
B
R

IC
S

D
S

-0
1

-3
T

.
S

.
H

u
n

e:
A

n
a

ly
zin

g
R

ea
l-T

im
e

S
y

stem
s:

T
h

eo
ry

a
n

d
T

o
o

ls

BRICS
Basic Research in Computer Science

Analyzing Real-Time Systems:

Theory and Tools

Thomas S. Hune

BRICS Dissertation Series DS-01-3

ISSN 1396-7002 March 2001

Copyright c© 2001, Thomas S. Hune.

BRICS, Department of Computer Science

University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use

on condition that this copyright notice is

included in any copy.

See back inner page for a list of recent BRICS Dissertation Series publi-

cations. Copies may be obtained by contacting:

BRICS

Department of Computer Science

University of Aarhus

Ny Munkegade, building 540

DK–8000 Aarhus C

Denmark

Telephone: +45 8942 3360

Telefax: +45 8942 3255

Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide

Web and anonymous FTP through these URLs:

http://www.brics.dk

ftp://ftp.brics.dk

This document in subdirectory DS/01/3/

Analyzing Real-Time Systems:
Theory and Tools

Thomas Seidelin Hune

Ph.D. Dissertation

Department of Computer Science

University of Aarhus

Denmark

Analyzing Real-Time Systems:
Theory and Tools

A Dissertation
Presented to the Faculty of Science

of the University of Aarhus
in Partial Fulfillment of the Requirements for the

Ph.D. Degree

by
Thomas Seidelin Hune

January 31, 2001

Abstract

The main topic of this dissertation is the development and use of methods
for formal reasoning about the correctness of real-time systems, in particular
methods and tools to handle new classes of problems. In real-time systems
the correctness of the system does not only depend on the order in which
actions take place, but also the timing of the actions. The formal reasoning
presented here is based on (extensions of) the model of timed automata and
tools supporting this model, mainly Uppaal. Real-time systems are often part
of safety critical systems e.g. control systems for planes, trains, or factories,
though also everyday electronics as audio/video equipment and (mobile) phones
are considered real-time systems. Often these systems are concurrent systems
with a number of components interacting, and reasoning about such systems is
notoriously difficult. However, since most of the systems are either safety critical
or errors in the systems are costly, ensuring correctness is very important, and
hence formal reasoning can play a role in increasing the reliability of real-time
systems.

We present two classes of cost extended timed automata, where a cost is
associated to an execution of the automaton. We show that calculating the min-
imum cost of reaching a location in the automaton, the minimum-cost reach-
ability problem, is decidable for both classes. Since a number of optimization
problems, e.g. scheduling problems in a natural way, can be modeled using cost
extended timed automata, we can now solve these problems using extensions
of timed model checkers. The state-space of the simpler class, uniformly priced
timed automata (UPTA), which is a subclass of linearly priced timed automata
(LPTA), can effectively be represented using a slightly modified version of the
well known difference bounded matrix (DBM) data-structure for representing
zones, used in most timed model checkers. Using an extension of the region con-
struction, the minimum-cost reachability problem can also be solved for LPTAs.
However, the standard way of using zones for representing the state-space can-
not be used for LPTAs, since there is no way of capturing the cost of states.
Based on the notion of facets, zones can be split into smaller zones which can be
represented by extended DBMs in an effective way. Minimum-cost reachability
for both UPTAs and LPTAs have been implemented in extensions of Uppaal,
and successfully tested on a number of case studies. In particular, part of the
Sidmar steel production plant, which is a case study of the Esprit VHS project,
has been studied. Schedulability, without considering cost and optimality, has
also been addressed using standard timed automata and Uppaal. In order to
solve the schedulability problem in Uppaal it proved crucial to add a number

v

of guides to the model, in order to limit the search space. In the cost extended
versions of Uppaal, guiding in terms of changing the order in which states are
searched has also been used, and shown to be effective both for finding solutions
to optimization problems and in ordinary timed model checking.

The second extension of timed automata is parametric timed automata,
where parameters can be used in expressions for guards and invariants. We
consider the problem of synthesizing values for the parameters ensuring satisfi-
ability of reachability properties. Since there are in most cases infinitely many
values ensuring that a property is satisfied, the result is presented in terms of
constraints for the parameters. We present a semi-decision procedure synthesiz-
ing the constraints. The problem of synthesizing constraints for the parameters
has been show to be undecidable. To represent the state-space we extend the
DBM data-structure to parametric DBMs, capable of representing zones were
the bounds are given by expressions including parameters. The semi-decision
procedure is implemented in Uppaal and constraints ensuring correctness of a
number of industrial protocols is synthesized.

Since (timed) reachability checking requires large amounts of resources in
terms of memory and CPU time, we have studied the possibility of distributing
the reachability checking to a network of computers. We have implemented a
distributed version of Uppaal and tested it on a number of the largest known
case studies for Uppaal. Not only did we achieve effective usage of all the
connected computers (close to linear speedup in the number of computers) we
also discovered that the breadth-first search order, which previously has been
considered to be the best known, is not optimal.

We apply the general categorical framework of open maps to timed au-
tomata by presenting a category where the elements are timed automata, and
a subcategory suitably for representing observations, timed words. Following
the framework, maps in the category can be seen as simulations, and two timed
automata A and B are timed bisimilar if and only if there exists a timed au-
tomaton C and open maps C → A and C → B. We show that this notion of
timed bisimulation coincides with the know notion of timed bisimulation, and
using the region construction show that the bisimulation is decidable.

Building timed automata models of systems can be an error prone and time
consuming task. We address this problem by presenting a translation from a
low level programming language used in the programmable LEGO RCX
brick to timed automata. Programs for the RCX brick can consist of several
tasks running concurrently. Therefore an important part of the model of the
program is a model of the scheduler. The translation has been implemented
and tested on a control program for a car.

Finally, we consider a kind of partial program synthesis for untimed sys-
tems. Given a safety specification written in monadic second order logic, we
use the Mona tool to derive an automaton accepting the language of the spec-
ification. The automaton is used to restrict the executions of a handwritten
control program, ensuring that the safety requirements are met. To demon-
strate the approach we consider a control program for a crane, written for the
RCX brick. We also discuss more generally what should happen when there
is a conflict between the actions of the control program and the specification.

vi

Acknowledgments

First and foremost I would like to thank my supervisor Mogens Nielsen for
skillfully guiding me through my time as a PhD student. During this time
he has not only inspired me to investigate various interesting topics, but also
encouraged me to diverge into areas of my interest, still being able to guide me
in the right directions.

I would also like to thank Prof. Kim G. Larsen for directing me into the
world of timed model checking and including me in many of his research ac-
tivities. He has always found the time to discuss ideas and thoughts on timed
model checking and its applications. Also, he introduced me to the Esprit
Project Verification of Hybrid Systems (VHS) and has invited me to spend
much time at the BRICS group at University of Aalborg. The importance of
both of these opportunities cannot be underestimated. Also thanks to everyone
at the Aalborg part of BRICS for receiving me well. A special thank goes to
Paul Pettersson and Gerd Behrmann for many hours of interesting discussions,
co-authoring a number of papers, and enjoyable travels abroad. I will also like
to take the opportunity to thank everyone involved in the VHS project for some
very interesting meetings.

A special thanks also goes to Prof. Frits Vaandrager for letting me visit his
group, ITT, at the University of Nijmegen. I would like to thank everyone there
for receiving me very warmly, giving me insight in Dutch traditions such as Sin-
ter Klass, and teaching about the life (and looting) of the Danish Vikings. A
special thanks to Marieke Huismann for helping me with various practical prob-
lems and finding the time to show me Nijmegen and its surroundings. Thanks
to Judi Romijn, Ansgar Fhenker and Mariëlle Stoelinga for many interesting
discussions, including discussions on computer science, and for co-authoring a
number of papers.

During my time as a PhD student I have shared offices with a number of
different people: Carsten Butz, Marcin Jurdziński, Bernd Grobauer, Anders
Møller and Flemming Rodler. With these I have enjoyed many interesting and
fruitful discussions ranging from various topics within computer science to the
world far beyond, for which I am grateful.

I would also like to thank everyone at BRICS in Århus for creating a very
dynamic and pleasant research environment, enriched by its many visitors. Also
thanks to the secretaries for helping out with all kinds of practical problems
keeping the administrative overhead for a PhD student at a minimum.

A special thanks also goes to my study group from my time as an under-
graduate student, Claus Brabrand, Flemming Rodler, and Tom Sørensen, for

vii

sharing many hours of frustration with me. Without them I would probably
never have made it through my first years at university.

Last, but not least, I would like to thank my parents, Elna and Jes Hune, for
supporting me throughout all of my studies in all possible ways. I would also like
to thank my girlfriend, Lone Juul Hansen, for all her love and understanding.

Thomas Seidelin Hune,
Århus, January 31, 2001.

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1

1.1 Real-Time Systems . 1

1.2 Formal Reasoning . 2

1.3 Timed Automata . 3

1.4 Outline of Dissertation . 7

I Overview 9

2 Region Based Methods 11

2.1 Regions . 11

2.2 Timed Automata Extended with Linear Cost 13

2.3 Open Maps and Timed Bisimulation 15

3 Timed Reachability Analysis 17

3.1 Distributed State-Space Generation 18

3.2 Guided Synthesis of Control Programs 20

3.3 Efficient Implementation of Uniform Cost 22

3.4 Efficient Implementation of Linear Cost 25

3.5 Parametric Analysis . 26

4 Development Methods 29

4.1 Automatic Model Generation . 29

4.2 Synthesis using Mona . 30

II Region Based Methods 33

5 Decidability of Minimum-Cost Reachability 35

5.1 Introduction . 37

5.2 Linearly Priced Timed Automata 40

5.3 Priced Clock Regions . 42

5.4 Symbolic Semantics and Algorithm 46

ix

5.5 Conclusion . 52

6 Open Maps for Timed Transition Systems 59

6.1 Introduction . 61

6.2 A Category of Timed Transition Systems 63

6.2.1 A Path Category . 69

6.3 Timed Bisimulation . 70

6.4 Decidability . 73

6.5 Extension with Invariants . 77

6.6 Conclusion . 80

III Timed Reachability Analysis 81

7 Distributing Uppaal 83

7.1 Introduction . 85

7.2 Model Checking Timed Automata 86

7.3 Distributed Model Checking of Timed Automata 88

7.3.1 Nondeterminism and Search Orders 89

7.3.2 Why the Search Order Matters 90

7.3.3 Distribution Functions and Locality 92

7.3.4 Termination . 94

7.3.5 Generating Shortest Traces 95

7.4 Experimental Results . 96

7.4.1 Nondeterminism and Search Orders 96

7.4.2 Speedup Gained . 97

7.4.3 Distribution Functions and Locality 101

7.4.4 Generating Shortest Traces 102

7.5 Conclusions . 102

8 Guiding Uppaal for Synthesizing Control Programs 105

8.1 Introduction . 107

8.2 The Scheduling Problem . 109

8.3 Scheduling with Timed Automata 110

8.3.1 Networks of Timed Automata 111

8.3.2 Analysis . 113

8.3.3 A Model for Scheduling the Plant 114

8.4 Guiding Timed Automata . 117

8.4.1 Guiding . 118

8.4.2 Implemented Strategies 119

8.5 Experimental Results . 121

8.6 Synthesis of Control Programs 123

8.7 Conclusion . 125

x

9 Efficient Representation of Uniform Cost 131
9.1 Introduction . 134

9.2 Uniformly Priced Timed Automata 136

9.2.1 Linearly Priced Timed Automata 136

9.2.2 Cost Functions . 138

9.2.3 Symbolic Semantics . 139

9.2.4 Representing Cost Functions 141

9.3 Improving the State-Space Exploration 143

9.3.1 Minimum Cost Order . 143
9.3.2 Using Estimates of the Remaining Cost 144

9.3.3 Heuristics and Bounding 145

9.4 Experiments . 146

9.4.1 The Bridge Problem . 147

9.4.2 Job Shop Scheduling . 148

9.4.3 The Sidmar Steel Plant 149

9.4.4 Pure Heuristics: The Biphase Mark Protocol 151

9.5 Conclusion . 152

10 Efficient Representation of Linear Cost 153

10.1 Introduction . 155

10.2 Symbolic Optimal Reachability 157

10.3 Priced Timed Automata . 161

10.4 Priced Zones . 163
10.5 Facets & Operations on Priced Zones 165

10.6 Implementation & Experiments 168

10.7 Conclusion . 171

11 Parametric Real-Time Model Checking 173

11.1 Introduction . 175
11.2 Parametric Timed Automata . 177

11.2.1 Parameters and Constraints 177

11.2.2 Parametric Timed Automata 178

11.2.3 The Problem . 180

11.2.4 Example: Fischer’s Mutual Exclusion Protocol 180

11.3 Symbolic State Exploration . 181

11.3.1 Parametric Difference-Bound Matrices 182

11.3.2 Operations on PDBMs . 184
11.3.3 Symbolic Semantics . 191

11.3.4 Evaluating Properties . 193

11.3.5 Algorithm . 196

11.4 Reducing the Complexity . 197

11.4.1 Verification of Fischer’s Mutual Exclusion Protocol 205

11.5 Experiments . 207

11.5.1 A Prototype Extension of Uppaal 207

11.5.2 The Root Contention Protocol 208
11.5.3 The Bounded Retransmission Protocol 211

11.5.4 Other Experiments . 212

xi

IV Development Methods 213

12 Automatic Modeling a Language for Embedded Systems 215
12.1 Introduction . 217
12.2 The RCX Language . 218

12.2.1 Program Structure . 219
12.2.2 Example . 219
12.2.3 Commands . 220
12.2.4 Flow Control . 221

12.3 Execution and Scheduling . 222
12.4 Modeling . 222

12.4.1 Structure of Model . 224
12.4.2 Commands . 224
12.4.3 Flow Control . 225
12.4.4 The Scheduler . 228
12.4.5 I/O . 231

12.5 Correctness . 231
12.6 Implementation . 233
12.7 Example Revisited . 233
12.8 Conclusion . 236

13 Using Automata in Control Synthesis 237
13.1 Introduction . 239

13.1.1 Related Work . 240
13.1.2 Outline of the Paper . 240

13.2 Outline of the Method . 241
13.3 The LEGO System . 242

13.3.1 The RCX Language . 242
13.4 Example . 243
13.5 Logic-Based Specifications . 244

13.5.1 Terminology . 244
13.5.2 Specification Logic . 245

13.6 Merging Automata and RCX Code 249
13.6.1 Wrapping the RCX Code 249
13.6.2 Implementing Mutual Exclusion and Automata 250
13.6.3 Variations of the Method 251

13.7 Conclusion . 252

Bibliography 255

xii

Chapter 1

Introduction

The main topic of this dissertation is formal reasoning about the correctness of
real-time systems, in particular development of methods and tools for handling
new classes of problems. As a part of this two more fundamental decidability
results are also presented. A minor part of the dissertation is concerned with
support for programming real-time systems.

In this chapter some of the basic concepts used throughout the dissertation
are presented. Especially, the model of timed automata used to represent real-
time systems is defined formally.

1.1 Real-Time Systems

A real-time system is a system where the correctness of the system depends
on the time at which actions take place, and not only on their order. The
theory and methods presented in this dissertation are developed with systems
controlled by computers in mind and, unless stated explicitly, the term real-
time system will in the following refer to a system controlled by computers.
However, it may as well be applied to systems where computers play no role.

Many of the computer controlled systems we use in our everyday life, of-
ten called embedded systems, fall in the category of real-time systems. Some
examples are washing machines, mobile phones, and audio/video equipment.
These are examples of so called soft real-time systems, since a single failure
to meet the specified timing requirements can be accepted at times. For soft
real-time systems one often talks about quality of service instead of correctness.
Another class of real-time systems is known as hard real-time systems. For hard
real-time systems a single failure to meet a timing constraint cannot be toler-
ated. Hard real-time systems are found in many safety critical systems such
as planes, trains, and factories, where a failure can be very costly or even cost
lives. Therefore the correctness of hard real-time systems is very important. A
number of communication protocols also fall into the category of hard real-time
systems since a single error can stop communication completely. The methods
presented in this dissertation focus on checking the existence of errors and not
on how often they occur. Therefore we are only considering hard real-time
systems.

1

2 Chapter 1. Introduction

Most real-time systems consists of several components which operate in par-
allel and communicate with each other. Such systems are known as concurrent
systems. The real-time systems we are focusing on in this dissertation are, like
most real-time systems, built to control an environment through different kinds
of interaction, not compute a result based on some input. Such systems, called
reactive systems, are therefore not supposed to stop but work continuously.

We will assume that time can be measured on a common time scale for
all components in the system, including the environment. However, we do not
require, that time is global in the sense of the existence of one global clock.
Each part of the system may have its own local clock which can be started and
stopped independently. Having a common time scale allows for comparing the
times measured in different components.

One way of getting experience with a physical real-time system is to build
one e.g. using LEGO Mindstorms. Being able to work with a physical
real-time system can be very useful in understanding how it works and how it
relates to what is modeled. The RCX brick which is part of Mindstorms is
a large brick with a built-in computer. It can be used for controlling LEGO
models through three output ports which can be connected to LEGO motors.
The RCX brick is also equipped with three input ports each of which can
be connected to one of four different kinds of sensors (heat, light, rotation,
and touch), supplied by LEGO. This enables one to build a reactive system
interacting with the environment (the LEGO model) through the input and
output ports. For communication the RCX brick has a built-in I/R sender and
receiver. This is intended for downloading programs from a PC. However, this
can also be used for communication between different RCX bricks enabling
one to build concurrent systems controlled by several independent RCX bricks
communicating via I/R signals. As part of this dissertation, we have developed
control software for LEGO models, since access to ’real’ real-time systems like
a steel plant, has not been possible.

1.2 Formal Reasoning

The problem of ensuring that real-time systems are correct is very important,
since the consequences of failures can be serious. Reasoning about concurrent
systems is known to be difficult, since their behavior is complex due to the
possible interaction between the different components. Including real-time be-
haviors does not make this task easier. Defining the properties a system has to
satisfy to behave correctly can also be difficult because many different possible
behaviors have to be taken into consideration. For these reasons descriptions of
systems and requirements written in plain language are often very long, difficult
to interpret correctly, and reasoning about them by hand error prone. One way
of removing the ambiguities and making the reasoning about the system less
error prone, is to base this on a mathematical foundation.

When reasoning formally about a system one needs two components; a
formal model of the system and a formal specification of the properties the
system should satisfy. Both are mathematical objects described in a formal

1.3. Timed Automata 3

language which need not be the same for both objects. Using formal reasoning
one can then attempt to prove whether the formal model satisfies the formal
specification or not. The possible behaviors a formal model can exhibit is
defined via a formal semantics of the model.

Logic based formalism are often used for describing both the model and the
specification. One can then use logical implication for checking whether the
model satisfies the specification. Describing both model and specification in an
automata based formalism is also used often; language inclusion is then typi-
cally used for checking whether the specification is satisfied. Mixing these two
approaches and representing the model in an automaton based language and
the specification as a logical formula is also common. In this case the satisfia-
bility of the formula is defined over the semantics of the automaton. Describing
both model and specification in a process algebra and using equivalence check-
ing to decide whether the property is satisfied is yet another approach. These
should only be seen as some examples of classes of formal models, formal spec-
ifications and how they are checked, many others exist. In this dissertation the
focus will be on describing the models in an automaton based formalism (timed
automata) and the specifications in a real-time logic.

Though the use for formal methods is based on a mathematical framework
with unambiguous foundations, formal reasoning by hand is error prone. There-
fore, tool support for doing the formal reasoning can be very useful. Many tools
exist for supporting the checking of whether a model satisfies a specification.
Theses range from theorem provers where the user in many cases has to assist
the construction of the proof, to model checkers where a ’witness’ of whether the
model satisfies the specification is found automatically (if possible). Combining
these two approaches has lately been a topic for much research.

Another way of applying formal methods is to synthesize a system based on
a formal specification. However, the synthesis problem is often harder to solve
than the problem of checking whether a given model satisfies its specification.
In the last chapter we address the problem of mixing synthesized code with
existing code. This is the only part of this dissertation which does not consider
real-time problems.

1.3 Timed Automata

The formal model which will be used throughout this dissertation is (networks
of) timed automata. In this section the model of networks of timed automata
used in the model checking tool Uppaal is formally defined. First we will
present timed automata and then extend these to networks of timed automata.
Several variations of timed automata exist, however, all of these are based
on the definition of timed automata presented in [12] and the similar timed
graphs defined in [8]. The model presented in [12] is an extension of Büchi
automata, adding a set of real-valued variables called clocks or clock variables
to the automata. On transitions the value of one or more clocks can be reset
to zero. During an execution the value of all the clocks increase with the same
rate, measuring the time since they were last reset. By adding constraints,

4 Chapter 1. Introduction

called guards, over the clocks on the edges of a Büchi automata the possible
executions can be restricted based on the values of the clocks.

In [75] timed safety automata were introduced, very similar to the timed
automata of [12] and the timed graphs of [8] but extended with an invariant
in locations. An invariant is a guard associated to a location, which must be
satisfied while the automaton is in the location. Using invariants is a way of
ensuring local progress, since an invariant can ensure that it is not possible to
stay in the same location for ever.

The timed automata used in Uppaal are automata over finite strings (where
all locations are implicitly considered accepting locations). In all other respects
they are very similar to the timed safety automata of [75]. Since the timed
automata of Uppaal is used as a modeling language for a number of case
studies, a number of features has been added to ease modeling. These will be
presented in the last part of this section.

We start by defining the clock guards which can be used to restrict the
possible executions.

Definition 1.1 (Clock Guard) Let C be a set of clocks. A guard is a con-
junction of simple guards of the form x − y ⊲⊳ n or x ⊲⊳ n where x, y ∈ C,
⊲⊳ ∈ {<,≤,≥>} and n is a natural number. The set of guards is denoted B(C).

Let Act be a finite set of action, and let P(C) denote the power set of C.

Definition 1.2 (Timed Automata) A timed automaton A over a set Act of
actions and a set C of clocks is a tuple (L, l0, E, I) where

• L is a finite set of locations,

• l0 ∈ L is the initial location,

• E ⊆ L × B(C) × Act × P(C) × L the set of edges, consisting of a source
location, a guard, an action, a set of clocks to be reset, and a target
location, and

• I : L→ B(C) a function assigning invariants to locations.

An edge (l, g, a, r, l′) ∈ E is written l
g,a,r
−→ l′.

Example 1.1 The timed automaton in Figure 1.1 is a model of a telephone. It
has seven locations and one clock x. The initial location is the location Idle with
a circle inside. When moving from Idle to Lifted the clock x is reset (x := 0).
It is not possible to stay in location Lifted for more than 20 time units because
of the invariant x ≤ 20 in the location. The transition from Lifted to Error is
not enabled until at least 20 time units has passed because of the guard x ≥ 20,
whereas the transition from Lifted to One digit is always enabled.

A state of an execution consists of the location of the automaton and the value
of all the clocks. To represent the values of the clocks we define clock valuations.

1.3. Timed Automata 5

Idle

Lifted
x <= 20

Error

One_digit

x <=10

Two digits

x <= 10

Connecting

Talking

x:=0

lift

x:=0

digit

x>=20

x>=10

x:=0digit

x>=10

digit

connect

put_down

put_down

Figure 1.1: The timed automaton representing a phone of Example 1.1.

Definition 1.3 (Clock Valuation) A clock valuation over a set of clocks C

is a function v : C → R≥0. Two operations are defined on a clock valuation;
adding a constant d ∈ R to a clock valuation (v + d)(x) = v(x) + d for x ∈ C,
and resetting the clocks in a set r, v[r](x) = 0 iff x ∈ r and v[r](x) = v(x)
otherwise.

A clock valuation v satisfies a guard g if, when substituting the values in v for
the clocks in the expression for g, the expression evaluates to true. We will
write this as v ∈ g and similarly for invariants.

The semantics of a timed automaton is defined in terms of the behavior of
a labelled transition system where the set of states is states of the execution of
the automaton.

Definition 1.4 (Semantics of Timed Automata) We define the semantics
of the timed automaton (L, l0, E, I) as a labelled transition system with states
L × RC with initial state (l0, v0) where v0 is the clock valuation assigning zero
to all clocks. The transitions are given by the following transition relation

• (l, v)
d
−→ (l, v + d) if ∀0 ≤ e ≤ d : v + e ∈ I(l),

• (l, v)
a
−→ (l′, v[r]) if l

g,a,r
−→ l′, v ∈ g, and v[r] ∈ I(l′).

The first type of transition is called a delay transition and the second type an
action transition.

In Section 1.1 it was mentioned that most real-time systems are concurrent
systems consisting of several components. Therefore it is natural to be able to
describe a system by several timed automata executing in parallel and being
able to communicate. For this purpose networks of timed automata is intro-
duced. Communication in the network takes place between two automata and
is synchronous.

Definition 1.5 (Parallel Composition) Let Ai = (Li, li,0, Ei, Ii) for i = 1, 2
be two timed automata over the same set Act of actions, where the set of edges

6 Chapter 1. Introduction

Ei has been extended with a transition l
tt,0,∅
−→ l for each location in Li. This

is a special null transition which is used to enable a transition in only one
of the automata. Let f : Act ∪ {0} × Act ∪ {0} → Act be a function which
we will call a synchronization function. The parallel composition of A1 and
A2 is A1|

fA2 = (L1 × L2, (l1,0, l2,0), E, I) where I(l1, l2) = I1(l1) ∧ I2(l2) and

(l1, l2)
g,a,r
−→ (l′1, l

′
2) ∈ E iff there exists transition li

gi,ai,ri−→ l′i ∈ Ei such that
g = g1 ∧ g2, f(a1, a2) = a and r = r1 ∪ r2.

The systems analyzed in Uppaal are all considered closed systems, so the
properties of the system only depends on the automata described in the network.

Instead of defining the synchronization explicitly when presenting networks
of timed automata in Uppaal or in figures we make actions complementary as
in CCS [121] by adding either a ’ !’ or a ’?’ as a postfix to the action. Syn-
chronization between two automata then takes place over a channel which has
the same name as the action used for the communication. In Uppaal all edges
with an action must synchronize with another edge with the complementary
action over a channel, therefore internal edges cannot have a label.

The networks of timed automata used in Uppaal has been extended with
bounded integer variables and arrays of bounded integer variables which can
be very helpful when modeling. Guards over integer variables are possible as
are updates of integer variables. The state of an execution also contains the
values of the integer variables. In [32] the notion of committed location was
introduced. A committed location is a special kind of location in which the
timed automaton is not allowed to stay. This means that when a committed
location is entered in one of the automata in a network, delay transitions are
not allowed and the next action transition must involve the automaton which
entered the committed location. Committed location are useful for modeling
different things such as the sending of a broadcast message only using handshake
communication, or control actions being much faster than the rest of the system
modeled. Another kind of location is urgent locations, which are somewhat like
committed locations. When a timed automaton is in an urgent location, delay
transitions are not allowed, however, all action transitions are allowed also the
ones not including the automaton in an urgent location. Channels can also be
defined to be urgent. When synchronization over an urgent channel is possible
no delay transitions are allowed, but all action transitions are. Only guards over
integer variables are allowed on transitions which is part of an urgent channel
(edges labeled with the name of an urgent channel).

Committed and urgent locations and urgent channels do not add to the
expressiveness of timed automata. They can all be ’simulated’ using standard
timed automata. However, simulating the constructions would make the models
more complex and therefore more difficult to understand.

Example 1.2 If all the action labels in Figure 1.1 gets a ’?’ added as a postfix,
we can use the timed automaton in a network with the timed automaton in
Figure 1.2 which represents the user of the phone. The timed automaton in
Figure 1.2 has two integer variables d and connected. The variable d counts
the number of digits dialed by the user, and connected represents whether the

1.4. Outline of Dissertation 7

network has established a connection or not. Therefore we also need a timed
automaton representing the network to complete the model.

Idle

Dial

Dialing

Talking

y:=0

lift!

y>5

y:=0,

d:=1

digit!

d==3,

connected==1

put_down!

y>2

y:=0,

d:=d+1

digit!

put_down!

put_down!

Figure 1.2: The timed automaton of a person using a phone.

The models presented in Examples 1.1 and 1.2 are representing an abstract
view of a person using a phone. Making models which are abstract versions of
what is modeled is important for several reasons. First of all the tools built
to support formal reasoning cannot handle very large systems mainly because
of the state-space explosion problem. Constructing very detailed models of
systems also takes a very long time and often results in errors in the model
which can be difficult to discover. If an error is found in a design including lots
of details which are not important for the problem at hand, this also makes
correcting the design harder. Leaving out too many details is even worse, since
the results obtained based on the model might be meaningless. Finding the
right level of abstraction when modeling is therefore one of the key points when
reasoning about real systems based on formal models like timed automata.

1.4 Outline of Dissertation

The rest of this dissertation falls in four main parts. The first part contains an
overview of the presented material in the remaining three parts, which each con-
sist of a number of papers presenting the research conducted during my Ph.D.
program. The first part consists of three chapters. Each chapter introduces one
of the remaining parts by giving a short survey of the results presented in the
papers and relating this to other results from the literature.
Region Based Methods The second part consists of the two papers presenting
dedicability results based on the use of regions.

[28] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J. Romijn and F.
Vaandrager. Minimum-Cost Reachability for Priced Timed Automata. In Proceedings

of Hybrid Systems: Computation and Control, pages 147–161, 2001.

[128] M. Nielsen and T. Hune. Bisimulation and Open Maps for Timed Transition Systems.
In Fundamenta Informatica, 38, special issue dedicated to Professor Arto Salomaa,
pages 61–77, 1999.

Timed Reachability Analysis The third part consists of five papers all pre-
senting results based on (forward) timed reachability analysis. In this part all

8 Chapter 1. Introduction

the papers are based on the tool Uppaal.

[30] G. Behrmann, T. Hune, and F. Vaandrager. Distributing Timed Model Checking –
How the Search Order Matters. In Proceedings Computer Aided Verification, CAV

2000, pages 216–231, 2000.

[82] T. Hune, K. G. Larsen, and P. Pettersson. Guided Synthesis of Control Programs Using
Uppaal. In Proceedings of the IEEE ICDCS International Workshop on Distributed

Systems Verification and Validation, pages E15–E22, 1998.

[26] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson and J. Romijn. Ef-
ficient Guiding Towards Cost-Optimality in Uppaal. In Proceedings of Tools and Al-

gorithms for the Construction and Analysis of Systems, TACAS 2001, pages 174–188,
2001.

[105] K. G. Larsen, G. Behrmann, E. Briksma, A. Fehnker, T. Hune, P. Pettersson and J.
Romijn. As Cheap as Possible: Efficient Cost-Optimal Reachability for Priced Timed
Automata. To appear in Proceedings of Computer Aided Verification, 2001.

[86] T. Hune, J. Romijn, M. Stoelinga and F. Vaandrager. Linear Parametric Model Check-
ing of Timed Automata. In Proceedings of Tools and Algorithms for the Construction

and Analysis of Systems, TACAS2001, pages 189–203, 2001.

Development Methods The fourth part consists of two papers presenting
methods and tools for helping in the construction of real-time systems.

[78] T. Hune. Modeling a real-time language. In Proceedings of Workshop on Formal Meth-

ods for Industrial Critical Systems, FMICS’99, pages 259–282, 1999.

[89] T. Hune, and A. Sandholm. A Case Study on using Automata in Control Synthe-
sis. In Proceedings of Fundamental Approaches to Software Engineering, FASE 2000,
pages 349–362, 2000.

Part I

Overview

9

Chapter 2

Region Based Methods

In (almost) all cases the concrete semantics of a timed automaton in Defini-
tion 1.4 gives rise to a labelled transition system with uncountably many states
and transitions. Therefore representing the set of reachable states of a timed
automaton, the state-space, in this way is not suited as a basis for algorithms.
Instead of using the concrete semantics as a representation of the state-space
various symbolic representations have been suggested. Common to all these is
that each symbolic state represents a set of concrete states, and that only a
finite number of symbolic states is needed to represent all the concrete states.
This make symbolic representations suitable as a basis for algorithms explor-
ing the state-space. The first symbolic representation of the state-space of a
timed automaton was based on the notion of regions [12, 13]. In this chapter
we will focus on results based on regions, and Chapters 5 and 6 present two
fundamental decidability results based on regions.

2.1 Regions

Since a state consists of a location and a clock valuation, and there are finitely
many locations, we are interested in a finite partition of the clock valuations.
Not only should a partition be finite, it must also reflect the properties of
the concrete semantics. The properties can vary depending on the use of the
symbolic model. However, as a minimum it seems reasonable that reachability
properties should be reflected.

Regions offer such a finite partitioning of the clock valuations reflecting
reachability in the concrete semantics. The partitioning is based on the ob-
servation that some clock valuations behave in very much the same way. Two
clock valuations can be considered to behave in a similar way if they satisfy the
same set of guards and if they, when time passes, can reach new clock valuations
which also can be considered to behave similarly. For two clock valuations to
satisfy the same set of guards of the type x ⊲⊳ n, the integer value of each clock
must be the same, and to satisfy the same set of guards of the type x− y ⊲⊳ n,
the ordering among the values of the clocks must also be the same. The next
clock in a clock valuation to change integer value when time passes, is the clock
with the largest fractional part. If the ordering among the clocks is the same

11

12 Chapter 2. Region Based Methods

in two clock valuations and they agree on the integer part of the value of the
clocks, then it will also be the same clock which changes integer value next when
time passes. This ensures that the two clock valuations also behave in the same
way whenever some time has passed and different guards may be enabled. The
partitioning arising from these requirements is not finite since the clocks can
grow unbounded, but it is countable. The final observation needed in order to
reach a finite partitioning is that when the value of a clock is larger than any
constant used in a guard, it is not important how much larger it is. Based on
these observations we arrive at the following definition of a region.

Definition 2.1 (Region [12, 13]) Let A be a timed automaton over a set of
clocks C. For each x ∈ C, let cx be the largest integer n that is compared to x
in any guard in A. Let ⌊v(x)⌋ denote the largest integer smaller than or equal
to v(x) and fract(v(x)) = v(x)−⌊v(x)⌋. A region is an equivalence class of the
equivalence relation ∼= over clock valuations, where v ∼= v′ iff

• for each x ∈ C : ⌊v(x)⌋ = ⌊v′(x)⌋ or both v(x) > cx and v′(x) > cx,

• for every pair of clocks x, y ∈ C where both v(x) ≤ cx and v(y) ≤ cy,
fract(v(x)) ≤ fract(v(y)) iff fract(v′(x)) ≤ fract(v′(y)),

• for every clock x ∈ C : fract(v(x)) = 0 iff fract(v′(x)) = 0 or both
v(x) > cx and v′(x) > cx.

Example 2.1 Consider a timed automaton with two clocks x and y where cx =
cy = 2. There are 44 possible regions for this automaton which are shown in
Figure 2.1. The regions in the figure are: 9 vertices, 22 open line segments, and

✲

✻

x

y

0 1 2

1

2

Figure 2.1: The regions of the timed automaton in Example 2.1.

13 open areas. The open line segments are both lines such as the one between the
points (0, 1) and (1, 2) (the points not included), and unbounded line segments
such as the one from (1, 2) (not included) and parallel with the y-axis. The open
areas are either ’triangles’ such as the one with vertices (0, 0), (1, 1) and (1, 0)
(again not including the points or the lines between them), or unbounded areas
such as the one where all points have y value larger than 2 and lies between the
y-axis and the line x = 1.

Letting symbolic states be pairs of a location and a region, one can define a
symbolic state-space of a timed automaton called the region graph in [12, 13].
To be able to build the region graph of a timed automaton, some operations on
regions are needed. For deciding whether an edge is enabled or not we need to
be able to decide whether a region satisfies a guard. Given a region we need to

2.2. Timed Automata Extended with Linear Cost 13

be able to calculate the next reachable region when time is passing, and finally
we need to be able to reset a number of clocks in a region. With a data-structure
for representing regions and these three operations on the data-structure, one
can generate the region graph of a timed automaton.

The number of regions for a timed automaton is exponential in the number
of clocks and it is very much influenced by the size of the constants used in
guards and invariants. Given a set of clocks C and a constant cx for each clock
in C, the number of regions is bounded by |C|! · 2|C| · Πx∈C(2cx + 2) [12, 13].

Because of the large number of possible regions, representing a state-space
using regions is not very efficient. However, some (mostly early) tools use
regions as part of the symbolic states used to represent the symbolic state-
space. Some of these are Epsilon [51], RT-Cospan [16] (versions using other
representations exist), and more recent RED [142] which uses a structure very
similar to regions. In Chapter 3 we will discuss other more efficient ways of
representing the state-space.

Due to the regular and intuitive structure of regions they have proven very
useful as a basis for a number of fundamental results concerning timed au-
tomata. In particular a number of decidability results have been proven based
on (algorithms using) regions, e.g. [12, 13, 49, 103, 68, 84, 40, 28, 101]. Many
of these prove decidability by explicitly stating an algorithm using the opera-
tions defined on regions, and have since been extended to more efficient ways
of representing sets of states.

2.2 Timed Automata Extended with Linear Cost

Timed verification tools like Uppaal [109] and Kronos [41] have been used
to solve a number of optimization problems, especially as part of the VHS 1

project where scheduling problems for different batch plants [64, 82, 127, 100]
have been addressed. The problems are modeled using timed automata such
that the optimization problem can be reformulated as a (number of) reachability
questions which can be solved by the tools. The examples from the VHS project
are scheduling of tasks in a production.

Probably one of the first and most well known of these problems solved by
timed verification tools is the Bridge problem presented in [134]. Four soldiers
have to cross a bridge in the dark with different constraints and physical abil-
ities. The question is how fast can they all cross the bridge. However, when
using tools like Uppaal and Kronos, questions like how fast can a state be
reached where all soldiers have crossed the bridge, cannot be asked. Instead
it is possible to ask whether a state is reachable, where all the soldiers have
crossed the bridge and no more than e.g. 60 time units have passed. Asking
several questions like that with different time bounds, the minimum time for
reaching a set of states can be determined.

One might not only be interested in optimizing the consumption of time but
in optimizing a more general notion of cost. In Chapter 5 we present the model
of linearly priced timed automata which is an extension of timed automata. The

1Verification of Hybrid Systems, European Community Esprit-LTR Project 26270.

14 Chapter 2. Region Based Methods

edges in a linearly priced timed automaton are labelled with a price, so taking
an action transition has a cost. Locations are also labelled with a price, called
a rate, which is the cost per time unit of delaying in that location, so taking a
delay transition also has a cost. The question asked is, what is the minimum
cost of reaching a given location.

In Chapter 5 we show that the minimum-cost reachability problem is decid-
able by presenting an algorithm solving the problem. The algorithm is based
on an extension of regions to priced regions where each vertex of a region has
an associated cost. The operations on regions are extended to priced regions
and three new operations are defined which are needed for the algorithm. Ter-
mination of the algorithm is shown using Higman’s lemma [76].

The operations on priced regions are given in a way suitable for implementa-
tion. However, because of the inherent inefficiency of regions based algorithms
we have chosen not to implement the algorithm.

The model of linearly priced timed automata can be seen as a special case of
multitriangular hybrid automata [72] or linear hybrid automata [72], where one
real-valued variable is used to represent the cost. Reachability is known to be
undecidable for multitriangular hybrid automata [72]. In a linearly priced timed
automaton the price of an execution cannot be used in guards and therefore does
not influence the possible executions. Intuitively, this is the reason reachability
can be decidable for linearly priced timed automata, despite the undecidability
result for multitriangular hybrid automata.

Linearly priced timed automata have also been studied in [17], where they
are called weighted timed automata. Here the complexity of different variations
of the minimum-cost reachability problem for linearly priced timed automata
is addressed. The minimum-cost reachability problem is shown to be decidable
in exponential time in the size of the automaton.

The simpler problem of minimum-time reachability was solved in [126] where
three different algorithms were presented. All the algorithms first generate the
complete state-space (called simulation graph in [126]). One algorithm is using
a backwards fixed point algorithm, while keeping track of the elapsed time. The
two other algorithms are variations of depth-first search on the simulation graph
with an extra clock. The algorithm presented in Chapter 5 will in the worst
case also search (and therefore generate) the complete state-space. However,
because of the relation check between priced regions, it might be discovered that
a part of the state-space cannot contain the optimal solution, before exploring
this part of the state-space. In this case the algorithm will not search that
part of the state-space. In Chapter 9 this idea is extended further for a simpler
model than linearly priced time automata, which also captures the problem
of minimum-time reachability. Since neither of the approaches in [126] nor the
algorithm presented in Chapter 5 has been implemented we cannot compare the
efficiency. The algorithms in [126] are based on a more efficient representation
of the state-space than regions, and therefore we expect them to be the most
efficient ones even though they always generate the complete state-space.

A related but more general problem is the synthesis of a controller for a
timed automaton assuming that the actions are divided into a set of control-
lable actions and a set of uncontrollable actions. The controller should ensure

2.3. Open Maps and Timed Bisimulation 15

that a property is satisfied, e.g. reachability of a state, by choosing which of
the controllable actions should be taken next. In [23] the problem of synthe-
sizing a controller using minimal time to satisfy a property is solved using a
backwards fixed point computation. An interesting question is whether the
techniques described in Chapter 5 can be used to solve the problem of synthe-
sizing minimum-cost controllers for linearly priced timed automata.

In Chapter 9 we solve the minimum-cost reachability problem for a simpler
model using a more efficient representation of the state-space than regions, and
in Chapter 10 an efficient zone based representation of linearly priced timed
automata will be given. We will return to this in Chapter 3.3 and Chapter 3.4.

2.3 Open Maps and Timed Bisimulation

The notion of bisimulation equivalence was introduced for CCS in [130, 121]
and has since been studied for a range of other modeling languages, especially
process algebras [67, 104, 122]. The notion of timed bisimulation was introduced
in [145] and has since been studied in a number of papers e.g. [19, 125, 49, 103,
143]. The decidability of timed bisimulation was first shown in [49] by giving
an algorithm based on regions.

Since the introduction of the bisimulation equivalence for CCS a large num-
ber of other equivalences for CCS and other languages have been introduced.
In [95] a general framework for defining bisimulation based on category theory
is offered and a general way of defining a logic which is characteristic for the
notion of bisimulation is presented. This gives a canonical way of defining a no-
tion of bisimulation. The framework is based on the idea of defining a category
with objects representing the models, and a subcategory of this representing
the observations. A morphism between two objects m : X → Y specifies how
the behavior of X can be observed or be simulated in Y . Intuitively, an open
map is a morphism which also requires that the behavior of Y can be simulated
in X. Two models X and Y are bisimilar if and only if there exists a model Z
and two open maps m : Z → X and m′ : Z → Y ; this is called a span of open
maps.

In Chapter 6 we apply the framework to timed automata by presenting
a category of timed automata with a subcategory of timed words. We show
that the notion of timed bisimulation presented in [145, 49] coincides with the
notion of timed bisimulation arising from using open maps. Deciding whether
there exists an open map between two objects is shown to be decidable using
regions. Decidability of timed bisimulation is shown by giving an upper bound
on the size of the vertex (the ’Z’ object) in terms of the size of the two systems
checked. One of the advantages of the bisimulation presented in [121] is that
one can present an explicit bisimulation. By defining the timed bisimulation
in terms of open maps, one can exhibit a bisimulation directly in terms of the
models.

The presentation of a timed bisimulation in [145] is given in terms of the
unfolding of the two systems which have uncountably many states. This presen-
tation has the disadvantages of being infinite and, moreover, not given in terms

16 Chapter 2. Region Based Methods

of the models. Using the approach of [49] a timed bisimulation is presented in
terms of the state-space of the two timed automata (based on regions). This
is a finite representation but again the bisimulation is presented in terms of
different models (the region graphs).

The method for deciding timed bisimulation presented in Chapter 6 can
be used as the basis of an implementation. However, the algorithm presented
in [49] is much better suited for implementing. A more efficient algorithm
was presented in [143], where the state-space is represented using stable zones.
Stable zones are collections of regions with the same properties as a region.
One advantage of stable zones is that each stable zone in most cases captures a
larger area than a region (and never a smaller), therefore fewer symbolic states
are needed to represent the reachable state-space. Another advantage is that
the number of stable zones does not depend on the size of the constants used
in the timed automaton, which is the case for regions.

Deciding the bisimulation in [121] can also be done via checking for equiv-
alence between characteristic formulae for the two systems. A characteristic
logic for timed bisimulation between timed automata was presented in [103]
yielding yet another way of deciding timed bisimulation.

The open maps framework has been used to define a large range of different
equivalences between different models ranging from different kinds of transition
systems to Petri nets [95, 52].

Chapter 3

Timed Reachability Analysis

Due to the fine granularity of regions defined in the previous chapter, they are
not suited as a representation of the state-space in tools. Therefore tools like
Kronos [41] and Uppaal [109] are based on the notion of zones which are
collections of regions. The two main ways of representing zones are Difference
Bounded Matrices (DBMs) [60] and Clock Difference Diagrams (CDDs) [31]
(also presented as Difference Decision Diagrams in [124]). Both Kronos and
Uppaal represent zones using DBMs, which have proven to be well suited for
representing the state-space of large systems. In Uppaal, zones can also be
represented using CDDs but this has not been tested to the same extent as
DBMs yet.

Developing and using the timed model checker Uppaal is the topic of this
chapter and Chapters 7–11. The properties that can be specified in the logic
used in Uppaal can all be reformulated as reachability questions. Therefore,
given a (symbolic) state it is possible to check whether this particular state
satisfies the property, by checking whether it is in a set S of goal states. This
allows the checking of properties to be performed more efficiently than check-
ing for properties of a more expressive timed logic such as TCTL. Using a
more powerful logic like TCTL will on the other hand allow checking for more
properties.

The reachability algorithm used in Uppaal (see Figure 3.1) is based on
two data-structures Passed and Waiting. The states which are known to be
reachable but have not been explored yet are kept in Waiting, and the states
which have been explored are kept in Passed. As long as a goal state has not
been encountered and there are unexplored states in Waiting the algorithm
continues by selecting a new state from Waiting and exploring that state. This
proceeds by checking whether the state is a goal state or not. If it is a goal
state the algorithm terminates, otherwise it is checked whether the state is in
Passed. Not only is it checked whether the exact same state is in Passed but
whether it is included in a state or includes a state in Passed (recall that a
zone consists of a collection of regions). If the state has not been encountered
before, the successors of the state are generated and placed in Waiting. Here
there is also a check for whether the state is included in or includes a state
already in Waiting. If there are no more states in Waiting and a goal state
has not been found, the algorithm terminates with a negative answer, since a

17

18 Chapter 3. Timed Reachability Analysis

Passed := ∅
Waiting := {(l0, D0)}
repeat

get (l, D) from Waiting

if (l, D) ∈ S then

return Yes
if for all (l, D′) ∈ Passed : D 6⊆ D′ then

add (l, D) to Passed

Succ := {(l′, D′) : (l, D) → (l′, D′) ∧ D′ 6= ∅}
for all (l′, D′) ∈ Succ do

add (l′, D′) to Waiting

end for

end if

until Waiting = ∅
return No

Figure 3.1: The reachability algorithm of Uppaal.

goal state was not reachable.

3.1 Distributed State-Space Generation

One of the main problems when using Uppaal and other model checkers is
storing the state-space. Even for seemingly small models the reachable state-
space can be too large to be stored in the memory of a workstation or PC.
Searching large state-spaces is also very time consuming. We present a way of
dealing with this problem by distributing the state-space search over several
computers (nodes) connected in a network.

In Chapter 7 we present an approach to distributing reachability checking.
The approach has been implemented in Uppaal and tested on a number of
large examples. To make the search more efficient a heuristic for the order
in which the states are searched is presented. The efficiency of the heuristic
is demonstrated through the examples. We also present a way of finding the
shortest trace to a state in a distributed search.

The basic idea is to partition the state-space into disjoint classes and letting
one node be responsible for exploring the states in each class. So each symbolic
state belongs to one particular node which can be calculated using a distribu-
tion function. When a node generates the successors of a state each successor
is sent to the node it belongs to. Each node runs the same algorithm which
is very similar to the algorithm in Figure 3.1. The data-structures Waiting

and Passed are local which allow the algorithm to be run on both shared and
distributed memory models. The main difference between the standard algo-
rithm and the distributed algorithm is in the way newly generated successors of
a state is treated. In the distributed algorithm the successors of a state are not
put into Waiting on the node they were generated, but sent to the node they
belong to and placed in Waiting on that node. Communication between the
nodes is asynchronous. Before a node gets a state from Waiting it receives all
the nodes which have been sent to it and places them in Waiting. One node is
responsible for generating the initial state and sending it to the node it belongs

3.1. Distributed State-Space Generation 19

to. If a node finds an error state it sends a termination message to the rest of
the nodes and reports about the error state. Termination of the algorithm can
be decided by any of the nodes when a special termination token has passed
through all the nodes while they were idle without any change in the number
of states sent or received.

One of the properties of a breadth-first search on a single node is that if a
goal state is found, the trace leading to this goal state will be the shortest trace
leading to any goal state. This is because all states with shorter traces have been
explored. However, the search order arising when doing a distributed search
does not have this property due to nondeterministic communication delays and
different workloads on different nodes. When using a trace to understand an
error, it is desirable that the trace is as short as possible. We have therefore
added the possibility of finding the shortest trace to a goal state by including
the depth of a state (the number of transitions used to reach the state from the
initial state) to a state. When a goal state is found, all the states with smaller
depth (and only states with smaller depth) are searched such that the goal state
with the shortest trace can be found.

During the initial experiments with the distributed version of Uppaal we
did not obtain as good speedups as we had hoped. This was caused by an
increase in the number of symbolic states explored. Generally, the number
of explored symbolic states increased as the number of nodes increased, and
always the fewest symbolic states were searched using breadth-first order on
one node. The number of states explored depends on the order in which state
are searched due to the symbolic states being compared by inclusion checks.
Section 7.3.1 explains this in detail. Using the depth of a state we tried to
make the distributed search order closer to breadth-first order by letting each
node first explore the state with the least depth, the state closest to the initial
state. The speedups gained using this heuristic were very close to linear as
we had hoped. Using this heuristic, the number of explored symbolic states
remained almost constant as the number of nodes increased and in some cases
even decreased below the number of states explored on one node. The fact
that the number of states decreased when using more than one node shows that
using breadth-first search order is not optimal in the sense of generating as few
symbolic states as possible when exploring the complete reachable state-space.
An interesting problem is how to define an optimal search order in this sense
and what the complexity of calculating it is. Such an optimal search order
might in general make tools like Kronos and Uppaal more space efficient.

The close to linear speedups obtained were not very surprising since similar
results have been obtained in [138] when constructing a distributed version of
the model checker Murϕ. Our approach to distributing Uppaal was inspired by
the approach in [138] and the abstract algorithms of the two tools are basically
the same, so we were hoping for as good results as in [138]. Inclusion between
states is not used in Murϕ, therefore the number of states searched is not
influenced by the search order. The only difference between the two approaches
is the detection of termination. In [138] the node responsible for generating the
initial state is also responsible for deciding termination by from time to time
collecting from all nodes how many nodes they have send and received. We let

20 Chapter 3. Timed Reachability Analysis

detection of termination be something all nodes can do. Since the detection of
termination takes a short time compared to the exploration of the state-space
this does not influence the running time much. However, we believe that having
as little central control as possible is desirable.

Similar ideas for distributing state-space generation have previously been
used for generalized stochastic Petri nets in [47] and later in [71]. There, the
state-space (the reachable markings) is also split between the nodes using a
distribution function. Each node explores the markings sent to it and sends the
newly generated markings to the node they belong to.

Before that, another approach was suggested in [7] where the state-space
of the parallel composition of finite state machines is being searched. Here
some nodes are responsible for generating the successors and some nodes are
responsible for checking whether the newly generated states have been searched
before. Using this approach one has to address the problem of how to allocate
nodes to the two different tasks.

3.2 Guided Synthesis of Control Programs

One of the case studies of the VHS project is dealing with schedulability of the
SIDMAR steel plant1 in Gent in Belgium. This case study considers the part
of the plant between the blast furnace and the hot rolling mill where raw iron
is converted into steel by treatments in different machines [37, 129]. The raw
iron is poured into ladles when leaving the blast furnace and stays in the ladle
until the finished steel enters the hot rolling mill. Different qualities of steel
can be produced depending on which machines are used for the treatment of
the raw iron. The different treatments and the durations of these are defined
in a recipe. The problem to be solved is to decide given an ordered list of
recipes, whether it is possible to schedule the production such that the right
qualities of steel are produced entering the hot rolling mill in the right order.
When scheduling the production, the topology of the plant (see Figure 8.2 in
Section 8.2) has to be taken into account since movement between the different
machines is restricted. The time elapsed from the raw iron leaves the blast
furnace until it enters the hot rolling mill is also limited because the steel must
sustain a minimum temperature during the process. The treatment of a ladle
takes a fixed time in the hot rolling mill and the hot rolling mill must be kept
busy at all times. A correct schedule must satisfy all these constraints.

In Chapter 8 we present a timed automata model of the SIDMAR plant
and reformulate the schedulability problem as a reachability question. The size
of the reachable state-space is reduced by adding guiding to the model. This
considerably increases the size of the problems which can be handled. Based
on the traces generated from the model, controls program are automatically
synthesized and executed in a LEGO plant resembling the SIDMAR plant.

The timed automaton model of the SIDMAR plant consists of a number
of different timed automata representing the behavior of the different physical
components of the system like the ladles and the cranes needed for moving

1http://www.sidmar.be/

3.2. Guided Synthesis of Control Programs 21

the ladles in some parts of the plant. Each recipe is also represented by a
timed automaton, and each ladle is connected to one recipe. If it is possible to
schedule the production, the final state of a timed automaton monitoring the
production is reachable, otherwise it will not be. If the final state is reachable,
Uppaal also produces a trace leading to the final state. The trace leading
to the final state defines a schedule for the production, specifying where the
ladles should be treated, for how long, and how they should move between the
different machines.

Unfortunately, Uppaal is not able to handle models of this kind with more
than two ladles. This is because the reachable state-space is very large due to
the high degree of freedom in the model. The model describes all the possible
behaviors of the plant without considering what will benefit the final goal of
producing the steel. Therefore ’strange’ behaviors like a ladle moving back
and forth between two machines are also possible, making the reachable state-
space very large. By adding extra variables to the model and extra guards over
these variables it is possible to decrease the size of the reachable state-space
drastically. In this way it is possible to rule out a number of possible behaviors
which does not seem to help in achieving the goal, thereby guiding the search
towards a goal state. This will most likely also rule out some possible solutions
but as long as a solution is found this does not constitute a problem. An
important property of adding guides in this way is that any trace obtained in the
guided model is also a trace in the unguided models, because no new behaviors
are made possible, only existing ones are ruled out. By adding different guides
we were able to find a schedule for a model with 60 ladles, compared to only
two ladles without guides.

As mentioned earlier, the trace generated by Uppaal defines what actions
take place and what delays are taken. Therefore, one can generate a control
program for the plant based on the trace. Since the program is based on one
trace it will be a program without branching and without feedback. We were
not able to run programs in the SIDMAR plant, therefore we decided to build
a LEGO plant inspired by the SIDMAR plant. In particular, the LEGO plant
had the same topology as the SIDMAR plant. The timed automaton model
was modified to model the LEGO plant. Based on the traces obtained from the
modified model we generated control programs running in the RCX bricks
controlling the plant. Running the programs in the LEGO plant allowed us
to find three mistakes in the timed automata model of the plant. After these
had been corrected we were able to generate new traces and programs which
worked as intended. Not only did we find some errors in the timed automata
model using the LEGO plant, our confidence in the model increased by doing
the experiments. Understanding the generated traces was much easier when
seeing them ’executed’ in the LEGO plant.

The guiding techniques described can be applied in general to models where
part of the state-space is considered uninteresting. This could be because some
properties are only interesting for part of the state-space. Even if it is possi-
ble to generate the complete state-space, it might be a good idea initially to
search only the parts of the state-space which are considered critical for the
property checked. The next section will discuss the use of guides in general

22 Chapter 3. Timed Reachability Analysis

model checking further.

Adding guides to the model might rule out the optimal schedule, but we are
only interested in whether it is possible to schedule the production or not. In
the next two sections and in Chapters 9 and 10 we will consider the problem of
finding optimal schedules.

The SIDMAR plant has been studied by a number of other people. Our
timed automata model is based on the timed automata model in [64]. The
model in [64] is a little more abstract than ours with respect to timing, since
moving a ladle between machines is considered to take zero time (which was
the case in the original description of the plant in [37]). For a model with three
ladles a schedule is generated.

A timed Petri net model of the SIDMAR plant has been presented in [38].
However, this model has not been analyzed. In [35] some ideas are given for how
to analyze the model by splitting the events into foreground and background
events, but these have not been implemented yet.

The problem of finding feasible schedules for the SIDMAR plant is solved
using constraint programming in [139]. The modeling is based on a general
scheme for modeling of batch productions for solving scheduling problems using
constraint programming. On top of the model obtained following the general
scheme, some guides are added to the model. With the guides added to the
model, it is possible to generate schedules for models with 30 batches which are
very close to the optimal schedule.

As part of the VHS project a smaller chemical batch plant [97] has been
studied. This has also been analyzed using timed automata in [100] and here op-
timal schedules have been found. In this model guiding was not needed because
the behavior of the plant has a higher degree of determinism than in SIDMAR
so the state-space easily could be stored in the memory of a workstation.

3.3 Efficient Implementation of Uniform Cost

In the study of the SIDMAR plant in Chapter 8 we did not consider optimal
schedules because searching for an optimal schedule could not be expressed in
Uppaal. In Chapter 5 we proved that the minimum-cost reachability problem
is decidable for linearly priced timed automata. This was based on an extension
of regions which means that it is not suited for an efficient implementation, at
least not if one wants to handle large systems. In Chapter 9 we present the
model of uniformly priced timed automata which is a restricted class of linearly
priced automata. In a uniformly priced timed automaton all the locations
have the same rate which is either zero or one, and edges can have a cost
like in linearly priced timed automata. The restriction is in effect that all
locations have the same (integer) rate, since this can be simulated by only
having rate zero or one. Though uniformly priced timed automata are less
expressive that linearly priced timed automata they still capture a number
of interesting problems such as minimum-time reachability. Therefore we can
model a number of optimization problems e.g. the SIDMAR plant and job shop
scheduling problems using uniformly priced timed automata.

3.3. Efficient Implementation of Uniform Cost 23

In Chapter 9 we show how to represent the state-space of a uniformly priced
timed automaton using DBMs which have been implemented in Uppaal. We
present a number of techniques for limiting the part of the state-space which
needs to be searched to find the optimal cost of reaching a goal state. These
have also been implemented in Uppaal and through a number of examples we
show the effectiveness of these techniques.

Uniformly priced timed automata enjoy the important property that it is
possible to represent the state-space of such using DBMs with very few changes.
This enables us to use the existing Uppaal implementation with some modifi-
cations. We will consider separately the case when the rate is zero and when it
is one. When the rate is zero only edges have cost. Therefore, all concrete states
represented by a symbolic state have the same cost. This can be represented by
adding an integer to a symbolic state representing the cost. The operations on
symbolic states are easily extended to handle this case. When the rate is one
we need to ’measure’ how much time has passed since the execution started.
Therefore we extend the DBMs with an extra clock measuring the elapsed time.
It is only necessary to handle the new clock in a special way when comparing
DBMs. We want to measure the minimum time, therefore we can forget the
upper bound on the new clock. This also solves the problem of the inclusion
check. A new operation is needed when the cost of an edge should be added,
which basically increases the lower bound on the new clock by the cost of the
edge. These two cases have been implemented in Uppaal and the algorithm
has been changed such that it does not stop when the first goal state has been
found (since we are interested in the optimal cost).

Naively, we need to search the complete state-space to find the optimal
cost of reaching a goal state. We present a new search strategy which always
searches the state with the smallest cost first and show that in some sense this
is optimal. However, this does not give a strategy for choosing between several
states with the same cost. Our experiments show that the number of states
searched can change drastically, depending on the order in which states with
the same cost are searched. We also present a number of methods inspired
by branch-and-bound algorithms [21] for reducing the part of the state-space
which needs to be searched.

Since the order in which states are searched can drastically influence the
number of states searched, we have added the possibility for the user to guide
the search. This can be done by adding priorities to the model which are used
when states are selected from Waiting. Priorities can be used in models both
with and without cost. Analyzing the Biphase Mark Protocol we show that
guiding the search towards an error can speedup the finding of errors. The
optimal search order defined for finding minimum cost is a kind of breadth-first
search order always choosing the state with the smallest cost first. For models
with very large state-spaces, like the model of the SIDMAR plant, this approach
cannot be used. Therefore the possibility of using guides enables the user to
get results without ruling out the optimal solutions, as it is the case with the
approach in Chapter 8. Also, when a solution has been found, it is possible
to improve the schedule found, by letting the search continue. In Chapter 9
other case studies are presented to demonstrate the usefulness of the model of

24 Chapter 3. Timed Reachability Analysis

uniformly priced timed automata and the new features added to Uppaal.

As mentioned the minimum-time reachability problem is solved [126] by
generating the complete state-space and doing analysis on it. In [126] an extra
clock is added when searching the already generated state-space for the mini-
mum time of reaching a state, whereas we let this be part of the state-space.
Otherwise the state-space is represented in the same way. Therefore we would
expect our approach to be faster since the complete state-space is not always
generated.

We have applied Uppaal to a number of known job shop problems. Since
Uppaal is designed for doing timed model checking, we cannot hope that it
will perform quite as good as tools dedicated for solving job shop problems,
and indeed this is so. However, it does find optimal solutions for a number
of job shop problems very fast. The advantage of Uppaal in this context is
mostly that modeling the problems using timed automata is straightforward
and intuitive. In many cases the timed automata models have clear similarities
with the real problem as in the case of SIDMAR, where the topology of the
plant is reflected directly in the timed automata model. Tools like Uppaal are
also suited for checking whether the model is correct or not, by checking various
properties and by doing simulations. Therefore, for the problems which can be
handled by Uppaal sufficiently fast, it provides a nice and flexible interface in
which it is easy to model the problems and maintain the models.

The difference between the guiding presented in Chapter 8 and 9 is that in
Chapter 8 the reachable state-space is changed, while in Chapter 9 the order
in which the state-space is searched is changed. This means that in Chapter 8
an optimal solution might be removed from the reachable state-space while in
Chapter 9 it will always be searched (if we let the search continue sufficiently
long and enough memory is available). When defining the priority of a state
in Chapter 9 one can use the cost of the state, which can be very useful. The
cost cannot be used in guards since this will make the reachability question
undecidable as mentioned earlier. Applying the techniques in Chapter 8 did
not require modifications to Uppaal and can easily be used in other model
checkers. Using priorities as in Chapter 9 requires a tool supporting this. We
implemented this in a prototype of Uppaal but it is not included in any released
versions yet.

As shown in the case of the Biphase Mark Protocol, guiding can also be
useful when searching for an error state without any notion of cost. This is not
the first case where using different search orders than breadth-first or depth-
first normally offered by tools, have proven useful. In [132] an automatic way of
guiding was presented for untimed systems. A general heuristic for the number
of transitions to an error state was presented and a BDD based state-space
exploration algorithm was presented, searching the states with the shortest
path to an error state first.

3.4. Efficient Implementation of Linear Cost 25

3.4 Efficient Implementation of Linear Cost

The general cost model of linearly priced timed automata was presented in
Chapter 5 and using an extension of regions we showed that for this model
the minimum-cost reachability problem is decidable. However, since an imple-
mentation based on regions cannot be very efficient, we try to represent the
state-space using zones in the standard way represented by DBMs. For the
simpler case of UPTAs we have seen that this is possible, however, the same
approach cannot be used for LPTAs. This is because the cost of delaying can
be different in different locations. As a result of this the cost of the states
represented by a zone arising from a delay action, is not necessarily linear (see
Section 10.4).

In Chapter 10 we introduce the notion of facets and use these to split a zone
into smaller zones such that in each zone the, cost of the states represented
by the zone can be calculated by a linear expression. The priced zones arising
when splitting with respect to facets can be represented by triples including a
standard DBM, the cost of one given clock valuation, called ∆, in the zone,
and a cost rate for each clock. A version of Uppaal handling LPTAs have
been implemented and tested on a number of optimization problems. We also
compare this version of Uppaal to the version restricted to UPTAs.

Intuitively, a facet is the border line or border plane of a zone. When making
a delay or a reset of a zone, the zone is split based on different facets of the
zone and what can be reached from the facets. This ensures that the cost of the
states represented by the zone can be calculated based on a linear expression.
The clock valuation ∆ is the the valuation with the point wise smallest clock
values, which can easily be computed given a DBM representation of a zone.
The cost of reaching a state with clock valuation u in a priced zone can be
calculated as c+

∑

x∈C
rx(u(x) −∆(x)) where rx is the rate of the clock x for

the priced zone.

A version of Uppaal splitting zones with respect to facets has been imple-
mented and tested. When delaying and resetting zones may need to be split
based on the facets. The inclusion check between two priced zones can be re-
duced to an LP problem. For a given priced zone the minimum cost of reaching
that zone can also be calculated by solving an LP problem. We have used a
know LP solver for this. The techniques presented in Chapter 9 for optimizing
the search order and limiting the state-space have also been implemented in
this verison of Uppaal.

We have tried the new prototype of Uppaal on different instances of the
aircraft landing problem from [25] with promising results. For comparing this
version of Uppaal with the version handling UPTAs we look at the bridge
problem also addressed in Chapter 9. The version LPTA version is 15% slower
than the UPTA. Since we split zones with respect to facets, the zones we end
up representing by DBMs are smaller and therefore more zones needs to be
represented. We can therefore not hope that this method will be quite as
efficient as when standard zones are used.

The work in Chapter 10 relates to other works in the same way as the work
in Chapter 9.

26 Chapter 3. Timed Reachability Analysis

3.5 Parametric Analysis

The main purpose of timed model checking is to check whether the timing
constants of a given model are correct. What we are really interested in, is
in most cases to find some timing parameters which makes the model behave
correctly. This can be achieved if we, given a timed automaton with some
parameters, are able to synthesize some or all values for the parameters making
the model behave correctly. We will call this parametric model checking. This
problem is addressed in [15] where it is shown to be undecidable for systems
with three clocks or more. A semi-decision procedure is also presented in [15].

The model of timed automata is extended to the model of parametric timed
automata by adding a set of parameters. Guards in parametric timed automata
can be on the form x ⊲⊳ e or x− y ⊲⊳ e where e is a linear expression over the
set of parameters. The parameters cannot be used in resets.

In Chapter 11 we present an extension of DBMs, parametric DBMs (PDBMs),
used for symbolic representation of the state-space of parametric timed au-
tomata. We extend Uppaal with PDBMs and prove that this approach to
parametric model checking is correct. Since the problem is undecidable, ob-
viously, termination is not guaranteed. For deciding which of two linear ex-
pressions is the smallest one we have borrowed an LP solver from the PMC
tool [24]. Parametric versions of the rootcontention protocol and the bounded
retransmission protocol have been analyzed using the implementation and mi-
nor errors in a published paper on the bounded retransmission protocol has
been discovered. For a special class of parametric timed automata called lower
bound/upper bound automata the parametric model checking problem is shown
to be decidable. For this class of automata the number of parameters can in
many cases be reduced to one or zero, making the analysis much faster.

The extension of DBMs to parametric DBMs is natural since parametric
timed automata have linear expressions in the guards and not only integers.
Normally, the entry (i, j) of a DBM representing a zone is a pair, (n, ⊲⊳), where n
is an integer or infinity and ⊲⊳ ∈ {<,≤}. This represents the inequality xi−xj ⊲⊳
n where xi, xj ∈ C. All clock valuations in the zone satisfies v(xi)− v(xj) ⊲⊳ n.
In PDBMs the integer is replaced with a linear expression over the parameters.

All the operations on DBMs are based on adding entries and comparing
two entries to find the smallest one. Without knowing anything about the
values of the parameters, we can in general not compare linear expressions over
the parameters to each other or to integers. Comparing a parameter p to the
constant 3 has two possible outcomes depending on the value of p. When such
comparisons arise we will have to distinguish the two possibilities. We will do
this by adding a constraint set to a PDBM, consisting of constraints of the
form e ⊲⊳ e′ where e and e′ are linear expressions and ⊲⊳ ∈ {<,≤, >,≥}. In the
example earlier we will then split into two cases; one where the constraint p < 3
is added to the constraint set and one where p ≥ 3 is added to the constraint
set. We can now compare entries of PDBMs based on their constraint sets, and
add to the constraint sets if needed.

This is the only change needed to the existing operations on DBMs and we
can use the standard algorithm for state-space exploration. Symbolic states

3.5. Parametric Analysis 27

consist of a location, a PDBM, and a constraint set. The constraints on the
parameters needed for a goal (or error) state to be reachable, are the constraints
in the constraint set of the goal (or error) state when it is reached. If we want to
find all the possible values for the parameters, we need to search the complete
state-space to find all the different constraint sets making a goal state reachable.

Other tools for parametric model checking exist. Parametric DBMs were
independently presented in [20] but without proof of the correctness of the
representation. A tool using PDBMs is presented in [20] which also has a
method for guessing and verifying the effect of loops in the automaton. This
leads to non-linear expressions which can also be used in the PDBMs. The
Omega [46] tool is used for deciding the non-linear relations. The use of non-
linear constraints makes the tool much slower than our extension of Uppaal,
but also enables it to terminate more often. How the use of guessing the effect
of loops and the use of non linear constraints effect the class of parametric timed
automata which can be analyzed successfully, is not discussed in the paper.

The PMC tool [24] is another tool capable of doing parametric model check-
ing. This is not based on a forward reachability algorithm but on partition
refinement [116] (also called minimization in [11]). It has been used to analyze
the rootcontention protocol [24] but with fewer parameters that the analysis we
have made, so comparing performance is not possible in this case. However, the
PMC tool seems to be very efficient also for doing non parametric timed model
checking. The HyTech [74] model checker for hybrid systems can also be used
for parametric model checking by letting variables have slope zero always.

Parametric analysis has also been performed by hand sometimes supported
by timed model checkers in a number of cases, especially for communication
protocols. A few such examples are the bounded retransmission protocol [57],
the rootcontention protocol [136, 140], and the Biphase Mark protocol [141, 90].

Chapter 4

Development Methods

As mentioned earlier there are two main ways of applying formal methods.
Either one makes a formal model of the system and verifies that the model
satisfies a given specification, or one derives the system from a specification. In
the following we present one example of each of these two approaches.

4.1 Automatic Model Generation

Applying model checkers to real systems can be hard for a number of reasons,
e.g. making a correct model of the system, specifying the properties correctly,
and understanding the output of the model checker correctly. In Chapter 12 we
will address parts of the problem of making correct models of the system, by
presenting an automatic translation from LEGO RCX programs to networks
of timed automata. This provides an automatic way of obtaining part of the
model of a system. Still, the environment controlled by the RCX program
must be modeled to obtain a full model of the system. However, it is in many
cases possible to check properties of the program with very basic models of the
environment.

In Chapter 12 we present a compositional translation from a subset of the
RCX language to networks of timed automata. The part of the language which
is considered contains the most important constructions which are needed dur-
ing our experiments. The model also includes a model of the scheduler, taking
care of scheduling the different tasks. The translation has been implemented
in a prototype tool and is tested on a control program for a car. The con-
trol program is analyzed with respect to some response properties using test
automata.

There are several reasons for choosing the RCX language as the language
to model. First of all, it is quite simple and yet powerful enough for implement-
ing complex control programs. The RCX language does not support indirect
addressing which makes the translation and the model considerably simpler. A
program consists of a number of tasks which are executing concurrently. This
can naturally be modeled by one automaton for each task. The processor in the
RCX brick does not pipeline instructions or guess the next type of instruction,
which makes the execution time of each instruction independent of the context,

29

30 Chapter 4. Development Methods

making timing analysis much simpler.

A number of other people has been looking at modeling real-time programs.
In [92] LEGO RCX programs are also modeled in networks of timed automata.
Here the model of the scheduler is distributed to a number of smaller automata
which makes it simpler. The model in [92] also models timers which are used in
an example of a LEGO brick sorter. This increases the size of the state-space
because time is split into small portions, making the symbolic states small.

Other languages have also been analyzed, especially Ada. A translation
from Ada tasks to timed automata is given in [34] where also suggestions for a
translation from timed automata to Ada tasks is presented. A special kind of
hybrid automata is used for modeling Ada programs in [54]. For each control
path leading to an accepting state, a linear programming problem is solved to
find the minimum time of reaching that state. Often, models obtained from
automatic modeling of program are very detailed and therefore intractable to
analyze. Since the models generated automatically tend to be large, applying
abstraction by hand can be very hard and time consuming. The problem of
generating models which are sufficiently abstract for analysis is addressed in
[55].

4.2 Synthesis using Mona

The main topic of this dissertation is verifying existing code and designs of real-
time system. In Chapter 13 we address the problem of synthesizing programs
from a specification which does not consider real-time aspects. We have again
used the LEGO RCX language which enabled us to build a model for testing
the generated program.

In Chapter 13 we study how to mix handwritten code and synthesized code
through an example. We consider the control program of a crane which can
move and turn. Different constraints are imposed on the behavior of the crane.
A simple control program which at all times allow any input and responds with
the related action of either turning on or off a motor is written by hand. The
constraints are imposed by presenting a specification in Monadic Second Order
Logic (M2L) [45]. Using Mona [96] the finite automaton accepting the language
of the specification is generated. The automaton is translated into RCX code
by hand, however, the translation is standard and could easily be implemented.
With the automaton running together with the handwritten code, the possible
executions of the handwritten code can be restricted to the ones satisfying the
specification. Finally, it is discussed what to do in general when an action is
not allowed and suggestions for extending the approach with time is given.

We use M2L as our specification language, and use the tool Mona to generate
automata from the specifications. Mona implements a translation from M2L to
minimal finite automata. Instead of specifying the complete control program
in M2L we have taken another approach where part of the control program is
supplied by the user (written by hand) and another part is synthesized from the
M2L specification. The actions in the specification are input and output actions
of the program which allows the specification to determine which sequences of

4.2. Synthesis using Mona 31

I/O actions should be allowed. Since the M2L formula is translated into an
automaton with the I/O actions as alphabet, running alongside the handwritten
control program, it can only restrict the behavior of the control program, not
add new behaviors. This allows the user to write complex control programs and
just use the specification to ensure that certain safety properties are met by the
program. One can also write a very simple control program basically allowing
any kind of behavior and then write a complex specification. In general some
dependencies will be very natural to build into the control program, while more
complex constraints are imposed by the specification. The desired response to
the control program trying to generate an illegal sequence of I/O actions can
vary from application to application. Basically, one can choose to delay the
illegal action until other actions have made it legal, or one can choose simply
to skip the action.

In the example in Chapter 13 the constraints imposed a priority between
different actions. In our case, the control program did not implement any kind
of priority between the different actions, so the priorities in the specification did
not cause any problems. However, if the control program implements a priority
scheme it is up to the user to ensure that deadlock cannot occur when mixing
the two priority schemes.

The major drawback of using Mona is that the automata generated do not
have acceptance conditions for infinite executions. This makes specifying live-
ness conditions difficult.

Traditionally, synthesis was intended for generating complete systems from
a specification [118] and not a component as presented in Chapter 13. Since
simple parts of the code are easier to write by hand than to specify, we think
it makes sense to combine handwritten code with synthesized code. Synthesis
based on automata has been studied widely, and [131] gives an overview of the
area. In [113] a game-theoretic approach to controller synthesis is presented
for infinite games. This has been studied in the case of real-time in [23]. Also
controllers for hybrid systems have been studied by a number of people. In [114]
control software is synthesized from hybrid automata. The synthesized code can
also be mixed with handwritten code, but here the handwritten code is included
as modules, implementing certain tasks which are used by the synthesized code.

Part II

Region Based Methods

33

Chapter 5

Decidability of Minimum-Cost Reachability

The paper Minimum-Cost Reachability for Priced Timed Automata presented
in this chapter has been published as a technical report [29] and a conference
paper [28].

[28] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J.
Romijn and F. Vaandrager. Minimum-Cost Reachability for Priced Timed
Automata. In Proceedings of Hybrid Systems: Computation and Control,
pages 147–161, 2001.

[29] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J.
Romijn and F. Vaandrager. Minimum-Cost Reachability for Priced Timed
Automata. Technical Report RS-01-03, BRICS, January 2001.

The technical report extends the conference version by adding complete proofs
and some more examples. Except for minor typographical changes the content
of this chapter is equal to the technical report [29].

35

5.1. Introduction 37

Minimum-Cost Reachability for
Priced Timed Automata¶

Gerd Behrmann∗ Ansgar Fehnker‡‖ Thomas Hune†

Kim Larsen∗

Paul Pettersson§∗∗
Judi Romijn‡ Frits Vaandrager‡

Abstract

This paper introduces the model of linearly priced timed automata as
an extension of timed automata, with prices on both transitions and loca-
tions. For this model we consider the minimum-cost reachability problem:
i.e. given a linearly priced timed automaton and a target state, determine
the minimum cost of executions from the initial state to the target state.
This problem generalizes the minimum-time reachability problem for ordi-
nary timed automata. We prove decidability of this problem by offering an
algorithmic solution, which is based on a combination of branch-and-bound
techniques and a new notion of priced regions. The latter allows symbolic
representation and manipulation of reachable states together with the cost
of reaching them.
Keywords: Timed Automata, Verification, Data Structures, Algorithms,
Optimization.

5.1 Introduction

Recently, real-time verification tools such as Uppaal [109], Kronos [41] and
HyTech [74], have been applied to synthesize feasible solutions to static job-
shop scheduling problems [64, 82, 127]. The basic common idea of these works is
to reformulate the static scheduling problem as a reachability problem that can
be solved by the verification tools. In this approach, the timed automata [13]

∗Basic Research In Computer Science, BRICS, (www.brics.dk), funded by the
Danish National Research Foundation, University of Aalborg, Denmark, Email:
[behrmann,kgl]@cs.auc.dk

†Basic Research In Computer Science, BRICS, (www.brics.dk), funded by the Danish
National Research Foundation, University of Århus, Denmark, Email: baris@brics.dk

‡Computing Science Institute, University of Nijmegen, Email:
[ansgar,judi,fvaan]@cs.kun.nl

§Department of Information Technology, Uppsala University, Email: paupet@docs.uu.se.
¶This work is partially supported by the European Community Esprit-LTR Project 26270

VHS (Verification of Hybrid Systems)
‖Research supported by Netherlands Organization for Scientific Research (NWO) under

contract SION 612-14-004.
∗∗Research partly sponsored by the AIT-WOODDES Project No IST-1999-10069.

38 Chapter 5. Decidability of Minimum-Cost Reachability

based modeling languages of the verification tools serve as the basic input lan-
guage in which the scheduling problem is described. These modeling languages
have proven particularly well-suited in this respect, as they allow for easy and
flexible modeling of systems, consisting of several parallel components that
interact in a time-critical manner and constrain each other’s behavior in a mul-
titude of ways.

In this paper we introduce the model of linearly priced timed automata and
offer an algorithmic solution to the problem of determining the minimum cost
of reaching a designated set of target states. This result generalizes previous
results on computation of minimum-time reachability and accumulated delays
in timed automata, and should be viewed as laying a theoretical foundation for
algorithmic treatments of more general optimization problems as encountered
in static scheduling problems.

As an example consider the very simple static scheduling problem repre-
sented by the timed automaton in Fig. 5.1 from [126], which contains 5 ’tasks’
{A,B,C,D,E}. All tasks are to be performed precisely once, except task C,
which should be performed at least once. The order of the tasks is given by
the timed automaton, e.g. task B must not commence before task A has fin-
ished. In addition, the timed automaton specifies three timing requirements to
be satisfied: the delay between the start of the first execution of task C and the
start of the execution of E should be at least 3 time units; the delay between
the start of the last execution of C and the start of D should be no more than
1 time unit; and, the delay between the start of B and the start of D should
be at least 2 time units, each of these requirements are represented by a clock
in the model. Using a standard timed model checker we are able to verify that

A B C D Ex := 0
y := 0
z := 0

x ≥ 2
y ≤ 1 z ≥ 3

y := 0

Figure 5.1: Timed automata model of scheduling example.

location E of the timed automaton is reachable. This can be demonstrated by
a trace leading to the location1:

(A, 0, 0, 0)
τ
−→

ǫ(1)
−−→ (B, 1, 1, 1)

τ
−→

ǫ(1)
−−→ (C, 2, 1, 1)

τ
−→

ǫ(2)
−−→ (D, 4, 3, 3)

τ
−→ (E, 4, 3, 3)

(5.1)
The above trace may be viewed as a feasible solution to the original static

scheduling problem. However, given an optimization problem, one is often not
satisfied with an arbitrary feasible solution but insist on solutions which are
optimal in some sense. When modeling a problem like this one using timed
automata an obvious notion of optimality is that of minimum accumulated
time. For the timed automaton of Fig. 5.1 the trace of (5.1) has an accumulated

1Here a quadruple (X, vx, vy , vz) denotes the state of the automaton in which the control
location is X and where vx, vy and vz give the values of the three clocks x, y and z. The
transitions labelled τ are actual transitions in the model, and the transitions labelled ǫ(d)
represents a delay of d time units.

5.1. Introduction 39

1
A B C D

β 111
E

0 0 0 0

x := 0
y := 0
z := 0

x ≥ 2
y ≤ 1 z ≥ 3

y := 0

α

Figure 5.2: A linearly priced timed automaton.

time-duration of 4. This, however, is not optimal as witnessed by the following
alternative trace, which by exploiting the looping transition on C reaches E
within a total of 3 time-units2:

(A, 0, 0, 0)
τ
−→

τ
−→

ǫ(2)
−−→ (C, 2, 2, 2)

τ
−→ (C, 2, 0, 2)

τ
−→

ǫ(1)
−−→ (D, 3, 1, 3)

τ
−→ (E, 3, 1, 3) (5.2)

In [23] algorithmic solutions to the minimum-time reachability problem and the
more general problem of controller synthesis has been given using a backward
fix-point computation. In [126] an alternative solution based on forward reach-
ability analysis is given, and in [26] an algorithmic solution is offered, which
applies branch-and-bound techniques to prune parts of the symbolic state-space
which are guaranteed not to contain optimal solutions. In particular, by intro-
ducing an additional clock for accumulating time-elapses, the minimum-time
reachability problem may be dealt with using the existing efficient data struc-
tures (e.g. DBMs [60], CDDs [110] and DDDs [123]) already used in the real-
time verification tools Uppaal and Kronos for reachability. The results of
the present paper also extends the work in [10] which provides an algorithm for
computing the accumulated delay in a timed automata.

In this paper, we provide the basis for dealing with more general optimiza-
tion problems. In particular, we introduce the model of linearly priced timed
automata, as an extension of timed automata with prices on both transitions
and locations: the price of a transition gives the cost for taking it and the
price on a location specifies the cost per time-unit for staying in that location.
This model can capture not only the passage of time, but also the way that
e.g. tasks with different prices for use per time unit, contributes to the total
cost. Figure 5.2 gives a linearly priced extension of the timed automaton from
Fig. 5.1. Here, the price of location D is set to β and the price on all other
locations is set to 1 (thus simply accumulating time). The price of the looping
transition on C is set to α, whereas all other transitions are free of cost (price
0). Now for (α, β) = (1, 3) the costs of the traces (1) and (2) are 8 and 6,
respectively (thus it is cheaper to actually exploit the looping transition). For
(α, β) = (2, 2) the costs of the two traces are both 6, thus in this case it is
immaterial whether the looping transition is taken or not. In fact, the optimal
cost of reaching E will in general be the minimum of 2 + 2 ∗ β and 3 + α, and
the optimal trace will include the looping transition on C depending on the
particular values of α and β.

2In fact, 3 is the minimum time for reaching E.

40 Chapter 5. Decidability of Minimum-Cost Reachability

In this paper we deal with the problem of determining the minimum cost
of reaching a given location for linearly priced timed automata. In particular,
we offer an algorithmic solution to this problem3. In contrast to minimum-time
reachability for timed automata, the minimum-cost reachability problem for
linearly priced timed automata requires the development of new data structures
for symbolic representation and the manipulation of reachable sets of states
together with the cost of reaching them. In this paper we put forward one such
data structure, namely a priced extension of the fundamental notion of clock
regions for timed automata [13].

The remainder of the paper is structured as follows: Section 5.2 formally
introduces the model of linearly priced timed automata together with its se-
mantics. Section 5.3 develops the notion of priced clock regions, together with
a number of useful operations on these. The priced clock regions are then
used in Section 5.4 to give a symbolic semantics capturing (sufficiently) pre-
cisely the cost of executions and used as a basis for an algorithm solution to
the minimum-cost problem. Finally, in Section 5.5 we give some concluding
remarks.

5.2 Linearly Priced Timed Automata

In this section, we introduce the model of linearly priced timed automata, which
is an extension of timed automata [13] with prices on both locations and tran-
sitions. Dually, linearly priced timed automata may be seen as a special type
of linear hybrid automata [72] or multirectangular automata [72] in which the
accumulation of prices (i.e. the cost) is represented by a single continuous vari-
able. However, in contrast to known undecidability results for these classes,
minimum-cost reachability is computable for linearly priced timed automata.
An intuitive explanation for this is that the additional (cost) variable does not
influence the behavior of the automata.

Let C be a finite set of clocks. Then B(C) is the set of formulas obtained
as conjunctions of atomic constraints of the form x ⊲⊳ n where x ∈ C, n is
natural number, and ⊲⊳ ∈ {<,≤,=,≥, >}. Elements of B(C) are called clock
constraints over C. Note that for each timed automaton that has constraints
of the form x − y ⊲⊳ c, there exists a strongly bisimilar timed automaton with
only constraints of the form x ⊲⊳ c. Therefore, the results in this paper are
applicable to automata having constraints of the type x− y ⊲⊳ c as well.

Definition 5.1 (Linearly Priced Timed Automaton) A Linearly Priced
Timed Automaton (LPTA) over clock set C and action set Act is a tuple
(L, l0, E, I, P) where L is a finite set of locations, l0 is the initial location,
E ⊆ L × B(C) × Act × P(C) × L is the set of edges, I : L → B(C) assigns
invariants to locations, and P : (L ∪ E) → N assigns prices to both locations

and edges. In the case of (l, g, a, r, l′) ∈ E, we write l
g,a,r
−−−→ l′.

Formally, clock values are represented as functions called clock assignments
from C to the non-negative reals R≥0. We denote by RC the set of clock assign-

3Thus settling an open problem given in [23].

5.2. Linearly Priced Timed Automata 41

A B C
3 1 4

x <= 2 x := 0
x > 1

5 1

Figure 5.3: An example LPTA.

ments for C ranged over by u, u′ etc. We define the operation u′ = [r 7→ 0]u
to be the assignment such that u′(x) = 0 if x ∈ r and u(x) otherwise, and the
operation u′ = u+ d to be the assignment such that u′(x) = u(x) + d. Also, a
clock valuation u satisfies a clock constraint g, u ∈ g, if u(x) ⊲⊳ n for all atomic
constraints x ⊲⊳ n in g. Notice that the set of clock valuations satisfying a guard
is always a convex set.

The semantics of an LPTA A is defined as a transition system with states
L×RC , with initial state (l0, u0) (where u0 assigns zero to all clocks in C), and
with the following transition relation:

• (l, u)
ǫ(d),p
−−−→ (l, u+ d) if u+ d ∈ I(l), and p = P (l) ∗ d.

• (l, u)
a,p
−−→ (l′, u′) if there exists g, r such that l

g,a,r
−−−→ l′, u ∈ g, u′ = [r 7→

0]u, u′ ∈ I(l′) and p = P ((l, g, a, r, l′)).

Note that the transitions are decorated with two labels: a delay-quantity or an
action, together with the cost of the particular transition. For determining the
cost, the price of a location gives the cost rate of staying in that location (per
time unit), and the price of a transition gives the cost of taking that transition.
In the remainder, states and executions of the transition system for LPTA A
will be referred to as states and executions of A.

Definition 5.2 (Cost) Let α = (l0, u0)
a1,p1
−−−→ (l1, u1) . . .

an,pn
−−−→ (ln, un) be a

finite execution of LPTA A. The cost of α, cost(α), is the sum Σi∈{1,...,n}pi.
For a given state (l, u), the minimal cost of reaching (l, u), mincost((l, u)), is

the infimum of the costs of finite executions ending in (l, u). Similarly, the min-
imal cost of reaching a location l is the infimum of the costs of finite executions
ending in a state of the form (l, u).

mincost(l) = inf{cost(α) | α a run ending in location l}

Example 5.1 Consider the LPTA of Fig. 5.3. The LPTA has a single clock
x, and the locations and transitions are decorated with guards and prices. A
sample execution of this LPTA is for instance:

(A, 0)
ǫ(1.5),4.5
−−−−−→ (A, 1.5)

τ,5
−−→ (B, 1.5)

τ,1
−−→ (C, 1.5)

The cost of this execution is 10.5. In fact, there are executions with cost ar-
bitrarily close to the value 7, obtainable by avoiding delaying in location A,
and delaying just long enough in location B. Due to the infimum definition of
mincost, it follows that mincost(C) = 7. However, note that because of the strict
comparison in the guard of the second transition, no execution actually achieves
this cost. ✷

42 Chapter 5. Decidability of Minimum-Cost Reachability

5.3 Priced Clock Regions

For ordinary timed automata, the key to decidability results has been the valu-
able notion of region [13]. In particular, regions provide a finite partitioning of
the uncountable set of clock valuations, which is also stable with respect to the
various operations needed for exploration of the behavior of timed automata
(in particular the operations of delay and reset).

In the setting of linearly priced timed automata, we put forward a new
extended notion of priced region. Besides providing a finite partitioning of the
set of clock-valuations (as in the case of ordinary regions), priced regions also
associate costs to each individual clock-valuation within the region. However, as
we shall see in the following, priced regions may be presented and manipulated
in a symbolic manner and are thus suitable as an algorithmic basis.

Definition 5.3 (Priced Regions) Given set S, let Seq(S) be the set of finite
sequences of elements of S. A priced clock region over a finite set of clocks C

R = (h, [r0, . . . , rk], [c0, . . . , cl])

is an element of (C → N) × Seq(2C) × Seq(N), with k = l, C = ∪i∈{0,...,k}ri,
ri ∩ rj = ∅ when i 6= j, and i > 0 implies that ri 6= ∅.

Given a clock valuation u ∈ RC , and region R = (h, [r0, . . . , rk], [c0, . . . , ck]),
u ∈ R iff

1. h and u agree on the integer part of each clock in C,

2. x ∈ r0 iff frac(u(x)) = 0,

3. x, y ∈ ri ⇒ frac(u(x)) = frac(u(y)), and

4. x ∈ ri, y ∈ rj and i < j ⇒ frac(u(x)) < frac(u(y)).

For a priced region R = (h, [r0, . . . , rk], [c0, . . . , ck]) the first two components of
the triple constitute an ordinary (unpriced) region R̂ = (h, [r0, . . . , rk]). The
naturals c0, . . . , ck are the costs, which are associated with the vertices of the
closure of the (unpriced) region, as follows. We start in the left-most lower
vertex of the exterior of the region and associate cost c0 with it, then move
one time unit in the direction of set rk to the next vertex of the exterior,
and associate cost c1 with that vertex, then move one unit in the direction
of rk−1, etc. In this way, the costs c0, . . . , ck, span a linear cost plane on the
k-dimensional unpriced region.

The closure of the unpriced region R is the convex hull of the vertices.
Each clock valuation u ∈ R is a (unique) convex combination4 of the vertices.
Therefore the cost of u can be defined as the same convex combination of the
cost in the vertices. This gives the following definition:

4A linear expression
∑

aivi where
∑

ai = 1, and ai ≥ 0.

5.3. Priced Clock Regions 43

Figure 5.4: A three dimensional priced region.

Definition 5.4 (Cost inside Regions) Let R = (h, [r0, . . . , rk], [c0, . . . , ck])
be a priced region and clock valuation u ∈ R, the cost of u in R is defined as:

cost(u,R) = c0 +

k−1
∑

i=0

frac(u(xk−i)) ∗ (ci+1 − ci)

where xj is some clock in rj . The minimal cost associated withR is mincost(R) =
min({c0, . . . , ck}).

In the symbolic state-space, constructed with the priced regions, the costs
will be computed such that for each concrete state in a symbolic state, the cost
associated with it is the minimal cost for reaching that state by the symbolic
path that was followed. In this way, we always have the minimal cost of all
concrete paths represented by that symbolic path, but there may be more sym-
bolic paths leading to a symbolic state in which the costs are different. Note
that the cost of a clock valuation in the region is computed by adding fractions
of costs for equivalence sets of clocks, rather than for each clock.

To prepare for the symbolic semantics, we define in the following a number
of operations on priced regions. These operations are also the ones used in the
algorithm for finding the optimal cost of reaching a location.

The delay operation computes the time successor, which works exactly as
in the classical (unpriced) regions. The changing dimensions of the regions
cause the addition or deletion of vertices and thus of the associated cost. The
price argument will be instantiated to the price of the location in which time
is passing; this is needed only when a vertex is added. The two cases in the
operation are illustrated in Fig. 5.5 to the left (5.1) and (5.2).

Definition 5.5 (Delay) Given a priced region R = (h, [r0, . . . , rk], [c0, . . . , ck])
and a price p, the function delay is defined as follows:

1. If r0 is not empty, then

delay(R, p) = (h, [∅, r0, . . . , rk], [c0, . . . , ck, c0 + p])

44 Chapter 5. Decidability of Minimum-Cost Reachability

Figure 5.5: Delay and reset operations for two-dimensional priced regions.

2. If r0 is empty, then

delay(R, p) = (h′, [rk, r1, . . . , rk−1], [c1, . . . , ck])

where h′ = h incremented for all clocks in rk

When resetting a clock, a priced region may lose a dimension. If so, the two
costs, associated with the vertices that are collapsed, are compared and the
minimum is taken for the new vertex. Two of the three cases in the operation
is illustrated in Fig. 5.5 to the right (6.2) and (6.3).

Definition 5.6 (Reset) Given a priced region R = (h, [r0, . . . , rk], [c0, . . . , ck])
and a clock x ∈ ri, the function reset is defined as follows:

1. If i = 0 then reset(x,R) = (h′, [r0, . . . , rk], [c0, . . . , ck]), where h′ = h with
x set to zero

2. If i > 0 and ri 6= {x}, then

reset(x,R) = (h′, [r0 ∪ {x}, . . . , ri \ {x}, . . . , rk], [c0, . . . , ck])

where h′ = h with x set to zero

3. If i > 0 and ri = {x}, then

reset(x,R) = (h′, [r0 ∪ {x}, . . . , ri−1, ri+1, . . . , rk],

[c0, . . . , ck−i−1, c
′, ck−i+2, . . . , ck])

where c′ = min(ck−i, ck−i+1)

h′ = h with x set to zero

The reset operation on a set of clocks: reset(C ∪{x}, R) = reset(C, reset(x,R)),
and reset(∅, R) = R.

The price argument in the increment operation will be instantiated to the price
of the particular transition taken; all costs are updated accordingly.

5.3. Priced Clock Regions 45

Definition 5.7 (Increment (⊕)) Given a priced region R = (h, [r0, . . . , rk],
[c0, . . . , ck]) and a price p, the increment of R with respect to p is the priced
region R⊕ p = (h, [r0, . . . , rk], [c

′
0, . . . , c

′
k]) where c′i = ci + p.

If in region R, no clock has fractional part 0, then time may pass in R, that
is, each clock valuation in R has a time successor and predecessor in R. When
changing location with R, we must choose for each clock valuation u in R
between delaying in the previous location until u is reached, followed by the
change of location, or changing location immediately and delaying to u in the
new location. This depends on the price of either location. For this the following
operation self is useful.

Definition 5.8 (Self) Given a priced region R = (h, [r0, . . . , rk], [c0, . . . , ck])
and a price p, the function self is defined as follows:

1. If r0 is not empty, then self(R, p) = R.

2. If r0 is empty, then

self(R, p) = (h, [r0, . . . , rk], [c0, . . . , ck−1, c
′])

where c′ = min(ck, c0 + p)

Definition 5.9 (Comparison) Two priced regions may be compared only if
their unpriced versions are equal: (h, [r0, . . . , rk], [c0, . . . , ck]) ≤ (h′, [r′0, . . . , r

′
k′],

[c′0, . . . , c
′
k′]) iff h = h′, k = k′, and for 0 ≤ i ≤ k: ri = r′i and ci ≤ c

′
i.

The operations delay and self satisfy the following useful properties:

Proposition 5.1 (Interaction Properties)

1. self(R, p) ≤ R,

2. self(self(R, p), p) = self(R, p),

3. delay(self(R, p), p) ≤ delay(R, p),

4. self(delay(R, p), p) = delay(R, p),

5. self(R⊕ q, p) = self(R, p)⊕ q,

6. delay(R ⊕ q, p) = delay(R, p)⊕ q,

7. For g ∈ B(C), whenever R ∈ g then self(R, p) ∈ g.

Proof. Directly from the definitions of the operators and ≤. ✷

Stated in terms of the cost, cost(u,R), of an individual clock valuation, u,
of a priced region, R, the symbolic operations behave as follows:

Proposition 5.2 (Cost Relations)

1. Let R = (h, [r0, . . . , rk], [c0, . . . , ck]). If u ∈ R and u+d ∈ R then cost(u+
d,R) = cost(u,R) + d ∗ (ck − c0).

46 Chapter 5. Decidability of Minimum-Cost Reachability

2. If R = self(R, p), u ∈ R and u+ d ∈ delay(R, p) then
cost(u+ d, delay(R, p)) = cost(u,R) + d ∗ p.

3. cost(u, reset(x,R)) = inf{ cost(v,R) | [x 7→ 0]v = u }.

Proof. Directly from the definitions of the operators and cost. ✷

5.4 Symbolic Semantics and Algorithm

In this section, we provide a symbolic semantics for linearly priced timed au-
tomata based on the notion of priced regions and the associated operations
presented in the previous section. As a main result we shown that the cost of
an execution of the underlying automaton is captured sufficiently accurately.
Finally, we present an algorithm based on priced regions.

Definition 5.10 (Symbolic Semantics) The symbolic semantics of an LPTA
A is defined as a transition system with the states L× ((C → N) × Seq(2C)×
Seq(N)), with initial state (l0, (h0, [C], [0])) (where h0 assigns zero to the integer
part of all clocks in C), and with the following transition relation:

• (l, R)→ (l, delay(R,P (l))) if delay(R,P (l)) ∈ I(l).

• (l, R) → (l′, R′) if there exists g, r such that l
g,a,r
−−−→ l′, R ∈ g, R′ =

reset(R, r)⊕ P ((l, g, a, r, l′)) and R′ ∈ I(l′).

• (l, R)→ (l, self(R,P (l)))

In the remainder, states and executions of the symbolic transition system
for LPTA A will be referred to as the symbolic states and executions of A.

Lemma 5.1 Given LPTA A, for each execution α of A that ends in state (l, u),
there is a symbolic execution β of A, that ends in symbolic state (l, R), such
that u ∈ R, and cost(u,R) ≤ cost(α).

Proof. For this proof we first observe that, given g ∈ B(C), if u ∈ R and u ∈ g,
then R ∈ g.

We prove this by induction on the length of α. Suppose α ends in state
(l, u). The base step concerns α with length 0, consisting of only the initial state
(l0, u0) where u0 is the valuation assigning zero to all clocks. Clearly, cost(α) =
0. Since the initial state of the symbolic semantics is the state (l0, (h0, [C], [0])),
in which h0 assigns zero to the integer part of all clocks, and the fractional part
of all clocks is zero, we can take β to be (l0, (h0, [C], [0])). Clearly, there is only
one valuation u ∈ (h0, [C], [0]), namely the valuation u that assigns zero to all
clocks, which is exactly u0, and by definition, cost(u0, (h0, [C], [0])) = 0 and
trivially 0 ≤ 0.

For the induction step, assume the following. We have an execution α′ in
the concrete semantics, ending in (l′, u′), a corresponding execution β′ in the

5.4. Symbolic Semantics and Algorithm 47

symbolic semantics, ending in (l′, R′), such that u′ ∈ R′, and cost(u′, R′) ≤
cost(α′).

Suppose (l′, u′)
a,p
−−→ (l, u). Then there is a transition l′

a,g,r
−−−→ l in the au-

tomaton A such that u ∈ g, u = [r 7→ 0]u′, u ∈ I(l) and p = P ((l′, a, g, r, l)).
Now u′ ∈ g implies that R′ ∈ g. Let R = reset(R′, r)⊕p. It is easy to show that
u = [r 7→ 0]u′ ∈ R and as u ∈ R we then have that R ∈ I(l). So (l′, R′)→ (l, R)
and

cost(u,R) = inf{ cost(v,R′) | [r 7→ 0]v = u } + p

≤ cost(u′, R′) + p

≤IH cost(α′) + p

= cost(α)

Suppose (l′, u′)
ǫ(d),p∗d
−−−−−→ (l, u), where p = P (l), i.e. l = l′, u = u′ + d, and

u ∈ I(l). Now there exist sequences Ro, R1, . . . , Rm and d1, . . . , dm of price
regions and delays such that d = d1 + · · ·+ dm, R0 = R′ and for i ∈ {1, . . . ,m},
Ri = delay(Ri−1, p) with u′ +

∑i
k=1 dk ∈ Ri. This defines the sequence of

regions wisited without considering cost. To obtain the priced regions with
the optimal cost we apply the self operation. Let R′

0 = self(R0, p) and for i ∈
{1, . . . ,m} let R′

i = delay(R′
i−1, p) (in fact, for i ∈ {1, . . . ,m}, R′

i = self(R′
i, p)

due to Proposition 5.1.4 and R′
i ≤ Ri). Clearly we have the following symbolic

extension of β′:
β′ → (l′, R′

0)→ · · · → (l′, R′
m)

Now by Proposition 5.2.2 (the condition of Proposition 5.2.2 is satisfied for all
R′

i(i ≥ 0) because of Proposition 5.1.4:

cost(u′ + d,R′
m) = cost(u′, R′

0) + d ∗ p

≤ cost(u′, R′) + d ∗ p

≤IH cost(α′) + d ∗ p

= cost(α)

✷

Lemma 5.2 Whenever (l, R) is a reachable symbolic state and u ∈ R, then
mincost((l, u)) ≤ cost(u,R).

Proof. The proof is by induction on the length of the symbolic trace β reaching
(l, R). In the base case, the length of β is 0 and (l, R) = (l0, R0), where R0

is the initial price region (h0, [C], [0]) in which h0 associates 0 with all clocks.
Clearly, there is only one valuation u ∈ R0, namely the valuation which assigns
0 to all clocks. Obviously, mincost((l0, u0)) = 0 ≤ cost(u0, R0) = 0.

For the induction step, assume that (l, R) is reached by a trace β with length
greater than 0. In particular, let (l′, R′) be the immediate predecessor of (l, R)
in β. Let u ∈ R. We consider three cases depending on the type of symbolic
transition from (l′, R′) to (l, R).

48 Chapter 5. Decidability of Minimum-Cost Reachability

Case 1: Suppose (l′, R′)→ (l, R) is a symbolic delay transition. That is, l = l′,
R = delay(R′, p) with p = P (l) and R ∈ I(l). We consider two sub-cases
depending on whether R′ is self-delayable or not5.
Assume that R′ is not self-delayable, i.e. R′ = (h′, [r′0, . . . , r

′
k], [c

′
0, . . . , c

′
k]) with

r′0 6= ∅. Then R = (h′, [∅, r′0, . . . , r
′
k], [c

′
0, . . . , c

′
k, c

′
0 + p]). Let x ∈ r′0 and let

u′ = u − d where d = frac(u(x)). Then u′ ∈ R′ and (l′, u′)
ǫ(d),q
−−−→ (l, u) where

q = d∗p. Thus mincost((l, u)) ≤ mincost((l′, u′))+d∗p. By induction hypothesis,
mincost((l′, u′)) ≤ cost(u′, R′), and as cost(u,R) = cost(u′, R)+d∗p, we obtain,
as desired, mincost((l, u)) ≤ cost(u,R).
Assume that R′ is self-delayable. That is, R′ = (h′, [r′0, r

′
1, . . . , r

′
k], [c

′
0, . . . , c

′
k])

with r′0 = ∅ and R = (h′′, [r′k, r
′
1, . . . , r

′
k−1], [c

′
1, . . . , c

′
k]). Now, let x ∈ r′1. Then

for any d < frac(u(x)) we let ud = u − d. Clearly, ud ∈ R
′ and (l, ud)

ǫ(d),p∗d
−−−−−→

(l, u). Now,

mincost((l, u)) ≤ mincost((l, ud)) + p ∗ d

≤IH cost(ud, R
′) + p ∗ d

Now cost(u,R) = cost(ud, R
′)+(c′k−c

′
0)∗d so it is clear that cost(ud, R

′)+k∗d→
cost(u,R) when d→ 0 for any k. In particular, cost(ud, R

′)+p∗d→ cost(u,R)
when d→ 0. Thus mincost((l, u)) ≤ cost(u,R) as desired.

Case 2: Suppose (l′, R′) → (l, R) is a symbolic action transition. That is

R = reset(R′, r)⊕ p for some transition l′
g,a,r
−−−→ l of the automaton with R′ ∈ g

and p = P ((l′, g, a, r, l)). Now let v ∈ R′ such that [r 7→ 0]v = u. Then clearly

(l′, v)
a,p
−−→ (l, u). Thus:

mincost((l, u)) ≤ inf{mincost((l, v)) | v ∈ R′, [r 7→ 0]v = u }

≤IH inf{ cost(v,R′) | [r 7→ 0]v = u }

= cost(u,R) by Proposition 5.2.3

Case 3: Suppose (l′, R′) → (l, R) is a symbolic self-delay transition. Thus,
in particular l = l′. If R = R′ the lemma follows immediately by applying
the induction hypothesis to (l′, R′). Otherwise, R′ is self-delayable and R′

and R are identical except for the cost of the ‘last’ vertex which has been
changed by the self operation; i.e. R′ = (h, [r0, . . . , rk], [c0, . . . , ck−1, ck]) and
R = (h, [r0, . . . , rk], [c0, . . . , ck−1, c0 + p]) with r0 = ∅, c0 + p < ck and p = P (l).
Now let x ∈ r1. Then for any d > u(x) we let ud = u− d. Clearly, ud ∈ R (and

ud ∈ R
′) and (l, ud)

ǫ(d),p∗d
−−−−−→ (l, u). Now:

mincost((l, u)) ≤ mincost((l, ud)) + p ∗ d

≤IH cost(ud, R
′) + p ∗ d

Now let R′′ = (h, [r1, . . . , rk], [c0, . . . , ck−1]). Then R = delay(R′′, p) and R′ =
delay(R′′, ck − c0). Now cost(ud, R

′) = cost(uu(x), R
′′) + (ck − c0) ∗ (d − u(x))

which converges to cost(uu(x), R
′′) when d → u(x). Thus cost(ud, R

′) + p ∗

5A priced region, R = (h, [r0, . . . , rk], [c0, . . . , ck]), is self-delayable whenever r0 = ∅.

5.4. Symbolic Semantics and Algorithm 49

i ii

Figure 5.6: Two reachable sets of priced regions.

d → cost(uu(x), R
′′) + p ∗ d = cost(u,R) for d → u(x). Hence, as desired,

mincost((l, u)) ≤ cost(u,R).
✷

Combining the two lemmas we obtain as a main theorem that the symbolic
semantics captures (sufficiently) accurately the cost of reaching states and lo-
cations:

Theorem 5.1 Let l be a location of an LPTA A. Then

mincost(l) = min({mincost(R) | (l, R) is reachable })

Example 5.2 We now return to the linearly priced timed automaton in Fig. 5.2
where the value of both α and β is two, and look at its symbolic state-space. The
shaded area in Fig. 5.6(i) including the lines in and around the shaded area rep-
resents some of the reachable priced regions in location B after time has passed
(a number of delay actions have been taken). Only priced regions with integer
values up to 3 are shown. The numbers are the cost of the vertices. The shaded
area in Fig. 5.6(ii) represents in a similar way some of the reachable priced
regions in location C after time has passed. For a more elaborate explanation
of the reachable state-space we refer to the appendix. ✷

The introduction of priced regions provides a first step towards an algo-
rithmic solution for the minimum-cost reachability problem. However, in the
present form both the integral part as well as the cost of vertices of priced
regions may grow beyond any given bound during symbolic exploration. In
the unpriced case, the growth of integral parts is often dealt with by suitable
abstractions of (unpriced) regions, taking the maximal constant of the given
timed automaton into account. Here we have chosen a very similar approach
exploiting the fact, that any LPTA A may be transformed into an equivalent
“bounded” LPTA Ã in the sense that A and Ã reaches the same locations with
the exact same cost.

Theorem 5.2 Let A = (L, l0, E, I, P) be an LPTA with maximal constant
max. Then there exists a bounded time equivalent of A, Ã = (L, l0, E

′, I ′, P ′),
satisfying the following:

50 Chapter 5. Decidability of Minimum-Cost Reachability

1. Whenever (l, u) is reachable in Ã, then for all x ∈ C, u(x) ≤ max + 2.

2. For any location l ∈ L, l is reachable with cost c in A if and only if l is
reachable with cost c in Ã

Proof. We construct Ã = (L, l0, E ∪ E
′, I ′, P ′), as follows. E′ = {(l, x ==

maxA(x) + 2, τ, x := maxA(x) + 1, l) | x ∈ C, l ∈ L}. For l ∈ L, I ′(l) =
I(l)

∧

x∈C x ≤ maxA(x) + 2, P ′(l) = P (l). For e ∈ (E ∪ E′), if e ∈ E then
P ′(e) = P (e) else P ′(e) = 0.

By definition, Ã satisfies the first requirement.

As to the second requirement. Let R be a relation between states from A
and Ã such that for ((l1, u1), (l2, u2)) ∈ R iff l2 = l1, and for each x ∈ C, if
u1(x) ≤ maxA(x) then u2(x) = u1(x), else u2(x) > maxA(x). We show that for
each state (l1, u1) of A which is reached with cost c, there is a state (l2, u2) of
Ã, such that ((l1, u1), (l2, u2)) ∈ R and (l2, u2) is reached with cost c, and vice
versa.

Let (l1, u1), (l2, u2) be states of A and Ã, respectively, We use induction on
the length of some execution leading to (l1, u1) or (l2, u2).

For the base step, the length of such an execution is 0. Trivially, the cost
of such an execution is 0, and if (l1, u1) and (l2, u2) are initial states, clearly
((l1, u1), (l2, u2)) ∈ R.

For the transition steps, we first observe that for each clock x ∈ C, u1(x) ∼
c iff u2(x) ∼ c with ∼∈ {<,≤, >,≥} and c ≤ maxA(x) (∗). Assume that
((l1, u1), (l2, u2)) ∈ R, and (l1, u1) and (l2, u2) can both be reached with cost c.
We make the following case distinction.

Case 1: Suppose (l1, u1)
ǫ(d),p
−−−→A (l1, u1 + d). In order to let d time pass in

(l2, u2), we have to alternatingly perform the added τ transition to reset those
clocks that have reached the maxA(x) + 2 bound as many times as needed, and
then let a bit of the time pass. Let d1 . . . dm be a sequence of delays, such that
d = d1 + . . .+ dm, and for x ∈ C and i ∈ {1, . . . ,m}, if maxA(x) + 2− (u1(x) +
d1 + . . . + di−1) ≥ 0 then di ≤ maxA(x) + 2 − (u1(x) + d1 + . . . + di−1), else
di ≤ 1− frac(u1(x) + d1 + . . .+ di−1). It is easy to see that for some u′2,

(l2, u2)(
τ,0
−−→)∗

ǫ(d1),p1
−−−−−→ . . . (

τ,0
−−→)∗

ǫ(dm),pm
−−−−−−→ (l2, u

′
2)

where pi = di ∗P (l2). The cost for reaching (l1, u1 +d) is c+d∗PA(l1) = c+d∗
PÃ(l2) = c+(d1 + . . .+dm)∗PÃ(l2), which is the cost for reaching (l2, u

′
2). Now,

((l1, u1 + d), (l2, u
′
2)) ∈ R, because of the following. For each x ∈ C, If u1(x) >

maxA(x), then u2(x) > maxA(x), and either x is not reset to maxA(x)+1 by any
of the τ transitions, in which case still u′2(x) > maxA(x), or x is reset by some
of the τ transitions, and then maxA(x) + 1 ≤ u′2(x) ≤ maxA(x) + 2, so u′2(x) >
maxA(x). If u1(x) ≤ maxA(x), then by u1(x) = u2(x), u2(x) ≤ maxA(x). If
(u1+d)(x) ≤ maxA(x), then x is not touched by any of the τ transitions leading
to (l2, u

′
2), hence u′2(x) = u2(x) + d1 + . . . + dm = u2(x) + d = (u1 + d)(x). If

(u1+d)(x) > maxA(x), then x may be reset by some of the τ transitions leading
to (l2, u

′
2). If so, then maxA(x)+1 ≤ u′2(x) ≤ maxA(x)+2, so u′2(x) > maxA(x).

If not, then u′2(x) = u2(x)+d1 + . . .+dm = u2(x)+d = (u1 +d)(x) > maxA(x).

5.4. Symbolic Semantics and Algorithm 51

Case 2: Suppose (l2, u2)
ǫ(d),p
−−−→A (l2, u2 + d). Then trivially ((l1, u1 +

d), (l2, u2+d)) ∈ R. Now we show (l1, u1)
ǫ(d),p
−−−→A (l1, u1+d). Since (l2, u2+d) ∈

IÃ, since IÃ implies IA and since ((l1, u1 +d), (l2, u2 +d)) ∈ R, from observation

(∗) it follows that (l1, u1 + d) ∈ IA. So (l1, u1)
ǫ(d),p
−−−→A (l1, u1 + d), and trivially,

the cost of reaching (l2, u2 + d) is c + d ∗ PÃ(l2) = c+ d ∗ PA(l1), which is the
cost of reaching (l1, u1 + d).

Case 3: Suppose (l1, u1)
a,p
−−→A (l′1, u

′
1). Let (l, g, a, r, l′) be a correspond-

ing edge. Then p = PA((l, g, a, r, l′)). By definition, (l, g, a, r, l′) ∈ EÃ and
PÃ((l, g, a, r, l′)) = PA((l, g, a, r, l′)). From observation (∗) it follows that u1 ∈ g
implies u2 ∈ g. It is easy to see that for x ∈ r, u′1(x) = 0 = u2[r 7→ 0](x), and for
x 6∈ r, u′1(x) = u1(x) and u2(x) = u2[r 7→ 0](x), so ((l′1, u

′
1), (l

′, u2[r 7→ 0])) ∈ R.
Combining this with observation (∗) it follows that u1[r 7→ 0] ∈ IA(l′) implies

u2[r 7→ 0] ∈ IÃ(l′), hence (l2, u2)
a,p
−−→Ã (l′, u2[r 7→ 0]). Clearly, the cost of

reaching (l1, u
′
1) is c + d ∗ PÃ((l, g, a, r, l′)) = c + d ∗ PA((l, g, a, r, l′)), which is

the cost of reaching (l2, u2[r 7→ 0]).

Case 4: Suppose (l2, u2)
a,p
−−→Ã (l′2, u

′
2). Let (l, g, a, r, l′) be a corresponding

edge. If (l, g, a, r, l′) ∈ EA, then the argument goes exactly like in the previous
case. If (l, g, a, r, l′) 6∈ EA, then a = τ , p = 0, l′2 = l′ = l = l2, and x ∈ r implies
u′2(x) = maxA(x) + 1 and u2(x) = maxA(x) + 2. Since the cost of reaching
(l′2, u

′
2) is c + 0 = c, it suffices to show ((l1, u1), (l2, u

′
2)) ∈ R. For x 6∈ r, this

follows trivially. For x ∈ r, u2(x) = maxA(x) + 2, so u1(x) > maxA(x) and by
u′2(x) = maxA(x) + 1 we have u′2(x) > maxA(x). ✷

Now, we suggest in Fig. 5.7 a branch-and-bound algorithm for determining
the minimum-cost of reaching a given target location lg from the initial state of
an LPTA. All encountered states are stored in the two data structures Passed

and Waiting, divided into explored and unexplored states, respectively. The
global variable Cost stores the lowest cost for reaching the target location
found so far. In each iteration, a state is taken from Waiting. If it matches
the target location lg and has a lower cost than the previously lowest cost Cost,
then Cost is updated. Then, only if the state has not been previously explored
with a lower cost do we add it to Passed and add the successors to Waiting.
This bounding of the search in line 8 of Fig. 5.7 may be optimized even further
by adding the constraint mincost(R) < Cost; i.e. we only need to continue
exploration if the minimum cost of the current region is below the optimal cost
computed so far. Due to Theorem 5.1, the algorithm of Fig. 5.7 does indeed
yield the correct minimum-cost value.

Theorem 5.3 When the algorithm in Fig. 5.7 terminates, the value of Cost

equals mincost(lg).

Proof. First, notice that if (l1, R1) can reach (l2, R2), then a state (l1, R
′
1),

where R′
1 ≤ R1, can reach a state (l2, R

′
2), such that R′

2 ≤ R2. We prove that
Cost equals min{mincost(R) | (lg, R) is reachable}. Assume that this does not
hold. Then there exists a reachable state (lg, R) where mincost(R) < Cost.
Thus the algorithm must at some point have discarded a state (l′, R′) on the

52 Chapter 5. Decidability of Minimum-Cost Reachability

Cost := ∞
Passed := ∅
Waiting := {(l0, R0)}
while Waiting 6= ∅ do

select (l, R) from Waiting

if l = lg and mincost(R) < Cost then

Cost := mincost(R)
if for all (l, R′) ∈ Passed : R′ 6≤ R then

add (l, R) to Passed

for all (l′, R′) such that (l, R) → (l′, R′): add (l′, R′) to Waiting

return Cost

Figure 5.7: Branch-and-bound state-space exploration algorithm.

path to (lg, R). This can only happen in line 8, but then there must exist a
state (l′, R′′) ∈ Passed, where R′′ ≤ R′, encountered in a prior iteration of the
loop. Then, there must be a state (lg, R

′′′) reachable from (l′, R′′), and Cost ≤
mincost(R′′′) ≤ mincost(R), contradicting the assumption. The theorem now
follows from Theorem 5.1. ✷

For bounded LPTA, application of Higman’s Lemma [76] ensures termina-
tion. In short, Higman’s Lemma says that under certain conditions the embed-
ding order on strings is a well quasi-order.

Theorem 5.4 The algorithm in Fig. 5.7 terminates for any bounded LPTA.

Proof. Even if A is bounded (and hence yields only finitely many unpriced
regions), there are still infinitely many priced regions, due to the unboundedness
of cost of vertices. However, since all costs are positive application of Higman’s
lemma ensures that one cannot have an infinite sequence 〈(ci1, . . . , c

i
m) : 0 ≤ i <

∞〉 of cost-vectors (for any fixed length m) without cjl ≤ c
k
l for all l = 1, . . . ,m

for some j < k. Consequently, due to the finiteness of the sets of locations and
unpriced regions, it follows that one cannot have an infinite sequence 〈(li, Ri) :
0 ≤ i < ∞〉 of symbolic states without lj = lk and Rj ≤ Rk for some j < k,
thus ensuring termination of the algorithm. ✷

Finally, combining Theorem 5.3 and 5.4, it follows, due to Theorem 5.2,
that the minimum-cost reachability problem is decidable.

Theorem 5.5 The minimum-cost problem for LPTA is decidable.

5.5 Conclusion

In this paper, we have successfully extended the work on regions and their op-
erations to a setting of timed automata with linear prices on both transitions
and locations. We have given the principle basis of a branch-and-bound algo-
rithm for the minimum-cost reachability problem, which is based on an accurate
symbolic semantics of timed automata with linear prices, and thus showing the
minimum-cost reachability problem to be decidable.

5.5. Conclusion 53

The algorithm is guaranteed to be rather inefficient and highly sensitive to
the size of constants used in the guards of the automata — a characteristic
inherited from the time regions used in the basic data-structure of the algo-
rithm. An obvious continuation of this work is therefore to investigate if other
more (in practice) efficient data structures can be found. Possible candidates
include data structures used in reachability algorithms of timed automata, such
as DBMs, extended with costs on the vertices of the represented zones (i.e. con-
vex sets of clock assignments). In contrast to the priced extension of regions,
operations on such a notion of priced zones6 can not be obtained as direct ex-
tensions of the corresponding operations on zones with suitable manipulation
of cost of vertices.

The need for infimum in the definition of minimum cost executions arises
from linearly priced timed automata with strict bounds in the guards, such as
the one shown in Fig. 5.3 and discussed in Example 5.1. Due to the use of
infimum, a linearly priced timed automaton is not always able to realize an
execution with the exact minimum cost of the automata, but will be able to re-
alize one with a cost (infinitesimally) close to the minimum value. If all guards
include only non-strict bounds, the minimum cost trace can always be realized
by the automaton. This fact can be shown by defining the minimum-cost prob-
lem for executions covered by a given symbolic trace as a linear programming
problem.

In this paper we have presented an algorithm for computing minimum-costs
for reachability of linearly priced timed automata, where prices are given as
constants (natural numbers). However, a slight modification of our algorithm
provides an extension to a parameterized setting, in which (some) prices may be
parameters. In this setting, costs within priced regions will be finite collections,
C, of linear expressions over the given parameters rather than simple natural
numbers. Intuitively, C denotes for any given instantiation of the parameters
the minimum of the concrete values denoted by the linear expressions within
C. Now, two cost-expressions may be compared simply by comparing the sizes
of corresponding parameters, and two collections C and D (both denoting min-
imums) are related if for any element of D there is a smaller element in C. In
the modified version of algorithm Fig. 5.7, Cost will similarly be a collection of
(linear) cost-expressions with which the goal-location has been reached (so far).
From recent results in [6] (generalizing Higman’s lemma) it follows that the or-
dering on (parameterized) symbolic states is again a well-quasi ordering, hence
guaranteeing termination of our algorithm. Also, we are currently working on
extending the algorithmic solution offered here to synthesis of minimum-cost
controllers in the sense of [23]. In this extension, a priced region will be given
by a conventional unpriced region together with a min-max expression over
cost vectors for the vertices of the region. Also for this extension it follows
from recent results in [6] (generalizing Higman’s lemma) that the orderings on
symbolic states are again well-quasi orderings, hence guaranteeing termination
of our algorithms.

6In particular, the reset-operation and the delay-operation.

54 Chapter 5. Decidability of Minimum-Cost Reachability

Acknowledgements

The authors would like to thank Lone Juul Hansen for her great, creative effort
in making the figures of this paper. Also, the authors would like to thank
Parosh Abdulla for sharing with us some of his expertise and knowledge on the
world beyond well-quasi orderings.

5.5. Conclusion 55

Appendix: Example of Symbolic State-Space

In this appendix, we present part of the symbolic state-space of the linearly
priced timed automaton in Fig. 5.2 where the value of both α and β is two.
Figures 5.8(i)-(viii) show some of the priced regions reachable in a symbolic
representation of the states space. We only show the priced regions with integer
value less than or equal to three.

Initially all three clocks have value zero and when delaying the clocks keep
on all having the same value. Therefore the priced regions reachable from the
initial state are the ones on the line from (0, 0, 0) through (3, 3, 3) shown in
Fig. 5.8(i). The numbers on the line are the costs of the vertices of the priced
regions represented by the line. Since the cost of staying in location A is one,
the price of delay one time unit is one. Therefore the cost of reaching the point
(3, 3, 3) is three.

The priced regions presented in Fig. 5.8(ii) are the ones reachable after
taking the transition to location B, resetting the x clock. Performing the reset
does not change any of the costs, since the new priced regions are still one-
dimensional and no vertices are collapsed. In Fig. 5.8(iii) the reachable priced
regions are marked by a shaded area, including the lines inside the area and
on the boundary. These priced regions are reachable from the priced regions in
Fig. 5.8(ii).

Taking the transition from location B to location C causes clocks y and
z to be reset. After resetting the priced regions in Fig. 5.8(iii), the priced
regions in Fig. 5.8(iv) are reachable. Finding the cost of a state s after the
reset (projection) is done by taking the minimum of the cost of the states
projecting to s. When delaying from these priced regions, the priced regions in
Fig. 5.8(v) are reached (again represented by the shaded area and the lines in
and surrounding it).

Now we are left with a choice; Either we can take the transition to location
D, or take the loop transition back to location C. Taking the transition to
location D is only possible if the guard x ≥ 2 ∧ y ≤ 1 is satisfied. Some of the
vertices in Fig. 5.8(vi) are marked: only priced regions where all vertices are
marked satisfy the guard. Before reaching location E from D with these priced
regions, we must delay at least two time units to satisfy the guard z ≥ 3 on the
transition from location D to location E (this part of the symbolic state-space
is not shown in the figure). The minimum cost of reaching location E in this
way is six.

The other possibility from location C is to take the loop transition which
resets the y clock. After resetting y in the priced regions in Fig. 5.8(v), the
priced regions in Fig. 5.8(vii) are reachable. From these priced regions we again
can let time pass. However, a two dimensional picture of the three dimensional
priced regions, reachable from the priced regions in Fig. 5.8(vii), is very hard
to understand. Therefore, we have chosen to focus on the priced regions which
satisfy the guard on the transition to location D. These priced regions are
displayed by stating the cost of their vertices in Fig. 5.8(viii). The reachable
priced regions satisfying the guard are the ones for which all vertices are marked
with a cost in Fig. 5.8(viii). Three of the priced regions satisfying the guard

56 Chapter 5. Decidability of Minimum-Cost Reachability

on the transition from location C to location D, also satisfies the guard on the
transition to location E. This is the two vertices where z has the value three
and the line between these two points. The cost of reaching these points is five,
so it is also possible to reach location E with this cost.

After taking the loop transition in location C once we also had the choice
of taking it again. Doing this would yield the same priced regions as displayed
in Fig. 5.8(vii) but now with two added to the cost. Therefore the new priced
regions would be more costly than the priced regions already found and hence
not explored by our algorithm.

5.5. Conclusion 57

i ii

iii iv

v vi

vii viii

Figure 5.8: Sets of reachable priced regions.

Chapter 6

Open Maps for Timed Transition Systems

The paper Bisimulation and Open Maps for Timed Transition Systems pre-
sented in this chapter has been published as a technical report [85], in a journal
version [128] and a conference paper [84].

[84] T. Hune, and M. Nielsen. Timed Bisimulation and Open Maps . In Pro-
ceedings of Mathematical Foundations of Computer Science (MFCS’98),
pages 378–387, 1998.

[85] T. Hune, and M. Nielsen. Timed Bisimulation and Open Maps. Techni-
cal Report RS-98-04, BRICS, February 1998.

[128] M. Nielsen and T. Hune. Bisimulation and Open Maps for Timed Tran-
sition Systems. In Fundamenta Informatica, special issue dedicated to
Professor Arto Salomaa, pages 61–77, 1999.

The journal version extends the conference paper by adding some proofs and
a section about handling invariants in locations. The technical report extends
the journal version by adding complete proofs. Except for minor typographical
changes the content of this chapter is equal to the technical report [85].

59

6.1. Introduction 61

Bisimulation and Open Maps for Timed Transition
Systems

Thomas Hune∗ and Mogens Nielsen∗

Abstract

Formal models for real-time systems have been studied intensively over
the past decade. Much of the theory of untimed systems have been lifted
to real-time settings. One example is the notion of bisimulation applied
to timed transition systems, which is studied here within the general cate-
gorical framework of open maps. We define a category of timed transition
systems, and show how to characterize standard timed bisimulation in
terms of spans of open maps with a natural choice of a path category.
This allows us to apply general results from the theory of open maps, e.g.
the existence of canonical models and characteristic logics. Also, we obtain
here an alternative proof of decidability of bisimulation for finite transi-
tion systems, and illustrate the use of open maps in finite presentations of
bisimulations

6.1 Introduction

When specifying and reasoning about a computing system, it is often sufficient
to view its behavior from a classical point of view in terms of computations
defined as sequences of atomic discrete actions of the system. For some systems,
however, it is essential to include more detailed information. In the specification
of a controller of a railway crossing it is not sufficient to state that the gate
is closed when the train is at the crossing. It is equally important to specify
timing constraints on the actions of gate closing and train crossing. Formal
models for such so-called real-time systems have been studied intensively over
the past decade, e.g. the timed automata [12], timed process algebras [145],
timed nets [108], and timed Petri Nets [119].

Much of the theory of untimed systems has been lifted successfully to these
models of real-time behavior of systems. As examples, many results from au-
tomata theory apply also to timed automata, [12, 13, 22], and a number of
timed versions of classical specification logics have been studied, [14, 103].

In this paper we focus on the classical notion of bisimulation [121] which has
already been introduced and studied for real-time models by many researchers,
e.g. in [145, 19, 125, 18]. A large part of the elegant theory of bisimulation

∗Basic Research in Computer Science, BRICS, Centre of the Danish National Re-
search Foundation. Department of Computer Science, University of Aarhus, Denmark, E-
mail:[baris,mn]@brics.dk

62 Chapter 6. Open Maps for Timed Transition Systems

for transition systems and reactive languages has been lifted to the real-time
setting. As an example, bisimulation was shown decidable for finite timed tran-
sition systems by Čerāns [49], and efficient algorithms checking for bisimilarity
have been discovered [103, 143] and implemented in tools for automatic verifi-
cation [98].

Our aim here is to apply the general categorical framework of open maps [95]
to timed transition systems. The open map approach provides a general concept
of bisimulation for any categorical model of computation, i.e. models consisting
of objects (systems) and morphisms (to be thought of as simulations between
two systems). The general definition is in terms of spans of so-called open maps,
which are those morphisms which, roughly speaking, reflect as well as preserve
behavior. Formally, the definition of open maps is parameterized not just on a
categorical presentation of a model (i.e. on the choice of morphisms), but also
on a notion of computation path and what it means to extend a computation
path by another.

For the standard model of transition systems, computation paths are nat-
urally chosen as sequences of consecutive transitions, formally picked out by
morphisms from strings of actions, extended by standard composition of strings.
With this choice, it was shown in [95] that the open map bisimulation simply
specializes to Milner’s notion of bisimulation. However, many other behav-
ioral equivalences are captured by the open morphism approach, e.g. Hoare’s
trace equivalence and Milner’s weak bisimulation, both of which may be ob-
tained by slightly changing the notion of path extension from the one indicated
above [52]. Also, the open morphism approach has been applied successfully to
different categories of models, e.g. probabilistic [52], higher-order models [48],
and models with independence [95].

Rather than having bisimulations defined in terms of two parameters, a
model and a path category, it was suggested in [95] to study presheaves as
models derived directly from path categories. Intuitively, a presheaf represents
the effect of gluing together a set of computation paths to form a nondetermin-
istic computation, and hence can be looked upon as labelled transition systems,
in which the labels are morphisms of path extension. Following [144] this yields
logical and game-theoretic characterizations of open morphisms and their bisim-
ulations on presheaves. Furthermore, models and their notion of bisimulation
can be understood in a uniform way via their representation as presheaves,
and via this representation, the characterizations can be specialized to concrete
models. The characteristic logics take the form of Hennessy-Milner like modal
logics, with modalities indexed by path morphisms (path extensions, future
modalities) and their inverses (path projections, past modalities).

Here we define a category of timed transition systems, where the morphisms
are to be thought of as simulations, with computation paths which are equiva-
lent to the standard notion of runs of timed words. We show the derived notion
of bisimulation in terms of open maps to coincide with the standard timed
bisimulation from e.g. [49]. Hence, we may apply the general results from [95],
e.g. obtaining canonical models and characteristic games and logics.

Furthermore, we show within the framework of open maps that bisimilarity
is decidable for finite timed transition systems. As for many existing results

6.2. A Category of Timed Transition Systems 63

for timed models, including results concerning verification of real-time systems,
our proof relies heavily on the idea behind the regional construction of [12, 13],
which essentially provides a finite description of the uncountable behavior of a
finite real-time system.

One of the main advantages of Milners notion of bisimulation for untimed
transition systems, is the fact that for two transition systems, the property of
being bisimilar may be expressed in terms of presenting an explicit bisimulation
between the two systems, i.e. a relation on the states of the two systems. Un-
fortunately, this property does not generalize to the setting of timed transition
systems, where bisimulations are defined in terms of the uncountable unfolded
version of given timed transition systems, and where the decision procedures
from e.g. [49] produce relations over nontrivial regional constructions. Here, we
obtain as a corollary, a way of presenting bisimilarity between two finite timed
transition systems in terms of a span with a finite vertex.

In Section 2 we define formally our category of timed transition systems
and computation paths, and the set-up is shown to have a number of useful
properties following the approach of [95]. Next, in Section 3 the resulting notion
of bisimulation is studied, and it is shown to coincide with the standard notion
of timed bisimulation. A new proof of the decidability of timed bisimulation
is provided in Section 4, and the use of open maps to express bisimulations
is illustrated. We briefly address the issue of robustness of our approach in
Section 5 by extending our results to models with state time-invariants. Section
6 contains some conclusions and ideas for future work.

6.2 A Category of Timed Transition Systems

In the following we define the categorical set-up for our use of the open map
approach.

The objects of our model category will be timed transition systems, i.e.
timed automata in the sense of Alur and Dill [13] without accepting states and
acceptance conditions (called timed transition tables in [13]).

Definition 6.1 (Timed Transition Systems) A timed transition system is
a quintuple (S,Σ, sin,X, T) where

• S is a set of states and sin is the initial state.

• Σ is a finite alphabet of actions.

• X is a set of clock variables.

• T is the set of transitions such that T ⊆ S ×Σ×∆× 2X × S where ∆ is
a clock constraint generated by the grammar ∆ ::= c ♯ x | x+ c ♯ y |∆ ∧∆
in which ♯ ∈ {≤, <,≥, >}, c is a real valued constant and x, y are clock
variables. A transition (s, σ, δ, λ, s′) is written s σ

δ,λ→ s′.

Timed transition systems are to be thought of as generalizations of standard
transition systems, having runs over timed words as obvious generalizations of
words over an alphabet.

64 Chapter 6. Open Maps for Timed Transition Systems

Definition 6.2 (Timed Words) A timed word over an alphabet Σ is a finite
sequence of pairs α = (σ1, τ1)(σ2, τ2)(σ3, τ3) · · · (σn, τn), where for all 1 ≤ i ≤ n,
σi ∈ Σ, τi ∈ R+ and furthermore τi < τi+1.

A pair (σ, τ) represents an occurrence of action σ at time τ relative to the
starting time (0) of the execution.

Example 6.1 The timed transition system in Figure 6.1 has two clocks x and
y, and three actions a,b,c. The state s0 is the initial state.

✲❘

■

✲

a
x ≤ 1
{y}

b y ≤ 2, ∅

2 < y < 4 ∧ x > 4
{x, y}

cs0 s2s1

Figure 6.1: A timed transition system .

Before introducing formally computations of timed transition systems, we need
the notion of a clock evaluation.

Definition 6.3 (Clock Evaluation) A clock evaluation ν is a function ν :
X → R+ which assigns times to the clock variables of a system. We define
(ν + c)(x) := ν(x) + c for all clock variables x. If λ is a set of clock variables
then ν[λ 7→ 0](x) := 0 if x ∈ λ, and ν(x) otherwise.

A constraint δ is satisfied by clock evaluation ν iff the expression δ[ν(x)/x]1

evaluates to true. A constraint δ defines a subset of Rn where n is the number
of clocks in X. We will speak of this subset as the meaning of δ and write it
[[δ]]X . As an example the meaning of the constraint on the transition from s0
to s1 in Figure 6.1 is the hatched area in Figure 6.2. A clock evaluation defines

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

1

2

1 20

y

x

Figure 6.2: Interpretation of constraint [[x ≤ 1]]{x,y}.

a point in Rn which we shall denote by [[ν]]X , so the constraint δ is satisfied for
the clock evaluation ν if and only if [[ν]]X ∈ [[δ]]X .

1δ[y/x] is syntactic substitution of y for x in δ.

6.2. A Category of Timed Transition Systems 65

Definition 6.4 Let T be a timed transition system. A configuration is a pair
〈s, ν〉, where s is a state and ν is a clock evaluation. A run of T is a sequence
〈s0, ν0〉

σ1
τ1
→ 〈s1, ν1〉

σ2
τ2
→ · · · σn

τn
→ 〈sn, νn〉 such that for all i > 0 there is a transition

si−1
σi

δi,λi
→ si such that [[νi−1 + (τi − τi−1)]]X ∈ [[δi]]X and νi = (νi−1 + (τi −

τi−1))[λi 7→ 0]. The state s0 is the initial state of T , ν0 is the constant 0
function, and τ0 is defined to be 0. A run as above is said to generate the timed
word (σ1, τ1) (σ2, τ2) (σ3, τ3) · · · (σn, τn).

Example 6.2 A run in the timed transition system in Figure 6.1 generating
the timed word (a, 0.9)(c, 2.3) is

〈s0, [0, 0]〉
a

0.9
→ 〈s1, [0.9, 0]〉

c

2.3
→ 〈s2, [2.3, 1.4]〉

where [2.3, 1.4] denotes the clock assignment assigning 2.3 to the clock variable
x and 1.4 to y.

Another run in the timed transition system could be

〈s0, [0, 0]〉
a

0.7
→ 〈s1, [0.7, 0]〉

b

4.2
→ 〈s0, [0, 0]〉

a

4.4
→ 〈s1, [0.2, 0]〉

b

8.3
→ 〈s0, [0, 0]〉

which generates the timed word (a, 0.7)(b, 4.2)(a, 4.4)(a, 8.3).

The morphisms of our model category will be simulation morphisms following
the approach of [95]. This leads to the following definition of a morphism,
consisting of two functions, one mapping states of the simulated system to
simulating states of the other, and one mapping clocks of the simulating system
to simulated clocks of the other.

Definition 6.5 A morphism (m, η) between timed transition systems T1 and T2
consists of two components; a map m : S1 → S2 between the states and a map
η : X2 → X1 between the clocks. These maps must satisfy that m(sin

1) = sin
2

and whenever there is a transition in T1 of the form s1
σ

δ1,λ1
→ s′1 then there is a

transition m(s1)
σ

δ2,λ2
→ m(s′1) in T2 satisfying the following two constraints:

• λ2 = η−1(λ1) where η−1(λ1) = {x ∈ X2 | η(x) ∈ λ1}

• [[δ1]]X1 ⊆ [[δ2[η(x)/x]]]X1

Example 6.3 Consider the map m from the states of the timed transition sys-
tem in Figure 6.3 to the states of the one in Figure 6.1, mapping states with
index i to si, paired with the map η sending the clock variable x to z and y to
u. We leave it to the reader to check to check that m, η constitute a morphism.

Definition 6.6 For a function η : X ′ → X and a clock evaluation ν : X → R+

we define η−1(ν) : X ′ → R+, the inverse image of ν under η, as

η−1(ν)(x) := ν(η(x))

66 Chapter 6. Open Maps for Timed Transition Systems

✲

❄

✲
✻

✛

❄

a

z ≤ 1
{u}

b
2 < u < 4 ∧ z > 4

{z, u}

b

2 < u < 3 ∧ z > 4
{z, u}

z ≤ 1, {u}

a

u ≤ 1, ∅
ct1

t0

u0

u1 t2

Figure 6.3: A timed transition system.

Theorem 6.1 Given two timed transition systems T and T ′ and a morphism
(m, η) from T to T ′. If

〈s0, ν0〉
σ1

τ1
→ 〈s1, ν1〉

σ2

τ2
→ · · ·

σn

τn

→ 〈sn, νn〉

is a run of T generating the timed word (σ1, τ1) (σ2, τ2) (σ3, τ3) · · · (σn, τn), then

〈m(s0), η
−1(ν0)〉

σ1

τ1
→ 〈m(s1), η

−1(ν1)〉
σ2

τ2
→ · · ·

σn

τn

→ 〈m(sn), η−1(νn)〉

is a run of T ′ generating the same timed word.

Proof We will prove this by induction on the length of the run.

As base case, we have the empty run with just one configuration. Since the
initial state of T is mapped to the initial state of T ′ and all clock values initially
are set to 0, we also have ∀x′ ∈ X ′ : η−1(ν0)(x

′) = 0 which is the initial clock
evaluation for a run in T ′.

For the induction step, assume T is in the configuration 〈si, νi〉, T
′ is in the

configuration 〈m(si), η
−1(νi)〉, and T can extend its run by

〈si, νi〉
σi+1

τi+1

→ 〈si+1, νi+1〉

extending the generated timed word with the element (σi+1, τi+1).

The extension uses some transition

si
σi+1

δi+1,λi+1

→ si+1

in T satisfying [[νi +(τi+1−τi)]]X ∈ [[δi+1]]X . From the definition of a morphism
we must have some transition

m(si)
σi+1

δ′i+1,λ′
i+1

→ m(si+1)

in T ′ such that λ′i+1 = η−1(λi+1) and [[δi+1]]X ⊆ [[δ′i+1[η(x)/x]]]X . From the
latter property we get that [[η−1(νi)+ (τi+1− τi)]]X′ ∈ [[δ′i+1]]X′ so the transition
can be used to extend the run in T ′, obtaining

(m(si), η
−1(νi))

σi+1

τi+1

→ (m(si+1), ν
′
i+1)

6.2. A Category of Timed Transition Systems 67

where

ν ′i+1 = (η−1(νi) + (τi+1 − τi))[λ
′
i+1 7→ 0]

= (η−1(νi) + (τi+1 − τi))[η
−1(λi+1) 7→ 0]

= (η−1(νi + (τi+1 − τi)))[η
−1(λi+1) 7→ 0]

= η−1((νi + (τi+1 − τi))[λi+1 7→ 0])

= η−1(νi+1)

✷

Example 6.4 Using the morphism from Example 6.3 the run

〈t0, [0, 0]〉
a

0.7
→ 〈t1, [0.7, 0]〉

b

4.2
→ 〈t2, [0, 0]〉

a

4.4
→ 〈t3, [0.2, 0]〉

b

8.3
→ 〈t0, [0, 0]〉

in the timed transition system in Figure 6.3 is simulated by the second run in
Example 6.2. Here [0.7, 0] is notation for ν assigning the value 0.7 to the clock
z and the value 0 to u.

So, in the formal sense of Theorem 6.1 we have shown that the morphisms
from Definition 6.5 do represent a notion of simulation. Our category of timed
transition systems is defined as follows.

Definition 6.7 The category CTTSΣ has timed transition systems with alpha-
bet Σ as objects, and the morphisms from Definition 6.5 as arrows. For mor-

phisms T
(m,η)
−−−→ T ′ and T ′ (m′,η′)

−−−−→ T ′′ composition is defined as (m′, η′) ◦
(m, η) := (m′ ◦m, η ◦ η′). The identity morphism is the morphism where both
m and η are the identity function.

Proposition 6.1 CTTSΣ is a category.

Proof The only non-trivial part of the proof is to see that composition is

well-defined. Assume we have morphisms T
(m,η)
−−−→ T ′ and T ′ (m′,η′)

−−−−→ T ′′. A
transition s1

σ
δ,λ→ s2 in T implies the existence of a transition m(s1)

σ
δ′,λ′→ m(s2)

in T ′ where λ′ = η−1(λ) and [[δ]]X ⊆ [[δ′[η(x)/x]]]X . This transition implies
the existence of a transition m′(m(s1))

σ
δ′′,λ′′→ m′(m(s2)) in T ′′ where λ′′ =

η
′−1(λ′) = η

′−1(η−1(λ)) and [[δ′]]X ⊆ [[δ′′[η′(x)/x]]]X . Combining these facts we
get [[δ]]X ⊆ [[δ′′[(η ◦ η′)(x)/x]]]X from which we conclude that composition is
well-defined.

✷

CTTSΣ has a number of useful properties. For our purpose here we only need
the following.

Theorem 6.2 CTTSΣ has (binary) products.

68 Chapter 6. Open Maps for Timed Transition Systems

Proof Given two timed transition systems T1 = (S1,Σ, s
in
1 ,X1, T1) and T2 =

(S2,Σ, s
in
2 ,X2, T2), we define the product of the two systems as T1 × T2 =

(S1×S2,Σ, (s
in
1 , s

in
2),X1 ⊎X2,T), where X1 ⊎X2 denotes the disjoint union of

X1 and X2, and the set of transitions T consists of all transitions of the form
(s1, s2)

σ
δ1∧δ2,λ1∪λ2

→ (s′1, s
′
2) such that si

σ
δi,λi
→ s′i belongs to Ti for i = 1, 2.

The projections (mi, ηi) : T1 × T2 → Ti for i = 1, 2 are defined as expected,
with mi as the projection on states and ηi is the embedding of Xi into X1⊎X2.
It follows easily that this defines products in CTTSΣ.

✷

Theorem 6.3 CTTSΣ has pullbacks.

Proof Given two morphisms (m1, η1) : T1 → T and (m2, η2) : T2 → T , we
construct T1×T T2 and two morphisms (m′

i, η
′
i) : T1×T T2 → Ti such that

(m1, η1) ◦ (m′
1, η

′
1) = (m2, η2) ◦ (m′

2, η
′
2) (6.1)

The construction of m′
i and the states of T1×T T2 is based on pullbacks in the

category of sets with functions. Similarly the construction of η′i and the clocks
of T1×T T2 is based on pushouts in the category of sets with functions, i.e. the
clocks of T1×T T2 are the equivalence classes of the equivalence relation R over
X1 ⊎X2 generated by R0 where

R0 = {(x1, x2) | ∃x ∈ X.η1(x) = x1 and η2(x) = x2},

and η′i sends a clock variable of Ti to the equivalence class to which it belongs.
More specifically we define T1×T T2 as follows.

• S×T : {(s1, s2) ∈ S1 × S2 |m1(s1) = m2(s2)}

• sin×T : (sin
1 , s

in
2)

• X×T : the equivalence classes of R defined above

• T×T : (s1, s2)
σ

δ1[η′
1(x)/x]∧δ2[η′

2(x)/x],η′
1(λ1)∪η′

2(λ2)
→ (s′1, s

′
2), whenever si

σ
δi,λi
→ s′i

and (s1, s2), (s
′
1, s

′
2) belongs to S×T .

With m′
i(s1, s2) = si we leave it for the reader to check that (m′

i, η
′
i) is indeed

a morphism, and it follows immediately from the underlying conditions from
the category of sets with functions that the required commutativity of (6.1) is
satisfied.

Now consider T ′ with morphisms (m′′
i , η

′′
i) : T ′ → Ti for i = 1, 2, such that

the following diagram commutes.

T ′ (m′′
1 ,η′′

1)

""

(m′′
2 ,η′′

2)

T1×T T2
(m′

1,η′
1)

//

(m′
2,η′

2)

��

T1

(m1,η1)

��
T2

(m2,η2)
// T

6.2. A Category of Timed Transition Systems 69

The required morphism (m, η) from T ′ to T1×T T2 is defined as expected, i.e.
m(s′) = (m′′

1(s
′),m′′

2(s
′)) and η(x) = η′′1 (x) ∪ η′′2 (x). We leave it for the reader

to check that (m, η) indeed is a morphism. Finally, from the underlying con-
structions in the category of sets with functions we get that the required com-
mutativities (m′′

i , η
′′
i) = (m′

i, η
′
i) ◦ (m, η) hold for i = 1, 2.

✷

6.2.1 A Path Category

Following the standards of timed transition systems and [95], we would like to
choose timed words over Σ with word extension as our category of computation
paths. However, it is not immediately clear how to see formally this choice as
a subcategory of CTTSΣ, as required in the approach of [95].

Definition 6.8 Given a timed word α = (σ1, τ1) (σ2, τ2) (σ3, τ3) · · · (σn, τn), we
define a timed transition system Tα: 0 σ1

δ1,λ1
→ 1 σ2

δ2,λ2
→ · · · σn

δn,λn
→ n as follows.

The states are the integers 0..n, with 0 as the initial state, and the set of clock
variables, X, consists of the 2n subsets of states {1, 2, . . . , n}. We define λi and
δi as

λi = {x| i ∈ x} and δi =
∧

x∈X

(x = τi − τI(i,x))

where I(i, x) := max{k ∈ x ∪ {0} | k < i}, and τ0 := 0. The index returned by
I(i, x) is the index of the last state at which x was reset. We write Tα for the
transition system in CTTSΣ representing α.

The only purpose of this seemingly ad hoc construction is that it allows us to
represent the category of timed words with extension inside CTTSΣ, and to
identify runs of α in T with morphisms from Tα to T , as expressed formally in
the following two results.

Proposition 6.2 The construction of Tα from α above, extends to a full and
faithful functor from the category of timed words (as objects) and word extension
(as morphisms) into CTTSΣ

Proof The main observation is that for all timed words α, α′, there is at most
one morphism between Tα and Tα′ .

✷

Theorem 6.4 Given a timed transition system T , and a timed word α =
(σ1, τ1)(σ2, τ2) . . . (σn, τn). For each run of α in T ,

〈s0, ν0〉
σ1

τ1
→ 〈s1, ν1〉

σ2

τ2
→ . . .

σn

τn

→ 〈sn, νn〉 (6.2)

we may associate a morphism (m, η) : Tα → T where:

m(i) = si

η(x) = {i | 1 ≤ i ≤ n and νi(x) = 0}.

70 Chapter 6. Open Maps for Timed Transition Systems

Furthermore, this association is a bijection between the runs of α in T and the

morphisms Tα
(m,η)
−−−→ T .

Proof It follows from the definition of runs and the definition of Tα that (m, η)
as defined is indeed a morphism.

Now, let (m, η) be a morphism from Tα to T . With (m, η) we associate the
run of the form (6.2) where

si = m(i)

νi(x) =

{

0 if i = 0 or i ∈ η(x)
νi−1(x) + (τi − τi−1) otherwise

Again, it follows from the definition of morphisms that this indeed defines a
run of α in T .

It is easily shown that the correspondence given above is one to one.

✷

6.3 Timed Bisimulation

Given our categories of timed transition systems and paths, we can now apply
the general framework from [95], defining notions of open maps and bisimula-
tion.

Definition 6.9 (Open Map [95]) A morphism T
(m,η)
−−−→ T ′ in CTTSΣ is

T W-open iff for all timed words α and α′, and morphisms such that the follow-
ing diagram commutes:

Tα
(p,ηp)

//

(f,ηf)

��

T

(m,η)

��
Tα′

(q,ηq)
// T ′

there exists a morphism (p′, ηp′) : Tα′ → T such that the in the diagram

Tα
(p,ηp)

//

(f,ηf)

��

T

(m,η)

��
Tα′

(q,ηq)
//

(p′,ηp′)|||

>>|||

T ′

the two triangles commute.

Definition 6.10 Two timed transition systems T1 and T2 are T W-bisimilar iff

there exists a span T1
(m,η)
←−−− T

(m′,η′)
−−−−→ T2 with vertex T of T W-open morphisms.

Example 6.5 In Figure 6.4 the (only) two morphisms from T to T ′ are open.
We leave it for the reader to check that this is indeed the case.

Notice that it follows from [95] and Theorem 6.3 that T W-bisimulation
is exactly the equivalence generated by T W-open maps. Our next aim is to
characterize T W-open morphisms.

6.3. Timed Bisimulation 71

T : T ′:

❄ ❄

❘ ✠

❄

❄

✠ ❘

✠ ❘

a
2 ≤ x ≤ 4
{y}

a
2 ≤ y ≤ 4
{x}

a
2 ≤ x ≤ 4
{y}

a
2 ≤ y ≤ 4
{x}

b
y ≤ 1
∅

c
x ≤ 1
∅

b
y ≤ 1
∅

c
x ≤ 1
∅

Figure 6.4: Two bisimilar timed transition systems.

Definition 6.11 Given a timed transition system T , a configuration 〈s, ν〉 of
T is reachable iff T has a run with an occurrence of 〈s, ν〉.

Theorem 6.5 A morphism T1
(m,η)
−−−→ T2 is open iff for all reachable config-

urations 〈s1, ν〉 in T1, and for all ν ′ = ν + τ whenever there is a transition
m(s1)

σ
δ2,λ2
→ s′2 such that [[η−1(ν ′)]]X2 ∈ [[δ2]]X2 , then there exists a transition

s1
σ

δ1,λ1
→ s′1 such that m(s′1) = s′2, [[ν ′]]X1 ∈ [[δ1]]X1 , and λ2 = η−1(λ1).

Proof

Assume T1
(m,η)
−−−→ T2 is open, and that the configuration 〈s1, ν〉 is reachable

in T1, i.e. we have a run of some timed word α ending in 〈s1, ν〉. From the
assumptions of the theorem the (m, η)-image of this run in T2 may be extended
by some σ-timed transition 〈m(s1), η

−1(ν)〉 σ
τ ′→ 〈s′2, η

−1[λ2 7→ 0]〉. Hence we have
a commuting diagram with α′ = α(σ, τ ′)

Tα
(q,ηq)

//

��

T1

(m,η)
��

Tα′

(q′,ηq′)
// T2

From the definition of openness we get a mediating morphism

Tα
(q,ηq)

//

��

T1

(m,η)

��
Tα′

(q′,ηq′)
//

(p,ηp)
|||

>>|||

T2

From this diagram, it follows from Theorem 6.1 and Theorem 6.4 that there
exists a transition s1

σ
δ1,λ1
→ s′1 such that m(s′1) = s′2, [[ν ′]]X1 ∈ [[δ1]]X1 , and

λ2 = η−1(λ1).

For the if part of the theorem, assume the we have a commuting square

Tα
(q,ηq)

//

��

T1

(m,η)

��
Tα′

(q′,ηq′)
// T2

In the following we assume that α′ = α(σ, τ ′), i.e. that α′ is an extension of of

72 Chapter 6. Open Maps for Timed Transition Systems

α by a single timed action. The general case follows from repeated applications
of the arguments in the following.

From Theorem 6.4, the morphism (q, ηq) defines a run of α in T1 end-
ing in some configuration 〈s1, ν〉, mapped by (m, η) to 〈m(s1), η

−1(ν)〉. Now,
(q′, η q′) implies that there is some transition m(s1)

σ
δ2,λ2
→ s′2 in T2, such that

[[η−1(ν ′)]]X2 ∈ [[δ2]]X2 , where ν ′ = ν + τ for some τ determined by α′. From the
assumptions of the theorem, we now get that there exists a transition s1

σ
δ1,λ1
→ s′1,

such that m(s′1) = s′2, [[ν ′]]X1 ∈ [[δ1]]X1 , and λ2 = η−1(λ1). Using Theorem 6.4
this implies the existence of a morphism from Tα′ to T1, for which the commu-
tativity properties required by openness follows by the properties listed above.

✷

The standard notion of timed bisimulation is defined in terms of configura-
tions as follows.

Definition 6.12 (Timed Bisimulation [49, 18]) Two timed transition sys-
tems are bisimilar iff there exists a relation R over configurations (〈s, νs〉, 〈t, νt〉)
of the two systems satisfying (〈sin, ν0

s 〉, 〈t
in, ν0

t 〉) ∈ R and for all (〈s, νs〉, 〈t, νt〉) ∈
R

• whenever 〈s, νs〉
σ
τ→ 〈s

′, ν ′s〉 then 〈t, νt〉
σ
τ→ 〈t

′, ν ′t〉 with (〈s′, ν ′s〉, 〈t
′, ν ′t〉) ∈ R

for some 〈t′, ν ′t〉.

• whenever 〈t, νt〉
σ
τ→ 〈t

′, ν ′t〉 then 〈s, νs〉
σ
τ→ 〈s

′, ν ′s〉 with (〈s′, ν ′s〉, 〈t
′, ν ′t〉) ∈ R

for some 〈s′, ν ′s〉.

Theorem 6.6 Two timed transition systems T1 and T2 are T W-bisimilar iff
they are bisimilar according to Definition 6.12.

Proof Assume T1 and T2 to be T W-bisimilar with span of open maps

T
(m1,η1)

~~~~
~~

~~
~ (m2,η2)

  @
@@

@@
@@

T1 T2

Define R to be the following relation of configurations of T1 and T2:

〈s1, ν1〉R〈s2, ν2〉 iff
there exists a reachable configuration 〈s, ν〉 of T such that si =
mi(s) and νi = η−1

i (ν) for i = 1, 2.

It follows easily from Theorem 6.5 that R satisfies the required properties of
Definition 6.12.

Assume T1 and T2 to be bisimilar with relation R as defined in Defini-
tion 6.12. We construct a span of open maps with vertex T defined as follows.

The states of T will be pairs of “R-related runs” of T1 and T2 - formally
defined as follows.



6.4. Decidability 73

Two runs of a timed word α = (σ1, τ1)(σ2, τ2) . . . (σn, τn), n ≥ 0 in
T1 and T2 respectively

〈s0i , ν
0
i 〉

σ1

τ1
→ 〈s1i , ν

1
i 〉

σ2

τ2
→ . . .

σn

τn

→ 〈sn
i , ν

n
i 〉, i = 1, 2 (6.3)

are said to be R-related iff

〈sj
1, ν

j
1〉R〈s

j
2, ν

j
2〉for 0 ≤ j ≤ n

The initial state of T is the pair of initial configurations of T1 and T2.
The clock variables of T will be the disjoint union of the clock variables of

T1 and T2, X1 ⊎X2.

Finally, for each pair of R-related runs of the form (6.3), there will be
an incoming transition in T from the pair of R-related runs of ending in
(〈sn−1

1 , νn−1
1 〉, 〈sn−1

2 , νn−1
2 〉) of the form σn

δ,λ→, where

δ =
∧

x∈Xi,i=1,2

(x = νn−1
i (x) + (τn − τn−1))

λ = {xi ∈ Xi | i = 1, 2 and νn
i (xi) = 0}

The open morphisms from T to Ti is (mi, ηi) : T → Ti, i = 1, 2 where the
mi-value on a pair of R-related runs as in (6.3) is taken to be sn

i , and ηi is the
injection function from Xi to X1 ⊎ X2. It follows from the construction that
(mi, ηi) are morphisms, and openness follows from Theorem 6.5.

✷

Example 6.6 Consider the timed transition systems in Figure 6.5. It is easy
to see that there is exactly one morphism from T to Ti, for i = 1, 2, and that this
morphism is open. Hence, we have a span of open maps between T1 and T2 (with
T as vertex), and bisimilarity between T1 and T2 follows from Theorem 6.6.

Notice that there are simple arguments following Theorem 6.5 for openness of
the morphisms in the example above. Hence we suggest spans of open maps as a
convenient framework for presentations of bisimilarity of finite timed transition
systems. In the next section this will be supported by two decidability results:
openness of morphisms and bisimilarity for finite timed transition systems.

6.4 Decidability

In this section we restrict ourselves to finite timed transition systems, i.e. sys-
tems with a finite number of states, clocks and transitions, and for which all
constants referred to in constraints have rational values. By scaling the ra-
tional constants we assume without loss of generality in the following that all
constants are integer valued [13].

To get a decidable characterization of openness we introduce the notion of
regions, [13].



74 Chapter 6. Open Maps for Timed Transition Systems

T

T1 T2

a
y ≤ 1 ∧ u ≤ 1
{x, z}

a
x ≤ 1 ∧ u ≤ 1
{y, z}

b
x ≥ 0∧
z ≥ 0

b
x ≥ 0∧
z ≥ 0

b
x ≥ 0∧
z ≥ 0

b
x ≥ 0∧
z ≥ 0

c
y ≤ 1∧
u ≤ 1

c
x ≤ 1∧
z ≤ 1

c
y ≤ 1∧
z ≤ 1

c
x ≤ 1∧
u ≤ 1

❄

c
u ≤ 1 ❄

c
z ≤ 1 ❄

c
x ≤ 1 ❄

c
y ≤ 1

❄ ❄ ❄ ❄

✠ ❘ ✠ ❘

❄ ❄

❄

✠ ❘ ✠ ❘

b b b b
z ≥ 0 z ≥ 0 x ≥ 0 x ≥ 0

❄ ❘ ✠

a
u ≤ 1
{z}

a
y ≤ 1
{x}

a
x ≤ 1
{y}

❄ ❄

Figure 6.5: Three systems with a span.

Definition 6.13 (Region [13]) Given a finite set of clock variables X and an
integer constant c, a region is an equivalence class of the equivalence relation
∼= over clock valuations, where ν ∼= ν ′ iff

• For each x ∈ X : ⌊ν(x)⌋ = ⌊ν ′(x)⌋2 or both ν(x) > c and ν ′(x) > c.

• For every pair of clock variables x, y ∈ X where both ν(x) ≤ c and ν(y) ≤ c
we have that fract(ν(x)) ≤ fract(ν(y)) iff fract(ν ′(x)) ≤ fract(ν ′(y)).

• For every clock variable x ∈ X where ν(x) ≤ c we have fract(ν(x)) = 0
iff fract(ν ′(x)) = 0.

For a clock valuation ν, let [ν] denote the region to which it belongs. Let
RX,c denote the (finite) set of regions associated with X and c. Given regions
reg, reg′ ∈ RX,c, reg

′ ∈ Reach(reg) iff there exists ν ∈ reg and τ ∈ R+ such
that ν + τ ∈ reg′. Finally, for a finite timed transition system T an extended

2We use ⌊x⌋ for the largest integer smaller than or equal to x and fract(x) := x − ⌊x⌋.



6.4. Decidability 75

state is defined as any pair 〈s, reg〉, where s is a state of T and reg is a region
over the set of clock variables of T .

Proposition 6.3 Consider finite timed transition systems T and T ′ with clock
variables X and X’ respectively, and let c be an integer constant greater than or
equal to the largest constant referred to in transition constraint expressions in
T and T ′.

For any T -constraint expression δ and any region reg ∈ RX,c, [[reg]]X ⊆
[[δ]]X iff [[reg]]X ∩ [[δ]]X 6= ∅. For any reg′ ∈ RX,c, and any ν, ν ′ ∈ reg, reg′ is
reachable from ν iff it is reachable from ν ′.

Consider a morphism (m, η) from T to T ′ with reg, reg′ ∈ RX,c, then

• η−1(reg) ∈ RX′,c

• if reg′ ∈ Reach(reg) then η−1(reg′) ∈ Reach(η−1(reg))

Proof First two properties follow from e.g. [13]. The regional properties of
morphisms follow by simple calculation.

✷

Our operations on clock evaluations can be extended to regions which will
be used below. We can now give a characterization of open maps in terms of
extended states.

Theorem 6.7 Consider finite timed transition systems T1 and T2 with clock
variables X1 and X2 respectively, and associated regions defined with respect
to some integer constant greater than or equal to the largest constant referred
to in transition constraint expressions in T1 and T2. A morphism (m, η) :
T1 → T2 is open iff for all reachable extended states 〈s1, reg〉 in T1, and for
all reg′ ∈ Reach(reg), whenever there is a transition m(s1)

σ
δ2,λ2
→ s′2 such that

[[η−1(reg′)]]X2 ⊆ [[δ2]]X2 , then there exists a transition s1
σ

δ1,λ1
→ s′1 such that

m(s′1) = s′2, λ2 = η−1(λ1) and [[reg′]]X1 ⊆ [[δ1]]X1 .

Proof Follows from Theorem 6.5 and Proposition 6.3.

✷

Notice that Theorem 6.7 implies the following decidability result of openness of
a morphism between two finite timed transition systems.

Theorem 6.8 Given two finite timed transition systems T1 and T2 and a mor-
phism (m, η) : T1 → T2, openness of (m, η) is decidable.

Proof Follows immediately form Theorem 6.7 and Proposition 6.3.

✷

For untimed transition systems, decidability of bisimulation follows e.g.
from the fact that a span of open maps between two finite transition systems
imply a span with a vertex being a subsystem of their product, see [95]. Unfortu-
nately, this result does not generalize completely to our setting here. However,
we still have the following.



76 Chapter 6. Open Maps for Timed Transition Systems

Theorem 6.9 Given two finite timed transition systems T1 and T2 , if there
exists a span of open maps

T
(m,η)

~~~~
~~

~~
~ (m′,η′)

 @
@@

@@
@@

T1 T2

then there is a finite vertex T×R of size bounded by the size of T1 and T2 and
with open morphisms

T

(m,η)

����
��

��
��

��
��

��
�

(m′,η′)

��2
22

22
22

22
22

22
22

T×R

(p,ηp)
zz

z

||zz
z

(q,ηq)
DD

D

""D
DD

T1 T2

Proof Assume without loss of generality that the clock variables of T1 and T2
are disjoint. If ν and ν ′ are clock evaluations for T1 and T2 respectively we shall
write ν⊎ν ′ for the combined clock evaluation over the disjoint union of the clock
variables of T1 and T2, satisfying (ν ⊎ν ′) := ν(x) if x ∈ X1 and (ν ⊎ν ′) := ν ′(x)
if x ∈ X2. Let c be an integer constant greater than or equal to the largest
constant mentioned in transition constraint expressions in T1 and T2, and let
all regions in the following be defined with respect to c. The timed transition
system T×R is defined in the following way.

• S×R is the set of pairs 〈s1, s2〉 for which there exists a reachable configu-
ration 〈s, ν〉 in T such that m(s) = s1 and m′(s) = s2.

• The initial state sin×R is 〈sin
1 , s

in
2 〉 where sin

1 is the initial state of T1 and
sin
2 the initial state of T2.

• X×R = X1 ⊎X2.

• The transitions of T×R are defined as follows. For all runs in T

〈sin, ν0〉
σ1

τ1
→ 〈s1, ν1〉

σ2

τ2
→ . . .

σn

τn

→ 〈s, ν〉

with an extended run of the form

〈sin, ν0〉
σ1

τ1
→ 〈s1, ν1〉

σ2

τ2
→ . . .

σn

τn

→ 〈s, ν〉
σ

τ
→ 〈s′, ν ′〉

we introduce a transition

〈m(s),m′(s)〉
σ

δ̂,λ̂
→ 〈m(s′),m′(s′)〉

in T×R, where λ̂ consists of all clock variables x from T1 and x′ from T2, for
which ν

′−1(η(x))) = 0 or ν
′−1(η′(x′))) = 0, and δ̂ is the logical expression

defining the region to which η−1(ν+(τ −τn))⊎η
′−1(ν+(τ −τn)) belongs.

6.5. Extension with Invariants 77

This completes the definition of T×R. Obviously, the size is bounded by
the size of T1 and T2. The number of states is bounded by |S1| ∗ |S2|. The
number of regions over the disjoint union of X1 and X2 with constant c, is
|X|!∗2|X| ∗ (2c+2)|X| where |X| = |X1|+ |X2|, so there are at most |Σ| ∗ (|X|!∗
2|X| ∗ (2c+ 2)|X|) ∗ 2|X| transitions between any two states.

The morphisms from T×R to T1 and T2 are the projections (p, ηp) and (q, ηq)
respectively, where p(〈s1, s2〉) = s1 and similarly for q. The function ηp is the
identity function on the clock variables of T1 and ηq is the identity function on
the clock variables of T2. We need to verify that these are morphisms and that
they are open. The proof for (p, ηp) will be shown here, and the arguments for
(q, ηq) are symmetric.

To verify that the projection (p, ηp) is a morphism, consider a transition
〈m(s),m′(s)〉 σ

δ̂,λ̂
→ 〈m(s′),m′(s′)〉 in T×R as defined above. From definition and

Theorem 6.1 this implies the existence in T1 of some transition m(s) σ
δ1,λ1
→ m(s′)

realizing 〈m(s), η−1(ν)〉στ→ 〈m(s′), η−1(ν ′)〉, i.e. such that [[η−1(ν)+(τ−τn)]]X1 ∈

[[δ1]]X1 and λ1 = {x1 ∈ X1 |η
−1(ν ′)(x1) = 0}. This implies [[η−1

p (δ̂)]]X1 ⊆ [[δ1]]X1 ,

and hence [[δ̂]]X× ⊆ [[η−1(δ̂)[ηp(x)/x]]]X× ⊆ [[δ1[ηp(x)/x]]]X× , and λ1 = η−1
p (λ̂).

To show that (p, ηp) is open, we show that it has the property from Theo-
rem 6.7. Notice first that from construction, for any reachable extended state
in T×R of the form (〈s1, s2〉, reg) there exists a reachable configuration 〈s, ν〉
in T such that m(s) = s1, m

′(s) = s2, and η−1(ν) ∪ η
′−1(ν) ∈ reg.

Assume the extended state 〈s1, s2, reg〉 is reachable in T×R. Consider reg′ ∈
Reach(reg) and a transition s1

σ
δ1,λ1
→ s′1 in T1 for which [[η−1

p (reg′)]]X1 ⊆ [[δ1]]X1 .
We must show the existence of a transition in T×R of the form 〈s1, s2〉

σ
δ̂,λ̂
→

〈s′1, s
′
2〉, such that [[reg′]]X× ⊆ [[δ̂]]X× and λ1 = η−1

p (λ̂).
Since 〈s1, s2, reg〉 is reachable we have a reachable configuration 〈s, ν〉 in T

such that m(s) = s1,m
′(s) = s2, and η−1(ν)⊎η

′−1(ν) ∈ reg. Let τ be such that
η−1(ν + τ) ⊎ η

′−1(ν + τ) ∈ reg′, and hence [[η−1(ν + τ)]]X1 ∈ [[η−1
p (reg′)]]X1 ⊆

[[δ1]]X1 . We obtain from Theorem 6.5 the existence in T of a transition s σ
δ,λ→

s′ such that m(s′) = s′1, [[ν + τ]]X ∈ [[δ]]X and λ1 = η−1(λ). Hence from
construction we have 〈s1, s2〉

σ
δ̂,λ̂
→ 〈m(s′),m′(s′)〉, where [[δ̂]]X× = [[reg′]]X× and

λ1 = η−1(λ) = η−1
p (λ̂).

✷

From the proof of Theorem 6.9, we have the following corollary.

Corollary 6.1 Given two finite timed transition systems, timed bisimulation
is decidable.

6.5 Extension with Invariants

In this section we will extend the timed transition systems with invariants [109]
on the states and argue that the results from the preceding sections can be
generalized to the extended model without problems. We will state the results
for the new model and hints to some of the proofs, all of which are simple
extensions of the proofs for the model without invariants on states.

78 Chapter 6. Open Maps for Timed Transition Systems

Definition 6.14 (Timed Transition Systems with invariants) A timed
transition system with invariants is six tuple (S,Σ, s0,X, T, I) where the first
five components are as in Definition 6.1 and I assigns to each state an invariant.
Invariants are given by the same syntax as constraints, so the invariant for state
s, ιs, can be generated by the grammar ∆ from Definition 6.1.

The meaning of a invariant ιs, [[ιs]]X , is defined in the same way as the meaning
of a constraint. In the definition of runs over a timed transition system with
invariants, the invariant of a state must be satisfied when the state is entered
and until the next state is entered. More formally, in the definition of a run

〈s0, ν0〉
σ1

τ1
→ 〈s1, ν1〉

σ2

τ2
→ · · ·

σn

τn

→ 〈sn, νn〉

we require ∀i ∈ {0, 1, . . . , n − 1},∀τ ∈ [0, τi − τi−1) : [[νi + τ]]X ∈ [[ιsi
]]X where

τ0 = 0, and for the last state [[νn]]X ∈ [[ιsn]]X . We define a new kind of mor-
phism which is going to be an extension of the ones from Definition 6.5 taking
invariants into account.

Definition 6.15 A morphism (m, η) between two timed transition systems with
invariants T and T ′ consists of the same components as the morphisms in
Definition 6.5 with one extra constraint:

• If a state s in T is mapped by m to a state m(s) in T ′ then [[ιs]]X ⊆
[[ιm(s)[η(x)/x]]]X .

This definition ensures that if an invariant is satisfied in some configuration in
T the invariant of the simulating configuration is also satisfied. This implies
that we still have morphisms as simulations as stated in Theorem 6.1.

With this notion of morphisms we have a category as in Definition 6.7, which
we denote CTTSι

Σ.

Proposition 6.4 CTTSι
Σ has products and pullbacks.

The construction of T1×T T2 follows the one in the proof of Theorem 6.3 where
the invariant of the state 〈s1, s2〉 is defined such that [[ι〈s1,s2〉]]X× = [[ιs1]]X× ∩
[[ιs2]]X× . The invariants on the states in the product is defined in the same way.

As our category of computations we would again like to choose timed words
over Σ with word extensions. Like for timed transition systems we choose a
representation of these in terms of our models following the approach of [95].
This is going to look very much like the representation we defined for timed
transition systems, we just need to add invariants to all the states.

Definition 6.16 Given a timed word α = (σ1, τ1) (σ2, τ2) (σ3, τ3) · · · (σn, τn)
we define a timed transition system T ι

α 0 σ1
δ1,λ1
→ 1 σ2

δ2,λ2
→ · · · σn

δn,λn
→ n, as in

Definition 6.8, where the invariants are defined inductively to be of the form
∧

x∈X(cx ≤ x < c′x). The initial the invariant is

∧

x∈X

(0 ≤ x < τ1)

6.5. Extension with Invariants 79

Assume the invariant on the state i-1 is
∧

x∈X(ci−1
x ≤ x < c̃i−1

x), then the
invariant for state i is

∧

x∈X

(if x ∈ λi then (0 ≤ x < τ̃i) else (c̃i−1
x ≤ x < c̃i−1

x + τ̃i))

where τ̃i = τi − τi−1. The constraint on the final state is

∧

x∈X

(if x ∈ λi then (x = 0) else (x = c̃i−1
x))

Using this construction we still get an embedding of the category of timed words
with extensions into CTTSι

Σ, with properties as in Theorem 6.4.
The characterization of open maps is a little more complicated to state with

the invariants. The proof though is again just a simple extension of the proof of
Theorem 6.5 using the constraint for the invariants and the condition for runs.

Proposition 6.5 A morphism (m, η) : T1 → T2 is open iff for all reachable
configurations 〈s1, ν〉 for all ν ′ = ν+τ such that ∀τ ′ : τ ′ < τ ⇒ [[η−1(ν+τ ′)]]X2 ∈
[[ιm(s1)]]X2 whenever there is a transition m(s1)

σ
δ2,λ2
→ s′2 if [[ν]]X2 ∈ [[δ2]]X2 and

[[ν]]X2 ∈ [[ιs′2]]X2 for ν = η−1(ν ′) then there exists a transition s1
σ

δ1,λ1
→ s′1 such

that m(s′1) = s′2, [[ν ′]]X1 ∈ [[δ1]]X1 , λ2 = η−1(λ1), and ∀τ ′ < τ : [[ν + τ ′]]X1 ∈
[[ιs1]]X1 , [[ν ′]]X1 ∈ [[ιs2]]X1 .

We also have a characterization in terms of extended states equivalent to The-
orem 6.7, using the property that if one clock evaluation in a region satisfies
an invariant then all the clock evaluations of that region satisfy the invariant.
Given this, the proof of the theorem for extended states follows directly from
the proof of Theorem 6.7. With the characterization of the open maps in terms
of extended states, we again have the decidability of openness for morphisms
between finite timed transition systems with invariants, and we can construct
the finite vertex if such one exists.

Theorem 6.10 Given to finite timed transition systems with invariants T1 and
T2 if there exists a span of open maps

T
(m,η)

~~~~
~~

~~
~ (m′,η′)

  @
@@

@@
@@

T1 T2

then there is a finite T×R giving a span of open maps

T

(m,η)

����
��

��
��

��
��

��
�

(m′,η′)

��2
22

22
22

22
22

22
22

T×R

(p,ηp)
zz

z

||zz
z

(q,ηq)
DD

D

""D
DD

T1 T2



80 Chapter 6. Open Maps for Timed Transition Systems

The construction of T×R is almost the same as in the proof of Theorem 6.10.
The meaning of the invariant of the state 〈s1, s2〉 is the intersection [[ιs1 ]]X× ∩
[[ιs2 ]]X× as in the construction used for the pullback.

Again the decidability of the bisimulation follows directly from the construc-
tion of the vertex and the decidability of openness.

6.6 Conclusion

We have illustrated how to apply the general framework of open maps to the
setting of timed systems, providing a way of expressing a bisimulation purely
within the framework of timed transition systems. Furthermore, a decision
procedure for bisimulation was presented within this framework.

We propose the span of open maps idea as a useful way of expressing timed
bisimulations for finite systems. On the other hand, we do not claim that our
alternative decision procedure as presented here is more efficient than existing
ones, e.g. [103, 143].

The categorical formulations in terms of open maps suggest applying general
results from the categorical setting to concrete timed bisimulations, like the one
studied here. One particularly interesting example is the characteristic path
logic obtained from [95]. It would be interesting to study this logic and its
relation to existing timed logics from the literature.



Part III

Timed Reachability Analysis

81





Chapter 7

Distributing Uppaal

The paper Distributing Timed Model Checking – How the Search Order Mat-
ters presented in this chapter has been published as a conference paper [30].
A technical report is in preparation, however, some experiments needs to be
finished before the technical report can be finalized.

[30] G. Behrmann, T. Hune, and F. Vaandrager. Distributing Timed Model
Checking – How the Search Order Matters. In Proc. Computer Aided
Verification, CAV 2000, pages 216–231, 2000.

This chapter extends the conference paper with more explanation of the
algorithm and how the search order can influence the state-space. Also a new
termination algorithm is presented. Except from some new experiments this
will be the content of the coming technical report.

83





7.1. Introduction 85

Distributing Timed Model Checking —
How the Search Order Matters§

Gerd Behrmann∗ Thomas Hune† Frits Vaandrager‡

Abstract

In this paper we address the problem of distributing model checking of
timed automata. We demonstrate through four real life examples that the
combined processing and memory resources of multi-processor computers
can be effectively utilized. The approach assumes a distributed memory
model and is applied to both a network of workstations and a symmetric
multiprocessor machine. However, certain unexpected phenomena have to
be taken into account. We show how in timed model checking the search
order of the state-space is crucial for the effectiveness and scalability of
the exploration. An effective heuristic to counter the effect of the search
order is provided. Some of the results open up for improvements in the
single processor case.

7.1 Introduction

The technical challenge in model checking is in devising algorithms and data-
structures that allow one to handle large state-spaces. Over the last two decades
numerous approaches have been developed that address this problem: symbolic
methods such as BDDs, methods that exploit symmetry, partial order reduction
techniques, etc [53]. One obvious approach that has been applied successfully
by a number of researchers is to parallelize (or distribute) the state-space search
[7, 138]. Distributed reachability analysis and state-space generation has also
been investigated in the related field of performance analysis in the context
of stochastic Petri nets [47, 71] (see the second paper for further references).
Since the state-of-the-art in model checking and performance analysis is still
progressing very fast, it does not make sense to develop parallel or distributed
tools from scratch. Rather, the goal should be to view parallelization as an
orthogonal feature, which can always be easily added when the appropriate
hardware is available.

∗Basic Research In Computer Science, BRICS, (www.brics.dk), funded by the Danish
National Research Foundation, University of Aalborg, Denmark, Email: behrmann@cs.auc.dk

†Basic Research In Computer Science, BRICS, (www.brics.dk), funded by the Danish
National Research Foundation, University of Århus, Denmark, Email: baris@brics.dk

‡Computing Science Institute, University of Nijmegen, Email: fvaan@cs.kun.nl
§Research supported by Esprit Project 26270, Verification of Hybrid Systems (VHS).



86 Chapter 7. Distributing Uppaal

To some extent this goal has been achieved in the work of [47, 138, 71],
all with very similar solutions. Stern and Dill [138], for example, present a
simple but elegant approach to parallelize the Murϕ tool [61] using the mes-
sage passing paradigm. In parallel Murϕ, the state table, which stores all
reached protocol states, is partitioned over the nodes of the parallel machine.
Each node maintains a work queue of unexplored states. When a node gen-
erates a new state, the owning node for this state is calculated with a hash
function and the state is sent to this node; this policy implements randomized
load balancing. In the case of Murϕ, the algorithm of Stern and Dill achieves
close to linear speedup. We applied the approach of Stern and Dill to paral-
lelize Uppaal [109], a model checker for networks of extended timed automata.
We experimented with parallel Uppaal using four existing case studies: DA-
CAPO [115], communication [70] and power-down [69] protocols used in B&O
audio/video equipment, and a model of a buscoupler.

In the case of timed automata, the state-space is uncountably infinite, and
therefore one is forced to work with symbolic states, which are finite represen-
tations of possibly infinite sets of concrete states. A key problem we had to
face in our work is that the number of symbolic states that has to be explored
depends on the order in which the state exploration proceeds. In particular,
the number of states tends to grow if state-space exploration is parallelized.
The main contribution of this paper consists an effective heuristic which takes
care that the growth of the number of states remains within acceptable bounds.
As a result we manage to obtain super linear speedups for the B&O protocols
and the buscoupler. For the DACAPO example the speedup is not so good,
probably because the state-space is so small that only a few nodes are involved
in the computation at a time. Some of the results open up for improvements
in the single processor case.

The rest of this paper is structured as follows: Section 7.2 reviews the
notion of timed automata. Section 7.3 describes our approach to distributed
timed model checking, Section 7.4 presents experimental results, and Section 7.5
summarizes some of the conclusions.

7.2 Model Checking Timed Automata

In this section we briefly review the notion of timed automata that underlies
the Uppaal tool. For a more extensive introduction we refer to [13, 99]. For
reasons of simplicity and clarity in presentation we have chosen to only give
the semantics and exploration algorithms for timed automata. The techniques
described in this paper extend easily to networks of timed automata, even when
extended with shared variables as is the case in Uppaal.

Timed automata are finite automata extended with real-valued clocks. Fig-
ure 7.1 depicts a simple two node timed automaton. As can be seen both the
locations and edges can be labeled with constraints on the clocks. Given a set
of clocks C, we use B(C) to stand for the set of formulas that are conjunc-
tions of atomic constraints of the form x ⊲⊳ n and x − y ⊲⊳ n for x, y ∈ C,
⊲⊳ ∈ {<,≤,=,≥, >} and n being a natural number. Elements of B(C) are



7.2. Model Checking Timed Automata 87

S0

x<=2

S1x>1

x:=0

Figure 7.1: A simple two state timed automaton with a single clock x.

called clock constraints over C. P(C) denotes the power set of C.

Definition 7.1 A timed automaton A over clocks C is a tuple (L, l0, E, I)
where L is a finite set of locations, l0 is the initial location, E ⊆ L × B(C) ×
P(C)×L is the set of edges, and I : L→ B(C) assigns invariants to locations.

In the case of (l, g, r, l′) ∈ E, we write l
g,r
−−→ l′.

Formally, clock values are represented as functions called clock assignments
from C to the non-negative reals R≥0. We denote by RC the set of clock
assignments for C. The semantics of a timed automaton is defined in terms of
a labeled transition system with states L×RC , and initial state (l0, u0) where
u0 assigns zero to all clocks. The transition relation is given by:

• (l, u)→ (l, u+ d) if u ∈ I(l) and u+ d ∈ I(l)

• (l, u) → (l′, u′) if there exist g and r s.t. l
g,r
−−→ l′, u ∈ g, u′ = [r 7→ 0]u,

and u′ ∈ I(l′)

where for d ∈ R, u + d maps each clock x in C to the value u(x) + d, and
[r 7→ 0]u denotes the assignment for C which maps each clock in r to the value
0 and agrees with u over C \ r. In short, the first rule describes delay and the
second edge transitions. It is easy to see that the state-space is uncountable.
However, it is a well-known fact that timed automata have a finite-state sym-
bolic semantics [13] based on countable symbolic states of the form L× B(C).

The initial state is (l0,D
↑
0 ∧ I(l0)), where D0 represents that all the clocks have

value zero. The transition relation for the symbolic semantics is given by:

• (l,D)→ (l,norm(M, (D ∧ I(l))↑ ∧ I(l)))

• (l,D)→ (l′, r(g ∧D) ∧ I(l′)) if l
g,r
−−→ l′.

where D↑ = {u + d | u ∈ D ∧ d ∈ R≥0} (the future operation), and r(D) =
{[r 7→ 0]u | u ∈ D}. The function norm : N × B(C) → B(C) normalizes
the clock constraints with respect to the maximum constant M of the timed
automaton. Normalizing the clock constraints guarantees a finite state-space.
We refer to [13, 99] for an in-depth treatment of the subject.

The state-space exploration algorithm is shown in Fig. 7.2. Central to the
algorithm are two data-structures: the waiting list, which contains unexplored
but reachable symbolic states, and the passed list, which contains all explored
symbolic states (similar to the state table in Murϕ). An important but in the
literature often ignored optimization is to check for state coverage in both lists.



88 Chapter 7. Distributing Uppaal

Passed := ∅
Waiting := {(l0, D0)}
repeat

get (l, D) from Waiting

if for all (l, D′) ∈ Passed : D 6⊆ D′ then

add (l, D) to Passed

Succ := {(l′, D′) : (l, D) → (l′, D′) ∧ D′ 6= ∅}
for all (l′, D′) ∈ Succ do

put (l′, D′) in Waiting

od

end if

until Waiting = ∅

Figure 7.2: Sequential symbolic state-space exploration for timed automata.

Instead of only checking whether a symbolic state is already included in the
list, Uppaal searches for states in the list that either cover the new state or
is covered by it. In the first case the new state is discarded and in the latter
case it replaces the existing state covered by it. We will return to this matter
in Section 7.3.

7.3 Distributed Model Checking of Timed Automata

The approach we have used for distributing the exploration algorithm is similar
to the one presented in [47, 138, 71]. The state-space is partitioned according to
a distribution function h mapping symbolic states, (l,D), to nodes, i, resulting
in a waiting list fragment, Waitingi, and a passed list fragment, Passedi,
on each node, i. Initially, all fragments are empty, except for Waitingh(l0,D0)

which contains the initial state.

Each node executes an algorithm described by the pseudo-code in Fig. 7.3
(a variant of the sequential algorithm shown in Fig. 7.2). Compared to the
sequential algorithm, the distributed algorithm reads exclusively from its lo-
cal waiting list, but writes into all waiting lists according to the distribution
function, h. Also, the algorithm needs to access all waiting lists in order to
guarantee termination.

Since we assume a distributed memory model, all variables are local and non-
local variables can only be accessed by passing messages between nodes. The
passed list fragments are only accessed locally, but every node can add states
to any waiting list fragment, hence requires a message containing the state to
be sent to the respective node. Fortunately, this can be done asynchronously,
i.e., without blocking the sender. Evaluating the termination condition is more
difficult, since it requires knowledge about the size of all waiting lists at the
exact same point in time. Worse, the network acts as buffer, i.e., even though
all waiting lists are empty, any node might receive a state currently being
transfered. The distributed termination algorithm proposed in Section 7.3.4
solves both problems without incurring any significant overhead.



7.3. Distributed Model Checking of Timed Automata 89

Explorei =
Passedi := ∅
Waitingi := ∅
repeat

pick (l, D) from Waitingi

if for all (l, D′) ∈ Passedi : D 6⊆ D′ then

add (l, D) to Passedi

for all (l′, D′) : (l, D) → (l′, D′) ∧ D′ 6= ∅ do

put (l′, D′) into Waitingh(l′,D′)

od

end if

until
∑n

i=1 |Waitingi| = 0

Figure 7.3: The distributed state-space exploration algorithm.

7.3.1 Nondeterminism and Search Orders

In general, communication delay, message retransmission, message ordering,
and system load causes the search order of the distributed algorithm to be
nondeterministic. Making it deterministic would require much more synchro-
nization and is undesirable. This is different from the sequential algorithm,
where the search order is deterministic and easily controllable. Here, choos-
ing between breadth-first and depth-first amounts to using a queue or a stack
implementation of the waiting list, respectively.

In the distributed setting, we only distinguish between nodes exploring
states in FIFO-order and FILO-order, i.e., states received first are explored
first and vice versa, respectively. The actual search order is crucially influenced
by the choice of either FIFO-order or FILO-order on each node.

In FIFO-order the states are explored in order of arrival at each node.
However, the order in which states arrive is nondeterministic. If the workload
is distributed evenly and the number of nodes is low, the actual search order
will resemble breadth-first order, but as the number on nodes increases the
differences will become larger.

In FILO-order the states are explored in reverse order of arrival. To some
extend, the resulting search order resembles depth-first, but many paths are
explored simultaneously. In fact, any node can and will interrupt other nodes
by sending states to them. Since we use FILO-order, arriving states will be
explored first. Thus, each node will continuously jump to new paths depending
on the received states. The exploration is highly sensitive to the order in which
states are received. Assume two states α and β arrive at a node while the
node is busy exploring a state, with α arriving last. The successors of α are
generated and sent to their owning nodes. One or more of these may go to the
local node itself which means that they are explored before β, and the same
for their successors and so on. Thus, it can happen that β has to wait a long
time before it is explored even though it has arrived at almost the same time as
α. Hence small changes in the order of arrival of states may change the search
order drastically.

The difference between the actual search orders caused by FIFO-order and
FILO-order is similar to the difference between breadth-first order and depth-



90 Chapter 7. Distributing Uppaal

first order. States “deep” in the state-space (only reachable using a long path)
will be searched faster using FILO-order than with FIFO-order. All states close
to the initial state will be searched faster using FIFO-order.

7.3.2 Why the Search Order Matters

In a distributed state-space search the number of states explored (and thereby
the work done) may differ from run to run. This is because whether a state is
explored or not depends on the states previously encountered. As an example,
consider two states (l,D) and (l,D′) with the same location vector l but different
time zones satisfying D ⊆ D′. If (l,D) is explored before arrival of (l,D′), then
(l,D′) will also be explored since it is not covered by any state in the passed
list (assuming that there are no other states covering it). Since the successors
of (l,D′) are very likely to have larger time zones than the successors of (l,D)
these will also be explored later. However, if (l,D′) is explored before (l,D)
arrives, then (l,D) will not be explored because it is covered by a state in the
passed list. This also means that no successors of (l,D) will be generated or
explored.

Example 7.1 To illustrate how the search order can influence the state-space
we will look at the automaton in Figure 7.4. Searching the state-space of the

S0

S1

S2

x>=2

Figure 7.4: A timed automaton with one clock, x.

automaton in a depth-first order results in the state-space in Figure 7.5. States
consist of a location part and a zone part. Since there is only one clock in the
timed automaton the zones are one dimensional, represented by a shaded part
of the x-axis. The number on the transitions show in what order the states
will be searched. The initial symbolic state is the leftmost state in the figure
consisting of the location S0 and the zone covering all of the x-axis. We have
to define an ordering on the transitions from location S0 of the automaton to
decide which transition should be explored first. The transition to location S1
have been chosen to be the first, so the symbolic state consisting of location S1
and the zone covering the x-axis from two to infinity is the second reachable
state in the state-space. The part of the x-axis from zero to two is not included
in the zone because of the guard x ≥ 2 on the transition from location S0 to
S1. Since we are doing a depth-first search we now explore the successors of
this new state. There is only one which is the state consisting of location S2
and the same zone since the transition has no guards or invariants. This state
has no successors, so we go back to the state with location S1. From this state
there are no successors either, so we are back at the initial state. Here we
have one transition more, from location S0 to location S2.Taking this transition



7.3. Distributed Model Checking of Timed Automata 91

we can reach the symbolic state with location S2 and the same time zone as
the initial state, since there are no guards or invariants. This state covers the
already explored state with location S2, which is therefore replaced by the new
larger state. Since this state has no successors, and the initial state has no more
successors, the exploration has finished.

0 1 2 3

x

0 1 2 3

x

0 1 2 3

x

0 1 2 3

x

S0,

S1, 

S2, (1)

(2)

(3)

Figure 7.5: The state-space arising from a depth-first search of the automaton
in Figure 7.4.

If we instead search the state-space in a breadth-first manner we get the
state-space in Figure 7.6. From the initial state, which is equal to the initial
state of the depth-first search, two states are reachable. The state with location
S1 and zone represented by the x-axis from two to infinity arises from taking
the transition from location S0 to S1, and the state with location S2 and zone
represented by all of the x-axis arises from taking the transition from location
S0 to S2. The state with location S1 has one successor with location S2 and
the same zone. This state is included in the state with location S2 which has
already been found. The state with location S2 has no successors and the search
is finished.

x

0 1 2 3

x

0 1 2 3

x

0 1 2 3

S0, 

S1, 

S2,

(1)

(2)

(3)

Figure 7.6: The state-space arising from a depth-first search of the automaton
in Figure 7.4.

The difference in this example between doing a depth-first and a breadth-first
search might seem minor. However, assume there was a transition from location
S2 to another part of the automaton with a large state-space. In a depth-first
search when the first state with location S2 was encountered, the successor(s)
of this state would be explored. Therefore the large state-space reachable from
location S2 would be explored. When this was finished we would return to the
initial state and then again encounter a state with location S2 but this time with
a larger time zone. Therefore we would again have to explore the successors
until either we encounter a state which is covered by an already explored state
or all states have been searched. This might mean that all of the possibly large
state-space reachable from location S2 would have to be explored again.



92 Chapter 7. Distributing Uppaal

This is just one example showing how the search order can influence the
number of states explored when generating the state-space of a timed automaton.
One can easily construct examples where a depth-first search generates fewer
states than a breadth-first search. ✷

Earlier experiments with the sequential version of Uppaal have shown that
breadth-first search is often much faster than depth-first search when generating
the complete state-space. We believe this comes from the fact that depth-first
search order causes higher degree of fragmentation of the zones than breadth-
first order. This results in a higher number of symbolic states being generated
because when a new state is generated it is less likely to be included in one
of the states previously explored. It might be included in the union of several
states with the same location vector, but the union of two zones represented by
DBMs can in general not be represented by a DBM.1

As noted above, the distributed algorithm neither realizes a strict breadth-
first nor depth-first search. As noticed, using FIFO-order the algorithm approx-
imates breadth-first search, but as we increase the number of nodes, chances
increase that the nondeterministic nature of the communication causes the or-
dering to be such that some states with a large depth (distance from the initial
state) are explored before other states with a smaller depth. In cases where
breadth-first is actually the optimal search order, increasing the number of
nodes is bound to increase the number of symbolic states explored.

Since it seems that breadth-first order in most cases is the optimal search
order, we propose a heuristic for more accurately approximating breadth-first
order. The heuristic keeps the states in each waiting list ordered by depth.
Extending a state with a field containing the number of transitions used for
reaching that state and implementing the waiting list as a priority queue is one
way of realizing the heuristic. This guarantees that the state in the waiting list
with the smallest depth is explored first. In Section 7.4, we will demonstrate
that this heuristic drastically reduces the rate at which the number of symbolic
states increases when the number of nodes grows. In some cases it actually
decreases the number of states explored. This implies that breadth-first order
is not always optimal.

7.3.3 Distribution Functions and Locality

On one hand, a good distribution function should guarantee a uniform work
load for all nodes, and on the other hand it should minimize communication.
In most cases these two objectives contradict each other. Therefore we will
considered several distribution functions and try to find a suitable tradeoff.

As in [138], most of our results are based on using a hash function as the
distribution function. However, to make the inclusion checks of the time zones
in the waiting and the passed lists possible, states with the same location vec-
tor and the same values of the integer variables must be mapped to the same
node. The hash value of a symbolic state is therefore only based on the lo-
cation vector and not on the complete state, i.e., h(l,D) only depends on l.

1DBMs can only represent convex sets.



7.3. Distributed Model Checking of Timed Automata 93

We have made experiments with distribution functions based on the complete
state. However, the increase in the number of states explored arising from fewer
successful inclusion checks, negates the advantage of the increased processing
power available.

One possible hash function is the one already implemented in Uppaal and
used when states are stored in the passed list. It uniquely maps each state to
an integer modulo the size of the hash table. Experiments have shown that
it distributes location vectors uniformly. Using a uniform distribution of the
states makes almost as much communication as possible. When using n nodes
in the exploration, each node sends (n− 1)/n of the states it generates to other
nodes and only 1/n states to itself. Trying to increase locality of the distribution
function, it should be possible to use the fact that each transitions changes at
most two entries in the location vector and only some transitions change the
integer variables. We suggest two new general distribution functions both based
on the hash function implemented in Uppaal. One of the new distribution
functions only calculates the hash value based on every second entry in the
location vector (the location of every second automaton in the network). The
other distribution function calculates the hash value only based on the value of
the integer variables, so it only makes sense to use this in a system with integer
variables. Section 7.4 reports on experiments with these two new distribution
functions.

Some experiments with model specific distribution functions have been made.
Competing with the generic distribution functions has proven to be extremely
difficult in the cases we have tried. However, we have only experimented with
small to medium size models. Using user supplied model specific distribution
functions is unlikely to scale to large systems, since the task of specifying the
distribution function becomes intrinsically more difficult.

Within Uppaal the techniques described in [111] for reducing memory con-
sumption by only storing loop entry points in the passed list are quite important
for verifying large models. The idea is to keep a single state from every static
loop (which are simple to compute). This guarantees termination while giv-
ing considerable reductions in memory consumption for some models. Uppaal

implements two variations of this techniques. The most aggressive one is de-
scribed in [111] which only stores loop entry points. While reducing memory
consumption this technique may increase the number of states explored, since
certain states are explored more than once. A less aggressive approach is to
also store all non-committed states (in which no automaton is in a committed
location) in the passed list. Experiments show that this is a good compromise
between space and speed.

We propose using these techniques to increase locality in the exploration.
Since non loop entry points are not stored on the passed list they might as well
be explored by the node which computed the state in the first place instead of
sending it to another node, thereby increasing locality. Consider, for example,
a state α and its successor β. If β is not a loop entry point and therefore is
not going to be stored on the passed list, we may as well explore β on the same
node as α. Section 7.4 reports on experiments with this technique.



94 Chapter 7. Distributing Uppaal

7.3.4 Termination

The model checker should terminate when either an error state has been encoun-
tered or all states have been explored. In the first case, the node encountering
the error state will broadcast a the termination signal. Detecting the latter case
is much more difficult.

Two conditions need to be satisfied before the algorithm can terminate:

1. All waiting lists must be empty, i.e.,
∑n

i=1 |Waitingi| = 0. In this case
we say that all nodes are idle.

2. No states should be in the process of being passed between nodes.

The latter condition is necessary since the network acts as a buffer quite similar
to the waiting lists. It can be checked for by letting each node count the number
of sent and received states. When all sent counters sum up to the same value as
all receive counters the second condition is satisfied. The challenge is to detect
both conditions without unnecessarily slowing down the verifier. One simple
but inefficient approach is to periodically check the two conditions by taking
a snapshot of all counters. Typically, one of the nodes is responsible for this.
In order to guarantee that the snapshot is taken at the exact same time on all
nodes, it is necessary to temporarily halt the verification. This is essentially
the approach taken in [138].

We propose a distributed detection algorithm, see Fig. 7.7. It is based on a
token, that is passed from node to node. The idea is that we can conclude upon
the two conditions when the token has visited all nodes. The token is on the
form (origin, sent, received), where origin is a node ID, and sent and received
are integers. Initially, the token is assigned to a random node (this might be
the node with the ID 0). As long as the node is busy, it keeps the token.
When it becomes idle, the token is sent to the next node in order, inserting the
sending nodes ID and the two counter values. When receiving the token, the
next action depends on whether the node is idle. If it is not, it simply keeps
the token until it becomes idle at which point the scenario starts over. If it is
idle, the local sent and received counters are added to the respective values in
the token and the token is passed on to the next node. When a node receives
a token containing the nodes own ID, we know that the token has visited each
node and that each node was idle at the moment it received the token.

Now, if both termination conditions are satisfied, the token will indeed visit
each node and return to its origin at which point the two integers will be equal
(the total number of sent and received states, respectively). Unfortunately, we
cannot conclude termination from this, since it only ensures that all nodes where
idle at some point. But if the token successfully traverses all nodes a second
time and returns to its origin with the exact same sums, we can conclude that
no node has sent or received any states in the meantime and hence has been
idle since the previous visit.



7.3. Distributed Model Checking of Timed Automata 95

when idle do

if has token then

sent (id, sent, received)

when receiving token (origin, s, r) do

if idle then

if origin 6= id then

sent (origin, s + sent, r + received)
else if s == r then

if first check then

s′ = s

r′ = r

sent (id, sent, received)
else if s == s′ ∧ r == r′ then

broadcast termination signal
else

sent (id, sent, received)
else

sent (id, sent, received)

Figure 7.7: The distributed termination algorithm passes a token
(origin, sent, received) from node to node. The two event handlers shown il-
lustrate the algorithm.

7.3.5 Generating Shortest Traces

An important feature of a model checker is its ability to provide good debugging
information in case a certain property is not satisfied. For a failed invariant
property this is commonly a trace to the state violating the invariant. Providing
a short trace increases the value of a trace. One of the features of Uppaal is
that when the algorithm from Fig. 7.2 is used with a breadth-first search order,
the trace to the error state is the shortest possible, since all states that can
be reached with a shorter trace have been explored before. It would be nice to
have this feature also in a distributed version of the tool. However, as described
above, the order of a distributed state-space search is non-deterministic, and this
may lead to non-minimal traces. Fortunately, with little extra computational
effort a shortest trace can be found regardless of the search order. The idea
is once again to record for each symbolic state its “depth”, i.e., the length of
the shortest trace leading to this state. When a violating state is found the
algorithm does not stop, but instead sends the depth of the violating state to
all nodes and continues to search for violating states that can be reached with
a shorter trace. Whenever a new violating state is found with a smaller depth,
this new depth is send to all the nodes. We need to make sure that the inclusion
checks performed on the waiting and passed lists do not discard violating states
with a potential shorter trace. When a new state (l,D) is added to the waiting
or passed list, we normally compare it to every state (l,D′) on the list, and if
an inclusion exists we keep the larger of the two states. In order not to discard
potential traces, we add the restriction that a state is only replaced/discarded
if it does not have a smaller depth than the state it is compared to. The same



96 Chapter 7. Distributing Uppaal

idea is used for the decision whether or not to explore a state when looking it up
in the passed list: we only decide not to explore a state if its clock constraints
are included in the clock constraints of another state with the same location
vector and at the same time does not have a smaller depth than the state it is
included in. The corresponding line in the algorithm changes to:

if D 6⊆ D′ or depth(l, D) < depth(l, D′) for all (l, D′) ∈ Passed then

The search stops when all reachable states with smaller depth than the smallest
depth of a violating states has been searched. With these changes the algorithm
in Fig. 7.3 can find shortest traces independently of the ordering used on the
waiting list. As described above we have implemented a heuristic which approx-
imates breadth-first search. In Section 7.4, we demonstrate that when using this
heuristic the extra cost for finding the shortest trace is minor and we keep good
speedups.

7.4 Experimental Results

Communication between the nodes is implemented using the Message Pass-
ing Interface (MPI) [137]. Since the algorithm assumes a distributed memory
model and we use MPI for communication, porting and running the program
on different kinds of machines and architectures is easy. We have conducted
experiments on two different machines: a Sun Enterprise 10000 with 24 333Mhz
processors, which has a shared memory architecture using the Sun implemen-
tation of MPI, and on a Linux Beowulf cluster of 10 450Mhz Pentium III CPUs
using the LAM2 implementation of MPI. Executables for both platforms can
be obtained from the Uppaal website (www.uppaal.com).

7.4.1 Nondeterminism and Search Orders

As one of the first examples, the distributed Uppaal was tried on a model of
a batch plant [82] constructed to verify schedulability of a batch production
process. The verification, which on one processor took several hours, surpris-
ingly took less than five minutes on 16 nodes on the Sun Enterprise. This is
more than a linear speedup and therefore came as a surprise to us. Verify-
ing schedulability in this model means searching for a state where all batches
have been processed. For this particular model we had previously identified
depth-first search as the fastest strategy on one node, and therefore we used
the FILO-order. In this particular model, the verification benefited from the
nondeterministic search order. Using the FILO-order the same goal state was
not found as when running the verification on a single processor, and in fact
the number of states searched was not the same in the two cases. It is possible
to achieve a similar effect with the sequential algorithm by introducing ran-
domness into the search order. First experiments with using a kind of random
depth-first search have been promising [26].

2See http://www.mpi.nd.edu/lam/



7.4. Experimental Results 97

Because of this property of checking for a set of states, we have in the
remaining experiments chosen to generate the complete state-space of the given
system using a FIFO-order search. Generating the complete state-space reduces
the impact of the nondeterministic search order because one cannot find a
“lucky” path which reaches the state searched for quickly. This makes the
results from different runs comparable.

7.4.2 Speedup Gained

We have chosen to focus our experiments around four known industrial Uppaal

case studies: the start-up algorithm of the DACAPO [115] protocol which has a
quite small state-space compared to the other examples, but on the other hand
it showed some interesting behavior as will be discussed later; a communication
protocol used in B&O audio/video equipment (CP) [70]; a power-down protocol
also used in B&O audio/video equipment (PD) [69]; and a model of a buscoupler
(which thus far has not been published). The reason not to look further at the
model of the batch plant is that the state-space is too big to be generated
completely. We also tried all other Uppaal examples we could find, but these
were so small that the complete state-space can be generated in a matter of
seconds using a few processors, and were therefore considered too small to be
of interest.

The examples were run on the Sun Enterprise on 1, 2, 3, 4, 5, 8, 11, 14, 17,
20 and 23 nodes; and on the Beowulf on 1 to 10 nodes to the extend it was
possible (only the DACAPO model could be run on a single node because of
memory usage). Since the search order (and thereby the work done) is non-
deterministic we repeated one experiment several times. The observed running
times3 and number of states generated varied less than 3%. Running the rest
of the experiments only once therefore seemed reasonable.

When generating the complete state-space for a number of examples using
the FIFO-order a general pattern occurred. In most cases the number of states
generated increased with the number of nodes used in the search, and in all
cases the smallest number of states was generated using one node. It therefore
seems that in most cases breadth-first is close to the optimal search order for
generating the complete state-space. In most cases the increase in the number
of states was minor (less than 10%), but for a few examples the increase was
substantial. In the DACAPO example the number of states more than doubled
— from 45000 states to more than 110000 states using 17 nodes (see Table 7.1).

To counter this phenomenon, we applied the heuristic described in Sec-
tion 7.3.2 and used a priority queue to order the states waiting on each node
such that the states with the shortest path to the initial state was searched
first. Not only did this counter the increase in the number of states, it actually
decreased the number of states generated in some cases. This shows that there
is still room for improvement with respect to the search order also when using
a single processor. Table 7.1 and 7.2 show in terms of explored states, the effect
of applying the heuristic to our examples. As can be seen from the tables, the

3When talking about the running time we always consider the time of the slowest node.



98 Chapter 7. Distributing Uppaal

Table 7.1: States generated with (Priority) and without (FIFO) use of heuristic
on Sun Enterprise.

# States

DACAPO CP Buscoupler PD

FIFO Priority FIFO Priority FIFO Priority FIFO Priority

1 45001 44925 3466548 3010244 6502804 6436543 7992048 7992098
2 45754 44863 5505161 3027728 8042882 6199274 8004165 8003477
3 69141 45267 5472878 3070491 8064519 6243785 8001670 7997859
4 62541 45177 5454067 3086016 8123748 6171125 8004717 8004439
5 78008 45667 5583368 3077890 8651090 6481067 8002412 7998607
8 77396 46510 5452888 3113378 8359647 6185288 8004898 8004898
11 84598 46318 5642463 3059169 8968257 6184329 8004888 8004892
14 108344 49741 5653134 3102709 8914300 6278855 8004888 8004888
17 110634 52247 5270822 3082967 9049252 6243571 8001813 7996979
20 98266 47573 5449055 3111333 9271401 6251283 8004881 8004880
23 104945 52457 5535724 3065916 9146026 6103629 8004714 8004651

Table 7.2: States generated with (Priority) and without (FIFO) use of heuristic
on Beowulf.

# States

DACAPO CP Buscoupler PD

FIFO priority FIFO priority FIFO priority FIFO priority

1 45858 45748 N/A N/A N/A N/A N/A N/A
2 48441 46899 N/A 3028368 N/A N/A N/A N/A
3 74882 47671 5605882 3053837 N/A N/A N/A N/A
4 62398 47640 5533159 3058230 15832617 12794520 9473496 9409935
5 79899 47678 5454676 3060070 16637609 13603603 9432828 9287527
6 92678 49438 5684749 3133769 20443824 13896789 9511548 9482742
7 97065 49739 5702856 3074131 20329057 13797531 9513477 9441041
8 97662 50477 5358514 3106414 22430748 14442925 9527173 9488775
9 92642 49284 5449403 3071827 21086691 14455201 9535657 9515920
10 92400 48821 5532205 3060705 20704595 15507978 9526732 9500000

heuristic performs well in three of the four examples and in the PD example it
has no effect. We also tried to use a FILO-order search order, and to ’reverse’
the heuristic, i.e. first explore the states with the longest path to the initial
state during FILO-order search. In both cases the number of states generated
was increased substantially. Therefore these search orders were discarded for
the remaining experiments.

An important question is of course how well the distribution of the search
scales in terms of number of nodes used for the search. Tables 7.3 and 7.4 show
the running times in seconds for the different examples on the Sun Enterprise
and the Beowulf, respectively. When running on the Sun Enterprise we were
able to generate the complete state-space on a single node for all the examples.
We can therefore calculate the speedup with respect to running on a single node.
The speedups we have calculated are normalized with respect to the number



7.4. Experimental Results 99

of states explored, to clarify the effect of the distribution. The speedup for i
nodes is calculated as

time on one node/states on one node

time on i nodes/states on i nodes

where time on one node is the time for generating the complete state-space
using the distributed version running on one node, and time on i nodes is the
time of the slowest node when running on i nodes.

Table 7.3: Run time with (Priority) and without (FIFO) use of heuristic on
Sun Enterprise.

# Run time

DACAPO CP Buscoupler PD

FIFO Priority FIFO Priority FIFO Priority FIFO Priority

1 8.6 9.0 804.0 732.0 2338.6 2213.8 3362.8 3195.4
2 5.2 5.0 725.8 351.6 1506.5 861.4 1507.1 1101.2
3 5.4 3.7 446.4 238.6 773.0 559.4 943.0 649.8
4 3.9 2.9 317.9 175.2 596.4 413.4 713.4 467.6
5 4.0 2.5 266.9 142.0 501.2 342.5 453.5 373.1
8 2.8 2.1 152.8 86.8 283.0 202.3 231.6 226.9
11 2.6 1.9 121.7 65.3 221.4 148.0 159.9 161.4
14 2.7 2.0 95.5 53.9 172.2 118.0 127.3 133.4
17 2.7 2.1 74.2 43.1 145.2 97.7 106.9 102.4
20 2.4 2.3 66.5 38.8 127.6 83.6 93.0 92.1
23 2.2 2.4 60.2 34.3 112.4 72.7 76.9 79.6

Table 7.4: Run time with (Priority) and without (FIFO) use of heuristic on
Beowulf.

# Run time

DACAPO CP Buscoupler PD

FIFO Priority FIFO Priority FIFO Priority FIFO Priority

1 3.88 4.15 N/A N/A N/A N/A N/A N/A
2 3.20 3.16 N/A 682.57 N/A N/A N/A N/A
3 3.49 2.37 934.44 349.86 N/A N/A N/A N/A
4 2.88 2.02 540.19 218.94 1060.09 799.69 616.85 541.89
5 2.71 1.64 390.02 169.93 836.09 646.02 413.45 401.30
6 2.62 1.52 337.79 144.50 1796.23 563.08 453.20 377.39
7 2.55 2.47 285.30 124.69 811.78 476.69 343.49 315.69
8 2.51 1.39 200.50 97.84 782.28 440.87 283.07 274.41
9 2.23 1.38 178.75 87.38 619.84 394.91 244.72 242.16
10 2.00 1.19 173.07 82.44 536.74 387.27 214.03 217.98

For the DACAPO example the speedup decreases from being linear already
in the case of 5 nodes. However, it only takes 2.5 seconds to generate the
complete states space using 5 nodes. Since the states space is small not all
nodes can be kept busy and relatively much time is spent to start and close
down the exploration. Therefore, a poor speedup was to be expected. For the
CP example the speedup is close to linear. However, for the buscoupler and the



100 Chapter 7. Distributing Uppaal

PD examples the speedup is super linear, which is surprising since the speedup
has been normalized with respect to the total number of states. Figure 7.8
shows the graphs for the speedups of the CP and buscoupler examples. We can
offer two possible explanations for this. The reason should most likely be found
in a combination of these two.

The passed list storing the states which have been explored, is implemented
using a hash table. When fragmenting the passed list into several passed lists
on different machines the size of the hash table for the passed list is effectively
made larger. This results in fewer collisions in the hash table and therefore
checking whether a state is in the passed list is faster. We have made a few
experiments with a fixed overall size of the hash table by letting the sum of the
sizes of all the hash tables used be constant. This decreases the super linear
speedup to an almost linear speedup in the cases we have tried showing this has
effect on the overall performance. Sometime the speed up is a little less that
linear sometimes a little more that linear. Unfortunately, we have not been able
to run a complete series of test with ’fixed’ size of the hash table yet. But this
is something we will do in the near future.

Accessing main memory is considered to be a bottleneck. When the number
of nodes used in an exploration increases so does the amount of cache available
(on the Sun Enterprise each node has 4Mb of cache).

This will give faster access to a larger part of the passed list. The same
kind of super linear speedups were not encountered by Stern and Dill [138]. As
mentioned in their paper, Murϕ has implemented a wide range of techniques
for minimizing the state-space. This means that, compared to Uppaal, Murϕ
spends less time on looking up states and accessing memory, and therefore
Murϕ does not gain the same speedup from the larger hash tables and larger
cache.

On the Beowulf it was in most cases not possible to generate the complete
state-space using only one processor. We have therefore chosen to present the
amount of work done, where work for i nodes is defined as the time on i nodes
times i divided by the number of states on i nodes, to normalize with respect to
the number of node generated. A horizontal line then corresponds to a linear
speedup. As expected the line for the DACAPO example increases, so we do
not have a linear speedup. The speedup looks better for the CP on the Beowulf
example but since we do not have the time on one node (this could not complete
due to memory shortage) it is hard to judge whether the work is approaching
the work in one node or really is decreasing below that. The same is the case
for the buscoupler and the PD example. Figure 7.9 shows the work for the CP
and buscoupler examples. One interesting point to notice is that for six nodes
with the FIFO-order the buscoupler performs very poorly. The Beowulf cluster
we have been using consists of ten processors placed on five boards sharing the
memory two and two. When using six nodes two will be located on the same
board sharing the same memory. This means that 1/3 of the state-space should
be store in the memory on one board with two active processors. However,
it is not possible to store 1/3 of the state-space in the memory on one board
forcing the nodes on this board to start swapping and thereby slowing down
the verification.



7.4. Experimental Results 101

The explanations we suggest for the super linear speedups we encounter on
the Beowulf are the same as for the Sun Enterprise: larger hash table size and
access to a larger amount of local (cache) memory.

7.4.3 Distribution Functions and Locality

In most of the experiments, states are distributed evenly among nodes using the
hash function from Uppaal. However, for small models we observed that some
nodes explore twice as many states as others because some location vectors have
more reachable symbolic states than others, which means that some nodes have
more states allocated than others. Counting the number of different location
vectors on the different nodes, the distribution again looks uniform. This effect
does not show up in larger models.

We ran experiments for different distribution functions: a function hashing
on the discrete part of a state (D0), a function hashing on the complete state
(D1), a function hashing on the integer variables (D2), and a function hashing
on every second location (D3). We also ran experiments for different settings
of the state-space reduction technique described in Section 7.3.3, where only
states that are actually stored in the passed list are mapped to different nodes:
storing all states (S0), storing non-committed or loop entry points (S1), and
storing only loop entry points (S2). Table 7.5 shows for the buscoupler and the
power-down models the percentage of states explored on the same node they
were generated on. These experiments were run on the Sun Enterprise with 8
CPUs, but similar results were obtained using the Beowulf cluster.

Table 7.5: Percent of locally explored states for different distribution and stor-
age policies for the buscoupler model (left) and the power-down protocol (right)
when verified on a Sun Enterprise using 8 nodes.

Bus D0 D1 D2 D3

S0 14% n/a 52% 42%
S1 36% n/a 60% 58%
S2 55% n/a 62% 62%

PD D0 D1 D2 D3

S0 4% n/a 76% 22%
S1 34% n/a 76% 48%
S2 60% n/a 78% 86%

For the buscoupler with D0 and S0 we almost obtain the expected uniform
distribution (100%/8 = 12.5%). This was not the case for the power-down
model although the total load on the nodes was uniform. None of the D1
experiments terminated within a reasonable time frame. This was expected
since much fewer inclusion checks can succeed with this distribution function
and hence a much higher number of symbolic states will be generated. Both
S1/S2 and D2/D3 improve locality. What cannot be seen is that both S1 and S2
increase the number of states generated. For the buscoupler using S2 generates
three times as many states as using S0, so even though each node ‘sends’ more
new nodes to itself that to all the other nodes together, it is faster using the
S0 option than the S2. D2 is surprisingly uniform while increasing locality, but
the load distribution of D3 was observed to be highly non-uniform, resulting in
poor performance. For the buscoupler D2 and S1 turned out to be the fastest



102 Chapter 7. Distributing Uppaal

combination. For the power-down model D2 and S2 turned out to be the fastest
combination.

7.4.4 Generating Shortest Traces

For the buscoupler system we tried the version finding the shortest trace on
four different properties (finding a particular state not generating the complete
state-space) on the Sun Enterprise. The speedups are displayed in Fig. 7.10.
As for the DACAPO system the speedup for properties one and two suffer from
too few states being explored. The speedup for properties three and four are
much better but here more states are searched to find the state satisfying the
property. So we can conclude that also the version finding shortest trace scales
quite well, as long as sufficiently many states need to be generated.

7.5 Conclusions

This paper demonstrates the feasibility of distributed model checking of timed
automata. A side effect of the distribution was an altered search order, which
in turn increased the number of symbolic states generated when exploring the
reachable state-space. We have proposed explicit ordering of the states in the
waiting list as an effective heuristic to improve the scalability of the approach.
In addition we propose an algorithm for finding shortest traces that performs
well in a distributed model checker. Some of our results suggests possible im-
provements to the sequential state-space exploration algorithm for timed au-
tomata.

In several cases we obtained super linear speedups. We have suggested some
explanations, which based on the experiments we have made so far seems to
be able to explain this. However, more experiments needs to be conducted
to clarify this. These experiments can hopefully take place on a new Beowulf
cluster being set up at University of Aalborg. The single nodes in this cluster
will have more memory than the ones on the cluster we have been using so
far. This will enable us to run the verifications also on one node and therefore
calculate the speedup gained by the distribution.



7.5. Conclusions 103

Appendix: Results

0

5

10

15

20

25

30

5 10 15 20

optimal(x)
Buscoupler with priority

Buscoupler with FIFO
CP with priority

CP with FIFO

Figure7.8. Speedup for CP and buscoupler on Sun Enterprise

0.0002

0.00025

0.0003

0.00035

0.0004

0.00045

0.0005

0.00055

1 2 3 4 5 6 7 8 9 10

CP with FIFO
CP with priority

Buscoupler with FIFO
Buscoupler with priority

Figure7.9. Work for CP and buscoupler on Beowulf



104 Chapter 7. Distributing Uppaal

0

5

10

15

20

25

0 5 10 15 20 25

opt(x)
"property1"
"property2"
"property3"
"property4"

Figure7.10. Speedup for finding shortest trace in Buscoupler model.



Chapter 8

Guiding Uppaal for Synthesizing Control

Programs

The paper Guided Synthesis of Control Programs using Uppaal presented in
this chapter has been published as a technical report [81] and a conference
paper [82]. A journal version has been accepted for publication [83].

[82] T. Hune, K. G. Larsen, and P. Pettersson. Guided Synthesis of Con-
trol Programs Using Uppaal. In Proc. of the IEEE ICDCS Inter-
national Workshop on Distributed Systems Verification and Validation,
pages E15–E22, 1998.

[81] T. Hune, K. G. Larsen, and P. Pettersson. Guided Synthesis of Control
Programs for a Batch Plant using Uppaal. Technical Report RS-00-37,
BRICS, December 2000.

[83] T. Hune, K. G. Larsen, and P. Pettersson. Guided synthesis of control
programs using Uppaal. Accepted for Nordic Journal of Computing,
2001.

The journal version extends the conference paper by adding some more expla-
nation of the guiding which is extended further in the technical report. Except
for minor typographical changes the content of this chapter is equal to the
technical report [81].

105





8.1. Introduction 107

Guided Synthesis of Control Programs for a Batch
Plant using Uppaal∗

Thomas Hune† Kim G. Larsen‡ Paul Pettersson§

Abstract

In this paper we address the problem of scheduling and synthesizing
distributed control programs for a batch production plant. We use a timed
automata model of the batch plant and the verification tool Uppaal to
solve the scheduling problem.

In modeling the plant, we aim at a level of abstraction which is suf-
ficiently accurate in order that synthesis of control programs from gener-
ated timed traces is possible. Consequently, the models quickly become
too detailed and complicated for immediate automatic synthesis. In fact,
only models of plants producing two batches can be analyzed directly! To
overcome this problem, we present a general method allowing the user to
guide the model-checker according to heuristically chosen strategies. The
guidance is specified by augmenting the model with additional guidance
variables and by decorating transitions with extra guards on these. Ap-
plying this method have made synthesis of control programs feasible for a
plant producing as many as 60 batches.

The synthesized control programs have been executed in a physical
plant. Besides proving useful in validating the plant model and in finding
some modeling errors, we view this final step as the ultimate litmus test
of our methodology’s ability to generate executable (and executing) code
from basic plant models.

8.1 Introduction

In this paper we suggest a solution to the problem of synthesizing and verifying
valid scheduling control programs for resource allocation, based on a batch

∗This work is partially supported by the European Community Esprit-LTR Project 26270
VHS (Verification of Hybrid Systems).

†Basic Research In Computer Science, BRICS, Centre of the Danish National Research
Foundation, University of Århus, Denmark, Email: baris@brics.dk

‡Basic Research In Computer Science, BRICS,Centre of the Danish National Research
Foundation, University of Aalborg, Denmark, Email: kgl@cs.auc.dk

§Department of Computer Systems, Information Technology, Uppsala University, E-mail:
paupet@docs.uu.se.



108 Chapter 8. Guiding Uppaal for Synthesizing Control Programs

plant of SIDMAR [39, 64], which is a case study of the VHS project1. We
model the plant in a network of timed automata, with the different components
of the plant (e.g. batches, recipes, casting machine, cranes, etc.) constituting
the individual timed automata. The scheduling problem is formulated as a
time-bounded reachability question allowing us to apply the real-time model-
checking tool Uppaal [106, 109] to derive a schedule. An overview of the
methodology is shown in Figure 8.1.

Uppaal offers a trace with actions of the model and timing information of the
actions. The remaining effort required in transforming such a model trace into
an executable control program depends heavily on the accuracy of the model
with respect to the control programming language and the physical properties
of the plant. In the Uppaal model given in [64], movement along tracks and
on the cranes was assumed to be instantaneous. Making a schedule containing
timing information from a trace like that is very hard, and sometimes it is not
possible at all. However, given a sufficiently high level of accuracy of the plant
model, a schedule can be obtained from a trace by projection, and synthesis of
the control program from a schedule amounts to textual substitution. Unfortu-
nately model suitable for such program synthesis becomes very detailed as all
the necessary information about the plant, such as the timing bounds and the
physical constraints for movements of loads, cranes etc, have be to specified.
As an immediate drawback, synthesizing schedules for several batches quickly
becomes infeasible. Even for the more abstract models presented in [64] this
problem was also encountered.

To deal with this (unavoidable) problem we introduce a method, allowing the
user to guide the model-checking according to certain chosen strategies. Each
strategy will contribute with a reduction of the search-space, but in contrast
to fully automatic reduction methods like partial order reduction [33] it is up
to the user to ’guarantee’ preservation of schedulability. However, if a schedule
is identified via the guided search, the schedule is indeed a valid one for the
original model. Since we are not interested in optimal schedules this is sufficient.

To be able to run the generated control programs in a physical plant, we consider
a LEGO MINDSTORMS plant, instead of the original plant of SIDMAR.
We have used the plant to successfully run synthesized control programs and
by doing so increased our confidence in the plant model. We view this final,
scientifically rather simple, step as the ultimate litmus test of our methodology’s
ability to generate executable (and executing) code from rather natural plant
models.

The SIDMAR plant has been studied by several other researchers. Our timed
automata model is based on the model in [64], which is similar to ours but more
abstract in the sense that some information, such as delays for the moving of
batches, is not included. A Petri net model of the plant is presented in [39].
In [139], constraint programming techniques are used to generate schedules of
the SIDMAR plant for up to 30 batches. This result is achieved by reducing
the size of the plant model using techniques similar to the guiding techniques

1See the web site http://www-verimag.imag.fr//VHS/main.html.



8.2. The Scheduling Problem 109

Plant Model

SIDMAR Plant

Schedule

LEGO Plant

Guided Plant Model

Control Program

desired realized

Figure 8.1: Overview of methodology.

presented in this paper. Other work applying the model of timed automata and
Uppaal to analyze and solve planning problems of batch plants include [100]
in which an experimental batch plant is studied.

The rest of this paper is organized as follows: In the next two sections we
describe the scheduling problem and how it has been modeled in Uppaal. In
Section 8.4 and 8.5 we present the guiding techniques and evaluate their effect
on the plant model. In Section 8.6 we describe experiments with the LEGO
plant and how programs are synthesized for the plant. Section 8.7 concludes
the paper. Finally, timed automata descriptions of four plant components are
enclosed in the appendix.

8.2 The Scheduling Problem

Our plant is based on a part of the SIDMAR steel production plant located
at Gent in Belgium. We will consider the part of the plant between the blast
furnace and the continuous casting machine where molten pig iron is converted
into steel of different qualities. The process is started when pig iron is poured
into ladles by one of two converter vessels. The iron is transported in the ladles
while it is being processed. By treatments in different machines the iron is
converted into steel and finally casted in the casting machine. Depending on
the machines used and how long the treatment in the machines last, different
qualities of steel are produced. When the steel in a ladle has been casted the
empty ladle must be moved to a storage place. From here the ladles are cleaned
and reused. However, this is not part of our model, where ladles are stored at
the storage place but not reused. The physical components of the process are:
two converter vessels where molten iron is poured into ladles, five machines,
tracks connecting these, two cranes running on one overhead track, a buffer
place, a storage place for empty ladles, and one casting machine. The layout of
the plant can be seen in Figure 8.2.



110 Chapter 8. Guiding Uppaal for Synthesizing Control Programs

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

continuous

machine

casting

place

storage

holding

place

convertor

vessel #2

machine#1

track#2

machine#2 machine#3

overhead

cranes

machine#4 machine#5

track#1

crane#2

crane#1

buffer

convertor

vessel #1

Figure 8.2: Layout of the plant.

Machines number one and four are of the same type and so are machines number
two and five. Each crane can only hold one ladle and they cannot overtake each
other. On each track and in each machine there is room for at most one ladle.
This means that the ladles cannot overtake each other without using one of the
cranes.

The steel must sustain a minimum temperature during the process. This gives
an upper bound on the time a batch is allowed to spend in the plant from it is
poured and until it is casted. Casting takes a fixed time and must be continuous.
Therefore a new ladle filled with steel must be waiting in the holding place of
the casting machine when casting of a ladle has finished.

Steel of different qualities can be produced depending on which types of ma-
chines are visited and for how long. For each batch this is specified by a recipe.
The problem to be solved can now be stated as:

Given an ordered list of recipes, if possible synthesize a control
program for the plant such that steel specified by the recipes are
produced in the right order and within a given time.

The major part of solving this problem is finding a schedule for the production
if one exists. A schedule for the plant defines which action takes place in the
plant e.g. moving of batches and cranes, and when the actions take place.

8.3 Scheduling with Timed Automata

Finding a schedule for producing an ordered list of steel qualities is the main
part of the problem. It can be solved in a number of ways. Here we chose



8.3. Scheduling with Timed Automata 111

S0
x<=4

S1
x<=5,

y<=3

S2

P: Q:
x>=1, j<50 y:=0, j:=j+2

x:=0, y:=0            a!

i<10

i:=i+1

a?

Figure 8.3: A Network of Timed Automata.

to model the plant using timed automata [13] and use the verification tool
Uppaal [106, 109] to solve the scheduling problem2. The use of timed automata
for modeling the plant enables the scheduling problem to be reformulated as
a reachability problem which can be solved by Uppaal. A discussion of this
approach to scheduling can be found in [64].

The modeling language in Uppaal is networks of timed automata extended
with data variables [109]. To meet requirements from various case-studies the
language has been further extended with the notion of committed locations [32],
urgent synchronization actions [109], and data structures such as arrays of data-
variables etc. In this section we give a brief informal description of the modeling
language of Uppaal. For a detailed description we refer the reader to [109].

8.3.1 Networks of Timed Automata

Consider the network of timed automata P and Q shown in Figure 8.3.1. Au-
tomaton P has two control locations S0 and S1, two real-valued clocks x and y,
and a data variable j. A state of the automaton is of the form (l, s, t, k), where
l is a control location, s and t are non-negative reals giving the value of the two
clocks x and y, and k is a natural number giving value to the data variable j.
A control location is labelled with a condition (the location invariant) on the
clock values that must be satisfied for states involving this location. Assuming
that the automaton starts to operate in the state (S0, 0, 0, 0), it may stay in
location S0 as long as the invariant x ≤ 4 of S0 is satisfied. During this time
the values of the clocks increase synchronously. Thus from the initial state, all
states of the form (S0, t, t, 0), where t ≤ 4, are reachable. The edges of a timed
automaton may be decorated with a condition (guard) on the clocks and the
data variable values that must be satisfied in order for the edge to be enabled.
Thus, only for the states (S0, t, t, k), where 1 ≤ t ≤ 4 and k < 50, is the edge
from S0 to S1 enabled. Additionally, edges may be labelled with assignments
and synchronization labels. An assignment may reset the value of the clocks
and update the data variables. For example, when following the edge from S0
to S1 the clock y is reset to 0 and the data variable j is incremented by 2,
leading to states of the form (S1, t, 0, 2), where 1 ≤ t ≤ 4. The synchroniza-
tion label is used to establish synchronization between automata. For example

2See the web site http://www.uppaal.com/ for more information about Uppaal.



112 Chapter 8. Guiding Uppaal for Synthesizing Control Programs

the transition from S1 to S0 of automaton P is labeled with a!, requiring the
transition to be synchronized with the transition of automaton Q offering the
complementary action a?.

In general, a timed automaton is a finite-state automata extended with a finite
collection C of real-valued clocks ranged over by x, y etc. and a finite set of
data variables D ranged over by i, j etc. We use B(C) ranged over by g to stand
for the set of formulas that can be an atomic constraint of the form: x ∼ n
or x − y ∼ n for x, y ∈ C, ∼∈ {<,≤,=,≥>} and n being a natural number,
or a conjunction of such formulas. Similarly, we use B(D) to stand for the
set of data-variable constraints that are the conjunctive formulas of i ∼ j or
i ∼ k, where ∼ ∈ {<,≤,=, 6=,≥, >} and k is an integer number. To denote the
set of formulas that are conjunctions of clock constraints and a data-variable
constraints we use B(C,D) (ranged over by g). The elements of B(C,D) are
called constraints or guards.

An assignment in Uppaal is a sequence of operations of the form x := 0, or
i := Expr, where x is a clock, i is a data variable, and Expr is an integer
expression, e.g. 2 ∗ (i − j) + 3 (where j is a data variable). We shall use R to
denote the set of assignments. Furthermore, we use Act to denote a finite set
of actions ranged over by a, a?, a!, b?, b!, etc.

Definition 8.1 (Timed Automata) A timed automaton A over clocks C and
data variables D is a tuple 〈N, l0,−→, I〉 where N is a finite set of (control-)
locations, l0 is the initial location, −→⊆ N×B(C,D)×Act×R ×N corresponds
to the set of edges and finally, I : N 7→ B(C) assigns invariants to locations. In

the case, 〈l, g, a, r, l′〉 ∈−→, we write l
g,a,r
−→ l′.

To formalize the semantics we use variable assignments. A variable assignment
is a mapping which maps the clocks C to the non-negative reals and the data
variables D to integers. A semantical state of an automaton A is now a tuple
(l, u), where l is a location of A and u is a an assignment for C and D, and the
semantics of A is given by a transition system with the following two types of
transitions (corresponding to delay-transitions and action-transitions):

• (l, u) −→ (l, u⊕ d) if I(l)(u) and I(l)(u⊕ d)

• (l, u) −→ (l′, u′) if there exist g and r such that l
g,a,r
−→ l′, g(u), u′ = r[u],

and I(l′)(u′)

where d is a non-negative real number, u⊕d denotes the assignment which maps
each clock x in C to the value u(x) + d and leaves each data variable i with the
unchanged value u(i), and r[u] denotes the result of updating the clocks C and
the data-variables in D according to r ∈ R.

Finally, we briefly introduce the notion of networks of timed automata [146, 106].
A network is a finite set of automata composed in parallel with a CCS-like
parallel composition operator [121]. For a network with the timed automata



8.3. Scheduling with Timed Automata 113

Recipe 3

Recipe n

Tester

Batch 1

Controller Crane A Crane BMachine
Casting

Recipe 2

Recipe 1

Batch 2

Batch 3

Batch n

Figure 8.4: Synchronization between the automata of a model.

A1, . . . , An the intuitive meaning is similar to the CCS parallel composition of
A1, ..., An with all actions being restricted, that is, (A1|...|An)\Act. Thus an
edge labelled with action a must synchronize with an edge labelled with an
action complementary to a, and edges with the silent τ action are internal,
so they do not synchronize. In Uppaal ’?’ and ’ !’ are used to represent
complementary actions, so a? and a! are considered complementary and can
synchronize.

8.3.2 Analysis

Given a network of timed automata and a set of states, Uppaal can analyze
whether or not one of the states is reachable from the initial state of the network.
If the answer is positive, Uppaal produces a trace with action- and delays-
transitions leading from the initial state to one of the specified states.

For the model of the plant, which will be presented in the following, a trace
defines a schedule for the plant since it specifies what happens in the plant (the
synchronization actions) and when (the delays). From a schedule a working
program controlling the plant may be generated. The level of detail in the
trace (and therefore in the schedule) influences the work needed to generate
the program. In [64] the traces generated did not include time for the moving
of batches, making the generation of executable programs from the schedules
hard. To minimize the effort needed during the translation, we produce traces
with detailed and precise information about timing of all actions in the plant.



114 Chapter 8. Guiding Uppaal for Synthesizing Control Programs

i1a

x<=bmove

i2 i2a

x<=bmove

k1

i1aa
x<=bmove

i2aa
x<=bmove

c1down

i1

x==bmove,

posI[4]==0

posI[4]:=1,

posI[3]:=0

posI[5]==0

posI[5]:=1,

posI[4]:=0,

x:=0

b2right?

cAIup!

posI[3]==0

posI[3]:=1,

posI[4]:=0,

x:=0

b2left?
x==bmove,

posI[4]==0

posI[4]:=1,

posI[5]:=0

cIdown_end?

cBIup!

posI[3]==0

posI[3]:=1,

posI[2]:=0,

x:=0

m1right?

x==bmove,

posI[2]==0

posI[2]:=0,

posI[3]:=0

Figure 8.5: Part of the unguided batch automaton.

8.3.3 A Model for Scheduling the Plant

An instance of the problem is given by a list of qualities of steel (or recipes) and
a maximal production time. A model of a problem instance consists of: for each
recipe one automaton representing the recipe and one automaton representing
the movement of the batch; one automaton for each of the two cranes; one
automaton testing that the recipes finish in the correct order; one automaton for
making some actions synchronizing; and one automaton modeling the casting
machine. Figure 8.4 shows the synchronizations between the different automata.
The batch automata communicate with each other through two shared arrays
and the two cranes also share an array. These arrays will be described in more
detail later.

The most complex of the automata is the one modeling the possible behaviors of
a batch (see Figure 8.16 of the appendix3)4. The batch automaton reflects the
topology of the plant (shown in Figure 8.2) as well as the physical constraints
on the movements of a batch. Basically, there is one location for each position
of the plant a batch can be located at. A position is either a machine, a track
segment, the storage place, the casting machine, or a position on the overhead
track. Positions on the overhead track are over one of the two tracks, the storage
place, the casting machine, or in between any of these. A batch automaton has
a clock named x associated to it which is used to measure the time spend on
moving along a track. The time spend is the worst case time measured in the
physical plant which is given by the constant bmove. Shared among all the

3Unless stated otherwise, guided versions of the automata are shown since these have been
used for most of the experiments.

4Pictures of all the automata and the LEGO plant can be found at the web site http://-
www.brics.dk/~baris/CaseStudy/.



8.3. Scheduling with Timed Automata 115

batch automata in a model are the two binary arrays posI and posII, which
are used for storing which positions are occupied on the two tracks. These
are used to ensure that each position is occupied by at most one batch at a
time. Figure 8.5 shows the part of the unguided batch automaton modeling the
position named i2, between machines number one and two on track one. Moving
a batch between positions in the model is done in two steps. First a transition
is taken to an intermediate position, e.g. from i2 to i1aa. A batch can only
start to move to a position if this position is free, which in this case is ensured
by checking the array posI using the guard posI[3]==0. Taking the transition
resets the clock x and updates which positions are occupied by the assignment
posI[3] := 1, posI[4] := 0. The batch can stay in the intermediate position at
most bmove time units because of the invariant x ≤ bmove in the location.
However, it cannot leave the location before bmove time units have passed
because of the guard x == bmove on the transition leaving the intermediate
location. This means that moving a batch along a track is modeled as taking
exactly bmove time units. A batch can also move when it is carried by a crane.
The time spend during such moving is measured by the crane automaton.

gotoT1

tot<=rtotalby3

onT1

t<=mtreat, tot<=rtotalby2

gotoT2

tot<=rtotal

onT2

t<=mtreat, tot<=rtotal

rend

tot<=rtotalcastcasted

tot<=rtotal

terminus

setoff

dumped

idle

onT1still

t:=0

M1on!

t:=0, nextbatch:=nextbatch+1

M2on!

t==mtreat

next:=fin

M2off!

try?quality1!

tot<=rtotal

done?

tot:=0

go?

dump!

nextbatch==(number-1)

next := (posI[0]+posI[1]+posI[2]+

   posI[3]+posI[4]+posI[5]<=

   posII[0]+posII[1]+posII[2]+

   posII[3]+posII[4]+posII[5]+

   posII[6] ? m1 : m4 )

t:=0

M4on!

t:=0, nextbatch:=nextbatch+1

M5on!

t==mtreat

next:=fin

M5off!

t==mtreat

M1off!

next := (posI[0]+posI[1]+posI[2]+

   posI[3]+posI[4]+posI[5]+(next==m1 ? -2 : 0 )<

   posII[0]+posII[1]+posII[2]+

   posII[3]+posII[4]+posII[5]+

   posII[6]+(next==m4 ? -2 : 0 ) ? m2 : m5 )

t==mtreat

M4off!

Figure 8.6: An example recipe automaton.

Each batch has a recipe associated to it (a recipe using machine type one and
two is shown in Figure 8.6). The recipe defines which machines should be
visited, in which order, and for how long. It also measures the overall time the
batch has spend in the plant. A recipe has two clocks associated to it. One,
tot, is reset as the batch starts in the plant and measures the overall time spend
in the plant by the batch. The other clock, t, is used for measuring the time of
the different treatments the batch goes through. When a batch is located at a
machine of the right type according to the recipe, the batch and the recipe can
synchronize to start the machine. This resets the clock measuring the time of
treatments. When the specified time for the treatment has passed the recipe



116 Chapter 8. Guiding Uppaal for Synthesizing Control Programs

and the batch synchronize to turn the machine off. When the treatments are
completed and the batch is ready to be casted the recipe synchronizes with
the test automaton to ensure that the production order is kept. Here it is also
checked that the batch has not spend too much time in the plant.

c0emp
c0full

c1emp

c1c0emp
x<=cdelay

c1c0full
x<=cdelay

c1full

c2emp

c2c1emp
x<=cdelay

c2c1full
x<=cdelay

c2full

c1c0aemp
x<=cdelay

c2c1aemp
x<=cdelay

c1c0afull
x<=cdelay

c2c1afull
x<=cdelay

c1up

x<=cup

c1down
x<=cup

c2up
x<=cup

c2down
x<=cup

cpos[1]==0,

creq1==1

cpos[1]:=1,

cpos[2]:=0,

x:=0

moveAup?

x==cdelay,

cpos[0]==0

cpos[0]:=1,

cpos[1]:=0,

creq1:=0

x==cdelay,

cpos[0]==0

cpos[0]:=1,

cpos[1]:=0

evom10?

cpos[1]==0

cpos[1]:=1,

cpos[2]:=0,

x:=0

move10?

cpos[3]==0,

posI[4]+creq1>=1

cpos[3]:=1,

cpos[4]:=0,

x:=0

moveAup?

x==cdelay,

cpos[2]==0

cpos[2]:=1,

cpos[3]:=0,

creq1:=0 x==cdelay,

cpos[2]==0

cpos[2]:=1,

cpos[3]:=0

evom21?

cpos[3]==0

cpos[3]:=1,

cpos[4]:=0,

x:=0

moveA21?

cpos[1]==0,

cpos[2]==0,

posI[4]==1

cpos[1]:=1,

cpos[0]:=0,

x:=0

moveAdown?

x==cdelay,

cpos[2]==0

cpos[2]:=1,

cpos[1]:=0

cpos[3]==0,

cpos[4]==0,

posII[4]==1

cpos[3]:=1,

cpos[2]:=0,

x:=0,

creq2:=1

moveAdown?

x==cdelay,

cpos[4]==0

cpos[4]:=1,

cpos[3]:=0,

creq2:=0

cpos[1]==0

cpos[1]:=1,

cpos[0]:=0,

x:=0

move01?

x==cdelay,

cpos[2]==0

cpos[2]:=1,

cpos[1]:=0

evom01?

cpos[3]==0

cpos[3]:=1,

cpos[2]:=0,

x:=0,

creq2:=1

moveA12?

x==cdelay,

cpos[4]==0

cpos[4]:=1,

cpos[3]:=0,

creq2:=0

evom12?

posI[4]==0x:=0, 

posI[4]:=1

cAIdown_start?

x==cup

cIdown_end!

x:=0
cAIup?

x==cup

posI[4]:=0

creq1!=1 x:=0

cAIIup?

x==cup posII[4]:=0

posII[4]==0

x:=0, 

posII[4]:=1

cAIIdown_start?

x==cup

cIIdown_end!

Figure 8.7: The upper crane.

As mentioned the positions of a crane are over the two tracks, over the storage
place, over the casting machine and in between these. An automaton mod-
eling a crane has two locations for each of these positions, one modeling the
crane being empty and one modeling the crane carrying a batch. The automa-
ton modeling the upper crane which is only moving between the two tracks is
shown in Figure 8.7 (the automaton modeling the other crane can be seen in
Figure 8.15 of the appendix.) A crane picking up a batch is modeled by the
two automata synchronizing. Similarly when a crane moves or sets a batch
down. Each crane automaton has one clock which is used for measuring time
when the crane is moving. The movement of a crane between two positions
is modeled like movement between two positions in the batch automaton with
an intermediate location where the time for the movement passes. The two
crane automata share a binary array like the batch automata for storing which
positions are occupied

The test automaton synchronizes with a recipe automaton just before the recipe
allows the batch to enter the casting machine. This ensures that the order of



8.4. Guiding Timed Automata 117

run

not_run

b3right!

b3left!

b4left!

b4right!

b2right!

b2left!

b1right!

b1left!

b5left!

b5right!

m1right!

m2right!

m4right!

m1left!

m2left!

m3left!

m4left!

m5left!

moveAup!

moveAdown!

moveBup!

moveBdown!

caststart!

cpos[2]:=1,

cpos[4]:=1,

nextbatch:=1

Figure 8.8: The automaton ensuring synchronization.

the production as stated in the problem description is kept (Figure 8.14 in the
appendix shows a test automaton).

There is also one automaton which has no influence on the overall behavior
of the model (shown in Figure 8.8). However, since we will use the traces
obtained from the model for generating schedules, it is important that the all
actions of the plant affecting the schedule appear directly in the trace. Some
of these actions are internal actions in the batch automaton and will therefore
not appear in the generated traces. An example is the movements of a batch
on the belts. The purpose of this automaton is to synchronize with the internal
actions (modified to external actions) to make them appear in the traces.

Finally there is an automaton modeling the casting machine (see Figure 8.13 of
the appendix). It synchronizes with a batch to start the casting. After a specific
time when the batch has been casted, the casting machine and the batch should
synchronize again to let the batch leave the casting machine. Then the casting
machine is ready to synchronize with the next batch which must be waiting,
unless the production has finished.

8.4 Guiding Timed Automata

The timed automata described in the previous section models the steel pro-
duction plant at a high level of accuracy. The details in the model are needed
to allow generation of schedules from model traces by projection, and to allow
generation of control programs from schedules by textual substitution. How-
ever, the fact that the model is detailed and consisting of a many parallel timed
automata with several clocks is also a serious problem, as the model is too
big and complicated for automatic analysis. In fact, finding traces of a plant
model with just a few batches is infeasible in practice (see Section 8.5). The



118 Chapter 8. Guiding Uppaal for Synthesizing Control Programs

i1a

x<=bmove

i2 i2a

x<=bmove

k1

i1aa
x<=bmove

i2aa
x<=bmove

c1down

i1

x==bmove,

posI[4]==0

posI[4]:=1,

posI[3]:=0

posI[5]==0,

next>m1,next<m4

posI[5]:=1,

posI[4]:=0,

x:=0

b2right?

next>m3

cAIup!

posI[3]==0,

next==m1

posI[3]:=1,

posI[4]:=0,

x:=0

b2left?
x==bmove,

posI[4]==0

posI[4]:=1,

posI[5]:=0

cIdown_end?

next>m3

cBIup!

posI[3]==0,

next!=m1

posI[3]:=1,

posI[2]:=0,

x:=0

m1right?

x==bmove,

posI[2]==0

posI[2]:=0,

posI[3]:=0

Figure 8.9: Guided part of the batch automaton.

limiting factor is the amount of time and memory consumed during the analysis
to (symbolically) explore and store the reachable state-space of the analyzed
model. To solve this problem we introduce a way of user directed guiding of
a state-space exploration algorithm according to a number of certain chosen
strategies.

8.4.1 Guiding

The overall idea of guiding an automata model is to let the user implement
reduction strategies by augmenting the automata with a set of additional clocks,
data variables, constraints and assignments5. Each strategy will contribute to
the reduction of the state-space by constraining the behavior of the model.
However, in contrast to automatic state-space reduction techniques, the guiding
technique trust the user to preserve schedulability of the plant model.

Assume a network of timed automata over clocks C and data variables D. The
automata are guided by introducing a set of new clocks CG and integer variables
DG. We call CG∪DG guiding variables. A guide is implemented by conjuncting
new constraints from B(CG∪C,DG∪D) to the existing guards of the automata,
new clock constraints from B(CG∪C) to the location invariants, and adding new
assignments of variables in CG ∪ DG to the resets. Thus, the guides may test
the values of all the clocks and the data variables in the transition guards and
the location invariants of the automata. A guide may also assign the guiding
variables in the reset sets. However, the original clocks and data variables of the
timed automata (i.e. C∪D) should not be assigned. This ensures the essential

5The technique of adding guiding variables presented in this paper is reminiscent of the
notion of history and prophesy variables used in traditional program verification, as in the
work of Abadi and Lamport [2].



8.4. Guiding Timed Automata 119

property that a trace generated from a guided network of timed automata
indeed is a valid trace of the original network of timed automata. In the plant
model this means that the schedules generated from the guided plant model is
guaranteed to also be valid in the original plant model.

8.4.2 Implemented Strategies

We have used guiding to implement a number of strategies in the plant model.
In the following we describe the strategies abstractly, in terms of the physical
plant, and give some detailed examples of how the guides are introduced in
the plant model. We emphasize that many of the strategies are heuristics and
most of them could in fact reduce the number of valid schedules of the plant
model. However, this is not a problem as long as it is still possible to generate
valid schedules from the model (as we are not concerned with finding optimal
schedules).

The implemented strategies are based on the general observation that the plant
model described in the previous section models all possible behaviors of the
plant. This also includes several behaviors that should not (or are unlikely to)
appear in a valid schedule. The implemented strategies aim at reducing these
‘unwanted’ behaviors.

Strategy 1: Ordering of Batches. When the scheduling problem is stated
the production order of the steel qualities is given. One strategy is to use this
order when starting new batches in the plant. According to the engineers at
SIDMAR the same strategy is used there.

To implement the strategy we introduce the new guiding variable nextbatch
in the recipe automaton associated to each batch, to control which batch is
allowed to start next. A recipe automaton is shown in Figure 8.6. The guard
nextbatch==(number-1) on the first transition of the automaton, where number
is a unique constant number associated to each recipe, implements the guide.
The guide ensures that the recipe starts the batch when the value of nextbatch
is equal to number-1. The recipe automaton increments the nextbatch variable
on a transition from location goT2 to onT2 (see also Strategy 2 below) to
allow the next batch to start.

Strategy 2: Delaying of Batches. Related to the first strategy is the start-
ing time of batches. Since there is an upper bound on the time a batch is allowed
to spend in the plant, all batches should not be started at the same time. There-
fore, we prevent a batch from starting based on the progress of the batch just
before it. If too much time passes before the batch undergoes the treatments
in the recipe, the time bound will also be violated. Based on the progress in
the recipe we can check whether it is still possible for the batch to reach the
casting machine in time.



120 Chapter 8. Guiding Uppaal for Synthesizing Control Programs

The strategy is implemented in the recipe automata by delaying the update
of the nextbatch variable. In the recipe1 automaton shown in Figure 8.6 the
nextbatch guiding variable is incremented on the transition from location goT2
to onT2 instead of immediately after the test on the first transition. This
prevents the next batch to start before the batch has been treated by two
machines. To make sure that it is still possible for the batch to reach the
casting machine in time, invariants on the clock tot are added to some of the
locations of the recipe.

Strategy 3: Global Routing of Batches. To make the movement of the
batches more deterministic we choose a target for where the batches should
move to next. The recipe of each batch chooses a target for the batch which is
the machine the batch should visit next (including the casting machine when
the treatment of the iron has finished). When there is a choice of machines the
recipe will chose the machine on the track with fewest batches present.

We introduce a new guiding variable named next for each batch to realize this
strategy. The value of next specifies where the batch should go next, based on
the next machine treatment specified in its recipe. For example the choice of
the first machine (there is a machine of this type on each track, so there is a
choice here) is implemented by a guiding expression on the first transition of
the recipe automaton:

if (track1 ≤ track2) then next :=m1 else next :=m4

where track1 is the number of batches present on track one and track2 the
number of batches on track two. In the recipe automaton in Figure 8.6 the
value of track1 and track2 are computed as the sum of active bits in the bit
vectors posI and posII respectively (recall from the previous section that posI
and posII are used to ensure mutex on the positions of the two production
tracks).

Strategy 4: Local Routing of Batches. The possible movements of the
batches are further reduced by a strategy deciding how a batch should move
between two given position. The implemented strategy selects the only direct
route between two positions.

To implement the strategy in the plant model we use the guiding variable next.
A guard constraining the value of next is added to all transitions of the batch au-
tomata leaving a location modeling a physical position in the plant. Figure 8.9
shows a part of the guided batch automaton corresponding to the partial origi-
nal automaton shown in Figure 8.5. Machine one is the only machine located to
the left of position i2 on track 1. Therefore, the guides require the next variable
to have value m1 (representing machine 1) to move in the left direction. This
is ensured by the guard next==m1 on the transition from location i2 to i1aa.
The transitions from location i2 to k1 represents the batch being picked up
by one of the cranes. When this is the case the next destination of the batch



8.5. Experimental Results 121

should not be a machine on track one (i.e. not machine 1, 2, or 3) therefore
next is required to be greater than m3.

Strategy 5: Moving of Cranes. When a crane is carrying a batch it always
follows the strategy of the batch. If a crane is empty, the strategy is to move
only when something is ready to be picked up, or if it is blocking the other
crane. To allow a crane to move when it is blocking the other crane, we enable
the two cranes to communicate.

Guiding guards in the crane automata testing bits in posI and posII ensure
that the cranes move towards the pick up positions on the tracks only when a
batch is waiting to be picked up (see e.g. the transition from location c2emp
to c2c1emp in Figure 8.15 of the Appendix). To allow an empty crane to
move in other situations the guiding variables creq1 and creq2 are introduced.
Guards testing their value are introduced on some transitions to allow the crane
to move from certain positions in a specified directions when the variables are
non-zero. The variables are typically assigned by the other crane to indicate
that it is moving towards a (possibly) occupied position that must be empty.
For example, in the craneB automaton shown in Figure 8.15 the variable creq1
is assigned on the transitions from location c2emp to c1emp to allow crane
1 to leave crane position 1 (modeled by the locations c1emp, c1up, c1down,
and c1full in the craneB automaton).

Other Strategies. It is possible to imagine other strategies and other ex-
periments that would be interesting. However, the strategies presented here
have been very effective as shown by the results in the next section. Using
the approach to guiding presented here allows for easy adding and changing of
guides. This is important since guides are based on heuristics so experimenting
is sometimes needed for finding good strategies.

8.5 Experimental Results

The plant models described in the previous sections have been analyzed in the
validation and verification tool Uppaal [106, 109]. In this section we present
the results of the analysis for three versions of the model, with varying number
of guides and batches. In particular, we present the measured time and space
needed by Uppaal to perform the analysis. Comparing the requirements for
the different models allows us to evaluate the benefits of the presented guiding
techniques. To evaluate the effect of adding guides, we use the standard UNIX
programs time and top to measure the CPU time and the memory consumed
by Uppaal when generating a trace from the two models.

The three analyzed models are: the original plant model without the guides
described in Section 8.3, the plant model with all guides added described in Sec-
tion 8.4, and a model with all guides added except the once using the nextbatch
variable described in Section 8.4.



122 Chapter 8. Guiding Uppaal for Synthesizing Control Programs

All Guides Some Guides No Guides
# DFS BSH DFS BSH DFS BSH

sec MB sec MB sec MB sec MB sec MB sec MB

1 0.1 0.9 0.1 0.9 0.1 0.9 0.1 0.9 0.8 2.2 3.9 3.3
2 0.1 1.0 0.1 1.1 2.1 4.4 7.8 1.2 19.5 36.1 - -
3 3.2 6.5 3.4 1.4 72.4 92.1 901 3.4 - - - -
4 4.0 8.2 4.6 1.8 - - - - - - - -
5 5.0 10.2 5.5 2.2 - - - - - - - -
10 13.3 25.3 16.1 9.3 - - - - - - - -
15 31.6 51.2 48.1 22.2 - - - - - - - -
20 61.8 89.6 332 46.1 - - - - - - - -
25 104 144 87.2 83.3 - - - - - - - -
30 166 216 124.2 136 - - - - - - - -
35 209 250 - - - - - - - - - -

Table 8.1: Time and space requirements for generating schedules.

Uppaal offers a number of options to control the internal verification algo-
rithm applied in the tool [109]. When analyzing the plant models we have
used the compact data-structure for constraints [111], the control-structure re-
duction [111], and a recently implemented version of the (in-)active clock re-
duction [58]. In addition we experiment with using depth-first search strategy
(DFS), or depth-first search in combination with bit-state hashing (BSH) [77]6.

Table 8.1 shows the time (in seconds) and space (in MB) consumed by Uppaal

version 3.0.12 7 when generating schedules from the three models. The numbers
in the leftmost column corresponds to the number of batches in the model
(and in the generated schedule). We use the marker “-” to indicate that the
corresponding execution requires more than 256MB of memory, more than two
hours of execution time, or that a suitable hash table size has not been found.
When applying the hash table technique, we have used table sizes from 1048577
to 33554441 bits. The reported results corresponds to the most suitable hash
table sizes found.

As can be seen in Table 8.1, the use of guides significantly increases the size of
models that can be analyzed. In the guided model, schedules can be generated
for 35 batches using 250 MB in 3.5 minutes, whereas no schedule can be gen-
erated for three batches (or more) when no guides are used. We also observe
that adding some guides improves the situation by enabling analysis of systems
with three batches.

It can also be observed that the bit-state hashing technique does not allow
analysis of larger models in this experiment, even though it performs well space-
wise on most models. We experienced that finding suitable hash table sizes
is very tedious for large system models. The largest system analyzed in the

6The bit-state hashing technique generates a sub set of the reachable state-space. A feasible
schedule found with this technique is therefore guaranteed to also be feasible in the original
plant model.

7The tool was installed on a Linux Redhat 5.2 machine equipped with a Pentium III
processor and 256MB of memory.



8.6. Synthesis of Control Programs 123

Figure 8.10: The LEGO plant.

experiment is therefore a guided model using depth-first search strategy but
without the bit-state hashing technique.

We also experimented with the breadth-first search strategy. For the model with
all the guides two batches could be analyzed in this way whereas only models
with one batch could be analyzed in models with only some of the guides or no
guides.

We have also installed Uppaal on a Sun Ultra machine equipped with 1024MB
of memory. On this machine, a schedule for 60 batches can be generated from
the guided model in 2 257 seconds.

8.6 Synthesis of Control Programs

We did not expect to be able to run the generated control programs in the
original plant of SIDMAR. Therefore we have used a LEGO plant (see Fig-
ure 8.10) to run the synthesized programs in. This allows for experimenting
with the plant to validate the model and it also makes it easy to find answers
to a number of questions about the plant (e.g. measuring time bounds).

The plant consists of a number of distributed units, each controlled locally by
one RCX [112] brick. There are three types of units used in the plant: a crane,
a machine with a track segment, and the casting machine. For the cranes there is
an overhead track. The interface to the units consists of a set of commands like
MoveTrackRight, TurnOnMachine, and LiftBatch. Commands are send to the
local units by one central controller which is running the synthesized program.
Ideally, one would want the local controllers to give feedback to the central



124 Chapter 8. Guiding Uppaal for Synthesizing Control Programs

... Delay(5)

Load1.Track1Right Crane1.Move1Left

Delay(10) Delay(5)

Load1.Machine1On Load1.Machine2On

Load2.Track5Right Delay(1)

Delay(4) Crane1.Move1Left

Crane1.Move1Left Delay(6)

Delay(6) Crane1.Move1Left

Load1.Machine1Off Delay(3)

Load1.Track2Right Load1.Machine2Off

Crane1.Pickup1 ...

Figure 8.11: Part of a generated schedule.

controller when actions have finished or when an error occurs. However, since
the communication between the RCX bricks is slow and unreliable especially if
more than one brick tries to send at one time, the only feedback from the local
controllers are acknowledgements of the received commands from the global
controller. This has big influences on the generated programs. There are no
loops or branches in the control of the plant, only to implement communication
between the RCX bricks are loops and branches used.

As a result of the model checking in Uppaal a trace containing information
about synchronizations between automata and delays is obtained. Some of
the synchronizations in the model, like the recipe synchronizing with the test
automaton, are not relevant for the generated schedule. To get a schedule for
the plant we project the trace to the actions relevant for the plant. Given some
numbering of tracks and machines, part of a possible schedule looks like in
Figure 8.11. There is a one-to-one correspondence between a schedule of this
kind and the commands of the synthesized central control program. Each line
with a Delay action is translated into a delay in the control program (in RCX
code there is a Wait instruction doing this). For the rest of the lines only the
second part is used, which defines what unit the command should be send to
and what the command is. For example in the line Load1.Track2Right, the
part Track2Right is translated to a command MoveTrackRight and sent to the
local controller of track two.

The projection and the translation have been implemented using the pattern
scanning and processing language gawk. Since the RCX language does not
offer reliable communication primitives, each line in the schedule is translated
into a code segment implementing such communication. Figure 8.12 shows a
part of a synthesized control program. The language does not support functions
or procedures therefore the code implementing the communication has to be in-
lined for each instruction send to a local unit.

The synthesized programs have been executed in the plant. This was mainly
intended as validation of the Uppaal model of the plant. During the validation
we found three errors in the model: the crane started to move horizontally too
early when an empty ladle was picked up from the casting machine, causing
the crane to collide with the casting machine and accidently drop the lifted



8.7. Conclusion 125

’’’’moveAup();

’’’’Crane A - Move UP

PB.PlaySystemSound 1

PB.SendPBMessage 2, 99 ’ Move up, on C1

PB.SetVar 1, 15, 0 ’Wait for ack

PB.While 0, 1, 3, 2, 99

PB.Wait 2, 20

PB.SetVar 1, 15, 0 ’Read the message

PB.ClearPBMessage

PB.SumVar 2, 2, 1

PB.If 0, 2, 2, 2, 20 ’If looped 20 times

PB.PlaySystemSound 1

PB.SendPBMessage 2, 99 ’Then Send message,

again same as sendig 0

PB.SetVar 2, 2, 0

PB.EndIf

PB.EndWhile

’’’’Delay 12

PB.Wait 2, 1200

Figure 8.12: Part of a synthesized program.

ladle, so here a delay was missing in the model; when two cranes were located
at positions next to each other and started to move in the same direction they
could collide because the crane ’in front’ was started last; in systems with only
one batch the casting machine did not turn correctly. These problems were
corrected in the model and new control programs were synthesized.

At one point during the experiments with the plant the batteries running the
crane started to wear out. This meant that the initial timing information
obtained from the plant was inaccurate because the cranes were moving slower.
At this point having the complete process from generating traces to synthesizing
control programs fully automated proved especially useful. New times for the
moving of the cranes were measured and put into the model. Since scheduling
still was possible, new programs were quickly synthesized and were running in
the plant as expected.

Performing the experiments also validate the implementation of the translation
from schedules to programs and here no problems were found. Our confidence
in the correctness of the model has been significantly increased by conducting
these experiments.

8.7 Conclusion

In this paper, we have used timed automata and the verification tool Uppaal to
synthesize control programs for a batch production plant. To deal with the un-
avoidable complexity of a plant model suitably accurate for program synthesis,
we suggest and apply a general approach of guiding a model according to cer-
tain strategies. With this technique, we have been able to synthesize schedules



126 Chapter 8. Guiding Uppaal for Synthesizing Control Programs

for as many as 60 batches on a machine with 1024 MB of memory. Applying
bit-state hashing the space consumption may be decreased even further.

Based on traces from the model checking tool Uppaal, schedules are generated.
From theses schedules, control programs are synthesized and later executed in
a physical plant. During execution a few modeling errors were detected. After
correcting the model, new schedules were generated and correct programs were
synthesized and executed in the plant.

The presented method for guiding model-checking has proved very successful in
significantly increasing the size of models which can be analyzed. The largest
model we analyze consists of 125 timed automata and a total of 183 clocks. The
notion of guides allows the user to add heuristics for controlling the behavior of
the plant, and we believe that the approach is applicable and useful for model
checking in general and reachability checking in particular. The validation of the
model by running the synthesized programs also proved useful: having access
to the (a) physical plant during the design of the model, allowed a number of
questions to be readily answered.

Based on the traces generated from the Uppaal model other types of control
programs can be synthesized. Here it would be especially interesting to study
how more communication between the distributed controllers can be used, e.g.
for generating more optimal programs, and for detecting run-time errors. The
guides added here decrease the size of the state-space. However, most of the
strategies presented here could also be realized by changing the search order
to first search the states which are most likely to lead to a goal state. This
would not delete possible solutions, which would be particular useful if one
were searching for optimal schedules. Searching for optimal schedules, a notion
of cost should be added to the model. Here an obvious choice would be the
time passed.

Acknowledgements: The authors wish to thank Ansgar Fehnker and K̊are
Jelling Kristoffersen for fruitful discussions and many useful suggestions.



8.7. Conclusion 127

Appendix

emptyempty

fullempty
x<=casttotal

fullempty2

x<=casttotal

emptyfull

fullfull
x<=casttotal

turning
x<=castturn

fullfull2

x<=casttotal

turning2

go
finish?

x==casttotal

x:=0

nrut!

x==casttotal

x:=0
nrut!

outcast?

incast?

incast?

x==castturn
turn!

x>=castturnoutcast?

x:=0turn!

caststart?

Figure 8.13: The casting machine.

finalt1 t2 t3 terminus

finish!quality1? quality2? quality1?

Figure 8.14: A test automaton for producing three batches.



128 Chapter 8. Guiding Uppaal for Synthesizing Control Programs

c1emp c1full

c2emp

c2c1emp

tCB<=cdelay
c2c1full

tCB<=cdelay

c2full

c3emp

c3c2emp

tCB<=cdelay

c3c2full

tCB<=cdelay

c3full

c4emp

c4c3emp

tCB<=cdelay
c4c3full
tCB<=cdelay

c4full

c5emp

c5c4emp

tCB<=cdelay

c5c4full

tCB<=cdelay

c5full

c2c1aemp
tCB<=cdelay

c3c2aemp

tCB<=cdelay

c4c3aemp

tCB<=cdelay

c5c4aemp

tCB<=cdelay

c2c1afull
tCB<=cdelay

c3c2afull
tCB<=cdelay

c4c3afull

tCB<=cdelay

c5c4afull

tCB<=cdelay

c2up

tCB<=cup

c2down
tCB<=cup

c1up tCB<=cup

c1down
tCB<=cup

c3up
tCB<=cup

c3down
tCB<=cup

c4up

tCB<=cup

c4down
tCB<=cup

c5up
tCB<=cup

c5down
tCB<=cup

cpos[3]==0, cpos[2]==0,

posI[4]==1

cpos[3]:=1,

cpos[4]:=0,

tCB:=0,

creq1:=1

moveBup?

tCB==cdelay,

cpos[2]==0

cpos[2]:=1,

cpos[3]:=0,

creq1:=0

tCB==cdelay,

cpos[2]==0

cpos[2]:=1,

cpos[3]:=0,

creq1:=0

evom21?

cpos[3]==0

cpos[3]:=1,

cpos[4]:=0,

tCB:=0,

creq1:=1

moveB21?

cpos[5]==0

cpos[5]:=1,

cpos[6]:=0,

tCB:=0,

creq1:=1

moveBup?

tCB==cdelay,

cpos[4]==0

cpos[4]:=1,

cpos[5]:=0

tCB==cdelay,

cpos[4]==0

cpos[4]:=1,

cpos[5]:=0

evom32?

cpos[5]==0

cpos[5]:=1,

cpos[6]:=0,

tCB:=0

move32?

cpos[7]+creq2==0

cpos[7]:=1,

cpos[8]:=0,

tCB:=0

moveBup?

tCB==cdelay,

cpos[6]==0

cpos[6]:=1,

cpos[7]:=0

tCB==cdelay,

cpos[6]==0

cpos[6]:=1,

cpos[7]:=0

evom43?

cpos[7]==0

cpos[7]:=1,

cpos[8]:=0,

tCB:=0

move43?

cpos[9]==0

cpos[9]:=1,

cpos[10]:=0,

tCB:=0

moveBup?

tCB==cdelay,

cpos[8]==0

cpos[8]:=1,

cpos[9]:=0

tCB==cdelay,

cpos[8]==0

cpos[8]:=1,

cpos[9]:=0

evom54?

cpos[9]==0

cpos[9]:=1,

cpos[10]:=0,

tCB:=0

move54?

cpos[3]==0,

cpos[4]==0,

posII[4]==1

cpos[3]:=1,

cpos[2]:=0,

tCB:=0

moveBdown?

tCB==cdelay,

cpos[4]==0

cpos[4]:=1,

cpos[3]:=0

cpos[5]==0,

creq2==1

cpos[5]:=1,

cpos[4]:=0,

tCB:=0

moveBdown?

tCB==cdelay,

cpos[6]==0

cpos[6]:=1,

cpos[5]:=0

cpos[7]==0,

creq2==2

cpos[7]:=1,

cpos[6]:=0,

tCB:=0

moveBdown?

tCB==cdelay,

cpos[8]==0

cpos[8]:=1,

cpos[7]:=0

cpos[9]==0,

creq2==2

cpos[9]:=1,

cpos[8]:=0,

tCB:=0

moveBdown?

tCB==cdelay,

cpos[10]==0

cpos[10]:=1,

cpos[9]:=0

cpos[3]==0

cpos[3]:=1,

cpos[2]:=0,

tCB:=0

moveB12?

tCB==cdelay,

cpos[4]==0

cpos[4]:=1,

cpos[3]:=0

evom12?

cpos[5]==0

cpos[5]:=1,

cpos[4]:=0,

tCB:=0

move23?

tCB==cdelay,

cpos[6]==0

cpos[6]:=1,

cpos[5]:=0

evom23?

cpos[7]==0

cpos[7]:=1,

cpos[6]:=0,

tCB:=0

move34?

tCB==cdelay,

cpos[8]==0

cpos[8]:=1,

cpos[7]:=0

evom34?

cpos[9]==0

cpos[9]:=1,

cpos[8]:=0,

tCB:=0

move45?

tCB==cdelay,

cpos[10]==0

cpos[10]:=1,

cpos[9]:=0

evom45?

tCB:=0
cBIIup?

tCB==cup
posII[4]:=0

posII[4]==0tCB:=0, 

posII[4]:=1

cBIIdown_start?

tCB==cup

cIIdown_end!

tCB:=0
cBIup?

tCB==cup
posI[4]:=0

posI[4]==0tCB:=0, 

posI[4]:=1

cBIdown_start?

tCB==cupcIdown_end!

tCB:=0
cIIIup? tCB==cup

tCB==cupcIIIdown?

creq2!=2

tCB:=0cIVup?
tCB==cup

tCB:=0 cIVdown_start?tCB==cup
cIVdown_end!

tCB:=0

cVup?

tCB:=0 cVdown_start?tCB==cup
cVdown_end!

Figure 8.15: The lower crane.



8.7. Conclusion 129

III2

waiting

V3cast

V5k5 V6 cast

i0 i0a

tRB1<=bmove

i1 i1a

tRB1<=bmove

i2 i2a

tRB1<=bmove

i3 i3a

tRB1<=bmove

i4 i4a

tRB1<=bmove

i5

ii0

ii0a
tRB1<=bmove

ii1

ii1a
tRB1<=bmove

ii2

ii2a
tRB1<=bmove

ii3

k0

k1

k1k0

k2

k2k1

k3

k3k2

k4

k4k3

k4sink

k5

k5V3b
k5k4

machine1 machine2 machine3

machine4

machine5

p1

p2

sink

source

x1

i0aa
tRB1<=bmove i1aa

tRB1<=bmove i2aa
tRB1<=bmove

i3aa
tRB1<=bmove

i4aa
tRB1<=bmove

ii0aa
tRB1<=bmove

ii1aa
tRB1<=bmove

ii2aa
tRB1<=bmove

c2down

c1down

c4down

c5down

preii0

tRB1<=bmove

preI0
tRB1<=bmove

park>0park:=park-1 cIIIup!

next:=emp doneB1!outcast! creq2:=0 cVup!

posI[1]==0

posI[1]:=1,
posI[0]:=0,
tRB1:=0

b1right?
tRB1==bmove,
posI[2]==0

posI[2]:=1,
posI[1]:=0

posI[3]==0,
next!=m1

posI[3]:=1,
posI[2]:=0,
tRB1:=0

m1right?

M1on?

tRB1==bmove,
posI[4]==0
posI[4]:=1,
posI[3]:=0

posI[5]==0,
next>m1,next<m4

posI[5]:=1,
posI[4]:=0,
tRB1:=0

b2right?

next>m3

cAIup!

tRB1==bmove next==m3

tRB1:=0
m2right?

M2on?

tRB1==bmove next==m3

tRB1:=0
b3right?

tRB1==bmove

M3on?

tRB1==bmove,
posII[0]==0

posII[0]:=1,
posII[1]:=0

posII[1]==0,
next==NA

posII[1]:=1,
posII[2]:=0,
tRB1:=0

m4left?

M4on?

tRB1==bmove,
posII[2]==0

posII[2]:=1,
posII[3]:=0

posII[3]==0,
next==m4

posII[3]:=1,
posII[4]:=0,
tRB1:=0
b5left?

tRB1==bmove,
posII[4]==0

posII[4]:=1,
posII[5]:=0

posII[5]==0,
next!=m5

posII[5]:=1,
posII[6]:=0,
tRB1:=0
m5left?

M5on?

move01!

next==NA move10!

next>m3

moveA12!

evom10!

evom01!

next<=m3

moveA21!

next==fin

move23!

next<=m3

evom21!

next>m3

evom12!

park<buf_size park:=park+1
cIIIdown!

next==NA
move32!

next==fin

move34!

next==NA

evom32!

next==fin
evom23!

next==NA

move43!

dumpB1?

next==fin

move45!

next==NA
evom43!

next==fin

evom34!

next==emp

move54!

next!=emp

incast!

tryB1!

next==emp
evom54!

next==fin

evom45!

M1off? M2off? M3off?

M4off?

M5off?

next==m1,
posI[0]==0

posI[0]:=1

goB1!

next==m4,
posII[0]==0

posII[0]:=1

goB1!

next!=m4,
next!=m5,
next!=fin

cAIIup!

tRB1==bmove,
posI[0]==0
posI[0]:=1,
posI[1]:=0

posI[1]==0,
next==NA

posI[1]:=1,
posI[2]:=0,
tRB1:=0

m1left? tRB1==bmove,
posI[2]==0
posI[2]:=1,
posI[3]:=0

posI[3]==0,
next==m1

posI[3]:=1,
posI[4]:=0,
tRB1:=0

b2left?
tRB1==bmove,
posI[4]==0

posI[4]:=1,
posI[5]:=0

next!=m2,
next!=m3

tRB1:=0
m2left?

tRB1==bmove

next!=m3

tRB1:=0
b3left? tRB1==bmove

next!=m3

tRB1:=0
m3left?

posII[1]==0

posII[1]:=1,
posII[0]:=0,
tRB1:=0

b4right?

tRB1==bmove,
posII[2]==0

posII[2]:=1,
posII[1]:=0

posII[3]==0,
next!=m4

posII[3]:=1,
posII[2]:=0,
tRB1:=0

m4right?

tRB1==bmove,
posII[4]==0

posII[4]:=1,
posII[3]:=0

posII[5]==0,
next==m5

posII[5]:=1,
posII[4]:=0,
tRB1:=0

b5right?

tRB1==bmove,
posII[6]==0

posII[6]:=1,
posII[5]:=0

turn?

creq2:=2 nrut?

next>m3
cAIIdown_start!

cIIdown_end?

next<=m3
cAIdown_start!

cIdown_end?

cIVdown_start! cIVdown_end?

cVdown_start! cVdown_end?

next>m3,next!=fin
cBIIdown_start!

next!=m4,
next!=m5

cBIIup!

next<=m3
cBIdown_start!

next>m3

moveB12!

next<=m3

moveB21!

next>m3

cBIup!
tRB1:=0
b4right?

tRB1==bmove

tRB1:=0

b1right?

tRB1==bmove

Figure 8.16: The batch automaton.





Chapter 9

Efficient Representation of Uniform Cost

The paper Efficient Guiding Towards Cost-Optimality in Uppaal presented
in this chapter has been published in part as a technical report [27] and a
conference paper [26].

[26] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson and
J. Romijn. Efficient Guiding Towards Cost-Optimality in Uppaal. In
Proceedings of Tools and Algorithms for the Construction and Analysis of
Systems, TACAS 2001, pages 174–188, 2001.

[27] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson and J.
Romijn. Efficient Guiding Towards Cost-Optimality in Uppaal. Techni-
cal Report RS-01-04, BRICS, January 2001.

The technical report extends the conference paper with proofs and more elabo-
ration on the conducted experiments. Except for minor typographical changes
the content of this chapter is equal to the technical report [27].

131





133

Efficient Guiding Towards Cost-Optimality in
UPPAAL

‖

Gerd Behrmann∗ Ansgar Fehnker‡∗∗ Thomas Hune†

Kim Larsen§

Paul Pettersson¶††
Judi Romijn‡

Abstract

In this paper we present an algorithm for efficiently computing the
minimum cost of reaching a goal state in the model of Uniformly Priced
Timed Automata (UPTA). This model can be seen as a submodel of the
recently suggested model of linearly priced timed automata, which ex-
tends timed automata with prices on both locations and transitions. The
presented algorithm is based on a symbolic semantics of UTPA, and an
efficient representation and operations based on difference bound matri-
ces. In analogy with Dijkstra’s shortest path algorithm, we show that
the search order of the algorithm can be chosen such that the number of
symbolic states explored by the algorithm is optimal, in the sense that the
number of explored states can not be reduced by any other search order
based on the cost of states. We also present a number of techniques in-
spired by branch-and-bound algorithms which can be used for limiting the
search space and for quickly finding near-optimal solutions.

The algorithm has been implemented in the verification tool Uppaal.
When applied on a number of experiments the presented techniques re-
duced the explored state-space with up to 90%.

∗Basic Research In Computer Science, BRICS, (www.brics.dk), funded by the Danish
National Research Foundation, University of Aalborg, Denmark, Email: behrmann@cs.auc.dk

†Basic Research In Computer Science, BRICS, (www.brics.dk), funded by the Danish
National Research Foundation, University of Århus, Denmark, Email: baris@brics.dk

‡Computing Science Institute, University of Nijmegen, Email: [ansgar,judi]@cs.kun.nl
§Department of Computer Systems, University of Twente, Email:

brinksma@cs.utwente.nl. On sabbatical from Basic Research in Computer Science,
Aalborg University.

¶Department of Information Technology, Uppsala University, Email: paupet@docs.uu.se.
‖This work is partially supported by the European Community Esprit-LTR Project 26270

VHS (Verification of Hybrid Systems)
∗∗Research supported by Netherlands Organization for Scientific Research (NWO) under

contract SION 612-14-004.
††Research partly sponsored by the AIT-WOODDES Project No IST-1999-10069.



134 Chapter 9. Efficient Representation of Uniform Cost

9.1 Introduction

Recently, formal verification tools for real-time and hybrid systems, such as
Uppaal [109], Kronos [41] and HyTech [74], have been applied to solve
realistic scheduling problems [64, 82, 127]. The basic common idea of these
works is to reformulate a scheduling problem to a reachability problem that can
be solved by verification tools. In this approach, the automata based modeling
languages of the verification tools serve as the input language in which the
scheduling problem is described. These modeling languages have been found to
be very well-suited in this respect, as they allow for easy and flexible modeling of
systems consisting of several parallel components that interact in a time-critical
manner and constrain the behavior of each other in a multitude of ways.

A main difference between verification algorithms and dedicated scheduling al-
gorithms is in the way they search a state-space to find solutions. Scheduling
algorithms are often designed to find optimal (or near optimal) solutions and are
therefore based on techniques such as branch-and-bound to identify and prune
parts of the states-space that are guaranteed to not contain any optimal solu-
tions. In contrast, verification algorithms do normally not support any notion
of optimality and are designed to explore the entire state-space as efficiently
as possible. The verification algorithms that do support notions of optimality
are restricted to simple trace properties such as shortest trace [107], or shortest
accumulated delay in trace [126].

In this paper we aim at reducing the gap between scheduling and verification
algorithms by adopting a number of techniques used in scheduling algorithms
in the verification tool Uppaal. In doing so, we study the problem of efficiently
computing the minimal cost of reaching a goal state in the model of Uniformly
Priced Timed Automata (UPTA). This model can be seen as a restricted version
of the recently suggested model of Linearly Priced Timed Automata (LPTA)
[28], which extends the model of timed automata with prices on all transitions
and locations. In these models, the cost of taking an action transition is the
price associated with the transition, and the cost of delaying d time units in a
location is d · p, where p is the price associated with the location. The cost of a
trace is simply the accumulated sum of costs of its delay and action transitions.
The objective is to determine the minimum cost of traces ending in a goal state.

The infinite state-spaces of timed automata models necessitates the use of sym-
bolic techniques in order to simultaneously handle sets of states (so-called sym-
bolic states). For pure reachability analysis, tools like Uppaal and Kronos

use symbolic states of the form (l, Z), where l is a location of the timed au-
tomaton and Z ⊆ RC1 is a convex set of clock valuations called a zone. For the
computation of minimum costs of reaching goal states, we suggest the use of
symbolic cost states of the form (l, C), where C : RC → (R≥0 ∪ {∞}) is a cost
function mapping clock valuations to real valued costs or ∞. The intention is

1
C denotes the set of clocks of the timed automata, and RC denotes the set of functions

from C to R≥0.



9.1. Introduction 135

Cost := ∞
Passed := ∅
Waiting := {(l0, C0)}
while Waiting 6= ∅ do

select (l, C) from Waiting

if (l, C) |= ϕ and min(C) < Cost then

Cost := min(C)
if for all (l, C′) in Passed: C′ 6⊑ C then

add (l, C) to Passed

for all (m, D) such that (l, C) ❀ (m,D): add (m, D) to Waiting

return Cost

Figure 9.1: Abstract Algorithm for the Minimal-Cost Reachability Problem.

that, whenever C(u) <∞, reachability of the symbolic cost state (l, C) should
ensure that the state (l, u) is reachable with cost C(u).

Using the above notion of symbolic cost states, an abstract algorithm for com-
puting the minimum cost of reaching a goal state satisfying ϕ of a uniformly
priced timed automaton is shown in Fig. 9.1. The algorithm is similar to a
standard state-space traversal algorithm that uses two data-structures Wait-

ing and Passed to store states waiting to be examined, and states already
explored, respectively. Initially, Passed is empty and Waiting holds an initial
(symbolic cost) state. In each iteration, the algorithm proceeds by selecting a
state (l, C) from Waiting, checking that none of the previously explored states
(l, C ′) has a “smaller” cost function, written C ′ ⊑ C2, and if this is the case,
adds it to Passed and its successors to Waiting. In addition the algorithm
uses the global variable Cost, which is initially set to∞ and updated whenever
a goal state is found that can be reached with a lower cost than the current
value of Cost. The algorithm terminates when Waiting is empty, i.e. when
no further states are left to be examined. Thus, the algorithm always searches
the entire state-space of the analyzed automaton.

In [28] an algorithm for computing the minimal cost of reaching designated goal
states was given for the full model of LPTA. However, the algorithm is based
on a cost-extended version of regions, and is thus guaranteed to be extremely
inefficient and highly sensitive to the size of constants used in the models. As
the first contribution of this paper, we give for the subclass of UPTA an ef-
ficient zone representation of symbolic cost states based on Difference Bound
Matrices [60], and give all the necessary symbolic operators needed to imple-
ment the algorithm. As the second contribution we show that, in analogy with
Dijkstra’s shortest path algorithm, if the algorithm is modified to always se-
lect from Waiting the (symbolic cost) state with the smallest minimum cost,
the state-space exploration may terminate as soon as a goal state is explored.
This means that we can solve the minimum-cost reachability problem without
necessarily searching the entire state-space of the analyzed automaton. In fact,
it can even be shown that the resulting algorithm is optimal in the sense that
choosing to search a symbolic cost state with non-minimal minimum cost can
never reduce the number of symbolic cost states explored.

2Formally C′ ⊑ C iff ∀u. C′(u) ≤ C(u).



136 Chapter 9. Efficient Representation of Uniform Cost

The third contribution of this paper is a number of techniques inspired by
branch-and-bound algorithms [21] that have been adopted in making the algo-
rithm even more useful. These techniques are particularly useful for limiting
the search space and for quickly finding solutions near to the minimum cost of
reaching a goal state. To support this claim, we have implemented the algo-
rithm in an experimental version of the verification tool Uppaal and applied it
to a wide variety of examples. Our experimental findings indicate that in some
cases as much as 90% of the state-space searched in ordinary breadth-first order
can be avoided by combining the techniques presented in this paper. Moreover,
the techniques have allowed pure reachability analysis to be performed in cases
which were previously unsuccessful.

The rest of this paper is organized as follows: In Section 9.2 we formally define
the model of uniformly priced timed automata and give the symbolic seman-
tics. In Section 9.3 we present the basic algorithm and the branch-and-bound
inspired techniques. The experiments are presented in Section 9.4. We conclude
the paper in Section 9.5.

9.2 Uniformly Priced Timed Automata

In this section linearly priced timed automata are formalized and their semantics
are defined. The definitions given here resemble those of [28], except that the
symbolic semantics uses cost functions whereas [28] uses priced regions. Zone-
based data-structures for compact representation and efficient manipulation of
cost functions are provided for the class of uniformly priced timed automata.

9.2.1 Linearly Priced Timed Automata

Formally, linearly priced timed automata (LPTA) are timed automata with
prices on locations and transitions. We also denote prices on locations as rates.
Let C be a set of clocks. Then B(C) is the set of formulas that are conjunctions
of atomic constraints of the form x ⊲⊳ n and x − y ⊲⊳ n for x, y ∈ C, ⊲⊳ ∈ {<,
≤,=,≥, >} and n being a natural number. Elements of B(C) are called clock
constrains over C. P(C) denotes the power set of C.

Definition 9.1 (Linearly Priced Timed Automata) We define a linearly
priced timed automaton A over clocks C and actions Act as a tuple (L, l0, E, I, P )
where L is a finite set of locations, l0 is the initial location, E ⊆ L × B(C) ×
Act×P(C)×L is the set of edges, where an edge contains a source, a guard, an
action, a set of clocks to be reset, and a target, I : L→ B(C) assigns invariants
to locations, and P : (L ∪E)→ N assign prices to both locations and edges. In

the case of (l, g, a, r, l′) ∈ E, we write l
g,a,r
−−−→ l′.

Following the common approach to networks of timed automata, we extend
LPTA to networks of LPTA by introducing a synchronization function f :



9.2. Uniformly Priced Timed Automata 137

(Act∪ {0})× (Act∪ {0}) →֒ Act, where 0 is a distinguished no-action symbol.3

In addition, two functions hL, hE : N×N→ N for combining prices of transitions
and locations respectively are introduced.

Definition 9.2 (Parallel Composition) Let Ai = (Li, li,0, Ei, Ii, Pi), i =

1, 2 be two LPTA. Then the parallel composition is defined as A1 |
f
hL,hE

A2 =
(L1 × L2, (l1,0, l2,0), E, I, P ), where, l = (l1, l2), I(l) = I1(l1) ∧ I2(l2), P (l) =

hL(P1(l1), P2(l2)), and l
g,a,r
−−−→ l′ iff there exist gi, ai, ri such that f(a1, a2) = a,

li
gi,ai,ri−−−−→i l

′
i, g = g1 ∧ g2, r = r1 ∪ r2, and P ((l, g, a, r)) = hE(P ((l1, g1, a1, r1)),

P ((l2, g2, a2, r2))).

Useful choices for hL and hE guaranteeing commutativity and associativity of
parallel composition are summation, minimum and maximum.

Clock values are represented as functions called clock valuations from C to the
non-negative reals R≥0. We denote by RC the set of clock valuations for C.

Definition 9.3 (Semantics) The semantics of a linearly priced timed au-
tomaton A is defined as a labeled transition system with states L × RC with
initial state (l0, u0) (where u0 assigns zero to all clocks in C) and with the
following transition relation:

• (l, u)
ǫ(d),p
−−−→ (l, u+ d) if ∀0 ≤ e ≤ d : u+ e ∈ I(l), and p = d · P (l),

• (l, u)
a,p
−−→ (l′, u′) if there exists g, r s.t. l

g,a,r
−−−→ l′, u ∈ g, u′ = u[r 7→ 0],

u′ ∈ I(l), and p = P ((l, g, a, r, l′)),

where for d ∈ R≥0, u + d maps each clock x in C to the value u(x) + d, and
u[r 7→ 0] denotes the clock valuation which maps each clock in r to the value 0
and agrees with u over C \ r.

The transitions are decorated with a delay-quantity or an action, together with
the cost of the transition. The cost of an execution trace is simply the accumu-
lated cost of all transitions in the trace.

Definition 9.4 (Cost) Let α = (l0, u0)
a1,p1
−−−→ (l1, u1) · · ·

an,pn
−−−→ (ln, un) be a

finite execution trace. The cost of α, cost(α), is the sum Σn
i=1pi. For a given

state (l, u) the minimum cost mincost(l, u) of reaching the state, is the infimum
of the costs of finite traces ending in (l, u). For a given location l the minimum
cost mincost(l) of reaching the location, is the infimum of the costs of finite
traces ending in (l, u) for some u

mincost(l) = inf{cost(α) | α ends in a state (l, u)}

3We extend the edge set E such that l
tt,0,∅,0
−−−−→ l for any location l. This allows synchro-

nization functions to implement internal τ actions.



138 Chapter 9. Efficient Representation of Uniform Cost

2 2 2
y > 3x < 3

x < 34

{x}

Figure 9.2: The LPTA from Example 9.1.

Example 9.1 An example of a LPTA can be seen in Fig. 9.2. The LPTA has
three locations and two clocks, x and y. The number inside the locations is the
rate of the location, and the number on the transition from the leftmost location
is the cost of the transition. The two other transitions have no cost. The initial
location is the leftmost location.

Because of the invariants on the locations, a trace reaching the rightmost loca-
tion must first visit the middle location and then go back to the initial location.
The minimal cost of reaching the rightmost location is 14. Note that there is
no trace actually realizing the minimum cost because of the strict inequality on
the transition to the rightmost location. However, because of the infimum in the
definition of minimum cost, we will say that the minimum cost of reaching the
rightmost location is 14. ✷

9.2.2 Cost Functions

The semantics of an LPTA yields an uncountable state-space and is therefore
not suited for state-space exploration algorithms. To overcome this problem,
the algorithm in Fig. 9.1 uses symbolic cost states, quite similar to how timed
automata model checkers like Uppaal use symbolic states.

Typically, symbolic states are pairs on the form (l, Z), where Z ⊆ RC is a convex
set of clock valuations, called a zone, representable by Difference Bound Matri-
ces (DBMs) [60]. The operations needed for forward state-space exploration can
be efficiently implemented using the DBM data-structure. However, the opera-
tions might as well be defined in terms of characteristic functions, RC → {0, 1},
see Table 9.1. For example, let χ be the characteristic function of a zone Z.
Then delay can be defined as χ↑ : u 7→ max{χ(v) | ∃d ∈ R≥0 : v + d = u}, that
is, u is in χ↑ if there is a clock valuation v, that can delay into u. Looking at
zones in terms of their characteristic functions extends nicely to symbolic cost
states, but here zones are replaced by mappings, called cost functions, from
clock valuations to real valued costs. For this we suggest the use of symbolic
cost states, (l, C), where C is a cost function mapping clock valuations to real
valued costs. Thus, within a symbolic cost state (l, C), the cost of a state (l, u)
is given by C(u).

Definition 9.5 (Cost Function) A cost function C : RC → R≥0 ∪ {∞} as-
signs to each clock valuation, u, a positive real valued cost, c, or infinity. The
support sup(C) = {u | C(u) < ∞} is the set of valuations mapped to a finite
cost.



9.2. Uniformly Priced Timed Automata 139

Table 9.1: Common operations on clock valuations and zones.
Operation Clock Valuation (RC) Zone (P(RC))

Delay u+ d, d ∈ R≥0 Z↑ = {u+ d | u ∈ Z ∧ d ∈ R≥0}
Reset u[r 7→ 0] r(Z) = {r(u) | u ∈ Z}
Satisfaction u |= g g(Z) = {u ∈ Z | u |= g}

Comparison u = v Z1 ⊆ Z2
def
⇔ ∀u : u ∈ Z1 ⇒ u ∈ Z2

Table 9.2: Common operations on cost functions.
Operation Cost Function (RC → R≥0)

Delay delay(C, p) : u 7→ inf{C(v) + p · d | d ∈ R≥0 ∧ v + d = u}
Reset r(C) : u 7→ inf{C(v) | u = r(v)}
Satisfaction g(C) : u 7→ min{C(v) | v |= g ∧ u = v}
Increment C + k : u 7→ C(u) + k, k ∈ N

Comparison D ⊑ C
def
⇔ ∀u : D(u) ≤ C(u)

Infimum min(C) = inf{C(u) | u ∈ RC}

Table 9.2 summarizes several operations that are used by the symbolic semantics
and the algorithm in Fig. 9.1. In terms of the support of a cost function,
the operations behave exactly as on zones; e.g. sup(r(C)) = r(sup(C)). The
operations effect on the cost value reflect the intent to compute the minimum
cost of reaching a state, e.g., r(C)(u) is the infimum of C(v) for all v that reset
to u.

9.2.3 Symbolic Semantics

The symbolic semantics for LPTA is very similar to the common zone based
symbolic semantics used for timed automata.

Definition 9.6 (Symbolic Semantics) Let A = (L, l0, E, I, P ) be a linearly
priced timed automaton. The symbolic semantics is defined as a labelled transi-
tion system over symbolic cost states on the form (l, C), l being a location and
C a cost function with the transition relation:

• (l, C)
ǫ
−→

(

l, I(l)
(

delay
(

C,P (l)
)

)

)

,

• (l, C)
a
−→

(

l′, I(l′)
(

r(g(C))
)

+ p
)

iff l
g,a,r
−−−→ l′, and p = P ((l, g, a, r, l′)).

The initial state is (l0, I(l0)(C0)) where sup(C0) = {u0} and C0(u0) = 0.

Notice that the support of any cost function reachable by the symbolic semantics
is a zone.



140 Chapter 9. Efficient Representation of Uniform Cost

Lemma 9.1 Given LPTA A, for each trace α of A that ends in state (l, u),
there exists a symbolic trace β of A, that ends up in a symbolic cost state (l, C),
such that C(u) = cost(α).

Proof. By induction in the length of the run α. The base case, a run of length
0, is trivial.

For the induction step assume we have a trace α ending in a state (l, u) and a
symbolic trace ending in a symbolic state (l, C), such that C(u) = cost(α). We
look at two cases:

• The trace α is extended with a delay transition (l, u)
ǫ(d),p
−−−→ (l, u+d) such

that ∀0 ≤ e ≤ d : u + e ∈ I(l) where p = d ∗ P (l). The cost of reaching
(l, u+ d) in this way is cost(α) + p. This can be matched in the symbolic

semantics by a delay transition (l, C)
ǫ
−→

(

l, I(l)
(

delay
(

C,P (l)
)

)

)

. Using

the definition of delay(C, p) in Table 9.2 we get that the cost of u+d after
the delay is C(u) + d ∗ P (l). Since C(u) = cost(α) from the induction
hypothesis we have the desired result.

• The trace α is extended with an action transition (l, u)
a,p
−−→ (l′, u′) using

a transition l
g,a,r
−−−→ l′ where u ∈ g, u′ = u[r], and u′ ∈ I(l′). The cost

of reaching (l, u′) is cost(α) + p where p = P ((l, g, a, r, l′)). This can
be matched in the symbolic semantics by an action transition (l, C)

a
−→

(

l′, I(l)
(

r(g(C))
)

+ p
)

. Since u satisfies the guard g, u′ = u[r], and u′

satisfies the invariant I(l′), then I(l′)(r(g(C)))(u′) = C(u). Therefore
according to Table 9.2 (I(l′)(r(g(C))) + p)(u′) = C(u) + p, where p =
P ((l, g, a, r, l′)).

✷

Lemma 9.2 Given an LPTA A, for each symbolic trace, β, ending in a sym-
bolic state (l, C), for each u ∈ sup(C), there exist a trace α ending in state
(l, u) such that and cost(α) ≤ C(u).

Proof. We prove this by induction in the length of the symbolic trace leading
to (l, C). The base case, a trace of length zero, is trivial.

For the induction we assume that there is a symbolic trace ending in (l, C)
and for u ∈ sup(C) there is a trace α ending in state (l, u), such that and
cost(α) ≤ C(u). We look at two cases:

• The symbolic trace β is extended with a delay transition (l, C)
ǫ
−→ C ′

where C ′ =

(

l, I(l)
(

delay
(

C,P (l)
)

)

)

. For the valuations u which were

in sup(C) before the delay, the cost has not changed (in the definition
of delay(C, p) in Table 9.2, choose d = 0). The valuations u′ which are



9.2. Uniformly Priced Timed Automata 141

in sup(I(l)
(

delay
(

I(l)(C), P (l)
)

)

) but not in sup(C), are reachable from

a valuation u in sup(C) by a delay d. The cost of u′ is inf{C(u) + d ·
p | u ∈ sup(C)}. This can be match in the concrete semantics by a delay
transition from (l, u). Since cost(l, u) ≤ C(u) and the delay is the same,
cost(l, u′) ≤ C ′(u′).

• The symbolic trace β is extend with an action transition (l, C)
a
−→ (l′, C ′)

where C ′ = I(l)
(

r(g(C))
)

+ p using the transition l
g,a,r
−−−→ l′ with cost p.

The same transition can be used to extend the trace, also with cost p.
Since cost(l, u) ≤ C(u) from the assumption and the same transition is
used, we are finished.

✷

Theorem 9.1 mincost(l) = min{min(C) | (l, C) is reachable}

Theorem 9.1 ensures that the algorithm in Fig. 9.1 indeed does find the mini-
mum cost, but since the state-space is still infinite there is no guarantee that
the algorithm ever terminates. For zone based timed automata model checkers,
termination is ensured by normalizing all zones with respect to a maximum
constant M [133], but for LPTA ensuring termination also depends on the
representation of cost functions.

9.2.4 Representing Cost Functions

As stated in the introduction, we provide an efficient implementation of cost
functions for the class of Uniformly Priced Timed Automata (UPTA).

Definition 9.7 (Uniformly Priced Timed Automata) We define an uni-
formly priced timed automata to be an LPTAs where all locations have the same
rate. We refer to this rate as the rate of the UPTA.

Lemma 9.3 Any UPTA A with non-zero positive rate can be translated into
an UPTA B with rate 1 such that mincost(l) in A is identical to mincost(l) in
B.

Proofsketch. Let A be an UPTA with positive rate r. Now, let B be like A
except that all constants on guards and invariants are multiplied by r and set
the rate of B to 1. ✷

Thus, in order to find the infimum cost of reaching a satisfying state in UPTA,
we only need to be able to handle rate zero and rate one.

In case of rate zero, all symbolic states reachable by the symbolic semantics have
very simple cost functions: The support is mapped to the same integer (because



142 Chapter 9. Efficient Representation of Uniform Cost

the cost is 0 in the initial state and only modified by the increment operation).
This means that a cost function C can be represented as a pair (Z, c), where
Z is a zone and c an integer, s.t. C(u) = c when u ∈ Z and ∞ otherwise.
Delay, reset and satisfaction are easily implementable for zones using DBMs.
Increment is a matter of incrementing c and a comparison (Z1, c1) ⊑ (Z2, c2)
reduces to Z2 ⊆ Z1 ∧ c1 ≤ c2. Termination is ensured by normalizing all zones
with respect to a maximum constant M .

In case of rate one, the idea is to use zones over C∪{δ}, where δ is an additional
clock keeping track of the cost, s.t. every clock valuation u is associated with
exactly one cost Z(u) in zone Z4. Then, C(u) = c iff u[δ 7→ c] ∈ Z. This is
possible because the continuous cost advances at the same rate as time. Delay,
reset, satisfaction and infimum are supported directly by DBMs. Increment
C + c translates to Z[δ 7→ δ + k] = {u[δ 7→ u(δ) + k] | u ∈ Z} and is also
realizable using DBMs. For comparison between symbolic cost states, notice
that Z2 ⊆ Z1 ⇒ Z1 ⊑ Z2, whereas the implication in the other direction
does not hold in general, see Fig. 9.3. However, it follows from the following
Lemma 9.4 that comparisons can still be reduced to set inclusion provided the
zone is extended in the δ dimension, see Fig. 9.3.

x

δ

Z

Z1

Z
†
2

Z†

Z2

Figure 9.3: Let x be a clock and let δ be the cost. In the figure, Z ⊑ Z1 ⊑ Z2,
but only Z1 is a subset of Z. The ()† operation removes the upper bound on δ,

hence Z†
2 ⊆ Z

† ⇔ Z ⊑ Z2.

Lemma 9.4 Let Z† = {u[δ 7→ u(δ) + d] | u ∈ Z ∧ d ∈ R≥0}. Then Z1 ⊑ Z2 ⇔

Z†
2 ⊆ Z

†
1.

Proof. By definition Z1 ⊑ Z2 ⇔ ∀u : Z1(u) ≤ Z2(u). First, assume Z1 ⊑ Z2

and let u[δ 7→ c] ∈ Z†
2. Then Z1(u) ≤ Z2(u) ≤ c and by definition u[δ 7→

Z1(u) + d] ∈ Z†
1 for d ∈ R≥0 implying u[δ 7→ c] ∈ Z†

1. This proofs one direction

of the lemma. Second, assume Z†
2 ⊆ Z

†
1. By definition u[δ 7→ Z2(u)] ∈ Z

†
2 ⊆ Z

†
1

and it follows that Z1(u) ≤ Z2(u). ✷

It is straightforward to implement the ()†-operation on DBMs. However, a
useful property of the ()†-operation is, that its effect on zones can be obtained

without implementing the operation. Let (l0, Z
†
0), where Z0 is the zone encoding

4We define Z(u) to be ∞ if u is not in Z.



9.3. Improving the State-Space Exploration 143

C0, be the initial symbolic state. Then Z = Z† for any reachable state (l, Z)
— intuitively because δ is never reset and no guards or invariants depend on
δ. Note that in a zone Z† the cost of a clock valuation is C(u) = c where
c = inf{c | u[δ 7→ c] ∈ Z†}.

Termination is ensured if all clocks except for δ are normalized with respect
to a maximum constant M . It is important that normalization never touches
δ. With this modification, the algorithm in Fig. 9.1 will essentially encounter
the same states as the traditional forward state-space exploration algorithm for
timed automata, except for the addition of δ.

9.3 Improving the State-Space Exploration

As mentioned the major drawback of using the algorithm in Fig. 9.1 to find
the minimum cost of reaching a goal state is that the complete states space has
to be searched. However, this can in most cases be improved in a number of
ways. Realizing the connection between Dijkstra’s shortest path algorithm and
the Uppaal state-space search leads us to stop the search as soon as a goal
state has been found. However, this is based on a kind of breadth first search
which might not be possible for systems with very large state-spaces. In this
case using techniques inspired by branch and bound algorithms can be helpful.

9.3.1 Minimum Cost Order

In realizing the algorithm of Fig. 9.1, and in analogy with Dijkstra’s algorithm
for finding the shortest path in a directed weighted graph, we may choose
always to select a (symbolic cost) state (l, C) from Waiting for which C has
the smallest minimum cost. With this choice, we may terminate the algorithm
as soon as a goal state is selected from Waiting. We will refer the search order
arising from this strategy as the Minimum Cost order (MC order).

Lemma 9.5 Using the MC order, an optimal solution is found by the algorithm
in Fig. 9.1 when a goal state is selected from Waiting the first time.

Proof. When a state is taken from Waiting using the MC order, no states
with lower cost are reachable. Therefore, when the first goal state is taken from
Waiting no (goal) states with lower cost are reachable, so the optimal solution
has been found. ✷

When applying the MC order, the algorithm in Fig. 9.1 can be simplified since
the variable Cost is not needed any more.

Again in analogy with Dijkstra’s shortest path algorithm, the MC ordering finds
the minimum cost of reaching a goal state with guarantee of its optimality, in
a manner which requires exploration of a minimum number of symbolic cost
states.



144 Chapter 9. Efficient Representation of Uniform Cost

Lemma 9.6 Finding an the optimal cost of reaching a location and proving it
to be optimal using the algorithm in Fig. 9.1, it can never reduce the number of
explored states to prefer exploration of a symbolic cost state of Waiting with
non-minimal minimum cost.

Proof. Assume on the contrary that this would be the case. Then at some stage,
the exploration of a symbolic cost state (l, C) of Waiting with non-minimal cost
should be able to reduce the subsequent exploration of one of the symbolic cost
states (m,D) of Waiting with smaller minimum cost. That is, some derivative
of (l, C) should be applicable in pruning the exploration of some derivative
of (m,D), or more precisely, (l, C) ❀

∗ (l′, C ′) and (m,D) ❀
∗ (m′,D′) with

l′ = m′ and C ′ ⊑ D′. By definition of ⊑ and since ❀ never decreases minimum
cost, it follows that min(C) ≤ min(C ′) ≤ min(D′). But then, first exploring
the states from Waiting with the smallest minimum cost (using the MC order)
would also explore (l, C) and (l′, C ′) before (m′,D′) and hence lead to the same
pruning of (m′,D′) contradiction the assumed superiority of the non-MC search
order. ✷

In situations when Waiting contains more than just one symbolic cost state
with smallest minimum cost, the MC order does not offer any indication as
to which one to explore first. In fact, for exploration of the symbolic state-
space for timed automata without cost, we do not know of a definite strategy
for choosing a state from Waiting such that the fewest number of symbolic
states are generated. However, any improvements gained with respect to the
search-order strategy for the state-space exploration of timed automata will
be directly applicable in our setting with respect to the strategy for choosing
between symbolic cost states with same minimum cost.

9.3.2 Using Estimates of the Remaining Cost

From a given state one often has an idea about the cost remaining in order to
reach a goal state. In branch-and-bound algorithms this information is used
both to delete states and to search the most promising states first. Using
information about the remaining cost can also decrease the number of states
searched before an optimal solution is reached.

For a state (l, u) let rem((l, u)) be the minimum cost of reaching a goal state
from that state. In general we cannot expect to know exactly what the remain-
ing cost of a state is. We can instead use an estimate of the remaining cost
as long as the estimate does not exceed the actual cost. For a symbolic cost
state (l, C) we require that Rem(l, C) satisfies Rem(l, C) ≤ inf{rem((l, u)) |
u ∈ sup(C)}, i.e. Rem(l, C) offers a lower bound on the remaining cost of all
the states with location l and clock valuation within the support of C.

Combining the minimum cost min(C) of a symbolic cost state (l, C) with the
estimate of the remaining cost Rem(l, C), we can base the MC order on the sum
of min(C) and Rem(l, C). Since min(C)+Rem(l, C) is smaller than the actual



9.3. Improving the State-Space Exploration 145

cost of reaching a goal state, the first goal state to be explored is guaranteed to
have optimal cost. We call this the MC+ order but it is also known as Least-
Lower-Bound order. In Section 9.4 we will show that even simple estimates
of the remaining cost can lead to large improvements in the number of states
searched to find the minimum cost of reaching a goal state.

One way to obtain a lower bound is for the user to specify an initial estimate
and annotate each transition with updates of the estimate. In this case it is
the responsibility of the user to guarantee that the estimate is actually a lower
bound in order to ensure that the optimal solution is not deleted. This also
allows the user to apply her understanding and intuition about the system.

To obtain a lower bound of the remaining cost in an automatic and efficient
manner, we suggest to replace one or more automata in the network with “more
abstract” automata. The idea is that this should result in an abstract network
which (1) contains (at least) all runs of the original one, and (2) with no larger
costs. Thus computing the minimum cost of reaching a goal state in the ab-
stract network will give the desired lower bound estimate of reaching a goal
state in the original network. Moreover, the abstract network should (3) be
substantially simpler to analyze than the original network making it possible
to obtain the estimate efficiently. We are currently working with different ideas
of implementing this idea. In Section 9.4 we have used the idea when guiding
systems manually.

9.3.3 Heuristics and Bounding

It is often useful to quickly obtain an upper bound on the cost instead of waiting
for the minimum cost. In particular, this is the case when faced with a state-
space too big for the MC order to handle. As will be shown in Section 9.4, the
techniques described here for altering the search order using heuristics are very
useful. In addition, techniques from branch-and-bound algorithms are useful for
improving the upper bound once it has been found. Applying knowledge about
the goal state has proven useful in improving the state-space exploration [132,
82], either by changing the search order from the standard depth or breadth-
first, or by leaving out parts of the state-space.

To implement the MC order, a suitable data-structure for Waiting would be a
priority queue where the priority is the minimum cost of a symbolic cost state.
We can obviously generalize this by extending a symbolic cost state with a new
field, priority, which is the priority of the state used by the priority queue.
Allowing various ways of assigning values to priority combined with choosing
either to first select a state with large or small priority opens for a large variety
of search orders.

Annotating the model with assignments to priority on the transitions, is one way
of allowing the user to guide the search. Because of its flexibility it proves to be
a very powerful way of guiding the search. The assignment works like a normal
assignment to integer variables and allows for the same kind of expressions.



146 Chapter 9. Efficient Representation of Uniform Cost

Example 9.2 An example of a strategy which we have used in Section 9.4 for
the Biphase Mark protocol, is first to search a limited part of the state-space in
a breadth-first manner. The sender of the protocol can either send the value 0
or 1. We are mainly interested in the part where a 1 is send because we suspect
that errors will occur in this case. Therefore, we want to search the part of the
state-space where a 1 is send before searching the part where 0 is send, and we
want to do this in a breadth first manner.

Using guiding a standard breadth-first search can be obtained by adding the
assignment priority := priority - 1 to each transition and select the sym-
bolic state with the highest value from Waiting. This can be done by adding
a global assignment to the model. Giving very low priority to the part of the
state-space where a 0 has been send we will obtain the desired search order. The
choice of what to send is made in one place in the model of the sender. On the
transition choosing to send a 0 we add the assignment priority := priority

- 1000 which will give this state and all its successors very low priority and
therefore these will be explored last. In this way we do not leave out any part
of the state-space, but first search the part we consider to be interesting. ✷

When searching for an error state in a system a random search order might be
useful. We have chosen to implement what we call random depth-first order
which as the name suggests is a variant of a depth-first search. The only
difference between this and a standard depth-first search is that before pushing
all the successors of a state on to Waiting (which is implemented as a stack),
the successors are randomly permuted.

Once a reachable goal state has been found, an upper bound on the minimum
cost of reaching a goal state has been obtained. If we choose to continue the
search, a smaller upper bound might be obtained. During state-space explo-
ration the cost never decreases therefore states with cost bigger than the best
cost found in a goal state cannot lead to an optimal solution, and can therefore
be deleted. The estimate of the remaining cost defined in Section 9.3.2 can also
be used for pruning exploration of states since whenever min(C) + Rem(l, C)
is larger than the best upper bound, no state covered by (l, C) can lead to a
better solution than the one already found.

All of the methods described in this section have been implemented in Uppaal.
Section 9.4 reports on experiments using these new methods.

9.4 Experiments

In this section we illustrate the benefits of extending Uppaal with heuristics
and costs through several verification and optimization problems. All of the
examples have previously been studied in the literature.



9.4. Experiments 147

9.4.1 The Bridge Problem

The following problem was proposed by Ruys and Brinksma [134]. A timed
automaton model of this problem is included in the standard distribution of
Uppaal5.

Four persons want to cross a bridge in the dark. The bridge is damaged and
can only carry two persons at the same time. To cross the bridge safely in
the darkness, a torch must be carried along. The group has only one torch to
share. Due to different physical abilities, the four cross the bridge at different
speeds. The time they need per person is (one-way) 25, 20, 10 and 5 minutes,
respectively. The problem is to find a schedule, if possible, such that all four
cross the bridge within a given time. This can be done with standard Uppaal.
With the proposed extension, it is also possible to find the fastest time for the
four to cross the bridge, and a schedule achieving this.

We compare four different search orders: Breadth-First (BF), Depth-First (DF),
Minimum Cost (MC) and an improved Minimum Cost (MC+). In this example
we choose the lower bound on the remaining cost, Rem(C), to be the time
needed by the slowest person, who is still on the “wrong” side of the bridge.

For the different search orders, Table 9.3 shows the number of states explored
to find the initial and the optimal time, and the values of the times. It can
be seen that BF explores 4491 states to find an initial schedule and 4539 to
prove what the optimal solution is. This number is reduced to 4493 explored
states if we prune the state-space, based on the estimated remaining cost (third
column). Thus, in this case only two additional states are explored after the
initial solution is found. DF finds an initial solution (with high costs) quickly,
but explores 25779 states to find an optimal schedule, which is much more than
the other heuristics. Most likely, this is caused by encountering many small
and incomparable zones during DF search. In any case, it appears that the
depth-first strategy always explores many more states than any other heuristic.

Table 9.3: Bridge problem by Ruys and Brinksma.
Initial Solution Optimal Solution With est. remainder

states cost states cost states cost
BF 4491 65 4539 60 4493 60
DF 169 685 25780 60 5081 60
MC 1536 60 1536 60 N/A N/A
MC+ 404 60 404 60 N/A N/A

Searching with the MC order does indeed improve the results, compared to BF
and DF. It is, however, outperformed by the MC+ heuristic that explores only
404 states to find a optimal schedule. Note that pruning based on the estimate
of the remaining cost does not apply to MC and MC+ order, since the first
explored goal state has the optimal value.

Without costs and heuristics, Uppaal can only show whether a schedule exists.
The extension allows Uppaal to find the optimal schedule and explores with

5The distribution can be obtained at http://www.uppaal.com.



148 Chapter 9. Efficient Representation of Uniform Cost

the MC+ heuristic only about 10% of the states that are needed to find a initial
solution with the breadth-first heuristic.

9.4.2 Job Shop Scheduling

A well known class of scheduling problems are the Job Shop problems. The
problem is to optimally schedule a set of jobs on a set of machines. Each
job is a chain of operations, usually one on each machine, and the machines
have a limited capacity, also limited to one in most cases. The purpose is
to allocate starting times to the operations, such that the overall duration of
the schedule, the makespan, is minimal. Many solution methods such as local
search algorithms like simulated annealing [1], shifting bottleneck [21], branch-
and-bound [21] or even hybrid methods have been proposed [93].

We apply Uppaal to 25 of the smaller Lawrence Job Shop problems.6 Our
models are based on the timed automata models in [63]. In order to estimate
the lower bound on the remaining cost, we calculate for each job and each
machine the duration of the remaining operations. These estimates may be
seen as obtained by abstracting the model to one automaton as described in
Section 9.3.2. The final estimate of the remaining cost is then estimated to
be the maximum of these durations. Table 9.4 shows results obtained for the
search orders MC+, DF, Random DF, and a combined heuristic. The latter is
based on depth-first but also takes into account the remaining operation times
and the lower bound on the cost, via a weighted sum which is assigned to the
priority field of the symbolic states. We also experimented with using BF and
MC order, but here no single instance was completed in 60 seconds. Even when
allowed to spend more than 30 minutes using more than 2Gb of memory no
solution was found using these search orders. It is important to notice that the
combined heuristic used includes a clever choice between states with the same
values of cost plus remaining cost. This is the reason it is able to outperform
the MC+ order which is only able to find solution to two instances within the
time limit of 60 seconds.

As can be seen from the table Uppaal is handling the first 15 examples quite
well finding the optimal solution in 11 cases and in 10 of these showing that it
is optimal. This is much more than without the added guiding features. For
the 10 largest problems (la16 to la25) with 10 machines we did not find optimal
solutions though in some cases we were very close to the optimal solution.
Since branch-and-bound algorithms generally do not scale too well when the
number of machines and jobs increase, this is not surprising. The branch-and-
bound algorithm for [21], who solves about 10 out the 15 problems in the same
setting, faces the same problem. Note that the results of this algorithm depend
sensitively on the choice of an initial upper bound. Also the algorithm used
in [44], which combines a good heuristic with an efficient branch-and-bound
algorithm and thus solves all of these 15 instances, does not find solutions for
the larger instances with 15 jobs and 10 machines or larger.

6These and other benchmark problems for Job Shop scheduling can be found on



9.4. Experiments 149

Table 9.4: Results for the 15 Job Shop problems with 5 machines and 10 jobs
(la1-la5), 15 jobs (la6-la10) and 20 jobs (la11-la15), and 10 problems with 10
machines, 10 jobs (la16-20) and 15 jobs (la21-25). The table shows the best
solution found by different search orders within 60 seconds cputime on a Pen-
tium II 300 MHz. If the search terminated also the number of explored states
is given. The last row gives the makespan of an optimal solution.

problem MC+ DF RDF comb. heur. minimal
instance cost states cost states cost states cost states makespan
la01 - - 2466 - 842 - 666 292 666
la02 - - 2360 - 806 - 672 - 655
la03 - - 2094 - 769 - 626 - 597
la04 - - 2212 - 783 - 639 - 590
la05 593 9791 1955 - 696 - 593 284 593
la06 - - 3656 - 1076 - 926 480 926
la07 - - 3410 - 1113 - 890 - 890
la08 - - 3520 - 1009 - 863 400 863
la09 - - 3984 - 1154 - 951 425 951
la10 - - 3681 - 1063 - 958 454 958
la11 - - 4974 - 1303 - 1222 642 1222
la12 - - 4557 - 1271 - 1039 633 1039
la13 - - 4846 - 1227 - 1150 662 1150
la14 1292 10653 5145 - 1377 - 1292 688 1292
la15 - - 5264 - 1459 - 1289 - 1207
la16 - - 4849 - 1298 - 1022 - 945
la17 - - 4299 - 938 - 786 - 784
la18 - - 4763 - 1034 - 922 - 848
la19 - - 4566 - 1140 - 904 - 842
la20 - - 5056 - 1378 - 964 - 902
la21 - - 7608 - 1326 - 1149 - (1040,1053)
la22 - - 6920 - 1413 - 1047 - 927
la23 - - 7676 - 1357 - 1075 - 1032
la24 - - 7237 - 1346 - 1061 - 935
la25 - - 7141 - 1290 - 1070 - 977

9.4.3 The Sidmar Steel Plant

Proving schedulability of an industrial plant via a reachability analysis of a
timed automaton model was firstly applied to the SIDMAR steel plant, which
was included as case study of the VHS project. It deals with the part of the
plant in-between the blast furnace and the hot rolling mill. The plant consists of
five machines placed along two tracks and a casting machine where the finished
steel leaves the system. The two tracks and the casting machine are connected
via two overhead cranes on one track. Figure 9.4 depicts the layout of the
plant. Each quantity of raw iron enters the system in a ladle and depending
on the desired steel quality undergoes treatments in the different machines of
different durations. The aim is to control the plant in particular the movement
of the ladles with steel between the different machines, taking the topology of
the plant into consideration.

We use a model based on the models and descriptions in [36, 64, 80]. A full
model of the plant that includes all possible behaviors was however not imme-
diate suitable for verification. Its state-space is very large since at each point
in time many different possibilities are enabled. Consequently, depth-first (and

ftp://ftp.caam.rice.edu/pub/people/applegate/jobshop/.



150 Chapter 9. Efficient Representation of Uniform Cost

place
storage

casting
machine

continuous

cranes
convertor

convertor

vessel #1

buffer

crane#2

crane#1

overhead

vessel #2

track#2

track#1
1 2 3

54

Figure 9.4: Layout of the SIDMAR plant

breadth-first) search gives either no answer within reasonable time or comes up
with a solution that is far from optimal. In this way we were only able to find
schedules for models of the plant with two ladles.

Priorities can be used to influence the search order of the state-space, and thus
to improve the results. Based on a depth-first strategy, we reward transitions
that are likely to serve in reaching the goal, whereas transitions that may spoil
a partial solution result in lower priorities. For instance, when a batch of iron
is being treated by a machine, it pays off to reward other scheduling activities
rather than wait for the treatment to finish.

A schedule for three ladles was produced in [64] for a slightly simplified model
using Uppaal. In [80] schedules for up to 60 ladles were produced also using
Uppaal. However, in order to do this, additional constraints were included that
reduce the size of the state-space drastically, but also prune possibly sensible
behavior. A similar reduced model was used by Stobbe in [139], who uses
constraint programming to schedule 30 ladles. All these works only consider
ladles with the same quality of steel and the initial solutions cannot be improved.

A lower bound for the time duration of any feasible schedule is given by the
time the first load needs for all treatments plus the least time one needs to cast
all batches. Analogously, an upper bound is given by the maximal time during
which the first batch is allowed to stay in the system, plus the maximal time
needed to cast the ladles. For the instance with ten batches, these bounds are
291 and 425, respectively. With the sketched heuristic, our extended Uppaal

is able to find a schedule with duration 355, within 60 seconds cputime on a
Pentium II 300 MHz. The initial solution found is improved by 5% within the
time limit. Importantly, in this approach we do not rule out optimal solutions.
Allowing the search to go on for longer, models with more ladles can be handled.



9.4. Experiments 151

1 0 0 0 1 1

cell

cell edges

signals sent

mark subcell

code subcell

if these two signals are 

equal, a 0 was sent

if these two signals are 

different, a 1 was sent

message

sampling distance

Figure 9.5: Biphase mark terminology

9.4.4 Pure Heuristics: The Biphase Mark Protocol

The Biphase Mark protocol is a convention for transmitting strings of bit and
clock pulses simultaneously as square waves. This protocol is widely used for
communication in the ISO/OSI physical layer; for example, a version called
“Manchester” is used in the Ethernet. The protocol ensures that strings of
bits can be submitted and received correctly, in spite of clock drift, jitter and
filtering by the channel. A formal parameterized timed automaton model of the
Biphase Mark Protocol was given in [141], where also necessary and sufficient
conditions on the correctness for a parametric model were derived. We will use
the corresponding Uppaal models to investigate the benefits of heuristics in
pure reachability analysis.

The model assumes that sender and receiver have both their own clock with
drift and jitter. The sender encodes each bit in a cell of length c clock cycles
(see Fig. 9.5). At the beginning of each cell, the sender toggles the voltage. The
sender then waits for m clock cycles, wherem stands for the mark subcell. If the
sender has to encode a “0”, the voltage is held constant throughout the whole
cell. If it encodes a “1” it will toggle the voltage at the end of the mark subcell.
The signal is unreliable during a small interval after the sender generates an
edge. Reading it during this interval may produce any value.

The receiver waits for an edge that signals the arrival of a cell. Upon detecting
an edge, the receiver waits for a fixed number of clock cycles, the sampling
distance s, and samples the signal. We adopt the notation bpm(c,m, s) for
instances of the protocol where the cell size c, mark sizem and sampling distance
s.

There are three kind of errors that may occur in an incorrect configuration.
Firstly, the receiver may not detect the mark subcell. Secondly, the receiver
may sample too early, before or right after the sender left the mark subcell.
Finally, the receiver may also sample too late, i.e. the sender has already
started to transmit the next cell. The first two errors can only occur if there is
an edge after the mark subcell. This is only the case if input ”1” is offered to
the coder. The third error seems to be independent of the offered input.

Since two of the three errors occur only if input ”1” is offered to the coder, and



152 Chapter 9. Efficient Representation of Uniform Cost

the third error can occur in any case, it seems worthwhile to choose a heuristic
that searches for states with input “1” first, rather than exploring state-space
for both possible inputs concurrently. We apply a heuristic which is a mixture
of only choosing input 1 and the breadth-first order, see Example 9.2, to erro-
neous modifications of the (correct) instances bpm(16, 6, 11), bpm(18, 5, 10) and
bpm(32, 16, 23). Table 9.5 gives the results in terms of the number of symbolic
states explored to find an error state. It turns out that using the heuristic a bit
more than half the number of symbolic states is explored to find an error state,
compared to using breadth-first order. This is due to the fact that for input
”1”, there is more activity in the protocol. The corresponding diagnostic traces
show that the errors were found within the first cell or at the very beginning
of the second cell, thus at a stage were only one bit was sent and received. An
exception to this rule is the fifth instance bpm(18, 6, 10), which produces an
error after one and a half cell, and shows consequently a larger reduction when
verified with the heuristic.

Table 9.5: Results for nine erroneous instances of the Biphase Mark protocol.
Numbers of state explored before reaching an error state

nondetection sampling sampling
mark subcell early late

(1
6
,3

,1
1
)

(1
8
,3

,1
0
)

(3
2
,3

,2
3
)

(1
6
,9

,1
1
)

(1
8
,6

,1
0
)

(3
2
,1

8
,2

3
)

(1
5
,8

,1
1
)

(1
7
,5

,1
0
)

(3
1
,1

6
,2

3
)

breadth first 1931 2582 4049 990 4701 2561 1230 1709 3035
in==1 heuristic 1153 1431 2333 632 1945 1586 725 1039 1763

9.5 Conclusion

On the preceding pages, we have contributed with (1) a cost function based
symbolic semantics for the class of linearly priced timed automata; (2) an ef-
ficient, zone based implementation of cost functions for the class of uniformly
priced timed automata; (3) an optimal search order for finding the minimum
cost of reaching a goal state; and (4) experimental evidence that these tech-
niques can lead to dramatic reductions in the number of explored states. In
addition, we have shown that it is possible to quickly obtain upper bounds on
the minimum cost of reaching a goal state by manually guiding the exploration
algorithm using priorities.



Chapter 10

Efficient Representation of Linear Cost

The paper As Cheap as Possible: Efficient Cost-Optimal Reachability for Priced
Timed Automata presented in this chapter has not been published yet, but is
accepted for Computer Aided Verification 2001.

[105] K. G. Larsen, G. Behrmann, E. Briksma, A. Fehnker, T. Hune, P. Pet-
tersson and J. Romijn. As Cheap as Possible: Efficient Cost-Optimal
Reachability for Priced Timed Automata. To appear in Proceedings of
Computer Aided Verification, 2001.

The content of this chapter is a slightly modified version of the submitted paper.
My contribution to this paper has mainly been in the initial phase of the work.

153





10.1. Introduction 155

As Cheap as Possible:
Efficient Cost-Optimal Reachability for Priced Timed

Automata

Kim Larsen†∗ Gerd Behrmann∗ Ed Brinksma†

Ansgar Fehnker§ Thomas Hune‡ Paul Pettersson¶

Judi Romijn§

Abstract

In this paper we present an algorithm for efficiently computing opti-
mal cost of reaching a goal state in the model of Linearly Priced Timed
Automata (LPTA). In recent papers, this problem have been shown to be
computable using a priced extension of the traditional notion of regions for
timed automata. However, for efficiency it is imperative that the computa-
tion is based on so-called zones (i.e. convex set of clock valuations) rather
than regions. The central contribution of this paper is a priced extension
of zones. This, together with a notion of facets of a zone, allows the entire
machinery for symbolic reachability in terms of zones to be lifted to cost-
optimal reachability using priced zones. We report on experiments with a
cost-optimizing extension of Uppaal on a number of examples, including
a range of aircraft landing problems.

10.1 Introduction

Well-known formal verification tools for real-time and hybrid systems, such as
Uppaal [109], Kronos [41] and HyTech [74], use symbolic techniques to deal
with the infinite state-spaces that are caused by the presence of continuous
variables in the associated verification models. The use of such techniques,

∗Basic Research In Computer Science, BRICS, (www.brics.dk), funded by the
Danish National Research Foundation, University of Aalborg, Denmark, Email:
[kgl,behrmann]@cs.auc.dk

†Department of Computer Systems, University of Twente, Email:
brinksma@cs.utwente.nl

‡Basic Research In Computer Science, BRICS, (www.brics.dk), funded by the Danish
National Research Foundation, University of Århus, Denmark, Email: baris@brics.dk

§Computing Science Institute, University of Nijmegen, Email: [ansgar,judi]@cs.kun.nl
¶Department of Information Technology, Uppsala University, Email: paupet@docs.uu.se.



156 Chapter 10. Efficient Representation of Linear Cost

however, generally does not result in small symbolic state-spaces. In fact, sym-
bolic model checkers share the “state-space explosion problem” with their non-
symbolic counterparts as the major obstacle for their application to non-trivial
problems. A lot of research, therefore, is devoted to the containment of this
problem by sophisticated techniques, such as data structures for compact state-
space representation, smart state-space search strategies, etc.

An interesting idea for model checking of reachability properties that has re-
ceived more attention recently is to “guide” the exploration of the (symbolic)
state-space such that “promising” sets of states are visited first. In a number of
recent publications [64, 82, 26, 127, 43] model checkers have been used to solve
a number of non-trivial scheduling problems. Scheduling problems can often
be reformulated in terms of reachability, viz. as the (im)possibility to reach a
state that improves on a given optimality criterion. Such criteria distinguish
scheduling algorithms from classical, full state-space exploration model check-
ing algorithms. They are used together with, for example, branch-and-bound
techniques [21] to prune parts of the search tree that are guaranteed not to con-
tain optimal solutions. This observation motivates research into the extension
of model checking algorithms with optimality criteria. They provide a basis
for the guided exploration of state-spaces, and improve the potential of model
checking techniques for the resolution of scheduling problems.

We believe that such extensions can be interesting for real-life applications of
both model checking and scheduling. As full verification by model checking is
usually not a practical option for real systems because of the implied combi-
natorial explosion, it is often restricted to a form of systematic debugging, in
which one checks for a certain class of errors in a certain number of scenarios.
Such errors usually appear as reachable faulty states of the relevant verifica-
tion model(s). In many cases time- or cost-driven exploration strategies can
help to find (more) errors more efficiently than standard depth- or breadth-first
searches. To a much larger extent than model checking, scheduling is backed up
by an impressive body of combinatorial mathematics that can guarantee (near)
optimal results in many cases. In practice their usefulness is often restricted
when problems fail to meet the particular assumptions of the relevant theory.
In such cases (extended) model checking techniques provide a very generic ap-
proach to finding solutions. Moreover, if the dimensions of the problem do not
exceed the available resources right from the start, it is scalable in the sense
that one may approach optimal solutions by repeated checking for reachable
states of successively improving quality.

Based on similar observations an extension of the timed automata model with
a notion of cost, the Linearly Priced Timed Automata (LPTA), was already
introduced in [28]. This model allows for a reachability analysis in terms of ac-
cumulated cost of traces, i.e. the sum of the costs of the individual transitions in
the trace. Each action transitions has an associated price p determining its cost.
Likewise, each location has an associated rate r and the cost of delaying d time
units is d · r. In [28] a symbolic semantics of LPTA is provided, based on which
computability of minimal-cost reachability is demonstrated. The symbolic se-
mantics is based on linearly priced clock regions extending the traditional region



10.2. Symbolic Optimal Reachability 157

construct with cost information. Similar and independent work has been pre-
sented by Alur et al. [17], which additionally provides complexity bounds for
the problem.

Although ensuring computability, the region construction is known to be very
inefficient and highly sensitive to the size of constants used in the models.
Tools like Uppaal and Kronos use symbolic states of the form (l, Z), where
l is a location of the timed automaton and Z is a zone, i.e. a convex set of
clock valuations. The central contribution of this paper is the extension of this
concept to that of priced zones. Priced zones are attributed with an (affine)
linear function of clock valuations that defines the cost of reaching a valuation
in the zone. We show that the entire machinery for symbolic reachability in
terms of zones can be lifted to cost-optimal reachability for priced zones. It
turns out that some of the operations on priced zones force us to split them
into parts with different price attributes, giving rise to a new notion, viz. that
of the facets of a zone.

The suitability of the LPTA model for scheduling problems was already illus-
trated in [26], using the more restricted Uniformly Priced Timed Automata
(UPTA) model. This model allows only a uniform cost rate for all locations,
which admits an efficient priced zone implementation via Difference Bound Ma-
trices [60]. The model was used to consider traces for the time-optimal schedul-
ing of a steel plant and a number of job shop problems. The greater expressivity
of LPTA also supports other measures of cost, like idle time, weighted idle time,
mean completion time, earliness, number of tardy jobs, tardiness, etc. We take
an aircraft landing problem [25] and an extension of the bridge problem [134]
as the application examples for this paper.

The structure of the rest of this paper is as follows. In Section 10.2 we give an
abstract account of symbolic optimal reachability in terms of priced transition
systems, including a generic algorithm for optimal reachability. In Section 10.3
we introduce the model of linearly priced timed automata (LPTA) as a special
case of the framework of Section 10.2. We also introduce here our running
application example, the aircraft landing problem. Section 10.4 contains the
definition of the central concept of priced zones. The operations that we need
on priced zones and facets are provided in Section 10.5. The implementation
of the algorithm, and the results of experimentation with our examples are
reported in Section 10.6. Our conclusions, finally, are presented in Section 10.7.

10.2 Symbolic Optimal Reachability

Analysis of infinite state systems require symbolic techniques in order to ef-
fectively represent and manipulate sets of states simultaneously (see e.g. [66,
4, 5, 65, 50]). For analysis of cost-optimality, additional information of costs
associated with individual states needs to be represented. In this section, we
describe a general framework for symbolic analysis of cost-optimal reachability
on the abstract level of priced transition systems. In the following sections we
shall instantiate the framework to linearly priced timed automata.



158 Chapter 10. Efficient Representation of Linear Cost

A priced transition system is a structure T = (S, s0,Σ,−→), where S is a (infi-
nite) set of states, s0 ∈ S is the initial state, Σ is a (finite) set of labels, and, −→
is a partial function from S ×Σ× S into the non-negative reals, R≥0, defining
the possible transitions of the systems as well as their associated costs. We
write s

a
−→p s

′ whenever −→ (s, a, s′) is defined and equals p. Intuitively, s
a
−→p s

′

indicates that the system in state s has an a-labeled transition to the state s′

with the cost of p. We denote by s
a
−→ s′ that ∃p ∈ R≥0. s

a
−→p s

′, and, by s −→ s′

that ∃a ∈ Σ. s
a
−→ s′.

Now, an execution of T is a sequence α = s0
a1−→p1 s1

a2−→p2 s2 · · ·
an−→pn sn. The

cost of α, cost(α), is the sum
∑

i∈{1...n} pi. For a given state s, the minimal
cost of reaching s, mincost(s), is the infimum of the costs of finite executions
starting in the initial state s0 and ending in s. Similar, the minimal cost of
reaching a designated set of states G ⊆ S, mincost(G), is the infimum of the
costs of finite executions ending in a state of G.

To decide reachability and compute minimum-cost reachability in the infinite
state cases, we need to represent and simultaneously handle (certain) sets of
states. Representable sets of states – referred to as so-called symbolic states –
should in particular be closed w.r.t. the following notion of successor-set. For
A ⊆ S and a ∈ Σ, we denote by posta(A) the set of all a-successors to states
of A, i.e. {s′ | ∃s ∈ A. s

a
−→ s′}. Starting from the singleton set {s0}, repeated

application of these post-operators leads to exploration of the symbolic state-
space and hence identification of the reachable set of states. Provided symbolic
states ordered by set-inclusion constitutes a well-quasi ordering,1 termination
may be obtained by refraining from exploration of symbolic states included in
already explored ones.

To compute minimum-cost reachability, we suggest the use of priced symbolic
states of the form (A,π), where A ⊆ S is a set of states, and π : A −→ R≥0

assigns (non-negative) costs to all states of A. The intention is that, reachability
of the priced symbolic state (A,π) should ensure, that any state s of A is
reachable with cost arbitrarily close to π(s). As we are interested in minimum-
cost reachability, π should preferably return as small cost values as possible.
This is obtained by the following extension of the post-operators to priced
symbolic states: for (A,π) a priced symbolic state and a ∈ Σ, Posta(A,π) is
the priced symbolic state (B, η), where B = posta(A) and η is given by:

η(s) = inf{π(s′) + p | s′ ∈ A ∧ s′
a
−→p s} (10.1)

That is, η essentially gives the cheapest cost for reaching states of B via states
in A, assuming that these may be reached with costs according to π. A sym-
bolic execution of a priced transition system, T , is a sequence β = (A0, π0),
(A1, π1), . . . , (An, πn), where for i < n, (Ai+1, πi+1) = Postai

(Ai, πi) for some
ai ∈ Σ, and A0 = {s0} and π0(s0) = 0. It is not difficult to see, that there is
a very close connection between executions and symbolic executions: for any
execution α of T ending in a state s, there is a symbolic execution β of T , that

1An ordering (A,⊑) is well-quasi iff for any infinite sequence a0, a1, a2, . . . , al, . . . of ele-
ments of A it holds that aj ⊑ ak for some j < k.



10.2. Symbolic Optimal Reachability 159

ends in a priced symbolic state (A,π), such that s ∈ A and π(s) ≤ cost(α). Du-
ally, for any symbolic execution β of T ending in priced symbolic state (A,π),
whenever s ∈ A, then mincost(s) ≤ π(s). We formalize this in the following two
lemmas.

Lemma 10.1 Let T be a priced transition system. Then for any execution α
of T ending in state s, there is a symbolic execution β of T , that ends in a
priced symbolic state (A,π), such that s ∈ A and π(s) ≤ cost(α).

Proof. We prove this by induction on the length of α. The base case, |α| = 0,
is obvious. For the induction-step consider the following execution of length
n+ 1:

α = s0
a1−→p1 s1

a2−→p2 s2 · · ·
an−→pn sn

an+1
−−−→pn+1 sn+1

By the induction hypothesis, there exists a symbolic execution β ending in a
priced symbolic state (A,π) such that sn ∈ A and π(sn) ≤

∑

i≤n pi. Now,
extend β with (B, η) = Postan+1(A,π). Then clearly sn+1 ∈ B and η(sn+1) ≤
π(sn) + pn+1 ≤ cost(α). ✷

Lemma 10.2 Let T be a priced transition system. Then, for any symbolic
execution β of T ending in priced symbolic state (A,π), whenever s ∈ A, then
mincost(s) ≤ π(s).

Proof. We prove this by induction on the length of β. The base case, |β| =
0, is obvious. For the induction-step consider a symbolic execution of length
n+ 1, β = (A0, π0), . . . , (An, πn), (An+1, πn+1), where for i ≤ n, (Ai+1, πi+1) =
Postai

(Ai, πi) for some ai ∈ L, and A0 = {s0} and π0(s0) = 0. Now, let
sn+1 ∈ An+1. Completion of the induction-step is obtained from the following:

πn+1(sn+1) = inf
{

πn(sn) + pn+1 | sn ∈ An ∧ sn
an+1
−−−→pn+1 sn+1

}

≥IH inf
{

mincost(sn) + pn+1 | sn ∈ An ∧ sn
an+1
−−−→pn+1 sn+1

}

≥∗ mincost(sn+1)

where ∗ follows from inf{inf(Ai)+ pi : i ∈ I} = inf(Ai + pi : i ∈ I}, whenever
Ai ⊆ R≥0, pi ∈ R≥0 for all i ∈ I, andA+p is shorthand for the set {q+p : q ∈ A}.
✷

Combining Lemma 10.1 and Lemma 10.2, we obtain directly that the sym-
bolic semantics using priced symbolic states accurately captures minimum cost
reachability:

Theorem 10.1 mincost(G) = inf{mincost(A ∩G,π) : (A,π) is reachable}

Let (A,π) and (B, η) be priced symbolic states. We write (A,π) ⊑ (B, η) if
B ⊆ A and π(s) ≤ η(s) for all s ∈ B, informally expressing, that (A,π) is “as



160 Chapter 10. Efficient Representation of Linear Cost

Cost := ∞
Passed := ∅
Waiting := {({s0}, π0)}
while Waiting 6= ∅ do

select (A,π) from Waiting

if A ∩ G 6= ∅ and minCost(A ∩ G, π) < Cost then

Cost := minCost(A ∩ G, π)
if for all (B, η) in Passed: (B,η) 6⊑ (A,π) then

add (A, π) to Passed

add Posta(A,π) to Waiting for all a ∈ Σ
return Cost

Figure 10.1: Abstract Algorithm for the Minimal-Cost Reachability Problem.

big and cheap” as (B, η). Also, we denote by minCost(A,π) the infimum costs
in A w.r.t. π, i.e. inf{π(s) | s ∈ A}.

Now using the above notion of priced symbolic state and associated operations,
an abstract algorithm for computing the minimum cost of reaching a designated
set of goal states G is shown in Fig.10.1. The algorithm is similar to the iterative
procedure for deciding reachability. It uses two data-structures Waiting and
Passed to store priced symbolic states waiting to be examined, and priced
symbolic states already explored, respectively. Initially, Passed is empty and
Waiting holds an initial priced symbolic state. In each iteration, the algorithm
proceeds by selecting a priced symbolic state (A,π) from Waiting, checking
that none of the previously explored states (B, η) are bigger and cheaper, i.e.
(B, η) 6⊑ (A,π), and adds it to Passed and its successors to Waiting. In
addition, the algorithm uses the global variable Cost, which is initially set to
∞ and updated whenever a goal state is found that can be reached with lower
cost than the current value of Cost. The algorithm terminates when Waiting

is empty, i.e. when no further priced symbolic states are left to be examined.

We denote by (A,π) ❀ (B, η) that (B, η) = Posta(A,π) for some a ∈ L, and
we say that (A,π) can reach (B, η) if (A,π) ❀

∗ (B, η). Now, ⊑ is a simulation
preorder in the following sense:

Lemma 10.3 Whenever (B1, η1) ⊑ (A1, π1) and (A1, π1) ❀ (A2, π2), then
(B1, η1) ❀ (B2, η2) for some (B2, η2) such that (B2, η2) ⊑ (A2, π2).

Now, assume that the algorithm Fig. 10.1 terminates. Let W denote the total
(finite) collection of priced symbolic states, which will have been in the Waiting

list at some stage during the execution of the algorithm. W is closed with
respect ❀ up to ⊑ in the following sense:

Lemma 10.4 Whenever (A,π) ∈ W and (A,π) ❀
∗ (B, η), then there exists

(C, ρ) ∈ W such that (C, ρ) ⊑ (B, η).

Proof. Due to Lemma 10.3 it suffices to consider the case when (A,π) ❀ (B, η)
(the general Lemma will then follow as an easy induction exercise). At the



10.3. Priced Timed Automata 161

moment when (A,π) was selected from the Waiting list two scenarios could
have taken place: either (A,π) was explored (i.e. all Post-successors added to
Waiting), in which case, the Lemma holds trivially, or exploration of (A,π)
was discarded due to the fact, that a better (in terms of ⊑) priced symbolic
state (D,ψ) already had been previously explored and was present in Passed.
However, as (D,ψ) ⊑ (A,π), it follows from Lemma 10.3, that (D,ψ) ❀ (C, ρ)
for some (C, ρ) with (C, ρ) ⊑ (B, η). As (D,ψ) is explored obviously (C, ρ) ∈ W.
✷

We are now in a position where we can prove that the algorithm is partially
correct in the following sense:

Theorem 10.2 When the algorithm of Fig. 10.1 terminates, the value of Cost

equals mincost(G).

Proof. Using Lemma 10.1, we must prove that upon termination Cost equals
inf{mincost(A ∩ G,π) : (A,π) is reachable}. Assume that this does not hold.
Then there exists a reachable priced symbolic state (A,π) where mincost(A ∩
G,π) <Cost (since we approximate Cost from above). Thus, (A,π) never
appeared in the Waiting list; rather, the algorithm must at some point have
discarded a state (A′, π′) on the path to (A,π) due to the fact, that a better
(bigger and cheaper) priced symbolic state already had been explored and was
present in Passed. However, as (A0, π0) ❀

∗ (A,π) and obviously (A0, π0) ∈ W,
it follows from Lemma 10.4, that (B, η) ⊑ (A,π) for some (B, η) ∈ W. But then
Cost≤ mincost(B ∩ G, η) ≤ mincost(A ∩ G,π) contradiction our assumption
that mincost(A ∩G,π) <Cost. ✷

Termination of the algorithm will be guaranteed provided ⊑ is a well-quasi
ordering on priced symbolic states.

The above framework may be instantiated by providing concrete syntax for
priced transition systems, together with data-structures for priced symbolic
states allowing for computation of the Post-operations, minCost, as well as
⊑ (which should be well-quasi). In the following sections we provide such an
instantiation for a priced extension of timed automata.

10.3 Priced Timed Automata

Linearly priced timed automata (LPTA) [28, 26, 17] extend the model of timed
automata [12] with prices on all edges and locations. In these models, the cost
of taking an edge is the price associated with it, and the price of a location
gives the cost-rate applied when delaying in that location.

Let C be a set of clocks. Then B(C) is the set of formulas that are conjunctions
of atomic constraints of the form x ⊲⊳ n and x− y ⊲⊳ m for x, y ∈ C, ⊲⊳ ∈ {≤,=
,≥},2 n a natural number, and m an integer. Elements of B(C) are called clock

2For simplicity we do not deal with strict inequalities in this short version.



162 Chapter 10. Efficient Representation of Linear Cost

constraints or zones over C. P(C) denotes the power set of C. Clock values
are represented as functions from C to the non-negative reals R≥0, called clock
valuations. We denote by RC the set of clock valuations for C. For u ∈ RC and
g ∈ B(C), we denote by u ∈ g that u satisfies all constraints of g.

Definition 10.1 (Linearly Priced Timed Automata) We define a linearly
priced timed automaton A over clocks C as a tuple (L, l0, E, I, P ), where L is
a finite set of locations, l0 is the initial location, E ⊆ L × B(C) × P(C) × L
is the set of edges, where an edge contains a source, a guard, a set of clocks
to be reset, and a target, I : L → B(C) assigns invariants to locations, and
P : (L ∪ E) → N assigns prices to both locations and edges. In the case of

(l, g, r, l′) ∈ E, we write l
g,r
−−→ l′.

t

cost

E T L0

cost=e (T-t)

cost=l (t-T)+d

d

(a)

approaching
t<=T

late
t<=L
cost’==l

early
t<=T
cost’==e

done

t==T
cost+=d

landX!t==T

t>=E
landX!

(b)

S0

c1>=wait11
c2>=wait21

c1:=0
land1?

c1>=wait12
c2>=wait22

c2:=0
land2?

(c)

Figure 10.2: Figure (a) depicts the cost of landing a plane at time t. Figure (b) shows
an LPTA modeling the landing costs. Figure (c) shows an LPTA model of the runway.

The semantics of a linearly priced timed automaton A = (L, l0, E, I, P ) may
now be given as a priced transition system with state-space L × RC with the
initial state (l0, u0) (where u0 assigns zero to all clocks in C), and with the finite
label-set Σ = E ∪ {δ}. Thus, transitions are labelled either with the symbol δ
(indicating some delay) or with an edge e (the one taken). More precisely, the
priced transitions are given as follows:

• (l, u)
δ
−→p (l, u+ d) if ∀0 ≤ e ≤ d : u+ e ∈ I(l), and p = d · P (l),

• (l, u)
e
−→p (l′, u′) if e = (l, g, r, l′) ∈ E, u ∈ g, u′ = u[r 7→ 0], u′ ∈ I(l′), and

p = P (e),

where for d ∈ R≥0, u + d maps each clock x in C to the value u(x) + d, and
u[r 7→ 0] denotes the clock valuation which maps each clock in r to the value 0
and agrees with u over C \ r.

Example 10.1 (Aircraft Landing Problem) As an example of the use of
LPTAs we consider the problem of scheduling aircraft landings at an airport,
due to [25]. In the example we assume that several automata A1, ..., An can
be composed in parallel with a CCS-like parallel composition operator [121] to
a network (A1, ..., An)\Act, with all actions Act being restricted. We further
assume that the cost of delaying in the network is the sum of the cost of delaying



10.4. Priced Zones 163

in the individual automata. For each aircraft there is a maximum speed and a
most fuel efficient speed which determine an earliest and latest time the plane
can land. In this interval, there is a preferred landing time called target time
at which the plane lands with minimal cost. The target time and the interval
are shown as T and [E,L] respectively in Fig. 10.2(a). For each time unit the
actual landing time deviates from the target time, the landing cost increases
with rate e for early landings and rate l for late landings. In addition there is
a fixed cost d associated with late landings.

In Fig. 10.2(b) the cost of landing an aircraft is modeled as an LPTA. The
automaton starts in the initial location approaching and lands at the moment
one of the two transitions labeled landX! are taken. In case the plane lands
too early it enters location early in which it delays exactly T − t time units.
In case the plane is late the cost is measured in location late (i.e. the delay
in location late is 0 if the plane is on target time). After L time units the
automaton always ends in location done.

Figure 10.2(c) models the runway which ensures that two consecutive landings
takes place with a minimum separation time. It will be explained in detail in
Section 10.6. ✷

10.4 Priced Zones

Typically,3 reachability of a (priced) timed automaton, A = (L, l0, E, I, P ), is
decided using symbolic states represented by pairs of the form (l, Z), where l is
a location and Z is a zone. Semantically, (l, Z) represents the set of all states
(l, u), where u ∈ Z. Whenever Z is a zone and r a set of clocks, we denote
by Z↑ and {r}Z the set of clock valuations obtained by delaying and resetting
(w.r.t. r) clock valuations from Z respectively. That is, Z↑ = {u+d |u ∈ Z, d ∈
R≥0} and {r}Z = {u[r 7→ 0] |u ∈ Z}. It is well-known – using a canonical
representation of zones such as Difference Bounded Matrices (DBMs) [60] –
that in both cases the resulting set is again effectively representable as a zone.4

Using these operations together with the obvious fact, that zones are closed
under conjunction, the post-operations may now be effectively realized using
the zone-based representation of symbolic states as follows:

• postδ
(

(l, Z)
)

=
(

l, (Z ∧ I(l))↑ ∧ I(l)
)

,

• poste
(

(l, Z)
)

=
(

l′, I(l′) ∧ ({r}(Z ∧ g))
)

whenever e = (l, g, r, l′).

Now, the framework given in Section 10.2 for symbolic computation of minimum-
cost reachability calls for an extension of our zone-based representation of sym-
bolic states, which assigns costs to individual states. For this, we introduce
the following notion of a priced zone, where the offset, ∆Z , of a zone Z is the

3As is the case in the verification tools Kronos [41] and Uppaal [109].
4Thus, we shall not distinguish between zones (i.e. a conjunction of simple constraints)

and sets of clock valuations representable as zones.



164 Chapter 10. Efficient Representation of Linear Cost

�����
�����
�����
�����

������
������
������
������

Z

∆Z
c = 4

−1

2

cost = 2 − x + 2y

Z′
2Z′

1

y

x

cost = 6 − x cost = x − 4

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

∆Z
c = 4

−1

2

cost = 2 − x + 2y

y

x

2

−1
4

1

Z
↑
2

cost = x + 2y − 12

Z
↑
1

cost = 4y − x − 10

Z

Figure 10.3: A Priced Zone and Successor-Sets

l m
true

3

{y}

0

Figure 10.4: Part of a small LPTA A.

unique clock valuation of Z satisfying ∀u ∈ Z.∀x ∈ C.∆Z(x) ≤ u(x). Using the
canonical DBM representation of Z, ∆Z is easily computed.

Definition 10.2 (Priced Zone) A priced zone Z is a tuple (Z, c, r), where Z
is a zone, c ∈ N describes the cost of the offset, ∆Z , of Z, and r : C −→ Z assigns
a cost-rate r(x) for any clock x. We write u ∈ Z whenever u ∈ Z. For any
u ∈ Z the cost of u in Z, cost(u,Z), is defined as c+

∑

x∈C
r(x) ·(u(x)−∆Z(x)).

Thus, the cost assignments of a priced zone define a linear plane over the un-
derlying zone and may alternatively be described by a linear expression over
the clocks. Figure 10.3 illustrates the priced zone Z = (Z, c, r) over the clocks
{x, y}, where Z is given by the six constraints 2 ≤ x ≤ 7, 2 ≤ y ≤ 6 and
−2 ≤ x−y ≤ 3, the cost of the offset (∆Z = (2, 2)5) is c = 4, and the cost-rates
are r(x) = −1 and r(y) = 2. Hence, the cost of the clock valuation (5.1, 2.3) is
given by 4 + (−1) · (5.1 − 2) + 2 · (2.3− 2) = 1.5. In general the costs assigned
by Z may be described by the linear expression 2− x+ 2y.

Now, priced symbolic states are represented in the obvious way by pairs (l,Z),
where l is a location and Z a priced zone. More precisely, (l,Z) represents the
priced symbolic state (A,π), where A = {(l, u) |u ∈ Z} and π(l, u) = cost(u,Z).

Unfortunately, priced symbolic states are not directly closed under the Post-
operations. To see this, consider the part of an LPTA A in Fig. 10.4. Here
the cost of the edge is zero and the cost-rate of l is 3. Now, let Z = (Z, c, r)
be the priced zone depicted in Fig. 10.3 and consider the associated priced
symbolic state (l,Z). Assuming that the e-successor set, Poste(l,Z), was ex-
pressible as a single priced symbolic state (l′,Z ′), this would obviously re-
quire l′ = m and Z ′ = (Z ′, c′, r′) with Z ′ = {y}Z. Furthermore, following

5Here we identify clock valuations over x and y with pairs.



10.5. Facets & Operations on Priced Zones 165

(10.1) in our framework of Section 10.2, the cost-assignment of Z ′ should
be such that cost(u′,Z ′) = inf{cost(u,Z) |u ∈ Z ∧ u[y 7→ 0] = u′} for
all u′ ∈ Z ′. Since r(y) > 0, it is obvious that these infima are obtained
along the lower boundary of Z with respect to y (see Fig. 10.3 left). E.g.
cost((2, 0),Z ′) = 4, cost((4, 0),Z ′) = 2, and cost((6, 0),Z ′) = 2. In general
cost((x, 0),Z ′) = cost((x, 2),Z) = 6 − x for 2 ≤ x ≤ 5 and cost((x, 0),Z ′) =
cost((x, x− 3),Z) = x− 4 for 5 ≤ x ≤ 7. However, the disagreement w.r.t. the
cost-rate of x (−1 or 1) makes it clear that the desired cost-assignment is not
linear and hence not obtainable from any single priced zone. On the other hand,
it is also shows that splitting Z ′ = {y}Z into the sub-zones Z ′

1 = Z ′∧2 ≤ x ≤ 5
and Z ′

2 = Z ′ ∧ 5 ≤ x ≤ 7, allows the e-successor set Poste(l,Z) to be expressed
using the union of two priced zones (with r(x) = −1 in Z ′

1 and r(x) = 1 in Z ′
2).

Similarly, priced symbolic states are not directly closed w.r.t. Postδ. To see
this, consider again the LPTA A of Fig. 10.4 and the priced zone Z = (Z, c, r)
depicted in Fig. 10.3. Clearly, the set Postδ(l,Z) must cover the zone Z↑ (see
Fig. 10.3). As for the cost-assignment to be prescribed by Postδ(l,Z) it is
crucial to compare the cost-rate of l (here P (l) = 3) with the sum of clock
cost-rates of Z (here r(x) + r(y) = 1). As in this case r(x) + r(y) ≤ P (l), the
clock valuations (x, y) in Z↑\Z are reached most cheaply from Z by delaying
from the the upper boundary of Z, i.e. from valuations (x′ − y′ + 6, 6) or
(7, y′−x′+7) depending on whether x−y ≤ 1 or x−y ≥ 1 (see Fig. 10.3 right).
The resulting cost is 4y− x− 10 and x+ 2y− 12 respectively. Clock valuations
(x, y) in Z can obviously be reached by delay from all valuations within Z of
the form (x− ǫ, y− ǫ), ǫ ∈ R≥0. However, again since the cost-rate of l exceeds
r(x)+ r(y), it is clear that the minimum cost is obtained when ǫ = 0. It follows
that, although Postδ(l,Z) is not expressible as a single priced symbolic state,
it may be expressed as a finite union by splitting the zone Z↑ into the three
sub-zones Z, Z↑

1 = (Z↑\Z) ∧ (x− y ≤ 1), and Z↑
2 = (Z↑\Z) ∧ (x− y ≥ 1).

10.5 Facets & Operations on Priced Zones

The universal key to expressing successor sets of priced symbolic states as finite
unions is provided by the notion of facets of a zone Z. Formally, whenever
x ⊲⊳ n (x − y ⊲⊳ m) is a constraint of Z, the strengthened zone Z ∧ (x = n)
(Z ∧ (x − y = m)) is a facet of Z. Facets derived from lower bounds on
individual clocks, x ≥ n, are classified as lower facets, and we denote by LF (Z)
the collection of all lower facets of Z. Similarly, the collection of upper facets,
UF (Z), of a zone Z is derived from upper bounds of Z. We refer to lower as
well as upper facets as individual clock facets. Facets derived from lower bounds
of the forms x ≥ n or x − y ≥ m are classified as lower relative facets w.r.t.
x. The collection of lower relative facets of Z w.r.t. x is denoted LFx(Z). The
collection of upper relative facets of Z w.r.t. x, UFx(Z), is derived similarly.
Figure 10.5(left) illustrates a zone Z together with its six facets: e.g. {Z1, Z6}
constitutes the lower facets of Z, and {Z1, Z2} constitutes the lower relative
facets of Z w.r.t. y.



166 Chapter 10. Efficient Representation of Linear Cost

y

x

Z

Z3

Z4

Z5

Z6

Z1 = (Z ∧ y = 2)

Z2 = (Z ∧ (x − y = 3))

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����������������������

y

x

Z

Z3

Z4

Z1

Z2

{y}Z1 {y}Z2

Z4
↑

Z3
↑

{y}Z

Figure 10.5: A Zone: Facets and Operations.

The importance of facets comes from the fact that they allow for decompositions
of the delay- and reset-operations on zones as follows:

Lemma 10.5 Let Z be a zone and y a clock. Then the following holds:

i) Z↑ =
⋃

F∈LF (Z) F
↑ iii) {y}Z =

⋃

F∈LFy(Z){y}F

ii) Z↑ = Z ∪
⋃

F∈UF (Z) F
↑ iv) {y}Z =

⋃

F∈UFy(Z){y}F

Proof. As F ⊆ Z whenever F ∈ LF (Z) the ⊇-direction of i. is trivial. For the
⊆-direction of i. let u ∈ Z↑. Now let d = min{u(x)− l | (x ≥ l) ∈ Z}. We claim
that u − d ∈ F for some F ∈ LF (Z). Since u ∈ Z↑ there is some u′ ∈ Z and
some e such that u = u′ + e. Now e ≤ d since otherwise u′ would violate one of
the lower bounds of Z. Thus u−d satisfies all upper bounds of Z on individual
clocks (since u′ does) and also all bounds on differences from Z are satisfied.
Clearly, by the choice of d, all lower bounds of Z are satisfied by u − d. Thus
u− d ∈ Z. However, it is also clear that u− d ∈ F for some lower facet F .

As F ⊆ Z whenever F ∈ LFy(Z) the ⊇-direction of iii. is trivial. For the ⊆-
direction of iii. assume that u ∈ {y}Z. Now let d = max{u(x)− l | (y ≥ x− l) ∈
Z} ∪ {l | (y ≥ l) ∈ Z}. We claim that u[y 7→ d] ∈ F for some F ∈ LFy(Z).
Obviously, {y}

[

u[y 7→ d]
]

= u. All constraints of Z not involving y are satisfied.
Since u ∈ {y}Z there is u′ ∈ Z such that u = u′[y 7→ 0]. Now, u′(y) ≥ d since
otherwise u′ would violate some bound (y ≥ x− l) ∈ Z. It follows that u[y 7→ d]
satisfies all upper bounds for y (since u′ does). Clearly, by the choice of d, all
lower bounds of y are satisfied. ✷

Informally, i) and ii) express that any valuation reachable by delay from Z is
reachable from one of the lower facets of Z, as well as reachable from one of
the upper facets of Z or within Z, (see Fig. 10.5(right)). Any valuation in the
projection of a zone will be in the projection of the lower (upper) facets of the
zone relative to the relevant clock, which is expressed by iii) and iv).

As a first step, the delay- and reset-operation may be extended in a straight-
forward manner to priced (relative) facets:



10.5. Facets & Operations on Priced Zones 167

Definition 10.3 Let Z = (F, c, r) be a priced zone, where F is a relative facet
w.r.t. y in the sense that y−x = m is a constraint of F . Then {y}Z = (F ′, c′, r′),
where F ′ = {y}F , c′ = c, and r′(x) = r(y) + r(x) and r′(z) = r(z) for z 6= x.
In case y = n is a constraint of F , {y}Z = (F ′, c, r) with F ′ = {y}F . In both
cases r′(y) may be set arbitrarily.

Definition 10.4 Let Z = (F, c, r) be a priced zone, where F is a lower or upper
facet in the sense that y = n is a constraint of F . Let p ∈ N be a cost-rate.
Then Z↑p = (F ′, c′, r′), where F ′ = F ↑, c′ = c, and r′(y) = p −

∑

z 6=y r(z) and
r′(z) = r(z) for z 6= y.

Conjunction of constraints may be lifted from zones to priced zones simply by
taking into account the possible change of the offset. Formally, let Z = (Z, c, r)
be a priced zone and let g ∈ B(C). Then Z∧g is the priced zone Z ′ = (Z ′, c′, r′)
with Z ′ = Z ∧ g, r′ = r, and c′ = cost(∆Z′ ,Z). In particular, cost(u,Z ′) =
cost(u,Z) for all u ∈ Z ′. For Z = (Z, c, r) and n ∈ N we denote by Z + n the
priced zone (Z, c + n, r). Thus, cost(u,Z + n) = cost(u,Z) + n for all u ∈ Z.

The constructs of Definitions 10.3 and 10.4 essentially provide the Post-
operations for priced facets. More precisely, it is easy to show that:

Poste(l,Z1) = (l′, {y}(Z1 ∧ g) + P (e))

Postδ(l,Z2) = (l, (Z2 ∧ I(l))
↑P (l) ∧ I(l))

if e = (l, g, {y}, l′), Z1 is a priced relative facet w.r.t. to y and Z2 is an individ-
ual clock facet. Now, the following extension of Lemma 10.5 to priced symbolic
states provides the basis for the effective realization of Post-operations in gen-
eral:

Theorem 10.3 Let A = (L, l0, E, I, P ) be an LPTA. Let e = (l, g, {y}, l′) ∈ E6

with P (e) = q, P (l) = p, I(l) = J ,
∑

x∈C
r(x) = rΣ, and let Z = (Z, c, r) be a

priced zone. Then:

Poste((l,Z)) =

{ {

(l′, {y}Q+ q) | Q ∈ LFy(Z ∧ g)
}

if r(y) ≥ 0
{

(l′, {y}Q+ q) | Q ∈ UFy(Z ∧ g)
}

if r(y) ≤ 0

Postδ((l,Z)) =

{ {

(l,Z)
}

∪
{

(l, Q↑p ∧ J) | Q ∈ UF (Z ∧ J)
}

if p ≥ rΣ
{

(l, Q↑p ∧ J) | Q ∈ LF (Z ∧ J)
}

if p ≤ rΣ

In the definition of Poste the successor set is described as a union of either lower
or upper relative facets w.r.t. to the clock y being reset, depending on the rate
of y (as this will determine whether the minimum is obtained at the lower of

6For the case with a general reset-set r, the notion of relative facets may be generalized to
sets of clocks.



168 Chapter 10. Efficient Representation of Linear Cost

upper boundary). For similar reason, in the definition of Postδ, the successor-
set is expressed as a union over either lower or upper (individual clock) facets
depending on the rate of the location compared to the sum of clock cost-rates.

To complete the instantiation of the framework of Section 10.2, it remains
to indicate how to compute minCost and ⊑ on priced symbolic states. Let
Z = (Z, c, r) and Z ′ = (Z ′, c′, r′) be priced zones and let (l,Z) and (l′,Z ′)
be corresponding priced symbolic states. Then minCost(l,Z) is obtained by
minimizing the linear expression c+

∑

x∈C
(r(x) · (x−∆Z(x)) under the (linear)

constraints expressed by Z. Thus, computingminCost reduces to solving a sim-
ple Linear Programming problem. Now let Z ′\Z be the priced zone (Z∗, c∗, r∗)
with Z∗ = Z, c∗ = c′ − cost(∆Z′ ,Z) and r∗(x) = r′(x) − r(x) for all x ∈ C. It
is easy to see that cost(u,Z ′\Z) = cost(u,Z ′) − cost(u,Z) for all u ∈ Z ′, and
hence that

(l,Z) ⊑ (l′,Z ′) ⇐⇒ (l = l′) ∧ (Z ′ ⊆ Z) ∧ (minCost(Z ′\Z) ≥ 0)

Thus, deciding ⊑ also reduces to a Linear Programming problem.

In exploring LPTAs using the algorithm of Fig. 10.1, we will only need to
consider priced zones Z with non-negative cost assignments in the sense that
cost(u,Z) ≥ 0 for all u ∈ Z. In addition, any LPTA A may be transformed
into an equivalent “bounded” LPTA A∗ in the sense that there is a bound on
the possible (reachable) values of clocks of A∗. Now, application of Higman’s
Lemma [76] ensures that ⊑ is a well-quasi ordering on priced symbolic states
for bounded LPTA. We refer to [28] for more detailed arguments.

10.6 Implementation & Experiments

In this section we give further details on a prototype implementation within the
tool Uppaal [109] of priced zones, formally defined in the previous sections.
Also, we report on a number of experiments on the aircraft landing problem,
an extended bridge problem and other examples conducted with the prototype
tool. For brevity, we omit a detailed description of the algorithms.

The prototype implements the Poste (reset), Postδ (delay), minCost, and ⊑
operations. The algorithms are extensions of the DBM algorithms outlined
in [133]. As such, it is possible to realize reset of a clock x in a priced zone Z
in O(n2) time, n being the number of clocks, provided that either the rate of
x is zero or Z is a relative facet w.r.t. x. If neither is the case, Z will be split
resulting in an O(m · n2) algorithm, where m is the number of resulting priced
zones (bounded by n). To keep this number to a minimum, we make heavy use
of the (alternative) canonical representation of zones in terms a minimal set of
constraints given in [111]. Delay can be implemented in O(n) time given that
the priced zone is an individual clock facet. This can be assured by adding
an extra clock and resetting it on each transition. The ⊑ operation can be
reduced to minCost in O(n2) time, which in turn can be reduced to an LP
problem. For dealing with LP problems, our prototype currently uses a free



10.6. Implementation & Experiments 169

Table 10.1: Results for seven instances of the aircraft landing problem. No
result for instance 4 with 3 runways; cputime exceeded 8 hours.

ru
n
w

ay
s problem instance 1 2 3 4 5 6 7

number of planes 10 15 20 20 20 30 44
number of types 2 2 2 2 2 4 2

optimal value 700 1480 820 2520 3100 24442 1550
1 explored states 481 2149 920 5693 15069 122 662

cputime (secs) 4.19 25.30 11.05 87.67 220.22 0.60 4.27

optimal value 90 210 60 640 650 554 0
2 explored states 1218 1797 669 28821 47993 9035 92

cputime (secs) 17.87 39.92 11.02 755.85 1085.08 123.72 1.06

optimal value 0 0 0 130 170 0
3 explored states 24 46 84 207715 189602 62 N/A

cputime (secs) 0.36 0.70 1.71 14786.19 12461.47 0.68

optimal value 0 0
4 explored states N/A N/A N/A 65 64 N/A N/A

cputime (secs) 1.97 1.53

available implementation of the simplex algorithm.7 Also, here the use of the
(alternative) canonical form in [111] proves useful in reducing the size of the
LP problems needed to be solved.

Many of the techniques described in [26] are directly applicable to the algorithm
in Fig. 10.1, i.e., pruning the state space according to the Cost variable, com-
puting a lower bound on the remaining cost, exploring states with minimum
cost first (known as the minimum cost order), and using heuristics to quickly
guide the search to a goal state. These techniques have been used extensively
in modelling and verifying the following examples.

Example 10.2 (Aircraft Landing Problem (continued)) Recall the air-
craft landing problem partially described in Example 10.1 of this paper. An
LPTA model of the costs associated with landing a single aircraft is shown in
Fig. 10.2(b). When landing several planes the schedule has to take into account
the separation times between planes to avoid that the turbulence of one plane af-
fecting another. The separation times depend on the types of the planes that are
involved. Large aircrafts for example generate more turbulence than small ones,
and successive planes should consequently keep a bigger distance. To model the
separation times between two types of planes we introduce an LPTA of the kind
shown in Fig. 10.2(c). The automaton uses two clocks c1 and c2 to measure
and constrain the time between two consecutive landings. Clock cX (where X is
1 or 2) is always reset when a landing of a plane of type X takes place. For
example, the guard c1>=wait11 of the upper transition specifies that the time
between two landings of planes of type 1 must be at least wait11 (a constant
integer value).

Table 10.1 presents the results of an experiment were the prototype was applied
to seven instances of the aircraft landing problem taken from [25]8. For each

7lp solve 3.1a by Michael Berkelaar, ftp://ftp.es.ele.tue.nl/pub/lp solve.
8These and other benchmarks are available at ftp://mscmga.ms.ic.ac.uk/pub/.



170 Chapter 10. Efficient Representation of Linear Cost

instance, which varies in the number of planes and plane types, we compute
the cost of the optimal schedule. In cases the cost is non-zero we increase the
number of runways until a schedule of cost 0 is found9. In all instances, the
state space is explored in minimal cost-order, i.e. we select from the waiting list
the priced zone (l,Z) with lowest minCost(l,Z). Equal values are distinguished
by selecting first the zone which results from the largest number of transitions,
and secondly by selecting the zone which involves the plane with the shortest
target time. All numbers reported in Table 10.1 are measured on a 500MHz
Pentium III running Linux.

As can be seen from the table, our prototype implementation is able to deal with
all the tested instances. In Beasley et.al. [25] all problem instances are solved
using a linear programming based tree search algorithm. In 7 of the 15 instances
with optimal solution greater than zero we are faster than the method in [25].
However, it should be noted that our solution-times are quite incomparable to
those in [25]. For some instances our approach is up to 25 times slower that
the one in [25], while for others we are up to 50 times faster. ✷

Example 10.3 (Extended Bridge Problem) The original version of this
problem was proposed by Ruys and Brinksma in [134]. In the following we
present a variation of the problem in which non-uniform cost functions are
needed. A version of the problem with uniform costs is studied in [26]. The
problem is the following:

Four persons want to cross a bridge in the dark. The bridge is damaged and
can only carry two persons at the same time. To cross the bridge safely in
the darkness, a torch must be carried along. The group has only one torch to
share. Due to different physical abilities, the four cross the bridge at different
speeds. The time they need per person is (one-way) 5, 10, 20 and 25 minutes,
respectively. The original problem is to find a schedule such that all four cross
the bridge within a given time. To extend the problem we introduce a cost
associated with staying on the initial side of the bridge. The problem is now to
find a way for the four persons to cross the bridge which results in the lowest
possible cost.

In Table 10.2 we show the minimum costs for five instances of the extended
bridge problem. For each instance we give the four costs assigned to the persons
for residing on the initial side, the schedule (in which step 2 and 4 always rep-
resent a single person crossing the bridge back to the initial side), the minimum
cost, the time of the generated schedule with minimum cost, and the number of
explored states. All results have been obtained by searching the state space in
minimal-cost order.

The first result in Table 10.2 were measured with a model for finding a time-
optimal solution to the problem. The results on the first line shows that the
time-optimal schedule requires 60 minutes and that 1762 (symbolic) states are
explored to find the solution with the cost-extended version of Uppaal. The

9This is always possible as the cost of landing on target time is 0 and the number of runways
can be increased until all planes arrive at target time.



10.7. Conclusion 171

Table 10.2: Schedules and minimum costs for cost extended versions of the
Bridge Problem.

Cost-rates Schedule Cost Time States

A5 B10 C20 D25 -

Min Time BA A CD B BA - 60 1762
Min Time BA A CD B BA - 60 (1538)

1 1 1 1 BA A CA A AD 55 65 252

9 2 3 10 AD A BA A CA 195 65 149

1 2 3 4 BA A CD B BA 140 60 232

1 2 3 10 BD B BC B BA 170 65 263

second line shows (within parenthesis) the number of symbolic states need to
solve the same problem with an special-purpose time-optimizing version of Up-

paal [26]. Thus, in comparison the general cost version increments the number
of explored states with less than 15% in this example. The four last lines of the
table show the number of explored states when optimizing costs instead of time.
From these results we observe that considering general costs seems to signifi-
cantly reduce the number of symbolic states explored. ✷

The cost-extended version of Uppaal has been (and is currently being) ap-
plied to other examples, including an optimal broadcast problem and a testing
problem. Due to lack of space we omit the details but mention them briefly
here.

In the optimal broadcast problem, Uppaal is applied to find schemes for broad-
casting messages in a network consisting of several routers connected with two
communication channels. The cost and time of using the two channels differ
and the problem is to find a time or cost-optimal schedule for broadcasting a
set of messages to all subscribed routers. So far, we have been able to solve this
problem (with varying communication costs) for up to six routers.

In the testing example, the problem is to find a minimal set of test sequences
to fully cover different aspects of the sender component of the audio protocol
in [32]. This can be done by annotating the model with edges and testing
variables which are set when an aspect of the specification has been covered.
The cost extended version of Uppaal can then be applied to find the cheapest
possible path trough the specification which sets all the testing variables. We
have been able to apply this technique in Uppaal to generate optimal testing
sequences for covering e.g. all location, all synchronization actions, or all edges
of the protocol specification.

10.7 Conclusion

In this paper we have considered the minimum-cost reachability problem for
LPTAs. The notions of priced zones, and facets of a zone are central contri-
butions of the paper underlying our extension of the tool Uppaal. Our initial



172 Chapter 10. Efficient Representation of Linear Cost

experimental investigations based on a number of examples are quite encour-
aging.

Compared with the existing special-purpose, time-optimizing version of Up-

paal [26], the presented general cost-minimizing implementation does only
marginally down-grade performance. In particular, the theoretical possibility
of uncontrolled splitting of zones does not occur in practice. In addition, the
consideration of non-uniform cost seems to significantly reduce the number of
symbolic states explored.

The single, most important question, which calls for future research, is how to
exploit the simple structure of the LP-problems considered. We may benefit
significantly from replacing the currently used LP package with some package
more tailored towards small-size problems.



Chapter 11

Parametric Real-Time Model Checking

The paper Linear Parametric Model Checking of Timed Automata presented
in this chapter has been published in part as a technical report [87] and a
conference paper [86].

[86] T. Hune, J. Romijn, M. Stoelinga and F. Vaandrager. Linear Paramet-
ric Model Checking of Timed Automata. In Proceedings of Tools and
Algorithms for the Construction and Analysis of Systems, TACAS2001,
pages 189–203, 2001.

[87] T. Hune, J. Romijn, M. Stoelingaand F. Vaandrager. Linear Parametric
Model Checking of Timed Automata. Technical Report RS-01-05, BRICS,
January 2001.

The technical report extends the conference paper with proofs of the represen-
tation of the parametric state-space and more explanation of the experiments.
Except for minor typographical changes the content of this chapter is equal to
the technical report [87].

173





11.1. Introduction 175

Linear Parametric Model Checking of Timed
Automata‡

Thomas Hune∗ Judi Romijn† Mariëlle Stoelinga†

Frits Vaandrager†

Abstract

We present an extension of the model checker Uppaal capable of syn-
thesize linear parameter constraints for the correctness of parametric timed
automata. The symbolic representation of the (parametric) state-space is
shown to be correct. A second contribution of this paper is the identifi-
cation of a subclass of parametric timed automata (L/U automata), for
which the emptiness problem is decidable, contrary to the full class where
it is know to be undecidable. Also we present a number of lemmas en-
abling the verification effort to be reduced for L/U automata in some cases.
We illustrate our approach by deriving linear parameter constraints for a
number of well-known case studies from the literature (exhibiting a flaw
in a published paper).

11.1 Introduction

During the last decade, there has been enormous progress in the area of timed
model checking. Tools such as Uppaal [109], Kronos [41], and PMC [116] are
now routinely used for industrial case studies. A disadvantage of the traditional
approaches is, however, that they can only be used to verify concrete timing
properties: one has to provide the values of all timing parameters that occur
in the system. For practical purposes, one is often interested in deriving the
(symbolic) constraints on the parameters that ensure correctness. The process
of manually finding and proving such results is very time consuming and er-
ror prone (we have discovered minor errors one of the examples we have been
looking at). Therefore tool support for deriving the constraints automatically
is very important.

∗Basic Research In Computer Science, BRICS, (www.brics.dk), funded by the Danish
National Research Foundation, University of Århus, Denmark, Email: baris@brics.dk

†Computing Science Institute, University of Nijmegen, Email:
[judi,marielle,fvaan]@cs.kun.nl

‡Research supported by Esprit Project 26270, Verification of Hybrid Systems (VHS), and
by PROGRESS Project TES4199, Verification of Hard and Softly Timed Systems (HaaST).



176 Chapter 11. Parametric Real-Time Model Checking

In this paper, we study a parameterized extension of timed automata, as well
as a corresponding extension of the forward reachability algorithm for timed
automata. We show the theoretical correctness of our approach, and its fea-
sibility by application to non-trivial case studies. For this purpose, we have
implemented a prototype extension of Uppaal, an efficient real-time model
checking tool [109]. The algorithm we propose and have implemented is a semi-
decision algorithm which will not terminate in all cases. In [15] the problem of
synthesizing values for parameters such that a property is satisfied, was shown
to be undecidable, so this is the best we can hope for.

A second contribution of this paper is the identification of a subclass of pa-
rameterized timed automata, called lower bound/upper bound (L/U) automata,
which appears to be sufficiently expressive from a practical perspective, while it
also has nice theoretical properties. Most importantly, we show that the empti-
ness problem for parametric timed automata, shown to be undecidable in [15],
is decidable for L/U automata. We also establish a number of lemmas which
allow one to reduce the number of parameters when tackling specific verifica-
tion questions for L/U automata. The application of these lemmas has already
reduced the verification effort drastically in some of our experiments.

Related work Our attempt at automatic verification of parameterized real-
time models is not the only one. Henzinger et al. aim at solving a more general
problem with HyTech [74], a tool for model checking hybrid automata, ex-
ploring the state-space either by partition refinement, or forward reachability.
The tool has been applied successfully to relatively small examples such as a
railway gate controller. Experience so far has shown that HyTech cannot cope
with larger examples, such as the ones considered in this paper.

Toetenel et al. have made an extension of the PMC [116] real-time model check-
ing tool called LPMC [24]. LPMC is restricted to linear parameter constraints
as is our approach, and uses the partition refinement method, like HyTech.
Other differences with our approach are that LPMC also allows for the com-
parison of non-clock variables to parameter constraints, and for more general
specification properties (full TCTL with fairness assumptions). Since LPMC is
a quite recent tool, not many applications have been presented yet. However,
a model of the IEEE 1394 root contention protocol inspired by [136] has been
successfully analyzed in [24].

A more general attempt than LPMC and our Uppaal extension has been made
by Annichini et al. [20]. They have constructed and implemented a method
which allows non-linear parameter constraints, and uses heavier, third-party,
machinery to solve the arising non-linear constraint comparisons. Indepen-
dently, we have used the same data-structure (a direct extension of DBMs [60])
for the symbolic representation of the state space, as in [20]. For speeding up
the exploration, a method for guessing the effect of control loops in the model
is presented. It appears that this helps termination of the method, but it is
unclear under what circumstances this technique can or cannot be used. The
feasibility of this approach has been shown on a few rather small case studies.



11.2. Parametric Timed Automata 177

One of these is Fischer’s protocol with two processes, for which the state space
is constructed in about 3 minutes cpu time.

The remainder of this paper is organized as follows. Section 11.2 introduces
the notion of parametric timed automata. Section 11.3 gives the symbolic
semantics, which is the basis for our model checking algorithm, presented in
Section 11.3.5. Section 11.4 is an intermezzo that states some helpful lemmas
and decidability results on an interesting subclass. Finally, Section 11.5 reports
on experiments with our tool.

11.2 Parametric Timed Automata

11.2.1 Parameters and Constraints

Throughout this paper, we assume a fixed set of parameters P = {p1, . . . , pn}.

Definition 11.1 (Constraints) A linear expression e is either an expression
of the form t1p1 + · · · + tnpn + t0, where t0, . . . , tn ∈ Z, or ∞. We write
E to denote the set of all linear expressions. A constraint is an inequality
of the form e ∼ e′, with e, e′ linear expressions and ∼∈ {<,≤, >,≥}. The
negation of constraint c, notation ¬c, is obtained by replacing relation signs <,
≤, >, ≥ by ≥, >, ≤, <, respectively. A (parameter) valuation is a function
v : P → R≥0 assigning a nonnegative real value to each parameter. There is a
one-to-one correspondence between valuations and points in (R≥0)n. In fact we
often identify a valuation v with the point (v(p1), . . . , v(pn)) ∈ (R≥0)n.

If e is a linear expression and v is a valuation, then e[v] denotes the expression
obtained by replacing each parameter p in e with v(p). Likewise, we define
c[v] for c a constraint. Valuation v satisfies constraint c, notation v |= c, if
c[v] evaluates to true. The semantics of a constraint c, notation [[c]], is the set
of valuations (points in (R≥0)n) that satisfy c. A finite set of constraints C
is called a constraint set. A valuation satisfies a constraint set if it satisfies
each constraint in the set. The semantics of a constraint set C is given by
[[C]] :=

⋂

c∈C [[c]]. We write ⊤ to denote any constraint set with [[⊤]] = (R≥0)n,
for instance the empty set. We use ⊥ to denote any constraint set with [[⊥]] = ∅,
for instance the constraint set {c,¬c}, for some arbitrary c.

Constraint c covers constraint set C, notation C |= c, iff [[C]] ⊆ [[c]]. Constraint
set C is split by constraint c iff neither C |= c nor C |= ¬c.

During the analysis questions arise of the kind: given a constraint set C and
a constraint c, does c hold, i.e., does constraint c cover C? There are three
possible answers to this, yes, no, and split. A split occurs when c holds for some
valuations in the semantics of C and ¬c holds for some other valuations. We
will not discuss methods for answering such questions: in our implementation
we use an oracle to compute the following function.



178 Chapter 11. Parametric Real-Time Model Checking

Definition 11.2 (Oracle)

O(c, C) =











yes if C |= c

no if C |= ¬c

split otherwise

Observe that using the oracle, we can easily decide semantic inclusion between
constraint sets: [[C]] ⊆ [[C ′]] iff ∀c′ ∈ C ′ : O(c′, C) = yes. The oracle that we
use is a Linear Programming (LP) solver that was kindly provided to us by
the authors of [24], who built it for their LPMC model checking tool. This LP
solver is geared to perform well on small, simple sets of constraints rather than
large, complicated ones.

11.2.2 Parametric Timed Automata

Throughout this paper, we assume a fixed set of clocks X = {x0, . . . , xm} and
a fixed set of actions A = {a1, . . . , ak}. The special clock x0, which is called
the zero clock, always has the value 0 (and hence does not increase with time).

A simple guard is an expression f of the form xi − xj ≺ e, where xi, xj are
clocks, ≺∈ {<,≤}, and e is a linear expression. We say that f is proper if
i 6= j. We define a guard to be a (finite) conjunction of simple guards. We let
g range over guards and write G to denote the set of guards. A clock valuation
is a function w : X → R≥0 assigning a nonnegative real value to each clock,
such that w(x0) = 0. We will identify a clock valuation w with the point
(w(x0), . . . , w(xm)) ∈ (R≥0)m+1. Let g be a guard, v a parameter valuation,
and w a clock valuation. Then g[v,w] denotes the expression obtained by
replacing each parameter p with v(p), and each clock x with w(x). A pair (v,w)
of a parameter valuation and a clock valuation satisfies a guard g, notation
(v,w) |= g, if g[v,w] evaluates to true. The semantics of a guard g, notation
[[g]], is the set of pairs (v,w) such that (v,w) |= g.

A reset is an expression of the form, xi := b where i 6= 0 and b ∈ N. A reset set
is a set of resets containing at most one reset for each clock. The set of reset
sets is denoted by R.

We now define an extension of timed automata [13, 147] called parametric timed
automata. Similar models have been presented in [15, 20, 24].

Definition 11.3 (PTA) A parametric timed automaton (PTA) over set of
clocks X, set of actions A, and set of parameters P , is a quadruple A =
(Q, q0,→, I), where Q is a finite set of locations, q0 ∈ Q is the initial location,
→⊆ Q×A×G×R×Q is a finite transition relation, and function I : Q→ G
assigns an invariant to each location. We abbreviate a (q, a, g, r, q′) ∈→ con-
sisting of a source location, an action, a guard, a reset set, and a target location
as q

a,g,r
−→ q′. For a simple guard xi − xj ≺ e to be used in an invariant it must

be the case that xj = x0, that is, the simple guard represents an upper bound
on a clock.



11.2. Parametric Timed Automata 179

Example 11.1 A parametric timed automaton with clocks x, y and parameters
p, q can be seen in Fig. 11.1. The initial state is S0 which has invariant x ≤ p,
and the transition from the initial location to S1 has guard y ≥ q and reset set
x := 0. There are no actions on the transitions. Initially the transition from
S0 to S1 is only enabled if p ≤ q, otherwise the system will be deadlocked.

S0

x<=p

S1

y>=q

x:=0

x<=5

Figure 11.1: A parametric timed automaton

To define the semantics of PTAs, we require two auxiliary operations on clock
valuations. For clock valuation w and nonnegative real number d, w + d is the
clock valuation that adds to each clock (except x0) a delay d. For clock valuation
w and reset set r, w[r] is the clock valuation that resets clocks according to r.

(w + d)(x) =

{

0 if x = x0

w(x) + d otherwise
(w[r])(x) =

{

b if x := b ∈ r
w(x) otherwise.

Definition 11.4 (LTS) A labeled transition system (LTS) over a set of sym-
bols Σ is a triple L = (S, S0,→), with S a set of states, S0 ⊆ S a set of
initial states, and →⊆ S × Σ × S a transition relation. We write s

a
−→ s′ for

(s, a, s′) ∈→. A run of L is a finite alternating sequence s0a1s1a2 · · · sn of states

si ∈ S and symbols ai ∈ Σ such that s0 ∈ S0 and, for all i < n, si
ai+1
−→ si+1. A

state is reachable if it is the last state of some run.

Definition 11.5 (Concrete semantics) Let A = (Q, q0,→, I) be a PTA and
v be a parameter valuation. The concrete semantics of A under v, notation
[[A]]v, is the labeled transition system (LTS) (S, S0,→) over A ∪ R≥0 where

S = {(q, w) ∈ Q× (X → R≥0) | w(x0) = 0 ∧ (v,w) |= I(q)},

S0 = {(q, w) ∈ S | q = q0 ∧ w = λx.0},

and transition predicate → is specified by the following two rules, for all (q, w),
(q′, w′) ∈ S, d ≥ 0 and a ∈ A,

• (q, w)
d
−→ (q′, w′) if q = q′ and w′ = w + d.

• (q, w)
a
−→ (q′, w′) if ∃g, r : q

a,g,r
−→ q′ ∧ (v,w) |= g ∧ w′ = w[r].

Note that the LTS [[A]]v has at most one initial state (at most, since we require
that all states satisfy the location invariants).



180 Chapter 11. Parametric Real-Time Model Checking

11.2.3 The Problem

In its current version, Uppaal is able to check for reachability properties, in
particular whether certain combinations of locations and constrains on clock
variables are reachable from the initial configuration. Our parameterized ex-
tension of Uppaal handles exactly the same properties. However, rather than
just telling whether a property holds or not, our tool looks for constraints on
the parameters which ensure that the property holds.

Definition 11.6 (Properties) The sets of system properties and state for-
mulas are defined by, respectively,

ψ ::= ∀✷φ | ∃✸φ φ ::= x− y ≺ b | q | ¬φ | φ ∧ φ | φ ∨ φ

where x, y ∈ X, b ∈ N and q ∈ Q. Let A be a PTA, v a parameter valuation, s
a state of [[A]]v, and φ a state formula. We write s |= φ if φ holds in state s,
we write [[A]]v |= ∀✷φ if φ holds in all reachable states of [[A]]v, and we write
[[A]]v |= ∃✸φ if φ holds for some reachable state of [[A]]v.

The problem that we address in this paper can now be stated as follows: Given
a parametric timed automaton A and a system property ψ, compute the set of
parameter valuations v for which [[A]]v |= ψ.

Timed automata [13, 147] arise as a special case of PTAs for which the set P
of parameters is empty. If A is a PTA and v is a parameter valuation, then the
structure A[v] that is obtained by replacing all linear expressions e that occur in
A by e[v] is a timed automaton.1 It is easy to see that in general [[A]]v = [[A[v]]].
Since the reachability problem for timed automata is decidable [13], this implies
that, for any A, integer valued v and ψ, [[A]]v |= ψ is decidable.

11.2.4 Example: Fischer’s Mutual Exclusion Protocol

Figure 11.2 shows a PTA model of Fischer’s mutual exclusion protocol [102].
The purpose of this protocol is to guarantee mutually exclusive access to a
critical section among competing processes P1, P2, . . . Pn. In this protocol, a
shared variable lock is used for communication between the processes, with each
process Pi running the following algorithm.

lock := 0;
REPEAT

while lock 6= 0 do skip;
lock := i;
delay

UNTIL lock = i;
critical section;
lock := 0

1Strictly speaking, A[v] is only a timed automaton if v assigns an integer to each parameter.



11.3. Symbolic State Exploration 181

The correctness of this algorithm crucially depends on the timing of the opera-
tions. The key idea for the correctness is that any process Pi that sets lock := i
is made to wait long enough before checking lock = i to ensure that any other
process Pj that tested lock = 0, before Pi set lock to its index, has already set
lock to its index j, when Pi finally checks lock = i.

Assume that read/write access to the global variable (in the operations lock = i
and lock := 0) takes between min rw and max rw time units and assume
that the delay operation (including the timed needed for the the assignment
lock := i) takes between min delay and max delay time units. If we assume
the basic constraints 0≤min rw<max rw ∧ 0≤min delay<max delay, then
mutual exclusion is guaranteed if and only if max rw≤min delay.

start

x<=max_rw

set
x<=max_rw

try_enter
x<=max_delay

cs

lock==0,
x > min_rw

x:=0

x>min_rw

x:=0, 
lock:=i

x>min_delay, 
lock==i

x:=0, lock:=0

lock != 0, 
x> min_rw

x:=0

lock != i, 
x > min_delay

x:= 0

Figure 11.2: A PTA model of Fischer’s Mutual Exclusion Protocol

Now consider the PTA in Fig. 11.2. (Several different models of this protocol
exist [3, 15, 117] and one in the standard distribution of Uppaal, our model
is closest to the one in [117].) It consists of four locations start (which is
initial), set, try enter and cs; four parameters, min rw, max rw, min delay
and max delay; one clock x and a shared variable lock. By convention, x and
lock are initially 0. Note that the process can remain in the locations start and
set for at least min rw and at most max rw time units. Similarly, the process
can remain in lock for at least min delay and at most max delay time units.

The shared variable, which is not a part of the definition of PTAs, is syntactic
sugar which allows for an efficient encoding of the protocol as a PTA and the
notion of parallel composition for PTAs is standard. We refer the reader to [109]
for their definitions.

11.3 Symbolic State Exploration

Our aim is to use basically the same algorithm for parametric timed model
checking as for timed model checking. We represent sets of states symbolically
in a similar way and support the same operations used for timed model checking.
In the non-parametrized case, sets of states can be efficiently represented using
matrices [60]. Similarly, in this paper we represent sets of states symbolically
as (constrained) parametric difference-bound matrices.



182 Chapter 11. Parametric Real-Time Model Checking

Basically the same approach was followed in [20], although not worked out in
detail. New in our presentation is the systematic use of structural operational
semantics to deal with the nondeterministic computation that takes place in
the parametrized case.

11.3.1 Parametric Difference-Bound Matrices

In the non-parametrized case, a difference-bound matrix is a (m+ 1)× (m+ 1)
matrix whose entries are elements from (Z ∪ {∞})× {0, 1}. An entry (c, 1) for
Dij denotes a nonstrict bound xi − xj ≤ c, whereas an entry (c, 0) denotes a
strict bound xi − xj < c. Here, instead of using integers in the entries, we will
use linear expressions over the parameters. Also, we find it convenient to view
the matrix slightly more abstractly as a set of guards.

Definition 11.7 (PDBM) A parametric difference-bound matrix (PDBM) is
a set D which contains, for all 0 ≤ i, j ≤ m, a simple guard Dij of the form
xi− xj ≺ij eij . We require that, for all i, Dii is of the form xi− xi ≤ 0. Given
a parameter valuation v, the semantics of D is defined by [[D]]v = [[

∧

i,j Dij ]]v.
We say that D is satisfiable for v if [[D]]v is nonempty. If f is a proper guard
of the form xi − xj ≺ e then we write D[f ] for the PDBM obtained from D by
replacing Dij by f . If i, j are indices then we write Dij for the pair (eij ,≺ij);
we call Dij a bound of D. Clearly, a PDBM is fully determined by its bounds.

Definition 11.8 (Constrained PDBM) Let C be a constraint set and D a
PDBM, then the pair (C,D) is a constrained PDBM. The semantics of a con-
strained PDBM is defined by [[C,D]] = {(v,w) | v ∈ [[C]] ∧ w ∈ [[D]]v}.

PDBMs with the tightest possible bounds are called canonical. To formalize
this notion, we define an addition operation on linear expressions by

(t1p1 + · · ·+ tnpn + t0) + (t′1p1 + · · ·+ t′npn + t′0)

= (t1 + t′1)p1 + · · ·+ (tn + t′n)pn + (t0 + t′0).

Also, we view Boolean connectives as operations on relation symbols ≤ and <
by identifying ≤ with 1 and < with 0. Thus we have, for instance, (≤ ∧ ≤) =≤,
(≤ ∧ <) =<, ¬ ≤=<, and (≤ =⇒ <) =<. Our definition of a canonical form
of a constrained PDBM is essentially equivalent to the one for standard DBMs.

Definition 11.9 (Canonical Form) A constrained PDBM (C,D) is in canon-
ical form iff for all i, j, k, C |= eij (≺ij =⇒≺ik ∧ ≺kj) eik + ekj.

The proof of the following technical lemma is immediate from the definitions.



11.3. Symbolic State Exploration 183

Lemma 11.1

1. If v |= e ≺ e′ and v |= e′ ≺ e′′ then v |= e (≺ ∧ ≺′) e′′.

2. If (v,w) |= x− y ≺ e and v |= e ≺′ e′ then (v,w) |= x− y (≺ ∧ ≺′) e′.

3. If v |= e (≺ ∧ ≺′) e′ then v |= e ≺ e′.

4. If (v,w) |= x− y (≺ ∧ ≺′) e then (v,w) |= x− y ≺ e.

5. If (v,w) |= x− y ≺ e and (v,w) |= y − z ≺′ e′ then (v,w) |= x− z (≺
∧ ≺′) e+ e′.

6. v |= ¬(e ≺ e′) iff v |= e′ (¬ ≺) e.

The next lemma, which basically carries over from the unparameterized case,
states that canonicity of a constrained PDBM guarantees satisfiability. We
recall the proof, since we will need the same argument later on in this section.

Lemma 11.2 Suppose (C,D) is a constrained PDBM in canonical form and
v ∈ [[C]]. Then D is satisfiable for v.

Proof. Inductively we construct a valuation (t0, . . . , ti) for variables (x0, . . . , xi)
such that all constraints Djk for 0 ≤ j, k ≤ i are met.

To begin with, we set t0 = 0. Then, trivially, (v, x0 7→ t0) |= D00.

For the induction step, suppose that for some i < n we have a valuation
(t0, . . . , ti) for variables (x0, . . . , xi) such that all constraints Djk for 0 ≤ j, k ≤ i
are met. In order to extend this valuation to xi+1, we have to find a value ti+1

such that the following simple guards hold for valuation (v, x0 7→ t0, . . . , xi+1 7→
ti+1):

Di+1,0 · · · Di+1,i D0,i+1 · · · Di,i+1 Di+1,i+1 (11.1)

Here the first i+ 1 simple guards give upper bounds for ti+1, the second i+ 1
simple guards give lower bounds for ti+1, and the last simple guard is trivially
met by any choice for ti+1. We claim that each of the upper bounds is larger
than each of the lower bounds. In particular, the minimum of the upper bounds
is larger than the maximum of the lower bounds. This gives us a nonempty
interval of possible values for ti+1 to choose from. Formally, we claim that,
for all 0 ≤ j, k < i + 1, the following formula holds for valuation (v, x0 7→
t0, . . . , xi 7→ ti):

xj − ej,i+1 ≺j,i+1 ∧ ≺i+1,k xk + ei+1,k (11.2)

To see why (11.2) holds, observe that by induction hypothesis (v, x0 7→ t0, . . . ,
xi 7→ ti) |=

xj − xk ≺jk ejk (11.3)



184 Chapter 11. Parametric Real-Time Model Checking

Furthermore, since (C,D) is canonical,

ejk (≺jk =⇒ ≺j,i+1 ∧ ≺i+1,k) ej,i+1 + ei+1,k (11.4)

Combination of (11.3) and (11.4), using Lemma 11.1(1), gives (v, x0 7→ t0, . . . ,
xi 7→ ti) |=

xj − xk ≺j,i+1 ∧ ≺i+1,k ej,i+1 + ei+1,k

which is equivalent to (11.2). This means that we can choose ti+1 in accordance
with all the guards of (11.1), which completes the proof of the induction step
and thereby of the lemma. ✷

Also the following lemma essentially carries over from the unparameterized case,
see for instance [60]. As a direct consequence, semantic inclusion of constrained
PDBMs is decidable for canonical PDBMs (using the oracle function).

Lemma 11.3 Suppose (C,D), (C ′,D′) are constrained PDBMs and (C,D) is
canonical, then

[[C,D]] ⊆ [[C ′,D′]] ⇔ ([[C]] ⊆ [[C ′]] ∧ ∀i, j : C |= eij(≺ij =⇒≺′
ij)e

′
ij).

11.3.2 Operations on PDBMs

Our algorithm requires basically four operations to be implemented on con-
strained PDBMs: adding guards, canonicalization, resetting clocks and com-
puting time successors.

Adding Guards

In the case of DBMs, adding a guard is a simple operation. It is implemented
by taking the conjunction of a DBM and the guard (which is also viewed as
a DBM). The conjunction operation just takes the pointwise minimum of the
entries in both matrices. In the parametric case, adding a guard to a constrained
PDBM may result in a set of constrained PDBMs. We define a relation ⇐
which relates a constrained PDBM and a guard to a collection of constrained
PDBMs that satisfy this guard. For this we need an operation C that takes a
PDBM and a simple guard, and produces a constraint stating that the bound
imposed by the guard is larger than the corresponding bound in the PDBM, so
let Dij = (eij ,≺ij) then

C(D,xi − xj ≺ e) = eij (≺ij =⇒≺) e.

Relation ⇐ is defined as the smallest relation that satisfies the following rules:

(R1)
O(C(D, f), C) = yes

(C,D)
f
⇐ (C,D)

(R2)
O(C(D, f), C) = no, f proper

(C,D)
f
⇐ (C,D[f ])



11.3. Symbolic State Exploration 185

(R3)
O(C(D, f), C) = split

(C,D)
f
⇐ (C ∪ {C(D, f)}, D)

(R4)
O(C(D, f), C) = split, f proper

(C,D)
f
⇐ (C ∪ {¬C(D, f)}, D[f ])

(R5)
(C,D)

g

⇐ (C′, D′) , (C′D′)
g′

⇐ (C′′, D′′)

(C,D)
g∧g′

⇐ (C′′, D′′)

If the oracle replies “yes”, then adding a simple guard will not change the
constrained PDBM. If the answer is “no” then we tighten the bound in the
PDBM according to the simple guard. With the answer “split” there are two
possibilities and two pairs with updated constraint systems are returned. The
side condition “f proper” in rules R2 and R4 ensures that the diagonal bounds
in the PDBM always remain equal to (0,≤). If we update a bound inD then the
semantics of the PDBM may become empty. The following lemma characterizes
⇐ semantically.

Lemma 11.4 [[C,D]] ∩ [[g]] =
⋃

{[[C ′,D′]] | (C,D)
g
⇐ (C ′,D′)}.

Proof. “⊆”. Assume (v,w) ∈ [[C,D]] ∧ (v,w) |= g. By structural induction on

g we prove that there exists a constrained PDBM (C ′,D′) such that (C,D)
g
⇐

(C ′,D′) and (v,w) ∈ [[C ′,D′]].

For the induction basis, suppose g is of the form xi − xj ≺ e. We consider four
cases:

• O(C(D, g), C) = yes. Let C ′ = C and D′ = D. Then trivially (v,w) ∈

[[C ′,D′]] and, by rule R1, (C,D)
g
⇐ (C ′,D′).

• O(C(D, g), C) = no. By contradiction we prove that g is proper. Suppose
g is not proper. Then, since i = j and v |= ¬eij(≺ij =⇒ ≺)e, v |= ¬(0 ≺
e). By Lemma 11.1(6), v |= e¬ ≺ 0. But (v,w) |= g implies v |= 0 ≺ e.
Hence, by Lemma 11.1(1), v |= 0 < 0, a contradiction. Let C ′ = C and

D′ = D[g]. Then, by rule R2, (C,D)
g
⇐ (C ′,D′). Since (v,w) ∈ [[C,D]]

and (v,w) |= g, it follows that (v,w) ∈ [[C ′,D′]].

• O(C(D, g), C) = split and v |= C(D, g). Let C ′ = C ∪{C(D, g)} and D′ =

D. Then, by rule R3, (C,D)
g
⇐ (C ′,D′). Moreover, by the assumptions,

(v,w) ∈ [[C ′,D′]].

• O(C(D, g), C) = split and v |= ¬C(D, g). By contradiction we prove
that g is proper. Suppose g is not proper. Then, since v |= ¬C(D, g),
v |= ¬(0 ≺ e). By Lemma 11.1(6), v |= e¬ ≺ 0. But (v,w) |= g implies
v |= 0 ≺ e. Hence, by Lemma 11.1(1), v |= 0 < 0, a contradiction. Let

C ′ = C∪{¬C(D, g)} and D′ = D[g]. Then, by rule R4, (C,D)
g
⇐ (C ′,D′).

By the assumptions (v,w) ∈ [[C ′,D′]].

For the induction step, suppose that g is of the form g′ ∧ g′′. Then (v,w) |= g′.

By induction hypothesis, there exist C ′′,D′′ such that (C,D)
g′

⇐ (C ′′,D′′) and



186 Chapter 11. Parametric Real-Time Model Checking

(v,w) ∈ [[C ′′,D′′]]. Since (v,w) |= g′′, we can use the induction hypothesis

once more to infer that there exist C ′,D′ such that (C ′′,D′′)
g′′

⇐ (C ′,D′) and

(v,w) ∈ [[C ′,D′]]. Moreover, by rule R5, (C,D)
g
⇐ (C ′,D′).

“⊇” Assume (C,D)
g
⇐ (C ′,D′) and (v,w) ∈ [[C ′,D′]]. By induction on size of

the derivation of (C,D)
g
⇐ (C ′,D′), we establish (v,w) ∈ [[C,D]] and (v,w) |= g.

There are five cases, depending on the last rule r used in the derivation of

(C,D)
g
⇐ (C ′,D′).

1. r = R1. Then C = C ′, D = D′ and C |= C(D, g). Let g be of the
form xi − xj ≺ e. Hence (v,w) ∈ [[C,D]] and v |= C(D, g). By the
first statement (v,w) |= xi − xj ≺

D
ij eDij , and by the second statement

v |= eDij (≺D
ij =⇒ ≺) e. Combination of these two observations, using

parts (2) and (4) of Lemma 11.1 yields (v,w) |= g.

2. r = R2. Then C = C ′, D′ = D[g] and C |= ¬C(D, g). Hence (v,w) |= g
and v |= ¬C(D, g). Let g be of the form xi − xj ≺ e. By Lemma 11.1(6),
v |= e ¬(≺D

ij =⇒ ≺) eDij . Using parts (2) and (4) of Lemma 11.1, com-

bination of these two observations yields (v,w) |= xi − xj ≺
D
ij e

D
ij . Since

trivially (v,w) is a model for all the other guards in D, (v,w) ∈ [[C,D]].

3. r = R3. Then C ′ = C ∪ {C(D, g)} and D′ = D. Let g be of the form
xi − xj ≺ e. We have (v,w) ∈ [[C,D]]. This implies (v,w) |= xi − xj ≺

D
ij

eDij . We also have v |= eDij (≺D
ij =⇒ ≺) e. Combination of these two

observations, using parts (2) and (4) of Lemma 11.1 yields (v,w) |= g.

4. r = R4. Then C ′ = C∪{¬C(D, g)} andD′ = D[g]. We have v |= ¬C(D, g)
and (v,w) |= g. Let g be of the form xi − xj ≺ e. By Lemma 11.1(6),
v |= e ¬(≺D

ij =⇒ ≺) eDij . Using parts (2) and (4) of Lemma 11.1 yields

(v,w) |= xi − xj ≺
D
ij e

D
ij . Since trivially (v,w) is a model for all other

guards in D, (v,w) ∈ [[C,D]].

5. r = R5. Then g is of the form g′ ∧ g′′ and there are C ′′,D′′ such that

(C,D)
g′

⇐ (C ′′,D′′) and (C ′′,D′′)
g′′

⇐ (C ′,D′). By induction hypothe-
sis, (v,w) ∈ [[C ′′,D′′]] and (v,w) |= g′′. Again by induction hypothesis,
(v,w) ∈ [[C,D]] and (v,w) |= g′. It follows that (v,w) |= g.

✷

Canonicalization

Each DBM can be brought into canonical form using classical algorithms for
computing all-pairs shortest paths, for instance the Floyd-Warshall (FW) al-
gorithm [56]. In the parametric case, we also apply this approach except that
now we run FW symbolically.



11.3. Symbolic State Exploration 187

The algorithm repeatedly compares the difference between two clocks to the
difference obtained by looking at the difference when an intermediate clock
is taken into account (the comparison used in Definition 11.9). In the sym-
bolic case the result is, in general, a (possibly empty, finite) set of constrained
PDBMs, rather than just a single matrix.

Below, we describe the computation steps of the symbolic FW algorithm in
SOS style. Recall that the FW algorithm consists of three nested for-loops, for
indices k, i and j, respectively. Correspondingly, in the SOS description of the
symbolic version, we use configurations of the form (k, i, j, C,D), where (C,D)
is a constrained PDBM and k, i, j ∈ [0,m + 1] record the values of indices. In
the rules below, k, i, j range over [0,m].

(C,D)
xi−xj ≺ik∧≺kj eik+ekj

⇐ (C ′,D′)

(k, i, j, C,D) →FW (k, i, j + 1, C ′,D′)

(k, i,m + 1, C,D)→FW (k, i+ 1, 0, C,D)

(k,m+ 1, 0, C,D) →FW (k + 1, 0, 0, C,D)

We write (C,D) →c (C ′,D′) if there exists a sequence of →FW steps lead-
ing from configuration (0, 0, 0, C,D) to configuration (m + 1, 0, 0, C ′,D′). In
this case, we say that (C ′,D′) is an outcome of the symbolic Floyd-Warshall
algorithm on (C,D). It is easy to see that the set of all outcomes is fi-
nite and can be effectively computed. If the semantics of (C,D) is empty,

then the set of outcomes is also empty. We write (C,D)
g
⇐c (C ′,D′) iff

(C,D)
g
⇐ (C ′′,D′′)→c (C ′,D′), for some C ′′,D′′.

The following lemma says that if we run the symbolic Floyd-Warshall algorithm,
the union of the semantics of the outcomes equals the semantics of the original
constrained PDBM.

Lemma 11.5 [[C,D]] =
⋃

{[[C ′,D′]] | (C,D)→c (C ′,D′)}.

Proof. By an inductive argument, using Lemma 11.4 and the fact that, for any
valuation (v,w) in the semantics of (C,D),

(v,w) |= xi − xk ≺ik eik and

(v,w) |= xk − xj ≺kj ekj , and therefore by Lemma 11.1(5)

(v,w) |= xi − xj ≺ik ∧ ≺kj eik + ekj .

✷

Lemma 11.6 Each outcome of the symbolic Floyd-Warshall algorithm is a
constrained PDBM in canonical form.



188 Chapter 11. Parametric Real-Time Model Checking

Proof. As in [56]. ✷

Non-parametric DBMs can be canonicalized in O(n3), where n is the number
of clocks. In the parametric case, however, each operation of comparing the
bound D(x, x′) to the weight of another path from x to x′ may give rise to two
new PDBMs if this comparison leads to a split. Then the two PDBMs must
both be canonicalized to obtain all possible PDBMs with tightest bounds. Still,
that part of these two PDBMs which was already canonical, does not need to
be investigated again. So in the worst case, the cost of the algorithm becomes
O(2n3

). In practice, it turns out that this is hardly ever the case.

Resetting Clocks

A third operation on PDBMs that we need is resetting clocks. Since we do
not allow parameters in reset sets, the reset operation on PDBMs is essentially
the same as for DBMs, see [147]. If D is a PDBM and r is a singleton reset
set {xi := b}, then D[r] is the PDBM obtained by (1) replacing each bound
Dij, for j 6= i, by (e0j + b,≺0j); (2) replacing each bound Dji, for j 6= i, by
(ej0 − b,≺j0). We generalize this definition to arbitrary reset sets by

D[xi1 := b1, . . . , xih := bh] = D[xi1 := b1] . . . [xih := bh].

It easily follows from the definitions that resets preserves canonicity.

Lemma 11.7 If (C,D) is canonical then (C,D[r]) is canonical as well.

The following lemma characterizes the reset operation semantically.

Lemma 11.8 Let (C,D) be a constrained PDBM in canonical form, v ∈ [[C]],
and w a clock valuation. Then w ∈ [[D[r]]]v iff ∃w′ ∈ [[D]]v : w = w′[r].

Proof. We only prove the lemma for singleton resets. Using Lemma 11.7, the
generalization to arbitrary resets is straightforward. Let r = {xi := b} and
D′ = D[r].

“⇐” Suppose w′ ∈ [[D]]v and w = w′[r]. In order to prove w ∈ [[D′]]v , we must
show that (v,w) |= D′

kj , for all k and j. There are four cases:

1. k 6= i 6= j. Then D′
kj = Dkj . Since (v,w′) |= Dkj and w and w′ agree on

all clocks occurring in Dkj , (v,w) |= D′
kj .

2. k = i = j. Then D′
kj = Dkj. Since (v,w′) |= Dii, 0 ≺ii eii[v]. Hence

(v,w) |= D′
kj.

3. k 6= i = j. Then D′
kj = xk − xj ≺k0 ek0− b. Using that (v,w′) |= Dk0, we

derive w(xk)− w(xj) = w′(xk)− b ≺k0 ek0[v]− b. Hence (v,w) |= D′
kj.



11.3. Symbolic State Exploration 189

4. k = i 6= j. Then D′
kj = xk − xj ≺0j e0j + b. Using that (v,w′) |= D0j , we

derive w(xk)− w(xj) = b− w′(xj) ≺0j e0j [v] + b. Hence (v,w) |= D′
kj .

“⇒” Suppose w ∈ [[D′]]v. We have to prove that there exists a clock valuation
w′ ∈ [[D]]v such that w = w′[r]. Clearly we need to choose w′ in such a way
that, for all j 6= i, w′(xj) = w(xj). This means that, for any choice of w′(xi),
for all j 6= i 6= k, v,w′ |= Djk. Using the same argument as in the proof of
Lemma 11.2, we can find a value for w′(xi) such that also the remaining simple
guards of D are satisfied. ✷

Time Successors

Finally, we need to transform PDBMs for the passage of time, notation D ↑.
As in the DBMs case [60], this is done by setting the xi−x0 bounds to (∞, <),
for each i 6= 0, and leaving all other bounds unchanged. We have the following
lemma.

Lemma 11.9 Suppose (C,D) is a constrained PDBM in canonical form, v ∈
[[C]], and w a clock valuation. Then w ∈ [[D↑]]v iff ∃d ≥ 0 ∃w′ ∈ [[D]]v : w′+d =
w.

Proof. “⇐” Suppose d ≥ 0, w′ ∈ [[D]]v and w′ + d = w. We claim that w ∈
[[D↑]]v . For this we must show that for each guard f of D ↑, (v,w) |= f . Let f
be of the form xi − xj ≺ e. We distinguish between three cases:

• i 6= 0∧j = 0. In this case, by definition ofD↑, f is of the form xi−x0 <∞,
and so (v,w) |= f trivially holds.

• i = 0. In this case f is also a constraint of D. Since w′ ∈ [[D]]v we have
(v,w′) |= f , and thus −w′(xj) ≺ e[v]. But since d ≥ 0, this means that
−w(xj) = −w′(xi)− d ≺ e[v] and therefore (v,w) |= f .

• i 6= 0 ∧ j 6= 0. In this case f is again a constraint of D. Since w′ ∈ [[D]]v
we have (v,w′) |= f , and therefore w′(xi)−w

′(xj) ≺ e[v]. But this means
that w′(xi) − w′(xj) = (w(xi) − d) − (w(xj) − d) ≺ e[v] and therefore
(v,w) |= f .

“⇒” Suppose w ∈ [[D↑]]v . If m = 0 (i.e., there are no clocks) then D ↑= D
and the rhs of the implication trivially holds (take w′ = w and d = 0). So
assume m > 0. For all indices i, j with i 6= 0 and j 6= 0, (v,w) |= Dij. Hence
w(xi)−w(xj) ≺ij eij [v]. Thus, for any real number t, w(xi)−t−(w(xj)−t) ≺ij

eij [v]. But this means (v,w−t) |= Dij . It remains to be shown that there exists
a value d such that in valuation (v,w − d) also the remaining guards D0i and



190 Chapter 11. Parametric Real-Time Model Checking

Di0 hold. Let

t0 = max(0, w(x1)− e10[v], . . . , w(xn)− en0[v])

t1 = min(w(x1) + e01[v], . . . , w(xn) + e0n[v])

d = (t0 + t1)/2

w′ = w − d

Intuitively, t0 gives the least amount of time one has to go backwards in time
from w to meet all upper bounds of D (modulo strictness), whereas t1 gives the
largest amount of time one can go backwards in time from w without violating
any of the lower bounds of D (again modulo strictness). Value d sits right in
the middle of these two. We claim that d and w′ satisfy the required properties.
For any i, since (v,w) |= D0i, trivially

0 ≺0i w(xi) + e0i[v] (11.5)

Using that D is canonical we have, for any i, j,

eji[v] (≺ji =⇒ ≺j0 ∧ ≺0i) ej0[v] + e0i[v]

and, since v,w |= Dji,

w(xj)− w(xi) ≺ji eji[v].

Using these two observations we infer

w(xj)− ej0[v] (≺ji =⇒≺j0 ∧ ≺0i) w(xj)− eji[v] + e0i[v] ≺ji w(xi) + e0i[v].

Hence

w(xj)− ej0[v] ≺j0 ∧ ≺0i w(xi) + e0i[v] (11.6)

By inequalities (11.5) and (11.6), each subterm of max in the definition of
t0 is dominated by each subterm of min in the definition of t1. This implies
0 ≤ t0 ≤ t1.

Now either t0 < t1 or t0 = t1. In the first case it is easy to prove that in
valuation (v,w) the guards D0i and Di0 hold, for any i:

w′(xi) = w(xi)− d < w(xi)− t0 ≤ w(xi)− (w(xi)− ei0[v]) = ei0[v]

and thus w′(xi) < ei0[v] and v,w′ |= Di0. Also

−w′(xi) = −w(xi) + d < −w(xi) + t1 ≤ −w(xi) + (w(xi) + e0i[v]) = e0i[v]

and so −w′(xi) < e0i[v] and v,w′ |= D0i.

In the second case, fix an i. If w(xi)− ei0[v] < t0 then

w′(xi) = w(xi)− d = w(xi)− t0 < w(xi)− (w(xi)− ei0[v]) = ei0[v]



11.3. Symbolic State Exploration 191

and thus w′(xi) < ei0[v] and v,w′ |= Di0. Otherwise, if w(xi) − ei0[v] = t0
observe that by t0 = t1, inequality (11.6) and the fact that, t1 = w(xj)+ e0j [v],
for some j, ≺i0=≤. Since

w′(xi) = w(xi)− d ≤ w(xi)− t0 ≤ w(xi)− (w(xi)− ei0[v]) ≤ ei0[v]

and thus w′(xi) ≤ ei0[v] this implies v,w′ |= Di0.

The proof that v,w′ |= D0i, for all i, in the case where t0 = t1 proceeds similarly.
✷

11.3.3 Symbolic Semantics

With the four operations on PDBMs, we can describe the semantics of a para-
metric timed automaton symbolically.

Definition 11.10 (Symbolic semantics) The symbolic semantics of PTA
A = (Q, q0,→, I) is an LTS. The states are triples (q, C,D) with q a loca-
tion from Q and (C,D) a constrained PDBM in canonical form. The set of
initial states is

{(q0, C,D) | (⊤,E↑)
I(q0)
⇐ c (C,D)},

where E is the PDBM with Eij = (0,≤), for all i, j. The transitions are defined
by the following rule:

q
a,g,r
−→ q′ , (C,D)

g
⇐c (C ′′,D′′) , (C ′′,D′′[r]↑)

I(q′)
⇐c (C ′,D′)

(q, C,D)→ (q′, C ′,D′)
.

Using Lemma 11.4 and Lemma 11.5, it follows by a simple inductive argument
that if state (q, C,D) is reachable in the symbolic semantics and (v,w) ∈ [[C,D]]
then (v,w) |= I(q). It is also easy to see that the symbolic semantics of a PTA
is a finitely branching transition system. It may have infinitely many reachable
states though. Our search algorithm explores the symbolic semantics in an
“intelligent” manner, and for instance stops whenever it reaches a state whose
semantics is contained in the semantics of a state that has been encountered
before. Despite this, our algorithm need not terminate.

Each run in the symbolic semantics can be simulated by a run in the concrete
semantics.

Proposition 11.1 For each parameter valuation v and clock valuation w, if
there is a run in the symbolic semantics of A reaching state (q, C,D), with
(v,w) ∈ [[C,D]], then this run can be simulated by a run in the concrete seman-
tics [[A]]v reaching state (q, w).



192 Chapter 11. Parametric Real-Time Model Checking

Proof. By induction on the number of transitions in the run.

As basis we consider a run with 0 transitions, i.e., a run that consists of a start
state of the symbolic semantics. So this means that (q, C,D) is a start state.

Using the fact that (v,w) ∈ [[C,D]], the definition of start states, Lemma 11.5
and Lemma 11.4, we know that q = q0, (v,w) |= I(q0) and (v,w) ∈ [[⊤,E↑]].
By Lemma 11.9, we get that there exists a d ≥ 0 and w′ ∈ [[E]]v such that
w′ + d = w. Since (v,w) |= I(q0) and invariants in a PTA only give upper
bounds on clocks, also (v,w′) |= I(q0). It follows that (q0, w

′) is a state of the

concrete semantics [[A]]v and (q0, w
′)

d
−→ (q0, w). Since w′ ∈ [[E]]v , w

′ must be
of the form λx.0, so (q0, w

′) is an initial state of the concrete semantics. This
completes the proof of induction basis.

For the induction step, assume that we have a run in the symbolic semantics,
ending with a transition (q′, C ′,D′) → (q, C,D). Using the fact that (v,w) ∈
[[C,D]], the definition of transitions in the symbolic semantics, Lemma 11.5 and

Lemma 11.4, we know that there is a transition q′
a,g,r
−→ q in A, and there are

C ′′,D′′ such that (v,w) |= I(q), (v,w) ∈ [[C ′′,D′′[r]↑]] and (C ′,D′)
g
⇐ (C ′′,D′′).

By Lemma 11.9, we get that there exists a d ≥ 0 and w′ ∈ [[D′′[r]]]v such
that w′ + d = w. Since (v,w) |= I(q) and invariants in a PTA only give
upper bounds on clocks, also (v,w′) |= I(q). It follows that (q, w′) is a state

of the concrete semantics [[A]]v and (q, w′)
d
−→ (q, w). Using Lemma 11.8 we

get that there exists a w′′ ∈ [[D′′]]v such that w′ = w′′[r]. Using Lemma 11.5
and Lemma 11.4 again, it follows that (v,w′′) |= g and (v,w′′) ∈ [[C ′,D′]].
Following Definition 11.10, we already observed that the location invariant holds
for any reachable state in the symbolic semantics. In particular, (v,w′′) |= I(q′).
Hence, by definition of the concrete semantics, (q′, w′′) is a state of the concrete
semantics and (q′, w′′)

a
−→ (q, w′) is a transition in the concrete semantics. By

induction hypothesis, there is a path in the concrete semantics leading up to
state (q′, w′′). Extension of this path with the transitions (q′, w′′)

a
−→ (q, w′)

and (q, w′)
d
−→ (q, w) gives the required path in the concrete semantics.

✷

For each path in the concrete semantics, we can find a path in the symbolic
semantics such that the final state of the first path is semantically contained in
the final state of the second path.

Proposition 11.2 For each parameter valuation v and clock valuation w, if
there is a run in the concrete semantics [[A]]v reaching a state (q, w), then
this run can be simulated by a run in the symbolic semantics reaching a state
(q, C,D) such that (v,w) ∈ [[C,D]].

Proof. In any execution in the concrete semantics, we can always insert zero

delay transitions at any point. Also, two consecutive delay transitions (q, w)
d
−→

(q, w+ d) and (q, w+ d)
d′
−→ (q, w+ d+ d′) can always be combined to a single



11.3. Symbolic State Exploration 193

delay transition (q, w)
d+d′
−→ (q, w+ d+ d′). Therefore, without loss of generality,

we only consider concrete executions that start with a delay transition, and in
which there is a strict alternation of action transitions and delay transitions.
The proof is by induction on the number of action transitions.

As basis we consider a run (q0, w0)
d
−→ (q0, w0+d), where w0 = λx.0, consisting

of a single time-passage transition. By definition of the concrete semanctics,
(v,w0 + d) |= I(q0). Using Lemma 11.9, we have that (v,w0 + d) ∈ [[⊤,E↑]]
since (v,w0) ∈ [[⊤,E]]. From (v,w0 + d) ∈ [[⊤,E↑]] and (v,w0 + d) |= I(q0),
using Lemma 11.4 and Lemma 11.5 we get that there exists C,D such that

(⊤,E↑)
I(q0)
⇐ (C,D) and (v,w0 + d) ∈ [[C,D]]. By definition, (C,D) is an initial

state of the symbolic semantics. This completes the proof of the induction
basis.

For the induction step, assume that the run in the concrete semantics of [[A]]v

ends with transitions (q′′, w′′)
a
−→ (q′, w′)

d
−→ (q, w). By induction hypothesis,

there exists a run in the symbolic semantics ending with a state (q′′, C ′′,D′′)
such that (v,w′′) ∈ [[C ′′,D′′]].

By definition of the concrete semantics, there is a transition q′′
g,a,r
−→ q′ in A such

that (v,w′′) |= g and w′ = w′′[r]. Moreover, we have q′ = q and w = w′ + d
and (v,w) |= I(q). Using Lemma 11.4 and Lemma 11.5 gives that there exists

C ′,D′ such that (C ′′,D′′)
g
⇐c (C ′,D′) and (v,w′′) ∈ [[C ′,D′]]. By Lemma 11.8,

w′ ∈ [[D′[r]]]v. Moreover, by Lemma 11.9, w ∈ [[D′[r]↑]]v . Using (v,w) |=
I(q), Lemma 11.4 and Lemma 11.5, we infer that there exists C,D such that

(v,w) ∈ [[C,D]] and (C ′,D′[r] ↑)
I(q)
⇐ c (C,D). Finally, using the definition of

the symbolic semantics, we infer the existence of a transition (q′′, C ′′,D′′) →
(q, C,D).

✷

Example 11.2 Figure 11.2 shows the symbolic state-space of the automaton in
Fig. 11.1 represented by constrained PDBMs. In the initial state the invariant
x ≤ p limits the value of x, and since both clocks have the same value also the
value of y. When taking the transition from S0 to S1 we have to compare the
parameters p and q. This leads to a split where in the one case no state is
reachable since the region is empty, and in the other (when q ≤ p) S1 can be
reached. From then on no more splits occur and only one new state is reachable.

11.3.4 Evaluating Properties

We now define the relation
φ
⇐ which relates a symbolic state and a state formula

φ to a collection of symbolic states that satisfy φ.

In order to check whether a property holds, we break it down into the small
basic formulas, namely checking locations and clock guards. Checking that a



194 Chapter 11. Parametric Real-Time Model Checking

y

x(S0, , ∅)

( , ∅, {q > p})

(S1, x

(S0, , {q ≤ p})

y

p

q

, {q ≤ p})

y

p

q

x

Figure 11.3: The symbolic state space of the PTA in Fig. 11.1.

clock guard holds relies on the definition given earlier, of adding that clock
guard to the constrained PDBM. We rely on a special normal form of the state
formula, in which all ¬ signs have been pushed down to the basic formulas.

Definition 11.11 State formula φ is in normal form if all ¬ signs in φ appear
only in front of a subformula that checks a location: ¬q.

Since each simple guard with a ¬ sign in front can be rewritten to equivalent
simple guard without, for each state formula there is an equivalent one in normal
form.

In the following, let f be a simple guard, and φ be in normal form.

(Q1)
(q, C,D)

q
⇐ (q, C,D)

(Q2)
q 6= q′

(q, C,D)
¬q′

⇐ (q, C,D)

(Q3)
(C,D)

f
⇐c(C

′, D′)

(q, C,D)
f
⇐ (q, C′, D′)

(Q4)
(q, C,D)

φ1

⇐ (q, C′, D′) , (q, C′, D′)
φ2

⇐ (q, C′′, D′′)

(q, C,D)
φ1∧φ2

⇐ (q, C′′, D′′)

(Q5)
(q, C,D)

φ1

⇐ (q, C′, D′)

(q, C,D)
φ1∨φ2

⇐ (q, C′, D′)
(Q6)

(q, C,D)
φ2

⇐ (q, C′, D′)

(q, C,D)
φ1∨φ2

⇐ (q, C′, D′)

The following lemma gives the soundness and completeness of relation
φ
⇐.

Lemma 11.10 Let [[φ, q]] denote the set {(v,w) | (q, w) |= φ}. Then for all

properties φ in normal form [[C,D]] ∩ [[φ, q]] =
⋃

{[[C ′,D′]] | (q, C,D)
φ
⇐

(q, C ′,D′)}.



11.3. Symbolic State Exploration 195

Proof.

⊆: We prove that, for all C, D, v, w and q, if (v,w) ∈ [[C,D]] ∧ (q, w) |= φ

then there are C ′, D′ such that (v,w) ∈ [[C ′,D′]] ∧ (q, C,D)
φ
⇐ (q, C ′,D′).

We use induction on |φ|, where |φ| yields the depth of φ, as follows. For
a location q and a simple guard f , we have |q| = |¬q| = |f | = 0 and for
composed properties we have |φ1 ∧ φ2| = |φ1 ∨ φ2| = 1 + max(|φ1|, |φ2|).

– Base cases. Let |φ| = 0 and let (v,w) ∈ [[C,D]] and (q, w) |= φ.

∗ Suppose φ = q′. As (q, w) |= q′, clearly, q = q′. Since (q, C,D)
q
⇐

(q, C,D), we can take C = C ′ and D = D′ and the result follows.

∗ Suppose φ = ¬q′. Similar to the previous case.

∗ Suppose φ = f with f a simple guard. Then (v,w) ∈ [[C,D]] and
(q, w) |= f . By Lemma 11.4 we have that there exist C ′′,D′′ such

that (C,D)
f
⇐ (C ′′,D′′) and (v,w) ∈ [[C ′′,D′′]] and Lemma 11.5

yields C ′,D′ with (C ′′,D′′) →c (C ′,D′) and (v,w) ∈ [[C ′,D′]].

Thus, we also have (q, C,D)
f
⇐ (q, C ′,D′).

– Induction step. Let |φ| = n+ 1 and let (v,w) ∈ [[C,D]] and (q, w) |=
φ.

∗ Suppose φ = φ1 ∧ φ2. Clearly, (q, w) |= φ1 and (q, w) |= φ2. By
applying the induction hypothesis on φ1, C and D, we derive

that there exist C ′′,D′′ such that (q, C,D)
φ1
⇐ (q, C ′′,D′′) and

(v,w) ∈ [[C ′′,D′′]]. Applying the induction hypothesis on φ2,

C ′′ and D′′ yields C ′,D′ such that (q, C ′′,D′′)
φ2
⇐ (q, C ′,D′) and

(v,w) ∈ [[C ′,D′]]. Then also (q, C,D)
φ1∧φ2
⇐ (q, C ′,D′).

∗ Suppose φ = φ1 ∨ φ2. Clearly, (q, w) |= φ1 or (q, w) |= φ2.
Suppose (q, w) |= φ1. The induction hypothesis yields C ′,D′

such that (q, C,D)
φ1
⇐ (q, C ′,D′) and (v,w) ∈ [[C ′,D′]]. Then

(q, C,D)
φ1∨φ2
⇐ (q, C ′,D′). The case (q, w) |= φ2 is similar.

⊇: By induction on the structure of the derivation of
φ
⇐, we establish that

for all v, w, C, D, C ′, D′, if (q, C,D)
φ
⇐ (q, C ′,D′) and (v,w) ∈ [[C ′,D′]]

then (v,w) ∈ [[C,D]] and (q, w) |= φ.

– Base cases. The derivation consists of a single step r. Assume

(q, C,D)
φ
⇐ (q, C ′,D′) and (v,w) ∈ [[C ′,D′]].

∗ r = Q1. Then φ = q, C = C ′, D = D′. Then clearly, (v,w) ∈
[[C,D]] and (q, w) |= q.

∗ r = Q2. Similar to the previous case.

∗ r = Q3. Suppose φ = f with f a simple guard. Then (q, C,D)
φ
⇐

(q, C ′,D′) has been derived from (C,D)
f
⇐c(C

′,D′). Then there



196 Chapter 11. Parametric Real-Time Model Checking

exist C ′′, D′′ such that (C,D)
f
⇐(C ′′,D′′) and (C ′′,D′′)→c(C

′,D′).
By Lemma 11.5 we have (v,w) ∈ [[C ′′,D′′]]. Then we have by
Lemma 11.4 that (v,w) |= f and (v,w) ∈ [[C,D]].

– Induction step. Assume (q, C,D)
φ
⇐ (q, C ′,D′) and (v,w) ∈ [[C ′,D′]]

and consider the last rule r used in the derivation of (q, C,D)
φ
⇐

(q, C ′,D′).

∗ r = Q4. Then φ = φ1 ∧ φ2 and (q, C,D)
φ1
⇐ (q, C ′′,D′′) and

(q, C ′′,D′′)
φ2
⇐ (q, C ′,D′) for some C ′′,D′′. Applying the induc-

tion hypothesis to the second statement yields that (q, w) |= φ2

and (v,w) ∈ [[C ′′,D′′]]. Then applying the induction hypothesis
to the first statement yields (q, w) |= φ1 and (v,w) ∈ [[C,D]].
Then also (v,w) |= φ1 ∧ φ2.

∗ r = Q5. Then φ = φ1 ∨ φ2. Then (q, C,D)
φ1
⇐ (q, C ′,D′). By

the induction hypothesis we have that (q, w) |= φ1 and (v,w) ∈
[[C,D]].

∗ r = Q6. Similarly to the previous case.

✷

11.3.5 Algorithm

We are now in a position to present our model checking algorithm for parametric
timed automata. The algorithm displayed in Fig. 11.4 describes how our tool
explores the symbolic state-space and searches for constraints on the parameters
for which a reachability formula ∃✸φ holds in a PTA A. The result returned by
the algorithm is a set of symbolic states, all of which satisfy φ, for any valuation
of the parameters and clocks in the state. For invariance properties ∀✷φ, the
tool performs the algorithm on ¬φ, and the result is then a set of symbolic states,
none of which satisfies φ. The answer to the model checking problem, stated
in Section 11.2.2, is obtained by taking the union of the constraint sets from
all symbolic states in the result of the algorithm; in the case of an invariance
property we take the complement of this set.

A difference between the algorithm in Fig. 11.4 and the standard timed model
checking algorithm is that we continue the exploration until either no more
new states are found or all paths end in a state satisfying the property. This
is because we want to find all the possible constraints on the parameters for
which the property holds. Also, the operations on non-parametric DBMs only
change the DBM they are applied to, whereas in our case, we may end up with
a set of new PDBMs and not just one.

Some standard operations on symbolic states that help in exploring as little as
possible, have also been implemented in our tool for parametric symbolic states.
Before starting the state-space exploration, our implementation determines the



11.4. Reducing the Complexity 197

algorithm Reachable(A, φ)
Result := ∅
Passed := ∅

Waiting := {(q0, C, D) | (⊤,E↑)
I(q0)

⇐ c (C, D)}
while Waiting 6= ∅ do

select (q, C, D) from Waiting

Result := Result ∪ {(q′, C′, D′) | (q, C, D)
φ

⇐ (q′, C′, D′)}

False := {(q′, C′, D′) | (q, C, D)
¬φ

⇐ (q′, C′, D′)}
for each (q′, C′, D′) in False do

if for all (q′′, C′′, D′′) in Passed: (q′, C′, D′) 6⊆ (q′′, C′′, D′′) then

add (q′, C′, D′) to Passed

for each (q′′, C′′, D′′) such that (q′, C′, D′) → (q′′, C′′, D′′) do

Waiting := Waiting ∪ {(q′′, C′′, D′′)}
return Result

Figure 11.4: The parametric model checking algorithm

maximal constant for each clock. This is the maximal value to which the clock
is compared in any guard or invariant in the PTA. When the clock value grows
beyond this value, we can ignore its real value. This enables us to identify many
more symbolic states, and helps termination2.

11.4 Reducing the Complexity

This section introduces the class of lower bound/upper bound automata and de-
scribes several (rather intuitive) observations that simplify the model checking
of PTAs in this class. Our results allow us to eliminate parameters in certain
cases. Since the complexity of parametric model checking grows very fast in
the number of parameters, this is a relevant issue. Secondly, our observations
yield a decidability result for lower bound/upper bound automata whereas the
corresponding problem for general PTAs is undecidable.

Informally, a positive occurrence of a parameter in a guard or an invariant of
a PTA enforces (or contributes to) an upper bound on a clock difference, for
instance p in x− y < 2p. A negative occurrence of a parameter contributes to
a lower bound on a clock difference, for instance q and q′ in y − x > q + 2q′

(≡ x− y < −q− 2q′) and in x− y < 2p− q− 2q′. Hence, a PTA containing the
guards x− y ≤ p− q and z < q − p is not an L/U automaton.

Definition 11.12 A parameter pi ∈ P is said to occur in the linear expression
e = t0 + t1 · p1 + · · · tn · pn if ti 6= 0; pi occurs positively in e if ti > 0 and
pi occurs negatively in e if ti < 0. A lower bound parameter of a PTA A is
a parameter that only occurs negatively in the expressions of A and an upper
bound parameter of A a parameter that only occurs positively in A. We call
A a lower bound/upper bound (L/U) automaton if every parameter occurring

2For purely timed model checking this guarantees termination.



198 Chapter 11. Parametric Real-Time Model Checking

in A is either a lower bound parameter or an upper bound parameter of A, but
not both.

Example 11.3 The automaton in Fig. 11.5 is an L/U automaton where min
is a lower bound parameter and max is an upper bound parameter. Also the
model of Fischer protocol in Fig. 11.2 is an L/U automaton. Here min rw
and min delay are lower bound parameters and max rw and max delay are the
upper bound parameters.

From now on, we work with a fixed set L = {l1, . . . lK} of lower bound pa-
rameters and a fixed set U = {u1, . . . uM} of upper bound parameters with
L ∩ U = ∅ and L ∪ U = P .

We consider, apart from parameter valuations, also extended parameter valu-
ations. Intuitively, an extended parameter valuation is a parameter valuation
with values in R≥0 ∪ {∞}, rather than in R≥0. Extended parameter valuations
are useful in certain cases to solve the verification problem (over non-extended
valuations) stated in Section 11.2.3. Working with extended parameter valua-
tions may cause the evaluation of an expression to be undefined. For example,
the expression e[v] is not defined for e = p − q and v(p) = v(q) = ∞. We
require that an extended parameter valuation of an L/U automaton does not
assign the value ∞ both to a lower bound parameter and to an upper bound
parameter. Then the expression e[v] is defined for every extended valuation of
an L/U automaton.

Therefore, we can easily extend notions e[v], (v,w) |= e and A[v] (defined in
Section 11.2) to extended valuations, by using the conventions that 0 ·∞ = 0,
that x − y ≺ ∞ evaluates to true and x − y ≺ −∞ to false. In particular, we
have [[A]]v = A[v] for extended valuations v and L/U automata A. Moreover, we
extend the orders ∼ to R ∪ {∞} in the usual way and to extended valuations
via point wise extension (i.e. v ∼ v′ iff v(p) ∼ v′(p) for all p ∈ P ). We
denote an extended valuation of an L/U automaton by a pair (λ, µ), which
equals the function λ on the lower bound parameters and µ on the upper bound
parameters. We write 0 and ∞ for the functions assigning respectively 0 and
∞ to each parameter.

The following proposition is based on the fact that weakening the guards in A
(i.e. decreasing the lower bounds and increasing the upper bounds) yields an
automaton whose reachable states include those of A. Dually, strengthening the
guards in A (i.e. increasing the lower bounds and decreasing the upper bounds)
yields an automaton whose reachable states are a subset of those of A. We
claim that this proposition, formulated for L/U automata, can be generalized
to lower bound and upper bound parameters present in general PTAs. It is
however crucial that (by definition) state formulae do not contain parameters.
The usefulness of this property (and of several other properties in this section)
lies in the fact that it allows to conclude the satisfaction of a property for
infinitely many parameter valuations from the satisfaction of that property for
one valuation.



11.4. Reducing the Complexity 199

S0 S1 x<=max

S2

x:=0

x=> min

Figure 11.5: Reducing parametric to non-parametric model checking

Proposition 11.3 Let A be an L/U automaton and φ a state formula. Then

1. [[A]](λ,µ) |= ∃✸φ ⇐⇒ ∀λ′ ≤ λ, µ ≤ µ′ : [[A]](λ′,µ′) |= ∃✸φ.

2. [[A]](λ,µ) |= ∀✷φ ⇐⇒ ∀λ ≤ λ′, µ′ ≤ µ : [[A]](λ′,µ′) |= ∀✷φ.

Proof. (sketch) Both parts of the proposition can be proven by induction on
the length of runs in the L/U automata. The crucial observation is that for
parameter valuations λ′ ≤ λ and µ ≤ µ′ and linear expression e we have that
e[λ′, µ] ≤ e[λ, µ] and e[λ, µ] ≤ e[λ, µ′]. Therefore whenever ((λ, µ), w) |= g then
((λ′, µ′), w) |= g.

✷

The following example illustrates how Proposition 11.3 can be used to eliminate
parameters from L/U automata.

Example 11.4 The automaton in Fig. 11.5 is an L/U automaton. Its location
S1 is reachable irrespective of the parameter values. By setting the parameter
min to ∞ and max to 0, one checks with a non-parametric model checker
that A[(∞, 0)] |= ∃✸S1. Then Proposition 11.3 (together with [[A]]v = A[v])
yields that S1 is reachable in [[A]](λ,µ) for all extended parameter valuations
0 ≤ λ, µ ≤ ∞.

Clearly, [[A]](λ,µ) |= ∃✸S2 iff λ(min) ≤ µ(max) ∧ λ(min) < ∞. We will see
in this running example how we can verify this property completely by non-
parametric model checking. Henceforth, we construct the automaton A′ from A
by substituting the parameter max by the parameter min yielding a (non L/U)
automaton with one parameter, min. If we show that [[A′]]v |= ∃✸S2 for all
valuations v, this essentially means that [[A]](λ,µ) |= ∃✸S2 for all λ, µ such that
µ(max) = λ(min) <∞ and then Proposition 11.3 implies that [[A]](λ,µ) |= ∃✸S2

for all λ, µ with λ(min) ≤ µ(max) and λ(min) <∞.

The question whether there exists a (non-extended) parameter valuation such
that a given (final) location q is reachable, is known as the emptiness problem
for PTAs. In [15], it is shown that the emptiness problem is undecidable for
PTAs with three clocks or more. The following proposition implies that we
can solve the emptiness problem for a L/U automaton A by only considering
A[(0,∞)], which is a non-parametric timed automaton. Since reachability is
decidable for timed automata [13], the emptiness problem is decidable for L/U



200 Chapter 11. Parametric Real-Time Model Checking

automata. Then it follows that the dual problem is also decidable for L/U
automata. This is the universality problem for invariance properties, asking
whether an invariance property holds for all parameter valuations.

Proposition 11.4 Let A be an L/U automaton. Then A[(0,∞)] |= ∃✸q if
and only if there exist a (non-extended) parameter valuation (λ, µ) such that
[[A]](λ,µ) |= ∃✸q.

Proof. The “if”–part is an immediate consequence of Proposition 11.3 and the
fact that A[(0,∞)] = [[A]](0,∞). For the “only if”–part, assume that α is a

run of A[(0,∞)] that reaches q. Let T ′ be the smallest constant occurring
in A and T be the maximum clock value occurring in α. (More precisely, if
α = s0a1s1a2 . . . aNsN and si = (qi, wi), then T = maxi≤N,x∈C{wi(x)}; T

′

compensates for negative constants t0.) Now, take λ(lj) = 0 and µ(uj) =
T + |T ′| + 1. Then for every guard or invariant g occurring in A we have
that ((0,∞), wi) |= g =⇒ ((λ, µ), wi) |= g. Hence, α is a run of [[A]](λ,µ), so
[[A]](λ,µ) |= ∃✸q.

✷

Corollary 11.1 The emptiness problem is decidable for L/U automata.

Definition 11.13 A PTA A is fully parametric if clocks are only reset to 0
and every linear expression in A of the form t1 · p1 + · · ·+ tn · pn, where ti ∈ Z.

The following proposition is basically the observation in [13], that multiplication
of each constant in a timed automaton and in a system property with the same
positive factor preserves satisfaction.

Proposition 11.5 Let A be fully parametric PTA. Then for all parameter val-
uations v and all system properties ψ

[[A]]v |= ψ ⇐⇒ ∀t ∈ R>0 : [[A]]t · v |= t ·ψ,

where t · v denotes the valuation p 7→ t · v(p) and t ·ψ the formula obtained from
ψ by multiplying each number in ψ by t.

Proof. It is easy to see that for all t ∈ R>0, α = s0a1s1a2 . . . aNsN with si =
(qi, wi) is a run of [[A]]v if and only if s′0a1s

′
1 . . . aNs

′
N is a run of [[A]]t · v, where

s′i = (qi, t ·wi) and t ·wi denotes x 7→ t ·wi(x). ✷

Then for fully parametric PTAs with one parameter and system properties ψ
without constants (except for 0), we have [[A]]v |= ψ for all valuations v of P
if and only if both A[0] |= ψ and A[1] |= ψ. The fact that the 0-case has to
be treated separatly is illustrated by the (fully parametric) automaton with a
single transition equipped with the guard x < p. The target location of the
transition is not reachable for p = 0.



11.4. Reducing the Complexity 201

Corollary 11.2 For fully parametric PTAs with one parameter and properties
ψ without constants (except 0), it is decidable whether ∀v ∈ [[C]] : [[A]]v |= ψ.

Example 11.5 The PTA A′ mentioned in Example 11.4 is a fully parametric
timed automaton and the property ∃✸S2 is without constants. We establish that
A′[0] |= ∃✸S2 and A′[1] |= ∃✸S2. Then Proposition 11.5 implies that A′[v] |=
∃✸S2 for all v. As shown in Example 11.4, this implies that [[A]](λ,µ) |= ∃✸S2

for all λ, µ with λ(min) = µ(max) <∞.

In the running example, we would like to use the same methods as above to
verify that [[A]](λ,µ) 6|= ∃✸S2 if λ(min) > µ(max). We can in this case not fill in
for min = max, since the bound in the constraint is a strict one. The following
definition and results allows us to move the strictness of a constraint into the
PTA.

Definition 11.14 Let P ′ ⊆ P be a set of parameters. Define A<
P ′ as the au-

tomaton obtained by replacing every inequality x − y ≤ e in A by a strict
inequality x − y < e, provided that e contains at least one parameter from P ′.
Similarly, define A≤

P ′ as the automaton from A obtained by replacing every in-
equality x− y < e by a non–strict inequality x− y ≤ e, provided that e contains
at least one parameter from P ′. For ≺=<,≤, write A≺ for A≺

P . Moreover,
define v ≺P ′ v′ by v(p) ≺ v′(p) if p ∈ P ′ and v(p) = v′(p) otherwise.

Proposition 11.6 Let A be an L/U automaton. Then

1. [[A≤]](λ,µ) |= ∃✸φ =⇒ ∀λ′ < λ,µ < µ′ : [[A]](λ′,µ′) |= ∃✸φ.

2. [[A<]](λ,µ) |= ∀✷φ ⇐⇒ ∀λ < λ′, µ′ < µ : [[A]](λ′,µ′) |= ∀✷φ.

Proof.

1, =⇒ Let e be a linear expression occuring in A. Then we can write e =
t0 + e1 + e2, where t0 ∈ Z, e1 is an expression over the upperbound
parameters and e2 an expression over the lower bound parameters. Then
we have

µ ≤ µ′ =⇒ e1[µ] ≤ e1[µ
′],

λ′ ≤ λ =⇒ e2[λ
′] ≤ e2[λ],

λ′ ≤ λ, µ ≤ µ′ =⇒ e[(λ, µ)] ≤ e[(λ′, µ′)].

If there is at least one parameter occuring in e1 or e2 respectively then
respectively

µ < µ′ =⇒ e1[µ] < e1[µ
′]

λ′ < λ =⇒ e2[λ] < e2[λ
′].



202 Chapter 11. Parametric Real-Time Model Checking

Thus if there is at least one parameter occuring in e, then

λ′ < λ,µ < µ′ =⇒ e[(λ, µ)] < e[(λ′, µ′)].

Now, let (λ, µ) be an extended valuation. Let g ≡ x− y ≺ e be a simple
guard occuring in A≤ and let g′ ≡ x− y ≺′ e be the corresponding guard
in A. Assume that (w, (λ, µ)) |= g, i.e. w(x)−w(y) ≺ e[(λ, µ)]. We show
that (w, (λ, µ)) |= g′. We distinguish two cases.

case 1: There exists a parameter occuring in e. Then w(x) − w(y) ≺
e[(λ, µ)] < e[(λ′, µ′)]. Then certainly (w, (λ, µ)) |= g′ ≡ x− y ≺′ e.

case 2: The expression e does not contain any parameter. Then g′ ≡ g
and hence (w, (λ, µ)) |= g′.

Now it easily follows that every run of [[A≤]](λ,µ) is also a a run of [[A]](λ′,µ′).

Thus, if a state satisfying ψ is reachable in [[A≤]](λ,µ) then it is also reach-
able in [[A]](λ′,µ′).

2, =⇒ : This follows from 1. Assume that [[A<]](λ,µ) |= ∀✷φ and let λ′, µ′ be

such that λ < λ′, µ′ < µ. Since [[A<]](λ,µ) 6|= ∃✸¬φ, we have

¬∀λ′′ < λ′, µ′ < µ′′ : [[A<]](λ′′,µ′′) |= ∃✸¬φ.

Then contraposition of statement (1) of this proposition together with
(A<)≤ = A≤ yields [[A≤]](λ′,µ′) 6|= ∃✸¬φ. As A imposes stronger bounds

than A≤, also [[A]](λ′,µ′) 6|= ∃✸¬φ, i.e. [[A]](λ′,µ′) |= ∀✷φ.

2, ⇐=: Let (λ, µ) be an extended valuation and assume that [[A]](λ′,µ′) |= ∀✷φ

for all λ′ > λ, µ′ < µ. Assume that α is a run of [[A<]](λ,µ). We construct

λ′ > λ and µ′ < µ such that α is also a run of [[A]](λ′,µ′). (Then we are
done: since [[A]](λ′,µ′) |= ∀✷φ, the last state of α satisfies φ. Hence every
reachable state of [[A]](λ,µ) satisfies φ, i.e. [[A]](λ,µ) |= ∀✷φ.)

We use the following notation. We write v = (λ, µ) and v′ = (λ′, µ′). For
a run α, we write α = s0a1s1a2 . . . aNsN with si = (qi, wi), I(qi) = ∧J ′

j Iij ,

Iij = xij ≺ij Eij . As α is a run, there exists a transition qi−1
gi,ai,ri−−−−→ qi for

each i, 1 ≤ i ≤ N . We write the guard on this transition by gi = ∧J
j gij ,

gij = xij − yij ≺ij eij. Finally, if g is a guard or invariant in A, then we
denote the corresponding guard or invariant in A< by g<, i.e. the guard
that is obtained as in Definition 11.14.

If neither the guards gij nor the invariants Iij contains a parameter, then
we can take v′ arbitrarily and we have that α is a run of [[A]]v′ . Therefore,
assume that at least one of the guards gij or invariants Iij contains a
parameter. Then, by definition of A<, this guard or invariant contains
a strict bound. In this case, we construct λ′ > λ and µ′ < µ such that
wi(x − y) < e[(λ′, µ′)] < e[(λ, µ)] if g = x − y < e is an invariant Iij or
guard gij as above. Informally, we use the minimum “distance” e[(λ, µ)]−



11.4. Reducing the Complexity 203

wi(x−y) occurring in α to slightly increase the lower bounds and slightly
decrease the upper bounds yielding λ < λ′ and µ < µ′.

Let

T0 = min
i≤N,j≤J ′

{Eij [v]− wi(xij) |≺ij=<},

T1 = min
i≤N,j≤<J

{eij [v]− wi(xij − yij) |≺ij=<},

0 <T < min {T0, T1},

with the convention that min ∅ =∞. At least one of the inequalities ≺ij

is strict, since at least one of the guards contains a parameter. Hence
T0 <∞ or T1 <∞. Since (v,wi) |= Iij ∧ gij , we have we have that T0 ≥ 0
and T1 ≥ 0. Hence ∞ > min {T0, T1} > 0 and the requested T exists.
The crucial property is that if gij ≡ xij − yij < eij or gij ≡ xij − yij < Eij

we have respectively

T < eij [v]− wi(xij − yij)

T < Eij[v] −wi(xij − yij).

Now, let T ′ be the sum of the constants appearing in the guards and
invariants that appear in the run α i.e.

T ′ =
∑

i≤N,j≤J ′

sum of const(Eij) +
∑

i≤n,j≤J

sum of const(eij),

where sum of const(t0 + t1 · p1 + · · · + tn · pn) = |t1| + · · · + |tn| . Since
at least one of the guards or invariants contains a parameter, we have
T ′ > 0.

Now, take v′ = (λ + T
T ′ , µ −

T
T ′ ) and consider gij ≡ xij − yij ≺ij eij . We

claim that (v′, wi) |= gij .

case 1: The expression gij does not contain any parameter. Then gij =
g<
ij and eij [v] = eij [v

′]. Since (wi, v) |= gij , also (wi, (v
′)) |= g<

ij .

case 2: There exists a parameter occurring in e. We can write e =
t0 + t1 · u1 + · · ·+ tM ·uM − t

′
1 · l1 − · · · − t

′
K · lK , with ti ≥ 0, t′i ≥ 0

for i > 0. Then

eij [v
′] = t0 +

M
∑

k=1

tk ·(µ
′
k −

T

T ′
)−

K
∑

k=1

tk ·(λ
′
k +

T

T ′
)

= (t0 +
M
∑

k=1

tk ·µ
′
k −

K
∑

k=1

tk ·λ
′
k)−

T

T ′
·(

M
∑

k=1

tk +
K

∑

k=1

t′k)

≥ eij [v]− T

> eij [v]− (eij [v] −wi(xij − yij))

= wi(xij − yij).

Therefore (wi, v
′) |= xij − yij < g<

ij and then also (wi, v
′) |= xij −

yij ≺ij g
<
ij .



204 Chapter 11. Parametric Real-Time Model Checking

q0

x<=2

q

x<=max

x:=0

y>=10

Figure 11.6: The converse of Proposition 11.6 (1) does not hold.

Combining the cases (1) and (2) yields that for all i, j, (wi, v
′) |= xij −

yij ≺ij g
<
ij . Similarly, one proves that (wi, v

′) |= xij − yij ≺ij Iij . There-
fore, α is a fun of [[A]](λ′,µ′).

✷

The previous result concerns the automaton that is obtained when all the strict
inequalities in the automaton are changed into nonstrict ones, (or the other way
around). Sometimes, we want to ‘toggle’ only a some of the inequalities. Then
the following result can be applied.

Corollary 11.3 Let A be an L/U automaton and P ′ ⊆ P .

1. [[A≤
P ′ ]](λ,µ)

|= ∃✸φ =⇒ ∀λ′ <P ′ λ, µ <P ′ µ′ : [[A]](λ′,µ′) |= ∃✸φ.

2. [[A<
P ′ ]](λ,µ)

|= ∀✷φ ⇐⇒ ∀λ <P ′ λ′, µ′ <P ′ µ : [[A]](λ′,µ′) |= ∀✷φ.

Proof. Let (λ, µ) be an extended valuation. Let A0 be the automaton obtained
from A by substituting p by (λ, µ)(p) for every p /∈ P ′. Then A<

P ′ = A0
< and

A≤
P ′ = A0

≤. Now the result follows by applying Proposition 11.6 to A0. ✷

The following example shows that the converse of Proposition 11.6, item 1 does
not hold.

Example 11.6 Consider the automaton A in Fig. 11.6. Recall that the clocks
x and y are initially 0. Then A = A≤ and the location q is reachable if max >
0 but not if max = 0. Thus ∀λ′ < 0, 0 < µ′ : [[A]](λ′,µ′) |= ∃✸φ, but not

[[A≤]](0,0) |= ∃✸φ.

We believe the class of L/U automata can be very useful in practice. Sev-
eral examples known from the literature fall into this class, or can be modeled
slightly differently to achieve this. We mention the IEEE Root Contention pro-
tocol [91], Fischer’s mutual exclusion protocol [102], the (toy) rail road crossing
example from [15], the Bounded Retransmission protocol (when considering



11.4. Reducing the Complexity 205

a fixed value for the integer variables), and the Biphase Mark protocol (with
minor adaptations). Moreover, the MMT models from [117] can be encoded
straightforwardly into L/U automata.

We expect that many other distributed systems and protocols can be modeled
with L/U automata, since it is quite natural to have the duration of an event
(such as the communication delay in a channel, the computation time needed
to produce a result, the time required to open the gate in a rail road crossing)
lying between a lower bound and an upper bound and these bounds are often
the parameters of the system.

Section 11.4.1 and Section 11.5 show that the techniques discussed in this sec-
tion to eliminate parameters in L/U models reduce the verification effort sig-
nificantly and possibly leads to a completely non-parametric model.

11.4.1 Verification of Fischer’s Mutual Exclusion Protocol

In this section, we apply the results from the previous section to verify the
Fischer protocol with 2 processes. We can establish the sufficiency of the pro-
tocol constraints by non-parametric model checking and the necessity of the
constraints by eliminating three of the four parameters.

Consider the Fischer protocol from Section 11.2.4 again. In this section, we
consider a system A consisting of two parallel processes P1 and P2. It is clear
that A is a fully parametric L/U automaton: min rw and min delay are lower
bound parameters and max rw and max delay upper bound parameters.

The mutual exclusion property is expressed by the formula

ΦME ≡ ∀✷¬(P1.cs ∧ P2.cs).

Recall that assuming the basic constraints BME ≡ 0≤min rw<max rw ∧ 0≤
min delay <max delay, mutual exclusion is guaranteed if and only if CME ≡
max rw≤min delay. Thus we prove that for all valuations v: v |= BME =⇒
([[A]]v |= ΦME ⇐⇒ v |= CME).

Sufficiency of the Constraints

We show that the constraints assure mutual exclusion, that is

if v |= CME ∧BME , then A[v] |= ΦME.

We perform the substitution

min rw 7→ 0,max delay 7→ ∞,min delay 7→ max rw

to obtain a fully parametric automaton A′ with one parameter, max rw. We
have established by non-parametric model checking that A′[0] |= ΦME and
A′[1] |= ΦME. Now Proposition 11.5 yields that [[A′]]v |= ΦME for all valuations



206 Chapter 11. Parametric Real-Time Model Checking

v (where only the value of max delay matters). This means that [[A]]v |= ΦME

if v(min rw) = 0, v(max rw) = v(min delay) and v(max delay) = ∞. Then
Proposition 11.3 yields that the mutual exclusion property, which is an invari-
ance property, also holds if the lower bound parameters min rw and min delay
are increased and if the upper bound parameter max rw is decreased. More pre-
cisely, Proposition 11.3 implies that [[A]]v |= ΦME for all v with 0 ≤ v(min rw),
v(max rw) ≤ v(min delay) and v(max delay) ≤ ∞. Then, in particular, if
v |= CME ∧BME , then [[A]]v |= ΦME.

Necessity of the Constraints:

We show that if

v |= BME ∧ ¬CME =⇒ A[v] |= ¬ΦME,

i.e. that if v |= min rw <max rw ∧ min delay <max delay ∧ min delay <
max rw, then A[v] |= ¬ΦME ≡ ∃✸(P1.cs∧P2.cs). We construct the automaton
A≤ and proceed in two steps.

Step 1 Let v0 be the valuation v0(min delay) = v0(max delay) = 0 and
v0(min rw) = v0(max delay) = 1. By non-parametric model checking we
have established that

A≤[0] |= ¬ΦME (11.7)

A≤[v0] |= ¬ΦME. (11.8)

We show that it follows that for all v

v |= 0 = min delay = max delay ≤ min rw = max rw =⇒ A≤[v] |= ¬ΦME.
(11.9)

Assume v |= 0 = min delay = max delay ≤ min rw = max rw. Consider
t = v(min rw). If v(min rw) = 0, then (11.7) shows that [[A≤]]v |= ¬ΦME.

Therefore, assume v(min rw) > 0 and consider v
t ≡ λx.v(x)

t . It is not difficult
to see that

v

t
|= 0 = min delay = max delay ≤ min rw = max rw = 1.

Therefore, (11.8) yields [[A≤]] v
t
|= ¬ΦME. Since A≤ is a fully parametric PTA,

Proposition 11.5 yields that [[A≤]]v |= ¬ΦME.

Step 2 Let A′ be the automaton that is constructed from A≤ by performing the
following substitution min delay 7→ 1, max delay 7→ 1, min rw 7→ max rw.
By parametric model checking we have established

v |= 1 ≤ max rw =⇒ [[A′]]v |= ¬ΦME. (11.10)



11.5. Experiments 207

This means that if

v |= min delay = max delay = 1 ≤ min rw = max rw =⇒ [[A≤]]v |= ¬ΦME.

By a argument similar to the one we used to prove (11.9), (where now the
case v(min delay) = 0 is covered by statement (11.9) in Step 1.), we can use
Proposition 11.5 to show that

v |= min delay = max delay ≤ min rw = max rw =⇒ [[A≤]]v |= ¬ΦME.

Now, Proposition 11.3 yields that ¬ΦME – which is a reachability property –
also holds if the values for the lower bounds are decreased and the values for the
upper bounds are increased. Note that we may increase max delay as much as
we want; v(max delay) may be larger than v(min rw). Thus we have

v |= min rw≤max rw ∧ min delay≤max delay ∧ min delay≤max rw

=⇒ [[A≤]]v |= ¬ΦME

and then Proposition 11.6 yields that

v |= min rw<max rw ∧ min delay<max delay ∧ min delay<max rw

=⇒ [[A]]v |= ¬ΦME.

We have checked the result formulated in statement 11.10 with our prototype
implementation. The experiment was performed on a SPARC Ultra in 2 seconds
CPU time and 7.7 Mb of memory. We also tried to verify the protocol model
without any substitutions or changing of bounds with our prototype, which
did not terminate within 20 hours. Since we observed that the constraints
lists of the states explored kept growing, we concluded that this experiment
would not terminate at all. (Recall that parametric verification is undecidable.)
Therefore, we can conclude that in some cases, the techniques for L/U automata
yield results even if the state-space exploration algorithm seemingly does not
terminate on the original model.

The substitutions and techniques used in the verification to eliminate parame-
ters are ad hoc. We believe however that more general strategies can be applied,
especially in this case, where the constraints are L/U–like (i.e. can be written
in the form e ≺ 0 such that every p occurring negatively in e is a lower bound
parameter and every p occurring positively in e is an upper bound parameter).

11.5 Experiments

11.5.1 A Prototype Extension of Uppaal

In this section, we report on the results of experimenting with a prototype
extension of Uppaal described in the previous sections.



208 Chapter 11. Parametric Real-Time Model Checking

Our prototype allows the user to give some initial constraints on the parameters.
This is particularly useful when explorations cannot be finished due to lack of
memory or time resources, or because a non-converging series of constraint
sets is being generated. Often, partial results can be derived by observing the
constraint sets that are generated during the exploration. Based on partial
results, the actual solution constraints can be established in many cases. These
partial results can then be checked by using an initial set of constraints. Always,
for each parameter p the constraint p ≥ 0 is added as initial constraint.

11.5.2 The Root Contention Protocol

The root contention protocol is part of a leader election protocol in the physical
layer of the IEEE 1394 standard (FireWire/i-Link), which is used to break
symmetry between two nodes contending to be the root of a tree, spanned in
the network topology. The protocol consists of first drawing a random number
(0 or 1), then waiting for some time according to the result drawn, followed by
the sending of a message to the contending neighbor. This is repeated by both
nodes until one of them receives a message before sending one, at which point
the root is appointed.

We use the Uppaal models of [140, 136], turn the constants used into param-
eters, and experiment with our prototype implementation (see Fig. 11.7 for
results3). In both models, there are five constants, all of which are parameters
in our experiments. The delay constant indicates the maximum delay of sig-
nals sent between the two contending nodes. The rc fast min and rc fast max
constants give the lower and upper bound to the waiting time of a node that
has drawn 1. Similarly, the rc slow min and rc slow max constants give the
bounds when 0 has been drawn. It is reasonable to assume that initially, the
constraints rc fast min ≤ rc fast max ≤ rc slow min ≤ rc slow max hold.

We have checked for safety with the following property:

∀✷ . (¬(Node1.root ∧Node2.root) ∧ ¬(Node1.child ∧Node2.child))

Safety for [140] It is shown in [140], that the safety property holds, if the
parameters obey the following relation: delay < rc fast min. We have checked
that the error states, expressed in the safety property, are indeed unreachable
when this parameter constraint is met. We have also checked whether error
states are reachable when we assume the constraint delay = rc fast min. This
turns out not to be the case. In fact, it is argued in Remark 2 in [140], that the
mentioned constraint is not needed for the correctness of the protocol. Rather
than checking this on the parameterized model without any initial constraints,
which is a large task, we experiment with a non-parametric version of the model
without any timing constraints. It turns out that this model satisfies the safety
property, hence we deduce that the parametric model, in which guards and

3All experiments were performed on a 366 MHz Celeron, except the liveness property which
was performed in a 333 MHz SPARC Ultra Enterprise.



11.5. Experiments 209

invariants have been added, satisfies the safety property for any valuation of
the parameters.

Safety for [136] A different model of the root contention protocol is pro-
posed in [136], in which it is shown that the relation between the parameters
for the safety property to hold, should obey: 2∗delay < rc fast min. In fact,
the model satisfies the safety property already when delay < rc fast min, but
the stronger constraint is needed for proper behavior of the connecting wires.
The necessity and sufficiency of these constraints is shown in [136] by applying
standard Uppaal to several valuations for the parameters, and presented as an
experimental result.

We have checked that the error states, expressed in the safety property, are
indeed unreachable when either of these parameter constraints are met. We
have also checked whether error states are reachable when we assume the con-
straint delay = rc fast min, which turns out to be the case as well. In fact,
the union of the constraint sets of reachable states reported, can be rewritten
to the constraint delay = rc fast min. As a double-check, we have ascertained
for some parameter valuations, satisfying delay = rc fast min, that standard
Uppaal also reaches an error state.

Since the model used for safety is a L/U automaton, we can experiment with
Proposition 11.3, as follows. We show that our invariant property is satisfied
by a more general model of root contention, and deduce with part 2 of Proposi-
tion 11.3 that it holds for the constraints we are after. We first identify the sets
L = {rc fast min, rc slow min} and U = {delay, rc fast max, rc slow max}.
We substitute infinity for both rc fast max and rc slow max, rc fast min for
rc slow min. The new model, together with either initial constraint delay <
rc fast min, or 2∗delay < rc fast min, satisfies the invariant property. This
allows us to conclude that the original model satisfies the invariant property
for any valuation of the parameters where rc fast min ≤ rc slow min, and the
given initial constraint are satisfied. This includes the special case rc fast min
≤ rc fast max ≤ rc slow min ≤ rc slow max.

We can do even better by applying Proposition 11.6, if we first change each
guards or invariants for delay to a strict version, and then substitute infin-
ity for both rc fast max and rc slow max, and rc fast min for both delay and
rc slow min. Now we have a model with only one parameter and no constants,
which we can verify non-parametrically with standard Uppaal, for two valua-
tions of the parameter rc fast min, namely 0 and a non-zero value. The invariant
property is satisfied, hence, by Proposition 11.5, we can deduce that it holds
for all valuations of rc fast min, hence the original model satisfies the invariant
property for any valuation of the parameters where rc fast min ≤ rc slow min,
and delay < rc fast min. Likewise, we can substitute rc fast min/2 for delay,
and derive the other constraint. As can be seen in Fig. 11.7, the speed-up in
terms of memory and time is drastic.

Finally, we can combine the results for initial constraints delay < rc fast min
and delay = rc fast min with the fact that our model is a L/U automaton,



210 Chapter 11. Parametric Real-Time Model Checking

model initial constr.? reduced? property Uppaal time memory
[140] yes no safety param 2.9 h 185 Mb
[140] yes completely safety std 1 s 800 Kb
[136] yes no safety param 1.6 m 36 Mb
[136] yes partly safety param 11 s 13 Mb
[136] yes completely safety std 1 s 800 Kb
[136] yes no liveness param 2.6 h 308 Mb

Figure 11.7: Experimental results for the root contention protocol

and derive the necessity of constraint delay < rc fast min, as follows. Suppose
that a parameter valuation for delay and rc fast min exists, such that (1) the
safety property holds, but (2) the constraint delay < rc fast min is not satisfied.
Assume this valuation assigns d to delay and r to rc fast min. By our results,
we know that d 6= r, so d > r. We now apply Proposition 11.3, and deduce that
for each parameter valuation that assigns a value to upper bound parameter
delay which is smaller than d, and a value to lower bound parameter rc fast min
which is larger than r, the safety property must hold. This includes valuations
that satisfy constraint delay = rc fast min, which contradicts our results. We
conclude that only for parameter valuations that satisfy constraint delay <
rc fast min, the safety property holds.

Liveness for [136] In [136], it is also shown that a refinement relation be-
tween the model of the most detailed level, and a model which is a bit more
abstract, holds when the following relations are obeyed: 2∗delay < rc fast min,
and 2∗delay < rc slow min - rc fast max. The refinement relation is such that
it preserves both safety and liveness properties for the root contention protocol
(which is proved in [136]). Again, the necessity and suffiency of the constraints
is shown by experimenting with standard Uppaal for several valuations for the
parameters, and presented as an experimental result.

We have checked for a completely parameterized version of the system with
the detailed model and the test automaton of the more abstract model, that
error states in the test automaton are unreachable, that is, that the refinement
relation holds. We have also checked, whether error states are reachable, that
is, that the refinement relation does not hold, in the following two cases: either
2∗delay = rc fast min, and 2∗delay < rc slow min - rc fast max, or 2∗delay <
rc fast min, and 2∗delay = rc slow min - rc fast max. This turns out to be the
case as well. In fact, in both cases, the union of the constraint sets of reachable
states reported, can be rewritten to these initial constraints. Again, this has
been double checked by feeding parameter valuations that satisfy either of the
above constraint sets to standard Uppaal, which comes up with error states as
well. Since the models for liveness use constraints that fall outside the scope of
L/U automata, we cannot apply Proposition 11.6 here.



11.5. Experiments 211

model from initial constraints property Uppaal time memory
[57] yes safety1 param 1.3 m 34 Mb
[57] no safety2 param 11 m 180 Mb
[57] yes safety2 param 3.5 m 64 Mb

Figure 11.8: Experimental results for the bounded retransmission protocol

11.5.3 The Bounded Retransmission Protocol

This protocol was designed by Philips for communication between remote con-
trols and audio/video/TV equipment. It is a slight alteration of the well-known
alternating bit protocol, to which timing requirements and a bound on the retry
mechanism have been added. In [57] constraints for the correctness of the proto-
col are derived by hand, and some instances are checked using Uppaal. Based
on the models in [57], an automatic parametric analysis is performed in [20],
however, no further results are given.

For our analysis we have also used the timed automata models from [57]. In [57]
three different constraints are presented based on three properties which are
needed to satisfy the safety specification of the protocol. We are only able to
check two of these since one of the properties contain a parameter which our
prototype version of Uppaal is not able to handle yet.

One of the constraints derived in [57] is that TR ≥ 2 ·MAX · T1 + 3 · TD,
where TR is the timeout of the receiver, T1 is the timeout of the sender,
MAX is the number of resends made by the sender, and TD is the delay of the
channel. This constraint is needed to ensure that the receiver does not time out
prematurely before the sender has decided to abort transmission. The sender
has a parameter SYNC which decides for how long the sender waits until it
expects that the receiver has realized a send error and reacted to it. In our
parametric analysis we used TR and SYNC as parameters and instantiated
the others to fixed values. Using our prototype we did derive the expected
constraint TR ≥ 2 ·MAX ·T1 +3 ·TD, however, we also derived the additional
constraint TR−2 ≤ SYNC which was not stated in [57] for this property. The
necessity of this constraint was verified by trying models with different fixed
values for the parameters.

The full set of constraints derived in [57] includes a constraint TR ≥ SYNC

which is based on the property we cannot check. Therefore the error we have
encountered is only present in an intermediate result, the complete set of con-
straints derived is correct. The authors of [57] have acknowledged the error and
provided an adjusted model of the protocol, for which the additional constraint
is not necessary.

The last constraint derived in [57] arises from checking that the sender and
receiver are not sending messages too fast for the channel to handle. In this
model we treat T1 as a parameter and derive the constraint T1 > 2 ·TD which
is the same as is derived in [57].



212 Chapter 11. Parametric Real-Time Model Checking

11.5.4 Other Experiments

We have experimented with parameterized versions of models included in the
standard Uppaal distribution, namely Fischer’s mutual exclusion protocol, a
train gate controller, and a car gear box controller.

In the case of Fischer’s protocol (which is the version of the standard Uppaal

distribution, and not the one discussed in the rest of this paper), we param-
eterized a model with two processes, by turning the bound on the period the
processes wait, before entering the critical section, into a parameter. We were
able to generate the constraints that ensure the mutual exclusion within 2 sec-
onds of CPU time on a 266 MHz Pentium MMX. Using these constraints as
initial constraints and checking that now indeed the mutual exclusion is guaran-
teed, is done even faster. Fischer’s protocol with two processes was also checked
in [20], which took about 3 minutes.



Part IV

Development Methods

213





Chapter 12

Automatic Modeling a Language for

Embedded Systems

The paper Modeling a Language for Embedded Systems in Timed Automata
presented in this chapter has been published in part as a technical report [79]
and a conference paper [78].

[78] T. Hune. Modeling a real-time language. In Proceedings of Workshop on
Formal Methods for Industrial Critical Systems, FMICS’99, pages 259–
282, 1999.

[79] T. Hune. Modeling a Language for Embedded Systems in Timed Au-
tomata. Technical Report RS-00-17, BRICS, August 2000.

The technical report extends the conference paper with a section discussing
how to prove the correctness of the translation. Except for minor typographical
changes the content of this chapter is equal to the technical report [79].

215





12.1. Introduction 217

Modeling a Language for Embedded Systems in
Timed Automata†

Thomas Hune∗

Abstract

We present a compositional method for translating real-time programs
into networks of timed automata. Programs are written in an assembly
like real-time language and translated into models supported by the tool
Uppaal. We have implemented the translation and give an example of its
application on a simple control program for a car. Some properties of the
behavior of the control program are verified using the generated model.

12.1 Introduction

Reasoning about real-time systems can be very difficult and even more so if
they consist of several concurrent processes. Tools for formal reasoning about
such systems have been successfully developed [109, 74, 41] and applied in a
number of cases (see [109, 73, 41] for lists of case studies). Before applying such
tools one has to define an appropriate model of the system in question. This
can in many case be a time consuming and error prone process. Methods and
tools for defining such models based on an (informal) description of the system
or parts of the system are an important help in the process of modeling.

One can divide models of embedded system into two groups. The first consisting
of systems where the control program (if any) and the physical systems are
mixed into one description (the water level monitor and the leaking gas burner,
see e.g. [9], are examples of this). Systems in the second group have a clear
distinction between the control program and the hardware/environment (some
versions of the train gate controller, e.g. the one in [72], belong to this group).
Here we will consider systems belonging to the second group. More precisely
we will consider a method for modeling the control programs of such systems.

We have defined and implemented a translation from control programs written
in the RCX language to networks of timed automata [108] used by Uppaal

∗Basic Research in Computer Science, BRICS, Centre of the Danish National Re-
search Foundation. Department of Computer Science, University of Aarhus, Denmark, E-
mail:{baris}@brics.dk

†This work is partially supported by the European Community Esprit-LTR Project 26270
VHS (Verification of Hybrid Systems)



218 Chapter 12. Automatic Modeling a Language for Embedded Systems

[109]. Such a translation allows easier access to the verification power of a tool
like Uppaal since the model of the program comes for free. The implementation
has been tested on a number of programs and the properties of these programs
have been verified by Uppaal.

The programs we are considering, are written in a language called the RCX
language, which is an assembly like language with some high-level features. The
RCX language runs on a processor in the LEGO RCX brick which is part
of LEGO MINDSTORMS and LEGO ROBOLAB. The RCX brick is
basically a (big) LEGO brick with a computer inside. The brick has three
input and three output ports, a speaker and an infrared sender and receiver
for communication. Four different types of sensors are available for the RCX
brick: touch, light, temperature, and rotation. Programming in the RCX
language takes place on a PC where the programs are translated into byte code
and downloaded to the RCX for execution.

In Section 2 the RCX language is described in more detail and an example of
a control program for a car is given. Section 3 describes how RCX programs
are executed especially with respect to scheduling. The translation is described
in Section 4. The correctness of the translation is shortly discussed in Section
5 and and some aspects of the implementation in Section 6. In Section 7 the
example is revisited and Section 8 contains a conclusion and ideas for future
work.

12.2 The RCX Language

The language we are considering here is the RCX language running on the
LEGO RCX brick. It is a kind of assembly language but with some features
from high-level languages. The language is mainly used as a target language for
compilers form other languages like the ones in MINDSTORMS and ROBO-
LAB. We have chosen to look at the RCX language for several reasons.
First of all, it is a fairly simple language, but with most standard assembler
operations. However, there is only one addressing mode making modeling a lot
simpler. Programs consist of a fixed number of tasks running concurrently with
a simple scheduling algorithm (see Section 12.3).

Even though the language is simple it can be used to write interesting control
programs. Since the RCX is part of LEGO one can build physical embedded
systems for the control programs. This gives the opportunity of conducting
experiments with complete embedded systems, and to study the relationship
between the behavior of the complete embedded system and the formal model.

For these reasons we believe that the RCX language is suitable for a first try
of defining an automatic translation from control programs to formal models.



12.2. The RCX Language 219

12.2.1 Program Structure

An RCX program consists of a number of tasks. The number is restricted
to a maximum of ten tasks, numbered 0 to 9. There are other restrictions
imposed by the language, the most sever one being that one can only use 32
integer variables for data (it is not possible to address more). The body of a
task is defined between BeginOfTask(i) and EndOfTask(). During execution
a task is either blocked or enabled, initially only task 0 is enabled. A task
can be started by the command StartTask(i) and blocked by StopTask(i).
Whenever StartTask(i) is executed, task i is restarted from the beginning
independent of the state of the task, so there is always at most one copy of each
task.

Next we will give a small example of a control program for a car, and following
that, informally1, present the part of the language we have considered. We
present the instructions of the language in two groups, one containing instruc-
tions for control of flow and one for commands.

12.2.2 Example

As an example we will look at a simple control program for a car equipped
with one touch sensor on each side of the front and one motor on each side
driving one wheel. At the front and the back there is a ball instead of a wheel
to make turning smoother. The car is turned by the motors running in different
directions. Figure 12.1 is a sketch of the car. The control program consists of

Sensor0

Sensor2

Motor0

Motor2

Figure 12.1: Sketch of the car.

three tasks. Task 0 first sets up the sensors and starts the car. After having
started the car the task enters an infinite loop waiting for the reading from
one of the sensors to change from zero to one. The change of a sensor reading
from 0 to 1 will be considered an event which should be handled. Depending
on which of the two sensors change, a task is started to handle the event.

BeginOfTask(0)

SetFwd("02") # Setup the output ports(motors)

SetPower("02",2,4) # to forward and power 4

SetSensorType(0,1) # Setup the input ports

1No formal semantics is available for the language. An informal description of the language
can be found in [112]



220 Chapter 12. Automatic Modeling a Language for Embedded Systems

SetSensorMode(0,1,0) # to touch sensor,

SetSensorType(2,1) # boolean mode

SetSensorMode(2,1,0)

SetVar(0,2,0) # Var0:=0 (oldSensor0)

SetVar(2,2,0) # Var2:=0 (oldSensor2)

On("02") # Start the motors

Loop(2,0) # Begin the infinite loop

SetVar(3,9,0) # var3:=Sensor0

If(0,3,2,2,1) # If var3 = 1

If(0,0,3,2,1) # If var0 <> 1

StartTask(1) # Start task 1

SetVar(0,0,3) # Var0:=Var3

EndIf()

Else # Sensor0 was 0

SetVar(0,0,3) # Var0:=Var3

EndIf()

SetVar(4,9,2) # Var4:=Sensor2

If(0,4,2,2,1) # If var4 = 1

If(0,2,3,2,1) # If var2 <> 1

StartTask(2) # Start task 2

SetVar(2,0,4) # Var2:=Var4

EndIf()

Else # Sensor2 was 0

SetVar(2,0,4) # Var2:=Var4

EndIf()

EndLoop()

EndOfTask(0)

Task 1 and 2 are supposed to back the car a little and then turn away from the
obstacle. The only difference between the tasks is the direction in which the
car is turned, so only task 1 is shown.

BeginOfTask(1)

Off("02") # Stop the motors

SetRwd("02") # Set the motors to go backwards

On("02") # Start the motors

Wait(2,40) # Wait while the car goes backwards

SetFwd("0") # Make the car turn

Wait(2,30) # Wait while it is turning

SetFwd("2") # Go forward again

EndOfTask()

In line six of task 2 the argument for SetFwd is ‘2’ and in line eight it is ‘0’.

12.2.3 Commands

The commands of the language can be divided into three categories. There
are commands for manipulating variables, for setting up the sensors, and for



12.2. The RCX Language 221

controlling output.

The command for assignment is SetVar(i,j,k) where the number of the tar-
get variable (there are no symbolic names) is i ∈ {0, 1, . . . , 31}, j is the type of
the source of the assignment and k is the source. The most used sources (and
the only ones we will consider), are variables (where k is the number of the
variable), constants (where k is the value), sensor readings (where k ∈ {0, 1, 2}
is the number of the input port), and messages on the communication port2

(where k does not have a meaning). All the commands for manipulating vari-
ables have this form, but the sensor reading and the message can only be used
in assignment. The other possible manipulations are addition, subtraction,
multiplication, division, bitwise conjunction and bitwise disjunction.

Two commands can be used for setting up the type of the sensors. To spec-
ify that input port i should be read as a sensor of type j the command
SetSensorType(i,j) can be used, where j is one of the four types described
previously. Using the command SetSensorMode(i,j,k) one can also set the
type of readings from a sensor. Again i specifies which input port is set, j is
the type of input, e.g. a raw ten bit integer value, a boolean or a percentage
value. If boolean is chosen, k specifies how the value is calculated.

There are two types of output ports. Three ports for motors or lights (since
we will concentrate on these, we will in the following call these output ports)
and one for the speaker. The most basic commands for controlling the output
ports are On(li) and Off(li) where li is a list of output ports. These simulta-
neously turn on respectively turn off the ports specified by li. The commands
SetFwd(li), SetRwd(li) and AlterDir(li) can be used for changing the ‘di-
rection’ of the output of the ports specified by li. Finally, one can change the
power of the output from the ports by SetPower(li,j,k) where li specifies
the ports and j and k specifies the power in the same way as j and k specifies
a value in the commands for manipulating variables. The value for the power
can only be chosen in the range 0, 1, . . . , 8. For using the speaker port the two
commands, PlaySystemSound(i), and PlayTone(i,j) are available. The first
plays one of six predefined sounds or beeps, and the second plays a tone with
frequency i for duration j, given in units of ten milliseconds.

12.2.4 Flow Control

Two kinds of iterations exist in the language. Loop(j,k) loops the number of
times specified by j and k, where j is the type of the source and k is the source.
As source only variables and constants can be used. If j and k specifies the
constant zero, the loop is infinite. The other possibility is While(i,j,k,l,m)

where k specifies a comparison operator from the set {<,>,=, 6=}, and i,j and
l,m specifies the values to be compared. Here variables, constants and sensor
readings can be used.

An if statement with an optional else part, If(i,j,k,l,m) having the same
type of arguments as the while statement is also available.

2This will always be the last message received.



222 Chapter 12. Automatic Modeling a Language for Embedded Systems

Finally, one can block a task for a specified time using the Wait(j,k) com-
mand. Here j and k specifies the time for which the task will be blocked in ten
milliseconds units. This is the only ‘real-time’ command in the sense that it
refers directly to time.

12.3 Execution and Scheduling

The RCX is running a small operating system with processes for handling
I/O and one process running an RCX interpreter. The process running the
interpreter has the lowest priority. Since (almost) all the handling of I/O is
periodic we assume that the interpreter gets a fixed portion of the CPU time.

Initially all tasks but task 0 are blocked. Each enabled task executes one in-
struction and then leaves control to the next task in a round robin fashion. One
could imagine a number of other scheduling policies for RCX and experiment-
ing with this would be interesting.

A task context switch takes place between interpretation of instructions. We
have made some experiments measuring the timing of the execution of pro-
grams on the RCX. Based on these we have concluded that the number of
context switches does not depend on the number of tasks in a program. In a
program with only one task, an instruction is interpreted approximately every
2 milliseconds.

The scheduling policy is very important when reasoning about the behavior
of programs. If we want to guarantee a given response time of some action
like pressing a touch sensor, we must first of all know how often the control
program reads the input from the sensor3. As one can imagine, the response
time will depend on the number of enabled tasks making it difficult to give
precise bounds, though upper bounds can be given. We will return to this
question in Section 12.7.

12.4 Modeling

The type of model we are using to model programs is networks of timed au-
tomata extended with integer variables which is supported by the tool Uppaal.
The type of model Uppaal supports is a real-time model which we find appro-
priate for our purpose. The only real-time feature in the language (the wait
command) could be handled by introducing a kind of tick, but we find it more
natural to introduce a clock variable to model time. More importantly, we aim
at modeling more than control programs. We hope to use our models of con-
trol programs together a with a model of the environment they are controlling,
and time will be needed for describing this. We might need more general con-
structions than clock variables to get a satisfactory model of the environment.

3This of course also depends on how often the underlying operating system polls the input
ports but since we do not know this, we assume this is done ‘often enough’.



12.4. Modeling 223

However, the tools we know of supporting more general models does not seem
to be mature enough yet.

A network of automata is a collection of automata running in parallel and
communicating by handshake. Channels are either internal, input, or output.
Internal channels do not have a name, while the other channels do. The names
of input and output channels are suffixed with ‘?’ or ‘!’ respectively. Com-
munication takes place between one output channel and one input channel.
Internal channels do not synchronize. Figure 12.2 is an example of a network
of two automata. Here the right automaton can communicate with the left on

S0 S1

S2

S3

S0 S1

S2

S3

a?

b!

c?

a!

b?

c!

Figure 12.2: A network of two automata

the a channel. After communicating both automata are in location S1 where
the right automaton can send on channel c and the left on channel b. If a
communication on the b channel occurs nothing more can happen, but if the c
channel is used for communication the right automaton has the possibility to
move back to location S1, using the internal channel. Here it can input on the b
channel and output on the c channel, but in this system, there is no automaton
to communicate with so the system is deadlocked.

Time is added in the standard way [12, 13] by introducing a number of real
valued clock variables. In Fig. 12.3 we have added clock variables x and y to
the automata. Initially both clock variables have value zero and they progress

S0 S1

S2

S3

S0 S1

S2

S3

x<2

y:=2

a?

y >= 4

b!

x:=0

c?

x>1

a!

x==3

b?

c!

x>4

Figure 12.3: A network of two timed automata

at the same speed during the execution. The a channel is enabled in the left
automaton until two time units have passed and in the right after one time unit
has passed from the beginning of the execution. After the communication has
taken place the value of the clock variable y is set to two. This should give an
idea about how one can specify, when a channel is enabled by adding guards



224 Chapter 12. Automatic Modeling a Language for Embedded Systems

to the channel and how one can reset the value of clock variables. Only integer
values are allowed in guards and resettings.

In Uppaal one also has integer variables which do not change with time but
can be part of guards and assignments. On the right hand side of assignments,
expressions of the form E ::= V ar | Num | E OP E where OP ∈ {+,−, ∗, /}
can be used. We will make heavy use of this, when modeling operations on
variables in the language.

12.4.1 Structure of Model

In our model of a program we will make one automaton for each task. All
channel names are suffixed with the name of the task (we will assume that all
instructions are from task 0 in the following figures if nothing else is stated).
This makes it possible for the scheduler, also represented by one automaton, to
control which task is allowed to execute. All information concerning time spent
on interpreting instructions is handled by the scheduler.

Before we look at how single instructions are modeled, we have to look at
the modeling of I/O. Since we are modeling a program and not a complete
system our knowledge about the surroundings is very limited. The program
gets readings from sensors after A/D conversion and some preprocessing but it
cannot relate these readings to the true values in the environment4. Therefore
the reading from a sensor is represented by an integer variable, named Sensori,
where i is the number of the sensor. This is all the program has knowledge of.
For output we do something similar. The status of each output port is modeled
by three integer variables Motor Pow, Motor Dir and Motor On representing
the power, the direction and whether the port is turned on or not, respectively.
The effect this has on what is connected to the port is not modeled. For the
port to the speaker there is also three integer variables SystemSound, Frequency,
and Duration.

In the following subsections we will describe the transformation, which is com-
positional, and hopefully it should be clear that implementing this has been
straightforward. In all the figures the location named S0 is either the last lo-
cation of the model of the previous instruction or the initial location of the
automaton, if the instruction is the first of the task.

12.4.2 Commands

All the commands are modeled in a similar way by one channel and one new
location. The name of the channel is the name of the command. The commands
for setting up the sensors do not update any integer variables since the type
and mode of the sensors are not used in the models we have defined so far.

4Such readings might not make sense at all. If the programmer has specified that sensor 1
is a touch sensor and someone plugs a light sensor to port 1, how should the program relate
such readings to the real values?



12.4. Modeling 225

If needed, this may be included later. For a command like On(‘‘02’’) the
variables Motor On0 and Motor On2 are set to 1 as shown in Fig. 12.4. The

S0 S1

Motor_On0:=1, Motor_On2:=1

OnT0!

Figure 12.4: The model for the single command On(‘‘02’’).

other commands for controlling the output ports are modeled similarly. Also
the sound commands for the speakers are handled in this way.

The commands handling variables are modeled in almost the same way though
here the type of the argument must be determined. For a command like
SetVar(23,2,0) we should assign the constant 0 to variable number 23 (re-
member that the second argument specifies the type of the third argument, 2
means a constant). The command SumVar(23,0,21) for adding variable num-
ber 21 to variable number 23 will have the assignment V ar23 := V ar23+V ar21.

If we look at the sequence of commands like the first three commands from task
1 of the example we get the automaton in Fig. 12.5. There is one channel for

InitLoc1 Loc1_T1 Loc2_T1

Loc3_T1

Motor_On0:=0, Motor_On2:=0

OffT1!

Motor_Dir0:=0, Motor_Dir2:=0

SetRwdT1!

Motor_On0:=1, Motor_On2:=1

OnT1!

Figure 12.5: The model of the first three commands of task 1.

each command labelled with the name of the command. Each channel updates
the value of the variables specified by the arguments of the command.

12.4.3 Flow Control

When translating the instructions for flow control we need more that one new
channel and one new location. In the model of some of these instructions there
must be room for connecting models of the inner parts of the instruction (like
the body of a loop). For modeling a loop statement like

Loop(2,5)

.

.

EndLoop()



226 Chapter 12. Automatic Modeling a Language for Embedded Systems

S0
S1 S2

S4

S3

5>0

LoopVar02:=5

LoopT0!

5<=0 EndLoopT0!

LoopVar02:=LoopVar02-1

EndLoopT0!

LoopVar02<=0 EndLoopT0!

LoopVar02>0

LoopT0!

Figure 12.6: The model for a loop statement.

where .. is the body of the loop, we use four new locations. Figure 12.6 shows
the model of such a loop statement. In the example we have a loop always
running five times but the number of times can also be specified by a variable.
In the model this would mean changing the constant 5 to the specified variable.
The locations S1 and S2 are the initial and final location of the model of the
body respectively. From the location S0 we have two channels, one for entering
the loop and one for leaving it. Only one of these is enabled at a time. If the
loop is entered we assign the number of times the loop must be executed to a
new loop variable. Every time the end of the body is reached, the loop variable
is decremented and location S3 is entered. From S3 there is a channel leading
to the beginning of the body and one to S4. Again only one of the channels is
enabled based on whether the loop is finished or not. When the loop is finished
location S4 is entered. Decrementing the loop variable and testing it could of
course have been done in one step but in the implementation of the interpreter
this is interpreted as two instructions. This means that the task needs to be
scheduled twice to restart a loop.

The model of a while statement is very similar to that of a loop though there
is no need for a new variable. An example of a while statement is

While(0,3,2,2,0)

.

.

EndWhile()

where the arguments means While Var3==0. Again .. is the body of the while.
In Fig. 12.7 the model of the while statement can be seen. As before the
location S1 is the initial location of the body and S2 is the final location. From
the location S0 we can move to the initial location of the body if the condition
of the while is satisfied and otherwise the channel to the location S4 is enabled.
Only one of these channels is enabled. From the final location of the body there
is a channel to the S0 location where the condition is tested again. As for the



12.4. Modeling 227

S0

S1 S2

S3
Var3==0

WhileT0!

Var3!=0 EndWhileT0!

EndWhileT0!

Figure 12.7: The model for a while statement.

loop this could have been done in one step (one channel) but the interpreter
uses two steps.

An if statement (without an else) like

If(0,3,2,2,0)

.

.

EndIf()

is modeled as in Fig. 12.8. Again the initial location of the body is S1 and the

S0

S1 S2
Var3==0

IfT0!

Var3!=0 EndIfT0!

Figure 12.8: The model for an if statement.

final location of the body is S2. From the S0 location a channel to S1 is enabled
if the condition is satisfied. If this is not the case, a channel to location S2 is
enabled.

The model of an if-else statement follows the same idea, though now there are
two parts or bodies. A model of the if-else statement

If(0,3,2,2,0)

.

.

Else()

.

.

EndIf()

is shown in Fig. 12.9. As in the model of the if statement there are two channels
from the S0 location. One with label IfT0 which is enabled if the condition
is satisfied and one labelled ElseT0 which is enabled otherwise. The initial



228 Chapter 12. Automatic Modeling a Language for Embedded Systems

S0

S1

S2

S3

S4
Var3==0

IfT0!

EndIfT0!

Var3!=0 ElseT0!

Figure 12.9: The model for an if-else statement.

location of the model of the if part (the first . .) is S1 and the final location
is S2. From here there is an EndIf channel to S4 which is the final location of
the model for an if-else statement. The initial location of the model of the else
part (the second set of . .) is S3 and the final location is S4.

The wait statement is a little different from the others. This is the only in-
struction in the language referring directly to time and also the only part of the
model of a task referring to time (represented by a clock). The model of a wait
instruction, see Fig. 12.10, consists of a channel from the S0 location to location
S1 where a clock variable xT0 is reset to zero, and a channel labelled SkipT0
from S1 to itself. The SkipT0 channel is only used to synchronize with the

S1
xT0<=50

S2S0
xT0==50

SkipT0!

xT0:=0

WaitT0!

Figure 12.10: The model for a wait statement.

scheduler without any time passing. There is also a channel without label from
S1 to S2. With this construction the scheduler does not need to keep a list of
tasks blocked by wait. The location S1 has an invariant forcing the automaton
to leave the location when the task is no longer blocked by the wait. When the
task is no longer blocked the channel to location S2 is enabled. The channel
from S1 to S2 is not enabled when the task is blocked.

12.4.4 The Scheduler

Applying the translation described so far we get an automaton for each task
modeling the execution of that task. To get a model of the execution of the
complete program we must combine the executions of the individual automata
according to the scheduling policy described in Section 12.3. We define one
automaton controlling the execution of the other automata (by synchronizing
with these) implementing the scheduling policy on the RCX.



12.4. Modeling 229

When the StartTask(i) command is executed task number i is restarted.
Therefore we need a way of getting to the initial location of a task from all the
other locations in the task. For this purpose we add a channel labelled RSTi
from all the locations (including the initial location) to the initial location. The
scheduler also needs to realize when a task has finished its execution, and hence
we add a channel from the last location to itself with label FinTi.

As mentioned the scheduler lets each task which is not blocked execute one
instruction in round robin. A task can be blocked if it has not been started
(initially only task 0 is started), if it has finished, because of a StopTask state-
ment, or because of a wait statement. In the first three cases our model of the
scheduler will skip the task but in the case of the wait, the Skip channel with
no delay will be used for communication. This means that the scheduler does
not need to manage a list of tasks blocked by wait.

Our timing experiments suggest that the time spent on interpreting the different
commands is almost the same for all commands. Since the time is almost
independent on the parameters for the command we will not take this into
account when modeling. The time measured for interpreting an instruction is
less that 0.2 milliseconds which is less than the time spend on the context switch.
In the model we have chosen milliseconds as our basic time unit. Therefore
we will not model the time spent on interpreting each command but say that
interpreting one command from each task in the program takes one millisecond,
no matter how many tasks are enabled. The overhead of instructions for all the
tasks is two milliseconds, so interpreting one instruction for all the tasks takes
three milliseconds including context switches. This limits the precision of our
model since we are using three milliseconds steps. So the best guarantees we
can give using the model is within three milliseconds.

Figure 12.11 shows the structure of the scheduler for a program with three
tasks, where only task 0 can start the other tasks. The initial location in the
figure is the one with a ring inside. In Uppaal one can define a location to be
committed which means that the automaton must leave the location before any
other action takes place. Especially, this means that time cannot pass while an
automaton is in a committed location. Committed locations are marked by a
‘C’ inside the location. The committed locations in the scheduler can be seen as
a kind of control locations used for deciding who should be allowed to execute
next.

For each task i there is an integer variable Ti taking values 0 or 1. If the task
is enabled the value is 1, otherwise it is 0. The channel from the initial location
to ChooseT0 initializes these variables such that only task 0 is enabled. When
the scheduler is in location ChooseTi the next task to execute according to the
round robin schedule is task i. If this task is enabled the scheduler can move to
location RunTi where it is possible to execute one instruction from the task. In
case the task is blocked the scheduler can move to test the next task. Since all
the ChooseTi locations (except ChooseT0 ) are committed this does not take
any time.

In location RunTi the next instruction of task i can be executed. The channel



230 Chapter 12. Automatic Modeling a Language for Embedded Systems

InitState

chooseT0
step<=3

ChooseT1 ChooseT2

RunT0
step<=0

RunT1
step<=0

RunT2
step<=0

RSTaski

T0:=1, 

T1:=0, 

T2:=0

T0==1,

step==3
step:=0

T0==0, step==3

step:=0

turn==1

turn:=0

T1==1

turn==1

turn:=0

T1==0

T2==1

T2==0

turn==1 turn:=0

turn==0

turn:=1

StartTaskiT0?

turn==0

turn:=1

InstructionsT0?

turn==0

turn:=1

InstructionsT1?
turn==0

turn:=1

InstructionsT2?

turn==0

turn:=0, 

T0:=0

FinT0?

turn==0

turn:=0,

T1:=0

FinT1?

turn==0 turn:=0,T2:=0FinT2?

Ti:=1

RSTi!

Figure 12.11: Model of a scheduler.

labelled InstructionsTi from RunTi to itself represents a number of channels,
one for each kind of instruction in task i. All these channels have the same guard
and assignment but different labels. The clock step is used to synchronize the
execution such that each round through all the tasks takes three milliseconds.
In location ChooseT0 there is an invariant step ≤ 3 and guards on the outgoing
channels such that exactly three milliseconds must pass in this location. In the
RunTi location there is an invariant step ≤ 0 making sure that time does not
pass in these locations. We have chosen not to make these locations committed
because the environment should have the possibility of doing something. To
make sure that a task only executes one instruction each time it gets the control,
the integer variable turn is used. Depending on the value of turn it is possible
to execute the next instruction of the task or leave control for the next task.
Changing the model slightly would allow for different instructions to take a
different amount of time. More instructions could be allowed by changing the
guards involving turn.

The StartTaskiT0 instructions is treated specially. This instruction executes as
the other instructions but it must also restart task i. Therefore the StartTaskiT0
channel ends in an intermediate location RSTaski which is committed. From
this location there is a channel restarting task i and setting the variable Ti to
one. After this control is back in the RunT0 location, as if a normal instruction
had been executed.

The scheduling policy on the RCX is very simple but with our approach one
can model more complicated policies. As mentioned the number of instructions



12.5. Correctness 231

executed by each task could easily be changed. One could also define a time
slice instead of counting instructions. Modeling a scheduler with fixed priorities
is also possible. After a task finishes the scheduler should move control to the
location allowing the task with the highest priority to start. If this task is
enabled it will start, otherwise the other tasks should be checked according to
their priority until one can be started.

12.4.5 I/O

Handling of the I/O is not part of the model. We have modeled each output
port by three integer variables and the speaker port by three integer variables
as well. How fast the motor goes or what sounds the speaker plays will not
be part of our model, and the effects this might have on the environment and
thereby the inputs, will not be modeled either. Note that this is important for
modeling a complete system, but based only on the program, we cannot hope
to do this automatically.

The input is not modeled either though generating a simple model of this letting
the sensor reading behave arbitrarily would be easy. Based on the sensor mode
one can define an automaton which at any time can assign any value in the
range to the integer variable representing the sensor reading. In most cases this
can be determined by a static analysis of the program. Programs can change
the sensor mode dynamically making such an analysis more difficult to realize
automatically.

We have defined these automata by hand for the experiments we have made.
In the example there are two touch sensors which can give the reading zero
or one. The simplest way of representing the behavior of these two sensors is
shown in Fig. 12.12. This does not place any restrictions on the readings from

S0
Sensor2:=0

Sensor2:=1

Sensor0:=0

Sensor0:=1

Figure 12.12: Model of simple environment for two touch sensors.

the sensors. If we had knowledge of how often the underlying operating system
is polling the sensors, this would be a natural constraint to put on the channels.

12.5 Correctness

When addressing the correctness of the translation we must consider two dif-
ferent aspects. The relationship between the input of a program (values on the
input ports) and the program variables and values written to the output ports.



232 Chapter 12. Automatic Modeling a Language for Embedded Systems

In our case this also depends on the scheduling of the processes. The second
aspect is the timing information of an execution and in the model.

No formal semantics of the RCX language is available but for most of the
commands the semantics is clear from the informal description given in [112].
The few points which were not clear from the description has been clarified by
some simple experiments with the language.

One could give a formal operational semantics to a task describing the output
and changes of program variables with respect to old program variables, old
output, and input. Assuming functions Var, In, and Out representing these
environments, rules would have the form

(Var, In,Out)
SetVar(3,0,5)
−−−−−−−−→ (Var[3 7→ Var(5)], In,Out).

With rules like this for all the instructions of the language, one can for each
instruction in the language prove that the translation described in Section 12.4
satisfies these rules. Given a rule for sequential composition it would be pos-
sible to prove correctness of the individual tasks with respect to the semantic
given. Properties of a program containing more than one task must be based
on semantic rules taking the scheduling into account. If we disregard the Wait

instruction this could also be done without complicated modifications. If we
also want rules for the Wait instruction some notion of time is needed in the
semantic. Relating such a notion of time in the semantic to the notion of time
in Uppaal would be much harder than relating values of variables.

Proving the translation of the individual tasks correct should therefore be simple
but tedious. Proving the scheduling of tasks without the wait should also be
possible though more challenging.

With respect to the timing of the execution it might be more appropriate to talk
about accuracy than correctness. Should we talk about correctness we would
need precise information about the operating systems and the how much time is
spend on handling I/O. This might in the end depend on the input to the sen-
sors. Also the precision of the clock would have to be taken into consideration.
For these reasons we will talk about accuracy of the timing information. There
are two immediate problems with the timing information in the model. First
of all, the number of tasks enabled is not taken into consideration when calcu-
lating the time spend interpreting the commands. Secondly, time only passes
in one location. In solving the second problem we would have to solve the first
as well. To solve this the time unit would have to be changed, but this would
enable models with better precision in general. With the current information
we have on the timing of the execution of instructions, it does not make much
sense to allow for specification with such a precision. Our assumption about
all commands taking the same time might not be valid with such a fine grained
measure of time. Much more precise timing information would be needed for
models and results obtained from these models to be useful.

Therefore we have chosen to keep milliseconds as the basic time unit and have
the three milliseconds intervals when modeling the execution. With this as



12.6. Implementation 233

basic time unit, we find that there is a good correspondence between the timing
specified in the model of a program and the actual execution of the program.
However, since there is a small inaccuracy this can be added up during long
executions. One should of course be aware of this when modeling and proving
properties.

12.6 Implementation

From the description in Section 12.4 it should be clear that the translation can
be implemented. We have made an implementation in ML which translates a
RCX program file to a file containing a textual description of a network of
timed automata (called xta format). The xta format is the format Uppaal uses
for describing automata. There is no graphical information in the xta format
but the newest version of the graphical interface to Uppaal can read a file in
xta format and display the corresponding network of timed automata.

The program works in two phases. First the program file is parsed and a data
type for the program is built. This type looks as one would expect with a
statement being one of the instructions described in Section 12.2 and the body
of the control statements consisting of statements.

The second phase is a recursive descent of the data type for the program. Since
our translation is compositional a statement can be translated only knowing
the last location of the model of the previous statement.

Along the way through the data type one also needs to collect the names of
channels, clock variables, integer variables and locations since these must be
defined in the xta file.

We have successfully tested the translation program on a number of RCX
programs.

12.7 Example Revisited

We have used the translator to get a model of the control program in Sec-
tion 12.2.2. Figure 12.13 shows the automaton for task 0. The loop testing
the input from the sensors begins at location Loc9 T0, the channels before this
location models the initialization. The location Loc23 T0 is the final location
which is not reachable since the loop is infinite. There are no restart channels in
this model (except the one from the initial location) because this task is never
restarted.

The models of task 1 and 2 are very similar so we will only show the model
of task 1 (Fig. 12.14). If one abstracts away from the restart channels (the
channels labelled RST1?) it should be easy to follow the one path through the
model. It should also be easy to see that this models the commands in the task.



234 Chapter 12. Automatic Modeling a Language for Embedded Systems

InitLoc0 Loc1_T0 Loc2_T0

Loc3_T0

Loc4_T0

Loc5_T0Loc6_T0Loc7_T0

Loc8_T0

Loc9_T0

Loc10_T0

Loc23_T0

Loc11_T0 Loc12_T0 Loc13_T0

Loc14_T0Loc15_T0Loc16_T0

Loc17_T0

Loc18_T0 Loc19_T0

Loc20_T0

Loc21_T0

Loc22_T0

RST0?

Motor_Dir0:=1,Motor_Dir2:=1

SetFwdT0!

Motor_Pow0:=4,Motor_Pow2:=4

SetPowerT0! SetSensorTypeT0!

SetSensorModeT0!

SetSensorTypeT0!SetSensorModeT0!

Var0 := 0

SetVarT0!

Var2 := 0

SetVarT0!

Motor_On0:=1,Motor_On2:=1

OnT0!

LoopT0!

Var3 := Sensor0

SetVarT0! Var3 == 1

IfT0!

Var3 != 1

EndIfT0!

Var0 != 1

IfT0!

Var0 == 1

EndIfT0!

StartTask1T0!

Var0 := Var3

SetVarT0!

Var0 := Var3

SetVarT0!

Var4 := Sensor2

SetVarT0!

Var4 == 1
IfT0!

Var2 != 1

IfT0!

Var2 == 1

EndIfT0! StartTask2T0!

Var2 := Var4

SetVarT0!

Var2 := Var4

SetVarT0!

LoopT0!

FinT0!

Var4 != 1

EndIfT0!

Figure 12.13: Model of task 0.

InitLoc1

Loc1_T1 Loc2_T1

Loc3_T1

Loc4_T1
xT1<=100Loc5_T1

Loc6_T1

Loc7_T1
xT1<=100

Loc8_T1

Loc9_T1

RST1?

Motor_On0:=0,Motor_On2:=0

OffT1!

RST1?

Motor_Dir0:=0,Motor_Dir2:=0

SetRwdT1!

RST1?

Motor_On0:=1,Motor_On2:=1

OnT1!

RST1?

xT1 := 0

WaitT1!

SkipT1!xT1 == 100

RST1?

RST1?

Motor_Dir0:=1

SetFwdT1!
RST1?

xT1 := 0

WaitT1!

SkipT1!

xT1 == 100
RST1?

RST1?

Motor_Dir2:=1

SetFwdT1!

RST1?

FinT1!

Figure 12.14: Model of task 1.

We will not show the model of the scheduler since this looks very much like the
model in Fig. 12.11. The only difference being that the InstructionsTi channel
has been replaced with a number of channels - one for each type of instruction
in the task.

If we model the input from the sensors by the automaton in Fig. 12.12 and
use this together with the automata for the tasks and the scheduler we have
a model of the complete system. We cannot use this model to reason directly
about the movements of the car. What we can do, is reason about how the
output ports react to input from the sensors. With this model we can first of
all simulate the behavior of the program. Given the very liberal model of the
environment we have defined, we can test how our program reacts under all



12.7. Example Revisited 235

possible sequences of input.

We can also answer some very basic questions about the program such as
whether it is possible for the output ports to be turned on or whether it is
possible for the output ports to be in reverse. This is done by checking the
formulas

E <> (Motor On0 == 1 and Motor On2 == 1)

and

E <> (Motor On0 == 1 and Motor On2 == 1 and

Motor Dir0 == 0 and Motor Dir2 == 0)

respectively. Both properties are satisfied and we get a trace leading to a
satisfying state.

We can also try to find out how fast the program will respond when an input
is read. This can not be done directly by writing one formula in Uppaal.
Instead we have to make what is called a test automaton. This is an automaton
which only monitors the behavior of the system. Figure 12.15 shows a test
automaton for testing whether the response time from sensor 0 has been read
with value one by task 0 and until task 1 responds is less than 16 milliseconds.
Some auxiliary channels are added to the model to synchronize with the test

S0 S1 S2

xTest<=16

Error
loopstart?

Var3==1

xTest:=0urg?

xTest==16

RwdT1?

Figure 12.15: A test automaton.

automaton. Firstly, we will only consider the program after the initialization is
finished therefore the first channel. The channel urg is only used to make the
channel what is called an urgent channel. An urgent channel is a special kind of
channel which, when enabled, must be executed without any time delay. This
channel is enabled when the program reads that the sensor has been pressed. If
the output ports are set in reverse before 16 milliseconds have passed we enter
the location S2 again and otherwise the Error location is entered. All channels
but the one to the error location are urgent. We can now ask whether the
Error location is reachable. If this is not the case the response always arrives
within 16 milliseconds. In this case the Error location is not reachable but if
16 is changed to 15 then the Error location is reachable. If we wanted to test
the response time from the sensor was touched we need a more complex test
automaton taking into account that the reading of the sensor in this model can
be set to one and then zero before the program reads it.

We might also want to verify that the output ports are set in reverse direction
and turned on for a given time when the sensor reading changes to one. For this



236 Chapter 12. Automatic Modeling a Language for Embedded Systems

we need another model of the environment. When one of the readings change
from zero to one the output ports are set in reverse. While the output ports
are in reverse the reading from the other sensor might also change from zero to
one. As a response to this the ports would be stopped. In general we will have
to define a more precise model of the sensor readings if we want to prove more
involved properties about our program or the movement of the car itself.

12.8 Conclusion

We have presented a method for translating RCX programs to networks of
timed automata in a format readable by Uppaal. Applying this translation
gives the possibility of reasoning formally about the behavior of the program
using Uppaal. The translation have been implemented and tested on a number
of examples with success.

Even though the method described here is specific to the RCX language, we
believe that the principles can be carried over to most other assembly like (real-
time) languages. There is a number of things one should take into consideration
before trying to do this. Modeling other addressing forms like indirect address-
ing will be a lot more involved though it can be done. A detailed knowledge
of the execution of programs or a formal semantics is needed for the model to
make sense. If one wants to prove strong timing bounds for programs, precise
timing information of the instructions will be needed in the model.

Exploring how good a relationship we can get between the behavior defined by
timed automata and the behavior of LEGO systems will be interesting. We
cannot model the behavior of the physical system completely but we hope to
be able to model it in such a way, that it makes sense to relate a number of
properties of the formal model to the real system. In doing this we will have to
define more detailed models of the environment.

Acknowledgements We would like to thank Michael Andersen who is working
at LEGO for useful comments on the RCX.



Chapter 13

Using Automata in Control Synthesis

The paper Using Automata in Control Synthesis – a Case Study presented
in this chapter has been published in part as a technical report [89] and a
conference paper [88].

[88] T. Hune, and A. Sandholm. A Case Study on using Automata in Con-
trol Synthesis. In Proceedings of Fundamental Approaches to Software
Engineering (FASE 2000), pages 349–362, 2000.

[89] T. Hune, and A. Sandholm. Using Automata in Control Synthesis – a
Case Study. Technical Report RS-00-22, BRICS, September 2000.

The technical report extends the conference paper by adding more description of
the logical formulae used. Some of the code implementing the control automata
has also been included. Except for minor typographical changes the content of
this chapter is equal to the technical report [89].

237





13.1. Introduction 239

Using Automata in Control Synthesis – a Case Study

Thomas Hune∗ Anders Sandholm∗

Abstract

We study a method for synthesizing control programs. The method
merges an existing control program with a control automaton. For speci-
fying the control automata we have used monadic second order logic over
strings. Using the Mona tool, specifications are translated into automata.
This yields a new control program restricting the behavior of the old con-
trol program such that the specifications are satisfied. The method is
presented through a concrete example.

13.1 Introduction

This paper presents some practical experience on synthesizing programs for the
LEGO RCX system. The synthesis presented here is based partly on an
existing simple program and partly on an automaton generated by the tool
Mona [96]1.

Writing control programs can often be an error prone task, especially if a num-
ber of special cases must be taken into account. Often most of the time and
effort is spent on taking care of special case or failure situations rather than
solving the actual problem at hand. Different methods and tools have been de-
veloped to help in writing control programs. One well known method is based
on a control automaton running in parallel with the actual program [131, 135].
The automaton controls the input and output events of the program. By doing
this the sequences of I/O actions occurring is restricted.

The automata controlling the I/O actions can be specified in different ways, e.g.
by specifying it directly in some suitable notation, or by a logical formula. We
have chosen the latter approach. There are various logics which could be used as
specification language. We have chosen to use monadic second order logic over
strings (M2L) [45] for a number of reasons. First of all M2L has a number of nice
properties such as being expressive and succinct. For instance, having second

∗Basic Research in Computer Science, BRICS, Centre of the Danish National Re-
search Foundation. Department of Computer Science, University of Aarhus, Denmark, E-
mail:{baris,sandholm}@brics.dk

1http://www.brics.dk/mona



240 Chapter 13. Using Automata in Control Synthesis

order quantification M2L is more expressive than LTL. Furthermore, there are
succinct M2L-formulae of size n which have minimal corresponding automata
of non-elementary size. Secondly, the tool Mona [96] implements a translation
from M2L formulae to minimal deterministic automata (MDFA) accepting the
language specified by the formula. The automata generated do not contain any
acceptance condition for infinite executions so we will only be considering safety
properties.

The method we study here is a variation of classical synthesis as described
in e.g. [118, 131], in that the method is partly based on an existing control
program. The aim of the synthesis described here is to restrict the behavior
of an existing (hopefully very simple) control program such that it satisfies
certain properties given by the user. The executions of the existing control
program are restricted by the control automaton having I/O events as alphabet.
These events define the interface between the existing control program and the
specification.

For studying the method we will look at a control program for a moving crane.
We have implemented the method for this example in the LEGO RCX
system [112]. Using the LEGO RCX system is interesting for at least two
reasons. First of all the environment of the RCX system and especially the
programming language is quite restricted, so it is not obvious that implementing
the method is feasible at all. Secondly, using the LEGO RCX system one
can build actual physical systems for testing the control programs. We have
built the crane and used it with different control programs.

The language running on the LEGO RCX brick (RCX language) is an
assembly-like language with a few high level features, like a notion of task or
process. Programs are written on a PC and downloaded to the RCX brick
where they are interpreted.

13.1.1 Related Work

The use of finite state automata for controlling systems is not novel. Ramadge
and Wonham [131] give a survey of classic results.

The method used in this paper has been used successfully in <bigwig> [135],
a tool for specifying and generating interactive Web services. Our method
for control synthesis is used as an integral part of <bigwig> to define safety
constraints. In fact, via use of a powerful macro mechanism [42] the method has
been used to extend the Web programming language in <bigwig> with concepts
and primitives for concurrency control, such as, semaphores and monitors.

13.1.2 Outline of the Paper

In the following section we will outline the method. A short presentation of the
LEGO system is given in Section 13.3. In Section 13.4 the crane example is
presented. The logic-based specification language is presented in Section 13.5,



13.2. Outline of the Method 241

and the merge of automata with the RCX code in Section 13.6. Finally,
Section 13.7 rounds off with conclusions, and suggestions for future work.

13.2 Outline of the Method

The two main components of the synthesis is a basic control program and an
automaton. From these two components we generate a control program which
is ready for use. We do not have any special requirements for what a control
program is, such as no side effects, since in our case the control program is
the only program running on the RCX brick. The interface between the
two components is a predefined set of I/O actions. This will typically be all
commands in the program for reading sensors or manipulating actuators.

Given a basic control program and an implementation of the automaton we
merge these. Each instruction in the basic control program using one of the I/O
actions is transformed to a sequence of instructions first calling the automaton
and based on the response from the automaton performing the action or not.
Section 13.6.3 will discuss different approaches to what should happen, when a
given action is not allowed by the automaton.

Since the automaton is invoked only when the basic control program is about
to make an I/O action, it can only restrict the possible I/O behaviors of the
control program, not add I/O actions in new places. Only looking at sequences
of I/O actions the basic control program must therefore be able to generate
all sequences present in the solution. Since the automaton will prune away
unwanted sequences, the basic control program might also generate unwanted
sequences. The basic control program should not implement any kind of priority
scheme, unless one is sure that combining this with the safety specification will
not lead to deadlocks.

The hope is that writing such basic control programs should be a simple task.
In general the basic control program could be one always being able to read any
sensor and give any command to the actuators. This amounts to generating
the star operation of the input alphabet. However, there will often be a corre-
spondence between input and output which is naturally included in the basic
control program. Often, adding details like these to the basic control program
will make the specification of the automaton simpler. This is the case in the
example shown later.

One could see the basic control program as implementing the method for con-
trolling the sequences of I/O actions and the automaton defining the allowed
policy for these. This suggests that with one implementation of a basic control
program it is possible to test different specifications or strategies (policies) only
by changing the control automaton. Therefore, a fast (automatic) way of get-
ting an implementation of an automaton from a specification and merging this
with the control program allows for testing different specifications fast.



242 Chapter 13. Using Automata in Control Synthesis

13.3 The LEGO System

The studies we have conducted are based on the LEGO RCX system and
the associated RCX language. The language is an assembly like language with
some high level concepts like concurrent tasks. The language is restricted in a
number of ways, e.g. it is possible to address only 32 integer variables and allows
only ten tasks in a program. Furthermore, one cannot use symbolic names in
programs. However, we have not encountered problems with the mentioned
restrictions during our experiments.

A small operating system is running on the RCX with processes for handling
I/O and one process running an interpreter for the RCX language. The
RCX brick has three output ports (for motors and lights) and three input
ports. Four kinds of sensors for the input ports are supplied by LEGO: touch,
temperature, rotation, and light.

13.3.1 The RCX Language

A program consists of a collection of at most ten tasks. There is no spe-
cial way to communicate between tasks but all variables are shared, providing
a way of communication. A task can start another task with the command
StartTask(i) and stop it with the command StopTask(i). Starting a task
means restarting it from the beginning. That is, there is no command for
resuming the execution of a task nor spawning an extra “instance” of a task.

The language has some commands for controlling the output ports, the main
ones being On(li) and Off(li) where li is a list of ports. The commands
SetFwd(li) and SetRwd(li) sets the direction of the ports in li to forward
and reverse respectively. There are also a number of instructions for manipu-
lating variables. All of these take three integer arguments. The first argument
specifies the target variable, the second the type of the source, and the third the
source. The most important types of sources are: variables (the third argument
is then the number of the variable), constants (the third argument is then the
value), and sensor readings (the third argument is then the number of the sen-
sor). These types of sources can be used in the instruction SetVar(i,j,k)

for assigning a value to a variable. In the instructions for calculating like
SumVar(i,j,k), SubVar(i,j,k), and MulVar(i,j,k) sensor readings are not
allowed.

Loops can be defined in two ways, either by the Loop(j,k) instruction or by
the While(j,k,l,m,n) instruction. The arguments of the Loop indicates how
many times the body should be iterated in the same way as the source of the
instructions for calculating. The While loop is iterated as long as the condition
specified by the arguments is satisfied. The first two and last two arguments
specify the sources of a comparison as in an assignment and l specifies a relation
from the set {=, <,>, 6=}.

There is also a conditional, If(j,k,l,m,n), with the condition specified as in
the While construct and an Else branch can be specified as well.



13.4. Example 243

One can block a task for a given time using the Wait(j,k) statement. When
the specified time has passed, execution of the task is resumed.

During execution a task is either enabled or blocked. A task can be blocked
by a StopTask(i) instruction, by a Wait(j,k) instruction, or by finishing its
execution (reaching the end of the code). Initially only task zero is enabled. The
enabled tasks are executed in a round robin fashion, where each task executes
one instruction and then leaves control for the next task.

The statements presented above constitute the part of the RCX language
which we have used for implementing control automata.

13.4 Example

As an example we will look at a crane which we will program in the RCX
language. We have built the crane and tested it with different control programs.
The crane is run by three motors connected to the RCX. One motor is driving
the wheels, one is turning the turret around, and one is moving the hook up
and down. The input for the three motors are three touch sensors, which is all
the RCX brick has room for. This means we can only turn motors on and
off. Therefore the crane alternates between moving forward and backward each
time the motor is turned on. The direction of turret and the hook is controlled
in a similar way.

A very basic control program for the crane consists of four tasks. One task for
setting up the sensors and motors, and starting the other tasks. For each of the
three inputs there is one task for monitoring input and controlling the motor
correspondingly. Task 1 for monitoring sensor 0 is:

BeginOfTask 1

Loop 2, 0 ’An infinite loop

SetFwd "0" ’Set direction of motor 0 to forward

SetVar 1, SENSOR, 0 ’Var1 := Sensor0

While VAR, 1, 3, CONST, 1 ’While Var1 != 1

SetVar 1, SENSOR, 0

EndWhile

On "0" ’Start motor 0

Wait CONST, 100 ’Wait

SetVar 1, SENSOR, 0 ’Var1 := Sensor0

While VAR, 1, 3, CONST, 1 ’While Var1 != 1

SetVar 1, SENSOR, 0

EndWhile

Off "0" ’Stop motor 0

Wait CONST, 100 ’Wait

... repeat the code replacing SetFwd "0" with SetRwd "0" ...

EndLoop

EndOfTask

The Wait statements ensures that one touch of the sensor is not read as two
touches. We could of course have tested for this but for our example this simple



244 Chapter 13. Using Automata in Control Synthesis

approach will do. The two other tasks for controlling the remaining two motors
look similar, only the numbers of variables, sensors and motors are different.

For the purpose of illustrating the presented method we choose to place the
following constraints on the behavior of the crane. First of all we only want one
thing happening at a time, so we will not allow for two motors to be turned
on at the same time. Pressing the touch sensor could now be seen as a request
which the control program may grant (and start the motor) when all the motors
are stopped. A motor can only be stopped by a request to stop that motor, not
by requests to start other motors. Moreover, we want that moving the hook
has higher priority than the wheels and the turret. Requests from the other two
are handled in order of arrival. The first constraint on the behavior is basically
mutual exclusion which is nontrivial to implement in the RCX language (this
is an integrated part of the implementation of the automata-based approach
described in Section 13.6). On top of this we have a mixed priority and queue
scheme.

13.5 Logic-Based Specifications

Basically, we could keep the initial simple control program if we had a way
of pruning out some unwanted executions. To be able to implement the con-
straints we have to change the initial control program slightly. This is done by
considering touching a sensor as a request. The motor can be turned on or off
when the request is accepted. Even with these changes the program is still sim-
ple to write. Execution of the program gives rise to a sequence of events. In our
case we will consider input (requests), and two kinds of output (start and stop
motor) as events. We then implement the automaton accepting the language
over these events satisfying the introduced constraints. With this approach we
can thus keep the control program simple.

Traditionally, control languages are described by automata which are in some
cases a good formalism to work with. However, having experience in using logic
for specifying properties, we will take that approach here. In this section we
describe the use of a logic formalism from which we can automatically generate
automata.

13.5.1 Terminology

An automaton is a structure A = (Q, qin,Σ,→, F ), where Q is a set of states
with initial state qin ∈ Q, Σ is a finite set of events, →⊆ Q × Σ × Q is the
transition relation, and F ⊆ Q the set of acceptance states. We shall use
q1

σ
→ q2 to denote (q1, σ, q2) ∈→. A sequence w = σ0σ1 . . . σn−1 ∈ Σ∗ is said

to be accepted by the automaton A if there exists a run of A which reads the
sequence w and ends up in an accepting state q. So we have q1, . . . , qn−1 ∈ Q and

q ∈ F , such that qin
σ0→ q1

σ1→ . . .
σn−2
→ qn−1

σn−1
→ q. We shall denote by L(A) the

language recognized by an automaton, that is, L(A) = {w ∈ Σ∗ | A accepts w }.



13.5. Logic-Based Specifications 245

In order to be able to define the notion of a legal control language, one parti-
tions the event set Σ into uncontrollable and controllable events: Σ = Σu ∪ Σc.
The controllable events can be disabled by the control automaton at any time,
whereas the uncontrollable ones are performed autonomously by the system
without any possible interference by the control automaton. The automaton
merely has to accept the fact that the particular uncontrollable event has oc-
curred and maybe change its state. Thus a control language must in some
sense, which is defined precisely below, respect the uncontrollableness of cer-
tain events. Furthermore, since our method only allows restrictions concerning
safety properties, it does not make sense to have non-prefix-closed languages as
control languages. That is, we define the notion of control language as follows.

Let pre(L) denote the prefix closure of a language L, and let unc(L) denote
closure of L under concatenation of uncontrollable events. That is, let

pre(L) = { v ∈ Σ∗ | ∃w ∈ Σ∗ : vw ∈ L } and

unc(L) = { vw ∈ Σ∗ | v ∈ L ∧w ∈ Σ∗
u }.

A language, L over Σ = Σu ∪ Σc is called a control language if it satisfies the
two properties pre(L) = L and unc(L) = L.

When using deterministic finite state automata to specify sets of sequences,
checking for prefix closedness is easy. One just has to make sure that all transi-
tions from non-accepting states go to non-accepting states. Similarly, checking
closure under concatenation of uncontrollable events is straightforward for de-
terministic automata.

What is new here, in comparison to the use of our method in [135], apart from
the new domain of LEGO RCX robots, is the partition into controllable
and uncontrollable events and the resulting additional restrictions and compu-
tations.

13.5.2 Specification Logic

It would be nice if instead of converting the informal requirement in Section 13.4
into an automaton, one could write it formally in a specification formalism closer
to natural language. That is, we would like to be able to write something like
the following.

• Only one motor can be turned on at a time;

• If the wheels get turned on, then the hook must not be requesting and
the wheels must have been the first to make a request; and

• If the turret gets turned on, then the hook must not be requesting and
the wheels must have been the first to make a request.

We therefore turn to a formalism that is as expressive as finite state automata
and yet still allows for separation of the declaratively specified requirements



246 Chapter 13. Using Automata in Control Synthesis

(previously our control automaton) and the operational part of the control
program (the existing RCX program).

Experience has shown that logic is a suitable specification formalism for control
languages. For the purpose of defining controllers for LEGO RCX robots,
we have chosen to use M2L. One might argue in favor of other specification
formalisms such as high-level Petri Nets [94] or Message Sequence Charts [120].
Being a logic formalism, however, M2L has the advantage that specifications
can be developed iteratively, that is, one can easily add, delete, and modify
parts of a specification. It also has a readable textual format. Moreover, the
formalism in use should be simple enough that a runtime checker, such as an
automaton, can actually be calculated and downloaded to the RCX brick.
Thus, M2L is powerful and yet just simple enough to actually subject it to
automated computation.

Experience in using M2L as a language for defining control requirements has
shown that only the first-order fraction of the logic is used in practice [42, 135].
We shall thus consider only first order quantifications, though second-order
quantifications could be added at no extra cost.

The abstract syntax of the logic is given by the following grammar:

φ ::= ∃p : φ′ | ∀p : φ′ | ¬φ′ | φ′ ∧ φ′′ | φ′ ∨ φ′′ | φ′ ⇒ φ′′ | σ(t) | t < t′

t ::= p | t+ 1

That is, M2L has the constructs: universal and existential quantifications over
first order variables (ranging over positions in the sequence of events), standard
boolean connectives such as negation, conjunction, disjunction, and implication,
the basic formulae, σ(t), to test whether an event σ can be found at position t,
and t < t′, to test whether position t is before position t′. It also has operations
on terms, such as, given a position t one can point out its successor (t+1), and
simple term variables (p).

A formula φ in M2L over the event set Σ will – when interpreted over a finite
sequence of events w – either evaluate to true or to false and we shall write
this as w |= φ or w 6|= φ, respectively. The language associated with φ is
L(φ) = {w ∈ Σ∗ | w |= φ }. The language associated with an M2L formula is
guaranteed to be regular. In fact, it has been known since the sixties that M2L

characterizes regularity [45, 62].

The Mona tool implements the constructive proof of the fact that for each M2L

formula there is a minimal deterministic finite state automaton accepting the
language of the formula. That is, Mona translates a particular M2L formulae,
φ, into its corresponding minimal deterministic finite state automata (MDFA),
A, such that L(φ) = L(A).

Example 13.1 Let Σ = {a, b, c}. The M2L formula to the left

// /.-,()*+��������
a

))

b;

�� /.-,()*+��������
b

ii



��
a // /.-,()*+

a;b;

��∀p, p′′ : (p < p′′ ∧ a(p) ∧ a(p′′))
=⇒ ∃p′ : p < p′ < p′′ ∧ b(p′)



13.5. Logic-Based Specifications 247

is true for sequences in which any two occurrences of a will have an occurrence
of b in between. Using Mona, one can compute the automaton corresponding to
the formula above. The resulting automaton appears to the right.

Example 13.2 With this logic-based specification language in place, we can
write a specification of the requirements given in the example. The logic-based
specification looks quite complex at first. However, because of it’s modular
structure we find it easier to handle than the automaton. The basic formulae
for the elements of the alphabet are req1(t), req2(t), req3(t), turnon1(t),
turnon2(t), turnon3(t), turnoff1(t), turnoff2(t), and turnoff1(t). The
first three are uncontrollable events of the alphabet and the rest are controllable
events of the alphabet. A predicate is true if the event at position t is the men-
tioned event. Using these basic formulae we can define some basic predicates
like all motors are stopped by:

off1(t) = (∀t′ : t′ < t⇒ ¬turnon1(t′))∨

(∀t′ : (t′ < t ∧ turnon1(t′))⇒

∃t′′ : t′ < t′′ ∧ t′′ < t ∧ turnoff1(t′′))

The predicate specifies that either there has never been a turnon1 action, or for
every position where there is a turnon1 action there is a turnoff1 action at a
later position. Similarly, we define predicates off2(t) and off3(t) and using
these we can define a predicate, alloff(t), specifying that all the motors are
turned off.

alloff(t) = off1(t) ∧ off2(t) ∧ off3(t)

We can specify that motor 1 has been requested to be turned on but has not yet
been turned on by the following predicate:

request1(t) = ∃t′ : t′ < t ∧ req1(t′)∧

(∀t′′ : (t′ < t′′ ∧ t′′ < t)⇒ ¬turnon1(t′′))

This is specified by stating that at some position there is a request req1 and
at no later position is there a turnon1 action, handling the request. Predicates
request2(t) and request3(t) are specified similarly. Using this we can define
a predicate specifying that the first request which has not been acknowledged is
for motor one.

req1first(t) = request1(t) ∧ ∀t′ : (t′ < t ∧ req1(t′)∧

∀t′′ : (t′ < t′′ ∧ t′′ < t)⇒ ¬req1(t′′))⇒

((request2(t′)⇒

∃t′′ : t′ < t′′ ∧ t′′ < t ∧ ¬request2(t′′))∧

(request3(t′)⇒

∃t′′ : t′ < t′′ ∧ t′′ < t ∧ ¬request3(t′′)))

The predicate specifies that at the current position, motor one is requesting and
that there is at position t′ a req1 action which has not been handled. If it is the



248 Chapter 13. Using Automata in Control Synthesis

case that at position t′ motor two (three) is already requesting then there is later
position where motor two (three) is not requesting any more (so the request has
been handled before the current position). Again, predicates req2first(t) and
req3first(t) are specified similarly. With these basic predicates as building
blocks we can give a specification closely related to the informal requirements of
the example.

∀t : (turnon1(t) ∨ turnon2(t) ∨ turnon3(t))⇒ alloff(t)∧

∀t : turnon2(t)⇒ (¬request1(t) ∧ req2first(t))∧

∀t : turnon3(t)⇒ (¬request1(t) ∧ req3first(t)),

An informal specification for the control of the crane containing three properties
was given in Section 13.5.2. Each of these properties corresponds to one of the
lines in the predicate above. For instance the first line of the predicate specifies
that if a motor is turned on then all the motors are turned off. This corresponds
to the first property that only one motor can be turned on at a time. For the
remaining two lines, motor 2 (3) can be turned on, if there is no request for
motor 1 and the request for motor 2 (3) was first.

Since our basic control program specifies the order of the events in the individual
tasks (first req, then turnon, then req, and then turnoff), this specification
will define the wanted behavior.

From this specification Mona generates the minimal deterministic automaton
which can be seen in Figure 13.1.

on1

req2

req3

req1

on2

req3

req1

req2

on3

off1

req2

req3

on1

req3

on1

req2

off2 req1

req3

req1

on2

req1

on3

off3
req2

req1

req1

req2

req3

off1 req3

off1

req2

on1

on1

off2

req3

off2

req1

off3

req1

off3 req2

off1

off1

off2

off3

Figure 13.1: The automaton giving priority to motor one.

Had the order of events not been specified in the basic control program, there
should also have been predicates specifying this.

Should we want to change the control language of our example in such a way
that all three tasks have equal priority, the overall structure of the control
automaton would change. As the following example will show, modifying the
logical formula is indeed quite comprehensible in the case of the LEGO crane
requirements.

Example 13.3 Say that we would like to change the requirements such that all
motors are given equal priority, that is, they will be turned on in a first come
first served manner. Using the logic-based specification, all we have to do is to



13.6. Merging Automata and RCX Code 249

change the last two lines of our specification slightly resulting in the following
fifo requirement.

∀t : (turnon1(t) ∨ turnon2(t) ∨ turnon3(t))⇒ alloff(t)∧

∀t : turnon1(t)⇒ req1first(t)∧

∀t : turnon2(t)⇒ req2first(t)∧

∀t : turnon3(t)⇒ req3first(t).

Note that the sub-formulae, such as, alloff() and req2first() are reused
from the previous specification. As we can see it is relatively easy to change the
specification using the previously defined primitives.

From this specification Mona generates the automaton in Figure 13.2 which
looks quite different from the one in Figure 13.1.

on1

req2

req3

req1

on2

req3

req1

req2

on3off1 req2

req3

on1

req3

on1

req2

on2

req3

off2

req1

req3

on2

req1

req2

on3

req1

on3

off3

req1

req2

req1
req2

req3
off1

req3

off1 req2

on1

on1

off2

req3

on2

off2

req1

on2

on3

off3
req2

on3
off3

req1

off1

off1

off2

off2

off3

off3

Figure 13.2: Control automaton giving equal priority to motor one, two, and
three.

13.6 Merging Automata and RCX Code

Given a control automaton and the basic control program, one can synthesize
the complete control program. In this section we describe how to translate an
automaton into RCX code and how this is merged with the existing RCX
control program. For our example we have done this by hand. It should be
clear from this section that only standard techniques are used and these can
easily be carried out automatically.

13.6.1 Wrapping the RCX Code

The execution of the basic control program is restricted to sequences allowed
by a control automaton as follows. Firstly, RCX code is generated for the
control automaton and then this code is merged with the existing RCX code.
Merging RCX code with an automaton can in some sense be considered a
program transformation. Each statement involving a request or writing to an
output port is replaced by a block of code that tests whether the operation is
legal according to the control automaton. For our example an action should
be delayed if the control automaton does not allow it, waiting for the other



250 Chapter 13. Using Automata in Control Synthesis

motor(s) to be turned off. Transforming the code for turning motor 0 on, will
lead to the following piece of code.

While VAR, 4, 3, CONST, 1 ’While automaton has not accepted the command

SetVar 31, CONST, 1 ’Arg := on0, the argument for the automaton

GoSub 0 ’Run the automaton

SetVar 4, VAR, 22 ’Local success:= global success

EndWhile

On "0" ’Execution of the actual command

We have chosen to implement the automaton as a subroutine. Since arguments
for subroutines are not supported by the language, passing an argument to the
automaton has to be done via a global variable. Similarly, since a subroutine
cannot return a value, return values are also placed in global variables for the
process to read. The while loop delays the action until the automaton accepts
execution of it.

13.6.2 Implementing Mutual Exclusion and Automata

However, the idea described above is not sufficient since we will not allow more
tasks to use the automaton simultaneously. In the RCX language the problem
is obvious since we are using shared variables for passing arguments and results.
In general, we also need exclusive access to the automaton since the outcome of
the automaton depends on its state when execution begins. If a process accesses
the automaton while it is used by another process, the state variable might be
corrupted. Therefore we must have exclusive access to the automaton.

In our implementation we have used Dijkstra’s algorithm to implement mutual
exclusion between several processes [59]. But any correct mutual exclusion
algorithm will do. The algorithm uses some shared variables but this is no
problem in the RCX language since all variables are shared. There are no
gotos in the RCX language. Therefore, we have used an extra while loop and
a success variable for each task. Except from these details, the algorithm is
followed directly. Entering the critical region for process one is done as follows.

SetVar 27, 2, 0 ’success(1):=0

While 0, 27, 2, 2, 0 ’while success(1) == 0

SetVar 30, 2, 1 ’ flag(1):=1

While 0, 24, 3, 2, 1 ’ while turn <> 1 do

If 0, 24, 2, 2, 2 ’ if turn == 2 then

If 0, 29, 2, 2, 0 ’ if flag(2) == 0 then

SetVar 24, 2, 1 ’ turn:=1

EndIf ’ endif

Else ’ else #turn is 3

If 0, 28, 2, 2, 0 ’ if flag(3) == 0 then

SetVar 24, 2, 1 ’ turn:=1

EndIf ’ endif

EndIf ’ endif

EndWhile ’ endwhile

SetVar 30, 2, 2 ’ flag(1):=2



13.6. Merging Automata and RCX Code 251

SetVar 27, 2, 1 ’ success(1):=1

If 0, 29, 2, 2, 2 ’ if flag(2) == 2 then

SetVar 27, 2, 0 ’ success(1):=0

EndIf ’ endif

If 0, 28, 2, 2, 2 ’ if flag(3) == 2 then

SetVar 27, 2, 0 ’ success(1):=0

EndIf ’ endif

EndWhile ’endwhile

The last two if statements is an ‘unfolding’ of the for loop

for j<>1 do

if flag(j)==2 then success(1):=0

Leaving the critical region is simple, just setting ones own flag to zero.

An automaton is implemented in the standard way by representing the tran-
sition relation as nested conditionals of depth two, branching on the current
state and the input symbol respectively. The current state and the input sym-
bol is represented by one variable each. This gives us a way to combine the
run of an automaton with the execution of standard RCX code with wrapped
input/output statements. Implementation of the automaton in RCX code
looks like.

BeginOfSub 0

SetVar 22, 2, 1 ’Global success :=1

If 0, 23, 2, 2, 0 ’Initial state

If 0, 31, 2, 2, 1 ’Label==on1

SetVar 23, 2, 1 ’New state := state 1

Else

If 0, 31, 2, 2, 2 ’Label == on2

SetVar 23, 2, 2 ’New state :=state 2

Else

If 0, 31, 2, 2, 3 ’Label==on3

SetVar 23, 2, 3 ’New state := state 3

Else

SetVar 22, 2, 0 ’Global success :=0

EndIf

EndIf

EndIf

Else

If 0, 23, 2, 2, 1 ’State 1

...

EndIf

EndIf

EndOfSub

13.6.3 Variations of the Method

In the example an action is delayed if the control automaton does not grant
permission at once. Depending on the problem to be solved the action taken
when permission is not granted can vary. That is, there are various ways of
handling this temporary lack of acknowledgment from the controller:



252 Chapter 13. Using Automata in Control Synthesis

• as in the above example where the task is busy waiting, asking the con-
troller over and over whether its label had been enabled; but

• one could also simply cancel or ignore the statement requesting permission
and continue execution. This could be done by replacing the busy waiting
while loop by an if statement.

The former would often be the preferred approach in cases where the internal
state of the code is important, such as, in our example, or in a train gate
controller. The latter would be a good choice in cases where the code is written
in a reactive style, constantly changing output action based on newly read input,
e.g. in autonomous robots.

The property implemented by the automaton in the example was specific to the
problem. One could also imagine using the method for general properties e.g.
for protecting hardware against malicious sequences of actions. This leaves at
least two options of where to place the automaton:

• as in the example above where the automaton was put alongside the
wrapped code. Placing the code implementing the automaton at this level
seems a natural choice when dealing with properties about the behavior
of a specific program solving a particular problem.

• If the property is of a more general kind, one should rather place the
automaton at the level of the operating system.

So far we have only considered untimed properties. One could easily imagine
using automata with discrete time as control automata. This would open for a
whole new range of properties to be specified, e.g. a minimum delay between
two actions. In the example it would be possible to specify properties like that a
minimum time of 5 seconds should pass between stopping the crane and starting
to move the hook.

On the RCX this could be realized by having a variable representing the
discrete time. This variable could be updated by a task consisting of an infi-
nite loop waiting for one time unit and then updating the variable. Assuming
variable number zero represents the time, it could be updated by:

SetVar 0, CONST, 0 ’Initialize the timer

Loop CONST, 0 ’An infinite loop

Wait CONST, 10 ’Wait for 1 sec.

SumVar 0, CONST, 1 ’Update the timer

EndLoop

13.7 Conclusion

We have used control automata in conjunction with basic control programs for
synthesizing complete control programs. Using this method one can add to a



13.7. Conclusion 253

basic control program a control automaton which will ensure that certain safety
properties are satisfied. We have used M2L to specify the control automata and
the Mona tool to translate formulae into automata.

The approach has been implemented in the setting of the LEGO RCX sys-
tem. This has allowed for the possibility of testing the implementations on real
physical systems.

Based on our experiments we find the method well suited for synthesis of pro-
grams ensuring safety properties like the ones we have used. We find the main
advantage of the method is the ease of testing different specifications. The
separation of the active control program and the restricting automaton also
allows for ensuring (new) safety specifications to existing control programs. In
critical systems one might consider the automaton only for monitoring actions,
not restricting these, to avoid deadlocks.

The main disadvantage of the method is the restriction to safety properties.
Since the all concurrent tasks must access the automaton there is a danger of
this becoming bottleneck.

Future work There is an overhead connected with gaining exclusive access
to the automaton and running it. How much time is spent on gaining access
to the automaton of course depends on the arrival of input events. It would
be interesting to calculate some specific times for this given some input se-
quences. A tool for translating RCX programs to timed models supported by
Uppaal [109] exists [78]. Using Uppaal one can “measure” the time spent by
a program from an input is read until the response arrives.

The example presented in this paper only has one component (one crane) and
the control restrictions are consequently imposed on that particular component
only. One could easily imagine having several components in a distributed
environment working to achieve a common goal. By use of modular synthesis
and distributed control [131] via independence analysis [135] one can statically
infer information about which constraints to put locally on the components and
which to put on the (most often necessary) central controller.





Bibliography

[1] E. Aarts, P. van Laarhoven, J. Lenstra, and N. Ulder. A Computational Study of
Local Search Algorithms for Job-Shop Scheduling. OSRA Journal on Computing,
6(2):118–125, Spring 1994.

[2] M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical
Computer Science, 82:253–284, 1991.

[3] M. Abadi and L. Lamport. An Old-Fashioned Recipe for Real Time. In Proc. of
REX Workshop “Real-Time: Theory in Practice”, number 600 in Lecture Notes
in Computer Science, 1992.

[4] P. Abdulla, K. Cerans, B. Jonsson, and T. Yih-Kuen. General decidability the-
orems for infinite-state systems. In Proc. of IEEE Symp. on Logic in Computer
Science. IEEE Computer Society Press, 1996.

[5] P. Abdulla and B. Jonsson. Undecidability of verifying programs with unreli-
able channels. In Proc. 21st Int. Coll. Automata, Languages, and Programming
(ICALP’94), volume 820 of LNCS, 1994.

[6] P. A. Abdulla and A. Nylén. Better is better than well: On efficient verification
of infinite-state systems. In Proc. of the 14th IEEE Symp. on Logic in Computer
Science. IEEE, 2000.

[7] S. Aggarwal, R. Alonso, and C. Courcoubetis. Distributed reachability analysis
for protocol verification environments. In Discrete Event Systems: Models and
Applications. IIASA Conference, pages 40–56, 1987.

[8] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for Real-Time Systems.
In Proc. of Logic in Computer Science, pages 414–425. IEEE Computer Society
Press, June 1990.

[9] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3–34, 1995.

[10] R. Alur, C. Courcoubetis, and T. A. Henzinger. Computing accumulated de-
lays in real-time systems. In Proc. of the 5th Int. Conf. on Computer Aided
Verification, number 697 in Lecture Notes in Computer Science, pages 181–193,
1993.

[11] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata:
An algorithmic approach to the specification and verification of hybrid systems.
In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid
Sysetems, number 736 in Lecture Notes in Computer Science, pages 209—229.
Springer–Verlag, 1993.

255



256 Bibliography

[12] R. Alur and D. Dill. Automata for Modelling Real-Time Systems. In Proc. of Int.
Colloquium on Algorithms, Languages and Programming, number 443 in Lecture
Notes in Computer Science, pages 322–335, July 1990.

[13] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

[14] R. Alur and T. A. Henzinger. Logics and Models of Real-Time: A Survey. In
Proc. of REX Workshop “Real-Time: Theory in Practice”, number 600 in Lecture
Notes in Computer Science. Springer–Verlag, 1992.

[15] R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric Real-time Reasoning.
In Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of
Computing, pages 592–601, 1993.

[16] R. Alur and R. P. Kurshan. Timing Analysis in COSPAN. In R. Alur, T. A. Hen-
zinger, and E. D. Sontag, editors, Proc. of Workshop on Verification and Control
of Hybrid Systems III, number 1066 in Lecture Notes in Computer Science, pages
220–231. Springer–Verlag, Oct. 1995.

[17] R. Alur, S. L. Torre, and G. J. Pappas. Optimal paths in weighted timed au-
tomata. To appear in Hybrid Systems: Computation and Control, 2001.

[18] H. R. Andersen and M. Mendler. An asynchronous process algebra with multiple
clocks. In Proceedings of ESOP’94, volume 788 of Lecture Notes in Computer
Science, pages 58–73. Springer–Verlag, 1994.

[19] J. H. Andersen, K. J. Kristoffersen, K. G. Larsen, and J. Niedermann. Auto-
matic synthesis of real time systems. In In Proc. of ICALP’95, Lecture Notes in
Computer Science. Springer–Verlag, 1995.

[20] A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for parametric
reasoning about counter and clock systems. In E. A. Emerson and A. P. Sistla,
editors, Proc. of the 12th Int. Conf. on Computer Aided Verification, number
1855 in Lecture Notes in Computer Science, pages 419–434. Springer–Verlag,
2000.

[21] D. Applegate and W. Cook. A Computational Study of the Job-Shop Scheduling
Problem. OSRA Journal on Computing 3, pages 149–156, 1991.

[22] E. Asarin, P. Caspi, and O. Maler. A Kleene theorem for timed automata.
In Proc. of IEEE Symp. on Logic in Computer Science, pages 160–171. IEEE
Computer Society Press, 1997.

[23] E. Asarin and O. Maler. As soon as possible: Time optimal control for timed
automata. In F. Vaandrager and J. van Schuppen, editors, Hybrid Systems:
Computation and Control, number 1569 in Lecture Notes in Computer Science,
pages 19–30. Springer–Verlag, Mar. 1999.

[24] G. Bandini, R. Lutje Spelberg, and H. Toetenel. Parametric verification of the
IEEE 1394a root contention protocol using LPMC. http://tvs.twi.tudelft.nl/,
July 2000. Submitted for publication.

[25] J. Beasley, M. Krishnamoorthy, Y. Sharaiha, and D. Abramson. Scheduling
aircraft landings - the static case. The Management School, Imperial College.
Working paper, 1998. To appear in Transportation Science, vol. 34, 2000.

[26] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, and J. Romijn.
Efficient guiding towards cost-optimality in uppaal. In T. Margaria and W. Yi,
editors, Proceedings of Tools and Algorithms for the Construction and Analysis
of Systems, TACAS 2001, number 2031 in Lecture Notes in Computer Science,
pages 174–188. Springer Verlag, 2001.



Bibliography 257

[27] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, and J. Romijn.
Efficient guiding towards cost-optimality in uppaal. Technical Report RS-01-4,
BRICS, Jan. 2001.

[28] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn,
and F. Vaandrager. Minimum-cost reachability for priced timed automata. In
M. D. D. Benedetto and A. Sangiovanni-Vincentelli, editors, Proceedings of the
4th International Workshop on Hybrid Systems:Computation and Control, num-
ber 2034 in Lecture Notes in Computer Science, pages 147–161. Springer Verlag,
2001.

[29] G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn, and
F. Vaandrager. Minimum-cost reachability for priced timed automata. Technical
Report RS-01-03, BRICS, Jan. 2001.

[30] G. Behrmann, T. Hune, and F. Vaandrager. Distributing timed model checking
– How the search order matters. In E. A. Emerson and A. P. Sistla, editors, Proc.
of the 12th Int. Conf. on Computer Aided Verification, number 1855 in Lecture
Notes in Computer Science, pages 216–231. Springer–Verlag, 2000.

[31] G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and W. Yi. Efficient timed
reachability analysis using clock difference diagrams. In N. Halbwachs and
D. Peled, editors, Proc. of the 11th Int. Conf. on Computer Aided Verification,
number 1633 in Lecture Notes in Computer Science, pages 341–353. Springer–
Verlag, 1999.

[32] J. Bengtsson, W. D. Griffioen, K. J. Kristoffersen, K. G. Larsen, F. Larsson,
P. Pettersson, and W. Yi. Verification of an Audio Protocol with Bus Colli-
sion Using Uppaal. In R. Alur and T. A. Henzinger, editors, Proc. of the 8th
Int. Conf. on Computer Aided Verification, number 1102 in Lecture Notes in
Computer Science, pages 244–256. Springer–Verlag, July 1996.

[33] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial Order Reductions for
Timed Systems. In Proc. of CONCUR ’98: Concurrency Theory, volume 1466
of Lecture Notes in Computer Science, pages 485–500, 1998.

[34] L. Björnfot. Ada and timed automata. In In Proc. of Ada in Europe, number
1031 in LNCS, pages 389–405. Springer–Verlag, 1995.

[35] R. Boel. Automatic synthesis of schedules in a timed discrete event plant. In
Proceedings of ADPM 2000: 4th International Conference on Automation of
Mixed Processes: Hybrid Dynamic Systems, 2000.

[36] R. Boel and G. Stremersch. Report for VHS: Timed Petri Net Model of Steel
Plant at SIDMAR. Technical report, SYSTeMS Group, University Ghent, 1999.

[37] R. Boel and G. Stremersch. VHS case study 5: modelling and verification of
scheduling for steel plant at SIDMAR. draft, 1999.

[38] R. Boel and G. Stremersch. VHS case study 5: Timed Petri net model of steel
plant at SIDMAR. VHS deliverable, 1999.

[39] R. Boel and G. Stremersch. VHS Case Study 5: Timed Petri net model of
steel plant at SIDMAR. Technical report, SYSTeMS Group, Universiteit Gent,
Technologiepark-Zwijnaarde 9, B-9052 Ghent, Belgium, 1999.

[40] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Are timed automata updatable?
In E. A. Emerson and A. P. Sistla, editors, Proc. of the 12th Int. Conf. on Com-
puter Aided Verification, number 1855 in Lecture Notes in Computer Science,
pages 464–479. Springer–Verlag, 2000.



258 Bibliography

[41] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos:
A Model-Checking Tool for Real-Time Systems. In Proc. of the 10th Int. Conf.
on Computer Aided Verification, number 1427 in Lecture Notes in Computer
Science, pages 546–550. Springer–Verlag, 1998.

[42] C. Brabrand. Synthesizing safety controllers for interactive Web services. Mas-
ter’s thesis, Department of Computer Science, University of Aarhus, December
1998. Available from http://www.brics.dk/∼brabrand/thesis/ .

[43] E. Brinksma and A. Mader. Verification and optimization of a plc control sched-
ule. In Proceedings of the 7th SPIN Workshop, volume 1885 of Lecture Notes in
Computer Science. Springer Verlag, 2000.

[44] P. Brucker, B. Jurisch, and B. Sievers. Code of a Branch &
Bound Algorithm for the Job Shop Problem. Available at url
http://www.mathematik.uni-osnabrueck.de/research/OR/, 1995.

[45] J. R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundl. Math., 6:66–92, 1960.

[46] T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of infinite state
systems using Presburger arithmetic. In O. Grumberg, editor, Proc. of the 9th
Int. Conf. on Computer Aided Verification, volume 1254 of Lecture Notes in
Computer Science, pages 400–411. Springer–Verlag, June 1997. Haifa, Isreal,
June 22-25.

[47] S. Caselli, G. Conte, and P. Marenzoni. Parallel state space exploration for GSPN
models. In G. D. Michelis and M. Diaz, editors, Proceedings 16th Int. Conf. on
Application and Theory of Petri Nets,Turin, Italy, volume 935 of Lecture Notes
in Computer Science, pages 181–200. Springer–Verlag, June 1995.

[48] G. Cattani, M. Fiore, and G. Winskel. A theory of recursive domains with
applications to concurrency. In Proc. of IEEE Symp. on Logic in Computer
Science, pages 214–225. IEEE Computer Society Press, 1998.

[49] K. Čerāns. Decidability of Bisimulation Equivalences for Parallel Timer Pro-
cesses. In Proc. of CAV’92, number 663 in Lecture Notes in Computer Science,
pages 302–315, Berlin, 1992. Springer–Verlag.

[50] K. Cerans. Deciding properties of integral relational automata. In Proceedings
of ICALP 94, volume 820 of LNCS, 1994.

[51] K. Cerans, J. C. Godskesen, and K. G. Larsen. Time Modal Specification –
Theory and Tools. In Proc. of the 5th Int. Conf. on Computer Aided Verification,
number 697 in Lecture Notes in Computer Science. Springer–Verlag, 1993.

[52] A. Cheng and M. Nielsen. Open maps (at) work. In Thiagarajan, editor, In
Proc. of FST&TCS ’95, volume 1026 of Lecture Notes in Computer Science,
pages 263–278. Springer–Verlag, 1996.

[53] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, Cambridge,
Massachusetts, 1999.

[54] J. C. Corbett. Modeling and analysis of real-time Ada tasking programs. In
K. Ramamritham, editor, Proc. of the 15th IEEE Real-Time Systems Sympo-
sium, pages 132–141. IEEE Computer Society Press, December 1994.

[55] J. C. Corbett. Constructing abstract models of concurrent real-time software.
In Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA), pages 250–260. IEEE Computer Society Press, Januar 1996.



Bibliography 259

[56] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. McGraw-
Hill, Inc., 1991.

[57] P. D’Argenio, J.-P. Katoen, T. Ruys, and J. Tretmans. The bounded retransmis-
sion protocol must be on time! In E. Brinksma, editor, Proc. of the 3rd Workshop
on Tools and Algorithms for the Construction and Analysis of Systems, number
1217 in Lecture Notes in Computer Science, pages 416–431. Springer–Verlag,
Apr. 1997.

[58] C. Daws and S. Tripakis. Model checking of real-time reachability properties
using abstractions. In B. Steffen, editor, Proc. of the 4th Workshop on Tools
and Algorithms for the Construction and Analysis of Systems, number 1384 in
Lecture Notes in Computer Science, pages 313–329. Springer–Verlag, 1998.

[59] E. Dijkstra. Solution of a problem in concurrent programming control. Commu-
nications of the ACM, 8(9):569, September 1965.

[60] D. Dill. Timing Assumptions and Verification of Finite-State Concurrent Sys-
tems. In J. Sifakis, editor, Proc. of Automatic Verification Methods for Finite
State Systems, number 407 in Lecture Notes in Computer Science, pages 197–212.
Springer–Verlag, 1989.

[61] D. Dill. The Murϕ Verification System. In R. Alur and T. A. Henzinger, editors,
Proc. of the 8th Int. Conf. on Computer Aided Verification, number 1102 in
Lecture Notes in Computer Science, pages 390–393. Springer–Verlag, 1996.

[62] C. Elgot. Decision problems of finite automata design and related arithm etics.
Transactions of the American Mathematical Society, 98:21–52, 1961.

[63] A. Fehnker. Bounding and heuristics in forward reachability algorithms. Tech-
nical Report CSI-R0002, Computing Science Institute Nijmegen, 1999.

[64] A. Fehnker. Scheduling a steel plant with timed automata. In Proceedings of the
6th International Conference on Real-Time Computing Systems and Applications
(RTCSA99), pages 280–286. IEEE Computer Society, 1999.

[65] A. Finkel and P. Schnoebelen. Fundamental structures in well-structured infi-
nite transition systems. In Proc. 3rd Latin American Theoretical Informatics
Symposium (LATIN’98), volume 1380 of LNCS, 1998.

[66] A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere.
Research Report LSV-98-4, Lab. Specification and Verification, ENS de Cachan,
France, 1998. To appear in TCS., 1998.

[67] R. V. Glabeek and U. Goltz. Equivalence notions for concurrent systems and
refinement of actions. In Proc. of MFCS’89, number 379 in Lecture Notes in
Computer Science, pages 237–248. Springer–Verlag, 1989.

[68] V. Gupta, T. A. Henzinger, and R. Jagadeesan. Robust timed automata. In
O. Maler, editor, Hybrid and Real-Time Systems, Lecture Notes in Computer
Science, pages 331–345. Springer–Verlag, March 1997.

[69] K. Havelund, K. Larsen, and A. Skou. Formal verification of a power controller us-
ing the real-time model checker Uppaal. In J.-P. Katoen, editor, Formal Methods
for Real-Time and Probabilistic Systems, 5th International AMAST Workshop,
ARTS’99, volume 1601 of Lecture Notes in Computer Science, pages 277–298.
Springer-Verlag, 1999.



260 Bibliography

[70] K. Havelund, A. Skou, K. G. Larsen, and K. Lund. Formal Modeling and Analysis
of an Audio/Video Protocol: An Industrial Case Study Using Uppaal. In Proc.
of the 18th IEEE Real-Time Systems Symposium. IEEE Computer Society Press,
Dec. 1997.

[71] B. Haverkort, A. Bell, and H. Bohnenkamp. On the efficient sequential and
distributed generation of very large Markov chains from stochastic Petri nets.
In Proceedings of the 8th International Workshop on Petri Nets and Perfor-
mance Models (PNPM’99), Zaragoza, Spain, pages 12–21. IEEE Computer So-
ciety Press, 1999.

[72] T. Henzinger. The theory of hybrid automata. In Proceedings of the 11th An-
nual Symposium on Logic in Computer Science, pages 278–292. IEEE Computer
Society Press, 1996.

[73] T. A. Henzinger and P.-H. Ho. HyTech: The Cornell HYbrid TECHnology Tool.
In Proc. of TACAS, Workshop on Tools and Algorithms for the Construction and
Analysis of Systems, 1995. BRICS report series NS–95–2.

[74] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A Model Checker for
Hybird Systems. In O. Grumberg, editor, Proc. of the 9th Int. Conf. on Computer
Aided Verification, number 1254 in Lecture Notes in Computer Science, pages
460–463. Springer–Verlag, 1997.

[75] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model Checking
for Real-Time Systems. In Proc. of IEEE Symp. on Logic in Computer Science,
1992.

[76] G. Higman. Ordering by divisibility in abstract algebras. Proc. of the London
Math. Soc., 2:326–336, 1952.

[77] G. Holzmann. The Design and Validation of Computer Protocols. Prentice Hall,
1991.

[78] T. Hune. Modeling a real-time language. In S. Gnesi and D. Latella, editors, Proc.
of Workshop on Formal Methods for Industrial Critical Systems, FMICS’99, vol-
ume 2, pages 259–282, 1999.

[79] T. Hune. Modeling a language for embedded systems in timed automata. Tech-
nical Report RS-00-17, BRICS, Aug. 2000.

[80] T. Hune, K. G. Larsen, and P. Pettersson. Guided synthesis of control programs
using UPPAAL for VHS case study 5. VHS deliverable, 1999.

[81] T. Hune, K. G. Larsen, and P. Pettersson. Guided synthesis of control programs
for a batch plant using uppaal. Technical Report RS-00-37, BRICS, Dec. 2000.

[82] T. Hune, K. G. Larsen, and P. Pettersson. Guided Synthesis of Control Programs
Using Uppaal. In T. H. Lai, editor, Proc. of the IEEE ICDCS International
Workshop on Distributed Systems Verification and Validation, pages E15–E22.
IEEE Computer Society Press, Apr. 2000.

[83] T. Hune, K. G. Larsen, and P. Pettersson. Guided synthesis of control programs
using uppaal. Nordic Journal of Computing, 2001. Accepted for publication.

[84] T. Hune and M. Nielsen. Timed bisimulation and open maps. In In Proc.
of Mathematical Foundations of Computer Science, MFCS’98, volume 1450 of
Lecture Notes in Computer Science, pages 378–387. Springer–Verlag, 1998.

[85] T. Hune and M. Nielsen. Timed bisimulation and open maps. Technical Report
RS-98-4, BRICS, Feb. 1998.



Bibliography 261

[86] T. Hune, J. Romijn, M. Stoelinga, and F. Vaandrager. Linear parametric
model checking of timed automata. In T. Margaria and W. Yi, editors, Pro-
ceedings of Tools and Algorithms for the Construction and Analysis of Systems,
TACAS 2001, number 2031 in Lecture Notes in Computer Science, pages 189–
203. Springer Verlag, 2001.

[87] T. Hune, J. Romijn, M. Stoelinga, and F. Vaandrager. Linear parametric model
checking of timed automata. Technical Report RS-01-05, BRICS, Jan. 2001.

[88] T. Hune and A. Sandholm. A case study on using automata in control syn-
thesis. In T. Maibaum, editor, Proc. of Fundamental Approaches to Software
Engineering, FASE 2000, number 1783 in Lecture Notes in Computer Science,
pages 349–362. Springer–Verlag, March/April 2000.

[89] T. S. Hune and A. B. Sandholm. Using automata in control synthesis — A case
study. Technical Report RS-00-22, BRICS, Sept. 2000.

[90] D. Hung. Modelling and verification of biphase mark protocols using PVS. In Pro-
ceedings of the International Conference on Applications of Concurrency to Sys-
tem Design (CSD’98), Aizu-wakamatsu, Fukushima, Japan, March 1998, pages
88–98. IEEE Computer Society Press, 1998.

[91] IEEE Computer Society. IEEE Standard for a High Performance Serial Bus. Std
1394-1995, Aug. 1996.

[92] T. K. Iversen, K. J. Kristoffersen, K. G. Larsen, M. Laursen, R. G. Madsen,
S. K. Mortensen, P. Pettersson, and C. B. Thomasent. Model-checking real-time
control programs. In In Proceedings of the 12th Euromicro Conference on Real-
Time Systems (ECRTS’2000), pages 147–155. IEEE Computer Society Press,
June 2000.

[93] A. Jain and S. Meeran. Deterministic job-shop scheduling; past, present and
future. European Journal of Operational Research, 1999. to appear in volume
113, issue 2.

[94] K. Jensen and G. Rozenberg, editors. High-level Petri Nets – Theory and Appli-
cation. Springer-Verlag, 1991.

[95] A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from open maps. Information
and Computation, 127,2:164–185, 1996.

[96] N. Klarlund and A. Møller. MONA Version 1.3 User Manual. BRICS Notes Se-
ries NS-98-3 (2.revision), Department of Computer Science, University of Aarhus,
October 1998.

[97] S. Kowalewski. Description of VHS case study 1 ”Experimental Batch Plant”.
Draft. University of Dortmund, Germany, July 1998.

[98] K. Kristoffersen and J. Niedermann. User’s manual for Epsilon. Available via
anonymous ftp at cs.auc.dk, Dec. 1994.

[99] K. J. Kristoffersen, F. Laroussinie, K. G. Larsen, P. Pettersson, and W. Yi. A
Compositional Proof of a Real-Time Mutual Exclusion Protocol. In Proc. of the
7th Int. Joint Conf. on the Theory and Practice of Software Development, Apr.
1997.

[100] K. J. Kristoffersen, K. G. Larsen, P. Pettersson, and C. Weise. Experimental
batch plant - VHS case study 1 using uppaal. VHS deliverable, May 1999. Draft.



262 Bibliography

[101] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification
of real-time systems with discrete probability distributions. In J.-P. Katoen,
editor, Proc. of ARTS’99, number 1601 in Lecture Notes in Computer Science,
pages 75–95. Springer–Verlag, 2000.

[102] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Computer
Systems, 5(1):1–11, Feb. 1987.

[103] F. Laroussinie, K. G. Larsen, and C. Weise. From Timed Automata to Logic —
and Back. In Proc. of MFCS’95, Lecture Notes in Computer Sciencie, 1995. Also
BRICS report series RS–95–2.

[104] K. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94(1):1–28, 1991.

[105] K. G. Larsen, G. Behrmann, E. Briksma, A. Fehnker, T. Hune, P. Pettersson,
and J. Romijn. As cheap as possible: Efficient cost-optimal reachability for priced
timed automata. Accepted for CAV 2001.

[106] K. G. Larsen, P. Pettersson, and W. Yi. Compositional and Symbolic Model-
Checking of Real-Time Systems. In Proc. of the 16th IEEE Real-Time Systems
Symposium, pages 76–87. IEEE Computer Society Press, Dec. 1995.

[107] K. G. Larsen, P. Pettersson, and W. Yi. Diagnostic Model-Checking for Real-
Time Systems. In Proc. of Workshop on Verification and Control of Hybrid
Systems III, number 1066 in Lecture Notes in Computer Science, pages 575–586.
Springer–Verlag, Oct. 1995.

[108] K. G. Larsen, P. Pettersson, and W. Yi. Model-Checking for Real-Time Systems.
In Proc. of Fundamentals of Computation Theory, number 965 in Lecture Notes
in Computer Science, pages 62–88, Aug. 1995.

[109] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. Int. Journal on
Software Tools for Technology Transfer, 1(1–2):134–152, Oct. 1997.

[110] K. G. Larsen, C. Weise, W. Yi, and J. Pearson. Clock difference diagrams. Nordic
Journal of Computing, 6(3):271–298, 1999.

[111] F. Larsson, K. G. Larsen, P. Pettersson, and W. Yi. Efficient Verification of Real-
Time Systems: Compact Data Structures and State-Space Reduction. In Proc.
of the 18th IEEE Real-Time Systems Symposium, pages 14–24. IEEE Computer
Society Press, Dec. 1997.

[112] LEGO. Software developers kit, November 1998. See
http://www.legomindstorms.com/.

[113] H. Lescow. On polynomial-size games winning finite-state games. In Proc. of the
7th Int. Conf. on Computer Aided Verification, number 939 in Lecture Notes in
Computer Science, pages 239–252. Springer–Verlag, 1995.

[114] M. Lin. Syntehsis of control software in a layered architecture from hybrid au-
tomata. In F. Vaandrager and J. van Schuppen, editors, Hybrid Systems: Com-
putation and Control, number 1569 in Lecture Notes in Computer Science, pages
152–164. Springer–Verlag, Mar. 1999.

[115] H. Lönn and P. Pettersson. Formal Verification of a TDMA Protocol Startup
Mechanism. In Proc. of the Pacific Rim Int. Symp. on Fault-Tolerant Systems,
pages 235–242, Dec. 1997.



Bibliography 263

[116] R. Lutje Spelberg, W. Toetenel, and M. Ammerlaan. Partition refinement in
real-time model checking. In A. Ravn and H. Rischel, editors, Proc. of Formal
Techniques in Real-Time and Fault-Tolerant Systems, volume 1486 of Lecture
Notes in Computer Science, pages 143–157. Springer–Verlag, 1998.

[117] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San
Fransisco, California, 1996.

[118] Z. Manna and A. Pnueli. Synthesis of communicating processes from temporal
logic specifications. ACM Transactions on Programming Languages and Systems,
6(1):68–93, January 1984.

[119] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling
with generalized stochastic petri nets. Wiley series in parallel computing. John
Wiley & Sons, 1995.

[120] S. Mauw and M. A. Reniers. An algebraic semantics of Basic Message Sequence
Charts. The Computer Journal, 37(4):269–277, 1994.

[121] R. Milner. Communication and Concurrency. Prentice Hall, Englewood Cliffs,
1989.

[122] R. Milner and D. Sangiorgi. Barbed bisimulation. In In Proc. of ICALP’92,
Lecture Notes in Computer Science, pages 685–695. Springer–Verlag, July 1992.

[123] J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Difference deci-
sion diagrams. Technical Report IT-TR-1999-023, Department of Information
Technology, Technical University of Denmark, Building 344, DK-2800 Lyngby,
Denmark, Feb. 1999.

[124] J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Fully symbolic model
checking of timed systems using difference decision diagrams. In Proceedings First
International Workshop on Symbolic Model Checking, volume 23-2 of Electronic
Notes in Theoretical Computer Science, pages 89–108, Trento, Italy, July 1999.

[125] X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs and hybrid
systems. Acta Informatica, 30:pages 181–202, 1993.

[126] P. Niebert, S. Tripakis, and S. Yovine. Minimum-time reachability for timed
automata. In IEEE Mediteranean Control Conference, 2000. Accepted for pub-
lication.

[127] P. Niebert and S. Yovine. Computing optimal operation schemes for multi batch
operation of chemical plants. VHS deliverable, May 1999. Draft.

[128] M. Nielsen and T. Hune. Bisimulation and open maps for timed transition sys-
tems. Fundamenta Informatica, special issue dedicated to Professor Arto Salo-
maa, pages 61–77, 1999.

[129] N.V. SIDMAR. Planung und Synchronisation der Anlagen im Stahlwerk SID-
MAR. Ghent, Belgium, October 1998.

[130] D. Park. Concurrency and automata on infinite sequences. In Proc. of 5th GI
Conference, number 104 in Lecture Notes in Computer Science, Berlin, 1981.
Springer–Verlag.

[131] P. J. G. Ramadge and W. M. Wonham. The control of discrete event systems.
Proceedings of the IEEE, 77(1):81–98, January 1989.

[132] F. Reffel and S. Edelkamp. Error Detection with Directed Symbolic Model Check-
ing. In Proc. of Formal Methods, volume 1708 of Lecture Notes in Computer
Science, pages 195–211. Springer–Verlag, 1999.



264 Bibliography

[133] T. G. Rokicki. Representing and Modeling Digital Circuits. PhD thesis, Stanford
University, 1993.

[134] T. C. Ruys and E. Brinksma. Experience with Literate Programming in the Mod-
elling and Validation of Systems. In B. Steffen, editor, Proceedings of the Fourth
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS’98), number 1384 in Lecture Notes in Computer Science
(LNCS), pages 393–408, Lisbon, Portugal, Apr. 1998. Springer-Verlag, Berlin.

[135] A. Sandholm and M. I. Schwartzbach. Distributed safety controllers for Web
services. In E. Astesiano, editor, In Proc. of Fundamental Approaches to Software
Engineering, FASE’98, number 1382 in Lecture Notes in Computer Science, pages
270–284. Springer–Verlag, March/April 1998. Also available as BRICS Technical
Report RS-97-47.

[136] D. Simons and M. Stoelinga. Mechanical verification of the IEEE 1394a root
contention protocol using Uppaal2k. Technical Report CSI-R0009, Computing
Science Institute, University of Nijmegen, May 2000. Conditionally accepted for
STTT.

[137] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI:The
Complete Reference. MIT Press, Cambridge, Massachusetts, 1996.

[138] U. Stern and D. L. Dill. Parallelizing the Murϕ verifier. In O. Grumberg, edi-
tor, Proc. of the 9th Int. Conf. on Computer Aided Verification, volume 1254 of
Lecture Notes in Computer Science, pages 256–267. Springer–Verlag, June 1997.
Haifa, Isreal, June 22-25.

[139] M. Stobbe. Results on scheduling the sidmar steel plant using constraint pro-
gramming. Internal report, 2000.

[140] M. Stoelinga and F. Vaandrager. Root contention in IEEE 1394. In J.-P. Katoen,
editor, Proceedings 5th International AMAST Workshop on Formal Methods for
Real-Time and Probabilistic Systems, Bamberg, Germany, volume 1601 of Lecture
Notes in Computer Science, pages 53–74. Springer–Verlag, 1999.

[141] F. Vaandrager. Analysis of a biphase mark protocol with uppaal. Slides, avail-
able from http://www.cs.kun.nl/ fvaan/publications.html, 2000.

[142] F. Wang. Efficient data structure for fully symbolic verification of real-time
software systems. In S. Graf and M. Schwartzbach, editors, Proc. of the 6th
Workshop on Tools and Algorithms for the Construction and Analysis of Systems,
number 1785 in Lecture Notes in Computer Science, pages 157–171. Springer–
Verlag, 2000.

[143] C. Weise and D. Lenzkes. Efficient scaling-invariant checking of timed bisimula-
tion. In Proc. of STACS’97, volume 1200 of Lecture Notes in Computer Science,
pages 177–188. Springer–Verlag, 1997.

[144] G. Winskel and M. Nielsen. Presheaves as transition systems. In Partial order
methods in verification, DIMACS, pages 129–140. 1996.

[145] W. Yi. Real–time behaviour of asynchronous agents. In Proc. of CONCUR ’90,
Theories of Concurrency: Unification an d Extension, number 458 in Lecture
Notes in Computer Science, pages 502–520. Springer–Verlag, 1990.

[146] W. Yi, P. Pettersson, and M. Daniels. Automatic Verification of Real-Time
Communicating Systems By Constraint-Solving. In D. Hogrefe and S. Leue,
editors, Proc. of the 7th Int. Conf. on Formal Description Techniques, pages
223–238. North–Holland, 1994.



Bibliography 265

[147] S. Yovine. Model-Checking Timed Automata. In G. Rozenberg and F. Vaan-
drager, editors, Embedded Systems, number 1494 in Lecture Notes in Computer
Science, pages 114–152. Springer–Verlag, 1998. SBN 3-540-65193-4.



Recent BRICS Dissertation Series Publications

DS-01-3 Thomas S. Hune. Analyzing Real-Time Systems: Theory and

Tools. March 2001. PhD thesis. xii+265 pp.

DS-01-2 Jakob Pagter. Time-Space Trade-Offs. December 2001. PhD

thesis. xii+83 pp.

DS-01-1 Stefan Dziembowski. Multiparty Computations — Information-

Theoretically Secure Against an Adaptive Adversary. January

2001. PhD thesis. 109 pp.

DS-00-7 Marcin Jurdziński. Games for Verification: Algorithmic Issues.

December 2000. PhD thesis. ii+112 pp.

DS-00-6 Jesper G. Henriksen. Logics and Automata for Verification: Ex-

pressiveness and Decidability Issues. May 2000. PhD thesis.

xiv+229 pp.

DS-00-5 Rune B. Lyngsø. Computational Biology. March 2000. PhD

thesis. xii+173 pp.

DS-00-4 Christian N. S. Pedersen. Algorithms in Computational Biology.

March 2000. PhD thesis. xii+210 pp.

DS-00-3 Theis Rauhe. Complexity of Data Structures (Unrevised). March

2000. PhD thesis. xii+115 pp.

DS-00-2 Anders B. Sandholm. Programming Languages: Design, Analy-

sis, and Semantics. February 2000. PhD thesis. xiv+233 pp.

DS-00-1 Thomas Troels Hildebrandt. Categorical Models for Concur-

rency: Independence, Fairness and Dataflow. February 2000.

PhD thesis. x+141 pp.

DS-99-1 Gian Luca Cattani. Presheaf Models for Concurrency (Unre-

vised). April 1999. PhD thesis. xiv+255 pp.

DS-98-3 Kim Sunesen. Reasoning about Reactive Systems. December

1998. PhD thesis. xvi+204 pp.

DS-98-2 Søren B. Lassen. Relational Reasoning about Functions and

Nondeterminism. December 1998. PhD thesis. x+126 pp.

DS-98-1 Ole I. Hougaard. The CLP(OIH) Language. February 1998.

PhD thesis. xii+187 pp.

DS-97-3 Thore Husfeldt. Dynamic Computation. December 1997. PhD

thesis. 90 pp.


