing finitary rule A to §rf

obviously results in a sound and complete proof system,

§if’ for parameterized equivalence over EED amd.EE;.

appye F p = q

z NZ(ND(p)-&ND(q)-—l)-ND(e)
ekp=g
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4.4 CONCLUDING REMARKS

In this chapter we have offered complete axiomatiza-
tions of parameterized equivalence for various combina-
tions of the process and environment system: the system
§}f iﬁ a compiete proof system for finite behaviours,
and S and S.r are (relative) complete proof systems

for regular behaviours.

It is left as an open problem to decide whether the
subsystenm §rr of §¥r is complete in itself or not.
However, for the sake of completeness, instead of
adding the macro-rule M to S, we could add a class of
Tenaming-operators, _[e]l, and axiomatize parameterized
equivalence for the extended systems. It should then
be possible to express the behaviours pS and Tée as
renamed versions of p and €, and thus obtain the macro-
rule M as a derived rule from the laws of renaming.
Obviously several new problems have to be dealt with in

this approach:

~ The notion of an unguarded variable must be care-
fully revised in order to take account of the
renamings that can affect the unguarded variable.
A simple extension of UG by adding the naive rule
UG(plel) =UG(p) will fail to make the congruence
law hold. TInstead UG(p) should be a set of pairs,
(x,8), where x is a variable unguarded in p affected
by the (total) renaming . (Obviously laws for
combining renaming are required).

- The new definition of UG requires a revision of
wie, such that the parameterized congruence law
(theorem 4.2-10) remains valid.

- In order for the equational characterization,
theorem 4.2-15, to extend, the rule R3 of §rr must
be changed so that unguarded variables inside a
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recursion and inside a renaming "context" can be

removed; e.g. the variable x in px.(p +x[®]).

Finally, a whole new class of axiomatizations of parame-
terized equivalence can be obtained from the maximal
environment construction in section 2.5. It is here
shown that the parameterized equivalence problem:

P~4
is equivalent to the simulation problem:

e</p,q/

where /p,q/ is the maximal environment identifying p
and q. Thus, the problem of axiomatizing parameterized
equivalence can be solved by an axiomatization of the
(derived) simulation problems.
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CHAPTER 5

PARAMETERIZED WEAK
BISIMULATION

The bisimulation equivalence which we have studied so
far assumes that every action is observable: a process
cannot proceed without being observed. Let us now
assume that there is a single, distinguished action
leAct, which is unobservable (Note that according to
the operational semantics of CCS given in section 3.2,
communication between processes in parallel gives rise
to this unobservable action). We want a weakened version,
~ , of the bisimulation equivalence, ~, which takes this

into account; i.e. processes which only differ in the
number of unobservable l-actions (=delay) between
observable actions should be identified. Thus we would
expect a.0®a.1.0 to hold.

The standard way of defining =~ (see /Mil80,Mil83/)
is to apply the existing general notion of bisimulation
(definition 2.1-15) to a derived observational process

1) *
system PP°= (Pr,Act_j, —>,) where Act ;=Act - {1}
and — (the observational derivation relation) is

o
derived from —> by absorbing any finite sequence of

unobservable l-actions between observable actions, i.e.

X
for S::(ao,...,an_l)sAct_l:

168



pB,0" 0 (D)D), (B 2Ly,

A bisimulation over the observational process system B°
is called a weak (or observational) bisimulation and we

shall write P~q whenever (p,q) is contained in some
weak bisimulation. From proposition 2.1-19 it follows
that ~ is an equivalence relation on Pr. We shall call
X the weak bisimulation equivalence.

The following easy result from /Mi183/ allows us to
restrict s to range over Sequences of observable actions
of length at most 1. First, let’V:Act*-—aActjl be the
homomorphism generated by: B =a for a#l and T =e.

Proposition 5.0-1: RCPrxPr is a weak bisimulation

if and only if, whenever PRq and aeAct, then:

(1) p5p” = 39°. ¢B _q° & p'mg”

(i1) a5q¢" = 3°. 3 _p’ & p'Re’
Since obviously p-S3p” implies p-§90jp' it follows
that any bisimulation is also a weak bisimulation, and
hence that ~¢ ~, (n]

Similarly, we shall call a simulation over ®° g
weak simulation and write PL g whenever (p,q) is
contained in some weak simulation. From proposition
2.1-9 it follows that £ 1is a preorder on Pr and we shall
call £ the weak simulation ordering.

The purpose of this chapter is to extend the notion
of environment parameterization to weak bisimulation
equivalence, =, and preferably in such a way that the
results obtained in chapters 2 and 3 for the paramete-
rized (strong) bisimulation equivalence extend as well,
In particular we want to be able to reduce a parameterized
(weak) equivalence problem of the form, C[p}iach],
to a parameterized (weak) equivalence problem involving
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only the inner processes p and q3 i.e. we want to
find an environment, f, (dependent on C and e) such
that for all processes p and q:

(*) pXrq =  clp]= c[q]

Preferably the described environment, f, is as small

as possible wrt. the (weak) discrimination ordering &
(induced by the relative strength of the corresponding
parameterized weak bisimulation equivalences).

Unfortunately, it will not in general be possible to
perform the above reduction since = is not a congruence
wrt. all (CCS-) contexts (especially not wrt. sum
contexts, p+[], see /Mi180,HenMil83,Mi18%/). To see
this, assume that U is a universal environment (2h=2ﬁ)
and that for all environments e, = ¢ *é. Then, if
for environments e and contexts C we could describe an
environment fC,e satisfying (*), the following would
hold:

p¥q = p=R. q =
C,U
clo] %;clal = colp)= ofq]

T.e. ¥ would, in contradiction to what we know, be a
congruence wrt. all contexts.

There seems to be two ways out of this problem. One
is to parameterize the congruence . zc, induced by =
instead of parameterizing = . However, X¢ ig highly
dependent on the context system considered, and it
therefore seems very unlikely that we will be able to
achieve any interesting results which will hold for
arbitrary context systems. Also, there are context
systems for which =°© collapses down to ~ (Remember that
~ 1s a congruence wrt. all contexts according to theorem
5.1-8. Therefore for all context systems ~caCc~),

Hence, it seems that a general theory of paramete-
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rized weak congruence will simply reduce to that of

parameterized (strong) bisimulation equivalence.

The other way of overcoming the above problem, which
is the way we shall follow, is to parameterize ~ but

~

restrict our attention to contexts which preserve X .

In section 5.1 we shall offer (sufficient) conditions
on contexts, in terms of their operational semantics,
which will ensure congruence of =~ .

In section 5.2 we define the parameterized weak bigi-
mulation equivalence and show how (some of) the results
from chapter 2 for the parameterized (strong) bisimula-
tion equivalence generalizes. In particular we show that
the Characterization Theorem 2.4-20 (£ =E) generalizes
to the weak case (i.e. £ =L).

In section 5.3 we study the relationship between
(parameterized) strong and weak bisimulation equivalence.
In particular we show that the inclusion ~ <X generalizes
to the parameterized versions (i.e. ~. & X, for all e)

e
under certain conditions.

In section 5.4 we investigate how contexts (or more
precisely: contexts satisfying the conditions of section
5.1) transform environments in the weak case, thus
generalizing the results from section 3.4,

These generalizations are applied in section 5.5,
where we prove the correctness of a Simple Scheduler

using the parameterized weak bisimulation equivalence.
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5.1 CONDITIONS ENSURING PRESERVATION OF =

For the remainder of this section we shall assume
that P = (Pr,Act, —>) 1is a process system closed under
a context system &= (Con,Act XAct ,+>) with respect
to a map _[_]: ConXPr —>Pr. We are looking for condi-
tions (on & and/or P ) that will ensure preservation of
X with respect to all contexts of .

Similarly to the derivation of the observational
process system P° we can derive an observational
context system @&@° = (Con,ActilXActjl,Ho) by defining
the observational transduction relation

* ¥
> OgConxAct_lect_lX Con as:
V. ’
C l—)u o C e

38, telct . C%)C' & T=u & T=v

where u,vsActf and » is defined in section 3%.1.2.

As a first attempt towards conditions ensuring
preservation of X , assume that the map _[_]:ConxPr —>Pr
also provides a closure of P° under @°. TI.e. the
observational behaviour of a combined process, C[p],

can be decomposed into and derived from the observational

behaviours of the context C and the inner process p.
In particular if C%—)OC' and p—l-léop' then

clpl %O ¢’[p“] . Then, since ® is simply the bisimulaw
tion equivalence over B?O, we would expect theorem

3.1-8 to generalize, thus implying that < is preserved
by all contexts of .

Indeed, with the right formal definition of closure,
it is not difficult to prove that theorem 3.1-8 does
generalize. However, requiring _[__] to be a closure of
®° under ®@° in the above sense is t00 strong a
requirement since it rules out a large class of contexts

which in fact do preserve = : namely, the class of
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guarding contexts of which the prefix-contexts of CCS
provide an exampie. A context C is guarding iff whenever
CH%»C' (behAct, uehct ) then u=¢ (i.e. an inner process
is prevented from executing at once). To see why _[_]

is not in general an observational closure for such
contexts, consider the (guarding) CCS-context a.b.l]

and the CCS-process 1.0. Then a.b.[]}%&o b.L] and
l.®-§éo 0 but not a.b.l.@-géo b.0. To accommodate

for guarding contexts we therefore define the notion of
observational closure as follows:

Definition 5.1-1: Let ®P= (Pr,Act, —>) be closed
under @ = (Con,ActaKActo,F—a) with respect to _[ 1.
Then, B is observationally closed under © (or _[_]

is an observational closure) iff whenever p,qé&Pr, vaAct_l

and CeCon either:

(1) C is guarding
or (ii) clpl B, q =

HusActi .3p“ePr.3C’: Con.

i
v ’

O, o &
u ’

P—=>,D &

q = ¢’[p7] o

We can now prove that with this definition of observa-

tional closure = will be a congruence:

Theorem 5.1-2: If P is observationally closed under

@ then R is preserved by all contexts of @.
Proof: We prove that the relation:
r = {¢clp],claD | p=a }

is a weak bisimulation using proposition 5.0-1. 5o
let (¢[pl,clqal)eR and assume o[ﬁ]-9>r (beAct). There
are two cases to consider:
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C is guarding: Then by definition 3.1- 1 CF—%C and
p-5p° with »=C’[p ‘] for some C’,p” and u. Since

C is guardlng u=¢ and hence p=p’ A%aln by definition
3.1-1, ¢[q]2¢’[q] and hence c[q] 5 C[a]. obviousiy
(c’[rl,c[al er.

C is not guarding: By definition 3.1~ 14 CF—»C and
p-:?p with = C [p ] for some C’,p”’ _and u. Thus

CI? C’ and p—e p’. Since p=q, q%oq with p’=q’
for some q°. Slnce in thls case condition (ii) of defi-
nition 5.1-1 holds, C[q] C [q ] which obviously

is a matching move. o

Although observational closure is a sufficient condi-
tion for the preservation of * , it is a condition which
obviously is difficult to test given particular instances
of process and context systems. In the following we
shall therefore try to replace this (impractical) condi-
tion with conditions based on the operational semantics
of the individual contexts and processes, similar in
degree of complexity to the guarding condition.

First, let us from a few examples see which properties
of contexts can lead to violation of the preservation of

~
°

l. A context may prevent the inner process from
executing l-actions and thus violate preservation
of ~; e.g. let C be the CCS-context [J[Act
Then l.a.0=a.0 but not C[l.a.0]= cla. ®]
since C[l a. ®] 1s deadlecked whereas C[é.@]
is not.

=1°

2. By changing l-actions performed by the inner
process into observable actions the context
may violate preservation of =. E.g. let C be
the CCS-context []Eéﬂl where bsAct_l and
@b(a)za if a#l and ¢b(a)=b otherwise. Then
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1.0%0 but not c[1.0]xc[o]. actualiy, ir

® is a 1-1 map with @(1)sAct_l, then it is easily
proved that for pl[e] xq[a] to hold we must
require p~q. Thus, since ~ < X , =X is not pre-
served. Note also, that for this context =C
collapses down to ~ .

5. Even if the inner process is allowed to perform
l-actions without these being made visible, the
context can by changing during such a l-transduc-
tion violate preservation of =~ . This is exactly
what happens in a CCS sum-context, p+[]: during
the l-transduction p-+[]¥%>[] a context change
occurs (the process p is being discharged). To
see why this violates preservation of ~, note
that 1.a.0~a.0 but not b.0+1.2.0Xb.0 +a.0,
since b.0+a.0 has no matching move to
b.0+1.2.05 a.0,

From the above examples it follows that a context may
violate preservation of = if it in any way can detect or
use l-actions produced by an inner brocess. To avoid
such contexts we introduce the following concept of
idle-preservation:

Definition 5.1-3: A context C is idle—preserving iff
for all atAct and C’eCon:

(i) ct—%o' ® a=1 & C=¢C*

(i1) A1l C’s derivatives are idle-preserving. g

Note, that the "<&"-direction of (i) prevents contexts
of type 1 from being idle preserving. Similarly, the
"="-direction of (i) prevents contexts of type 2 and
2 from being idle—preserving.

To accommodate guarding contexts (which clearly cannot
be idle-preserving) we define the following notion of
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asynchrony:

Definition 5.1-4: A context C is asynchronous iff:

(1) C is guarding or C is idle-preserving
(ii) All C’s derivatives are asynchronous.

A context system @ is said to be asynchronous iff all
contexts of & are asynchronous. o

Example 5.1-5: Let C be an asynchronous CCS-context.
Then the following CCS-contexts are easily shown to be

asynchronous as well:

(1) Constant contexts; p.

(ii) TIdentity context; [].

(iii) Prefixing contexts; a.C.

(iv) Parallel contexts; Clp and plC .

(v) Restriction contexts; CI'S provided 1e8.
(vi) Renaming contexts; C[®] provided (1) =1

The following CCS-contexts are in general not asynchronous:

(vii) Sum contexts; p+C and C+p
(viii) Join contexts; p&C and C&p a

The importance of asynchrony is due to the following

theoren:

Theorem 5.1-6: If PP is closed under & , where @ is
an asynchronous, non-swallowing context system, then PP

is also observationally closed under @ . (m)
We give the proof of theorem 5.1-6 shortly. Let us
first, using theorem 5.1-2, state the following immediate

corollary:

Corollary 5.1-7: If P is closed under a non-swallowing

asynchronous context system &, then X is preserved by
all contexts of @©. o
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Thus, it follows from example 5.1-5 that X is
preserved by all CCS-contexts except sum- and join-
contexts as well as certain restriction- and renaming-

contexts.

Even though asynchrony is a sufficient condition for
X to be preserved it is not a necessary one: consider
the delay-operator § from /Mil83/. TFor a process p,
6p is defined as 6p=px.(l.x+p). As a context we define
6 =pux.(l.x+[]) with the following operational semantics:

6!—%7)6 5> []

Obviously, & is neither guarding nor idle preserving,

since 6#%9[] violates the "=" -direction of (i) in
definition 5.1-3. However, it is easily shown that &
nevertheless does preserve = (see proposition 8.7 /Mi1183/).
Now, by modifying the operational semantics of & slightly
we can obtain an asynchronous delay-operator Q:

QRS oHD Q
Q%?[] a#fl

It would be interesting to see if the theory of ASCCS in
/Mil83/ could be carried out using 0 instead of § .
However, unlike & it seems difficult to express Q as

a derived operator of CCS/SCCS (though results in
/8im85/ suggest-that it should be possible).

By a similar modification of + we can introduce a
new sum-context, ®, which is asynchronous and thus
~ -preserving (unlike +). The operational semantics of

® is given by:

by e
ChC | CE>C’
CeaDL§>C ()eIHE}C'elJ
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with two symmetric rules for when D is executing.
It remains for us to prove theorem 5.1-6:
Proof (of theorem 5.1-6): We must prove that for all

contexts C of @ either C is guarding or C satisfies
condition (ii) of definition 5.1-1. So assume C is not

guarding. Thus, since C is assumed to be asynchronous,
C must be idle-preserving. ILet us prove that C satisfies
condition (ii) of definition 5.1-1:

"sU: Let C[p] }-Veo q. Then for some s€Act with S=v
clp] '-?’eq. If s =¢ then q=C[p] and obviously C¥—> C

and p% p. Otherwise, by lemma 3.1- 5, C}—»C 3 p—ép
with q=C* fp] for some C”,p” and tedet . Then by
definition C)?o C’ and p—t>op giving the "=" ~direc-
tion. '

"&":  Assume Cl-aéo C” and p——) p’ Then by definition
C}—-»C and pﬁp for some s,t t ghct where § =v and

v =t =u. Since C is 1d1e—preserv1ng an easy argument
shows that if C}—-é‘,C and t = t s then for some s’ with

s' =S also C)——;»C (Informally this simply means that
we can insert and remove l-transductions as we want
when C is idle-preserving). If s’=¢ then, since C is
non-swallowing, also t“=¢ and C=C’, p=p’. Thus we have
immediately C[p] > C'[p']— clpl. If s”"#¢ it follows
from lemmag 5 1-%3 that C[p] —90 [p ] » and hence by defini-
tion, C[p] -, C ]_—p] O
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2.2 PARAMETERIZED WEAK BISIMULATTON

In this section we shall define an environment-para-
meterized version of the weak bisimulation equivalence,
~ . We shall show that the results from chapter 2 for
the parameterized (strong) bisimulation equivalence
generalizes, and in particular that the Characterization
Theorem 2.4-20 generalizes.

The definition of parameterized weak bisimulation is
rather obvious: we simply apply the existing general
definition of parameterized bisimulation (definition
2.2-1) to the derived observational process system B°
and a similarly derived observational environment
system E° = (Env,Act;E} =§o), i.e. =%>O§;EanActilenv
is derived from => by absorbing any finite sequence of
l-moves (similar to the definition of -ﬁ>o).

Thus an F- parameterized weak bisimulation over P

is simply an EEQ-parameterized (strong) bisimulation
over ®°. We shall write p~,a whenever (p,q) is
contained in the e-component of some - parameterized
weak bisimulation.

With this definition it follows directly from propo-
sitions 2.2-5 and 2.2-6 that ~. 1s an equivalence
relation and that = < 2% for all environments e.

As for parameterized (strong) bisimulation we can in
the weak case define a (weak) discrimination ordering,

% , on environments based on the relative strength of the
corresponding parameterized weak bisimulation equivalence.
Thus:

el £ e PR At
~ f e

We shall in the following show that E is fully characte-
rized by the weak simulation ordering,fg, under certain
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image-finiteness conditions. The inclusion £ c L
follows directly from the generally applicable theorem
2.4-10. This is in contrast to the Main Theorem 2.4-20
which, besides image-finiteness, assumes a certain
structure of the process system . In particular P
must be closed under action-prefixing, where actions

are assumed to be atomic. Thus the operational semantics
of a.p 1s fully described by the axiom a.p-ﬁap. However,
for an observational process system actions are not
atomicy rather they are strings of atomic actions. As
such, the operational semantics of (observational)
action-prefixing is given by:

U.p 3D
and (uv).p-Eév.p

*
where u,VsAct_l. We can therefore not a priori rely on

the proof of theorem 2.4-20 to generalize to the weak

case. Fortunately, as we shall see in the folloewing,

we can still obtain the desired generalization without
having to redo the (long) proof of theorem 2.4-20.

Following /Mil80/ we define a process p to be stable
iff p-%>. If p and all p’s derivatives are stable then
we call p rigid. A rigid process system is one whose

processes are all rigid. Similar definitions are made
for environment and environment systems.

Given an environment system ¥ = (Env,Act, =) we
can derive a rigid environment system @E= (@Env,Act, =>)
where @Env::&@el esEnv} and the consumption relation of
@E is defined Dby:

=3 = {(@e,a,@ﬁ)l a#l & e=§$0:f}

Obviously, this definition makes @®E rigid. More impor-
tant though is that the observational behaviour of e and
@e are closely related.
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Lemma 5.2-1: For all environments e of T : e @e

and @e<ge. (Note, we are using a simple generalization
of § similar to definition 2.4-6 in order to allow com-
parisons of environments from different systems).

Proof: Prove that the two relations:

S

]

((e,00)] exr )
{Q@e,e)l eaEnv}

1
S

]

2

are (generalized) weak simulations using the fact that
whenever e éo e’ then e’ge. o

Note, that it is not true (in general) that @e=xej
e.8. e=1.0+3.0,.

For rigid environments and Processes it is easily shown
that weak simulation (bisimulation, bParameterized bisim-

ulation) coincide with the corresponding strong notion:

Lemma 5.2-2: For rigid environments e and f of IE:

e<f iff et a

Lemma 5.2-%: For rigid processes p and q of P and rigid

environments e of

P~,q i1ff P~ a a

Based on the previous three lemmas we can now prove the
desired generalization of theorem 2.4=20,

Theorem 5.2-4: If ®° is an image-finite environment

system and P is closed under action-prefixing and
finite sums, then for all environments, e and f, of HE:

ekf = el f

Proof: Assume egf. Then from lemma 5.2-1 and lemma
5.2-2 @ef@f. Since E° ig image-finite if and only if
@FE is image-finite we can apply the Main Theorem 2.4-20
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obtaining processes p and q such that pf\@f a but

D +@e q. From their constructions (p and q are only
build from actions which either @f or @e can perform)

p and g are obviously rigid. Thus, by lemma 5.2-3,

P J@r 4 but pﬁ@e ge Since & , lemma 5.2-1 finally
gives us Dp=,q but p;ée q, i.e. eXZf. o
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5.5 RELATTIONSHIPS BETWEEN (PARAMETERIZED)
STRONG AND WEAK BISIMULATION

We devote this section to a study of the relationship
between (parameterized) strong and weak bisimulation
equivalence. As the main result of the section we shall
show that the already known inclusion ~ ¢ X generaliges

~

to the parameterized versions (i.e. “éGE ~e for all
environments e) under certain conditions. Also, we
shall exhibit conditions under which the notions of
(parameterized) strong and weak bisimulation equivalence
will coincide. Finally, a more Practical definition of
parameterized weak bisimulation analogous to the alter-
native definition of weak bisimulation in proposition

5.0-1 is given.

In the previous section we demonstrated how to
reduce weak simulation to strong simulation by introducing
the notion of a derived rigid transition system. In
order to obtain a similar reduction of weak bisimulation

to strong bisimulation we shall introduce a slightly
different derivation.

First, a process system P= (Pr,Act, —) is said
to have the compression property iff the following holds:

; 1% g 1™
(1) Whenever afAct_; and p-—==2g

with n,m>0 then also p-gq.

n
(ii) Whenever p-l—>q with n20 then also
1
P—d.

Now, for a process system P = (Pr,Act, =) define the
derived process system 4P = GfPr,Aot,-—§) where

H#Pr ={¢Fpl psPr} and the derivation relation of #m®

is defined by:

-5 = {(&Fp,a,‘ﬁ:q)l PAOQ}
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Example 5.3-1: The following two diagrams show the

behaviour of a process p and the derived process #p:

a

Proposition 5.3-2: TFor all process systems B the derived

system #P has the compression property.

Proof: Straightforward. o

It is easily shown that the observational behaviours of
P and #p are closely related:

Proposition 5.3-3: TFor all processes p of FP: pxip.

Proof: Show that the relation R = {(p,ﬁp)lpsPr} is

a (generalized) weak bisimulation (between ® and #P )
using the fact that #p%oﬁq iff p-s—>oq for

all sehct_q. a

For process systems with the compression property it
is easily shown that the notions of weak and strong

bisimulation equivalence coincide:

Proposition 5.%3-4: If P has the compression property

then for all processes p and q of P : pxq 1iff p~q.

Proof: Then "<&"-direction is already wellknown. For
the "="-direction show that the relation

R = {(p,q)’ ;ﬁtq}- is a bisimulation using the compres-
sion property of . (w)

From lemma 5.3%-2, lemma 5.%-3 and 5.3=4 we can now
immediately extract the desired reduction as a

corollary:
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Corollary 5.3-5: TFor all brocesses p and q of P :
p~q iff Ho~Hg . o

Let us now try to establish similar results for the
Darameterized versions of weak and strong bisimulation

equivalence. We start by stating the following obvious
negative result: it does not in general hold that

~e &Ry To see this let:

e
e =1.a.0

= a.0

q = b.0

then P~ a since neither P nor g can perform a

l-action. However, p,teq Since eéo, p-i>o but
q-ﬁ)o. In order to guarantee the inclusion ~. S,
we shall impose restrictions on the operational behaviour

of the environment e.

An environment e is (strongly) idle iff e=;?e
(eziéf ® e=1f) and all e’s derivatives are also (strongly)
idle. A (strongly) idle environment system is one whose

environments are all (strongly) idle. Similar definitions
are made for processes and process systems. Note, that
our notion of idle differs from that in /Mil83/ where

& process is idle if it initially can delay arbitrarly.
Our notion of idleness requires that the process can
delay arbitrarly throughout all of its execution and is

as such more closely related to the concept of
asynchrony in /Mil83/.

It is easy to prove that the following implications
hold, and are strict; i.e. none of the reverse implica-
tions hold. We leave the verification of the implica-
tions to the reader:
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/P is strongly idle =
I /P has the compression property =
B /P is idle

Proposition 5.3-6: If His strongly idle, then for

all processes p and q and environments e:
P~ 4 = pP=,4

Proof: We show that the Env-indexed family R with

R, = {(p,q)l p~é<1} for eeEnv, is a parameterized weak
bisimulation using the easily established fact that,
whenever e is strongly idle and e=£§e', then also

e 25¢° for all seAct such that ¥-%. ()

We can relax the strong idleness condition on &
in the lemma above, if we at the same time impose an
idleness constraint on the process system IP :

Proposition 5.3-7: If I and P are idle, then for all
processes p and q and environments e:

P~ q = pP=,q

Proof: ©Similar to the proof of lemma 5.3-6. Use the
fact that if p-§>0p' and e i>o e’ then, by the
idleness of PP and ¥, we can find a tzAct* such that

T=s and p-Eép' and e=£>e'. a

By imposing a slightly stronger constraint on the
process system ¥, we can actually make parameterized
weak and strong bisimulation equivalence coincide (giving
a parameterized analogue to lemma 5.3-4).

Proposition 5.3-8: If FE is idle and P has the com-
pression property then for all processes p and a and en-

vironments e:
P~ a = j9)

~
~

e d
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Proof: "=": follows from lemma 5.3=7 since having the

compression property implies being idle.

"&": Show that the Env-indexed family R with

Re = {(p,q)[;p:e<1} for eeEnv, is a parameterized
bisimulation using the compression property. O

Assuming the environment system E is idle, it follows
from lemma 5.%-3, 5.3-2 and lemma 5.%-8 that:

P¥.q ®  dp~_#Hq

thus giving us a parameterized generalization of corollary
5.3=-5. From this observation the following alternative

~

characterization of ~o follows directly (using
H#p S4q irff p—séoq for selct

l)'

Definition 5.3-9: Tet be the maximal Env-indexed

family of binary relations on Pr such that the following

holds: whenever I’E; q and e3¢’ for some aghct
then:

(1) »pB p" = 3q¢°. g

~ o
(ii) g5 q" = 3p’. p

~
a; ql & pl
’5 4 &, 4
—>,P & p

Proposition 5.3-10: Assume FE is idle. Then for all

processes p and g and environments e:

P= q © P=,q o

The alternative definition of 2}3 is slightly more
practical than the original one (see section 5.2) since
we only need to consider single (observable or unob-
servable) "atomic" moves of environments and, for
processes, moves where the observable contents is of
length at most 1. However, to get an even simpler de-
finition, analogous to definition 5.0-1, we would like
to replace the observational moves in the antecedents of
(1) and (ii) of definition 5.3=9 with single "atomic"
moves:
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Definition 5.3=11: Tet x be the maximal Env-indexed

family of binary relations over Pr such that the following
holds: whenever p¥_ g and e e’

for some aslAct

then:

(1) »3p" = 3a°. aB q" & p'E_.q

(i1) ¢3¢ = 3p". pH p” & p'R.q°
Since p-3sp’ implies p-géogV obviously Eé =

always holds. However, the reverse inclusion does not
hold in general even if e is idle. To see this let
e,p and g be given by the following diagrams:

1

p: q:
1 al bl}
L
a

1

Then pégaq since neither p nor q can perform a l-move.
But it 1s easily seen that pjiaq. To ensure the

~

inclusion R, € =, Wwe impose a stronger condition on
the environment system IE :

Proposition 5.3-12: If FE is strongly idle then for

all processes p and q and environments e the following
are equivalent:

(1) p&_ q
(2) p=_4q
(3) p=_q

Proof: (2)® (3) follews from lemma 5.3%-10 and (2)= (1)
follows from the remarks above. ZFor (1)= (2) show, using
the strong idleness of HE, that & satisfies conditions
(1) and (ii) of definition 5.3-9 and therefore that

xC by the maximality of

= a
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2.4 CONTEXTS AS OBSERVATIONAL ENVIRONMENT TRANSFORMERS

In this section we shall investigate how contexts
transform environments in the weak case, thus generali-
zing the results from section 3.4. More specifically
we shall deal with the following (weak) reduction problem:

Given a context C, and an (outer) environment, e,
we want to find an (inner) environment, f, such that
for all processes p and q the following holds:

(%) a7 cfp]®, c[d]

Preferably, the described (inner) environment, f,
should be as small as possible with respect to the
weak discrimination ordering, 5.

Unfortunately, as we already have demonstrated, since =~
is not preserved by all contexts, it will not in general
be possible to find environments, f, satisfying (). TFor
this reason we shall only deal with the above reduction
problem for non-swallowing and asynchronous contexts;

i.e. contexts which from section 5.1 are known to preserve

~ e

As for the corresponding strong reduction problem in
section 3.4 and for similar reasons, we shall consider
a modified reduction problem where the condition (*) has

been replaced by the following stronger condition on f:
(%%) pxpa = [c,p] &, [c,q]

where [C,p] [C,Q] informally means that C[p]f~ C[q]
with the context C interacting identically with the two
processes p and q. We shall call the weakest environment
with respect to £ satisfying (**) for the weakest inner

observational environment of e under C, and use the nota-

tion wierE(C,e).
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In the following we shall investigate the two questions:
"When does wierE(C,e) exist ?" and if it does exist:
"What is the behaviour of wierE(C,e) ?". We shall also
deal with the relationship between wieEE(C,e) and
wierE(C,e). Obviously the answers to these questions
will depend upon the environment system, ¥ , in question.

For environment systems, FE, closed under a non-swal-
lowing, idle-preserving context system, € , we shall show
that there exist an environment f such that for all

brocesses p and q:
(%) prq e [C,p] Ee [C,q]

provided e is strongly idle. In this case f is a suitable
choise for wierE(C,e). If ¥ is not closed under @ we
give sufficient conditions which will ensure existence of

wierE(C,e).

S.4.1 Wioce for closed environment systems.

In order to define the parameterized relation X used
in (**) we introduce derived observational versions of the
systems P-® and ®W-C defined in section 5.4.1.

Definition 5.4-1: TLet P= (Pr,Act,—) and

@ = (Con,ActOXActo,F—>). Then we define the process system
P-¢° as (ConXPr,ConXActilectt » —>,) where for all
c,c”,C"’eCon, p,p’ePr and u,veAct”,, —>, 1is defined by:

[c,o] LC__M%O [c’,p] o

* ~ ~S
Is,tedct . s=v & t=u &
CESPCE NGRS

where —> is the derivation relation of BP-C extended to
(ConxPr)x(ConxAct?Act*)x(ConxPr) in the obvious way. o
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Definition 5.4-2: TLet MHE= (Env,Act, =) and
(Con,ActOont s>). Then we define the environment

system HE-@° as (Env,Conxict ;xAct” _1»=>,) where for

all e,e’eEnv, CeCon and u veAct_l, =§O is deflned by:

e Cav,u e’ e eéoe' (inEo) o

Based on these two definitions we then define:

[c.p] =, [c,d]

if and only 1f there is an ®E-@° —parameterized bisimulation,
R, over -&° such that (fc,p], [O,q])gR . From the
definition of P-° we can prove the follow1ng useful

lemma:

Lemma 5.4-%

(1) 1 [o,p] {E8°5aTau)y (6 5o
then C°’= C’ & C)—X—)OC' & p%op’

(ii) If C is non-swallowing and idle-preserving
and Ck>_ C’ & p%op’

then [0,p] {&a%aV)yTor 7]

Proof: (i) Follows directly from definition of —=, (-¢°)
and — (BP-&).

(ii) Since C is 1dle—preserv1ng, we can find s tsAct , S=v tq
such that Ck—»C and p-—ép . Since C is non-swallowing
s=¢ dimplies t=¢. Thus, we always have

<C,p> l——7—S—7£—><C ,p> and therefore [C p] v,u) [C ,p:l o

Since lemma 5.4-% (i) always holds, it is obvious that
if [C,p] [C,d} then C must interact (observationally)
1dentlcally with p and gq. It remains to prove that

[C,p]»» [C,d] also implies C[§J~v qu]
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Theorem 5.4-4: Tet P be closed under g non-swallowing

context system @ . Then for all contexts, C, processes D
and q and strongly idle environments e:

[c,p] ~ [c,ad] = clp) ~, c[q]

Proof: Since e is strongly idle, C[p]ite(lfq] if and
only if C[p]«» C[q] Thus we show that the family, R,

with:
R, {(C[P] ,C [Cﬂ) | l_—C,p] X, [C ,q]} : editrongly

Re =@ 5 Ootherwise

satisfies the closure- —condition in definition 5.3-11,
So let e be strongly idle and (c[p], C[Q])gR Assume
e==§e and C[p]-—ar. Since P ig closed under & ,
CP—»C R p-—ép for some C’,p’ and uedct with r=C [p ]

By definition of B-@ then <c p>L7£ﬂZ><C ,p> and thus
[C,p]-—il—Lélgzé fC ,IJJ By definition of m-@° obviously
eégi=£=5;§ e’. Hence, since [C,p] [b,q]

70
[C q] (07,5,%) [C ,QJ with [b ,I{l_ Le’ ,q_] for some q°.
By deflnltlon of =, <b,i>.£..z§;§l> %8> for sops

s tsAct with =% and t—u. Then by definition of —

of P, CF—»C and q-f>q . Since C isg non-swallowing,
s=¢ 1mp11es t-s, and thus always C[q]-35 ¢* [a7] and hence
C[Q]-—> c’ [d-], which is a matching move, o

Theorem 5.4~5: Tet P and £ be closed under an
asynchronous context system & . Then for all contexts C,

brocesses p and g and strongly idle environments e the
following holds:

(13 p:em]q = [C,p]zefC,q]

If & moreover is non-swallowing and idle—preserving,
then also:

2 [o,p] = [C,q] > P~
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Proof:
(1l): We show that R with:

{([C,P];[C,q])l;p2%[01<1} . idigrongly

@ ; otherwise

Re

Re

is an.EE{Ep—parameterized bisimulation. So let e be
strongly idle and let ([C,p];[C,q])eRe. Assunme

e @L@oe' and [C,p] -go—flﬁl)o ¢, 7). By definitions
and strong idleness of e, e=§>e’, CL%»C' and p-E>p'

* A ~
for some s,teAct with S=v and t=u.

If t£e: then since B is closed under P, e[C]=£§e'[C']
or e[C]==> e’fc”]. Thus, q42> q” with p e Tc"] q’
for some q“, i.e, q-—)q for some t sAct w1th

%7=%;u. Since C is asynchron and t%e it is easy to show

that for some s’ with s’=9 also CL—+»C Hence

<C q> (C7,s%,%" >‘<@ ,q > and finally [C,Q]-ﬁg—41422> [C ,q_]

which is the matching move.

If t=e: then p=p’ and e’fC’]<e[C] (implying e'fC'].g elcD.
Hence also p-,[c s 4. Obviously q-faq, so

<C,q>—£——ﬂ§1§25<b ,q> and thus fC,q]-lELJEﬁEz} [C ]

which is the matching move.

(2): We show that R with:
Re = {(py)| 30.3B. £-e[c] & [o,p)%, [0 o] )

is an HE- parameterized weak bisimulation.
So let <p’Q)8Re[CW’ e[C]:ga)f and p-H%)p’. Then for

, ’ * V. ’ 4 ’ . ’ 7
some C”,e” and veAct , e = e’, CPE>O C” with f=e’[c”].
Since @ is assumed non-swallowing and idle-preserving
we can apply lemma 5.4-3 (ii) giving:

[o,p]L&00m), [gr o]
Obviously, e—&%"—ﬂ—l%oe’ in B-0°, so since fC,p] Ee [C,q]:
[b q] v,u) [C',q']

with [c”,p7] % . Lc',q']. By lemma 5.4-3 (i) we then
conclude that q-290<1' which is the matching move. o
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Corollary 5.4-6: Let P and ™ be closed under a non-
swallowing and asynchronous context system . Then for all

contexts C, processes p and q and strongly idle environ-
ments e the following holds:

PRrc12 = clpl=, clq]

Proof: Direct from theorem 5.4-4 and theorenm 5.4-5, 0

Corollary 5.4-7: If B is closed under @ and @ is
non-swallowing and idle-preserving then for all contexts

C and strongly idle environments €, we can define:

wierE(C,e) = e[C]

Proof: Direct from theorem S5.4-5 (2). o

Corollary 5.4~7 also gives us information about the

relationship between wieEE(C,e) and wierE(C,e):

if @ 1is non-swallowing and idle-preserving and e is
strongly idle then wieEE(C,e)::wierE(C,e).

One thing that might worry the reader slightly, is that
most of our results for the weak reduction problem requires
the environment, e, to be strongly idle: a seemingly
strong requirement, However, any environment can be
transformed into a < -equivalent (and thus L —equivalent)
strongly idle one, for which our results applies: 1let
I Dbe any environment system, Then #HE@E ) is strongly
idle (an easy argument shows that if e is rigid then
4f¢ is strongly idle) and from lemmas 5.2-1 and 5.3-3 it
follows that eséiK@e) for all environments e.

S.4.2 Wioe for general environment systems.

In the previous section we dealt with the weak reduction
problem for environment Systems, E , closed under the
context system, @© .
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In this section we shall give solutions to the problem
for general strongly idle environment systems (not
necessarily closed under & ). We shall offer (sufficient)
conditions which will ensure the existence of wierE(C,e)

in such cases.

S0 let E be a (general) strongly idle environment
system and let @ be 1 non-swallowing, 8synchronous context
system. The weak reduction problem is for a given context
C and environment e to find an environment f such that:

(%) P¥a =  clp]x, clq)

for all processes p and q. Since ¥ 1is not (necessarily)
closed under C the results from Previous section cannot
be used. However, we can apply the following simple
strategy: first close B under @© (definition 3.1-12)
giving the (closed) extension B+ Then from the results
of the previous section (Corollary 5.4-6) we know that

(o) PY%e1e = cfp] = cldql

for all processes p and de If @ moreover ig idle—
preserving, we know in fact that e[C] is wioem (C,e)
@

Now, assume we can find a smallest environment, f,
in B with respect to <, such that e[C]J<f. We shall
use the notation banE(C,e) (best observational approxi-

mation).for this environment. Since sk, banE (C,e)
would obviously be a solution to the weak reduction
problem, i.e.:

(%) szanCC,e> a = clpl zeC[q__]

If moreover & is idle-preserving, and (EQE)O 1s image-
finite we can from the Generalized Main Theorem (5.2-4)
simply take wierE(C,e) to be banE(C,e).

An easy argument shows that for strongly idle environ-
ments, £, e<f if and only if e<f (irrespective of
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whether e is strongly idle or not). Thus, EE(C e)
exists if and only if baEE(C e) does (see section 3.4.2
for definition of ba (C,e) ), in which case

anE(C,e)::baEE(C,e).

The system of language environments, IL, (see defini-
tion 2.2-11) is obviously not strongly idle and falls as
such outside the scope of our results. We therefore
introduce a new system, ILSi s 0f strongly idle language
environments consisting of languages over Act_l.

Definition 5.4-8: ;= (PlAct ,),Act,=>) is the
environment system, where => 1s the smallest relation
satisfying for all LgActil and asAct_l:

(i) L&

(i1) 8L/oa#0 = L30Lfa o

ILsi is obviously strongly idle. Also L ; can be seen

as a subsystem of IL. ILet —:Act —>Act” be defined by:

e =1

* * * *
al...an= lall o0 o lanl ; l’l?l

with the natural extension to sets of strings. Then for
all IEAct —1° the behaviour of L 1n.IL is strong
equivalent to the behaviour of T in HJ

Lemma 5.4-9: For all environments e and all environments

L of ILSi the following are equivalent:

(1) efL
(ii) egIL
(iii) D(e) TP
(iv) D() 1P

where D(e) = {jusAct*l e:géi} and ~ cancels all occurren—

ces of 1 in a string.
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Proof: (i)e (ii) follows from the strong idleness of T.
(ii) e (4iii) wWrite L:lLy; resp. L:IL for L being viewed
as an environment of ILSi resp. IL . From the remark
above the lemma L:ILSi~E:IL and hence egL:]I,Si iff
e<IL:IL. From section 3.4.2 e I:IL is known to hold
iff D(e)cTP = TP, (iii) e (iv) follows directly from

5 _
() =L for all Ighct; and Lg (%) for ILciet’. g

It is easily seen that for an B%ifenvironment, M,
D(M) = MP, rThus, it follows as a corollary from the above
lemma that for all ILSi-enVironments L and M:

LEM o P WP

Hence, for any'ILSi-environment L and context C it
follows immediately, that:

T~
boar (C,IL) £ D(LLCT)
si
Using lemma %.1-10 we have:

N
p(z[cD

{’S\'[ seAct™ & L[C] =s;}

{e}u{¥] sehet” & 3tenct™. L%\ &
Cr» }

{uedct?] [3vehct®. LS, & Ck>,

E {uesct’] | 3verP, ck>, }

I+

where + holds since I is strongly idle, and ++ holds
since Ilééb iff veIP. Thus we can simply define:

Definition 5,4-10:

*
— 1Y Vv
boaILSi(C,L) = {usAct_ll IvelF, Cl?o} o

From this definition the following laws can be derived
easily:
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Proposition 5.4-11: For CCS-contexts the following holds:

(1) boa
g
(ii) boaIL
S
(ii1) boar
s
(iv) boaIL
S
(v) boaIL
s
(vi) boaIL
s
(vii) boaILs

(viii) boaILS

m,5) ={e} ;140
1

(€l = 1f

1

(1.0],D)
1
(a.[1,1)
1
(|11
1
(t1fs,m)
X

174

(GL/sa)? 5 a1
% s
{usAct_ll (u#D(P))NIP # ¢}

I

Png*

3 1aS
@eT,1) = o™ 1 @P)  ; a(1) -1
1

(C°D,L) < boa (D, boa (c,I) )
i ’ ILsi ’ ILsi ’

with "=" if C and D are idle-preserving.

Proof: We only

prove the slightly more difficult & PP

leaving the rest to the reader. From the discussion above

and proposition

3.2-6 (vi) we have:

boa]LSi(pl[] ,L) = {s} u {E'I SsACt-'_‘& 3teIP. p |[]l—;§>}

= {§] sesct” .3teIP. te (s #D(p)) )

{’5’ | seAct™. (s#D(p)) n TP £ @}

{E | seAct . (SK;!ID\(p/)) NP « @}
] —

{vesct’y | (usD(P))n IP # o }

N+

TN

~
where + 1s justified by the equation (s#t) = (§#%).0
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2.5 A SIMPLE SCHEDULER

In this section we shall brove the correctness of a
simple scheduler using the parameterized weak bisimulation

equivalence.,

The scheduling problem we study is a simplified version
of the scheduling problem in /Mil79B,Mil80/: we simply
want to design a scheduler S which will signal a set
{pl,...,p } of n agents in rotation starting with the
agent Dy

Suppose that D; is expecting to be signalled at label
LA Then our scheduler should simply satisfy the con-
straint:

(1) S, = WyeWoe eoe oW oS

We could of course easily write a CCS-process with the
above property directly, e.g. the process HMxX. cWie ooe W, oX
would suffice. However, we prefer to build S as a ring

of n identical cyclic cells with each cell in control of
one agent.

The cell controlling ]

W. -~
ir a
The cell’s behaviour consists of an endless repetition of

the following:

(1) Be enabled at &« by the preceding
cell,

(ii) Signal the waiting agent p: at W .

(1iii) Enable the successor cell at Yo
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Thus we can simply define:

(2) C; = ux.(a.wi.§.x)

The gcheduler is now built as a ring from the cells
Cl,...,Cn with the first cell C, being in state (ii)
(in order for the scheduler to start).

The scheduler S.i

| W
] 2

Wy

: S
\'\' / n

In order to define Sn we consider the following rectified
version Tn of Sn:

wl E w2 Ew5 Ewn
RO OSSO
T
n

Tn can be defined inductively on n as:

(3) Ty =017 = wy.¥.0p
T = [Tn_l [yk s] | C, [ab> 8] ]\6 ; 12
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where for 8je..8pehct 5 and bl...bkgAct
(alpabl,...,akfebk) is the renaming map Act—>Act defined

by
bi 3 lsisk»\azai

(alk>b1,...,ak+>bk) a = by 1si<k/\a=§;

a 3§ Otherwise

(In /Mi180/ the notation bl/al“'bk/ak is used for this
map). Note, since 81e..8,ehct_;  we have
(alkébl,...,akf>bk)iL = 1. Thus the associated renaming

context is idle-preserving.

For aeAct_;, [1\a is an abbreviation for the CCS-context
[]FS-—{&,§}. Since 1SS-{a,§}, [Na is an idle-preserving

context.

For n>1 we can then construct S, from T, @and C,
as illustrated below:

[ ! ]
PRGN - - e o - - -
1 .
[} I
T
|‘ n_l I’

Formally we define:

(%) By = {Tn-l[$z§] '%[3:2]}\5\@

Based on this definition of Sn it is possible to prove
directly, using the weak bisimulation proof technique, that
the constraint (1) is satisfied. A defect with this direct
approach is that it is not based on an analysis of any
subsystems. This defect may not be serious for the bPresent
simple example, but for larger systems such a strategy would
suffer a combinatorial explosion.. In order for our proof
techniques to be relevant for large (realistic) examples it

201



is imperative that we can reason about the system in

terms of its subsystems. For this reason we prefer to

prove the correctness of S, inductively (on n). The overall
effort in proving the correctness inductively will for

this simple example actually increase, but it illustrates

a technique which seems useful for larger systems.

Further evidence of this potential usefulness for larger
systems has recently been given by Robin Milner, who has
successfully applied the (parameterized bisimulation)
techniques of this thesis to the Alternating Bit Protocol.

Unfortunately S does not lend itself to such an inductive
proof since S -1 1s not a substructure of S . An inductive
proof seems much more likely to succeed for the rectified
version T since obviously T -1 is a substructure of T .

But what should we prove (1nduct1vely) about T ? Ideally
we would like to prove Tn'” WieWoe oo .Y @.T . But

this is not a valid equivalence: after the occurrence of Wy
Tn is free to perform a at any time. In fact the full
behaviour of T is extremely complicated. However, we

are only 1nterested in the behaviour of T, as a component

of the scheduler S +1° @nd it seems that 1n this context

the behaviour of T is indeed captured by the above equation.
In the following we shall prove that there is a strongly

idle language environment I such that:

(5) T, *r Wy eWoe oo .wn.?.a.Tn (n21)
and
* 1
(6) boaﬂkﬁFTCn’ACt—l) L (n>2)
where
> ars &

» w0, - (LLeRd) 1 e, [T ee

(n32)

From (5) and (6) it follows that T, and WieWse oo WoeYea T
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are substitutive in TCn+1' (TCn+l is idle-preserving and
the reduction is therefore valid, see section 5.4.2).
Thus for n22:

S, = {Talvigs 11 c NEeaBATAE

x e ar>R
{(Wl.wg. ee o .Wn l'Y'a'Tl’l l>‘:yH6 l

A IO BATAV

Using the fixed point rule (R2 in the proof system 8., of
chapter 4), the Expansion Theorem (see /Mil80/ theorem 5.8) ,
some simple laws for renaming, and the fact that parallel

CCS-contexts preserve X (see section 5.1) the following is
easily established:

~

= {wl.wg. s & .wn_l.g.g.(Tn_l[:$::§])|
6.Wn.5.(0n[$zg 1 F\s\o

WieWoe oo 'Wn-l'wn'{(Tn.l [3::%] |

% l5i3e 12 \e\e ]

e

= WieWoe ooe 'Wn'Sn
This verifies the correctness condition (1). It remains
to exhibit the strongly idle language environment I and
prove that it has the two required properties (5) and (6).

The unparameterized version of (5) fails to hold
basically because Tn can perform e-actions in a very
undisciplined manner: after each wl—action Tn will always
be ready (at least after some l-moves) to perform an «.

However, when Tn is executed in the context TC no «

will occur before the first y and before any ngala—action
can occure Tn must perform a y first. This information
about TCn+1 is captured by the following strongly idle
language environment L (we are using the standard notation

for regular languages):
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+ 5V (a+q) |”

<]

* —_ -
L=[a ORI

-aybQ

where for al...aksAct_lz

where ngA_aYQéLJ{i}. From the diagram, and since Tn
cannot perform o or § actions, it follows that Tn's
undiciplined usages of @ mentioned above are prohibited

in L.

Let us first verify (6) using the laws for boar ks
si
proposition 5.4-11. Since TCn is built from idle preser-
ving contexts we can decompose the calculation of
boaIL ﬂTCn,Act_l) into stages. Using proposition 5.4-11
(vi) Sfe have:

* *
boaILSi([ ]\6\Q,Act_l) = A-SQ

. a6 _ — *p
since D(Qn[ YH@:]) = (6.wn.Q) we conclude from pro-
position 5.4-11 (v):

*

banSi([:llcn[f;:g )85 )

{usActill uiF(B.wn.E)*pr\A

*

-6Q

£ 0}

(A—SQ

* *
T o _
.5.A_6Q.Q) =N
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From proposition 5.4-11 (vii) it follows that:

boaﬂ‘si([ ][3:%] )

(aPQ,yrs)™ 1N

* — * *
(& g (¥ + B)ed_go.(av0)) p
ay oy

Combining these three calculations we have:

boay (TC ,Act’;)
gi
- far AU SO *p
= (A_SQ.(y—k6).A_6Q.(a-+g))
ch ay oY

Thus condition (6) is satisfied. Let us now prove that
(5) is satisfied by induction on n. For n=1 we have
immediately:
Tl = wl.y.C1
< wl.y.(a.wl.y.Cl)
= wlo';oa.Tl

For the induction step we shall use the following
property of L.

(8) boay (TD_,L)sIP (n»2)
S1
where
o, ={[Jyes] | ¢ et | J\6
(n22)

Now, assume (5) holds for 1<¢k<n. Then, using property
(8) we know that T, and wy. ... .w _q.Y.2.T . are
substitutive (up to L) in TDn. Thus:
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e (5l 10, fems] )\
;L (wye oo .wn_l.q.a.Tn_l)[yFéﬁ:]l
c [ ar 5 | }\s
{wl. .o .wn_l.g.a.(Tn_l[ytéG:]) I

5w V. (Cplavs DI \s

Wye oo .wn_l({a.(Tn_l[y !—)6:]) |
wn.\?.(Cn[arHéS])}\é)

0

¢

Since boguéi?wl. o .wn_l.[:LL) = 1,
boaILSi(wl. o 'WH'E:LL>=L and L+ we conclude

further:

ST Wie een .wn.y.a.Tn

The last remaining proof obligation is the verification of
(8). Again we can use the laws for boaLIDSi from proposi-
tion 5.4-11. However, we prefer this time to appeal
directly to the definition:

o~
S

Unfortunately, to determine the behaviour of L[C] directly
from definition 3.1-9 could prove quite a lengthy process
since we are required to consider how I can undergo
strings of actions. However, the process can be shortened
considerably by the following lemma:

Lemma 5.5=1: Let = (Env,Act, =) be an environment

system closed under a context system

€= (Con,ActoxActo,kﬁ>) with respect to _| ]. Tet

ELE) = (EnvxCon,Act, =>) be the environment system where
=> 1is the smallest relation satisfying:

(1) e e’ & cHyCr o e(C) Te (e
(i) e 2o & CEBC’ & a0 = o(0) Ber oD
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Then for all environments e of F and contexts C of &:

e[C] § e<b> A

Since the behaviour of IL{C)> only requires considering
single atomic actions of L it should be easier to determine

~~— T~
than that of L[C]. #Also, since e§f implies D(e) = D(£)
we have:

T ~—
boay (C,L) = D(TLCLD)
[SER

Now, let TD  and TD/° Dbe the following contexts:

) = {[:":y}-)fi:l | (w,_.¥.C) [aHS]}\G
027 = {[ Jvos ] | (3.0 [abs | J\s

Then the behaviour of TDn is easily seen to be described
by the following diagram:

b
where nsALyaU{i}. An arrow labelled (a) between two
contexts C and D indicates C+§éD. Based on the diagrams
for L and TD  we can determine the behaviour of ITD >

using the above lemma 5.5-1.
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From this diagram it follows immediately that:
/—\J
D(IrD>) ¢ IP

and hence that condition (8) is satisfied.

This example raises the question of what is the more
advantageous: +to use the algebraic laws for boaﬂky or
i

to appeal directly to the definition of boaﬂ; .+ Obviously
si
many more examples must be dealt with before this question

can be answered.
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CHAPTER 6

COMPLEXITY RESULTS &
PROLOG IMPLEMENTATIONS

When applying the various notions of bisimulation
(strong or weak, parameterized or unparameterized) to larger
examples (see for example /Pr84/) the availability of
automatic or semiautomatic tools becomes of increasing
importance for the manageability of the problem. For this
reason we shall in this chapter investigate the complexity
and implementation of the various notions of bisimulation

equivalence.

The (strong or weak, parameterized or unparameterized)
equivalence problem is for general CCS-expressions
undecidable: given the index i of a Turing Machine Mi it
is easy (but tedious) to effectively construct a CCS-ex-
pression 2] such that Mi does not halt on input i if and
only if piti® (pi~'px.l.x iff p; Ry 0 iff pi~ﬁjpx.l.x).
This reduction actually shows that the various equivalences

are not even recursively enumerable (r.e.) for general

CCS—expressions.

From the finitary, complete proof systems in /HenMil83,
Mil82/ and their parameterized extensions in chapter 4 it
follows that, by restricting to finite or regular CCS-
expressions, the unparameterized as well as the parameterized
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strong equivalence problem becomes r.e.

However, as a "complexity-bound" this can be improved-
drastically due to a result by Paris Kannellakis and
Scott Smolka. In /KaSm83/ they show that the unparame-
terized strong and weak equivalence problems are both
Polynomial-time decidable for regular CCS-expressions

(in terms of the size of the expressions). Given the
highly recursive definition of bisimulation equivalence
this result is rather surprising. In comparison the
seemingly much simpler (traditional automata—theoretical)
string or trace equivalence /Hoa81/, failure-equivalence
/Bro83 ,HoBroR84/ and testing-equivalence /NiHen82,Ni85/
problems are all PSPACE-complete for regular CCS-processes
and as such highly intractable (see /GJ79,KaSm83/)., 1In
section 6.1 we show how to extend this polynomial-time
complexity result to the corresponding parameterized
equivalences.

In section 6.2 we develop and verify the correctness of
a PROLOG implementation for the strong equivalence problem.
The implementation, which is easily modified to support
the other notions of bisimulation equivalence, is a
theorem prover in the following sense: given two processes

P and g a procedure will construct a bisimulation (=proof)
containing the pair (p,q) if P~q. If p¥q the procedure
willl terminate with failure. However, the termination is
subject to the condition that the processes P and g have
finite state-transition diagrams. Thus regular expressions
(e.g. BX.a.xX) or finite CC8-expressions over regular
expressions (e.g.[:HX.a.XI @]r{a,b}) are allowed, whereas
CCS-expressions with a parallel, restriction or renaming
operator occurring within the scope of a fixed-point
opérator will in general lead to non-termination (since

such expressions have infinitely many derivatives),

A large subset of OCS and its operational semantics is

210



also implemented in PROIOG. The usefulness of the resulting
System is demonstrated through several examples including
the simple scheduler from section 5.5 and the closed shop
example /San82/,

Finally, in section 6.3, we comment on some existing
alternative (semi-) automatic tools for proving bisimu-
lation equivalences, and we discuss what Properties future
tools might/ought to have,
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6.1 COMPLEXITY RESULTS

The polynomial-time results in /KaSm83/ are based on
the following Generalized Partitioning problem. A par-

titioning of a set S consists of disjoint, nonempty sub-
sets of S called blocks, whose union is S.

GENERALIZED PARTITIONING.
As input is given a finite set S, an initial par-
titioning of S Ib::{Bl""’Bp} and k functions with
fo 18 —(P(S) (1LL<k).

The %roblem is to find the coarsest partitioning

Te= IEl,...,Eq} of S such that:

(i) I, is a refinement of 158 (i.e. each block

E; is a subset of some Bj)

(ii) For all blocks E;, all a,beE., any function
f, and any block Ej:

+
fc(a)ﬂEj;!@ & fe(b)ﬂEj;é@ o

Obviously Ff is unique if it exists. Existence of Te
(which is left untreated in /KaSm83%/) will follow if,

for any two partitionings Iy and T, satisfying (i) and
(ii), we can find a partitioning TB also satisfying (i) and
(ii) and moreover coarser than both Iy and I:

Tet I¥={Fl,...,Fr} be a set of (not necessarily
disjoint) blocks such that (i) and (ii) are satisfied
and Ui<rFi==S. Let = Dbe the smallest equivalence

on {1,...,r} such that izj if F;nF,#0. Then
let T_ be the set of blocks:

o= (Vgersy e

where [i] is the equivalence class containing i. Ob-

viously T  ig coarser that I and it is not difficult

to Ssee thé%l;: is a partitioning satisfying (i) and

+ Writing aiga' for a'efg(a) condition (ii) can be
rewritten as: z
vi,j.va,beE; . ((va'€E .ava' =3b'€E; .bbb) &

(Vb'eEj.béb' =3a'eEj.a—‘—>a'))
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(ii). Now let I and I, be the two partitionings
satisfying (i) and (ii). Then it follows that
rz::(rltJrz): will have all the properties required
above.

For the following complexity analysis we shall assume
that each function fe is effectively represented as a
directed graph with node set S and a vertex from a to
b iff bef,(a). Let m, be the number of vertices in the
graph associated with f, (i.e. me = ég%lfc(a)l).

We shall measure the size of an instance of GENERALIZED
PARTITIONING as a pair (n,m), where n denotes S| and

m is 1s%gkm6 (i.e. the total number of vertices in the
graphs associated with fl,...,fk).

The restricted class of GENERALIZED PARTTITIONING
problems, for which the k functions are deterministic
(i.e. [fe(a)]| =1 for all € and a), constitutes the
well-studied class of PARTITIONING problems which is
known to have an O(k-n-logn) solution (see /AHUDL/
S§4.13). The PARTITIONING problem has many applications.
One important application is the minimalization of the

number of states in a deterministic finite automata. In

the following we shall see how the GENERALIZED PARTITIONING
problem can be applied to solve the (strong) bisimulation
equivalence problem.

For any finite process system P = (Pr,Act, =)
(P is finite if and only if Pr and Act are both finite
sets) let A be the GENERALIZED PARTITIONING Problem
consisting of the set Pr, fhe dnitigl partitioning
17§>= {Pr}, and |Act| functions, £, : Pr —((Pr) for
athAct, with fa(p)=={p'l p-éap'}. Let Fﬁ? be the
solution to Ap . Then the following holds:

Theorem 6.1-1: For all processes p and q of P,

P~q 1if and only if p and q belong to the same block of
P,
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Proof: "«": We show that the relation REPrxXPr defined

by:
pRq & p and q belong to the same block
of r?i

is a bisimulation and thus Rc~. TLet pRg and p-§>p'.
Assume p‘eE. where E. is some block of Fﬁ? (such a
block exists). Thus @ # {p'} Sfa(p)ﬂEj . From the
closure properties of s it follows that fa(q)ﬂ1%j% 2,
and hence that gq-3q° for some q'sEj.

"=": Let Pr/~ be the set of equivalence classes of
Pr under ~. Pr/~ is obviously a partitioning of Pr and
it is easy to show that Pr/A satisfies (i) and (ii).
Thus, by definition, rgais coarser than Pr/~ from which
the "="-direction follows immediately. a

The obvious solution to the GENERALIZED PARTITIONING
problem is, starting from ro, to repeatedly refine the
blocks of the partition by the following method. Let Bi
be a block in the current partitioning, and let f, be one
of the k functions. Examine fe(a)gs for all a in Bi‘

Now we partition Bi so that two elements a and b are put
in the same block if and only if fe(a) and fe(b) intersect
the same set of blocks.

I:= Ib 9

REPEAT
change := false ;
FOR all blocks B; of I' , all fg
DO - Partition B. with respect to

f, into h>1 new blocks BI,...,BE

- r:= (r- {8, v {B%,...,B?}
- if h>1 set change := true

UNTTL change = false

If = T (figure 6.1-2)
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Theorem 6.1-3: The algorithm in figure 6.1-2 solves the
GENERALIZED PARTITIONING problem in O(n+(n+m)) time.

Proof: The partial correctness of the algorithm follows
fairly easy: at any stage during the execution the initial
partition rb is coarser than the current one I' . Thus

Fo is coarser than I%. Obviously at exit of the outer
loop I', and hence Tp, satisfies (i) and (ii). To prove
that the final value of T is endeed the coarsest refine-—
ment of T, satisfying (i) and (ii) use the following

as a loop-invariant: if r’ is any partition satisfying
(i) and (ii), then T is coarser than 1’ . For the comple-
xity (and total correctness) we note that the algorithm
will terminate after at most n iterations of the outer
loop since there can at most be n blocks. A slightly
tricky use of the lexicographic sorting method from
/AHU74/ makes it possible to perform each iteration in
O(n+m) time (see /KaSm83/). o

Corollary 6.1-4: TLet IIP= (Pr,Act,—) be a finite
brocess system and let p and q be processes of . Then

the strong bisimulation equivalence problem P~q can

be decided in O(n*(n+m) + M) time, where n=|Pr|,

m= | — | and M is the time required to compute the derived
GENERALTZED PARTITIONING problem A

Proof: Note that for the derived GENERALIZED PARTITIONING
problem.AEP the following holds:

Lo a5, ) = s

a€ Act PEPr

Thus the result follows directly from theorems 6.1-1 and
6.1-3, o

Since the regular process system ERP (see section 4.2)
is not a finite process System we cannot apply the above
corollary directly to EPr . However, for any pair of
processes p and q we can find a finite restriction of P

ns
containing p and q and all their derivatives.
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Let P = (Pr,Act,—) be a process system and let
Q be a —>-closed (see section 4.3) subset of Pr. Define
the restricted process system Eiﬂi as (Q,Actq,-—AQ),
where ActQ=={aeAct| J3qeqQ. qgga} and -—9Q=:-—9H(QXActQ>Q)
= —>n(QxActxQ). Since Q is —>-closed it is easy to
prove that whenever p,qeQ then p~q in B iff p~q in

®lq .

Corollary 6.1-5: Let p and q be closed regular process

expressions. Then p~qg can be decided in O(nB) time
where n =ND(p) +ND(q) (see section 4.3).

Proof: ZLet Q be the —>-closed set DER(p)UDER(q), where
DER(p) ={p’| 3sehct . pS5p’}. Then p~q in P iff
p~q in H%TTQ. From section 4.3 we know that

| DER(p) |€ND(p), hence [Q|<n. Obviously any action which
can be performed by any derivative of p must appear in
the expression for p. ®Since ND(p) is increased for each
action occurring in p, ActQ ND(p) +ND(q) =n. A simple
bound on.L—an is obtained from the following:

l"'éQ l < IQXA—CtQXQ l

< 1Qf-[actyl- Q]
3

n

IN

However, a tighter bound can be obtained by noticing that,
for each derivative r of p, there is a bijection

from the set {j(a,s) |r-§>s} to the occurrences of action
symbols in the expression for p. Thus, for each reDER(p)
the size of the set {(a,s)l r-i}s}- can at most be

ND(p). Using this observation we get:

gl < T 1{Ge) | = s] |

7\

» ER(pg{(a,@ lrSs )| +

rQ;ER(q;{(a’S>[ r 35 }l

< ND(p)° + ND(q)® < n®
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Finally, (the effective graph representation of) Ap
can be constructed in O(ng) time (see /KaSm83/ or the
similar chart construction in /Mil82/). Thus it follows
from corollary 6.1-4 that p~q can be decided in
O(n-(n+n2) + ng) = O(nB) time. (]

Corollary 6.1-6: Let p and g be closed regular
expressions. Then p=q can be decided in O(n4) time,

where n=DND(p) +ND(q).

Proof: Let Q be the —>-closed set DER(p)UDER(q). CI3hen,
also pXq in P, iff pRq in P [Q. From corollary
5.%-5 we know that pxq in Er]‘Q iff #p~4q in #(P, Q) .
By definition of #(®_[Q) we have, HQ| = |Q|<n. Since
the derivation relation, —,, of #(E?er) is a subset
of :FFQxActhﬂQ we have the simple bound, |—>]| <n?.

An effective graph representation of it(HDTTQ) (and hence
of Aﬂ:(]EP rQ>) can be obtained from the effective
representation of B?er using a "transitive-&-relexive
closure" type operation, adding a derivation (4#p,a,#q)
to —>, whenever p%o q. Constructing P, Q) from

EPr rQ can as such be done O(nB) time (see /AHU74/ for
"transitive closure" algorithms.)

Thus it follows from corollary 6.1-4 that #p ~#g, and
hence p¥q can be decided in O(n-(n+n5) + nd ) = O(n4)

time. o

Let ¥ = (Env,Act, =>) be a finite environment
system and P = (Pr,Act, —>) a finite process system.
We want to reduce the parameterized strong bisimulation
equivalence problem over B and P to a GENERATIZED
PARTTTIONING problem A 3

P 9 ", P

By choosing the initial partition of Agp p care-
9
fully we can obtain such a reduction: AEE ™ consists
9
of the set ZEnv*Pr, the initial partition
I“_EEO P {{e}XPr I esEnv} and [Act| functions,

f_: EnvxPr ~—>@P(EnvxPr) for aghct, with:
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£,(Ce,0)) = {((e”,p") e Be” & p3p° )

Let I?E:E)be the solution to AELEP' Then the

following holds:

Theorem 6.1-7: For all brocesses p and q of P and
all environments e of I, P~,a 1if and only if (e,p)
and (e,q) belong to the same block of F?E

Proofz
"&": It suffices to show that the Env-indexed family
R with:

pPR,qa ©  (e,p) and (e,q) belong to the

same block of PEE’

is a parameterized bisimulation.

Let pR_q, e 26 andEE%ééép'. Assume (e',p')sEj, where
E. is some block of Ff ? (obviously such a block exists).
Thus @%{(e',p'%ﬁ}gf (Ce,p)) ﬂEJ From the closure
preperties of Ty B it follows that f ((e,q))r)EJ;!Q

Thus for some (e’’,q’ )sE e 2e’’ and q-259°. Since
o E,P
hi)

L 4

e"“=e’. Thus p° R - q’.

is a refinement of the (carefully chosen) ]?EE]P,

"=": Let = be the equivalence relation on EnvXPr
defined by:

(e,p)=(f,0) © e=1 & P~ 1

and let EnvxPr/= be the equivalence classes of EnvxPr
under =. EnvxPr/= ig obviously a partition of EnvxPr

finer  than rEE 2P

Now, assume (e,p) and (f,q) belong to the same block
of EnvxPr/= and (e',p')sfa((e,p))rMF. where Fj is some
equivalence class of EnvxPr/=, Thus e=é%e' and p-éép'.
By definition of =, e=f and P~, 4. Thus a3q° for
some q° with p” ~,- a . Hence (e”,a") = (e’,p’) and thus
(e',q')sfa((e,q))ﬂﬁﬁ - By symmetry it follows that
EnvxPr/= satisfies condition (ii) of the GENERALIZED
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PARTITIONING problem. Thus, by definition, rglf:vfp i

coarser than EnvxXPr/= ensuring the "= "-direction. a

If we instead had chosen the perhaps more obvious
{EanPr} as the initial partition for AEE,HJ, theoren
6.1-7 would fail to hold. It is not hard to see that
with this choice, two pairs (e,p) and (e,q) would belong
to the same block of the final partition just in case
e&p~e&q (which is a weaker property than p = ).

Corollary 6.1-8: TLet P = (Pr,Act, =) be a finite process
system and let = (Env,Act, =) be a finite environment
system. Then, for processes D and g of P and environments

e of W, P~,a can be decided in O(n*(n+m) + M)
time, where n= |Pr|.|Env|, m= | —=[-]|=| and M is the
time required to compute the derived GENERALIZED PAR-
TITIONING problem AEE,ZEP'

Proof: If we can solve A p in O(n*(n+m)) time
- 9

the corollary follows directly from theorem 6.1-7,
For AEE,E’ 1t is easily seen that:

e aot (<e,p>;Envl§%(<e’p))') indiied

Thus the O(n-(n+m)) complexity bound for A p follows
9
directly from theorem 6.1-3. o

Corollary 6.1-9: TLet D and g be closed regular process
expressions and let e be g closed regular environment

expression different from U, Then p ~e 4 can be
decided in O((nP- E)B) time, where np = ND(p) + ND(q)
and ng = ND(e).

Proof: The proof is very similar to the proof of
corollary 6.1-5, TLet Qp = DER(p)UDER(q) and

Qg =DER(e). Then it is easily seen that pP~,q in

E’r and _EEr (i.e. there is an EEr" parameterized bisimula-—
tion R over P such that (p,@)eR,) irff P~pq in B I‘QP

and EEr TQE. Since HDr rQP and EEr TQE are finite we can
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apply the previous corollary 6.1-8. Tet P [Qp =
(QP,ActP,%P) and I rQE = (QE,ActE, =>5). Then

|Qpl < np
|Qg! < ng
| =5l < nf
|=>ElénE2

follows from arguments similar to those of corollary

6.1-5. It only remains to see how fast the GENERALIZED

PARTITIONING oblem A can be constructed
br B [Qg P s "

(or rather an effective graph representation of it).
Since AEEr rQE’ E)erP essentially is the "product" of

. 2 . 2
A EerE (size (nE,nE ) ) and Ap FQP (size (nP,nP ))
it can be constructed in O(nP2 ° np ) time. Thus it
follows from corollary 6.1-8, that P~ q can be

. ; 2 2 2

decided 1:%1 O(nP'nE°(nP'nE + np eng )+ np -nEe) =
O((nP'nE) ) time. o

From the results of section 5.3 it follows that
p:eq if and only if 1=Fp~,#(@e):ttq (#(@e) is a strongly
idle environment equivalent under < to e). Thus, using
a technique similar to the one for the proof of corollary
6.1-6, we can for regular processes p and q and regular
environments e obtain a polynomial-time complexity result
for the parameterized weak bisimulation equivalence pro-
blem p’te q. (Note, that #P and #(@®) can be obtained
by "transitive~&-reflexive closure" type operations).
More precisely, pxe qQ can be decided in O((nP-nE)4)
time, where np and Dp are as in corollary 6.1-9,
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6.2 PROLOG IMPLEMENTATIONS

In this section we shall develop and verify an alter-
native decision procedure for the strong equivalence
problem (the procedure is easily modified for other
notions of bisimulation equivalence). In contrast to
the polynomial time algorithm (figure 6.1-2) from the
previous section, which computes the maximal bisimulation,
the alternative procedure will for = given pair of pro-
cesses try to construct a minimal bisimulation containing
the pair. The procedure follows very closely the recursive
definition of bisimulation and may involve backtracking
in case the processes are non-deterministic, Thus,
the time complexity of the procedure is essentially
exponential, However, the previous section’g polynomial
time results only hold for regular CCS-expressions. By
allowing parallel compositions of regular process expres-
sions, an (extended) expression may have an exponential
number of derivatives (in terms of the size of the expres—
sion), because of possible nesting of parallel operators.
Thus the equivalence problem is likely to become hard
anyway. (As an analogy, the string equivalence problem for
regular expressions increases in complexity when the
intersection operator is added - see /HU79/ exercise 1%.352) .
The new alternative procedure is moreover extremely
easy to implement in PROLOG, as we shall demonstrate in
the following.

©.2.1 An operational-based inference system

for bisimulation.

Let P = (Pr,Act, —) be a given process system. We
shall present an inference system for constructing bisimu-~
lations over P based on the derivation relation of . We
shall prove both soundness and restricted completeness of
the inference system. Also, we shall later see that the
inference system can be represented directly in PROIOG.
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Let bisim g;PrxPrx@%Prg)

closure
matchl e PrxPrx(RPrex@(prd)
mather

+
match1+}§;prxprxﬁ{Actxpr)xerr2>x¢¥Pr2>
matchr

be the smallest relations closed under the following
rules (an informal explanation will be given after the

rules).
B closure(p,q, $(p,q)},0)
bisim(p,q,C)
g matchl (p,q,B,C) matchr(p,q,C,D)
closure(p,q,B,D)
+
9 ,M,B C z s
MI, matchl " (p,q .C) ; M::{(a,p ) lp-éap }
matchl(p,q,B,C)
+
9 ,C,D < ’
MR matchr  (p,q,N ) : N¥={(a,q ) a4 }
matchr(p,q,C,D)

ML* matChl+(p7Qa®,B9B)

matchl+(P,QsM,B,D) H q—%q'
match1+(p,q,{(a,P')}UMaBaD) (P',q')SB

closure(p',q',{(p',q')?UB,C) mat0h1+(P,q,M,09D)
matchl¥(p,q, {(a,p")}uM,B,D)

5 a-q”
MR* matchr+(p,q,®,B,B)

matchr+(p,q,N,B,D) . pp’
' 2 k4 P 2
matchr+(P,Qa {(a7q )? UN,B,D) (p s Q )EB
4 'd 'd 'd +
closure(p”,q”, {(p”,q7)}UB,C) matchr (p,q,N,C,D)
matChr—*.(p,qu {(aa q'>? UN7B7D>

5 D=3p’

(figure 6.2-1)
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Now, think of bisim as a (partial) function from
its first two arguments to its third argument, closure,
matchl and matchr as (partial) functions from their
first three arguments to their last argument, and
matchl™ and matchr™ as (partial) functions from their
first four arguments to their last argument. Then,
the intended meaning of the six relations can informally
be described as follows:

- Given two processes P and g, bisim will try to
"build" up a bisimulation C containing (p,q).

- Given two processes P and g and an approximate
bisimulation B containing (p,q) ("approximate" in
the sense that B is not yet known to be closed under
B, in particular it is unknown whether (p,q)sB(B)
or not), closure will try to extend B to a genuine
bisimulation C.

- Given two processes p and gq and an approximate
bisimulation B containing (p,a), matechl will try
to extend B to an approximate bisimulation C closed
under 8 (i.e. C is a simulation), whereas matchr
will try to extend B to an approximate bisimulation
C closed under &¥.

From the definition of & it follows that the approximate
bisimulation C constructed by matchl must be such that
for each derivation (a,p’) of p (i.e. p3p%) q has
a match in C, i.e. q-Bq’ for some qQ” with (p°,q")eC.
Obviously we would like to construct C by dealing with
one derivation of p at g time. For this reason a
refined version of matchl, matchl+, augmented with a
fifth argument for keeping track of which of p’s deriva-
tives that are left to be dealt with, is introduced.

~ Given two processes P and g, an approximate bisimu—
lation B containing (p,q) and a subset M of p’s

223



derivations such that q only remains to match those
of p’s derivations which are in M. Then matchl™
will try to extend B to an approximate bisimulation
closed under 8.

5 : : + o
Similarly a refined version, matchr', of matchr is intro-

duced.

Note, that by letting M be the set of all of p’s
derivations (M=={ka,p')l p-éép'}) we can reduce matchl to
matchl®, This explains the rules MI, and MR.

To see how to realize matchl+, note that when M isgs
empty we are done: Simply take C to be B. Otherwise,
let (a,p’) be a derivation of p in M. We remove (a,p’)
from M observing the following two cases:

- Assume q-Bqg° for some q” with (p’,q")eB. 1In
this case q already has a match in B for the deri-
vation (a,p’) and we can simply remove (a,p?’)
from M.

- If q cannot match the derivation (a,p’) in B
we extend B with a pair (p°,q’) where qa-3q°
(it may later be discovered that the chosen a-de-
rivation q° of q is not a mateh for (ay,p’). Thus
backtracking to this point may be necessary in order
to replace the chosen q” with another a=-derivation
of g). Obviously, q will then have a match for
(2,p") in the extended set. However, since the
final extension C is required to be an approximate
bisimulation itself, we "cloge™ BU{Kp',q'j}
with respect to (p’,q’) before dealing with the
remaining derivations of M.

The above three cases (including M=9) correspond to
the three rules of MLY,
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In the following we shall formalize the above informal

descriptions:
is sound in the sense that:

we shall prove that the inference system

bisim(p,q,C)

(p,a)eC &

CeB(C)

Thus, if it can be derived form the

bisim(p,q,C), then we can conclude that pP~q .

rules that
We shall

also indicate how, under certain finiteness assumptions,

to prove the following completeness

result:

=

b~q

3C. bisim(p,

q,C)

Obviously, in order to prove the

above soundness result

it will be necessary to prove auxiliary properties about

the other relations used in the system.

Assume that the

vague notion of an approximate bisimulation of a pair

(p,q) is given by the following:

B-{(p,a)} < B(B)

i.e. B would be a bisimulation if (p,q)eB(B) .

Then

according to their informal descriptions, closure,

matchl and matchr ought to satisfy the following proper-

ties/verification conditions:

closure(p,q,B,D) =

{(p7q>8B & }:>
B —{(p,q)} < B(B)
BcD & DcB(D)
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matChl(p9Q7B,C) =

(P,q)eB & ]
B-{(p,0)} cB(B)
BcC &

c-{, 0} csmc) &
(p,a)e B(C)

matchr(p,q,C,D) =

(p,a)eC & -
[o - {(p, )} =B(0) ]

Csd &

D-{(p,)} <B(D) &

(p,q) eB(D)

Note, that by thinking of closure, matchl and matchr

as (partial) functions the above properties are verifi-
cation conditions (or pre- and post-conditions) in the
sense that the results of the functions are guaranteed to
have certain properties provided the arguments to the
functions satisfy certain constraints.

The six relations bisim,closure,matchl,... is actually
the fixed-point of the functional associated with the
inference system figure 6.2-1 (see section 3.2 and /A83/).
For this reason certain equivalences holds, in particular:

(1) bisim(p,q,C) e closure(p,q,{(p,q)},C)
and

(2) clesure(p,q,B,D) o
3C. matchl(p,q,B,C) & matchr(p,q,C,D)

If the verification condition for closure holds then the
soundness theorem follows directly from (1) since

(0,2)e{(»,0)} ana {(p,0)} - {(p,a)} =2<B({ (p,0) P.

Similarly, if the verification conditions for matchl and
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matchr hold, then the verification condition for closure
will follow from (2). However, from the rules of the
inference system it is obvious that the six relations
are mutually dependent. Thus, in order to complete the

soundness proof an (simultaneous) induction proof is
needed.

The induction principle associated with the inference
system is straightforward (see /A83/): 1et Bis,C1,M1,
Mr,Ml+,Mr+ be six relations (of the appropriate type)

also closed under the rules of the inference system.
Then, by the leastness of bisim,closure,matchl,matchr,
matchl™ and matchr® it follows that:

bisim ¢ Bis matchr < Mr
closure < C1 matchlt M1t
matchl S M1 matchr™ cmrt

For C1,M1,Mr it seems natural first to try the previous
verification conditions for closure,matchl ,matchr.
Unfortunately, these verification conditions are, though
true, too weak for the induction proof to go through. In
order to obtain stronger conditions we shall introduce a
much more liberal definition of an approximate bisimula-
tion B for a pair (p,q), being simply (p,q)eB.

We can now reveal the definitions of these stronger
verification- conditions Bis,Cl1,M1,Mr,M1* and Mp*-

Bis(p,q,C) ﬁA

(p,@)eC &
Cem(C)

Cl(p,q,B,D) e

(p,a)eB =

BeD « ]
D-(B-{(p,0) ) m(D)
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A
Ml(P,Q9B90) &

(P,q)eB =

BecC &
C-Bem®B(C) &
(P?Cl) € ES(C)

A
MI’(PsQ709D) i

(p,q)sC =

Cech &
D-CcB(D) &
(p,a) e B(D)

M1%(p,q,M,B,C) e

(p,a)eB &

(pysa) & B(B)
BSC &
C-BeB®(C) &
(pya) e B(C)

Mr+(p,q,N,C,D) od

r(paQ)SC &

__(Pan) € @(C)

[ceD & ]
D -C <®B(D) &J

| (p,a) & B(D)

Me{(a,p) | p3p°)

ne {(a,0") [qBq" )

&F'=’
|

& =y

where for Mg {(a,p’) 'p&p'} » Dy 1s defined by:

Py = Z{a.p'l D 5D’ A (a,07) £M }

It is not difficult to show that Cl, M1 and Mr are

indeed stronger than the previous verification conditions
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closure, matchl and matchr.

We can now prove that Bis, Cl, M1, Mr, M1* and Mrt are
closed under the rules of the inference system, thus
implying the following Soundness Theorem:

Theorem 6.2-2: Bisim(p,q,C) = (p,q)eC & C<B(C)

Proof: We consider each rule in turn:

Rule B: We must prove:

Cl(p,q,{(p,q)},c) = Bis(p,q,C)
or

C1(p,a,{(P,a)},C) = (p,q)eC & C=HB(C)

This follows immediately from the definition of C1,

(p,)e{(@,0)} and ¢ - {(,)} - {to,) P =c.

Rule C: We must prove:
1) [Mm(p,q,8,0) & Mr(p,q,¢,0) ] = Ci(p,q,B,D)

Assuming the antecedent of (1) and the antecedent of the
conclusion of (1) ( (p,q)eB ) we must prove:

(2) 1. BeD &
2. D~ (B-{(p,0)}) <B(D)

Now, (p,q)eB together with Mi(p,q,B,C) gives:

(3) 1. BeC &
2. C-Bcm®(C) &
3. (p,q) e B(C)

Since B<C also (p,q)eC. Thus, from Mr(p,q,C,D) we can

conclude:

(4) 1. CSD &
2. D-Ccm®B(D) &
3. (p,a) & (D)

229



Obviously (3.1) and (4.1) gives (2.1). (2.2) can be

rewritten as:
(2.2°)  (D-0c)u(c-B)U {(p,q)} =B(D)

From (3.2) and (4#.2) and monotonicity of B it only
remains to demonstrate:

{(p,0)} =B

From (3.3) it follows that (p,q)e®B(D). Thus, from (4.3)
and B(D) = $(D)NE(D) it follows that (p,q)eB(D) .

Rule ML: We must prove:
M1+(p,q,M,B,C) i Ml(p,anaC>

when M=={(a,p')l p-éep{}. Since Ml+(p,q,M,B,C) and
M1(p,q,B,C) have the same conclusion it suffices to prove
that the antecedent of M1(p,q,B,C) implies the antecedent
of M17(p,q,M,B,C), i.e.:

(p,@)eB &
(p,a)eB = Me {(a,p') | p—%p'} &
(py»2) & S(B)

Only (pM,q)aﬁ(B) does not follow immediately. However,
M=0 so py=0. Thus trivially (ny »a) eSB(B).

Rule Mr: Similar to M1.

Rule M1* 1: We must prove:

M1+(Paq,®9B’B)
or equivalently:

[(p,9)eB &

oc{(a,p)] B’} & =
L ()¢ B(B)

[B<B &

2<®B(B) &

| (p,q) & B(B)
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which is trivially true since (p,q)eB(B) ifr
(py,2)eSB(B) .

Rule M17 2: we must prove:

(0) Ml+(P,q,M7B')D) = M1+(p,q,{(a,p')}uM,B,D)

when q-3q° for some q” with (p’,q")eB. Since
M1*(p,q,M,B,D) and M1¥(p,q,{(2,p")}UM,B,D) have the
same conclusion it suffice to prove that the antecedent
of Ml+(p,q,{(a,p')}UM,B,D) implies the antecedent of
M17(p,q,M,B,D), i.e.:

[‘(p,q)eB &

MU {(a,p")} < {Ca,p)| p>p’} & =
_(pMU{(a,p')} 9 Q)SSS(B)

[ (p,q)eB &

us {(a,p7) | pBp’} &

L (pys @) & B(B)

Only (pM,q)sEB(B) does not follow immediately. However,

Py = Pyug(a,pc) * 2-P7» and (pMU{(a,}')')? » Ve B(B) by
the antecedent. Since q-3q° and (p”,a")eB also

(a.p’,9)e B(B). Thus (py»2) eB(B).

Rule M1* 5: We must prove:

(0)  [eilp”,a”, {(p*,a")}UB,0) &
Ml+(p,q,M,C,D) -

M1*(p,q,Mu{(a,p")},B,D)
when q-2q°. Assume the antecedent of (0), i.e.:

(1) c1’,a",{(®",a)}uB,0) o

1. {(p',q') UBc C &
2. Cf((Bu (®",a) P - {(®»",a"} ) em(0)

since (p',q')g{Kp’,q’)}UB is trivially true, and:
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(2) Mi1%(p,q,M,C,D) o

(ant) [1. (P,@)eC &
2. ME{(a,p')l p-%p'} & | =
2 (pqu)S$(C)

(concl) [1. CccD &
2. D=C c®B(D) &
3. (p,q) e B(D)

Also assume the antecedent of the conclusion of (0), i.e.:

(3) 1. (p,Q)eB &
2. MU {(a,p)]}c {(a,p?) | pﬁp'} &
> Py g(a,pip » Qe BB)

From the assumptions we must now prove:

(4) 1. BcD &
2. D-BcB(D) &
3. (p,q)e V(D)

First let us establish (2.ant): (2.ant.1) follows from
(3.1) and (1.1). (2.ant.2) follows from (3.2). To see
(2.ant.3), note that Py = pMy{(a,p')}'+ a.p”. Using (%.3)
it suffice to prove that (a.p”,a) e B(C). However,

qa-35q° and by (1.1) (p“,q")ecC.

S0 we can now use (2.concl). Let us now prove (4).
(4.1) follows from (1.1) and (2.concl.1l). For (4.2) note
that D-B = (D-C)U(C=B)c (D-C) U(C=B’) where
B® = (BU{(p',q’)}) - {(p',q')}- By (2.concl.2), (1.2)
and monotonicity of B it follows that D-Bcm®(D).
Finally, (4.3) is identical to (2.concl.3).

Rules Mr" 1,2.%: Similar to M1™ 1,2,3. a

Using the induction principle gssociated with the
inferelice system figure 6.2-1 once more, it is straight-
forward to prove that the following finiteness conditions
hold:

25



bisim(p,q,C) = C is finite

closure(p,q,B,C) =

B is finite = (¢ ig finite
matchl(p,q,B,C) =

B is finite = ¢ ig finite

matchl+(p,q,M,B,C) =
M is finite

& = C is finite
LB is finite

With similar finiteness conditions for matchr and matchr+.

Since any bisimulation C containing (p,q) must also
contain a pair for each derivative of p (and similarly a
pair for each derivative of Q), it follows that the
inference system cannot be complete if the processes p
and q have infinitely many derivatives. Similarly, from
the fourth finiteness condition it follows that the processes
P and q as well as their derivatives must have finitely
many derivations (i.e. the set {(a,p')l p-éép'} is
finite) for the inference system to be complete.

Thus, we can at most hope for completeness for processes
p and g with finite state-transition diagrams in the
sense that H?TDER(p) and B?FDER(q) are finite tran-
sition systems. Fortunately the inference system turns

out to be complete for all such processes. We give an
outline of the completeness broof in the following, leaving
the details to the reader,

As a first attempt we might try proving the following
inclusions:

Bis Sbisim Mr c<matehr
Cl <Sclosure Ml+—§match1+
M1 <matehl Mr+ Smatchr™
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However, the verification conditions Bis, C1, Blgsee

do not satisfy the previous finiteness conditions and
the above inclusions are therefore not valid. Also,
viewing bisim, closure, ... as (partial) functions, we
shall only require the above inclusions to hold when the

input-arguments satisfy the "pre-conditions" of the relevant

verification condition. . Thus, we shall be content with
the following weaker type of implications to hold:

C1(p.a;B,0)

ic’ccC. closure(p,q,B,C*)

[ANT ¢1(p,q,B,C) &]
=3

To prove the correctness of these implications we define
for each relation a sigze function which measures the

size of the (input) arguments given. The proof is then
performed by induction on the size of the input-arguments.

For pePr we already have DER(p)=={p']3 ssAct*. p-§9p'}.
Now extend DER to subsets M of ActXPr by
DER(M)=={p'| 3(a,p)SM.HSSAct*. p-éap'}. Then define the
following size functions:

Fp;5(0,q,0) = |DER(p)XDER(q) |
#41(P,q,B,C) - |DER(p)*DER(q) - B + 1
#y1(Pya:B,C) = |DER(p)XDER(q) - B + 1
iy +(p,q,M,B,0) | DER(M)XDER(q) - B|

i (P,,B,0) = IDER(p)xDER(Q) - Bl +1

:FFMI,"'(P,Q,N,B, C) = ,DER(P)XDER(N)

l
o]

Note, that all the size functions only depend on the
input-arguments. For #bl B is to be thought of as

the part of the final bisimulation which have been estab-
lished so far. Thus, DER(p)*DER(q) - B is the state
Space which remains to be investigated. Note, that

ﬂﬁl+ is independent of its first input-argument .
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Instead, the set of derivations M of p which remains to
be matched by q is used.

Temma 6.,2-3: If p and q have finite state-transition

diagrams, then for all new:

(1) [Bis(p,q,C) & = 3CcC. bisim(p,q,C")
ﬁBiS(p,q,C)gn

-

(ii) [anr(Cci(p,q,B,C)) %
C1(p,q,B,C) & = 3C°cC. closure(p,q,B,C")
:ﬂ:C]_(P,q’BQC)ﬁn |
(iii) [ANT(M1(pP,q,B,C)) & ]
M1(p,q,B,C) & = 3C’cC. matchl(p,q,B,C")
#Ml(Paq,B,C))gn

(iv) r-Al\T’I‘(IVII'(p,qu,C) &
Mr(p,q,B,C) & = 3C°<C. matchr(p,q,B,C")
:”:Mr<P9q,Bac) <n

(v) [ANT(M1%(p,q,M,B,C)) &]
M1*(p,q,M,B,C) & = 3C¢C. matchl¥(p,q,M,B,C")
#M1+<P,Q9MaBac)$n

(vi) [aNT(Mr™(p,q,N,B,C)) &
Mr*(p,q,N,B,C) & =3C’sC. matchr'(p,q,N,B,C")

%bl:l\,lr+(p,q,N,B,C) <n

-

Proof: By induction on n with subinductions on |M| and
|IN| for (v) and (vi). MLT 3 (and similarly MRY 3) only
needs to be used when q does not have a match for (a,p’)
in B (otherwise ML 2 is applicable). It is therefore
easy to see that using the inference rules backwards once
or twice will decrease the size of the input arguments and
hence make the induction hypothesis applicable. (m]

From this lemma the following completeness result
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follows immediately:

Theorem 6.2-4: If p and q have finite state-transition

diagrams then:

p~q = 3C. bisim(p,q,C)

Proof: Since p and q have finite-state transition
diagrans, ﬂéis(p,q,0)80) for all C. p~q implies that
Bis(p,q,C) holds for some C. Thus, the completeness
theorem follows from lemma 6,2-3 (1i). o

The inference system in figure 6.2-1 is easily modified
for weak bisimulation: simply change the sideconditions
of ML' 2 ang 3 (and similarly of MR™ 2 ang 3) to:

a2 #
a—,9q g ,
(p’,q97)eB and 1=>549

Using proposition 5.0-1 soundness and (restricted)
completeness can be proved for the modified system. Simi-
larly, the inference system 6.2-1 can be extended to
parameterized strong and weak bisimulation.

The inference system 6.2-1 can also be represented
almost directly in PROLOG (see /CM81/), thus giving an
(operational based) implementation for constructing
bisimulations. Each of the six relations (bisim, closure,
matchl, ... ) is represented as =a PROLOG predicate and
each rule of the inference system is represented as a
Horn Clause with sideconditions (of ML* and MR+) being
included as part of the premisses. Sets and set-operations
are represented as lists and operations on such.
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bisim(P,Q,C) :- closure(P,qQ,[[P,q]],0).

closure(P,Q,B,D) :-
matchl(P,Q,B,C), matchr(P,Q,C,D).

matchl(P,Q,B,C) :-
derset(P,M), matchl*(P,q,M,B,0).

watiehr(PyQ,0,0} z-
derset(Q,N), matchr*(P,qQ,N,C,D).

matchl*(P,qQ,[],B,R).
matchl™(P,qQ,[[A,P"]IM1,B,D) :-
der(Q,4,Q7), in([P*,Q"1,B), !,
matchl®(P,Q,M,B,D).
matchl™(P,Q,[[A,P ] |M],B,D) :-
der(Q,4,Q7), closure(P’,qQ”,[[P’,q"]1B1,0),
matchl®(P,Q,M,C,D).

matchr® (P,Q,[1,B,B).
matchr'(P,Q,[[A,Q°1|N1,B,D) :-
der(P,A,P"), in([P",Q71,B), !,
matchr (P,Q,N,B,D).
matchr' (P,qQ,[[A,Q°1IN],B,D) :-
der(P,A,P”), closure(P”,Q”, [TP*,Q"7|8],0),
matchr™ (P,Q,N,C,D). (figure 6.2-5)

The cut symbol (!) in the second clause for matchl’
(and similar matchr+) optimizes the implementation slightly,
in that it only allows the third clause for mateh1l™
(and similarly for matchr+) to be used in case g does
not have a match for (a,p;) in B,

To complete the implementation clauses for the predi-
cates derset and der must be given such that:

derset(p,M) ® ‘M’ = {(a,P')l P'§>P'}
and der(p,a,p’) © p-3p°

where ‘M° is the set represented by M. derset is easily
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derived from der and in the next section we shall show
how to represent (a large subset of) CCS and its opera-
tional semantics in PROLOG.

Due to the particular order (1eftmost-depthfirst) 1 i
which PROLOG tries to satisfy goals, non-termination may
occur. For example, by prefixing the clauses of figure
6.2-5 with the trivial clause:

bisim(P,Q,C) :- bisim(P,Q,C).

no goals involving the predicate bisim will terminate.
Thus, our previous soundness and completeness theorems
only demonstrate partial correctness of the PROLOG program

figure 6.2-5. In order to obtain total correctness it
must be proved that the PROLOG bProgram always terminates

given a goal of the form bisim(p,q,C), where p and q
are processes with finite state-transition diagrams.
However, given two such brocesses it is clear that the
space of subgoals which is relevant for the goal
bisim(p,q,C) is finite. Moreover, the clauses of the
PROLOG program define an acyclic dependency between
these subgoals (acyclic because the previously defined
size functions decrease when the rules or clauses are
used backwards). Thus, the leftmost-depthfirst search
strategy used by PROLOG will always lead to termination.
A more formal proof of termination may be obtained by
employing the methods of /Fran84/.

©.2.2 CCS in PROLOG.

It is straightforward to represent (a subset of) CCS
and its operational semantics in PROLOG. To each CCS
Process construction we simply introduce a corresponding
PROLOG-operator. For obvious reasons we cannot always
get the desired standard notation, so here is the PROLOG
representation of CCS:
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Standard
Construction PROLOG Notation
Inaction nil ()
Prefix asp a.p
Summation P+q P+qg
Parallel p/q plaq
Renaming p-[a:=D] plakb]
Restriction p\[a,b] pf{é,a,b,ﬁ}
Variable var(x) x
Recursion fix(var(x), p) HX.D

To represent the notion of complementary actions in

PROLOG two prefix operators in and out are introduced.
Thus, an action is of the form:

action ::= atom | in(atom) | out(atom)

A special action is the atom tau, which represents the
unobservable action 1.

In the "Prefix"-rule a can be any action, whereas
in the "Renaming" and "Restriction" rules the variables
a and b wmust be atoms. The operational semantics
will automatically extend the Renaming/Restriction to
all prefixes of the atoms.

Recursion variables must be prefixed with the operator
var in order to distinguish them from actions,

Parentheses are used to make parsing unambiguous;
however, to avoid excessive use of parentheses the follo-
wing operator precedence has been introduced:

Prefixi>Restriction”>Renaming>>Summationi>Para11e1

Often large systems will have many occurrences of
some subcomponent (e.g. a memory consisting of many
identical cells). To avoid having to write out in full
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the expression for this subcomponent for each occurrence,
a let-construct for declaring abbreviations is

available, e.g.:

let(medium, in(a)jout(b);nil).

in(a)-——-e{ medium  f—3 out(b)

An already declared abbreviation can be used in the de-

claration of new ones; e.g.:

let(delaymed,
(medium-[b:=c] /
medium-[a:=c])\[a,b] ).

in(a)——é[ medium |--| medium —> out(b)

We shall later see that medium and delaymed are weak

bisimulation equivalent.

The derivation relation —> for the above subset of
CCS is represented as a PROLOG predicate der with a
one-to-one correspondence between the inference rules
for —> and the PROLOG clauses for der; e.g.:

Inference rule PROLOG clause
a.p33p der(A3P , A, P).

2y
~b =L der(P+Q , A , R) :- der(P,4,R).
P+ qQ—r

B
p{px.péx?-—éq der(fix(var(X),P),A,Q) :-
KX.D =29 subst(fix(var(X),P),var(x),P,R),
der(R,4,Q).
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where subst 1is an auxiliary PROLOG predicate such that
subst(8,var(X),U,V) holds iff V==U{S/var(Xj}. By the
way: it seems that many Structured Operational Semantics
(see /P181/) have a direct implementation in PROLOG. The
operational semantics of CCS is of course just an especi-
ally simple SOS.

6.2.% Using the system.

Combining the representation of CCS in PROLOG from
the previous section with the PROLOG-program for con-
structing (weak) bisimulations from section 6.2.1 results
in a system for proving (weak) bisimulation equivalences
between CCS processes. We shall demonstrate the use-
fulness of the system for weak bisimulation through

three examples.

First, consider the two processes medium and delaymed
declared in the previous section.

| ?- bisim(medium,delaymed).

1 medium
delaymed [2,4]
2 out(b);nil
(nil-[b:=c]/out(b);nil-[a:=c])\[a,b] [3]
3 nil
(nil-[b:=c]/nil-[a:=c])\[a,b] []
4 out(b);nil
(out(b);nil-[b:=c]/medium-[{a:=c])\[a,b] [3,2]
ves

| 2-

We see that the goal bisim(medium,delaymed) succeeds,
and hence that medium Tdelaymed. The resulting bisimu-
lation contains four (numbered) pairs of processes,
(medium,delaymed) being one of them. The list of numbers
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following each pair indicates its successorpairs and
is handy if one wants to check that the set of pairs
really constitutes a bisimulation.

As our next example we consider the Simple Scheduler
from section 5.5. We declare abbreviations for an indi-
vidual cell, the scheduler of size % and its specifica-
tions:

?- let(cell, fix(var(x), in(a);w;out(b);var(x)) ).

?- let(sch, ( w;out(b);cell-{a:=clj-[b:=c2]-[{w:=wl] /
cell-[a:=c2]-[b:=c3]-[w:=w2] /
cell-[a:=c3]~-[b:=cl]-[w:=w3]

) \[wl,w2,w3] ).

?- let(spec, fix(var(x), wl;w2;w3;var(x)) ).

| ?- bisim(spec,sch).

spec
sch

w2 ;w3 ; spec
(cell-[a:=cl]-[b:=c2]-[w:=w1l] /
w;out(b);cell-[a:=c2]-[b:=c3]-[w:=w2] /
cell-[a:=c3]-[b:=cl]l-[w:=w3])\[wl,w2,w3]

w3 ; spec
(cell-[a:=cl]-[b:=c2]-{w:=wl] /
cell-{a:=c2]-[b:=c3]-[w:=w2] /
w;out(b);cell-{a:=c3]-[b:=cl]-[w:=w3])\[wl,w2,w3]

spec
(cell-[a:=cl]j-[b:=c2]-[w:=wl] /
cell-[a:=c2]-[{b:=c3]-[w:=w2] /
out(b);cell-[a:=c3]-[b:=cl]-{w:=w3]1)\[wl,w2,w3]
w3 ; spec

(cell-[a:=cl]-[b:=c2]-[w:=wl] /
out(b);cell-{a:=c2]-[b:=c3]-[w:=w2] /
cell-[a:=c3]-[b:=ci]-[w:=w3])\[wl,w2,w3]

w2 ;W3 ; spec
(out(b);cell-[a:=cl]j-[b:=c2]-[w:=wl1l] /
cell-[a:=c2]-[b:=c3]-[w:=w2] /
cell-[a:=c38]-[b:=cl]-[w:=w3])\[wl,w2,w3]

ves
i ?-
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The goal bisim(spec,sch) succeeds and hence spec= sch
as expected. Note, that the three abbreviations are also
used in the display of the final bisimulation.

The final example we consider, in a slightly simplified
version, comes from a set of Lecture Notes used by Robin
Milner to accompany a course on CCS and involves the
representation of a workshop comprising two men, a mallet
and a hammer., In our simplified version a man can use
either a hammer or a mallet to perform a job. gh and
Ph represent the actions of getting and putting a hammer,
likewise gm and pm for mallet.

?- let(man,
fix(var(x), injob;(in(gh);out(ph) ;outjob;var(x) +
in(gm) ;out(pm) ;outjob;var(x))

)

The behaviour of the hammer and mallet are extremely
simple:

?- let(hammer,
fix(var(x), out(gh);in(ph);var(x)) ).

e lJet(mallet,
fix(var(x), out(gm) ;in(pm);var(x)) ).

The two men together with the tools, the hammer and the
mallet, 1s put together to form a CLOSEDSHOP as follows:

?- let(closedshop,
( man / man / hammer / mallet J\[injob,outjob] ) .

243



injob :>

outjég::>

The specification for closedshop is given by the following

process donothing:

?- let(one,
fix(var(x), injob;outjob;var(x) +
outjob;injob;var(x) ) ).
?- let(donothing,
injob;one ).

The following shows that the goal
bisim(donothing,closedshop) succeeds producing a bisimu-
lation containing 23 pairs. Thus we can indeed conclude
that donothing=closedshop. A "handmade" proof of the
closedshop example (in its full version) can be found in
/San82/.

| ?- bisim(donothing,closedshop).

i donothing
closedshop [2,6,16]

2 one
(outjob;man /
man /
hammer /
mallet)\[injob,outjobl} [3,1,18}
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3 outjob;one
(outjob;man /
outjob;man /
hammer /
mallet)\{injob,outjob]

4 one
(man /
outjob;man /
hammer /
mallet)\[injob,outjob]

5 outjob;one

[2,4]

[(3,1,5]

(in(gh) ;out(ph) ;outjob;man+in(gm) ;out(pm) ;outjob;man

outjob;man /
hammer /
mallet)\[injob,outjob]

6 one

[4,6,21,12]

(in(gh) ;out(ph) ;outjob;man+in(gm) ;out(pm) ;outjob;man

man /
hammer /
mallet)\[injob,outjob]

1 outjob;one

[3,1,7,22,13]

(in(gh) ;out(ph) ;outjob;man+in(gm) ;out (pm) ;outjob;man

in(gh) ;out(ph) ;outjob;man+in(gm) ;out(pm) ;outjob;man /

hammer /
mallet)\[injob,outjob]

8 outjob;one

[4,8,18,23,14]

(in(gh) ;out(ph) ;outjob;man+in(gm) ;out (pm) ;out job;man

out(ph) ;outjob;man /
in(ph) ; hammer /
mallet)\[injob,outjob]

9 outjob;one
(out(pm) ;outjob;man /
out(ph) ;outjob;man /
in(ph) ; hammer /

in(pm);mallet)\[injob,outjob]}

i0 outjob;one
(outjob;man /
out(ph) ;outjob;man /
in(ph) ; hammer /
mallet)\[injob,outjob]

11 one
(man /
out(ph) ;outjob;man /
in(ph) ; hammer /
mallet)\[injob,outjob]

[4,5,9]

[4,10,12]

[4,11,3]

{3,1,8,4]

/
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12

13

14

15

16

17

18

i

20

outjob;one
{(out(pm) ;outjob;man /
outjob;man /
hammer /
in(pm);mallet)\[injob,outjob]

one
(out(pm) ;outjob;man /
man /
hammer /
in(pm);mallet)\[injob,outjob]

outjob;one
(out(pm) ;outjob;man /

[4,13,3]

[3,1,14,2]

in(gh) ;out(ph) ;outjob;man+in(gm) ;out(pm) ;outjob;man /%

hammer /
in(pm) ;mallet)\[injob,outjob]

outjob;one
(outjob;man /

in(gh);out(ph);outjob;man+in(gm);out(pm);outjob;man /

hammer /

mallet)\[injob,outjob] [4,16,10,20]

one
(man /

in(gh) ;out(ph) ;outjob;man+in(gm) ;out(pm) ;outjob;man /

hammer /

mallet)\[injob,outjob] [3,1,7,11,117]

one
(man /
out(pm) ;outjob;man /
hammer /
in(pm) ;mallet)\[injob,outjob]

outjob;one

[4,15,9]

[3,1,18,4]

(in(gh) ;out (ph) ;outjob;man+in(gm) ; out(pm) ;outjob;man /

out(pm) ;outjob;man /
hammer /
in(pm) :;mallet)\[injob,outjob}

outjob;one
(out(ph) ;outjob;man /
out(pm) ;outjob;man /
in(ph) ; hammer /
in(pm);mallet)\[injob,outjob]

outjob;one
{outjob;man /
out(pm) ;outjob;man /
hammer /
in(pm) ;mallet)\[injob,outjob]

[4,5,19]

[4,20,21]

[£,17,3]
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21 outjob;one
(out(ph) ;outjob;man /
outjob;man /
in(ph) ; hammer /
mallet)\[injob,outjob] (4,22,3]

22 one
(out({ph) ;outjob;man /
man /
in(ph) ; hammer /
mallet)\[injob,outjob] [3,1,23,2]

23 outjob;one
(out(ph) ;outjob;:man /
in(gh) ;out(ph) ;outjob;man+in(gm) ;out(pm) ;outjob;man /|
in(ph) ; hammer / i
mallet)\[injob,outjob] [4,15,19]
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©.5 CONCLUDING REMARKS, FUTURE AND RELATED WORK

In the previous section 6.1 of this chapter we have
shown that the various notions (parameterized/unparamete—
rized, strong/weak) of bisimulation equivalence are all
polynomial time decidable for Drocesses with finite
state-transition diagrams, Based on an alternative
decision procedure, a PROLOG-system for constructing
(parameterized/unparameterized, strong/weak) bisimulations
for finite CCS expressions over regular expressions hasg
been implemented (and verified) in section 6.2, This
alternative decision brocedure is related to a Similar
algorithm presented in /San 82/: both algorithms will, given
two processes p and 4, try to construct a minimal bisimula-
tion containing the pair (p,q). However, the algorithm
in /San82/ is significantly less general than ours: besides
the necessary condition of P and g having finite state—
transition diagrams, the process D must be rigid and
deterministic (see /San82,Mi180/) and the process g must
be non~divergent in the sense that none of itg derivatives
can perform an infinite sequence of l-actions., Also,
neither a correctness proof nor an implementation is pro-
vided in /San82/,

Though the PROLOG~system presented in section 6.2 is
rather simple it serves the purpose of demonstrating the
achievability and potential uses of automatic tools.
However, lots of work remains to be done in developing more
satisfactory future tools. One main disadvantage of the
PROLOG~system Presented is that it only allows processes
with finite state~transition diagrams. In any realistic
example this assumption is likely to be violated: Often
process expressions are indexed or Parameterized with
elements from some infinite set (the natural numbers in
the Simple Scheduler example in section 5.5, natural
numbers and sets of natural numbers in the scheduling
example of /Mil80/ chapter 3). In order to deal with
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such expressions the System must be able to bProve proper-
ties about the Parameters used. Depending on the parame-
ters used and the complexity of properties the system is
required to deal with, it may well turn out that the
equivalence problem for indexed/parameterized process
expressions becomes undecidable, Thus, for future systems,
it might be more relevant +o think in terms of checking
and guiding equivalence proofs (& la ICF /GMW79/) instead
of automatically producing such proofs.

A small, first system of this type has been developed in
PROLOG by K.V.S. Prasad, /Pr?/. His system is quite
similar to ours except that it instead of constructing
bisimulations will check whether a given (by the user)
binary relation on processes constitutes a (weak) bisimu-
lation. Being essentially a proof checker (viewing a
bisimulation as a proof) the system is able to deal with
certain types of bparameterized expressions. Parts of
the correctness proof of a simple fault tolerant system
/Pr84/ have been checked by the system.

Another proof checking system hag been developed in
Lisp by Nick Traub /Tr83/. 1In contrast to Prasad’s and
our systems, which both are based on the operational
semantics of CCS, Traub’s System allows the user to mani-
pulate (CIRCAL) expressions using algebraic laws (for
CIRCAL see /M82/).

Maybe future systems should support both equivalence
proofs obtained by applying algebraic laws and equiva-—
lence proofs obtained by exhibiting appropriate bisimula-
tions.

So far we have concentrated on systems for proving
(weak) equivalences between processes. However, in order
for a system to assist in (weak) parameterized equivalence
broofs and support the associated proof methodology
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developed in this thesis, it seems necessary for the system
also to know about the following:

- Contexts (and their operational semantics)
— How contexts transform environments.

It seems quite feasible to extend our PROIOG-system
with such "information".

Finally, we will mention the possibility of having
systems for verifying or assisting in verifying partial
broperties of processes, specifically modal properties

of processes. Such a system could be either operational-
ly based (i.e. using directly the definition of the
satisfaction relation) or based on the proof systems which
exist for various subsets of CCS, SCCS /8t83,3t85,W85,W858/.
However, it seems that the (socalled Hennessy-Milner)
Modal Togic (see section 2.1.3) which is currently being
used is, from a pragmatic point of view, not expressive
enough. For instance will the satisfaction of any modal
formula from this logic only depend on a (certain) finite
part of the processes. Though, it seems that this
deficiency can be remedied by adding recursion to the
modal logie (& la Dexter Kozen’s Im-calculus /Ko82/),
more work is needed in finding a practically satisfactory
logic,
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CHAPTER 7

CONCLUSION &
FUTURE WORK

A thorough investigation of a parameterized version of
bisimulation equivalence has been presented in this thesis.
The parameterized version proposed has been shown to enjoy
a large number of pleasant properties and we are therefore
confident that the version is indeed a natural one. It
1s hoped that the results proved in this thesis will
provide a useful repertoire of techniques for making
hierarchic verification of concurrent systems an easier
task. The Simple Scheduler example considered demonstrates
the intended use of the results presented. We believe
that the techniques introduced will be especially useful
for larger examples, where obviously the need for hierar-
chic decomposition is greater. Evidence of this potential
usefulness for larger systems has recently been given
by Robin Milner, who has indicated how to apply the
techniques of this thesis to the Alternating Bit Protocol.

More specifically, the main achievements of this thesis

are:

l. We have defined'a parameterized version of bisimulation
equivalence with so-called environments used as para-
meters. The resulting parameterized equivalence is
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shown to have all the broperties expected in chapter
1. As Main Theorems a characterization of the
discrimination ordering between environments, and a
maximal environment construction has been Presented,
Also, a modal characterization of Parameterized
bisimulation equivalence is given.

Results showing how contexts transform modal formulas
and environments have been given. Thesge results
constitute the main tools provided by this thesis for
hierarchic verification of concurrent systems. In
order to facilitate the above investigation an abstract
(and new) semantic account of contexts as action
transducers has been introduced. Besides being of
independent interest, this semantic account has made
our results general in the sense that they are
applicable to (almost) all brocess constructions,

The resulss from 1 and 2 have been extended to a
similarly barameterized version of the (perhabs more
interesting) weak bisimulation equivalence, X , The
main obstacle in performing this extension has been
that X is not preserved by all contexts. However,
based on the semantic description of contexts as action
transducers, conditions insuring the Preservation of

~ have been given. These conditions ought also to

be of independent interest., The intended use of the
(extended) results in verification has been illustrated
through an example.

Complete axiomatizations for parameterized bisimulation
equivalence have been given for finite and regular
pbrocesses and environments.

We have shown that barameterized bisimulation equiva-~
lence is polynomial time decidable for regular processes
and environments, thus generalizing the existing poly-
nomial time complexity result for (unparameterized)
bisimulation equivalence.
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6. Finally, a PROLOG system for constructing bisimulations
over CCS expressions has been implemented, verified and
demonstrated.

There are at least three main areas in which future
work can be done, Having developed a theory of parame-
terized bisimulation equivalence it is imperative that
we test it extensively through practical applications.
Only this will enable us to determine whether the deve—
loped theory is succesfull in shortening correctness
proofs. The Simple Scheduler considered in this thesis
and the Alternating Bit Protocol investigated by Robin
Milner indicate the potential usefulness of the theory
but much more practical experience is obviously needed
before any final Judgement can be made. The Alternating
Bit Protocol is a member (the simplest) of a whole class
of protocols known as Sliding Window Protocols. These
protocols therefore seem natural next candidates for our
proof techniques. The process of gaining more practical
experience would also help us in finding more advantageous
ways of utilizing our results in correctness proofs and
might even create a demand for results slightly different
from those provided by this thesis. From the maximal
environment construction and the weakest inner environment
construction we know that the barameterized equivalence:

(%) c[r] ~ clq]
can be reduced to the simulation problem:

(*%) wie(C,e)< /p,q/

Using the algebraic laws bresented in this thesis we might
be able to calculate wie(C,e) and /p,q/. However,
the calculation of /P,q/ will depend on all of P s and
q”s behaviours regardless of whatever restrictions C may
impose on p and Q. Similarly, the calculation of
wie(C,e) 1is based on the full behaviour of C with no
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considerations of the restrictions the processes p and

Q may impose on C. Obviously, we would like to deduce

the simulation in (**) without an explicit calculation of
wie(C,e) and /p,q/. By replacing (**) with a parame-
terized equivalence P~rq where f is an environment
satisfying wie(C,e)<f, the calculation of /P,a/ can

be avoided. However, this still leaves the problem of
deciding wie(C,e)<f without calculating wie(C,e),

Our experience with the Simple Scheduler as well as the
Alternating Bit Protocol suggests that this may more easily
be done by appealing directly to the operational seman—
tics of wie(C,e) (i.e. e[c]) instead of using the alge-
braic laws for wie(C,e). However, this remains to be
confirmed by more examples.

Through more examples we may also find that certain
types of environments are more useful than others. Judged
by the few examples already investigated it seems that
language environments are especially convenient and
frequent. Also, it seems that the type of language
environments we encounter in our correctness proofs are
themselves special: they are almost universal language
environments except for a few restrictions on certain
key actions; e.g. the action a most occur before any
b action and between any two a actions there are at
least one occurrence of b. In order to emphasise these
(key) restrictions it may well be more convenient to
adopt some other notation for language environments than
the regular expression notation used in this thesis. We
expect some Linear Temporal Logic may prove useful for
this purpose. However, irrespective of what notation is used,
it is crucial to maintain an operational semantics of
environments in order for the Parameterized bisimulation
technique to be at our disposal.

During the process of gaining more practical experilence
by applying our techniques to larger examples, the
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availability of computer assistance will become essential,
This is another area for future work. Our PROLOG system
provides a first such automatic tool but lots of work
remains to be done in order to develop more satisfactory
tools. At present the PROLOG system will simply terminate
with failure when given two processes, p and g, not
equivalent. This is rather uninformative. Obviously

- the user would like to be given a reason for why the
processes are not equivalent so that Proper alterations of
either process can be done. From the modal characteri-
zation of bisimulation equivalence we know that there
exist some modal formula F  such that PEF and aF T

in case p and q are inequivalent. We may view F as

& reason for or an explanation of why p and q are not
equivalent. It seems possible to extend the GENERALIZED
PARTTITIONING algorithm from section 6.1 so that it returns
a modal formula F with PEF and qW¥F when PAq :

Throughout the execution each block Bj of the

current partitioning is associated with a modal

formula F. such that pk:Fj for all p in Bj and

I)VEH whenever p is not in Bj‘ When (and if) the

two processes P and g under consideration are sepera-

ted into two different blocks B, and Bj (which

will happen if P#q) we may simply return either of

the modal formulas Fi and ﬂEB - The single block

of the initial partitioning is associated with the

modal formula Tr. When, during execution, a block

Bi of the current partitioning is split into two

blocks Bi and Bi' with respect to some function

f, and some block Bj (i.e. qu{ iff fa(q)ﬂB.;!Q

and B{'::Bi-Bi) we associate with Bi and Bi'

the modal formulas F{=F; A <é>Fj and

F£’==Fiﬁﬂﬁ<a>Fjo This will maintain the invariant
bproperty of the modal formulas.

Obviously, we are also interested in developing tools which

can assist in parameterized equivalence proofs and support

the associated proof methodology developed in this thesis.
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It seems necessary for such a tool to know about contexts
and their operational semantics and how to derive the
operational behaviour of a combined environment e[¢]
from those of e and Ce It is quite feasible to extend
our PROLOG system with such "information",

The motivation for context dependent equivalences is
& general one and not only applicable to bisimulation
equivalence., Thus, a third area for future work is
concerned about extending the results of this thesis to
other equivalences, especially the equivalences mentioned
in chapter 1 (failure and testing equivalence). It seems
natural to try and maintain the use of environments as
parameters. The various alternative (and recursive)
defintions of failure and testing equivalence given in
/Ni85/ ought to be a useful guide for how DPrecisely to
define their barameterized versions, Other possibilities
for future research include an extension of the Main
Theorem 2.4-20 to image-infinite environments.

In conclusion, it has become clear that, while this
thesis provides a thorough investigation of s Parameterized

bisimulation equivalence and indicates its use in correctness

proofs, there is still Tuture work to be done in applying
the techniques and results of this thesis, in developing
tools for computer aided verification and in extending
the results of thig thesis to other equivalences.
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