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Abstract

Two player games are a standard model of reactive computation, where e.g. one

player is the controller and the other is the environment. A game is won by a player

if she has a winning strategy, i.e., if she can win every play. Given a finite description

of the game, our aim is to compute the winner and a winning strategy. For finite

graphs these problems have been solved for a long time, although some complexity

questions remain open.

We consider several classes of infinite graphs, from transition graphs of pushdown

automata up to graphs of the Caucal hierarchy, and we investigate different winning

conditions: reachability, recurrence (Büchi), parity, and the a called Σ3-condition.

Two kinds of techniques are developed: a symbolic approach based on finite

automata recognizing infinite sets of configurations and a game simulation which

reduces a given game into a simpler one and solves it. Different kinds of strategies

are also constructed: either positional or based on pushdown stack memories.

Zusammenfassung

Reaktive Systeme werden oft durch Spiele mit zwei Personen modelliert, wo typi-

scherweise ein Spieler der Steuerungsprogramm ist, und der andere die Umgebung.

Ein Spieler gewinnt ein Spiel, wenn er eine Gewinnstrategie hat, so dass er alle

Partien gewinnt. Gegeben die endliche Spezifikation eines Spiels ist es das Ziel, den

Gewinner und eine Gewinnstrategie zu berechnen. Für endliche Spielgraphen sind

diese Probleme seit langem gelöst, obwohl einige Komplexitätsfragen offen bleiben.

Wir betrachten verschiedene Klassen von unendlichen Graphen, von Kellerautomaten-

Transitionsgraphen bis Graphen der Caucal-Hierarchie, und wir studieren verschie-

dene Gewinnbedingungen: Erreichbarkeits-, Rekurrenz- (Büchi-), Paritäts- und eine

sogenannte
”
Σ3-Bedingung“.

Zwei Arten von Methoden werden entwickelt: die symbolische Methode benutzt

endliche Automaten, um unendliche Mengen von Konfigurationen zu erkennen; die

Spielreduktion wandelt ein gegebenes Spiel in einem vereinfachten um, und löst es.

Verschiedene Arten von Strategien werden auch konstruiert: entweder positionell

oder mit Kellerspeicher.



Résumé

Les systèmes réactifs peuvent être modélisés de façon naturelle par des jeux à

deux joueurs, où typiquement un joueur est le contrôleur, et l’autre est l’environnement.

Un jeu est gagné par un joueur s’il a une stratégie gagnante, c’est-à-dire s’il peut

gagner toutes les parties. Étant donné la description finie d’un jeu, notre but est de

calculer le gagnant et une stratégie gagnante. Pour les graphes finis, ces problèmes

sont résolus depuis longtemps, même si des questions de complexité restent ouvertes.

On considère différentes classes de graphes infinis, des graphes de transition des

automates à pile jusqu’au graphes de la hiérarchie de Caucal, et on étudie différentes

conditions de gain : accessibilité, récurrence (Büchi), parité, et une condition de type

Σ3.

Deux sortes de techniques sont développées : l’approche symbolique, qui utilise

des automates finis pour reconnâıtre des ensembles infinis de configuration, et la jeu-

simulation, qui transforme un jeu donné en un autre plus simple pour le résoudre.

Différentes sortes de stratégies sont aussi construites : soit positionnelles, soit avec

une mémoire à pile.
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Didier Caucal a guidé mes premiers pas vers la recherche, et a su m’aider à trouver
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Chapter 1

Introduction

One of the main challenges in theoretical computer science today is the verification

of software and hardware systems. Different methods have been developed to gain

confidence in the correctness of a system: type-checking, testing, model-checking,

proof systems, and many more. In this thesis we consider the paradigm of reactive

computation, where two components, a controller and an environment, interact.

This can be the controller of a machine, a plant, an airplane on the one hand, and

the machine, plant, airplane itself together with its physical environment on the other

hand. These can also be a program (as controller) and a user (as environment). Both

controller and environment are allowed to perform certain actions which determine

the evolution of the system. The goal of the controller is that for every possible choice

of actions of the environment the resulting interaction satisfies certain requirements

such as “no accident occurs”, “something is produced”, . . . From a formal point of

view it is helpful and natural to see such systems as games with two players: one is

the controller and the other is the environment. The controller wins if and only if

the given requirement is satisfied.

In this thesis we start from a situation where the problem is already modeled as

a two player game. We restrict ourselves to games that are

• turn based: the players play in alternation,

• with perfect information: both players know exactly the current position of

the game and also the past of the game,

• without randomness.

(Chess fulfills these requirements, lots of card games use random and imperfect

information, paper scissors stone is not turn based, . . . ) We are interested in infinite

1



2 CHAPTER 1. INTRODUCTION

games, where the interactions can have, at least potentially, an infinite number of

steps. More precisely a play is an ω-sequence of steps. This is necessary for modeling

processes that can interact for an unbounded time, such as the above mentioned ones.

Our aim is to determine if the controller can win a given game whatever the

environment is doing and to implement — if possible — a winning strategy for the

controller. In the case of finite game graphs, these problems have been studied for

a long time. The aim of this thesis is to consider some classes of infinite graphs.

Such graphs are needed to model programs with unbounded variables or recursive

procedure calls. We give first a simple example to motivate the definitions and

the framework developed later, then discuss the historical background, and finally

outline the main contributions of the thesis.

Basic Example

We present a folk game which is a variant of the game of Nim between two players,

say Alain (A) and Brigitte (B). At the beginning there are 42 tokens on the table.

Alain starts by removing 1 to 6 tokens. Then Brigitte removes also 1 to 6 tokens.

And so on, in turn, until the last token is removed. The winner is the one who takes

the last token. Clearly the number of possible plays, i.e., sequences of actions from

the starting point to the end, is quite large, and it seems not practical to explore it

in a brute force manner.

To determine which player can win and what are the “good” moves, the solution

is to observe that the first time B is playing, she can remove just enough tokens

to let 35 tokens on the table. The second time she can reach the position where

there are 28 tokens left, then 21, 14, 7 and finally win with 0. Indeed each time A

is removing k tokens, k ∈ {1, · · · , 6}, B should answer by taking (7 − k) tokens.

Using this idea of complementation modulo 7 it is easy to see that the first player

will always lose when starting from a multiple of 7. But it seems more difficult to

find a trick if we change the winning condition and consider the following:

The player who takes the last token wins if and only if

he removes in total an even number of tokens.

The formal methods developed in this thesis permit to solve this problem, and more

general ones, in an elegant way. Going back to the simplest version it is easy to

represent the game by a graph where each position, or vertex, represents a “state” of

the game: a number of token left and a letter A or B to know who should play next.

The edges, or transitions, of the graph represent the moves allowed to the players.
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See Figure 1.1, where only a part of the game graph that is relevant for us is drawn:

for player B we consider only the “good” transitions, that realize a winning strategy.

0A

1B 2B 3B 4B 5B 6B

7A

· · ·

· · ·

Figure 1.1: The final part of the game graph

Starting with 42 tokens, each play in this game is finite, more precisely the

number of moves is bounded by 42. But we can also consider the game starting with

49 tokens, or any positive integer. So even in this basic example it is reasonable

to define an infinite (game) graph where each vertex can be considered as starting

position. Each vertex of this graph is composed of a natural number and a letter A

or B: the vertex set is N × {A,B}. Here it is mathematically simple, because we

just consider integers, but a general framework would still help. We have seen that

starting with a multiple of 7, the second player has a winning strategy: always reach

the next (inferior) multiple of 7. More formally B should move from (7q + d,B) to

(7q, A) for all q > 0 and d ∈ [1, 6]. Here “multiple of 7” is a finite, formal description

of an infinite set, and the strategy is also an infinite set of moves, for which we need

a more general representation and automatized methods. We return to this example

in the technical exposition in Section 3.3.

So far all tokens are identical and not ordered, it is also possible to organize them

in a stack, where it is only possible to access to the top of the stack and to remove

one token after the other. The subject of the thesis are games where the positions

are given (partly) as contents of such pushdown stacks.

Historical Background

Games have been considered long ago in descriptive set theory (see e.g. [CDT02,

Kec94] and references thereby), where they can be used to compare the complexity
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of two sets. In this framework the mere existence of winning strategies is the central

question and there is no need for algorithmic results and decidability procedures.

As we will see later, the example above can be formalized as a reachability game:

the aim of one player is to reach the position where there is no more token on the

table. The reachability is the simplest winning condition that we can consider. When

dealing with a two-player game, one speaks of game reachability and one wants to

compute the set of positions from which the first player can win whatever the second

player do. If there is only one player, one speaks of simple reachability: the question

is whether there is a way to reach the goal set (by choosing each transition along

the path). In other words one wants to compute the set of predecessors of the goal

set.

Some reachability problems for pushdown automata have been considered long

ago. In 1964 Büchi solved the simple reachability problem in the framework of

canonical systems [Büc64]: rewriting systems on words (seen as configurations) with

a finite number of rules. He proved that the set of predecessors (resp. successors) of

a regular set is regular. Then in 1970 together with Hosken he considered rewriting

systems where some special rules can have many premises [BH70]. They proved again

that the set of successors of a regular set is regular. Although they did not consider

the framework of games, it is easy to translate a problem of game reachability to a

rewriting system in their sense. Their proof uses Monadic Second Order Logic and

is not easy to follow. The complexity is four time exponential. The (first) result of

[Büc64] for the simple reachability was later improved to a polynomial time solution

by Caucal [Cau90] and extended to a more general framework by Coquidé, Dauchet,

Gilleron and Vágvölgyi [CDGV94]: they consider rewriting on finite trees, see also

Löding [Löd03].

A major advance in the understanding of infinite graphs was achieved in 1969 by

Rabin [Rab69], proving the decidability of properties expressed in monadic second-

order logic (MSO) over the complete infinite binary tree. The complexity of the

procedure is non elementary in the length of the MSO-formula. The binary tree

seems rather abstract, but it was used later in 1996 to obtain decidability results on

other classes of infinite graphs. Before that in 1985 Muller and Schupp proved the

MSO-decidability over pushdown graphs. It is the first result in the model-checking

of pushdown graphs, even if the non-elementary complexity is not practicable. It is

usual to express a problem of game reachability in MSO and one can also express

other winning conditions such as parity, see below.

Then in 1996 Caucal [Cau96] applied the result of Rabin to obtain a new class of

infinite graphs with a decidable MSO theory: the prefix-recognizable graphs. This
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class extends properly the pushdown graphs of Muller and Schupp, and the equa-

tional graphs of Courcelle [Cou90]. The set of vertices of a given prefix-recognizable

graph is a regular subset of the complete binary tree (where each vertex is a word

over a two letter alphabet), it can be expressed in MSO. And the existence of an

edge between two vertices is also expressed by an MSO formula. Then the model-

checking of a formula on a prefix-recognizable graph is obtained by translating the

formula to an equivalent one on the binary tree, and using the result of Rabin.

The quest for new classes of infinite graphs with a decidable monadic theory

was followed later (see Caucal [Cau02], Knapik, Niwinski and Urzyczyn [KNU02],

and references thereby). Another approach is to consider the model checking of the

µ-calculus (or fragments of it), a logic that is less expressive than MSO, and allow

better complexity bounds.

In 1997 Bouajjani, Esparza and Maler [BEM97] have given a direct solution of

the alternating reachability (or game reachability) problem for pushdown graphs

using finite automata that recognize sets of vertices. They apply this procedure to

the model-checking of the logic CTL, which is less expressive than the µ-calculus.

In the case of simple reachability (considering only one player) their construction is

very close to the one of [Cau90].

Looking at more complex winning conditions than reachability, one should first

recall some results about finite graphs. The Muller winning condition is specified by

a family F of vertex sets and requires that the vertices visited infinitely often in the

considered play form a set in F . The core result on finite-state games is the Büchi-

Landweber Theorem ([BL69]). It says that for a game on a finite graph with Muller

winning condition one can compute the “winning region” of player 0 (i.e., the set

of vertices from which player 0 has a winning strategy) and that the corresponding

winning strategies are executable by finite automata. In the case of parity games a

priority (natural number) is assigned to each vertex and Player 0 wins if and only

if the smallest priority seen infinitely often is even. Parity games are interesting

because the model-checking problem of the µ-calculus is polynomially equivalent to

the problem of solving parity games, see Emerson, Jutla and Sistla [EJS93]: given a

graph and a µ-calculus formula, one can construct a parity game such that the first

player wins if and only if the formula is satisfied in the graph. It has been showed

that for these games (either on finite or infinite graphs) that positional strategies

suffice, where the choice of a player depends only on the current position and not on

the past of the game, see Emerson and Jutla [EJ91], Thomas [Tho97]. This result

is easily effective for finite graphs, but the case of infinite graphs is more difficult.

A major advance was achieved by Walukiewicz in [Wal96b], where parity games
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on pushdown graphs are solved by an exptime procedure and it is shown that

strategies can be realized also by pushdown automata. For that he used a reduction

to a finite graph and a refined winning condition involving claims for one player.

This result have been extended by Kupferman and Vardi [Var98, KV00] to an expo-

nential time model-checking procedure for prefix-recognizable graphs and the modal

µ-calculus, where the strategies can be computed by finite automata with output. In

this framework of game also weaker logics and winning conditions have been studied,

see among others [CBMS01, EHRS00a, KPV02].

Contribution of the Thesis

In this thesis we develop two kinds of techniques: a symbolic approach based on

finite automata recognizing infinite sets of configurations and a game simulation

to reduce a given game to a simpler one and solve it. The symbolic approach is

based originally on [BEM97, EHRS00a]. To cope with transition graphs of push-

down automata, which are in general infinite, the authors use finite automata that

represent infinite sets of configurations. Here a configuration is a word pw where p is

a control state and w is a stack content (a word over the stack alphabet). [BEM97]

and [EHRS00a] provide a reachability analysis and a model-checking algorithm over

pushdown graphs. They consider also alternating reachability which is equivalent

to game reachability. We reuse and extend their algorithm to compute also win-

ning strategies in two forms: positional strategies which require the analysis of the

current configuration and are therefore computed in linear time in the length of

the configuration and pushdown strategies where each step is computed in constant

time. This lifts the model-checking algorithms to the level of program synthesis.

Then we consider a pushdown game with a Büchi winning condition: Player 0

has to reach infinitely often the “goal” set to win. This condition was not con-

sidered in [BEM97, EHRS00a] in the framework of games (or alternation). Again

we can compute strategies. At last we study a new winning condition involving a

Σ3-quantifier alternation: Player 0 wins if and only if there is some configuration

that is visited infinitely often. Because the graph is infinite, this quantification on

“some configuration” adds new expressive power. Our solution is an extension of

the algorithm for Büchi games and can be considered as a new decidability result.

Until now it is open whether one can deduce the winner of this Σ3 game from the

MSO-decidability.

The game simulation exists for a long time in mathematics, where it is not always

used in an effective setting. The idea is to reduce a given game to a simpler one
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that we can solve and to deduce from it the winner and a winning strategy in the

first game. This method has been proposed in [Wal96b] where parity games on

pushdown graphs are solved by reducing them to (exponentially larger) games on

finite graphs. To cope with the infinity of the possible stack contents the idea is

to force one player to claim what will happen later if the stack becomes smaller

and to summarize this information. We reuse this reduction and present it with a

new proof, hopefully more direct and intuitive. Moreover we explicitly construct

from the finite game graph a pushdown strategy in the original game. In [Wal96b]

the analysis was done only for a particular initial position (with empty stack). We

extend this result to consider any initial position, thus providing a uniform solution,

and prov that the winning region of a player forms a regular set of configurations.

The winning region of a player is the set of configurations from which he can win.

Another game simulation from prefix-recognizable graphs to pushdown graphs with

a parity winning condition is obtained directly from the definition of the graph,

yielding also to a uniform solution and a computation of pushdown strategies. Here

a move in the prefix-recognizable game is simulated by a sequence of moves in the

pushdown game.

The results of [Var98, KV00] can also be viewed as a game simulation. Techni-

cally the essential point is the reduction from two-way to one-way tree automata.

Namely determining the existence of an accepting run is equivalent to determining

the winner in an appropriate game where one player wants to prove that there exists

an accepting run and the other wants to refute that. We extend this reduction from

[Var98] to the case of trees of unbounded or infinite degree. This allows to solve

parity games on the graphs of the infinite Caucal hierarchy [Cau02]. The interest

of this result is that it allows to solve also parity games on higher order pushdown

graphs [KNU02]. Namely given such a game one can reduce it to a parity game on

a Caucal graph of the same level. This allows to have a new decision procedure for

MSO on these graphs, with a better complexity bound.

Overview

In Chapter 2 we present the basic definitions and formalize the problems we are

interested in, recalling some general results of decidability and pointing out the limits

due to undecidability cases. The symbolic approach (related to [Cac02a, CDT02])

is developed in Chapter 3 for different winning conditions: first reachability, then

Büchi and Σ3. Winning strategies are also constructed. Chapters 4 and 5 use

game-reductions. Chapter 4 (related to [Cac02c]) is concerned with parity games
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over pushdown graphs and prefix-recognizable graphs, and in Chapter 5 (related to

[Cac03]) parity games over higher-order pushdown graphs and over Caucal graphs

are shown to be interreducible and are solved. Note that Chapters 4 and 5 are

independent from Chapter 3. The last chapter compares both approaches and gives

some outlook.



Chapter 2

Framework

2.1 Definitions of Games, Winning Conditions,

Strategies

2.1.1 Basic Notations, Automata

For a finite set C, we denote by P(C) the powerset of C (the set of all subsets of

C). The set of non-negative integers is N and ω denotes the first infinite ordinal. We

write e.g. ∀i < 3 instead of ∀i ∈ N, i < 3, because we only deal with non-negative

integer numbers. The symbol ] denotes a disjoint union: V = V0 ] V1 means that

V = V0 ∪ V1 and V0 ∩ V1 = ∅. We note [n] = {0, · · · , n− 1} for an integer n > 0.

We assume that the reader is familiar with the basic notions of language and

automata theory, see e.g. [HU79] for an introduction. We write regular expressions

in the usual way, for example (a + b)∗c for letters a, b, c from a (finite) alphabet Σ.

The empty word is ε and Σ63 := ε+ Σ + Σ2 + Σ3 =
⋃

i63 Σi. A finite automaton A

is a tuple (Q,Σ,∆, Q0, F ), where

• Q is a finite set of states,

• Σ is a finite alphabet,

• ∆ ⊆ Q× Σ×Q is a set of transitions,

• Q0 ⊆ Q is a set of initial states and

• F ⊆ Q is a set of final states.

9
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The graph of an automaton is deterministic if additionally Q0 = {q0} is a singleton

and ∆ is a transition function, denoted δ : Q× Σ→ Q.

Given a finite set P of atomic propositions, B+(P ) is the set of positive Boolean

formulas built from the atoms in P , i.e., built using the connectives ∧ and ∨ without

negation. They can be reduced to conjunctive (or disjunctive) normal form.

For a general introduction to graphs and games we refer to [GTW02].

2.1.2 Game Graph

A game graph (also called arena in [GTW02]) is a tuple (V0, V1, E), where V = V0]V1

is a set of vertices partitioned into vertices of Player 0 and vertices of Player 1

(V0 ∩ V1 = ∅) and E ⊆ V × V is a set of directed unlabeled edges. We write E

in infix notation like π0Eπ1. Starting in a given initial vertex π0 ∈ V , a play in

(V0, V1, E) proceeds as follows:

• if π0 ∈ V0, Player 0 picks the first transition (move) to π1 with π0Eπ1,

• else Player 1 does,

and so on from the new vertex π1. A play is a (possibly infinite) maximal sequence

π0π1 · · · of successive vertices. If the play is finite because of a deadlock, then the

player who should play next loses immediately.

It is assumed by some authors that E ⊆ (V0 × V1) ∪ (V1 × V0), but this is not

essential [Wal96b]. At first sight it is simpler to consider finite game graphs, because

they are effectively represented by their lists of vertices and edges.

A game structure or simply game is composed of a game graph and a winning

condition.

2.1.3 Winning Conditions

We have seen how a play is generated, but we still have to determine the winner of

a play. Along this thesis we will consider different winning conditions, from most

particular to most general.

• First of all a reachability game is defined by a game graph (V0, V1, E) and a

goal set R ⊆ V , where V = V0 ] V1. A play is won by Player 0 if it reaches a

configuration of R:

Player 0 wins (πi)i>0 if ∃i > 0 : πi ∈ R .

In this case it is not needed to continue the play.
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• In a Büchi game we have also a goal set R ⊆ V , and Player 0 has to visit R

infinitely often:

Player 0 wins (πi)i>0 if ∀j,∃i > j : πi ∈ R .

The Büchi condition is more general than the reachability condition in the

sense that it is easy to transform a reachability game into an “equivalent”

Büchi game. More precisely given a reachability game one can construct a

Büchi game such that each play in one game corresponds to a play in the

other game and the winner is the same. This notion will be formalized later in

the context of game simulation. Conversely a Büchi game is a particular case

of parity game with two colors.

• A parity game (structure) (V0, V1, E,Ω) is a game graph (V0, V1, E) extended by

a priority function Ω : V → [max] assigning to each vertex an integer between

0 and max − 1, where max > 0. For the winning condition we consider the

min-parity version: Player 0 wins the play π0π1 · · · if lim infk→∞ Ω(πk) is even,

i.e., if the minimal priority seen infinitely often in the play is even.

• In Section 3.6.3 we will consider a new winning condition —involving a Σ3-

Formula—, where Player 0 has to visit some vertex infinitely often:

Player 0 wins (πi)i>0 if and only if ∃v ∈ V,∀j > 0,∃i > j : πi = v .

If the game graph is finite (|V | < ∞), this last condition is equivalent to a

(trivial) Büchi condition where R = V , but we will see that in the case of

infinite graphs it leads to new ideas and results.

Other winning conditions like those due to Muller, Rabin or Streett are not con-

sidered in this thesis. They are related to the set of vertices appearing infinitely

often/only finitely often. See [GTW02, Ch. 1] for an introduction. All these win-

ning conditions can also be considered as acceptance conditions when the graph is

used as an automaton to read finite or infinite words (where the distinction between

V0 and V1 is dropped).

2.1.4 Strategies

Informally speaking, given a game structure (a game graph and a winning condition),

the aim is to determine if a player is garantee to win (whatever the other player is

doing), and how. To formalize this we need the notion of strategy.
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A strategy for Player 0 is a function f : V ∗V0 → V associating to each prefix

π0π1 · · · πn of a play such that πn ∈ V0 a“next move”πn+1 with πnEπn+1. A strategy

is positional (or memoryless) if it depends only on the current vertex πn, in this case

one can write f : V0 → V . According to the general definition, a strategy is not

always a finite object, but we will be interested in computable strategies, that admit

a finite representation as program.

A strategy f for Player 0 is winning from a vertex π0 if every play according to

this strategy is winning.

For all plays (πi)i>0 such that ∀i > 0 : πi ∈ V0 ⇒ πi+1 = f(π0π1 · · · πi) ,

(πi)i>0 is won by Player 0 .

We say that Player 0 wins the game from the initial vertex π0 if he has a winning

strategy for this game: a strategy such that he wins every play from π0. The winning

region of Player 0 in a given game is the set of vertices from which Player 0 wins

the game. We know from [Mar75] that the games we will consider are determined:

from every initial vertex one of the players has a winning strategy. But this result

is not effective, and we are looking for algorithmic solutions.

2.2 Motivations and Algorithmic Problems

2.2.1 Algorithmic Issues

Now we can formalize the problems we are interested in. Given a finite representation

of the game, the aim is to determine:

1. the winner from a given initial position π0, or

2. the winning region for Player 0 (and if possible an effective representation),

3. a winning strategy from a given node of the winning region, or

4. a procedure to obtain a winning strategy from each node of the winning region.

Note the difference between point 1 and 3: we can answer point 1 if we know

that there exists a winning strategy from the vertex π0, say for Player 0, but in point

3 we want to actually compute such a winning strategy. For a finite graph point 2

is not much different from point 1: if one can iteratively determine the winner from

each initial position, one gets an answer to point 2. We will see that for infinite

graphs differences arise. Similarly between point 3 and 4. We will call solution of a

game an answer to point 1 and 3 and uniform solution an answer to point 2 and 4.
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2.2.2 Application to the Verification of Reactive Systems

A natural application of games is the modeling of reactive systems. In general

such a system is composed of two agents: a controller and an environment. Typical

examples are the controller of a power plant and the (physical) power plant itself. Or

the controller of an airplane and the airplane itself with the air (resp. the surface).

It can also be an operating system as controller, and the user(s) and software(s)

as environment. The environment can change within certain limits defined by the

modelisation and the controller has to react to the information that it gets from the

environment. The controller fulfills its job if he satisfies some requirements, defined

also by the modelisation, like: no accident occurs, energy is produced, . . .

This can be nicely represented by a two player game where one player is the

controller and the other player is the environment. The game graph defines the

limits of the behavior of both players, and the winning condition of the controller

defines its goal. Determining the winner of the game answers the question whether

there exists a controller, whereas computing a winning strategy realizes the controller

synthesis. Another standard application will be discussed in Section 2.3.

2.2.3 Pushdown Game System

We will be interested in infinite graphs, but only if they have a finite (and effective)

representation. A simple and natural class of infinite graphs is the class of pushdown

graphs, already studied in 1985 by Muller and Schupp [MS85] for their structural

properties. A major part of the work presented here concerns these graphs.

A Pushdown Game System (PDGS) P is a tuple (P0, P1,Γ,∆), where

• Γ is the finite stack alphabet,

• P = P0 ] P1 the partitioned finite set of control locations, where Pi indicates

the game positions of Player i, and

• ∆ ⊆ P × Γ× P × Γ∗ the finite set of (unlabeled) transition rules.

The name “Pushdown Game System” is derived from Pushdown System (PDS): In

the sense of [BEM97] (P,Γ,∆) is a PDS. A PDS is just like a pushdown automaton

without input alphabet, without labels on the transitions, and without particular

initial configuration (we can consider several), because we do not use them as ac-

cepting devices as in the classical automata theory [HU69].
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A Pushdown Game System (P0, P1,Γ,∆) defines a game graph (V0, V1, E) in the

sense of the previous definition, where

V0 = P0Γ
∗ ,

V1 = P1Γ
∗ ,

E = {(pγv, qwv) : (p, γ, q, w) ∈ ∆ and v ∈ Γ∗} .

This means that each macro-state or configuration is a pair pu of a control location

p and a stack content u ∈ Γ∗. The set of nodes of the pushdown game graph (V,E)

is the set of all configurations: V = PΓ∗. For a given configuration the player is

determined by the control state only.

If one needs a bottom stack symbol (⊥) one has to declare it explicitly in Γ and

∆, such that it can neither be put nor erased from the stack.

We can consider the same winning conditions as for finite graphs, as defined

above: reachability, Büchi, parity. The difference is that we need effective represen-

tations of the goal set of states R for Büchi and reachability, and of the function Ω

for parity. To give an idea the simplest way is to make the priority of a configuration

depend only on the control state, respectively the membership in R.

2.3 Logics and Decidability

There are many connections between games and logics, we refer to [GTW02] for an

overview. We will see here both directions: an application of games to logic, and an

application of logic to games.

2.3.1 The µ-calculus

The µ-calculus is a modal logic that subsumes many others like CTL or LTL. Given

a (labeled) Graph G and a µ-calculus formula ϕ, one can transform the formula

into an alternating parity automaton in a straightforward way, see [GTW02, ch.

10]. Then the product of the graph and the parity automaton defines a parity game

such that the formula ϕ is satisfied in a given vertex π0 of G if and only if Player 0

wins the game from π0. Here the alternation between the two players is used to

translate the existential and universal connectives of the formula, but the graph G

is not a game graph. This technique of model-checking game will be formalized in

Section 5.1.3 with the help of alternating graph automata and the details about

µ-calculus together with the translation to automata are exposed in Section 5.1.4.
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On the other hand, given a parity game structure, there is a µ-calculus formula

that express that a vertex is winning for Player 0 (see [Wal96b]). In other words the

problem of determining the winner of a parity game is equivalent to the µ-calculus

model-checking problem. In this framework a uniform solution (point 2. of 2.2.1)

amount to a solution to the global model-checking problem: determining the set of

nodes at which a given formula is true.

2.3.2 Monadic Second Order Logic

It is well known that one can express in monadic second-order logic (MSO) the

property that a vertex is in the winning region of Player 0 in a parity game. More

precisely MSO is more expressive than the µ-calculus, and the µ-calculus is equiv-

alent to parity games, see [GTW02, ch. 14]. In this standard translation from

µ-calculus to MSO the quantifier alternation depth (of ∃ and ∀) is equal to the

alternation depth of the fixed point operators (µ and ν) of the µ-calculus formula,

which is in turn equal to the number of colors. This is relevant for the complexity

of the model checking problem, because most of the decision procedures for MSO

have a non-elementary time complexity in the number of alternations, see [GTW02,

ch. 13] and [MS85].

Nevertheless we will present here, under the restrictions that the degree of the

graph is bounded, an MSO-formula that defines the winning region of a parity

game where the alternation depth is constant, independent of the number of colors.

Moreover this formula permits to compute winning strategies for each player. We

recall first the syntax and semantics of MSO. For a more general introduction to

MSO we refer to [GTW02, ch. 12] and references thereby. We assume that the

reader is familiar with formal logic, otherwise it is possible to skip these sections

about MSO and go to Section 2.4.

2.3.3 Syntax of MSO

We want to define the monadic second-order logic over transition systems. A tran-

sition system is here a directed graph with vertex labels and edge labels. It is

composed of:

• a vertex set V ,

• a finite set Prop of atomic propositions, such that ∀P ∈ Prop : P ⊆ V ,
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• a finite alphabet T for labeling transitions, such that ∀a ∈ T : Ra ⊆ V × V is

a transition relation.

If v ∈ P we say that the proposition P ∈ Prop is true in v ∈ V . Formally the label

of a vertex v is the set of atomic propositions true in v: {P ∈ Prop : v ∈ P}.

To write MSO formulas we have a countable set IV of individual variables,

denoted x, y, z, · · · ranging over vertices, and a countable set SV of (monadic) set

variables, denoted X,Y, Z, · · · ranging over sets of vertices. The syntax is defined

inductively as the smallest set of formulas containing

• P (x) for all x ∈ IV and P ∈ Prop,

• x a−→ y for all x, y ∈ IV and a ∈ T ,

• x ∈ X for all x ∈ IV and X ∈ SV ,

• and closed under the connectives ∧,¬,∃x,∃X.

The semantics is defined in the usual way: x a−→ y is true if the instances x̂ and ŷ

of x and y are such that Ra(x̂, ŷ); Px is true if x̂ ∈ P . We use also the abbreviations

⇒,⇔,∨,∀x,∀X, and we write X(x) for x ∈ X.

A parity game structure (V0, V1, E,Ω) can be translated to a transition system in a

straightforward way:

• V = V0 ] V1 is the set of vertices,

• V0 ⊆ V and V1 ⊆ V are seen as atomic propositions: V0, V1 ∈ Prop,

• assuming that Ω defines priorities between 0 and max− 1, we have an atomic

proposition Ci for each i < max, such that Ω(v) = i⇔ v ∈ Ci, i.e., Ci = {v ∈

V : Ω(v) = i},

• the edge relation E will be encoded by several transition relations Ri as ex-

plained below.

The point is that if the graph (V,E) has bounded degree one can transform it into

a deterministic transition system, where the transition function might be partial.

We assume that the out-degree of the graph (V,E) is finite, bounded by m. To

differentiate the successors v′ of a vertex v, we label the edges from v by different

numbers form {0, · · · ,m−1} and we write Ri(v, v
′). Formally we have E =

⋃
i<mRi

and the union is disjoint.
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Above in the definition of Pushdown Game System we have no labels on the

transitions and no input alphabet. Of course it is possible to introduce a sufficiently

large input alphabet, which would allow to regain a deterministic (partial) transition

function.

2.3.4 MSO Definability of Winning Region and Winning

Strategies in Parity Games

We suppose that the MSO-theory of G = (V, V0, V1, C0, · · · , Cmax−1, R0, · · · , Rm−1)

is decidable and that V is composed of concrete elements like words. That is to say

that we have a procedure that, given a MSO formula over G , determine if it is true

or false. Moreover we assume that this result is based on MSO-definability, which

means that given a formula with free variables, one can compute an automaton

recognizing the sets that satisfy the formula. This is the case e.g. for pushdown

graphs, see [MS85]. We want to write an MSO formula WinningSet(W ) defining

the winning region of Player 0. It is essential here that we can restrict ourselves to

positional strategies for parity games, and the beginning of the construction can be

used also for other games with positional winning strategies.

A positional strategy for Player 0 is a function defining for each vertex of Player 0

which successor he should choose. With the help of the edge labeling, a strategy f

is represented by disjoint sets of vertices S0, · · · , Sm−1 ⊆ V in the following sense:

f =
⋃

06i<m

Ri ∩ (Si × V ) .

In other words f(x) is the vertex y such that x ∈ Si and x i−→ y. The following

formula checks that the strategy is “deterministic”:

Strategy(S0, · · · , Sm−1) := ∀x ∈ V :
∧

i<m

(
Si(x)⇔

∧

j 6=i

¬Sj(x)

)
.

If we consider a strategy for Player 0, then its value on the vertices of Player 1 is not

relevant. Given strategies S0, · · · , Sm−1 for Player 0 and S ′
0, · · · , S

′
m−1 for Player 1,

a play from z ∈ V according to these strategies is uniquely defined. It is a path in

the game graph represented by a set B of vertices, B ⊆ V , which can be finite or

infinite, depending whether there is a loop. This set is the minimal set closed by



18 CHAPTER 2. FRAMEWORK

the “successor” relation of the strategies:

ContainPlay(z, B, S0, · · · , Sm−1, S
′
0, · · · , S

′
m−1) :=

z ∈ B ∧ ∀x ∈ B

(
V0(x)⇒

∧

i<m

(Si(x)⇒ ∃y ∈ B : x i−→ y)

)

∧∀x ∈ B

(
V1(x)⇒

∧

i<m

(S ′
i(x)⇒ ∃y ∈ B : x i−→ y)

)
,

Play(z, B, S0, · · · , Sm−1, S
′
0, · · · , S

′
m−1) :=

ContainPlay(z, B, S0, · · · , Sm−1, S
′
0, · · · , S

′
m−1) ∧

∀B′(ContainPlay(z, B ′, S0, · · · , Sm−1, S
′
0, · · · , S

′
m−1)⇒ B ⊆ B′) .

We now look at the parity winning condition. To know whether this play from z

is winning for Player 0, one has to check that there is an even priority c, such that

after a certain position x, no priority smaller than c appears, and c appears infinitely

often.

WinningPlay(z, B, S0, · · · , Sm−1, S
′
0, · · · , S

′
m−1) :=

Play(z, B, S0, · · · , Sm−1, S
′
0, · · · , S

′
m−1) ∧

∨

c∈{0,2,··· }

∃x ∈ B ∀B1

[
Play(x,B1, · · · )

⇒ ∀y1 ∈ B1

(∨

i>c

Ci(y1) ∧ ∀B2 (Play(y1, B2, · · · )⇒ ∃y2 ∈ B2 : Cc(y2))

)]
.

Using the positional (memoryless) determinacy of [EJ91], a vertex is winning for

Player 0 if he has a positional strategy to win every play starting from this vertex

(against every positional strategy of Player 1):

WinningVertex(z, S0, · · · , Sm−1) :=

Strategy(S0, · · · , Sm−1) ∧ ∀S
′
0, · · · , S

′
m−1 : (Strategy(S ′

0, · · · , S
′
m−1)⇒

∃B WinningPlay(z, B, S0, · · · , Sm−1, S
′
0, · · · , S

′
m−1)) .

From the positional determinacy we know also that there is a strategy that is winning

on the whole winning region. Such a“best”or“maximal”winning strategy must have

the largest set of winning vertices.

WinningStrategy(S0, · · · , Sm−1) := ∀T1, · · · , Tm−1,∀z

(WinningVertex(z, T0, · · · , Tm−1)⇒WinningVertex(z, S0, · · · , Sm−1)) .
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The “best” strategy is not unique, although the set of winning vertices is unique,

and “regular”.

WinningSet(W ) :=

∀z(z ∈W ⇔ ∃(S0, · · · , Sm−1)WinningVertex(z, S0, · · · , Sm−1)) .

This proves that a “best” winning strategy is MSO-definable on a graph of bounded

out-degree. The alternation depth of the formulas used is constant, whereas when

using the classical translation from µ-calculus to MSO, the alternation depth is the

number of colors.

This simple fact about MSO is a particular case of a result from [Cou03]. For Higher

Order Pushdown Graphs, see Section 5.1.1 and [KNU02].

2.3.5 Discussion and Extensions

We will discuss next which restriction we have made and the possible extensions of

this result. This construction is done here for the case of parity game and because

we know from [EJ91] that there are positional winning strategies. It can be used

also in the special case of Büchi or reachability condition. Moreover we will see

later simple proofs that these games have positional winning strategies, based on

the computation of attractors.

Another restriction was the boundedness of the degree. We will see however in

Section 4.5 that it is sometimes possible to transform a graph with infinite degree

into a graph with bounded degree that is “equivalent” in terms of games: a solution

to one game give rise to a solution of the other game. This will be used also in

Section 5.3.

A posteriori we can say that almost each game that is solved in this thesis can be

“solved” by the MSO-formula defined in Section 2.3.4, but the interest of the other

methods is to improve the complexity.

2.4 Limitations to Solutions of Games

We mention in this section some limitations to the solvability of games. We consider

first a PDGS and a more general goal set, and show that the reachability game

is undecidable. Then we consider other classes of graphs where it is known that

reachability games are undecidable. In the last subsection we look in detail at an

intriguing example.
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2.4.1 Intersection of Context-Free Languages

In Section 3.1.1 we will solve the reachability game over pushdown graphs with a

regular goal set: one can compute the set of vertices form which Player 0 has a

strategy to reach the goal set. We mention here that for a context-free goal set, the

situation is much more complicated. For formal definitions, see Section 3.1.

We just remark that the intersection of two context free languages may not be

context free. If R1 and R2 are two context free languages over {a, b, c} and the

first move of Player 1 goes from pu to q1u or q2u, u ∈ {a, b, c}
∗, and if the goal set

is q1R1 ∪ q2R2, then the winning region of Player 0 is p(R1 ∩ R2) ∪ q1R1 ∪ q2R2.

In this case the winning region is at least recursive: given a configuration one can

determine if it is in the winning region. But we have no satisfactory representation of

this region, because using classical arguments the emptiness problem for the winning

region is undecidable. Given a Turing Machine, it is possible to define R1 and R2

such that R1 ∩ R2 is the set of computations of the Turing Machine that ends in a

final state, see [HU79, sec. 8.6].

It is possible to refine this example and to construct a pushdown game where

in a first phase Player 0 has to push down on the stack a sequence of letters such

that he claims that this sequence is a valid computation of a given Turing Machine

that ends in a final state, then Player 1 can check that this is true using the same

technique as above, going to state q1 or q2. For a given initial configuration of the

Turing Machine, and thus of the game, it is in general undecidable whether Player 0

can win this game.

2.4.2 Other Graphs

Infinite state systems come in many versions, with different definitions, see [Bou01]

for an overview. Looking at internal representations (where vertices are concrete

objects, see [CK02]), the vertices can be coded either by words, like in the case of

(configurations of) pushdown graphs, or by more complicated structures like trees.

The transition relation can be defined by rewriting rules with different policies. In

this framework the pushdown graphs are equivalent to graphs defined by a finite set

of prefix rewriting rules over words. Extensions to prefix-recognizable graphs will

be presented in Chapter 4, where the prefix rewriting rules are defined by regular

languages. In this context parity games are solvable.

Christof Löding has studied in [Löd03] the graphs generated by ground tree

rewriting, where each vertex of the graph is represented by a finite tree and the

transitions are defined by substitutions of subtree. For these graphs the simple
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reachability (where Player 0 makes every decision) is decidable, as well as the model-

checking of some fragments of the temporal logic CTL. But it is undecidable in

general whether Player 0 has a winning strategy in the reachability game associated

to a regular set of vertices. More precisely it is undecidable whether from a given

vertex every infinite path visits a fixed set of states. For rational graphs [Mor99]

even the simple reachability is undecidable: the reachability game with only one

player and a finite goal set.

Other models have also been considered in the verification community. In lossy

channel system different components, each modeled by a finite automaton, commu-

nicate via lossy channels. Petri nets are another model of concurrent computation

where transitions can be fired in parallel at different places of the net. For all these

systems model-checking have been widely studied, in particular the simple reacha-

bility, whereas the class of graphs where games are decidable is more restricted in

general.

The Caucal graphs studied in Chapter 5 are a good track for games: they extend

the pushdown and prefix-recognizable graphs and MSO is still decidable, one can

solve parity games and compute winning strategies.

2.4.3 A Recursive Game Graph

This example might be considered as artificial, because it is directly related to the

halting problem of Turing Machines. It is due to Wolfgang Thomas in [Tho95]. The

game graph is a tree, depicted in Figure 2.1. Below the node named i in the figure,

there is a switch of colors on the k-th level of the two infinite branches if and only

if the i-th Turing Machine Mi halts on the empty tape after k steps. The nodes of

Player 0 (in V0) are circles, the nodes of Player 1 are square. The goal set is the

set of nodes that are black filled, and we consider a Büchi condition for Player 0:

Player 0 has to visit the goal set infinitely often.

On the rightmost branch, only Player 1 makes choices, but if he stays indefinitely

on this branch, he will lose, because the branch is black. At some point he has to

choose to go to a node i, i > 0. Then Player 0 has to choose the left or right branch.

For this he has to know if the i-th Turing Machine ever halts or not, but this problem

is known to be undecidable.

This game graph is recursive in the sense that we can find an effective represen-

tation of it. For example using words over {a, b} to represent vertices, this graph is

a subtree of the complete binary tree: the left child of a node u ∈ {a, b}∗ is ua and

the right child, if it exists, is ub. Then there is a recursive function that computes
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•
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Figure 2.1: Example of a recursive game graph

the color, player and “successors” of any vertex, given its representation.

It is claimed in [Tho95] that Player 0 has a winning strategy that is not effective.

The fact is that from a node i > 0, one of the branch is winning for Player 0,

but he cannot compute which one (and this is typically a classical-logic disjunction

involving the law of excluded middle — Tertium Non Datur).

Note that this non-computable winning strategy exists for the game starting

from the root ; but given a node that is in one of both branches under a node i > 0,

in general we cannot determine if there is a winning strategy from this node. And if

there is one, then it is computable, because the strategy is trivial from these nodes.

For the same reason even the reachability game associated to the goal set does not

admit an effective global (uniform) solution: one cannot compute the whole set of

nodes from which the goal set is reachable.



Chapter 3

Symbolic Presentation of Winning

Strategies

In this chapter we use a symbolic approach to solve games on pushdown graphs.

It is based on the construction of an alternating automaton (with a finite state

space) allowing to describe infinite sets of configurations. The framework we use

is based on an algorithm by Bouajjani, Esparza and Maler [BEM97] (see also

[BEF+00, EHRS00a]). We lift their results from CTL and LTL model-checking

over pushdown systems to the level of program synthesis, and the synthesis is real-

ized by computing winning strategies of two kinds: positional ones which however

require linear execution time in each step, and strategies with pushdown memory

where a step can be executed in constant time.

After defining the automata that we will use, we will consider reachability games

(Section 3.1), then discuss two kinds of strategies (Section 3.2) and solve the example

of the introduction (Section 3.3), later on Büchi games (Section 3.4) and then a new

winning condition that we call Σ3 (Section 3.6).

3.0.4 Technical Preliminaries, P-Automata

On the symbolic level we will consider here configurations of the PDGS as words,

and the transition rules as prefix rewriting rules. For this reason we use now the

infix symbol ↪→ for the edge relation of the game graph. Rewriting the definition,

given a PDGS (P0, P1,Γ,∆), the associated game graph is (V, ↪→), where the set of

nodes is the set of all configurations: V = PΓ∗, and the arcs of the game graph are

exactly the pairs

pγv ↪→ qwv, for (p, γ, q, w) ∈ ∆ and v ∈ Γ∗ .

23
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Referring to the case v = ε we also write rules of ∆ in the form pγ ↪→ qw. In the

following γ is always a single letter from Γ.

We describe sets of configurations (and thus also winning conditions in pushdown

games) by finite automata. We are thus interested in regular sets of configurations.

We define them from alternating P-automata [EHRS00a]: They are alternating

word automata with a special convention about initial states.

Definition 3.0.1 Given a PDGS P = (P0, P1,Γ,∆), P = P0∪P1, a P-automaton

A is a tuple (Q,Γ, −→ , P, F ), where

• Q is a finite set of states,

• −→ ⊆ Q× Γ× 2Q a set of transitions, labeled by stack letters of P,

• P ⊆ Q a set of initial states (which are taken here as the control locations of

P), and

• F ⊆ Q a set of final states.

For each p ∈ P and w ∈ Γ∗, the automaton A accepts a configuration pw if and

only if there exists a successful A -run on w from p. Usually a transition has the

form r γ−→ β, where β is a positive Boolean formula over Q in Disjunctive Normal

Form. To simplify the exposition we allow and-transitions r γ−→ r1 ∧ · · · ∧ rn,

written as r γ−→ {r1, · · · , rn}. A transition r γ−→ S indicates a move from state

r via letter γ ∈ Γ simultaneously to all states of S, i.e. by a universal branching

of runs. Existential branching (disjunction) are captured by nondeterminism. So

a transition like r γ−→ (r1 ∧ r2) ∨ (r3 ∧ r4) is represented here by two transitions

r γ−→ {r1, r2} and r γ−→ {r3, r4}.

We define the global transition relation of A , the reflexive and transitive closure

of −→ , denoted −→∗ ⊆ Q× Γ∗ × 2Q, as follows:

• r ε−→∗ {r}, (ε is the empty word),

• r γ−→ {r1, · · · , rn} ∧ ∀i, ri
w−→∗ Si ⇒ r γw−→∗

⋃
i Si .

The automaton A accepts the word pw if and only if there exists a run p w−→∗ S

with S ⊆ F , i.e., all finally reached states are final.

In section 3.2 we will need the description of a run. The run trees of an alter-

nating automaton A (where the branching captures the and-transitions) can be

transformed to “run DAGs” (Directed Acyclic Graphs, see [KV97, LT00]). In such

a run DAG, the states occurring on each level of the tree are collected in a set, and
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a transition r −→ {r1, · · · , rk} connects state r of level i with states {r1, · · · , rk}

of level i+ 1. Note that every transition of level i is labeled by the same i-th letter

of the input word. Let Φ be the set of partial functions from Q to the transition

relation −→ of A . A run DAG from state p labeled by w = γ0 · · · γn is described

by a sequence σ0, · · · , σn of elements of Φ and a sequence Q0, Q1, · · · , Qn of subsets

of Q, such that Qi = Dom(σi), and from each q ∈ Qi the transition σi(q) is used

from q:

Q0 = {p}
γ0−→
σ0

Q1
γ1−→
σ1
· · · Qn

γn−→
σn

S .

So σi describes the step Qi
γi−→ Qi+1 by the transitions used. We write shortly

{p} w−→∗
σ S, assuming σ = σ0, · · · , σn, or just {p} w−→∗ S to denote the run.

3.1 Reachability Game: Computing the Attrac-

tor

3.1.1 Reachability

We consider a regular goal set R ⊆ PΓ∗, defined by a P-automaton AR. Player 0

wins a play if and only if it reaches a configuration of R. Our goal is to compute

the winning region W0 of this game: the set of nodes from which Player 0 can force

the play to reach the set R or a deadlock for Player 1. To do this we define the

operator χ which — using a different terminology — computes the set of“controllable

predecessors”. Given any set T ⊆ V , let

χ(T ) = {u ∈ V0 | ∃v, u ↪→ v, v ∈ T} ∪ {u ∈ V1 | ∀v, u ↪→ v ⇒ v ∈ T} ,

Now χ(T ) is the set of vertices from which Player 0 has a strategy to reach T in

exactly one move (or win because Player 1 is in a deadlock). The set W0 is clearly

the “0-attractor of R” (see [Tho95]), denoted Attr0(R): the least fixed point of the

function

T 7→ R ∪ χ(T ) .
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For more background on fixed points, see [GTW02, Ch. 20]. One can also define

Attr0(R) by induction:

Attr0
0(R) = R ,

Attri+1
0 (R) = Attri

0(R) ∪
{
u ∈ V0 | ∃v, u ↪→ v, v ∈ Attri

0(R)
}

∪
{
u ∈ V1 | ∀v, u ↪→ v ⇒ v ∈ Attri

0(R)
}
,

Attr0(R) =
⋃

i∈N

Attri
0(R) .

According to this definition, we adopt the convention that if the play is in a deadlock

(before reaching R), the Player who should play has lost. As the degree of the game

graph is finite, an induction on ω is sufficient. The definition by fixed point is not

effective in general if we consider infinite graphs.

Remark 3.1.1 From this definition it is clear also that both players have positional

winning strategies on their winning regions:

• Player 1 wins from a configuration u ∈ V if and only if u 6∈ Attr0(R). A

winning strategy consists, from any vertex u ∈ V1\Attr0(R), to stay outside of

Attr0(R): choose v such that u ↪→ v and v 6∈ Attr0(R).

• Player 0 wins from a configuration u ∈ V if and only if u ∈ Attr0(R). A

winning strategy consists, from a vertex u ∈ V0 ∩ Attr0(R), to determine the

minimal i such that u ∈ Attri
0(R) and move to Attri−1

0 (R).

Our task is to transform a given automaton AR recognizing R into an automaton

AAtt(R) recognizing Attr0(R). Without loss of generality, we can assume that there

is no transition in AR leading to an initial state (a state of P ).

Algorithm 3.1.2 (saturation procedure)

Input: a PDGS P, a P-automaton AR that recognizes the goal set R, without

transition to the initial states.

Output: a P-automaton AAtt(R) that recognizes Attr0(R).

Let AAtt(R) := AR. Transitions are added to AAtt(R) according to the following

saturation procedure.

repeat

(Player 0) if p ∈ P0, pγ ↪→ qv and q v−→∗ S in AAtt(R), then add a new

transition p γ−→ S.
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(Player 1) if p ∈ P1,





pγ ↪→ q1v1

...
...

pγ ↪→ qnvn

are all the moves (rules) starting from

pγ and





q1
v1−→∗ S1

...
...

qn
vn−→∗ Sn

in AAtt(R), then add a new transition p γ−→
⋃

i Si.

until no new transition can be added.

Note that AAtt(R) has exactly the same state space as AR. The algorithm even-

tually stops because there are only finitely many possible new transitions, and the

“saturation” consists in adding as many transitions as possible. The idea of adding

a new transition p γ−→ S for p ∈ P0 is that, if qv ∈ Attr0(R), and pγ ↪→ qv,

then pγ ∈ Attr0(R) too, and then pγ should have the same behavior as qv in

the automaton. For p ∈ P1, Attr0(R) is defined by a conjunction, expressed in

AAtt(R) by the and-transition. The algorithm and the proof are a generalization

of [BEF+00, EHRS00a] from nondeterministic automata (for simple reachability) to

alternating automata (for game reachability). In [BEF+00], one deals with the case

P = P0, and the “winning region” is the set of “predecessors” of R, denoted pre∗(R).

Note that the simple reachability can be solved in polynomial time (see also [Sch02]),

whereas the reachability games are exptime-complete (see [Wal96b]). In [BEM97],

alternating (pushdown) automata were already considered, but they were not used

to solve a game, and winning strategies were not treated.

Clearly the algorithm runs in time O(|∆| 2c|Q|2), where |∆| is the sum of the

lengths of the rules in ∆. An implementation of Algorithm 3.1.2 was developed in

[Cor01].

Theorem 3.1.3 The automaton AAtt(R) constructed by Algorithm 3.1.2 recognizes

the set Attr0(R), if AR recognizes R.

Proof: We consider the step-by-step construction of AAtt(R):

AR = A0, A1, A2, · · · , Am = AAtt(R) ,

where ∀i < m, “Ai+1 = Ai ∪ {p
γ−→ S}”, that is to say, exactly one transition is

added.
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The set Attr0(R) was defined by induction:

Attr0
0 = R ,

Attri+1
0 = Attri

0 ∪
{
pw | p ∈ P0, ∃ pw ↪→ qv, qv ∈ Attri

0

}

∪
{
pw | p ∈ P1, ∀ pw ↪→ qv, qv ∈ Attri

0

}
,

Attr0(R) =
⋃

i∈N

Attri
0 .

We note L(Am) the language recognized by Am.

First part: L(Am) ⊇ Attr0(R).

We use an induction on i to show that ∀i > 0, L(Am) ⊇ Attri
0.

• For i = 0, R = Attr0
0 = L(A0) ⊆ L(Am), because the transitions of A0 are

still present in Am.

• Induction hypothesis: L(Am) ⊇ Attri
0 for some i.

• Then consider pw ∈ Attri+1
0 \Attr

i
0.

- First case: p ∈ P0.

By the definition of Attri+1
0 ,

∃ pw ↪→ qv, qv ∈ Attri
0 ⊆ L(Am) .

Thus there is a path q v−→∗ S, S ⊆ F . We decompose the transition ↪→: ∃γ ∈

Γ, w = γu, v = v′u, pγ ↪→ qv′; and the path q v−→∗ S:

q v′

−→∗ S
′ u−→∗ S .

By definition of Algorithm 3.1.2,

q v′

−→∗ S
′ ∧ pγ ↪→ qv′ ⇒ ∃ transition p γ−→ S ′ in Am .

As a consequence there is a path p γ−→∗ S ′ u−→∗ S in Am, and so p w−→∗ S ⊆ F,

pw ∈ L(Am).

- Second case: p ∈ P1.

By the definition of Attri+1
0 , ∀ pw ↪→ qv, qv ∈ Attri

0. More precisely,

all the arcs starting from pγu are





pγu ↪→ q1v1u
...

...

pγu ↪→ qnvnu
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and ∀j, qjvju ∈ Attr
i
0 ⊆ L(Am).

Thus there are paths qj
vju
−→∗ Sj ⊆ F , that we decompose into

qj
vj−→∗ S

′
j

u−→∗ Sj .

In the construction of Am, a new transition p γ−→
⋃

j S
′
j was added, and so

p γ−→
⋃

j

S ′
j

u−→∗

⋃

j

Sj ⊆ F ⇒ pγu ∈ L(Am) .

From the induction hypothesis we can conclude that L(Am) ⊇ Attr0(R).

Second part: L(Am) ⊆ Attr0(R).

For the detailed proof we refer to the proof of Lemma 3.2.5, where the additional

parameter Cost and the number of moves are treated. We thus give here only the

sketch of the proof.

We can prove by induction on m that ∀p ∈ P, w ∈ Γ∗, if p w−→∗ S in Am, then

starting from pw, Player 0 can reach a configuration in the set

{
p′w′ ∈ PΓ∗

∣∣∣ ∃ S ′ ⊆ S, p′
w′

−→∗
A0

S ′
}

whatever Player 1 does (in between). That is to say the play starting from pw will

reach after some steps the given set if Player 0 wants to, but Player 0 can not choose

which element of this set will be reached (this is more or less the choice of Player 1).

We denote w′

−→∗
A0

the global transition relation of A0.

In particular if p w−→∗ S ⊆ F in Am, then from pw Player 0 can reach

{
p′w′ | p′ w′

−→∗
A0

S ′ ⊆ S ⊆ F
}
⊆ R ,

which proves that he can win. ¥

We still have to say a few words about deadlocks. According to the definitions of

Attr0, if the play is in a deadlock, the player who is on has immediately lost. In

a pushdown graph, there are two types of deadlocks: when the stack is empty, or

when the first letter of the stack and the control state does not permit to make a

transition. The second case is not a problem: if there is no transition pγ ↪→ qµ, and

p ∈ P1, the saturation algorithm adds a transition p γ−→ ∅ (allowing to accept every

configuration starting with pγ). But we have to think about the case of empty stack.

To follow strictly the definition of Attr0 the states p have to be set as accepting for
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each p ∈ P1 (empty stack for Player 1). If one needs a bottom stack symbol (⊥),

then it has to be defined explicitly in Γ and ∆ and treated as a stack letter (that

can neither be erased nor pushed).

We have chosen a regular goal set R, and proved that Attr0(R) is also regular. If

we consider a context free goal set R, the situation diverges for the cases of simple

reachability and game reachability:

Proposition 3.1.4 If the goal set R is a context free language, then pre∗(R) is also

context free, but Attr0(R) is not necessarily context free.

The first part can be deduced from [Cau90]. The second part was already exposed

in Section 2.4.1.

3.1.2 Determining Membership in the Attractor

In [KV00] and [Wal96b] (see Chapter 4), given a PDGS and an initial position of the

game, an exptime procedure (in the size of the description of the game) determines

if it is in the winning region W0 of Player 0. In contrast our solution is uniform:

after a single exptime procedure, we can determine in linear time if any given

configuration is in the winning region W0.

To use the results of the preceding subsection, we still have to determine whether

a given configuration belongs to Attr0(R). We can use a polynomial time algorithm,

that searches backward all the accepting runs of the automaton AAtt(R) (from now on,

we skip corresponding claims for Player 1). We repeat here the classical algorithm

because variants of it will be used in the next section. The correctness proof is easy

and omitted here.

Algorithm 3.1.5 (Membership)

Input: an alternating P-automaton B = (Q,Γ, −→ , P, F ) recognizing

Attr0(R) = L(B), a configuration pw ∈ PΓ∗, w = a1 . . . an.

Output: Answer whether pw ∈ L(B) or pw 6∈ L(B).

Let S := F ;

for i := n down to 1 do S := {s ∈ Q | ∃ (s ai−→ X) in B, X ⊆ S} end for

If p ∈ S, answer “pw ∈ L(B)” else answer “pw 6∈ L(B)”

The space complexity of Algorithm 3.1.5 is O(|Q|), the time complexity is O(nm|Q|)

where m is the number of transitions of B, and n is the length of the input config-

uration.
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3.2 Winning Strategy for Player 0

Given an initial configuration, we can now determine if Player 0 can win the game

starting from it. Concretely, it remains to determine which moves Player 0 has

to choose in order to win, depending on the moves of Player 1. In the following

subsections we first give some preparation, then present a positional strategy, prove

that it is winning, also achieving the proof of Theorem 3.1.3, and then present a

pushdown winning strategy.

3.2.1 Preparation

A move of Player 0 consists in a choice of a PDGS-Rule. Given a configuration

pw ∈ Attr0(R), our aim is to extract such a choice from an accepting run of AAtt(R)

on pw. In Algorithm 3.1.2, a new transition p γ−→ S of AAtt(R) is generated by a

(unique) rule pγ ↪→ qv of the PDGS under consideration, if p ∈ P0. We extend now

the algorithm so that it computes the partial function Rule from −→ to ∆. This

function remembers the link between a new transition of the finite automaton for

Attr0(R) and the rule of the Pushdown Graph that was used to construct it. We

shall write in the algorithm Rule(p γ−→ S) := pγ ↪→ qv. For transitions p γ−→ S of

the original automaton A , Rule(p γ−→ S) is undefined.

Now, given a configuration pγw ∈ V0 accepted by AAtt(R), with a run

{p} γ−→ S w−→∗ T (and if pγw 6∈ R), a first idea would be to choose the move

Rule(p γ−→ S) = pγ ↪→ qv, (hoping to get closer to R). Unfortunately this does

not, in general, define a winning strategy. Still it ensures that we remain in the

winning region. The following example illustrates this situation.

Example 3.2.1 Let Γ = {a}, P = P0 = {p}, P1 = ∅ and

∆ = {pa ↪→ p, pa ↪→ paa}.

It is clear that Player 0 can add and remove as many a’s as he wants. Let R =

{pa3} (R is regular), then the winning region is Attr0(R) = pa+, as shown by the

automaton in Figure 3.1, from Algorithm 3.1.2. There are two different runs of

AAtt(R) that accept paa: through transitions (1)(3), or through (2). The strategy

associated to (1)(3) plays to pa, and therefore is not successful. To define a winning

strategy using finite automaton AAtt(R), we need to select the most suitable run on

a given configuration, or to remember information about an accepting run, to play

coherently the following moves. We give two solutions: the first one, a positional

strategy, associates a cost to each transition added while constructing AAtt(R), in
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p 1 2 f
a a a

a (1) a
(2)

a
(3)

Rule((1)) = pa ↪→ p

Rule((2)) = pa ↪→ paa

Rule((3)) = pa ↪→ paa

p pa paa paaa · · ·

Figure 3.1: Automaton from Algorithm 3.1.2 and Example 3.2.1, function Rule,

game graph

order to compute the distance to R. The second one, a pushdown strategy, uses a

stack to remember how AAtt(R) accepts the current configuration.

3.2.2 Positional Min-rank Strategy

The rank of a configuration pw is the smallest i such that pw ∈ Attri
0(R) (it is ∞

if pw 6∈ Attr0(R) = W0). It is the “distance” of the configuration pw to R. In the

following we consider only configurations in W0. Then Player 0 will be able, from a

configuration in Attri
0(R), to move to Attri−1

0 (R), and Player 1 does this with each

possible move. In order to implement this, during the construction of AAtt(R) we

will attribute to each AAtt(R)-transition τ a cost Cost(τ). Initially, each transition

of AR has the cost 0 (with these transitions AAtt(R) recognizes configurations that

are already in R).

The function Cost from the transition relation −→ of AAtt(R) to N is extended

to a function Cost∗ from the run DAGs to N. Given a fixed run {q} w−→∗ S

of the automaton Ai (obtained at step i in the construction of AAtt(R)), its cost

Cost∗({q} w−→∗ S) is the maximal sum of the costs of the transitions along a single

path (branch) of the run DAG {q} w−→∗ S. Inductively Cost∗ is defined by the

following clauses:

Cost∗({q} ε−→∗ {q}) = 0

Cost∗({q} γ−→ {q1, · · · , qn}
u−→∗

⋃

i

Si) =

Cost(q γ−→ {q1, · · · , qn}) + max
16i6n

(Cost∗({qi}
u−→∗ Si)) .
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When adding a new transition p γ−→ S to Ai, to obtain Ai+1, its cost is computed

by an extension of Algorithm 3.1.2, using the costs of the existing transitions. In

the main loop of Algorithm 3.1.2, we add the following assignments:

• if p ∈ P0 . . . , let Cost(p γ−→ S) := 1 + Cost∗({q} v−→∗ S),

• if p ∈ P1 . . . , let Cost(p γ−→
⋃

i Si) := 1 + maxj(Cost
∗({qj}

vj−→∗ Sj)).

We repeat now the algorithm with the new features.

Algorithm 3.2.2 (saturation procedure with functions Cost and Rule)

Input: a PDGS P, a P-automaton AR that recognizes the goal set R, without

transition to the initial states.

Output: a P-automaton AAtt(R) that recognizes Attr0(R), with functions Cost

and Rule)

Let AAtt(R) := AR. Transitions are added to AAtt(R) according to the following

saturation procedure.

repeat

(Player 0) if p ∈ P0, pγ ↪→ qv and q v−→∗ S in AAtt(R), then add a new

transition p γ−→ S.

Let Rule(p γ−→ S) := pγ ↪→ qv and Cost(p γ−→ S) := 1 +Cost∗({q} v−→∗ S),

(Player 1) if p ∈ P1,





pγ ↪→ q1v1

...
...

pγ ↪→ qnvn

are all the moves (rules) starting from

pγ and





q1
v1−→∗ S1

...
...

qn
vn−→∗ Sn

in AAtt(R), then add a new transition p γ−→
⋃

i Si.

Let Cost(p γ−→
⋃

i Si) := 1 + maxj(Cost
∗({qj}

vj−→∗ Sj)).

until no new transition can be added.

The significance of Cost∗ follows clearly from next proposition:

Proposition 3.2.3 For any configuration pw ∈ Attr0(R),

rank(pw) = min{Cost∗({p} w−→∗ S) | {p} w−→∗ S ⊆ F in AAtt(R)} .

In the Example 3.2.1, one gets Cost((1)) = 1, Cost((2)) = 1, Cost((3)) = 2. So

using the transitions (1) and (3) is not the best way to accept paa, and transition

(2) is taken. We are now able to define the desired strategy.
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Min-rank Strategy for Player 0

Input: alternating automaton AAtt(R) for Attr0(R), functions Rule and

Cost (as computed from Algorithm 3.1.2 from PDGS P), configuration

pw ∈ Attr0(R), p ∈ P0.

Output: “next move” from configuration pw.

Find an accepting run {p} w−→∗ S ⊆ F of AAtt(R) with minimal cost

Cost({p} w−→∗ S).

If the cost is 0, pw ∈ R and the play is won, else decompose this run:

w = γw′, {p} γ−→ T w′

−→∗ S, and choose the rule Rule(p γ−→ T ).

Theorem 3.2.4 Given a PDGS with a reachability condition, a regular goal set R,

and an alternating automaton AAtt(R) for Attr0(R), functions Rule and Cost (as

computed from Algorithm 3.1.2), the min-rank strategy is positional, winning from

all configurations of the winning region W0 of Player 0. It can be computed in time

O(n) in the length n of the input configuration.

For the proofs of Theorem 3.2.4 and Proposition 3.2.3 we need the following lemma:

Lemma 3.2.5 If a node pw is accepted by AAtt(R) with a run {p} w−→∗ S ⊆ F , then

from this node Player 0 can join R in at most Cost∗({p} w−→∗ S) steps.

The proof of this lemma is in the next subsection (3.2.3).

Proof: (Proposition 3.2.3) From the previous facts it follows that

rank(pw) 6 min{Cost∗({p} w−→∗ S) | {p} w−→∗ S ⊆ F} .

For the converse inequality, it is easy to show by induction that for all i > 0

rank(pw) = i ⇒ min{Cost∗({p} w−→∗ S) | {p} w−→∗ S ⊆ F} > i .

¥

Proof: (Theorem 3.2.4) According to the strategy, if p ∈ P0, Player 0 has to

find the cheapest run on Am. Decompose this run: w = γw′,

{p} γ−→ T w′

−→∗ S

choose the transition Rule(p γ−→ T ) = pγ ↪→ qv that were used to construct the

transition p γ−→ T in AAtt(R). After that the play is in the state qvw′. We can
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remark that

Cost∗ ({p} γ−→ T w′

−→∗ S) = 1 + Cost∗ ({q} v−→∗ T w′

−→∗ S) .

So the “distance” to R has decreased. It is the same if p ∈ P1 (for each possible

move of Player 1). The maximal number of steps needed to reach R is decreasing,

so the play will eventually reach R, see Lemma 3.2.5. (and it is possible, if Player 1

plays “badly”, that the number of steps decreases faster) ¥

The Theorem 3.2.4 has been proved without using the Proposition 3.2.3, with the

previous lemma, but the proposition states that the strategy is optimal.

Algorithm 3.1.5 can be easily extended to compute the distance to R and the strat-

egy. By Proposition 3.2.3, the min-rank strategy is optimal in the sense that it finds

a shortest path to R. It reevaluates its choices at each step of the game (particularly

if Player 1 goes much “closer” to R than needed). We will present in Section 3.2.4 a

strategy that is not necessarily optimal but easier to compute. Before that the next

subsection gives the proof of Lemma 3.2.5.

3.2.3 Proof of Lemma 3.2.5

This is also the second part of the proof of Theorem 3.1.3, if we forget all about the

notions of cost (Cost) and number of moves.

We will prove by induction on m that ∀p ∈ P, w ∈ Γ∗, if there is a run {p} w−→∗ S

in Am, then starting from pw, Player 0 can reach a configuration in the set
{
p′w′ ∈ PΓ∗

∣∣∣ ∃ S ′ ⊆ S, p′
w′

−→∗
A0

S ′
}

after no more than Cost(p w−→∗ S) moves, whatever Player 1 does. We are count-

ing the moves of both players. In particular if there is a run {p} w−→∗ S ⊆ F in

Am, then from pw Player 0 can win after no more than Cost∗({p} w−→∗ S) moves.

Recall first that we have supposed that in A0 no transition is leading to an initial

state (a state of P ⊆ Q), and so

p′
w′

−→∗
A0

S ′, S ′ ∩ P 6= ∅ =⇒ w′ = ε, p′ ∈ S ′ . (3.1)

We denote

w−→∗
m the global transition relation of Am ,

w−→∗
0 the global transition relation of A0 = AR .
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We write p w−→∗ S for the existence of a run from p to S labeled by w, whereas

{p} w−→∗
m S denotes a fixed run. Induction on m:

• For m = 0, p
w−→∗
m S ⇐⇒ p

w−→∗
0 S, and from pw Player 0 can guarantee

that pw is reached with 0 move. In fact Cost∗
(
{p}

w−→∗
0 S

)
= 0 > 0.

• Assume it is true for some m > 0,

• then we are considering Am+1:

−→
m+1 = −→

m ∪ {t}, t = p0
γ−→ S0 ,

Cost(t) is defined by Algorithm 3.2.2.

Let p
w−→∗

m+1 S.

We are now using an induction on j, the number of times that t is used in the run

{p}
w−→∗

m+1 S.

- If j = 0, then p w−→∗
m S. From the induction hypothesis on m, we get the result.

- Suppose it is true for some j > 0.

- Consider that t is used j+1 times in {p}
w−→∗

m+1 S. Decompose w = uγv, such that:

{p} u−→∗
m T1

γ−→
m+1

T2
v−→∗

m+1 S (3.2)

p0
γ−→ S0

with p0 ∈ T1, S0 ⊆ T2, and t = (p0
γ−→ S0) “is used” in T1

γ−→
m+1

T2, for the “first

time” in the run {p}
w−→∗

m+1 S.

From the induction on m, {p} u−→∗
m T1 implies:

pu guarantees
{
p1v1 | p1

v1−→∗
0

T ′
1 ⊆ T1

}

with no more moves than Cost∗ ({p} u−→∗
m T1) . (3.3)

From (3.2) we have also

T1\{p0}
γ−→
m T ′

2
v−→∗

m+1 T3 ⊆ S

|
⋂

T2

The new transition t is used in the last formula (see
v−→∗

m+1 ) less often than in (3.2)

(less than j + 1 times), so from the induction hypothesis on j, we obtain:

from each configuration t1γv in (T1\{p0})γv Player 0 can reach the set
{
p3w3 | p3

w3−→∗
0

T ′
3 ⊆ T3

}

with no more moves than Cost∗
(
{t1}

γ−→
m T ′′

2
v−→∗

m+1 T ′
3

)
. (3.4)
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For the rest of the proof, we will distinguish two cases:

case 0: p0 ∈ P0. By definition of Am+1,

p0γ ↪→ q0w0, (3.5)

q0
w0−→∗
m S0

and Cost(t) = 1 + Cost∗
(
{q0}

w0−→∗
m S0

)
. (3.6)

Together with (3.2) we get

{q0}
w0−→∗
m S0

v−→∗
m+1 U0 ⊆ S

|
⋂

T2

The new transition t is used in the last formula (see
v−→∗

m+1 ) less often than in

(3.2), so from the induction hypothesis on j, we obtain:

q0w0v guarantees
{
t0x0 | t0

x0−→∗
0

D0 ⊆ U0

}

with no more moves than Cost∗
(
{q0}

w0−→∗
m S0

v−→∗
m+1 U0

)
. (3.7)

case 1: p0 ∈ P1. By definition of Am+1,





p0γ ↪→ q1w1

...
...

p0γ ↪→ qnwn

are all the moves from p0γ and ∀i qi
wi−→∗
m Si, (3.8)

S0 =
⋃

i Si,

Cost(t) = 1 + maxi

(
Cost∗

(
{qi}

wi−→∗
m Si

))
(3.9)

Together with (3.2) we get

∀i, {qi}
wi−→∗
m Si

v−→∗
m+1 Ui ⊆ S

|
⋂

S0

|
⋂

T2
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The new transition t is used less often than in (3.2), so we have (induction on

j):

∀i, qiwiv guarantees
{
tixi | ti

xi−→∗
0

Di ⊆ Ui

}

with no more moves than Cost∗
(
{qi}

wi−→∗
m Si

v−→∗
m+1 Ui

)
. (3.10)

Now we can put all proved facts together.

From (3.3), we have in particular: puγv guarantees a configuration p1v1γv such that

p1
v1−→∗
0

T ′
1 ⊆ T1, with no more than Cost∗ ({p} u−→∗

m T1) moves. We distinguish the

two following cases

either the path {p1}
v1−→∗
0

T ′
1 ⊆ T1 is not leading to any initial state of A0, i.e.,

T ′
1 ∩ P = ∅, then with (3.2) the path

{p1}
v1−→∗
0

T ′
1

γ−→
m+1

T ′′
2

v−→∗
m+1 S ′ ⊆ S

|
⋂

|
⋂

T1 T2

uses only transitions that were already in A0 (the new transitions are always

starting from an initial state, of P ⊆ Q). It follows that

p1
v1γv−→∗

0
S ′ ⊆ S ,

Note that Cost∗
(
{p1}

v1γv−→∗
0

S ′
)

= 0 = Cost∗
(
{p1}

v1γv−→∗
m+1

S ′
)
.

or the path {p1}
v1−→∗
0

T ′
1 ⊆ T1 is actually leading to an initial state of A0 (in

T ′
1 ∩ P ), then v1 = ε, p1 ∈ T

′
1 (see (3.1)), and p1v1γv = p1γv.

We consider two sub-cases (α) and (β).

(α) If p1 ∈ T1\{p0}, then by (3.4),

p1γv guarantees
{
p3w3 | p3

w3−→∗
0

T ′
3 ⊆ T3 ⊆ S

}

with no more moves than Cost∗
(
{t1}

γ−→
m T ′′

2
v−→∗

m+1 T ′
3

)
.

(β) If p1 = p0 (∈ T1 ∩ P )

case 0: p0 ∈ P0, Player 0 can choose, from p0γv, to go to q0w0v (see

(3.5)), in one move and with (3.7),

q0w0v guarantees
{
t0x0 | t0

x0−→∗
0

D0 ⊆ U0 ⊆ S
}

with no more moves than Cost∗
(
{q0}

w0−→∗
m S0

v−→∗
m+1 U0

)
.
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case 1: p0 ∈ P1, Player 0 just can wait, but from p0γv Player 1 can only

choose with one move one of the states qiwiv (see (3.8)), and with

(3.10),

qiwiv guarantees
{
tixi | ti

xi−→∗
0

Di ⊆ Ui ⊆ S
}

with no more moves than Cost∗
(
{qi}

wi−→∗
m Si

v−→∗
m+1 Ui

)
.

In every case puγv guarantees p1v1γv, that guarantees (or is already in)
{
p′w′ | p′ w′

−→∗
0

S ′ ⊆ S
}
.

By transitivity of “guarantees”, we have

from puγv Player 0 can reach
{
p′w′ | p′ w′

−→∗
A0

S ′ ⊆ S
}
,

with no more than (“either”)

Cost∗ ({p} u−→∗
m T1)

respectively (“or”, α)

Cost∗ ({p} u−→∗
m T1) + Cost∗

(
{t1}

γ−→
m T ′′

2
v−→∗

m+1 T ′
3

)

respectively (“or”, β, case 0), see (3.6)

Cost∗ ({p} u−→∗
m T1) + 1 + Cost∗

(
{q0}

w0−→∗
m S0

v−→∗
m+1 U0

)

= Cost∗ ({p} u−→∗
m T1) + Cost(t) + Cost∗

(
S0

v−→∗
m+1 U0)

)

respectively (“or”, β, case 1), see (3.9)

Cost∗ ({p} u−→∗
m T1) + 1 + Cost∗

(
{qi}

wi−→∗
m Si

v−→∗
m+1 Ui

)

= Cost∗ ({p} u−→∗
m T1) + Cost(t) + Cost∗

(
Si

v−→∗
m+1 Ui)

)

moves.

That is in every case no more than Cost∗({p}
w−→∗

m+1 S) moves, by the definition of

the cost and by (3.2).

The property is proved for Am+1. From the induction we can conclude that it is

proved for each m > 0.

(One can simplify a little bit the end of the proof in the case where A0 is a finite

automaton.)
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3.2.4 Pushdown Strategy

A pushdown strategy for Player 0, as defined in [Wal96b], is a deterministic push-

down automaton with input and output. It “reads” the moves of Player 1 (elements

of ∆) and outputs the moves (choices) of Player 0, like a pushdown transducer.

For simplicity, we will restrict our presentation to the following form of pushdown

strategy:

Definition 3.2.6 Given a PDGS (P0, P1,Γ,∆), P = P0]P1, where ∆i is the set of

transition rules in ∆ departing from Player i configurations, a pushdown strategy

for Player 0 in this game is a deterministic pushdown automaton S = (P,A,Π),

where A = Γ × Σ, Σ is any alphabet, Π ⊆ ((P1 × A × ∆1) × (P × A∗)) ∪ ((P0 ×

A)× (P × A∗ ×∆0)) is a finite set of transition rules.

A transition of S either reads a move of Player 1 or outputs a move for Player 0, in

both cases updating its stack. We will now define a pushdown strategy, starting from

the automaton AAtt(R). Given a configuration pw ∈ Attr0(R), there is an accepting

run {p} w−→∗ S of AAtt(R):

Q0 = {p}
γ0−→
σ0

Q1
γ1−→
σ1
· · · Qn

γn−→
σn

S, w = γ0γ1 · · · γn .

Our aim is to store in the stack of the strategy the description of this run. The

corresponding configuration of S is p(γ0, σ0) · · · (γn, σn). We fix for the alphabet Σ

the set Φ (see Section 3.0.4).

At the beginning of the play, if the initial configuration pw is in Attr0(R), we have

to initialize the stack of S with the description of an accepting run of AAtt(R) (not

necessarily the cheapest according to the costs defined above). Algorithm 3.1.5 can

initialize the stack at the same time when searching an accepting run (in linear time).

We define now the unique transition rule of Π from (p, (γ0, σ0)) or (p, (γ0, σ0), δ1)

(with δ1 ∈ ∆1). By construction σ0(p) is the “good” transition τ = p γ0−→ Q1 used

in the run of AAtt(R).

• If p ∈ P0 then output the move Rule(σ0(p)) = pγ0 ↪→ qv that corresponds

to τ . Remove the first letter of the stack. Push on the stack the description

of the run {q} v−→∗ Q1 used in Algorithm 3.1.2 to generate τ . Go to control

state q.

• If p ∈ P1 and Player 1 chooses the transition δ1 = pγ0 ↪→ qv in ∆1, by

construction of the automaton AAtt(R), q
v−→∗ S and S is a subset Q1. Go to

control state q, remove the first letter of the stack, push the description of the

run {q} v−→∗ S used in Algorithm 3.1.2) to generate τ .
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For Example 3.2.1 (Figure 3.1), we can see that the pushdown strategy is winning

even if the initialization is not optimal. The configuration paa is in the winning

region and an accepting run is coded on the stack of the strategy:

p(a, {(p, 1)})(a, {(p, 3)}) .

According to the strategy, the following play is generated (the symbol “−” denotes

a value that is not relevant):

(by Rule((1)) = pa ↪→ p) proceed to p(a, {(p, 3)})

(by Rule((3)) = pa ↪→ paa) proceed to p(a, {(p, 2)})(a,−)

(by Rule((2)) = pa ↪→ paa) proceed to p(a,−)(a,−)(a,−) .

Theorem 3.2.7 Given a PDGS with a reachability condition, a regular goal set

R, and an alternating automaton AAtt(R) for Attr0(R) (as computed from Algo-

rithm 3.1.2), one can construct effectively a pushdown strategy that is winning from

each node of the winning region W0 of Player 0. Its transition function is defined

uniformly for the whole winning region. The initialization of the stack is possible

in linear time in the length of the initial game position, and the computation of the

“next move” is in constant time (for fixed ∆).

Although there is no need to compute costs to define this strategy, it is useful to

refer to the costs of the previous subsection for the correctness proof. The strategy

for Player 1 in this “safety game” is much easier to define and compute: he just has

to stay in V \Attr0(R).

Proof: We consider a play according to the strategy: a path in the transition

graph of the strategy. This is a sequence π0 · · · πn of configurations of the strategy

such that the stack of π0 describes an accepting run of AAtt(R). By definition of

Algorithm 3.1.2 it is easy to show by induction on n that:

• the stack of πn describes also an accepting run of AAtt(R),

• the cost of this run is strictly smaller than the cost of the run described in πn−1

(each move of the strategy replaces the first segment of the run by a “cheaper”

run).

¥
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3.2.5 Discussion

The notion of “bounded model-checking”has been considered by several authors, see

e.g. [KV01]. Here the aim is to reach a goal in less than j steps (where for example

j = 100). In our game framework it is possible, using the computation of costs, to

determine whether Player 0 can reach the goal in less than j moves. Note that this

requires in our setting much more computational effort than just to check whether

Player 0 can win. More specifically one can construct a finite automaton recognizing

Attr
j
0(R) by unfolding partly the automaton recognizing Attr0(R) and summing up

the costs.

The stack of the pushdown strategy needs to be initialized at the beginning of a

play (in linear time in the length of the configuration); then the computation of the

“next move” is done in constant time (execution of one transition of the strategy). In

contrast, the min-rank strategy needs for each move a computation in linear time in

the length of the configuration. So we can say that in the case of pushdown graphs a

positional strategy can be more expensive than a strategy with memory. This effect

does not appear over finite-state game graphs, where a positional strategy is not an

algorithm, but just a finite set.

Moreover when we want to compare two algorithms “solving” a game, we see

that different criteria of complexity/efficiency arise. We can look at time or space

complexity of the algorithms for:

• determining if a given vertex is in the winning region of Player 0,

• computing a uniform (finite) description of the whole winning region of Player 0,

• using this description (apply to a given vertex),

• computation of a finite description of a winning strategy,

• usage of this strategy: initialization, complexity of computing the“next move”,

information needed.

3.3 Back to the Basic Example of Chapter 1

The basic example from the introduction (Chapter 1), the game between Alain and

Brigitte, can be modeled as a pushdown game and now be solved. The pushdown

store will represent the number of tokens that are on the table and the control

location will represent the state of the players. Only two symbols are needed in
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q0

q1

q2

q3
q4

q5

a

a

a a

a

p0

p1

p2

p3

p4

p5

a

a

a a
a

a

f

⊥
a

a

aa

a

a

∀i 6 4 : qi
a−→ qi+1, pi

a−→ {pi+1, q0}, (meaning pi+1 ∧ q0)

∀i 6 5 : qi
a−→ p0,

p5
a−→ q0.

Figure 3.2: Alternating automaton recognizing Attr0(R) for Example 3.3.1

p0 q0 q1 q2 q3 q4 q5

p1 q0 q1 q2 q3 q4

p2 q0 q1 q2 q3

p3 q0 q1 q2

p4 q0 q1

p5 q0

p0 f

Figure 3.3: The run DAG of this automaton on the word a7⊥. The transition labels

are omitted
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the stack alphabet: a letter a which represents one token and a “bottom stack

symbol”⊥ to know when the stack is empty (looking carefully at the definitions and

conventions, the bottom stack symbol can be avoided here). The starting position

is p0a
42⊥. By definition of the PDS, stack symbols can be removed only one by one,

so we need intermediate states to check that Alain removes at most 6 tokens. In

state p0 with top letter a, Alain can remove just one token (the top symbol) and

give control to Brigitte (move p0a ↪→ q0) or remove one token and go to p1 where

he still has the control and can remove more tokens (move p0a ↪→ p1). Similarly

from p1 he can remove one token and go to q0 (Brigitte) or p2. And so on until p5,

where he has no choice. For Brigitte states q0 to q5 do the same thing. We want to

determine the winning region of Brigitte. The goal set of Brigitte is {p0⊥}: she has

to remove the last token and, by convention, give control to Alain who is stuck. To

conform to previous sections, B should be Player 0.

Example 3.3.1 Formally we have:

Γ = {a,⊥}, PA = {p0, · · · , p5}, PB = {q0, · · · , q5}, R = {p0⊥},
∆ = {pia ↪→ q0, qia ↪→ p0 : ∀i 6 5} ∪

{pia ↪→ pi+1, qia ↪→ qi+1 : ∀i 6 4}

The result of Algorithm 3.1.2 is depicted in Figure 3.2. The run DAG of Figure 3.3

can be extended to any number of tokens that is a multiple of 7. The strategy (either

min-rank or pushdown) is easy to compute because there is at most one accepting

run.

Looking at the variant we have mentioned in the introduction, where the winning

condition is now:

The player who takes the last token wins if and only if

he removes in total an even number of tokens,

it is also possible to model this game as a pushdown game. One can code in the con-

trol states whether Player 0 has removed an even number of tokens. More formally

a finite automaton with two state can determine if a word has even length and one

can construct the product of the above pushdown system by this finite automaton.

3.4 Büchi Condition

Given P and R as in the preceding sections, the (Büchi) winning condition is the

following:
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Player 0 wins a play if it meets infinitely often

the goal set R, or ends in a deadlock for Player 1.

To determine the winning region of this game one defines Attr+
0 , a variant of Attr0.

Given T ⊆ V , let Attr+
0 (T ) be the least fixed point of the function

U 7→ χ(T ∪ U) .

Alternatively, one can define Attr+
0 by induction: let

X0(T ) = ∅ ,

Xi+1(T ) = Xi(T ) ∪ {u ∈ V0 | ∃v, u ↪→ v, v ∈ T ∪Xi(T )}

∪ {u ∈ V1 | ∀v, u ↪→ v ⇒ v ∈ T ∪Xi(T )} ,

Attr+
0 (T ) =

⋃

i>0

Xi(T ) (the degree of the game graph is bounded).

The above definition follows from [Tho95] (where the definition of the Xi’s is ad-

justed). The following claims are easy:

Proposition 3.4.1 Attr+
0 (T ) is the set of nodes from which Player 0 can join T in

at least one move, whatever Player 1 does.

Proposition 3.4.2 The winning region of the Büchi game with goal set R, denoted

Büchi0(R), is the greatest fixed point of the function

S 7→ Attr+
0 (S ∩R) .

This fixed point is also obtained by induction: let

Büchi00(R) = V ,

Büchiα+1
0 (R) = Attr+

0 (Büchiα0 (R) ∩R) for any ordinal α,

Büchiλ0(R) =
⋂

α<λ

Büchiα0 (R) for a limit ordinal λ.

Then there is an ordinal α such that Büchiα+1
0 (R) = Büchiα0 (R) [GTW02, Ch. 20].

And for any such α we have Büchiα0 (R) = Büchi0(R). Here it is possible that the

least such α is greater than ω, even in the case of pushdown graphs (with a finite

degree), see example in Section 3.4.4. When R is clear from the context we will

write simply Büchii0 and Büchi0. In the case of finite graphs, this induction can be

effectively carried out: the sequence (Büchii0)i>0 is strictly decreasing until it reaches
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a fixed point. For pushdown graphs, the regular languages Büchii0 are also smaller

and smaller, but the question of convergence is nontrivial. Following the symbolic

approach, we will construct finite automata that are strictly “decreasing” until they

reach a fixed point in a finite number of steps.

Again from this definition Player 0 has a positional winning strategy on his

winning region, associated to the attractor. But here the winning strategy of Player 1

is not so easy to describe, see Section 3.5. This is a hint that parity games — even

with two colors — are not so easy to understand.

From now on we will proceed in two steps: firstly Algorithm 3.4.4 computes an

automaton that recognizes Büchii0 for a given (integer) i, secondly Algorithm 3.4.8

computes directly an automaton for Büchi0. The first algorithm helps to understand

the second, but is not a pre-computation.

In this section we will consider a simple goal set of the form R = FΓ∗ for some

F ⊆ P . So the membership in R only depends on the control state of a configuration.

This is not an essential restriction as shown by the next proposition.

Proposition 3.4.3 Given a PDGS P = (P0, P1,Γ,∆) that defines a game and a

regular set R of configurations, we can reduce to the case of simple goal sets by

proceeding to a new PDGS P ×D, where D is a finite automaton recognizing R.

Proof: There is a deterministic (complete) finite automaton D = (Q,Γ, δ, q0, E)

that recognizes R backward: reading words from right to left. We can simulate D in

a new PDGS P ×D = ((P0 ×Q,P1 ×Q,Γ×Q,∆
′) where a configuration

pγ0 · · · γn

of P is associated, via the unique run

qn+2
p←− qn+1

γ0←− qn · · ·
γn←− q0

of D to the configuration of P ×D

(p, qn+1)(γ0, qn) · · · (γn, q0) .

Then we know that pγ0 · · · γn ∈ R ⇔ δ(qn+1, p) ∈ E. Let F = {(p, q) ∈ P ×

Q | δ(q, p) ∈ E} and define the transitions of P ×D to be

〈(p, q)(γ, q1) ↪→ (p′, q′)(γn, qn) · · · (γ1, q1)〉 ∈ ∆′ ⇔

(pγ ↪→ p′γn · · · γ1) ∈ ∆, qi+1 = δ(qi, γi), q
′ = δ(qn, γn) .
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(if n = 0, q′ = q1) If the initialization is done correctly, the stack will contain a

correct run at every step, and P will have the same behavior as P × D with the

property that R corresponds to R′ = FΓ∗. ¥

This reduction is a very simple example of game reduction in the sense of Chap-

ter 4. The proof shows that, on a theoretical point of view, for the model-checking

over pushdown systems it is not difficult to consider “regular state properties”, as

remarked by several authors [FWW97, KV00, EKS01]. These extra properties ex-

press that a configuration is in a given regular set of configurations. So from now

on we consider a simple goal set R = FΓ∗ for some F ⊆ P . Of course it is regular.

3.4.1 Computation of Büchij
0

for all j > 0

Algorithm 3.1.2 is modified (by new steps involving ε-transitions) to computeAttr+
0 (R).

The intersection with R is easy to compute, and Algorithm 3.4.4 determines succes-

sively Büchi10,Büchi20,Büchi30 . . .

Algorithm 3.4.4 (computation of Büchij0)

Input: PDGS P = (P0, P1,Γ,∆), j > 1 and F ⊆ P that defines the goal set

R = FΓ∗.

Output: a P-automaton Bj that recognizes Büchij0.

Initialization: the state space of Bj is {f}∪ (P × [1, j]), and f is the unique final

state (we write (p, i) as pi). For all γ ∈ Γ, f γ−→ f . For all p ∈ P , p0 is set to be

f .

for i := 1 to j do

(compute generation i, consider now the pi’s as initial states.)

Add an ε-transition from pi to pi−1 for each p ∈ F (only). (If i = 1, p0 is f .)

Add new transitions to Bj according to Algorithm 3.1.2:

repeat

(Player 0) if p ∈ P0, pγ ↪→ qw and qi w−→∗ S in the current automaton, then

add a new transition pi γ−→ S.

(Player 1) if p ∈ P1, {pγ ↪→ q1w1, · · · , pγ ↪→ qnwn} are all the moves (rules)

starting from pγ and ∀k, qi
k

wk−→∗ Sk in the current automaton, then add a

new transition pi γ−→
⋃

k Sk.

until no new transition can be added

remove the ε-transitions. (generation number i is done)

end for
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The notion of “generation” introduced in the algorithm is illustrated in the following

example.

Example 3.4.5 We consider ∆ = {pa ↪→ p}, R = pΓ∗ (F = {p}), P = P0 =

{p, q}, P1 = ∅. Figure 3.4 shows the result of the algorithm where j = 4. The i-th

generation is given by the states of column i. The a-edges from pi are added in the

construction of generation i, since pa ↪→ p and pi ε−→∗ pi, pi ε−→∗ pi−1. The dashed

ε-transitions are removed after each generation.

p4 p3 p2 p1

f

q4 q3 q2 q1

col. 4 col. 3 col. 2 col. 1 col. 0

ε ε ε
ε

a a a
a

a a a a

Γ = {a}

Figure 3.4: Automaton from Algorithm 3.4.4 and Example 3.4.5

Proposition 3.4.6 Algorithm 3.4.4 constructs a P-automaton Bj that recognizes

exactly Büchij0 (using the states pj as initial states).

Proof: By induction on j:

We note Bj the automaton obtained after the j-th generation, with initial states pj,

p ∈ P .

- Using the convention that p0 is f for all p ∈ P , the automaton B0 recognizes

PΓ∗ = V = Büchi00
- Induction hypothesis: Bj recognizes Büchij0
- Then Büchij0 ∩ R is recognized on Bj from the states pj, p ∈ F , because of the

simple structure of R (i.e., pw ∈ Büchij0 ∩R if pw is accepted by Bj and p ∈ F ).

By the help of the ε-transitions, the automaton Bj+1 recognizes exactly Büchij0 ∩R

before the saturation procedure starts. The construction of Bj+1 from Bj was

proved in Section 3.1 to compute the attractor: Bj+1 recognizes then Attr0(Büchij0∩

R). After we remove the ε-transitions, it defines Attr+
0 (Büchij0 ∩R): the configura-

tions of Attr0(Büchij0 ∩ R) such that after one move we are in Attr0(Büchij0 ∩ R).
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In other words if a configuration pw can be accepted by Bj+1 only by using an

ε-transition, then it is in Büchij0 ∩R, but not in Attr+
0 (Büchij0 ∩R). ¥

To compare different generations one defines a function φ which is the translation

one column to the right of the elements of S in the figure above, with the convention

that f remains unchanged. For all finite sets S ⊆ P × N let

φ(S) =

{
{qi | qi+1 ∈ S} ∪ {f} if f ∈ S or ∃q1 ∈ S

{qi | qi+1 ∈ S} else

The next proposition states that there are less and less transitions in the higher

generations (we already know that Büchii+1
0 ⊆ Büchii0 by monotonicity).

Proposition 3.4.7 In Algorithm 3.4.4, for all u ∈ Γ∗, p ∈ P, i > 1,

pi+1 u−→∗ S ⇒ pi u−→∗ φ(S) .

Proof: We proceed by induction on i.

It is a direct consequence of the same property over the transitions (by induction on

the length of the word).

• For i = 1, we use another induction on the number of transitions starting from

p2 added by the saturation procedure.

- At the beginning of the second iteration, one has no other transitions from

the q2’s than the q2 ε−→ {q2}, and for all q ∈ F , q2 ε−→ {q1}. And from

the q1’s there may be paths q1 w−→∗ S such that S ⊆ P × {1} ∪ {f}, hence

φ(S) = {f}.

Respectively, at the beginning of the first iteration, before the saturation pro-

cedure starts, one had q1 ε−→ {q1}, if q ∈ F , then q1 ε−→ {f}, and

∀γ, f γ−→ {f}.

- as a new transition p2 γ−→ S is added, it is through an existing path q2 w−→∗ S,

by induction hypothesis one has also q1 w−→∗ φ(S) during the saturation pro-

cedure of the iteration one, so the transition p1 γ−→ φ(S) was already added.

• induction hypothesis: ∀S, pi a−→ S ⇒ pi−1 a−→ φ(S)

• the proof for i+ 1 is similar to the case i = 1

¥

Nevertheless the sequence (Büchii0) might be strictly decreasing, so that the previous
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algorithm can not reach a fixed point: for the example above one gets Büchii0 =

paiΓ∗, ∀i > 0. But on the symbolic level we can modify Algorithm 3.4.4 to obtain

an automaton for Büchi0 directly.

3.4.2 Computation of Büchi0 Using an Acceleration

We use the projection πi(S) of the states in P × [1, i] to the i-th column (except for

f). For all i > 0 and sets S ⊆ P × [1, i] ∪ {f}, let

πi(S) = {qi | ∃i > k > 0, qk ∈ S} ∪ {f | f ∈ S} .

This projection is used in the next algorithm to replace some transitions and will

allow to have faster convergence to the winning set. It can be compared to known

methods of “acceleration”.

Algorithm 3.4.8 (computation of Büchi0)

Input: PDGS P, F ⊆ P that defines the goal set R = FΓ∗

Output: a P-automaton C that recognizes Büchi0

Initialization: the state space of C is a subset of (P × N) ∪ {f}, where (p, i) is

denoted by pi and f is the unique final state. For all γ ∈ Γ, f γ−→ f in C . By

convention p0 is f for all p ∈ F .

i := 0.

repeat

i := i+ 1 (consider now the pi’s as initial states.)

Add an ε-transition from pi to pi−1 for each p ∈ F (only)

Add new transitions to C according to Algorithm 3.1.2 (see inner loop of Algo-

rithm 3.4.4). Remove the ε-transitions.

Replace each transition pi γ−→ S by pi γ−→ πi(S)

until i > 1 and the outgoing transitions from the pi’s are “the same” as from the

pi−1’s:

pi γ−→ S ⇔ pi−1 γ−→ φ(S) .

Applying the algorithm to the simple example above, we see that the ε-transitions

and the a-transitions from p2 to p1 and from p3 to p2 are deleted (by the projection),

and that only three generations are created. See Figure 3.5.

Theorem 3.4.9 The automaton constructed by Algorithm 3.4.8 recognizes Büchi0(R),

the winning region of the Büchi game given by the PDGS P and regular goal set R.
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p3 p2 p1

f

q3 q2 q1

col. 3 col. 2 col. 1 col. 0

ε ε
ε

a a
a

a a a

Γ = {a}

p3 p2

f

q3 q2

col. 3 col. 2 col. 1 col. 0

a a

Γ = {a}

Figure 3.5: Automaton from Algorithm 3.4.8 and Example 3.4.5, the dashed arrows

are removed

Before giving the proof we make some remarks and state the next proposition.

The theorem implies that Büchi0(R) is regular for regular R. Similarly to Section 3.1

each execution of the inner loop (saturation procedure) is done in time |∆| 2O(|Q|2),

where |Q| = 2|P |+1. At each step of the outer loop, we“lose”at least one transition.

Since there are at most |Γ| |P | 2|Q| of them, the global time complexity of the

algorithm is O(|Γ| |∆| 2c|P |2).

Note that in Algorithm 3.4.8 we can erase the pi−1’s and their transitions as soon

as the generation i is done. Similarly to the first algorithm, we have the following

property.

Proposition 3.4.10 In Algorithm 3.4.8, for all u ∈ Γ∗, p ∈ P, i > 1,

pi+1 u−→∗ S ⇒ pi u−→∗ φ(S) .

Remark that because of the projection π, the transitions pi u−→∗ S verify S ⊆

{f} ∪ P × {i}.
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Proof: Proposition 3.4.10

The proof is similar to that of the first algorithm. We proceed by induction on i.

It is a direct consequence of the same property over the transitions (by induction on

the length of the word).

• For i = 1, we use another induction on the number of transitions starting from

p2 added by the saturation procedure. Which means in this case, if a transition

p2 γ−→ S is added, then its projection verifies the property, that is

p1 γ−→ φ(π2(S)) ,

because at the end of generation 2, we will have p2 γ−→ π2(S).

- At the beginning of the second iteration, one has no other transitions from

the q2’s than the q2 ε−→ {q2}, and for all q ∈ F , q2 ε−→ {q1}. We have to

check that q1 ε−→ φ(π2(q1)) = φ(q2) = q1, which is clear.

And from the q1’s there may be paths q1 w−→∗ S such that S ⊆ P ×{1}∪{f}.

Hence from q2 (only if q ∈ F ), we have

q2 ε−→ q1 w−→∗ S ⊆ P × {1} ∪ {f} with

π2(S) ⊆ P × {2} ∪ {f}, φ(π2(S)) ⊆ P × {1} ∪ {f}, and φ(π2(S)) = S.

So we have q1 w−→∗ φ(π2(S)).

- During the saturation procedure, as a new transition p2 γ−→ S is added, it

is through an existing path q2 w−→∗ S, by induction hypothesis one has also

q2 w−→∗ π2(S) ⇒ q1 w−→∗ φ(π2(S)) so the transition p1 γ−→ φ(π2(S)) exists

since the projection of the first generation.

• Induction hypothesis: ∀S, pi a−→ S ⇒ pi−1 a−→ φ(S).

• The proof for i+ 1 is here exactly the same as the case i = 1.

¥

Proof: Theorem 3.4.9

Proof of termination

Thanks to the projections πi’s, the number of possible transitions from each row of

pi’s is bounded. And thanks to Proposition 3.4.10, there are less and less transitions

until the algorithm reaches a fixed point.

Proof of correctness

We note Zi the language recognized by C from the initial states pi’s. We denote

n + 1 the last generation of the algorithm, which is such that Zn = Zn+1, but we
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still consider Zi = Zn for all i > n. One has to show that Zn = Büchi0.

First part: Zn ⊆ Büchi0.

We first prove by induction on the integers that for all i, Zi ⊆ Büchii0.

• By construction, Z1 = Büchi10.

• Induction hypothesis: Zi ⊆ Büchii0.

• The algorithm first determines the attractor+ of the language. By monotonic-

ity,

Z̃i+1 = Attr+
0 (Zi ∩R) ⊆ Attr+

0 (Büchii0 ∩R) = Büchii+1
0 .

After the projection of the transitions, the obtained language Zi+1 is contained

in Z̃i+1: Proposition 3.4.10 shows that an accepting path from a state pi+1 was

possible before the projection (through the qi’s). So Zi+1 ⊆ Z̃i+1 ⊆ Büchii+1
0 .

This proves that ∀i, Zn = Zn+1 ⊆ Büchii0, and so Zn ⊆ Büchiω0 . Now by transfinite

induction we prove that for all ordinal α > ω, Zn ⊆ Büchiα0 .

• We have Zn ⊆ Büchiω0 .

• Induction hypothesis: Zn ⊆ Büchiα0 .

• For a successor ordinal,

Zn = Zn+1 ⊆ Z̃n+1 = Attr+
0 (Zn ∩R) ⊆ Attr+

0 (Büchiα0 ∩R) = Büchiα+1
0 .

• For a limit ordinal λ, we have ∀α < λ : Zn ⊆ Büchiα0 and so

Zn ⊆ Büchiλ0 =
⋂

α<λ

Büchiα0 .

We conclude that Zn ⊆ Büchi0.

Second part: Büchi0 ⊆ Zn.

We prove by induction on i that for all i, Büchi0 ⊆ Zi.

• By construction, Büchi0 ⊆ Büchi10 = Z1.

• Induction hypothesis: Büchi0 ⊆ Zi.
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• Before the projection we have

Büchi0 = Attr+
0 (Büchi0 ∩R) ⊆ Attr+

0 (Zi ∩R) = Z̃i+1 .

We proceed by induction on the number of transitions that are changed by

the projection, i.e., we consider the successive automata A0, · · · ,Am, where

L(A0) = Z̃i+1, L(Am) = Zi+1, and Aj+1 is obtained from Aj by “projecting”

one transition. We have to prove by induction on m that Büchi0 ⊆ L(Am).

- If m = 0, Büchi0 ⊆ L(A0) = Z̃i+1 = Zi+1.

- Induction hypothesis: Büchi0 ⊆ L(Am).

- We suppose by absurd that there is a configuration pw ∈ L(Am)\L(Am+1)

such that pw ∈ Büchi0. We choose such a word pw of minimal length |pw|. For

each accepting path in Am for pw, there is a decomposition pi+1 u−→∗
m S

v−→∗
m {f}

such that w = uv, with qi ∈ S, and in Am+1: ¬(qi+1 v−→∗
m+1 {f}) (the transition

that is projected was “leading” to qi in Am and is now “leading” to qi+1).

This means that qv ∈ Zi and qv 6∈ L(Am+1).

If qv 6∈ L(Am), then qv 6∈ Büchi0 (Induction hypothesis).

If qv ∈ L(Am)\L(Am+1), then qv cannot be in Büchi0 by hypothesis: u 6= ε

and |qv| < |pw|.

In both cases, pw should not be in Büchi0 (see Section 3.1), hence the contra-

diction.

We conclude that Büchi0 ⊆ L(Am+1).

¥

With an extension of the arguments of the previous section we obtain corresponding

winning strategies:

Theorem 3.4.11 For a Büchi game given by a PDGS P and goal set R, one can

compute from the automaton constructed by Algorithm 3.4.8 a min-rank (positional)

winning strategy and a pushdown winning strategy, uniformly for the winning region

of Player 0.

Proof: By definition of Büchi0 and by Algorithm 3.4.8, Attr+
0 (Büchi0 ∩ R) =

Büchi0, and Player 0 can use the strategy associated to that attractor. ¥

Similarly to Section 3.2.5 we can note that it requires more computational effort

to determine whether Player 0 can visit R at least j times (for a large j) than

to determine whether Player 0 can win the Büchi game. This is the difference
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p1
0

p1
1

p1
2

f a,⊥

ε

a

a

⊥

⊥

a

Figure 3.6: Automaton from Algorithm 3.4.8 and Section 3.4.3, first generation, the

dashed arrow is removed.

between the computation of Büchij0 from Algorithm 3.4.4 and that of Büchi0 from

Algorithm 3.4.8.

In Algorithm 3.4.8 projection π is needed to have convergence but it seems dif-

ficult to give an intuition of the effect of the projection on the recognized set of

configurations. Even in a set theoretical way we do not know how to express this

effect without referring to the automaton. It is also difficult to describe the inter-

mediate stages of computation: the set of configurations recognized at successive

generation, whereas is was possible in the non-terminating version. Finally we nei-

ther found a better upper bound on the number of generations nor a lower bound.

3.4.3 Simple Example

The example of parity game of Section 4.3 is in fact a Büchi game because there is

only two colors: Player 0 wins if and only if priority 0 is seen infinitely often. One

can solve it here as a Büchi game. Let

Γ = {a,⊥}, P0 = {p1}, P1 = {p0, p2},

∆ = {p0⊥ ↪→ p0a⊥, p0a ↪→ p0aa, p0a ↪→ p1a, p1a ↪→ p1ε,

p1⊥ ↪→ p0⊥, p1⊥ ↪→ p2⊥, p2⊥ ↪→ p2⊥, p2a ↪→ p2ε},

F = {p0}, R = p0Γ
∗.
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p1
0

p1
1

p1
2

f a,⊥

a

a

⊥

⊥

a

p2
0

p2
1

p2
2

ε

a

a

⊥

⊥

a

Figure 3.7: Automaton from Algorithm 3.4.8 and Section 3.4.3, second generation

before the projection, the dashed arrow is removed.



3.4. BÜCHI CONDITION 57

The game graph is depicted in Figure 4.1. The only relevant choice of Player 0

is to go from p1⊥ to p0⊥ to ensure win. Applying Algorithm 3.4.8 the automata

of Figures 3.6 and 3.7 are constructed. After the projection, the “branch” from

p2
0 to p1

1 in Figure 3.7 disappears, and the resulting automaton is similar to that

of Figure 3.6 (renaming p1
0 in p2

0, . . . ). For that reason the algorithm terminates

after two generations. The winning region of Player 0 is {p0, p1}a
∗⊥ (restricting to

configurations of the form Qa∗⊥).

For a given configuration there is at most one accepting run, so the winning

strategy is uniquely defined.

3.4.4 Example of convergence to the fixed-point

The following example was suggested by Damian Niwiński. The aim is to show that

in the inductive definition of Büchi0(R) an induction beyond ω is necessary. Let

Γ = {a}, P0 = {p, q}, P1 = ∅ ,

∆ = {qa ↪→ qaa, qa ↪→ p, pa ↪→ p} ,

F = {p}, R = pΓ∗ = pa∗ .

p pa paa paaa · · ·

q qa qaa qaaa qaaaa · · ·

Figure 3.8: Example of a Büchi game (Section 3.4.4)

The game graph is shown in Figure 3.8. At every vertex Player 0 has to move.

The vertex p is a deadlock, losing for Player 0. Player 0 can visit R as many times

as he wants, but not infinitely often, so the winning region of Player 0 is empty.
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Applying the inductive definitions of Attr+
0 and Büchi0, we have:

Büchi00(R) = V = pa∗ ∪ qa∗ ,

Büchi10(R) = Attr+
0 (V ∩R) = Attr+

0 (pa∗) = pa+ ∪ qa+ ,

Büchi20(R) = Attr+
0 ((pa+ ∪ qa+) ∩R) = Attr+

0 (pa+) = paa+ ∪ qa+ ,

· · ·

Büchii0(R) = paia∗ ∪ qa+ for all i > 0, and then

Büchiω0 (R) =
⋂

i<ω

Büchii0(R) = qa+ ,

which is not empty, and is not yet the fixed point:

Büchiω+1
0 (R) = Attr+

0 (Büchiω0 (R) ∩R) = Attr+
0 (∅) = ∅ ,

Büchiα0 (R) = ∅ for all α > ω .

This reflects the fact that from vertex pai Player 0 can visit R only i times.

qb

qbb

...

p pa paa paaa · · ·

qa qaa qaaa qaaaa · · ·

pb pab paab paaab · · ·

qab qaab qaaab qaaaab · · ·

...

ω.2 ω.2 ω.2 ω.2

ω ω ω ω
ω2

ω2

0 1 2 3

ω
ω + 1 ω + 2 ω + 3

Figure 3.9: Some ordinals (Section 3.4.4)

This example can be extended, using new control states and new stack letters.

In Figure 3.9 we have added external vertex labels that are ordinals. A vertex is
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labeled by an ordinal α if and only if α is the greatest ordinal such that this vertex

is in Büchiα0 (R). So the fixed point is first reached with Büchiω
2+1

0 (R). The formal

definition of the PDGS is:

Γ = {a, b}, P0 = {p, q}, P1 = ∅ ,

∆ = {qb ↪→ qbb, qb ↪→ qa, qa ↪→ qaa, qa ↪→ p, pa ↪→ p, pb ↪→ qa} ,

F = {p}, R = pΓ∗ = p{a, b}∗ .

Applying Algorithm 3.4.8, we obtain successively the automata of Figure 3.10. In

some sense four generation are sufficient to reach ω2 on this particular example.

This can be again extended, using new control states or new stack letters, in such a

way that the fixed point is first reached at ωk + 1 for any k > 0.

3.5 Safety Game and Co-Büchi Game

In Sections 3.1 and 3.2 we have considered reachability games for Player 0, where

the task is to reach a set R. This corresponds to safety games for Player 1: he has

to stay in V \R:

Player 1 wins a play if it is infinite and never reaches R,

or ends in a deadlock for Player 0.

We can compute the winning region of Player 1: it is V \Attr0(R), the complement

of the winning region of Player 0, because these games are determined. And using

Algorithm 3.1.5 one can determine if a configuration is not in the winning region of

Player 0, without complementing the automaton. The question is now to compute a

winning strategy for Player 1, assuming that we are in his winning region. Recalling

Remark 3.1.1, the strategy of Player 1 is easy to formulate: he just has to stay

outside of Attr0(R).

Given a configuration u ∈ V1\Attr0(R), one can use Algorithm 3.1.5 to find a

successor of u that is not in Attr0(R). One can also store the computation of this

algorithm in a pushdown stack and define a pushdown strategy.

In the case of Büchi games it is more complicated. In the previous section we

have considered Büchi games for Player 0, such that he wins a play if and only if

the goal set R is seen infinitely often. Dually for Player 1 it is a co-Büchi game:

Player 1 wins a play if it meets only finitely often the goal set R,

or ends in a deadlock for Player 0.
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a, b
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before the projection
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p4

ε
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Figure 3.10: Automata from Algorithm 3.4.8 and Section 3.4.4, the dashed arrows

are removed.
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0 1 2

∈ R

Figure 3.11: Example (3.5.1) of a simple co-Büchi game

We can again compute the winning region of Player 1: it is the complement of

the winning region of Player 0. And using Algorithm 3.1.5 one can determine if a

configuration is not in the winning region of Player 0, without complementing the

automaton. The question is to compute a winning strategy for Player 1, assuming

that we are in his winning region. Despite what intuition might tell, it is not always

the case that Player 1 can force the play to reach a position from which R is no

more met. This fact is illustrated in the game of Example 3.5.1 and Figure 3.11.

Example 3.5.1 In the game of Figure 3.11, we have V = V0 = {0, 1, 2}, so Player 0

makes every decision, E is as depicted and R = {1}. Player 0 is playing the Büchi

game associated to R, and Player 1 the co-Büchi. It is clear that from vertex 0,

Player 0 can see R at most one time, and loses the game. But he can also stay in

vertex 0 as long as he wants, and have the possibility to visit R at some time.

Looking carefully at the set-theoretic definitions of Attr+
0 and Büchi0, it is possible to

complement them, and when written in a suitable way, one can deduce the following

positional winning strategy for Player 1.

• Player 1 wins from an initial configuration u ∈ V if and only if u 6∈ Büchi0(R).

• From a configuration u ∈ V1\Büchi0(R), determine the ordinal α such that

u ∈ Büchiα0 (R)\Büchiα+1
0 (R), meaning that from u Player 0 can force the

game to visit R at most “α times”. Then go to a vertex that is also in

Büchiα0 (R)\Büchiα+1
0 (R) and not in R, or to a vertex that is in R and in

Büchiα−1
0 (R)\Büchiα0 (R).

We conjecture that one can use the algorithm of the previous section to transform

this description of the strategy into an effective one. In the case that α is an integer,

it is clear:

• First compute the set Büchi0(R) using Algorithm 3.4.8.
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• If u 6∈ Büchi0(R), use Algorithm 3.4.4 to compute successively the alter-

nating automata representing the sets Büchii0(R) for i = 0, 1, 2, · · · until

u 6∈ Büchii0(R).

• Test for the successors of u whether the conditions above are fulfilled

If α is greater or equal ω, we conjecture that one can use the projections πi of

Algorithm 3.4.8 only a restricted number of times to determine α and play to the

right vertex.

We see here that with this method the computational effort is very much bigger

than for the Büchi game, because the automata Bi for Büchii0(R) are bigger and

bigger. It is not clear whether one can implement this strategy as a pushdown

strategy like before, because we consider different alternating automata.

3.6 A Σ3 Winning Condition

After having considered reachability and Büchi winning condition, that can be de-

fined as well on finite graphs, we study infinite two-player games over pushdown

graphs with a winning condition that refers explicitly to the infinity of the game

graph: a play is won by player 0 if some vertex is visited infinity often during the

play. It can be shown that the set of winning plays is a proper Σ3-set in the Borel

hierarchy, thus transcending the Boolean closure of Σ2-sets which arises with the

standard automata theoretic winning conditions (such as the Muller, Rabin, or par-

ity condition). We will show that this Σ3-game over pushdown graphs can be solved

effectively (by a computation of the winning region of player 0 and his memoryless

winning strategy). This seems to be a first example of an effectively solvable game

beyond the second level of the Borel hierarchy.

3.6.1 Motivation

The Muller and parity winning conditions (as well as related ones like Rabin and

Streett conditions) define sets of plays which are located at a very low level of

the Borel hierarchy, namely in B(Σ2), the Boolean closure of the Borel class Σ2.

This restriction to winning conditions of low set theoretical complexity is justified

by two reasons: First, most winning conditions which are motivated by practi-

cal applications (safety, liveness, assume-guarantee properties, fairness, etc.), and

Boolean combinations thereof, all define sets in B(Σ2). Secondly, by Büchi’s and



3.6. A Σ3 WINNING CONDITION 63

McNaughton’s results on the transformation of monadic second-order logic formu-

las into deterministic Muller automata, any winning condition which is formalizable

in linear time temporal logic or in monadic second-order logic (S1S) over infinite

strings defines a B(Σ2)-set. (One transforms a logical formula ϕ into an equivalent

deterministic Muller automaton, say with transition graph Gϕ, and proceeds from

a game graph G and a winning condition defined by ϕ to G × Gϕ as game graph

equipped with the Muller winning condition applied to the second components of

vertices.) In this connection, Büchi claims in [Büc83, p. 1173] as a general thesis

that any set of ω-sequences with an “honestly finite presentation” (by some form of

“finite-state recursion”) belongs to B(Σ2).

Recently, the Büchi-Landweber Theorem was extended to infinite game graphs,

and in particular to the transition graphs of pushdown automata [KV00, Sei96,

Wal96b]. For example, it was shown by Walukiewicz [Wal96b] that parity games

over pushdown graphs can be solved effectively. But the restriction to the parity

condition is now only justifiable by pragmatic aspects, and it is well conceivable

that higher levels of the Borel hierarchy are reachable by natural winning conditions

exploiting the infinity of pushdown transition graphs.

In the rest of this chapter we propose such a winning condition, by the require-

ment that (in a winning play) there should be one vertex occurring infinitely often.

Syntactically, this is formulated as a condition on a play ρ using a Σ3-prefix of

unbounded quantifiers:

“there is a vertex v such that for all time instances t there is t′ > t such

that v is visited at t′ in the play ρ under consideration”

In [CDT02] it was shown that for a suitable deterministic pushdown automaton the

corresponding set of winning plays forms indeed a Σ3-complete set in the Borel hier-

archy. The completeness proof needs some prerequisites of set theory, in particular

on continuous reductions and the Wadge game [Wad84], and is outside the scope

of this thesis. Another motivation comes from the context of verification and was

pointed out by Olivier Serre [BSW03]. The stack models the (recursive) procedure

invocations and in this game Player 1 wants to make the stack “explode”, i.e., show

that the program needs infinite resources.

In Section 3.6.3 we show, following [CDT02], that the Σ3-winning condition does

not prohibit an algorithmic solution of the corresponding games. Building on the

approach of previous sections for Büchi games, we present an algorithm to decide

whether a given vertex of a pushdown transition graph is in the winning region of

player 0; and from this, also a memoryless winning strategy can be extracted.
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This result may be considered as a first tiny step in a far-reaching proposal

of Büchi ([Büc83, p.1171-72]). He considers constructive game presentations by

“state-recursions”, as they arise in automata theoretic games, and he asks to extend

the construction of winning strategies in the form of “recursions” (i.e., algorithmic

procedures) from the case of B(Σ2)-games to appropriate games on arbitrary levels

of the Borel hierarchy.

3.6.2 Outline of the Solution

The winning condition is now the following: the play is won by Player 0 if and only

if

there is a configuration from V that appears infinitely often in the play, (3.7)

equivalently, if and only if for some length n a configuration of length n is visited

infinitely often. Our aim is to compute the set W0 of winning positions of Player 0:

the positions from which he can win whatever Player 1 does.

For technical reasons in this section we modify slightly the definition of Attr+
0 :

it is convenient to allow deadlocks by the empty stack in the game graph and to

declare here Player 1 as the winner of any play terminating with empty stack.

X0(T ) = ∅ ,

Xi+1(T ) = Xi(T ) ∪ {u ∈ V0 | ∃v, (u, v) ∈ E, v ∈ T ∪Xi(T )}

∪ {u ∈ V1 | |u| > 1, ∀v, (u, v) ∈ E ⇒ v ∈ T ∪Xi(T )} ,

Attr+
0 (T ) =

⋃
i>0Xi(T ) .

We are now able to define Büchi0(T ), the set of those configurations from which

Player 0 can force to really reach T infinitely many times (to win the “Büchi game

for T”, without deadlock): it is the greatest fixed point of the function

S 7→ Attr+
0 (S ∩ T ) ,

and can also be obtained by induction on the ordinals

Büchi00(T ) = V ,

Büchiα+1
0 (T ) = Attr+

0 (Büchiα0 (T ) ∩ T ) for any ordinal α ,

Büchiλ0(T ) =
⋂

α<λ Büchiα0 (T ) for a limit ordinal λ .

There is some α such that Büchiα+1
0 (T ) = Büchiα0 (T ) = Büchi0(T ). We note Γ6M

the language {ε} ∪ Γ1 ∪ · · · ∪ ΓM . The effective solution of pushdown games with

winning condition (3.7) is based on the following straightforward representation of

the winning region W0 of player 0:
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Proposition 3.6.1 Over a game graph induced by a pushdown game system, the

winning region W0 of Player 0 w.r.t. winning condition (3.7) is

W0 =
⋃

M>0

Büchi0(PΓ6M) .

Note that this leads also to the (non-effective) existence of a positional winning

strategy for Player 0 on his winning region:

• Given a vertex u ∈ W0, find the smallest M such that u ∈ Büchi0(PΓ6M).

• Play according to the Büchi game of PΓ6M , see corresponding Remark 3.1.1

and the begining of Section 3.4.

Although intuitively Player 1 also has a positional winning strategy on his winning

region, it is not clear how to prove this result or how to define a positional strategy

from the previous sets Büchi0(PΓ6M). A configuration u ∈ V is in the winning

region of Player 1 if and only if for every M > 0 it is not in Büchi0(PΓ6M). Similarly

to the case of co-Büchi, it follows that for each M , Player 1 has a strategy to visit

PΓ6M only a finite number of times. But it seems difficult to arrange these different

strategies. For that reason until now we cannot apply the results of Section 2.3.4 to

compute (using MSO) the winning region and a winning strategy. In that sense the

results of this section should be considered as a new decidability result.

Let us refine this proposition into an algorithmic description of W0. In the

previous sections we have shown that if the set T is regular, then one can compute

a finite automaton recognizing Attr0(T ), respectively Attr+
0 (T ), which hence are

again regular. Using the regularity of Attr+
0 (T ) one can compute a finite automaton

recognizing Büchi0(T ). Of course Γ6M is regular for M > 0, so Büchi0(PΓ6M)

can be computed. To compute the set W0 of Proposition 3.6.1, we finally have to

overcome the problem that W0 is an infinite union. We shall prove that

W0 = Attr0(Büchi0(PΓ6N) • Γ∗)

where N = 1 + |Γ||P |max{|ν| − 1 | (p, γ, q, ν) ∈ ∆}, and the set Büchi0(PΓ6N) •Γ∗

will be defined later (it contains Büchi0(PΓ6N) · Γ∗, but it is not so easy to define).

Roughly speaking, the idea is that under certain conditions on the transitions of

the alternating automaton, if Player 1 can make the stack increase by more than

N letters, then he can make it increase indefinitely (without returning to previous

stack contents an unbounded number of times) and thus wins.

In Proposition 3.6.1 it is essential that the degree of the game graph is finite, as

shown by the example of Figure 3.12. Here the game graph is a prefix-recognizable
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pa

qa qaa qaaa · · ·

· · ·

Figure 3.12: Example of a game on a Prefix-recognizable graph

one. In state pa Player 1 has to chose a successor among infinitely many, then the

game will stay forever in the new vertex. So each vertex is in W0. Note that the

set Büchi0(PΓ6M) do not contain pa for any M > 0, because from pa Player 1 can

move to qaM+1.

3.6.3 Details

Let us expose the transformation of a P-automaton A recognizing T into a P-

automaton recognizing Büchi0(T ). We consider the case T = PΓ6M for a given

number M and set

Y M
0 = PΓ6M ,

Y M
α+1 = Attr+

0 (Y M
α ) ∩ PΓ6M for any ordinal α, and ,

Y M
λ =

⋂

α6λ

Y M
α for a limit ordinal λ .

We note Y M
∞ the fixed point of this computation: Y M

∞ = Attr+
0 (Y M

∞ )∩PΓ6M . Then

Büchi0(PΓ6M) = Attr0(Y
M
∞ ).

Consider a PDGS P = (P0, P1,Γ,∆) with P = P0∪P1. The construction of the

automaton recognizing Y M
∞ starts with a P-automaton B0 which recognizes PΓ6M :

its state set is P ∪ {f0, · · · , fM}, with transitions fi
Γ−→ fi+1 for i < M , each fi

being a final state, and the states of P ∪{f0} are merged into a unique state named

f0, i.e., f0 is initial.

Like in Section 3.4, in stages or “generations” i = 1, 2, 3, · · · new copies of P are

added. We write (q, i) or short qi for the copy of a node q ∈ P added in stage i.
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So the state space will by a subset of (P × N) ∪ {f0, . . . , fM} (where q0 = f0 for all

q ∈ P ). We write P i for the set P × {i}. The auxiliary operations φ and π from

Section 3.4 are also needed.

Algorithm 3.6.2 To compute an automaton recognizing Y M
∞

Input: PDGS P = (P0, P1,Γ,∆) and M > 0

Output: a P-automaton C that recognizes Y M
∞

Initialization: Set C := B0 recognizing PΓ6M = Z0, with states q0 (for q ∈ P )

and f0, . . . , fM , where for all q ∈ P , q0 is set to be f0. (Recall that for all

γ ∈ Γ, fi
γ−→ fi+1, and the fi’s are the final states. )

i := 0.

repeat

i := i+ 1 (i is number of the current generation)

Add the states qi, for each q ∈ P , using them as initial states.

Add an ε-transition from qi to qi−1 for each q ∈ P

{obtain an automaton still recognizing Zi−1 }

Add new transitions to C by the saturation procedure of Algorithm 3.1.2:

repeat

(Player 0) if p ∈ P0, pγ ↪→ qµ ∈ ∆ and qi µ−→∗ S in the current automaton,

then add a new transition pi γ−→ S.

(Player 1) if p ∈ P1, {pγ ↪→ q1µ1, · · · , pγ ↪→ qnµn} are all the ∆-rules (game

moves) starting from pγ and ∀k, qi
k

µk−→∗ Sk in the current automaton, then

add a new transition pi γ−→
⋃

k Sk.

until no new transition can be added

{ the obtained automaton recognizes Attr0(Zi−1) }

remove the ε-transitions.

{ obtain B′
i recognizing Attr+

0 (Zi−1) = Z ′
i }

replace each transition qi γ−→ S by qi γ−→ πi(S).

{ obtain B′′
i recognizing Z ′′

i ⊆ Z ′
i }

replace each transition qi γ−→ S by qi γ−→ S ∪ {f0}

{ obtain Bi recognizing Z ′′
i ∩ PΓ6M = Zi, we have

⋂
i≥0 Y

M
i ⊆ Zi }

set C := Bi, finishing generation number i

until i > 1 and ∀p, γ : pi γ−→ S ⇐⇒ pi−1 γ−→ φ(S) .

Note that we can erase the qi−1’s and their transitions as soon as the generation i

is done. To compare successive generations we have the following property.
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Proposition 3.6.3 In Algorithm 3.6.2, for all ν ∈ Γ∗, q ∈ P, i > 1 we have

qi+1 ν−→∗ S ⇒ qi ν−→∗ φ(S) .

The proofs of this proposition and of the following theorem are similar to the corre-

sponding claims in the previous sections. Note that because of the projection π, the

transitions qi ν−→∗ S verify S ⊆ (P × {i}) ∪ {f0, · · · , fM}. Note also that no new

transition from the states f0, · · · , fM is added.

Proof: We proceed by induction on i. The proposition is a direct consequence of

the same property over the transitions (by induction on the length of the word).

• For i = 1, we use another induction on the number of transitions starting from

p2 added by the saturation procedure: during the saturation procedure, for

each new transition p2 γ−→ S, we want to check that p1 γ−→ φ(π2(S) ∪ f0)

(because at the end of generation 2, we will have p2 γ−→ π2(S) ∪ f0).

As a preliminary remark, we observe that once the first generation is done,

each path q1 µ−→∗ S from a state q1 is such that S ⊆ P ×{1} ∪ {f0, · · · , fM},

hence π2(S) ⊆ P × {2} ∪ {f0, · · · , fM}, φ(π2(S)) ⊆ P × {1} ∪ {f0, · · · , fM},

and φ(π2(S)) = S. We also know that f0 ∈ S.

- At the beginning of the second iteration, one has no other transitions from

the states q2 than q2 ε−→ {q2} and q2 ε−→ {q1}, which are temporary.

- During the saturation procedure, as a new transition p2 γ−→ S is added, it

is through an existing path q2 µ−→∗ S (see algorithm).

If this path uses just ε-transitions (µ = ε, S ⊆ P × [1, 2]), then a simi-

lar path form q1 existed during the first iteration, generating a transition

p1 γ−→ φ(π2(S)) (where we choose to stay in P × {1}). Hence at the end of

first generation, one gets p1 γ−→ π1(φ(π2(S))) ∪ f0, and π1(φ(π2(S))) ∪ f0 =

φ(π2(S)) ∪ f0 = φ(π2(S) ∪ f0). Whereas at the end of the second generation,

the transition generated is actually p2 γ−→ π2(S) ∪ f0.

If the first segment of this path q2 µ−→∗ S is a “real” transition q2 α−→ T ,

α ∈ Γ, then by induction hypothesis one has also q1 µ−→∗ φ(π2(S) ∪ f0), and

the corresponding transition from p1 was added.

If the first segment is q2 ε−→ q1 α−→ T , then similarly, because of q1 α−→ T

already existing, the corresponding transition from p1 was added.

• Induction hypothesis: ∀S, pi α−→ S ⇒ pi−1 α−→ φ(S).

• The proof for i+ 1 follows the pattern of case i = 1.
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Lemma 3.6.4 The automaton C constructed in Algorithm 3.6.2 recognizes Y M
∞ .

Proof:

Proof of termination

Thanks to the projections πi’s, there is only bounded number of possible transitions

from each row of pi’s. And thanks to Proposition 3.6.3, there is less and less transi-

tions until the algorithm reaches a fixed point.

Proof of correctness

We note Zi the language recognized by C from the initial states pi’s. We denote n+1

the last generation of the algorithm, which is such that Zn = Zn+1, by convention

we still consider Zi = Zn for all i > n. One has to show that Zn = Y M
∞ .

We consider the intermediate results (stages) of Algorithm 3.6.2: near the end of

the i-th generation, just after one removes the ε-transitions, one gets the automa-

ton B′
i, recognizing Z ′

i. Then, just after the projection, one gets B ′′
i , recognizing

Z ′′
i . Finally one gets Bi, recognizing Zi, by replacing each transition pi γ−→ S by

pi γ−→ S ∪ {f0}.

First part: Zn ⊆ Y M
∞ .

We prove by induction on i that for all i, Zi ⊆ Yi.

• Remembering that for all p ∈ P , p0 is set to be f0, Z0 = Y0 = PΓ6M .

• Induction hypothesis: Zi ⊆ Yi.

• The algorithm first determines the Attractor+ of the language. By monotonic-

ity,

Z ′
i+1 = Attr+

0 (Zi) ⊆ Attr+
0 (Yi) = Y ′

i+1 .

After the projection of the transitions, the obtained language Z ′′
i+1 is contained

in Z ′
i+1: Proposition 3.6.3 shows that an accepting path from a state pi+1 was

possible before the projection (through the states pi). So Z ′′
i+1 ⊆ Z ′

i+1 ⊆ Y ′
i+1

(for i = 0 the projection does not change any transition). The next operation

of the algorithm “computes” the intersection with PΓ6M . Here we just need

an inclusion. In the resulting automaton Bi+1, each transition from a pi+1 has

at least a “branch” that goes to {f0, · · · , fM}, so it is clear that Zi+1 ⊆ PΓ6M .

Also Zi+1 ⊆ Z ′′
i+1, and

Zi+1 ⊆ Z ′′
i+1 ∩ PΓ6M ⊆ Y ′

i+1 ∩ PΓ6M = Yi+1 .



70 CHAPTER 3. SYMBOLIC PRESENTATION OF WINNING STRATEGIES

We have that ∀i, Zn = Zn+1 ⊆ Yi, and so Zn ⊆ Y M
ω . For ordinals greater than ω,

the arguement is the same as in the proof of Theorem 3.4.9, based on the fact that

Zn = Zn+1 ⊆ Attr+
0 (Zn) ∩ PΓ6M . We conclude Zn ⊆ Y M

∞ .

Second part: Y M
∞ ⊆ Zn.

We prove by induction on i that for all i, Y M
∞ ⊆ Zi.

• By construction, Y M
∞ ⊆ Y0 = Z0.

• Induction hypothesis: Y M
∞ ⊆ Zi.

• Before the projection we have:

Ỹ ∞ = Attr+
0 (Y M

∞ ) ⊆ Attr+
0 (Zi) = Z ′

i+1 .

To go to Z ′′
i+1, we proceed by induction on the number of transitions that are

changed by the projection, i.e., we consider the successive automata A0, · · · ,Am,

where L(A0) = Z ′
i+1, L(Am) = Z ′′

i+1, and Aj+1 is obtained from Aj by“project-

ing” one transition. We have to prove by induction on m that Ỹ ∞ ⊆ L(Am).

- If m = 0, Ỹ ∞ ⊆ L(A0) = Z ′
i+1 = Z ′′

i+1.

- Induction hypothesis: Ỹ ∞ ⊆ L(Am).

- We suppose by absurd that there is a configuration pµ ∈ L(Am)\L(Am+1)

such that pµ ∈ Ỹ ∞. We choose that of minimal length |pµ|. For each accepting

path labeled by pµ in Am, there is a decomposition pi+1 ν−→∗
m S ξ−→∗

m
F ⊆

{f0, · · · , fM} such that µ = νξ, with qi ∈ S, and in Am+1: ¬∃(q
i+1 ξ−→∗

m+1
F ′ ⊆

{f0, · · · , fM}) (the transition that is projected was “leading” to qi in Am and

is now “leading” to qi+1).

This means that qξ ∈ Zi and qξ 6∈ L(Am+1).

If qξ 6∈ L(Am), then qξ 6∈ Ỹ ∞ (Ind. hyp.), and pµ should not stay in Ỹ ∞ (see

the previous sections), hence the contradiction.

If qξ ∈ L(Am)\L(Am+1), then qξ cannot be in Ỹ ∞ by hypothesis: ν 6= ε and

|qξ| < |pµ|. If qξ is not in Ỹ ∞, then pµ should not be in Ỹ ∞ (see the previous

sections), hence the contradiction.

We conclude that Ỹ ∞ ⊆ L(Am+1).

We have now Attr+
0 (Y M

∞ ) ⊆ Z ′′
i+1, hence

Y M
∞ = Attr+

0 (Y M
∞ ) ∩ PΓ6M ⊆ Z ′′

i+1 ∩ PΓ6M .

It is now clear that Z ′′
i+1 ∩PΓ6M ⊆ Zi+1. (note that the inclusion from right

to left was proved above.)
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It remains to eliminate the quantification on M implicit in
⋃

M>0 Büchi0(PΓ6M), by

choosing a sufficiently large bound for M . We introduce an ordering relation which

permits to compare transitions.

Definition 3.6.5 For any S, S ′ ⊆ P i ∪ {f0, · · · , fM},

S v S ′ ⇔

{
S ∩ P i ⊆ S ′ ∩ P i and

max({j | fj ∈ S} ∪ {−1}) 6 max({j | fj ∈ S
′} ∪ {−1})

The idea is that in case S v S ′, one recognizes “more” after a transition qi −→ S

than after a transition qi −→ S ′. To compare transitions qi −→ S and qj −→ S ′,

with i < j, one considers πj(S) and S ′ with respect to v. The index j of fj ∈ S

measures the possibility for Player 1 to increase the length of the stack, and possibly

win.

Proposition 3.6.6 In the automaton C constructed by Algorithm 3.6.2, assume

that for a transition qi γ−→ S we have S v S ′ for each transition qi γ−→ S ′ from

the same state. If ` = max{j | fj ∈ S} > 0, then from the configuration qγ, Player

1 has a strategy to reach a configuration where the length of the stack is at least `

and such that this ` letters will never be “popped”.

Proof: Induction on the number of transitions constructed by the algorithm.

Note that the projection πi does not change the value of `. If ` = 0, the property is

trivially true.

In the generation number 1, there is an ε-transition from each qi to f0. If for

some q, γ and ` we have the hypothesis of the proposition, then it follows that

• either q ∈ P0 and every transition qγ ↪→ q′µ ∈ ∆ add at least ` letters to

the stack, moreover Player 0 has no possibility to decrease the stack length

from q′µ (otherwise we would have a path qi µ−→∗ S, and another transition

added),

• or q ∈ P1 and there is a transition qγ ↪→ q′µ ∈ ∆ that adds at least ` letters

to the stack, moreover Player 0 has no possibility to decrease the stack length

from q′µ (otherwise we would have a path q′i µ−→∗ S, and another transition

added).

For the next generations we have the same argument, relying on the preceding

generations. If q ∈ P1 then there is a transition qγ ↪→ q′γ′ν ∈ ∆ such that from q′γ′
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Player 1 can reach a configuration with `1 letters (applying the proposition to the

previous generation) and ` = `1 + |ν|. And similarly for q ∈ P0. ¥

We consider now N = 1 + |Γ||P |max{|µ| − 1 | ∃ pγ ↪→ qµ ∈ ∆}. The rightmost

factor is the maximal number of letters that can be added to the stack in one move.

Proposition 3.6.7 In the automaton C constructed by Algorithm 3.6.2, assume

again that for a transition qi γ−→ S we have S v S ′ for each transition qi γ−→ S ′

from the same state. If ` = max{j | fj ∈ S} > N , then from configuration qγ,

Player 1 can win the game by increasing the stack indefinitely.

Proof: According to the previous proposition, Player 1 can ensure the stack

increases by at least ` letters, that will never be popped. Using an argument similar

to the classical pumping argument (see e.g. [HU69]), there exists (q, α) ∈ P × Γ

such that, during this process, two different configurations qαν and qαξν are met

(ν ∈ Γ∗, ξ ∈ Γ+), and the letters of ν and ξ are not scanned (nor changed) any

more in the stack after these configurations. This proves that continuing from qαξν,

Player 1 can force the stack to increase indefinitely. This shows that a configuration

in qγΓ∗ cannot be in the winning region W0 of Player 0. ¥

It follows from the proposition that in C we can eliminate transitions qi −→ S, such

that fj ∈ S, j > N . So intuitively the computation of Y N
∞ is sufficient to determine

Y M
∞ for all M > N . We have clearly Y N

∞ ⊆ W0, and also Y N
∞ · Γ

∗ ⊆ W0 because in

the computation of Y N
∞ we have assumed that if the stack is empty, Player 0 loses.

Hence Attr0(Y
N
∞ Γ∗) ⊆ W0, but the equality does not hold in general.

In the automaton obtained from Algorithm 3.6.2 for a given M > 0 the next

step is to merge the states fk to a unique final state f , and to add a transition

f γ−→ f for all γ ∈ Γ, to obtain an automaton C ′. We will note Y M
∞ • Γ∗ the set

of configurations recognized by C ′. Nevertheless the set Y M
∞ • Γ∗ is defined only by

the algorithm, and until now there is no language theoretical definition of Y M
∞ • Γ∗

from Y M
∞ . We have Y M

∞ · Γ
∗ ⊆ Y M

∞ • Γ∗ but the equality does not hold in general,

because the automaton is alternating. Now we can prove the following.

Corollary 3.6.8 For all M > N, Y N
∞ • Γ∗ = Y M

∞ • Γ∗.

The intuition behind this “bound”N and this result will be discussed later.

Proof: The inclusion from left to right is clear by monotonicity. For the other

inclusion, the automaton recognizing Y M
∞ • Γ∗ “contains” that of Y N

∞ • Γ∗. It has
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possibly some other transitions qi −→ S, with fj ∈ S, j > N , which verify the

hypothesis of Proposition 3.6.7. Those transitions do not permit to accept a con-

figuration in W0, i.e., no winning play from such a configuration is possible. But

clearly Y M
∞ •Γ

∗ ⊆
⋃

M>0 Büchi0(PΓ6M) ⊆ W0 (a play from Y M
∞ is also possible from

Y M
∞ • Γ∗. See Proposition 3.6.1). ¥

Theorem 3.6.9 Given a pushdown game system, one can compute a finite automa-

ton recognizing the winning region

W0 = Attr0(Y
N
∞ • Γ∗)

of Player 0 with respect to the Σ3-winning condition (3.7).

Proof: Clearly Attr0(Y
N
∞ • Γ∗) ⊆ W0. Proposition 3.6.1 states that

W0 =
⋃

M>0

Büchi0(PΓ6M) ,

which is, by the preceding proposition,
⋃

M>0

Attr0(Y
M
∞ ) ⊆

⋃

M>0

Attr0(Y
M
∞ • Γ∗) ⊆ Attr0(Y

N
∞ • Γ∗) .

¥

The construction of an automaton recognizingW0 = Attr0(Y
N
∞ •Γ

∗) works as follows:

one uses Algorithm 3.6.2 with M = N . The resulting automaton C recognizes Y N
∞ .

Now one merges the states fk to a unique final state f , and one adds a transition

f γ−→ f for all γ ∈ Γ, in order to obtain an automaton C ′ which recognizes Y N
∞ •Γ

∗.

To recognize Attr0(Y
N
∞ • Γ∗) we just need another application of the saturation

procedure as it appears in Algorithm 3.1.2, which finally results in an (alternating)

automaton C ′′ which recognizes W0.

In the definition of Attr0, the “usual” convention about deadlocks (with empty

stack) is implicitly assumed. So finally at the end of the computation of Attr0(Y
N
∞ •

Γ∗), the states pi+1 with p ∈ P1 has to be marked as final. They correspond to

the possibility for Player 0 to win by reaching a configuration with empty stack

when Player 1 is on. We did not assumed this convention in the definition of Attr+
0

because it would have compromised the computation of Büchi0(PΓ6N) • Γ∗, where

we add letters at the end of the stack.

Following the arguments of the previous sections, it is easy to extract a positional

winning strategy or a pushdown strategy for player 0 on the set W0. The choice of

an appropriate transition from a game graph vertex qw ∈ W0 is done by analyzing

an accepting run of the automaton C ′ on the input qw.
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3.7 Discussion, Examples

The key-point for the termination of our algorithm is the bound N of Proposi-

tion 3.6.7 and Corollary 3.6.8, but this bound can be misleading. In a direct sense

it is a bound on the size of the automaton that we need to construct, but it seems

difficult to interpret this bound directly in the pushdown game that we consider,

in terms of configurations and number of letters. Moreover, because we always use

alternation, it is difficult to give an intuition for this bound, and for the language

Y M
∞ • Γ∗ obtained by merging the final states. Recall also that an alternating au-

tomaton with n states can have 2n transitions, and the minimal finite automaton

needed to recognize the same language can have 2n states.

In the case of a usual finite automaton A recognizing a language L over Γ, we

can make the following observation: if there is no transition from final states to

non-final states, then merging all final states and adding a loop labeled by the whole

alphabet Γ on the new final state results in the recognized language becoming L ·Γ∗.

But if we consider alternating automaton it is not the case, as shown in the example

of Figure 3.13.

1 2

b

a

1 2

b

a

a,b

1 b−→ 2

1 a−→ {1, 2} (meaning 1 ∧ 2)

2 a−→ 2

2 b−→ 2

Figure 3.13: A simple alternating automaton, and the same with a loop on the final

state

In the first version (left) A recognizes the finite language {b}. After the trans-

formation (right), A not only accepts the words of bΣ∗, but also those of a∗bΣ∗. The

recognized language is then Σ∗bΣ∗. This simple fact has a consequence in the next

example of pushdown game, which is due originally to Olivier Serre, yet simplified

here for the exposition.
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3.7.1 First Example

Example 3.7.1 We consider the following PDGS:

P = (P0, P1,Γ,∆) where

P = P0 = {p, q}, P1 = ∅

Γ = {a, b, c}

∆ = {pb ↪→ p, pa ↪→ pba, pc ↪→ qac, qa ↪→ qaa}

and the winning condition (3.7) for Player 0.

This game is not very exciting, because the players has no decision to make:

the play is completely determined from the initial configuration. One can see that

starting with control state q and top letter a, the stack will “explode”, and Player 0

will lose. In control state p, the possible top b’s are first removed, then if an a

appears there is a loop winning for Player 0, but if a c appears it goes to qa and

Player 1 wins. See a part of the game graph in Figure 3.14.

p au p bau p bbau p bbbau · · ·

p cu

p bcu p bbcu p bbbcu · · ·

q acu q aacu q aaacu · · ·

Figure 3.14: Pushdown game of Example 3.7.1, where u ∈ Σ∗

We have here N = 1 + 3 · 2 · 1 = 7. Applying Algorithm 3.6.2 we get in the

first generation the automaton B′
1 of Figure 3.15 (after the saturation procedure).

Then the automaton B1 is depicted in Figure 3.16, where there is an and-transition

p1 b−→ {p1, f0}.
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p1

q1

0 1 2 3 4

5

67

Γ Γ Γ Γ
Γ

Γ
Γ

ε

ε

b

a
c

a

Figure 3.15: Automaton from Algorithm 3.6.2, the dashed arrows are removed to

obtain B′
1. Unnecessary transitions have been avoided in the picture

p1

q1

0 1 2 3 4

5

67

Γ Γ Γ Γ
Γ

Γ
Γ

b

a
c

a

Figure 3.16: Automaton B1 (simplified)

In the second generation one gets the automaton B′
2 of Figure 3.17. After elim-

ination of ε-transition and simplification, the automaton B2 is as depicted in Fig-

ure 3.18. It is easy to infer (by induction) what are the next generations. In the

automaton Bi we will have following transitions:

pi a−→ f1 ,

pi b−→ {pi, f0} ,

pi c−→ fi+1 if i+ 1 6 7 ,

qi a−→ fi+1 if i+ 1 6 7 .

So the two last transitions will disappear when i > 6, and the algorithm will ter-

minate, because B7 and B8 are identical up to renaming of p7 in p8 and q7 in

q8.
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p2

p1

q2
q1

0 1 2 3 4

5

67

Γ Γ Γ Γ
Γ

Γ
Γ

ε

ε

b

a
c

a

b

a

c

a

Figure 3.17: Automaton from Algorithm 3.6.2, the dashed arrows are removed to

obtain B′
2. Unnecessary transitions have been avoided in the picture

p2

q2

0 1 2 3 4

5

67

Γ Γ Γ Γ
Γ

Γ
Γ

b

a

c

a

Figure 3.18: Automaton B2 (simplified)

p

q

f Γ

b

a

Figure 3.19: Automaton C ′ recognizing Y N
∞ • Γ∗
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After merging the final states, the automaton C ′ of Figure 3.19 recognizes Y N
∞ •

Γ∗ = b∗aΓ∗. It is exactly the automaton of Figure 3.13 (right), if we consider p as the

initial state. If we compute again the attractor of this set, the resulting automaton

would be slightly different (with a transition p b−→ p), but recognizes the same set.

Finally the winning region of Player 0 is

W0 = Attr0(Y
N
∞ • Γ∗) = p b∗aΓ∗ .

What we want here to point out is that this N is not a bound on the number of

letters that the automaton has to look at (at the top of the store) to determine

if a given configuration is in the winning region. The next example is due to Igor

Walukiewicz and allow to precise the meaning of Proposition 3.6.7.

3.7.2 Second Example

We want to define a pushdown game with O(n) control states and the winning

condition (3.7) for Player 0, such that Player 0 has to put 2n letters on the stack

in order to win. It means that in this game, if Player 0 pushes down less than 2n

letters on the stack, then the stack will later “explode”. The construction is based

on binary counters and was suggested by Igor Walukiewicz.

Definition 3.7.2 Given n > 0, a counter of length n is a word

σ0σ1 · · · σn−1 ∈ {0, 1}
n ,

it represents the number
∑n−1

i=0 σi2
i.

So we use counters of n bits, and the parameter n is now fixed for the rest of this

section without further mentioning. Let Γ = {0, 1,#} be the stack alphabet, where

# is a separator. The idea of the game is that Player 1 can force Player 0 to write

2n counters representing the successive numbers between 0 and 2n − 1. Namely for

n = 3, Player 0 will have to reach the configuration

p##111#011#101#001#110#010#100#000## . (3.8)

After that Player 1 will check that the counters are correct, and Player 1 wins if and

only if he can find a mistake. There is only one control state for Player 0: P0 = {p},

with transitions

pγ ↪→ pγ′γ, ∀γ, γ′ ∈ Γ, and

p# ↪→ q ,
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meaning that Player 0 can push whatever he wants before giving control to Player 1

(q ∈ P1). The play starts with the configuration p##. Obviously Player 0 loses if

he never stop pushing, see (3.7). We will need two states qwin and qlost, respectively

winning and losing for Player 0, that can be easily implemented according to the

winning condition:

qwinγ ↪→ qwinγ, ∀γ ∈ Γ ,

qlostγ ↪→ qlost0γ, ∀γ ∈ Γ .

From control state q, Player 1 has the opportunity to check that the top counter

consists only of 1’s. This can be implemented with a single control state. Depending

on the result, the play will go to qwin or qlost.

q# ↪→ q, q1 ↪→ q,

q0 ↪→ qlost, q# ↪→ qwin .

Otherwise Player 1 can pop an arbitrary number of letters to find a counter where

he thinks that the number of bits is not legal (more than n or less that n).

q# ↪→ q′#,

q′γ ↪→ q′, ∀γ ∈ Γ, q′# ↪→ q0,

qiσ ↪→ qi+1, ∀σ ∈ {0, 1}, i < n, qn# ↪→ qwin,

qnσ ↪→ qlost, ∀σ ∈ {0, 1}, qi# ↪→ qlost, ∀i < n .

To be complete we also need transitions q1 ↪→ qlost1 and q0 ↪→ qlost0 to ensure that

Player 0 has put a separator #. They will be ignored in the following. We can now

assume that every counter has the right length (otherwise Player 1 has a winning

strategy). From control state q′ with top letter #, Player 1 has also the opportunity

to check that the two current top counters represent successive numbers. He choses

a position where he thinks that Player 0 was cheating, then exactly n+1 letters are

popped to go to the corresponding position in the second counter. Depending on

whether a 1 was already seen in the first counter, we know if the bit in the second

counter has to be different or equal to the one in the first counter.

q′# ↪→ r,

r0 ↪→ r, r0 ↪→ rn
1 ,

r1 ↪→ r, r1 ↪→ rn
0 ,

r0 ↪→ r, r0 ↪→ rn
0 ,

r1 ↪→ r, r1 ↪→ rn
1 ,

ri
0γ ↪→ ri−1

0 , ∀γ ∈ Γ, i > 0,

ri
1γ ↪→ ri−1

1 , ∀γ ∈ Γ, i > 0,

r0
00 ↪→ qwin, r0

01 ↪→ qlost,

r0
11 ↪→ qwin, r0

10 ↪→ qlost .
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According to the convention, if Player 1 empty the stack by popping, he will lose

(alternatively one can define transitions r# ↪→ qwin and r# ↪→ qwin). Additionally

Player 1 can check that the bottom most counter consists only of 0’s. More precisely,

a counter containing a 1 should not be the bottom most.

r# ↪→ rb, rb# ↪→ qlost# .

Summarizing we have define a PDGS with 9+5(n+1) = 14+5n states. With the

notation of Corollary 3.6.8 we have N = 1 + 3 · (14 + 5n) · 1 = 43 + 15n. If we apply

Algorithm 3.6.2 the automaton B′
1 constructed in the first generation will look like

the one of Figure 3.20. Now looking at what happens in the next generations, we

note the following.

0 1 2 · · · N
Γ Γ Γ Γ

p

q

q

q′
r

q0

· · ·

· · ·

· · · qwin qlost

# Γ

#

#

Γ\{#}
#

0

1

Γ Γ

Depicted transitions:
p γ−→ 2, ∀γ ∈ Γ

p #−→ q

q #−→ {q, r, q0, q′}

q′ #−→ {r, q0, q′}

q′ γ−→ {q′}, ∀γ ∈ Γ\{#}

q 1−→ q

q 0−→ qlost

q #−→ qwin

qwin
γ−→ 1, ∀γ ∈ Γ

qlost
γ−→ 2, ∀γ ∈ Γ

Figure 3.20: Rough view of Automaton B′
1 from Algorithm 3.6.2

• We will always have a transition qwin
Γ−→ 1 because of the rules qwinγ ↪→ qwinγ

and the (temporary) ε-transitions between two generations.
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• In generation number i, if i < N , then we will have a transition qlost
Γ−→ i+1,

and if i > N , no transition from qlost. This is because of the rule qlostγ ↪→

qlost0γ and represents the fact that Player 0 is losing from qlost.

• From the states q, q′, q, · · · we will have in each generation exactly the same

transitions in Bi, because every transition of the PDGS from these control

states pops a letter from the stack (except from q). From control state q, the

PDGS was already like an alternating automaton reading words. Seeing q as

an initial state of Bi, qwin as accepting state and qlost as rejecting state, Bi is

just an alternating (universal) automaton that accepts exactly one word: the

stack content that Player 0 has to reach (3.8). More formally this is true if we

add a loop labeled by Γ on the state qwin and declare it as accepting state, in

such a way that once a run has reached qwin, we don’t need to check the rest

of the word.

Here it is important to note that this alternating automaton has a linear num-

ber of states in n and the configuration that is accepted is of length exponential

in n.

• From p the situation is more complicated. If we consider only the rule pγ ↪→

pγ′γ of the PDGS to generate transitions in Bi, then we will have (like from

qlost) a transition p Γ−→ i+ 1 in generation i, and then no transition at all for

i > N . Again this is related to the fact that Player 0 loses if he always pushes

new letters.

Considering the rule p# ↪→ q, in each generation a transition p #−→ q will be

generated. At first sight this is because Player 0 is winning from the config-

uration (3.8). But after this transition is created, using the rule pγ ↪→ pγ ′γ,

the algorithm will step by step add new transitions going to the next states

(q, r, q0, q′, q1, q2, r, rn
1 , · · · ). Namely there will be successively following tran-

sitions:

p #−→ q

p #−→ {q, r, q0, q′}

p 1−→ {q, r, rn
0 , q

1, q′}

p 1−→ {q, r, rn
1 , r

n−1
0 , q2, q′}

p 1−→ {q, r, rn
1 , r

n−1
1 , rn−2

0 , q3, q′}

and so on. And just because the alternating automaton from initial state q

accepts one word, somehow a “path” will be found in this automaton, where
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finally qwin will be reached in each branch of the path. Because the automaton

is alternating, an accepting run from q is best represented by a tree, or a

Directed Acyclic Graph, and some branches of the tree will reach qwin earlier

than some others. The problem is that the accepted word (3.8) has exponential

length in n, but the bound N is linear in n, so it will not be possible to go

through all the word. We will see later how this problem is solved.

For now we just have to note that these transitions will be the same in each

generation and will be present in the final output C of the algorithm.

After N iterations, the algorithm will terminate and the automaton C will look

like Figure 3.20 yet without transitions p γ−→ 2 and qlost
γ−→ 2. The configuration

p## is not accepted by this automaton for the reason mentioned just above, but

the next step of the construction is to merge the states fk to a unique final state f ,

and add a transition f γ−→ f for all γ ∈ Γ. Then the saturation procedure is again

applied. This time every branch reaching qwin is sure to be “accepting”. At the end

a transition p γ−→ f appears, for all γ ∈ Γ. Actually in our setting Player 0 can win

from any configuration: he just have to first push ## and then the right counters.

The resulting automaton is depicted in Figure 3.21

3.8 Extensions

We discuss two extensions of the previous results, the first one concerns the winning

condition, the second one concerns the class of graphs treated.

3.8.1 Modifying the Winning Condition

One can refine a little the winning condition considered in the previous section and

look at the following: given a subset F ⊆ P of “good” control states, the play is won

by Player 0 if and only if

there is a configuration from FΓ∗ that appears infinitely often in the play. (3.9)

It is possible to adapt the algorithm to this new winning condition just by adding

an ε-transition from qi to qi−1 only if q ∈ F , similarly to the case of the Büchi

condition in Algorithm 3.4.8. According to [CDT02] this condition is still a Σ3

condition. Other conditions has been proposed to reach higher levels of the Borel

hierarchy, but it seem not easy to solve the corresponding games using the symbolic

approach developed here.
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p

q

q

q′
r

q0

· · ·

· · ·

· · · qwin qlost

#

#

#

Γ\{#}
#

0

1

Γ

f Γ

Γ

Depicted transitions:
p γ−→ f, ∀γ ∈ Γ

p #−→ q

q #−→ {q, r, q0, q′}

q′ #−→ {r, q0, q′}

q′ γ−→ {q′}, ∀γ ∈ Γ\{#}

q 1−→ q

q 0−→ qlost

q #−→ qwin

qwin
γ−→ f, ∀γ ∈ Γ

Figure 3.21: Rough view of Automaton C ′′ recognizing W0. Now each state is final

except p

3.8.2 Prefix-recognizable Graphs

It is possible to extend the symbolic approach — for reachability, Büchi and Σ3 games

— to the case of prefix-recognizable graphs. This costs much more computational

effort. We outline how to proceed. We use the same definition as in Section 4.5

(see [Cau96]). Given a finite alphabet Γ, a graph, or set of edges G ⊆ Γ∗ × Γ∗ is a

prefix-recognizable graph, or PRG, if and only if

G = {uw ↪→ vw | u ∈ Ui, v ∈ Vi, w ∈ Wi, 1 6 i 6 N} ,

where for all i, 1 6 i 6 N , the Ui, Vi,Wi are regular sets over Γ.

Games over PRG are defined in a natural way. In a configuration x ∈ Γ+, the

first letter determines the player whose turn it is. We have Γ = Γ0 ] Γ1, V0 = Γ0Γ
∗,

and V1 = Γ1Γ
∗, similarly to the PDGS. A game starting from π0 ∈ Γ+ is defined in

the usual way.
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Of course we can represent sets of configurations, and thus winning conditions,

by finite automata, but the saturation procedure from Algorithm 3.1.2 needs to be

adapted. The first step is to transform the PRG into another PRG which is closer to

a PDGS. First we note using Proposition 3.4.3, that one can transform the alphabet

Γ and the transition rules so that we know at any time whether the configuration is

in a set Wi. Secondly the idea is that a transition uw ↪→ vw is decomposed into a

sequence of transitions.

• First the player whose turn is it choses an i 6 N such that he claims that he

can apply a transition of the form uw ↪→ vw for u ∈ Ui, v ∈ Vi, w ∈ Wi. This

can be implemented by adding a kind of “control state” pi in front of uw.

• Then letters from u are popped one by one and the control states simulate the

finite automaton that recognizes Ui, reading u.

• When the control state corresponds to a final state, i.e., the word u read so

far is in Ui, and the rest of the stack is in Wi, then the player is allowed to

push any word v ∈ Vi in one move. This achieve the transition uw ↪→ vw.

This idea is close to that of Section 4.5. The transitions that “pop” one letter are

just in the form of PDGS-transition and do not pose any problem. For transitions

allowing to push any word from a regular language, Algorithm 3.1.2 must be adapted.

The new saturation procedure is as follows, using notations of Algorithm 3.1.2.

Typically there is a transition rule p′i ↪→ Vi.

• If this is a rule for Player 0 and there exists a v ∈ Vi and a run q v−→∗ S in

AAtt(R), then add a new transition p′i
ε−→ S.

• If this is a rule for Player 1 and there exists S ⊆ Q such that every word

v ∈ Vi has a run q v−→∗ S ′ in AAtt(R) for some S ′ ⊆ S, then add a new

transition p′i
ε−→ S.

The computation of such an S needs at each step much effort, that’s why we do not

want to follow this track any longer. The Büchi game can also be solved using this

transformation and Algorithm 3.4.8. For a Σ3-game one has to be careful because in

the decomposition of a transition of the PRG new configurations appear that might

be visited infinitely many times even if in the original game the Σ3 condition is not

satisfied. Using the refined winning condition 3.9 above it is possible to solve this

problem.
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We do not formalize the transformation of the PRG presented above, this is done

in detail in Section 4.5 for the more general framework of parity games. We just

want to point out that the considered Σ3-games over PRG can be solved using the

symbolic approach.
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Chapter 4

Game-Reduction and Parity

Games over Pushdown Graphs

This chapter and the following are based on the notion of game simulation, that

allow to solve a game by reducing it to a simpler game that we know. It can be

either a simpler graph with a more complex winning condition, or a more complex

graph with a simpler winning condition. This technique has been used for a long

time in mathematics, where the second game might be called “auxiliary game”, but

it seems that there is no generic name for the reduction.

The fundamental result in this direction is due to Walukiewicz in [Wal96b].

He gave a solution of parity games on pushdown graphs using a reduction to a

finite graph and a refined winning condition involving claims for one player (see

also [Cac02c]). He proved the existence of pushdown strategies and determined

the winner with an exptime procedure. He proved also that the solvability of

reachability games over pushdown graphs is exptime-complete.

In Section 4.2 we give a new presentation and proof of the results of [Wal96b]

stressing upon effectivity. Section 4.3 presents an example of pushdown game. Then

in Section 4.4 we extend these results to compute uniformly the winning region of

the game (the set of configurations from which Player 0 can win). It is proved to be

effectively regular, and a corresponding winning pushdown strategy is also uniformly

defined. The result of Section 4.4 has been found independently by Olivier Serre in

[Ser03]. In Section 4.5 we consider parity games on prefix-recognizable graphs, which

are an extension of pushdown graphs, where the degree of a vertex can be infinite

[Cau96]. We show that any prefix-recognizable game can be “game-simulated” by a

pushdown game, in the sense that under a certain correspondence of game positions,

the winner of one game is the same player as the winner of the other game. An

87



88 CHAPTER 4. GAME-REDUCTION AND PARITY GAMES OVER PDGS

example is also provided. Applying the uniform solution of Section 4.4, we get

a uniform solution and an effective winning strategy also over prefix-recognizable

graphs.

4.1 Definition of the Game Simulation

A parity game structure (V0, V1, E,Ω) is game-simulated by another parity game

structure (V ′
0 , V

′
1 , E

′,Ω′) from initial vertices π0 ∈ V and π′
0 ∈ V

′ if

• Player 0 wins the parity game (V ′
0 , V

′
1 , E

′,Ω′) from π′
0 if and only if Player 0

wins the parity game (V0, V1, E,Ω) from π0,

• from a winning strategy of Player 0 in (V ′
0 , V

′
1 , E

′,Ω′) one can compute a win-

ning strategy of Player 0 in (V0, V1, E,Ω).

In this thesis we use game-simulation only for parity games, but this definition can

be extended to other winning conditions. For example in [BJW02] parity games

on finite graphs are reduced to safety games (on a larger finite graph). It is also

known how to reduce a Muller winning condition to a parity winning condition, see

[GTW02, Chap. 1].

Note that this definition is very general and can be applied to different contexts.

In some sense as soon as one can solve a game (V0, V1, E,Ω), that is determine the

winner and a winning strategy from π0, one can say that it is game-simulated by

any game (V ′
0 , V

′
1 , E

′,Ω′) (if we know the winner).

4.2 Pushdown Games and Walukiewicz’s Results

Given a PDGS P = (P0, P1,Γ,∆) defining the game graph (V0, V1, E) (see Sec-

tion 2.2.3), we consider a parity winning condition. For that we have a priority func-

tion Ω : P −→ [max], extended to the set V of configurations by Ω(pν) = Ω(p). Ac-

cording to the definition of Section 2.1.3, the parity game structure is (V0, V1, E,Ω).

Sections 3 and 4 of [Wal96b] are not stated in an effective (i.e., algorithmic)

framework, and their results “become” effective only with the help of Section 5 of

[Wal96b]. We prefer to give first a new presentation of the construction of Section 5 of

[Wal96b]. Then the most important results can be deduced, including all algorithmic

claims.

The idea of [Wal96b] is to reduce the pushdown game to a parity game on a

finite graph. This allows to determine the winner, and also the winning strategy.
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We assume the positional (“memoryless”) determinacy of parity games over finite

graphs, see [EJ91].

To distinguish the pushdown game and the game on a finite graph, we will call

here Finite State Parity game (FSP) a parity game structure (S0, S1, E, λ) such that

the set S0 ] S1 of vertices is finite. The term “state” is an analogy to the case of

finite automaton. From now on we use the infix notation → for the edge relation:

∀s, s′ ∈ S, (s, s′) ∈ E ⇔ s → s′. We restrict here ∆ ⊆ P × Γ × P × Γ62,

where Γ62 = ε∪Γ∪Γ2. In this section we consider a particular initial configuration

π0 = p0 ⊥, where ⊥∈ Γ, p0 ∈ P .

We recall the definition of pushdown strategy from Section 3.2.4. A pushdown

strategy for Player 0 in its general form is a deterministic pushdown automaton with

input and output. It “reads” the moves of Player 1 (elements of ∆) and outputs the

moves (choices) of Player 0, like a pushdown transducer.

Definition 4.2.1 Given a PDGS (P0, P1,Γ,∆), where ∆σ is the set of transition

rules in ∆ departing from Player σ configurations, a pushdown strategy for Player 0

in this game is a deterministic pushdown automaton S = (Q,A,Π), with a set

Q of control states, some stack alphabet A, and a finite transition relation Π ⊆

((Q× A×∆1)× (Q× A∗)) ∪ ((Q× A)× (Q× A∗ ×∆0)).

Theorem 4.2.2 [Wal96b] Given a Pushdown Game System G with a parity winning

condition, one can construct a Finite State Parity game G ′ such that: G is game

simulated by G ′. More precisely:

1. the winner of the parity game over G from the initial configuration p0 ⊥ is the

winner of G ′ from a certain initial vertex denoted Check(p0,⊥, B,Ω(p0)), where

B ∈ (P(P ))max,

2. a winning pushdown strategy for Player 0 in the parity game over G from the

initial configuration p0 ⊥ can be constructed from a winning strategy for Player 0 in

G ′ from the initial vertex mentioned above.

In the sequel we present informally how a play on the PDGS is “simulated” in

the FSP. We will see later that a configuration pγν of the PDGS, where p ∈ P ,

γ ∈ Γ, and ν ∈ Γ∗, is represented in the FSP by a vertex Check(p, γ, B,m), where

m ∈ [max] is a priority, and B ∈ (P(P ))max “summarizes” information about ν

(the number m is the smallest priority seen in a certain part of the game, and B

represents the set of control states q such that Player 0 can win the game from

qν, under certain conditions depending on m). To begin with, consider the initial

configuration (p0 ⊥), where the symbol ⊥∈ Γ cannot be erased according to the
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rules of ∆. The corresponding vertex of the FSP is Check(p0,⊥, B,m), where in

this particular case B and m are not relevant.

From a configuration pγν, simulated by Check(p, γ, B,m), the player whose turn

it is is determined by p, in the PDGS as well as in the FSP: either p ∈ P0 or p ∈ P1.

Let σ ∈ {0, 1} such that p ∈ Pσ. Different types of moves are possible in the PDGS.

If Player σ chooses a transition (p, γ, p′, γ′), i.e., if the stack length remains

constant, then the FSP proceeds to the vertex Check(p′, γ′, B,min(m,Ω(p′))). This

means that B remains the same, m is updated for later use and represents the

minimal priority seen since last initialization of m (see below). The priority of this

vertex is Ω(p′) in the FSP, as well as the corresponding configuration in the PDGS,

and the play goes on like that until some “push” or “pop” operation occurs.

The key point is the treatment of the push operation, because one cannot store

in the FSP the whole information contained in the stack. If Player σ chooses a

transition (p, γ, p′, γ′η) ∈ ∆, i.e., “pushes” one more symbol onto the stack, then in

the FSP the corresponding new vertex is Push(B,m, p′, γ′η). This is an intermediate

vertex were Player 0 (always) has to make a decision. He has to guess what can

happen later, and what he can guarantee. Player 0 chooses a tuple C ∈ (P(P ))max

such that he claims/guesses that whenever the symbol γ ′ currently at the top of the

stack is “popped”, then after this pop operation, the PDGS will be in a control-state

q ∈ C`, such that ` is the smallest priority seen between the “push” and the “pop”

of this γ ′. This part of the game is a “subgame” in [Wal96b], and this notion is not

so far from the idea of “detour” in [Var98]. More precisely, γ ′ can be replaced later

by another letter, but the condition on C must hold when the length of the stack

decreases and symbol η comes at the top of the stack.

So Player 0 goes to the vertex Claim(B,m, p′, γ′η, C), which is a vertex of

Player 1. In particular, if C = (∅, · · · , ∅), then Player 0 is claiming that the stack

will never become again shorter. And Player 0 can claim that the smallest priority

that can be seen in the subgame is ` by choosing C as (∅, · · · , ∅, C`, · · · , Cmax−1).

Player 1 has to answer the claim of Player 0: either he thinks that Player 0 is bluff-

ing, and he challenges the claim, or he believes that Player 0 can achieve his claim,

and he wants to see what happens after the subgame.

The second case is simple: Player 1 goes to vertex Jump(q, η, B,m, `) such that

q ∈ C`. This is an intermediate vertex which, as a shortcut, simulates one of the

above mentioned subgames: among the propositions of Player 0, Player 1 chooses

that the smallest priority seen in this subgame was `, and when η appears again at

the top of the stack, the new control state is q. The priority of this Jump(· · · ) vertex

is ` in the FSP. Then the play goes on to Check(q, η, B,min(`,m,Ω(q))) without
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any alternative.

In the first case, when Player 1 challenges the claim, he goes to vertex

Check(p′, γ′, C,Ω(p′)). This means that the last component is reset to Ω(p′), and

will remember the minimal priority seen in the subgame we just entered. The tuple

C is stored, and whenever a “pop” operation occurs later, it is possible to check if

the claim of Player 0 is achieved. If it is, this means immediate win for Player 0. If

it is not, this means immediate win for Player 1 (see the proof for details, and above

for the update of m). But the play can also stay forever in the Check() vertices,

i.e., without “pop”. In this case the winner is determined by the parity condition.

In fact the claim of Player 0 after a push operation means also that if no pop occurs

later, then he has to win the subgame just with the parity condition.

We restrict ourselves here to the following form of pushdown strategy. We consider a

strategy automaton (Q,A,Π) where Q = P = P0]P1, A = Γ×Σ, Σ is any alphabet,

and Π ⊆ ((P1×A×∆1)×(P×A∗))∪((P0×A)×(P×A∗×∆0)). Moreover we have

the condition that whenever the game is in a configuration pγ0 · · · γn, the strategy

automaton should be in a configuration p(γ0, σ0) · · · (γn, σn), which means that the

strategy has more information in its stack, represented by σ0 · · · σn, but follows the

play. If p ∈ P0, then p(γ0, σ0) determines the move of Player 0 w.r.t. Π, and the

strategy updates its stack. If p ∈ P1, then for any move of Player 1, i.e., for any

transition in ∆1, the strategy should update its stack. At the beginning of the play,

the strategy has to be initialized properly, according to the initial configuration of

the game. Then for each move of the play, the strategy executes a transition.

In our particular form of strategy, there is a redundancy in the transition relation:

suppose p(γ0, σ0) is the top of the stack, if p ∈ P0, then a unique transition is possible

in the strategy, and the output of the move δ0 ∈ ∆0 can be deduced from the update

of the stack. If p ∈ P1, then a unique transition can follow the choice of Player 1

and update the stack accordingly, so the input of δ1 ∈ ∆1 is redundant. From now

on we consider Π ⊆ (P × A)× (P × A62).

Formally,

• if p ∈ P0, then ∀a ∈ A ∃!(p, a, p′, w) ∈ Π. Moreover if (p, a, p′, w) ∈ Π and

a = (γ, σ), w = (γ1, σ1) · · · (γk, σk) (2 > k > 0), then (p, γ, p′, γ1 · · · γk) ∈ ∆,

that is to say the hint of the strategy is valid.

• If p ∈ P1, then ∀(p, γ, p′, γ1 · · · γk) ∈ ∆ there exists a unique (p, a, p′, w) ∈ Π

such that a = (γ, σ) and w = (γ1, σ1) · · · (γk, σk) (2 > k > 0).

Proof: (Theorem 4.2.2)
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Definition of the FSP

The PDGS is given by G = (P0, P1,Γ,∆), P = P0 ] P1, and Ω.

For every p, p′, q ∈ P ; γ, γ ′, η ∈ Γ; m, ` ∈ [max]; B,C ∈ (P(P ))max, the FSP has

the following vertices:

Check(p, γ, B,m), Push(B,m, p′, γ′η),

Claim(B,m, p′, γ′η, C), Jump(p, γ, B,m, `), Win0(p), Win1(p),

where Winσ means immediate win for Player σ, and the following transitions:

Check(p, γ, B,m)→ Check(p′, γ′, B,min(m,Ω(p′))) if (p, γ, p′, γ′) ∈ ∆,

Check(p, γ, B,m)→ Win0(p
′) if (p, γ, p′, ε) ∈ ∆ and p′ ∈ Bm,

Check(p, γ, B,m)→ Win1(p
′) if (p, γ, p′, ε) ∈ ∆ and p′ 6∈ Bm,

Check(p, γ, B,m)→ Push(B,m, p′, γ′η) if (p, γ, p′, γ′η) ∈ ∆,

Push(B,m, p′, γ′η)→ Claim(B,m, p′, γ′η, C),

Claim(B,m, p′, γ′η, C)→ Check(p′, γ′, C,Ω(p′)),

Claim(B,m, p′, γ′η, C)→ Jump(q, η, B,m, `) if q ∈ C`, and

Jump(q, η, B,m, `)→ Check(q, η, B,min(`,m,Ω(q))).

One defines in the FSP the player whose turn is it: Check(p, γ, B,m) ∈ S0 ⇔

p ∈ P0, but Push(B,m, p′, γ′η) ∈ S0 and Claim(B,m, p′, γ′η, C) ∈ S1. From other

vertices, the players have no alternative: there is a unique successor. One has the

following priorities:

λ(Check(p, γ, B,m)) = Ω(p) ,

λ(Jump(q, γ, B,m, `)) = ` ,

λ(Push(B,m, p′, γ′η)) = λ(Claim(B,m, p′, γ′η, C)) = max− 1 .

because the latter are intermediate vertices which should not interfere with the

“real”parity condition.

It remains to clarify the situation concerning deadlocks. If the first letter of the

stack and the control state do not permit to execute a transition, there is a deadlock

in the PDGS as in the corresponding vertex of the FSP. We leave to the reader to

choose the convention concerning which player wins in that case.

If one needs a bottom stack symbol (⊥), that cannot be erased and cannot be

pushed, one has to care for this explicitly in Γ and ∆. Otherwise when the stack is

empty, no transition is possible in our framework of PDGS. We have again to choose

a convention for this type of deadlock. It concerns the choice of B in the initial
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vertex Check(p0,⊥, B,Ω(p0)) of the FSP.

Equivalence between the games: from FSP to PDGS

Suppose that Player 0 has a winning strategy in the FSP from vertex

Check(p0,⊥, B,Ω(p0)). Since the game graph is finite, and the strategy can be

taken positional [EJ91], it is effectively given as a subset of the set of transitions,

and denoted str
→ ⊆ →. We define from it a winning pushdown strategy in the

PDGS. This construction is effective.

The strategy automaton is (P0, P1, A,Π), with A = Γ× Σ. We fix

Σ = (P(P ))max × [max] .

For notational convenience, an element (γ, (B,m)) of A will be written γBm, and

a transition ((p, γBm), (p′, γ′B′m′)) ∈ Π will be written as a prefix rewriting rule

p γBm str
↪→ p′ γ′B′m′. Similarly p γBm str

↪→ p′ ε, and p γBm str
↪→ p′ γ′B′m′ γ′′B′′m′′.

The initial configuration of the PDGS is p0 ⊥, and the one of the FSP is

Check(p0,⊥, B,Ω(p0)), where B is chosen according to the convention about empty

stack (see above). The initial configuration of the strategy is p0 ⊥BΩ(p0). From a

configuration p γBmw of the strategy automaton, where w ∈ A∗, the transition in

Π is defined as follows:

If p ∈ P0, then we know that in the FSP Player 0 chooses the next vertex from

Check(p, γ, B,m) according to str
→ .

• If Check(p, γ, B,m) str
→ Check(p′, γ′, B,min(m,Ω(p′))), then use the transi-

tion p γBm str
↪→ p′ γ′Bmin(m,Ω(p′)).

• If Check(p, γ, B,m) str
→ Win0(p

′), then apply p γBm str
↪→ p′ ε. Of course in

the PDGS there is no immediate win, but the game goes on (cf jump move).

Moreover it is necessary, in the new top letter γ ′B′m′ of the stack to update

m′ according to m and Ω(p′), as follows (details are left to the reader):

p γBmγ′B′m′ str
↪→ (p′,m)γ′B′m′ str

↪→ p′ γ′B′ min(m,m′,Ω(p′)).

• If Check(p, γ, B,m) str
→ Push(B,m, p′, γ′η) str

→ Claim(B,m, p′, γ′η, C), then ap-

ply p γBm str
↪→ p′ γ′CΩ(p′) ηBm. Of course in the PDGS Player 1 has no

opportunity to jump, he must enter the subgame.

If p ∈ P1, then Player 1 chooses any possible transition in the PDGS, and the

Strategy automaton updates its stack according to the winning strategy str
→ of the

FSP. More precisely,
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• if Player 1 chooses (p, γ, p′, γ′) ∈ ∆, then the strategy executes

p γBm str
↪→ p′ γ′Bmin(m,Ω(p′)).

• If he chooses (p, γ, p′, ε) ∈ ∆, then the strategy do p γBm str
↪→ p′ ε, followed

by an update of m′.

• If he chooses (p, γ, p′, γ′η) ∈ ∆, then we have to follow str
→ in the FSP,

and find C such that Push(B,m, p′, γ′η) str
→ Claim(B,m, p′, γ′η, C). Then

p γBm str
↪→ p′ γ′CΩ(p′) ηBm is applied.

Because str
→ is winning in the FSP, str

↪→ is also winning in the PDGS. Moreover

using known algorithms to solve the FSP, we have constructed a pushdown strategy

which is winning in the PDGS.

From PDGS to FSP

Given a winning strategy in the PDGS, we will define a winning strategy in the

FSP. Here a strategy in the PDGS from initial configuration p0 ⊥= π0 is a function

Str which associates to the prefix π0 · · · πn of a play a “next move”, i.e., a transition

in ∆. We consider a strategy for Player 0, so it is defined if πn ∈ V0. This function

is not necessarily computable, so this part is not effective.

As above, a vertex Check(p, γ, B,m) corresponds to a configuration pγν of the

PDGS. If p ∈ P1, the PDGS has to follow the move of the FSP in the usual way,

whereas if p ∈ P0, the strategy Str determines the “good” move of the FSP. The

only difficult point is the push operation: from Push(B,m, p′, γ′η) Player 0 has to

guess a tuple C ∈ (P(P ))max of sets of possible control states after the next pop.

This is well defined if function Str is well defined, although this is a second reason

why this part is not effective (even if Str is effective). ¥

Corollary 4.2.3 If there is a winning strategy for Player 0 in the parity game over

the pushdown graph, then one can compute a winning pushdown strategy.

The results in [KV00, Var98] (see Chapter 5) are in some sense stronger. One can

deduce from them the winner, and a winning strategy defined by a finite automaton

with output. It reads the current configuration and outputs the “next move”. This

strategy is positional and can also be executed by a pushdown automaton which

store the run of the current configuration on the finite automaton and update it

(the automaton reads the configuration from bottom to top).

Here there is no deep reason that the strategy is not positional (it is due to the

update of the priority m). It is open whether it is possible to solve the FSP and
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find a normal form for the stack of the strategy in such a way that the resulting

pushdown strategy is positional.

In the above construction, the FSP has the same number max of priorities as

the PDGS, and the number of vertices is exponential in |P | (more precisely, it is

in O(|∆|22·max·|P |)). So far the best known algorithms to solve finite state parity

game are polynomial in the number of vertices and exponential in the number of

priorities. Applied here, we get a solution for parity games over pushdown systems

(P0, P1,Γ,∆) which is exponential in max · |P |.

Note that the reduction from PDGS to FSP is not symmetric: only Player 0 has

to perform claims. For this reason the reduction does not allow to compute directly

also the strategy of Player 1 if he wins. Of course another reduction exchanging the

roles of Player 0 and Player 1 is possible.

4.3 Example

p0aa⊥

p0a⊥

p0⊥

p2aa⊥

p2a⊥

p2⊥

p1aa⊥

p1a⊥

p1⊥

...
...

...

1

1

1

0

0

0

1

1

1

Figure 4.1: Example of a simple pushdown game (Section 4.3)

We present here a simple example of pushdown game to illustrate the previous
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section. Let

Γ = {a,⊥} , P0 = {p1} , P1 = {p0, p2} ,

∆ = {(p0,⊥, p0, a⊥), (p0, a, p0, aa), (p0, a, p1, a), (p1, a, p1, ε),

(p1,⊥, p0,⊥), (p1,⊥, p2,⊥), (p2,⊥, p2,⊥), (p2, a, p2, ε)} ,

Ω(p0) = 0 , Ω(p1) = Ω(p2) = 1 , max = 2 .

The game graph looks like Figure 4.1. We consider the initial configuration p1⊥.

We represent in Figure 4.2 the part of the corresponding FSP that is relevant for

Player 0. Namely the solid-arrows define a winning strategy for Player 0, other

arrows are dashed. We write B0B1 for a tuple (B0, B1) in (P(P ))2. The symbol ⊥

cannot be removed from the stack, so the initial value of the tuple B ∈ (P(P ))2

is not relevant. We set it to ∅∅ in the initial vertex Check(p1,⊥, ∅∅, 0). We see

Check(p2,⊥, ∅∅, 1)

Check(p0,⊥, ∅∅, 0)

Check(p2,⊥, ∅∅, 0)

Claim(∅∅, 0, p0, a⊥, {p1}∅)

Check(p0, a, {p1}∅, 0)

Claim({p1}∅, 0, p0, aa, {p1}∅)

Push(∅∅, 0, p0, a⊥)

Push({p1}∅, 0, p0, aa)

Win(p1)

Check(p1,⊥, ∅∅, 1)

Check(p1,⊥, ∅∅, 0)

Jump(p1,⊥, ∅∅, 0, 0)

Check(p1, a, {p1}∅, 0)

Jump(p1, a, {p1}∅, 0, 0)

...

...

Figure 4.2: FSP corresponding to the PDGS (Section 4.3)

that Player 0 has a winning strategy from Check(p1,⊥, ∅∅, 0), by choosing always
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({p1}, ∅) after a Push node, and, of course, going from p1⊥ to p0⊥. This example

is also solved in Section 3.4.3.

4.4 Extension to a Uniform Solution

A deficit of the result of [Wal96b] is that the winner is determined only from the

initial position p0 ⊥. We give here an algorithm which determines the winner from

any position. Moreover we get a global or “symbolic” representation of the whole

winning region, which will be proved to be regular (configurations are words over

the alphabet P ∪ Γ). One needs a pre-computation to solve the FSP below, e.g.

with the algorithm of [VJ00].

We have seen that a configuration pγν of the PDGS is represented in the FSP

by Check(p, γ, B,m) where B “summarizes” information about ν. This can be used

more systematically if we know from which configurations qν Player 0 can win. For

all B ⊆ P , we write [B]max = (B, · · · , B) ∈ (P(P ))max.

Algorithm 4.4.1 (uniform solution for parity game on PDGS)

Input: a PDGS (P0, P1,Γ,∆), P = P0 ] P1, and a priority function Ω : P −→

[max], a configuration π0 = pγ0γ1 · · · γn ∈ PΓ∗

Output: a winning strategy from π0, or the answer “π0 is not in the winning

region of Player 0”

Solve first the FSP corresponding to the PDGS (see proof of Theorem 4.2.2).

Determine the winning region W0: the set of vertices from which Player 0 has

a winning strategy in the FSP, and compute a positional (and uniform) winning

strategy on W0.

Dn+1 := ∅

for i := n downto 0 do

Di := {q ∈ P | Check(q, γi, [Di+1]
max,Ω(q)) ∈ W0}

end for

if p 6∈ D0 then

answer “π0 is not in the winning region of Player 0”

else

answer “there is a winning pushdown strategy with initial configuration

p γ0[D1]
maxΩ(p) γ1[D2]

max0 · · · γn[Dn+1]
max0, and transitions like in the proof

of Theorem 4.2.2.”

end if
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In the initialization of Dn+1, ∅ should be replaced by some Dn+1 ⊆ P if there is

another convention about empty stack. More formally, this iterative computation

can be transformed into an alternating automaton reading the word pγ0γ1 · · · γn,

where the transitions are defined depending on which vertices are winning in the

FSP. This proves that the winning region of the PDGS is regular.

Theorem 4.4.2 Given a pushdown game with a parity winning condition, one can

compute uniformly the winning region of Player 0, which is regular, and a winning

pushdown strategy with Algorithm 4.4.1.

For the proof we observe that the winning condition concerns only the priorities

seen infinitely often, and the result of a play does not depend on a finite prefix of

it. Once the FSP is solved uniformly, the initialization of the strategy, as well as

determining the winner, is in linear time in the length of the configuration, and the

computation of the “next step” is in constant time.

Example

We consider the same example as in section 4.3. If we solve completely the FSP, we

see that the following nodes are in the winning region of Player 0:

Check(p0,⊥, B0B1, 0) for all (B0, B1) ∈ (P(P ))2 ,

Check(p1,⊥, B0B1, 1) for all (B0, B1) ∈ (P(P ))2 ,

Check(p0, a, B0B1, 0) if p1 ∈ B0 ,

Check(p1, a, B0B1, 1) if p1 ∈ B1 ,

Check(p2, a, B0B1, 1) if p2 ∈ B1 .

Applying the algorithm to a configuration π0 = pa · · · a⊥, we get Dn+1 := ∅ and for

all i ∈ {0, n}, Di = {p0, p1}. Then the winning region of Player 0 in the PDGS is

{p0, p1}a
∗⊥.

4.5 Parity Games on Prefix-Recognizable Graphs

We extend the previous results to a class of graphs where the degree can be un-

bounded or infinite. Among several equivalent definitions of Prefix-Recognizable

Graph (class RECRAT in [Cau96]) we choose the following. Given a finite alphabet

Γ, a graph, or set of edges G ⊆ Γ∗ × Γ∗ is a Prefix-Recognizable Graph (or PRG) if
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and only if

G = {uw ↪→ vw | u ∈ Ui, v ∈ Vi, w ∈ Wi, 1 6 i 6 N} ,

where for all i, 1 6 i 6 N , the Ui, Vi,Wi are regular sets over Γ.

Games over PRG are defined in a natural way. In a configuration x ∈ Γ+, the

first letter determines the priority and the player whose turn it is. The priority

function is Ω : Γ −→ [max], extended to Γ+ by Ω(ax) = Ω(a),∀a ∈ Γ, x ∈ Γ∗. And

we have Γ = Γ0 ] Γ1, V0 = Γ0Γ
∗, and V1 = Γ1Γ

∗, similarly to the PDGS. A game

starting from π0 ∈ Γ+ is defined in the usual way. Again we consider min-parity:

Player 0 wins π0π1 · · · if and only if lim infk→∞ Ω(πk) is even.

4.5.1 Reduction to Parity Game on Pushdown Graph

We will define a PDGS (P0, P1,Γ
′,∆) which is equivalent to the PRG in the sense

that Player 0 wins the PDGS if and only if he wins the PRG, and a winning strategy

in one game can be effectively constructed from a winning strategy in the other game.

So this is a stronger condition than needed in our definition of game simulation. The

idea of this simulation was also presented in Section 3.8.2 in a more informal way.

Let Γ′ = Γ ] {⊥}. A vertex ax ∈ Γ+ of the PRG (a ∈ Γ) is represented by the

configuration t0kax⊥, if k = Ω(a) and a ∈ Γ0, respectively by t1kax⊥, if k = Ω(a)

and a ∈ Γ1 (t0k, t
1
k ∈ P ). The idea of the reduction is to decompose the transition

uw ↪→ vw of the PRG letter by letter, using intermediate configurations in the

PDGS.

Theorem 4.5.1 Given a PRG G with parity condition, one can construct in linear

time a PDGS G ′ such that G is simulated by G ′, with the stronger condition here

that a play over the PRG is mapped to a play over the PDGS preserving the winning

condition. Consequently:

1. the winner of the parity-PRG from a given configuration is the winner of the

parity-PDGS from the corresponding configuration,

2. a winning strategy in the parity-PRG can be calculated from a winning strategy

in the parity-PDGS.

Proof: Each regular set is recognized by a (say deterministic, complete) finite

automaton: Bi for Ui, Ci for Ṽi, Di for Wi. Here Ṽi is the mirror language of Vi, i.e.,

Ci is reading from right to left. We note pij the states of Bi, qij and rij those of Ci

and Di respectively. The corresponding initial states are pi0, qi0, and ri0. We note

pij
a−→

Bi
pij′ a transition in Bi labeled by the letter a. In the following j is always
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an integer in the finite range [0, NS] where NS is the maximal number of states of

the automata Bi, Ci, and Di.

We define now the PDGS that simulates the PRG. The control-states of the

PDGS have the same names as the states of the automata Bi, Ci, and Di, with

additional superscript 0 or 1(i is ranging over [1, N ]):

P0 = {p0
ij | 0 6 j 6 NS} ∪ {t0k | k < max} ∪ {s0

i } ,

P1 = {p1
ij | 0 6 j 6 NS} ∪ {t1k | k < max} ∪ {s1

i } .

Additional control states t0k and t1k are used to mark the configurations of the PDGS

that correspond to vertices of the PRG. States s0
i , s

1
i are added for technical reasons.

The transitions rules of the PDGS are the following: for all a, b ∈ Γ, c ∈ Γ′,

t0kc ↪→ p0
i0c (Player 0 chooses to use in the PRG a transition of type i:

uiwi ↪→ viwi, ui ∈ Ui, vi ∈ Vi, wi ∈ Wi),

t1kc ↪→ p1
i0c (similarly for Player 1).

Then for all σ ∈ {0, 1}, the opponent of σ is denoted σ, and we have

pσ
ija ↪→ pσ

ij′ if pij
a−→

Bi
pij′ (“reading” of ui),

pσ
ijc ↪→ sσ

i c if pij is a final state of Bi (Player σ decides that the word ui

ends here, and asks the opponent for agreement).

sσ
i c ↪→ rσ

i0c (the opponent wants to verify that the rest of the stack

is really in Wi, because he thinks that this is not the case)

rσ
ija ↪→ rσ

ij′ if rij
a−→
Di

rij′ (“reading” of wi, then:)

rσ
ij⊥ is immediate lost for σ if rσ

ij is not final in Di,

and immediate win for σ if rσ
ij is final in Di,

sσ
i c ↪→ qσ

i0c (otherwise, the opponent is trusting

Player σ, and lets him continue),

qσ
ijc ↪→ qσ

ij′bc if qij
b−→
Ci

qij′ ( “writing” of vi, chosen by Player σ),

qσ
ija ↪→ t0ka if qij is a final state of Ci, a ∈ Γ0 and k = Ω(a)

(Player σ chooses that vi ends here),

qσ
ija ↪→ t1ka if qij is a final state of Ci, a ∈ Γ1 and k = Ω(a) (similarly).

Note that the control state t0k is redundant with the first letter.

Of course the priority of tσk is Ω(tσk) = k. Given x ∈ Γ+, it is clear that: x ↪→ y in the

PRG (y ∈ Γ∗) if and only if from the corresponding configuration tσkx⊥, Player σ

can reach the configuration tσ
′

k′y⊥ corresponding to y or wins immediately (if the

opponent σ thinks that σ wants to violate the transition rule).
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Now the unique deficit of this construction is that Player σ can stay forever in

the intermediate states qσ
ij, pushing infinitely many new letters onto the stack. To

avoid this unfair behavior, which does not correspond to a real transition of the

PRG, we assign to these intermediate states a priority that is losing for Player σ.

Suppose that the priority function Ω ranges from 0 to 2c, c > 0, then we define the

following priorities:

Ω(p0
ij) = Ω(q0

ij) = Ω(r0
ij) = Ω(s0

i ) = 2c+ 1 ,

Ω(p1
ij) = Ω(q1

ij) = Ω(r1
ij) = Ω(s1

i ) = 2c .

These priorities are greater than the normal priorities, so they have no influence

on the winning condition of the “real” game. One takes 2c + 1 for Player 0, while

Player 0 wants an even number; so he can’t win by staying in those intermediate

states. Similarly for Player 1. And dually if the maximal priority of Ω is 2c + 1,

then the new priorities are 2c+ 1 and 2c+ 2. ¥

The reduction presented here will be extended in Section 5.3 to other classes of

graphs, and is not so far from the result of [Cau03b] (Proposition 4.2), that the

prefix-recognizable graphs are obtained from the pushdown graphs by ε-closure.

Note that it remains open how to extend the techniques of [KV00, Var98], based

on tree automata, also to a uniform solution.

Example 4.5.2 Let Γ = {a, b}, we consider the following PRG:

G = (a ↪→ ε)a+ ∪ (a ↪→ b)ε ∪ (b ↪→ a+)ε ,

written here in the form (U1 ↪→ V1)W1 ∪ (U2 ↪→ V2)W2 ∪ (U3 ↪→ V3)W3, with

N = 3. Let max = 2, Ω(a) = 1, Ω(b) = 0, Γ0 = {a}, Γ1 = {b}. The game graph is

pictured in Figure 4.3.

According to the above construction, a vertex ai is represented in the PDGS by

t01a
i⊥, and b is represented by t10b⊥. The automaton recognizing Ui, Vi and Wi are

very simple, we do not define them explicitly. Figure 4.4 represents a part of the

graph of the corresponding PDGS.
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b a

aa

aaa

...

...

0 1

1

1

Figure 4.3: Example (4.5.2) of a game on a Prefix-recognizable graph

t01a⊥

t01aa⊥

t01aaa⊥

t10b⊥p1
31⊥ p1

30b⊥ q0
21b⊥ q0

20⊥ s1
2⊥

s0
3⊥ q1

30⊥ q1
31a⊥ p0

20a⊥ p0
21⊥

q0
11a⊥ s1

1a⊥

q1
31aa⊥ p0

10aa⊥ p0
11a⊥

q0
11aa⊥ s1

1aa⊥

q1
31aaa⊥ p0

10aaa⊥ p0
11aa⊥

· · · · · ·

Figure 4.4: Graph of the corresponding PDGS (Example 4.5.2)



Chapter 5

Parity Games over Caucal Graphs

Until now we have considered pushdown graphs, and a simple extension of it: prefix-

recognizable graphs. In the present chapter we consider a wider class of graphs:

transition graphs of higher order pushdown automata. We restrict ourselves to

parity games, for which the technique of game simulation is suited. As usual we

introduce higher order pushdown automata here as game graphs, where the player

and the priority of a configuration are determined by the control state. We consider

also the infinite hierarchy of graphs defined recently by Caucal [Cau02] from the

finite trees using inverse mapping and unfolding. To solve these new games, we have

two main results: via game-simulation we show how to translate a game on a higher

order pushdown automaton to a kind of model-checking game on a Caucal graph;

then we reduce such a game to a game on a graph from a lower level of the hierarchy

and finally to a parity game on a finite graph, which gives an effective solution.

It is then possible to reconstruct a winning strategy for the original game. As far

as we know this is the first result in this direction. So far only the decidability of

MSO-properties of these graphs was known [Cau02, KNU02].

In the next section we define the different models of graphs and introduce au-

tomata theoretic and logical prerequisites: higher order pushdown automata, the

hierarchy of graphs of [Cau02], the graph automaton of [KV00] and the µ-calculus.

Then we present in terms of game-simulation the reduction from higher order push-

down automata to the Caucal graphs and vice versa. In Section 5.3 we show that

a game on a Caucal graph can be reduced to an equivalent game on a graph of

lower level. For this we use a generalization of ideas from [Var98] to trees of infi-

nite degree: the construction of an alternating one-way tree automaton equivalent

to a given two-way alternating automaton. The main result that we use without

proof is the positional (memoryless) determinacy of parity games of [EJ91]: from

103
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any configuration one of the players has a positional winning strategy.

5.1 The Models

5.1.1 Higher Order Pushdown Game System

The pushdown automata have good properties but they are quite restricted. To

model more general processes, other classes of machines have been proposed in the

literature, like higher order pushdown automata. Note that when used as acceptors,

they can recognize non context-free languages. They use control states in a similar

way to pushdown automata, but their stack is replaced by a more sophisticated

store, allowing a kind of copy of the content, to be defined next.

We recall the definition from [KNU02] (which is equivalent to the one from

[Eng83]), where we slightly change the terminology. A level 1 store (or 1-store) over

an alphabet Γ is an arbitrary sequence [a1, · · · , a`] of elements of Γ, with ` > 0. A

level n store (or n-store), for n > 2, is a sequence [s1, · · · , s`] of (n−1)-stores, where

` > 0. We allow a store to be empty. The following operations can be performed on

1-store:

pusha
1([a1, · · · , a`−1, a`]) := [a1, · · · , a`−1, a`, a] for all a ∈ Γ ,

pop1([a1, · · · , a`−1, a`]) := [a1, · · · , a`−1] ,

top([a1, · · · , a`−1, a`]) := a` .

If [s1, · · · , sl] is a store of level n > 1, the following operations are possible:

pushn([s1, · · · , s`−1, s`]) := [s1, · · · , s`, s`] ,

pushk([s1, · · · , s`−1, s`]) := [s1, · · · , pushk(s`)] if 2 6 k < n ,

pusha
1([s1, · · · , s`−1, s`]) := [s1, · · · , push

a
1(s`)] for all a ∈ Γ ,

popn([s1, · · · , s`−1, s`]) := [s1, · · · , s`−1] ,

popk([s1, · · · , s`−1, s`]) := [s1, · · · , s`−1, popk(s`)] if 1 6 k < n ,

top([s1, · · · , s`−1, s`]) := top(s`) .

So an operation pushk, k > 1 realizes a copy of the top store of level k, and allows to

have more expressive power than pushdown graphs. The operation popk is undefined

on a store whose top store of level k is empty. Similarly top is undefined on a store

whose top 1-store is empty. Given Γ and n, the set Opn of operations (on a store)

of level n consists of:

pushk for all 2 6 k 6 n, pusha
1 for all a ∈ Γ, and popk for all 1 6 k 6 n.
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A Higher Order Pushdown Game System of level n (or n-HPDGS) is a tuple H =

(P0, P1,Γ,∆) where

• P = P0]P1 is the partitioned finite set of control locations, where Pi indicates

the game positions of Player i,

• Γ the finite store alphabet, and

• ∆ ⊆ P × Γ× P ×Opn the finite set of (unlabeled) transition rules.

A configuration of an n-HPDGS H is a pair (p, s) where p ∈ P and s is an n-store.

The set of n-stores is denoted Sn. We do not consider HPDGS as accepting devices,

hence there is no input alphabet. A HPDGS H = (P0, P1,Γ,∆) defines a transition

graph (V,E), where V = {(p, s) : p ∈ P, s ∈ Sn} is the set of all configurations,

and

(p, s)E(p′, s′) ⇐⇒ ∃(p, a, p′, σ) ∈ ∆ : top(s) = a and s′ = σ(s) .

Note that if the top 1-store is empty, no transition is possible. If necessary one

can add a “bottom store symbol” ⊥ ∈ Γ and define explicitly the corresponding

transitions, such that it cannot be erased.

To define a parity game on the graph of a HPDGS, we assign a priority to each

control state, and we consider an initial configuration: a parity game structure on a

HPDGS H is a tuple G = (H,Ω, s0), where Ω : P −→ [max] is a priority function,

and s0 ∈ V . This extends naturally to a priority function defined on the set of

configurations: with the notations of Section 4.1, V0 = P0 × Sn, V1 = P1 × Sn,

Ω((p, s)) = Ω(p), and E is defined above.

5.1.2 Caucal Hierarchy

Another track for defining new graphs is to start with the fundamental result of

Rabin [Rab69] that the MSO theory of the complete infinite binary tree is decidable

and to try to extend it to more general classes of infinite graphs. In the setting

presented here the nodes of the graphs are not concrete objects like words but form

an abstract set, and operations are defined on this external representation.

We recall the definitions from [Cau02]. Let L be a countable set of symbols for

labeling arcs. A graph is here simple, oriented and arc labeled in a finite subset of

L. Formally, a graph G is a subset of V × L × V , where V is an arbitrary set and
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such that its label set

LG := {a ∈ L | ∃s, t : (s, a, t) ∈ G} is finite, but its vertex set

VG := {s | ∃a, t : (s, a, t) ∈ G ∨ (t, a, s) ∈ G} is finite or countable.

We write also t
a−→
G

s (or t a−→ s) for (t, a, s) ∈ G.

A finite graph is a graph whose vertex set is finite. A tree is a graph where each

vertex has at most one predecessor, the unique root has no predecessor, and each

vertex is accessible from the root. A vertex labeled tree is a tree, with a labeling

function associating to each node a letter from a finite alphabet. The unfolding of a

graph G is the following forest (set of trees):

Unf(G) := {ws a−→ wsat : w ∈ (VG · LG)∗ ∧ s
a−→
G

t} .

The unfolding Unf(G, s) of a graph G from a vertex s is the restriction of Unf(G)

to the vertices accessible from s. Given a set of graphs H , Unf(H ) is the set of

graphs obtained by unfolding from the graphs of H . Inverse arcs are introduced

to move up and down in trees: we have a set L := {a | a ∈ L} of fresh symbols in

bijection with L. By definition, we have an arc (s, a, t) if and only if (t, a, s) is an

arc of G. Note that in a tree there is at most one inverse arc from a given node.

In the usual way s
w−→∗
G

t means that there is a path from s to t labeled by the

word w. A substitution is a relation h ⊆ L × (L ∪ L)∗. It has finite domain if

Dom(h) := {a | h(a) 6= ∅} is finite. In this case, the inverse mapping of any graph

G by h is

h−1(G) = {s a−→ t | ∃w ∈ h(a) : s
w−→∗
G

t} .

The mapping h is rational if h(a) is rational for every a ∈ L. Given a set of graphs

H , Rat−1(H ) is the set of graphs obtained by inverse rational mapping from the

graphs of H . Let Tree0 be the set of finite trees. The Caucal Hierarchy is defined

in the following way:

Graphn := Rat−1(Treen) ,

T reen+1 := Unf(Graphn) .

Here Graph0 is the set of finite graphs, Tree1 is the set of regular trees of finite

degree, Graph1 is the set of prefix-recognizable graphs [Cau96] and Tree2 is the set

of algebraic trees. The other levels are mostly unknown.

Theorem 5.1.1 ([Cau02])
⋃

n>0Graphn is a family of graphs having a decidable

monadic second order theory.
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As a corollary, µ-calculus model-checking on these graphs is decidable, and one can

determine the winner of a parity game. But this result of decidability in [Cau02]

relies on the results from [Cau96, CW98, Wal96a] whereas for the restricted frame-

work of games we give here a direct algorithmic construction for determining the

winner and a winning strategy.

5.1.3 Graph Automaton

So far there is no natural definition of game on a Caucal graph without extra ma-

chinery. The reason is that it is difficult to give a partition of the set of nodes of

a Caucal graph into nodes of Player 0 and Player 1, and to give a “semantic” to

the nodes, like being in the goal set, having a priority . . . But it is natural to check

properties of a Caucal graph using graph automata running on it, and this will allow

to build a bridge between HPDGS and Caucal graphs.

An alternating parity graph automaton, or graph automaton for short, as defined

in [KV00] is a tuple A = (Q,W, δ, q0,Ω) where

• Q is a finite set of states,

• W is a finite set of edge labels,

• δ is the transition function to be defined below,

• q0 ∈ Q is the initial state,

• Ω : Q → [max] is a priority function defining the acceptance condition: the

minimal priority appearing infinitely often should be even.

Let next(W ) = {ε} ∪
⋃

a∈W{[a], 〈a〉}, and B+(next(W ) × Q) be the set of positive

Boolean formulas built from the atoms in next(W ) × Q. The transition function

is of the form δ : Q → B+(next(W ) × Q). In the case of graphs, we will consider

W ⊆ L, whereas in the case of trees, we will allow W ⊆ L ∪ L.

A run of a graph automaton A = (Q,W, δ, q0,Ω) over a graph G ⊆ V × L× V

from a vertex s0 ∈ V is a labeled tree 〈Tr, r〉 in which every node is labeled by an

element of V × Q. This tree is like the unfolding of the product of the automaton

and the graph. A node in Tr, labeled by (s, q), describes a “copy” of the automaton

that is in state q and is situated at the vertex s of G. Note that many nodes

of Tr can correspond to the same vertex of G, because the automaton can come

back to a previously visited vertex and because of alternation. The label of a node

and its successors have to satisfy the transition function. Formally, a run 〈Tr, r〉
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is a Σr-vertex labeled tree, where Σr := V × Q and 〈Tr, r〉 satisfies the following

conditions:

• r(t0) = (s0, q0) where t0 is the root of Tr.

• Consider y ∈ Tr with r(y) = (s, q) and δ(q) = θ. Then there is a (possibly

empty) set Y ⊆ next(W )×Q, such that Y satisfies θ, and for all 〈d, q ′〉 ∈ Y ,

the following hold:

– If d = ε then there exists a successor y′ of y in Tr such that r(y′) = (s, q′).

– If d = 〈a〉 then there exists a successor y′ of y in Tr, and a vertex s′ such

that s
a−→
G

s′ and r(y′) = (s′, q′).

– If d = [a] then for each vertex s′ such that s
a−→
G

s′, there exists a suc-

cessor y′ of y in Tr such that r(y′) = (s′, q′).

The priority of a node y ∈ Tr, with r(y) = (s, q), is Ω(q). A run is accepting if it

satisfies the parity condition: along each infinite branch of Tr, the minimal priority

appearing infinitely often is even.

When G is a tree, A is like an alternating two-way parity automaton of [KV00],

because it can go up and down, but here the degree of the tree can be infinite. It is

more general than the model of [GW99] which cannot distinguish between son and

parent node. For the proofs we will also consider a tree automaton (defined as a

graph automaton) that “reads” the labels of the vertices.

A graph G ⊆ V ×L× V with “initial” vertex s0 ∈ V and a graph automaton A

over G, where W = LG, define a parity game denoted by (G,A ). The configurations

of the game are pairs (s, q) ∈ V × Q, the initial configuration is (s0, q0). A game

is played as follows: from a configuration (s, q) ∈ V × Q, Player 0 chooses a set

Y ⊆ next(W ) × Q, such that Y satisfies δ(q). Then Player 1 chooses an atom

〈d, q′〉 ∈ Y , and

• If d = ε then the new configuration of the game is (s, q′).

• If d = 〈a〉 then Player 0 chooses a vertex s′ such that s
a−→
G

s′ and the new

configuration of the game is (s′, q′).

• If d = [a] then Player 1 chooses a vertex s′ such that s
a−→
G

s′ and the new

configuration of the game is (s′, q′).

A play from s0 is a finite or infinite sequence of configurations (s0, q0), (s1, q1), (s2, q2), · · ·

If the play is finite because at some point there is no Y satisfying δ(q), or Player 0
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cannot find a vertex s′, then he loses immediately. If the play is finite because at

some point Y is empty (and satisfies δ(q)), or Player 1 cannot find a vertex s′, then

he loses immediately. If the play is infinite then we consider the parity condition:

Player 0 wins if and only if lim inf
i→∞

Ω(qi) is even.

That is, if the minimal priority appearing infinitely often is even.

Accordingly we will consider (G,A ) as a game structure. It is well known that

a run is a strategy for Player 0, and an accepting run is a winning strategy for

Player 0, see e.g. [GTW02, ch. 4].

5.1.4 The Modal µ-calculus

The µ-calculus is a modal logic augmented with least and greatest fixpoint operators,

see [Koz83]. We present here the syntax and semantics following [KV00]. Given a

finite set W of actions and a finite set Var of variables, the set Lµ of µ-calculus

formulas (in positive normal form) over W and Var is defined inductively as the

smallest set containing the following:

• the symbols ⊥ and > ,

• the variable y for all y ∈ Var ,

• ϕ1 ∧ ϕ2 and ϕ1 ∨ ϕ2 if ϕ1 and ϕ2 are in Lµ ,

• [a]ϕ and 〈a〉ϕ for all a ∈ W and ϕ ∈ Lµ ,

• µy.ϕ and νy.ϕ for all y ∈ Var and ϕ ∈ Lµ.

A variable y is bound if it is in the scope of a fixed-point operator µy or νy. A

sentence is a formula that contains no free variables from Var. Like in Section 2.3

for MSO we define the semantics of the µ-calculus with respect to transition systems

(directed graphs) with edge labels. A transition system G is composed of

• a vertex set V ,

• a finite alphabet T for labeling transitions, such that ∀a ∈ T : Ra ⊆ V × V is

a transition relation.

We need also a valuation Λ : Var → P(V ) for the free variables. Each formula

ϕ and valuation Λ define a set ϕG(Λ) of states of G that satisfy the formula. For
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a valuation Λ, a variable y ∈ Var and a set V ′ ⊆ V , we denote by Λ[y ← V ′]

the valuation obtained from Λ by assigning V ′ to y. The mapping ϕG is defined

inductively as follows:

• ⊥G(Λ) = ∅ and >G(Λ) = V ,

• for all y ∈ Var we have yG(Λ) = Λ(y) ,

• (ϕ1 ∧ ϕ2)
G(Λ) = ϕ1

G(Λ) ∩ ϕ2
G(Λ) ,

• (ϕ1 ∨ ϕ2)
G(Λ) = ϕ1

G(Λ) ∪ ϕ2
G(Λ) ,

• ([a]ϕ)G(Λ) = {v ∈ V : for all v′ such that vRav
′, we have v′ ∈ ϕG(Λ)} ,

• (〈a〉ϕ)G(Λ) = {v ∈ V : there exists v′ such that vRav
′ and v′ ∈ ϕG(Λ)} ,

• (µy.ϕ)G(Λ) =
⋂
{V ′ ⊆ V : ϕG(Λ[y ← V ′]) ⊆ V ′} ,

• (νy.ϕ)G(Λ) =
⋃
{V ′ ⊆ V : V ′ ⊆ ϕG(Λ[y ← V ′])} ,

So (µy.ϕ)G(Λ) is the least fixed-point of the function V 7→ ϕG(Λ[y ← V ]), and

(νy.ϕ)G(Λ) is the greatest fixed-point of this function. The standard translation

from µ-calculus to MSO uses this property on set of vertices, see Section 2.3 and

[GTW02, ch. 14]. By this definition ϕG(Λ) depends only on the valuation of free

variables in ϕ and no valuation is required for a sentence. To model-check a formula

with respect to a transition system we will transform it into an equivalent graph

automaton in the sense that the graph automaton has an accepting run from a

given vertex if and only if the formula is true at this vertex [EJS93]. We follow

the presentation of [Wil01]. According to [Wil01] this transformation is easy and

natural but the proof is more difficult.

Given a formula ϕ we construct an (alternating) graph automaton Aϕ as follows.

The state space of Aϕ is (isomorph to) the set of subformulas of ϕ and the formula ϕ

itself is the initial state. We assume ϕ is a sentence. To avoid ambiguity we require

that each variable y appearing in ϕ is quantified at most once and all occurrences

of y are in the scope of this quantification. So a given variable y can be associated

to its fixed-point operator, that is, to its subformula ηy.ψ, where η denotes µ or ν.

In this case we denote the formula ηy.ψ by ϕy. Given ϕ ∈ Lµ the graph automaton

Aϕ = (Q,W, δ, q0,Ω) is defined by

• Q is the set which contains for each subformula ψ of ϕ (including ϕ itself) a

state denoted ψ̂ ,
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• the initial state is ϕ̂ ,

• the transition relation is defined by

– δ
(
⊥̂
)

= false , δ
(
>̂
)

= true ,

– δ (ŷ) = ϕy ,

– δ
(
ϕ̂1 ∧ ϕ2

)
= ϕ̂1 ∧ ϕ̂2 , δ

(
ϕ̂1 ∨ ϕ2

)
= ϕ̂1 ∨ ϕ̂2 ,

– δ
(
[̂a]ψ

)
=
〈
[a], ψ̂

〉
, δ

(
〈̂a〉ψ

)
=
〈
〈a〉 , ψ̂

〉
,

– δ
(
µ̂y.ψ

)
= ψ̂ , δ

(
ν̂y.ψ

)
= ψ̂ ,

• and the priority function is defined as follows. It is relevant only in states ŷ,

so for other states we choose the greatest priority. We want to associate to

each variable y a priority Ω (ŷ) in such a way that if y comes from a ν-fixpoint

(νy.ψ) then the priority is even and if y comes from a µ-fixpoint (µy.ψ) then

the priority is odd. Moreover it is required that if z occurs free in ϕy (meaning

that ϕy is a subformula of ϕz) then Ω (ẑ) 6 Ω (ŷ).

Translating again to a parity game, one obtain a model-checking game: Player 0

wants to prove that the formula is true and Player 1 has to challenge this. Equiv-

alently Player 0 wants to find an accepting run and Player 1 wants to refute it.

Player 0 has a winning strategy if and only if the formula is true. The idea is that

Player 0 is the existential player and makes the choices associated to disjunction (∨)

and diamond (〈a〉). Player 1 is the universal player and makes the choices associ-

ated to conjunction (∧) and box ([a]). The fixed-point operators are like recursive

procedures (see δ (ŷ) = ϕy) but Player 0 should not use this self loop infinitely often

for a µ-fixed-point because of the priority.

5.2 Game-Simulation Between HPDGS and Cau-

cal Graphs

In this section we show a game theoretical equivalence between graphs defined in

terms of graph transformations, where the vertex set is “abstract” — the Caucal

graphs — and a presentation based on rewriting of “concrete” nodes — the Higher

Order Pushdown Game System.

During the writing of this thesis, this result has been improved by Arnaud

Carayol and Stefan Wöhrle in [CW03]. They showed a tight relation between
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HPDGS and Caucal graphs, in particular each Caucal graph is obtained from a

HPDGS by ε-closure, and each transition graph of a HPDGS is a graph of the

Caucal hierarchy of the same level.

5.2.1 From HPDGS to Caucal Graphs

Theorem 5.2.1 Given a game structure G on a HPDGS H of level n, one can

construct a graph automaton A and a tree T ∈ Treen such that G is game-simulated

by (T,A ).

Proof: We describe the construction for n = 1, 2 and 3 before we give the gener-

alization. Let G = (H,Ω, s0), H = (P0, P1,Γ,∆) of level n.

Case n = 1. The idea here is similar to that of [KV00] and [Cau96].

Let T1 be the complete Γ-tree. It is the unfolding of a finite graph with a unique

vertex and so T1 ∈ Tree1. See an example in Figures 5.1 and 5.2 where Γ = {a, b}.

•

a, b

•

• •

a
b

• •
a

b

• •
a

b

· · · · · · · · · · · ·

Figure 5.1: The complete {a, b}-tree T1 obtained by unfolding of a finite graph

This tree is isomorphic to Γ∗ in the sense that each node is associated to the

label of the path from the root to it (we write the store from bottom to top, so we

consider suffix rewriting in the application of the rules). It is easy to simulate a

1-store inside this tree: each node corresponds to a word, which is a store content.

Intuitively the effect of a transition (p, a, p′, pushb
1) on the store is simulated over

T1 by a path aab. Formally the state space of A is Q = P × Γ62, where a state

(p, ε) on a node v ∈ T1 represents a configuration (p, [v]) of the HPDGS (by abuse

v is associated to a word of Γ∗), whereas the states (p, x), x 6= ε are intermediate

states that simulate the behavior of the store. From these intermediate states, the

transition is somehow “deterministic”: ∀a ∈ Γ, x ∈ {ε} ∪ Γ :

δ((p, ax)) = 〈〈a〉 , (p, x)〉 .
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• •

a, b

⊥

•

•

• •

⊥

a
b

• •
a

b

• •
a

b

· · · · · · · · · · · ·

Figure 5.2: The same with a “bottom stack symbol”

Note that here (on T1), if a ∈ Γ ⊆ L the “actions” 〈a〉 and [a] are equivalent

because there is exactly one a-successor from each node. From the states (p, ε) the

corresponding player has to choose the move:

if p ∈ P0 then δ((p, ε)) =
∨

(p,a,p′,pop1)∈∆

〈〈a〉 , (p′, ε)〉 ∨
∨

(p,a,p′,pushb
1
)∈∆

〈〈a〉 , (p′, ab)〉 ,

if p ∈ P1 then δ((p, ε)) =
∧

(p,a,p′,pop1)∈∆

〈[a], (p′, ε)〉 ∧
∧

(p,a,p′,pushb
1
)∈∆

〈[a], (p′, ab)〉 .

Here it is important to differentiate 〈a〉 and [a], because one of the players has

to find a transition. We see again that the convention is satisfied: when the play

is in a deadlock, the player who should play loses immediately. To complete the

construction it is necessary to make A go to the node and state corresponding to

s0 at the beginning of his run. This is easy using additional states.

Case n = 2. For each letter a ∈ Γ, we assume that we have a fresh symbol ȧ in L.

We define the graph G1 ∈ Graph1 from the tree T1:

G1 = h−1
1 (T1) ,

where the (finite) substitution h1 is the following:

h1(a) = a for all a ∈ Γ , h1(2) = ε ,

h1(ȧ) = a for all a ∈ Γ .
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•

• •

a

b

• •

a

b
• •

a

b

· · · · · · · · · · · ·

2

2

2 2

2

2 2

ȧ

ḃ

ȧ

ḃ

ȧ

ḃ

Figure 5.3: Graph G1 for Γ = {a, b}

Hence we suppose that 2 ∈ L is a fresh symbol. A part of the graph G1 is pictured

in Figure 5.3. The loops labeled by 2 will be used to simulate the “copy” of the store

content, i.e., an operation push2.

Then the tree T2 ∈ Tree2 is the unfolding of G1 from the vertex that was the root

of T1. In Figure 5.4 extra node-labels are added. They represent the corresponding 2-

store. Note that several nodes can represent the same store content. The operations

on 2-stores are simulated by paths in T2. More precisely, the effect of a transition is

simulated in the following way if Γ = {a, b}:

(p, a, p′, pushb
1) corresponds to ȧab ,

(p, a, p′, pop1) corresponds to ȧ ,

(p, a, p′, push2) corresponds to ȧa2 ,

(p, b, p′, pop2) corresponds to ḃ
(
a+ b+ ȧ+ ḃ

)∗
2 .

Of course the expression ḃ
(
a+ b+ ȧ+ ḃ

)∗
2 is regular, and one can move along such

a path using three states of A . Because we are on a tree, there is no infinite upward

path. Following a 2-arc allows to copy the top 1-store because we stay exactly in

the same position in G1. For popping the top 1-store, one has to find the last 2-arc

that was used, and follow it in the reverse direction. Note that just after a push2 (a

2-arc), we cannot move along an inverse arc a (to simulate a pop1), that’s why the

arcs ȧ are necessary.
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[[ ]]

[[a]] [[b]]

a
b

[[aa]] [[ab]]

a b

[[ba]] [[bb]]

a b

[[ ]]
ȧ

[[ ]]

ḃ

[[ ][ ]]

· · ·

2

[[a][a]]
2

[[b][b]]2

[[b][]]
[[b][ba]] [[b][bb]]

[[b][b][b]]

a bḃ

2

Figure 5.4: An initial part of the tree T2

Case n = 3. We go on with G2 ∈ Graph2, defined from T2 by

G2 = h−1
2 (T2)

where the substitution h2 is the following:

h2(a) = a for all a ∈ Γ , h2(2) = 2 ,

h2(ȧ) = ȧ for all a ∈ Γ , h2(2̇) =
{
a, ȧ

∣∣ a ∈ Γ
}∗

2 ,

h2(3) = ε .

Then T3 ∈ Tree3 is the unfolding of G2 from the “root” (of T2). On T3 one can

simulate a 3-store, almost the same way as a 2-store is simulated on T2 (here Γ =

{a, b}):

(p, a, p′, pushb
1) corresponds to ȧab ,

(p, a, p′, pop1) corresponds to ȧ ,

(p, a, p′, push2) corresponds to ȧa2 ,

(p, a, p′, pop2) corresponds to ȧ2̇ ,

(p, a, p′, push3) corresponds to ȧa3 ,

(p, a, p′, pop3) corresponds to ȧ
(
2 + 2̇ + a+ b+ ȧ+ ḃ

)∗
3 .

General case. It is easy to follow the construction: for n > 3, Gn is obtained from
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Tn using following substitution hn:

hn(a) = a for all a ∈ Γ , hn(k) = k for all 2 6 k 6 n ,

hn(ȧ) = ȧ for all a ∈ Γ , hn(k̇) = k̇ for all 2 6 k < n ,

hn(ṅ) =
{
a, ȧ, k, k̇

∣∣∣ a ∈ Γ, 2 6 k < n
}∗

n ,

hn(n+ 1) = ε ,

and Tn+1 is the unfolding of Gn from the “root”. The automaton A has the same

states as H plus auxiliary states for the regular expressions. It is clear that the win-

ner of G is the winner of (T,A ), and a winning strategy in (T,A ) can be translated

to a winning strategy in G (the other direction holds also here). ¥

Note that the tree T ∈ Treen depends only on n and Γ. Note also that (as shown

in Figure 5.4) several nodes can represent the same stack content. As we are just

interested in game-simulation and not isomorphism this is not a problem. We con-

sider only the behavior of the system. The game simulation can also be compared to

the notion of weak (bi)simulation. This reduction from HPDGS to Caucal graph is

sufficient to solve parity games on HPDGS, but we present also a game simulation in

the other direction, to show that the model of Caucal graph with graph automaton

is not more expressive than that of HPDGS, in terms of games.

5.2.2 From Caucal Graphs to HPDGS

Lemma 5.2.2 Given a graph G ∈ Graphn and a graph automaton A , one can

construct a game structure G on a HPDGS H of level n such that (G,A ) is game-

simulated by G .

Proof: The result is clear for n = 0, because G and A have a finite number of

vertices and states.

Given T1 ∈ Tree1, T1 = Unf(G0, s) for some G0 ∈ Graph0, we let Γ = VG0
× LG0

.

Letters from Γ will be pushed on a 1-store to remember the position in the unfolding,

which is a path from s. Additionally the labels from LG0
will allow to determine

which inverse arc is possible from the current position. To simplify the notation

we write 〈a, q′〉 ∈ δ(q) if 〈a, q′〉 is an atom present in the formula δ(q). It is clear

that the existential/universal choices in the formula can be expressed in the control
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states of a HPDGS, so we skip this part and concentrate on the actual “moves”:

〈a, q′〉 ∈ δ(q) corresponds to (q, (v, ), q′, push
(u,a)
1 ) if v

a−→
G0

u ,

〈a, q′〉 ∈ δ(q) corresponds to (q, ( , a), q′, pop1) .

A graph in Graph1 can be simulated the same way using intermediate states for the

rational substitutions.

Let T2 ∈ Tree2, T2 = Unf(G1, s), T2 can be simulated by a 2-store: each transition

of G1 is simulated on the top 1-store just like above, but the top 1-store has to be

“copied” by a push2 operation to keep track of the unfolding. It is also necessary to

remember at each move the label of the arc of G1 that was used. A solution is to

use the following stack alphabet:

Γ = (VG0
× LG0

) ] ({2} × LG1
) .

An action 〈a, q′〉 ∈ δ(q) is simulated by the following sequence of operations:

push2

< simulation of an a-arc of G1 on the top 1-store >

push
(2,a)
1 .

And an action 〈a, q′〉 ∈ δ(q) in the following way:

< check that the top symbol is (2, a) >

pop2 .

And so on for n > 3. This construction is more natural if we use the model of higher

order pushdown automata from [Eng83], but both models are clearly equivalent

[KNU02]. ¥

5.3 Reducing the Hierarchy Level

In this section we present the main result of this chapter: an algorithmic solution

of parity games on the graphs of the Caucal hierarchy, and hence on HPDGS. The

proof is by induction on the definition of the hierarchy, using the next two lemmas

to obtain graphs of lower levels.

Lemma 5.3.1 Given G ∈ Graphn and a graph automaton A , the game (G,A ) can

be effectively simulated by a game (T,B), where T ∈ Treen, such that G = h−1(T ),

and B is a graph automaton.
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The proof uses similar techniques as in Section 4.5.1 or [KV00] for the restricted

case of prefix-recognizable graphs.

Proof: By definition G = h−1(T ). The aim is to “simulate” an a-transition of A

along an arc of G by a path in T : a sequence of transitions of B labeled by a word

of h(a). The automaton B = (QB,WB, δB, q0,ΩB) will have the same states as A

plus auxiliary states for this simulation. For each a ∈ L, h(a) is regular. If h(a) 6= ∅,

let

Ca = (Qa,Wa,∆a, q0a, Fa)

be a (non-deterministic) finite automaton on finite words recognizing h(a). Here Fa

is the set of final states. We consider Ca as a finite graph, and note the transitions

qa
b−→

Ca
q′a for qa, q

′
a ∈ Qa. The new auxiliary states of B are of the form (qa, [q]) and

(qa, 〈q〉) for q ∈ QA , qa ∈ Qa. To obtain the transitions of B from the transitions

of A ,

each atom 〈[a], q〉 is replaced by 〈ε, (q0a, [q])〉 ,

and each 〈〈a〉 , q〉 is replaced by 〈ε, (q0a, 〈q〉)〉

in the body of a transition δA (q′). Of course the atoms 〈ε, q〉 remain unchanged.

Then the new transitions of B are

δB((qa, [q])) =
∧

qa
b−→

Ca

q′a

〈[b], (q′a, [q])〉 ∧
∧

qa∈Fa

〈ε, q〉 ,

δB((qa, 〈q〉)) =
∨

qa
b−→

Ca

q′a

〈〈b〉 , (q′a, 〈q〉)〉 ∨
∨

qa∈Fa

〈ε, q〉 ,

for each a ∈ L such that h(a) 6= ∅.

To avoid the game to stay forever in the intermediate nodes of B, we assign to

these nodes a priority that is losing for the corresponding player. Suppose that the

priority function ΩA of A ranges from 0 to 2c, c > 0, then we fix

ΩB((qa, [q])) = 2c , ΩB((qa, 〈q〉)) = 2c+ 1 .

And dually if the maximal priority of A is 2c + 1, then the new priorities are

2c + 1 and 2c + 2. They do not interfere with the “real” game (G,A ). So one

has one new priority and in the worst case the number of states of B is |QB| =

|QA |
(
1 +

∑
h(a)6=∅ |Qa|

)
. ¥
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Lemma 5.3.2 Given T ∈ Treen+1 and a graph automaton A , the game (T,A )

can be effectively simulated by a game (G,B), where G ∈ Graphn, such that T =

Unf(G, s), and B is a graph automaton.

This result is related to the k-covering of [CW98], where k is the number of states

of A . The proof is based here on the construction of a one-way tree automaton

that is equivalent to A , because a one-way automaton cannot distinguish T and G.

This construction was presented in [Var98] only in the case of (deterministic) trees

of finite degree. It is extended here not only inside the Caucal hierarchy, but for any

tree.

The idea is that if Player 0 has a winning strategy in (T,A ), then he has also

a positional winning strategy [EJ91]: choosing always the same transition from the

same vertex. This strategy can be encoded as a labeling of T using a (big) finite

alphabet. Then several conditions have to be checked to verify that this strategy is

winning, but it can be done by a one-way automaton. Finely this strategy can be

non-deterministically guessed by the automaton.

We give here a flavor of this proof, details are in Section 5.3.1. Formally a

strategy for A and a given tree T is a mapping

τ : VT −→P(Q× next(W )×Q) .

An element (q, d, q′) ∈ τ(x) means that when arriving at node x ∈ VT in state q,

the automaton should send a copy in state q′ to the node in direction d (and maybe

other copies in other directions). A strategy must satisfy the transition of A , and

a strategy has to be followed:

∀x ∈ VT ,∀(q, d, q
′) ∈ τ(x) :

{(d2, q2) | (q, d2, q2) ∈ τ(x)} satisfies δ(q) and:

- if d = ε then ∃d1, q1, (q
′, d1, q1) ∈ τ(x) or ∅ satisfies δ(q′) ,

- if d = [a] then ∀y : x
a−→
T

y ⇒ ∃d1, q1, (q
′, d1, q1) ∈ τ(y) or ∅ satisfies δ(q′) ,

- if d = 〈a〉 then ∃y : x
a−→
T

y ∧ ∃d1, q1, (q
′, d1, q1) ∈ τ(y) or ∅ satisfies δ(q′) .

For the root t0 ∈ VT we have:

∃d1, q1, (q0, d1, q1) ∈ τ(t0) or ∅ satisfies δ(q0) . (5.1)

Considering St := P(Q × next(W ) × Q) as an alphabet, a St-labeled tree (T, τ)

defines a positional strategy on the tree T . One can construct a one-way automaton

that checks that this strategy is correct according to the previous requirements.
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The second step of the reduction from two-way to one-way is concerned with

the priorities seen along (a branch of) the run, when one follows a strategy τ . To

check the acceptance condition, it is necessary to follow each path of A in T up and

down, and remember the priorities appearing. Such a path can be decomposed into

a downward path and several finite detours from the path, that come back to their

origin (in a loop). Because each node has a unique parent and A starts at the root,

we consider only downward detour (each move a is in a detour). That is to say, if a

node is visited more than once by a run, we know that the first time it was visited,

the run came from above. This idea of detour is close to the idea of subgame in

[Wal96b], see Section 4.2. To keep track of these finite detours, we use the following

annotation. An annotation for A , a given tree T and a strategy τ is a mapping

η : VT −→P(Q× [max]×Q) .

Intuitively (q, f, q′) ∈ η(x) means that from node x and state q there is a detour that

comes back to x with state q′ and the smallest priority seen along this detour is f .

The notion of annotation is very close to the “claims” of Player 0 in the method of

Section 4.2. Again η can be considered as a labeling of T , and a one-way automaton

can check that the annotation is consistent with respect to the strategy in reading

both labellings. A typical requirement is:

(q, [a], q1) ∈ τ(x) ⇒ ∀y ∈ VT : x a−→ y ⇒[
(q1, a, q

′) ∈ τ(y)⇒ (q,min(Ω(q1),Ω(q′)), q′) ∈ η(x)
]
.

The last step is to check every possible branch of the run by using the detours:

it is easy to define a one-way automaton E that “simulates” (follow) a branch of the

run of A . One can change the acceptance condition of E such that it accepts a tree

labeled by τ and η if and only if there exists a branch in the corresponding run of A

that violates the acceptance condition of A . Then using techniques from [Tho97] one

can determinize and complement E . Finally the product of the previous automata

has to be build, to check all conditions together, and a “projection” is necessary to

nondeterministically guess the labels, i.e., the strategy and the annotation.

Theorem 5.3.3 Parity games on higher order pushdown systems are solvable: one

can determine the winner and compute a winning strategy.

As a corollary we get a new proof that the µ-calculus model checking of these graphs

is decidable (it was known as a consequence of the MSO-decidability).

Proof: Given a game structure G on a HPDGS H of level n, one obtains from
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Theorem 5.2.1 a graph automaton A and a tree T ∈ Treen such that (T,A ) is a

game simulation of G . By successive reductions using Lemmas 5.3.1 and 5.3.2, one

can obtain a game on a finite graph which is equivalent to the initial game. Using

classical techniques (see [GTW02, ch. 7]), one can solve this game, and compute

a positional strategy for the winner. Then one can step by step reconstruct the

strategy for the graphs of higher levels. ¥

5.3.1 Proof of Lemma 5.3.2

We adapt the construction from [Var98] to the case of infinite degree. Recall that

W ⊆ L ∪ L. As remarked above, the question whether Player 0 wins the game

(T,A ) is equivalent to the question whether there is an accepting run of A on T .

We want to check this condition with a one-way tree automaton.

We know from [EJ91] that if Player 0 has a winning strategy, then he has a

memoryless winning strategy. In other words, if A has an accepting run, then

it has an accepting run using a memoryless strategy: choosing always the same

“transitions” from the same node and state. We decompose the run of A using this

strategy.

Definition 5.3.4 A strategy for A and a given tree T is a mapping

τ : VT −→P(Q× next(W )×Q) .

A strategy must satisfy the transitions of A , and a strategy has to be followed:

∀x ∈ VT ,∀(q, d, q
′) ∈ τ(x) :

{(d2, q2) | (q, d2, q2) ∈ τ(x)} satisfies δ(q) and: (5.2)

- if d = ε then ∃d1, q1, (q
′, d1, q1) ∈ τ(x) or ∅ satisfies δ(q′) , (5.3)

- if d = [a] then ∀y : x
a−→
T

y ⇒

∃d1, q1, (q
′, d1, q1) ∈ τ(y) or ∅ satisfies δ(q′) , (5.4)

- if d = 〈a〉 then ∃y : x
a−→
T

y ∧

∃d1, q1, (q
′, d1, q1) ∈ τ(y) or ∅ satisfies δ(q′) . (5.5)

For the root t0 ∈ VT we have:

∃d1, q1, (q0, d1, q1) ∈ τ(t0) or ∅ satisfies δ(q0) . (5.6)

Considering St := P(Q × next(W ) × Q) as an alphabet, a St-labeled tree (T, τ)

defines a memoryless strategy on the tree T . We will construct a one-way automaton
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C that checks that this strategy is correct according to the previous requirements.

For (q, 〈a〉 , q′) ∈ τ(x), if a ∈ L it has just to check in the direction a downward

that the strategy is well defined for q′, but if (q, 〈a〉 , q′) ∈ τ(x), a ∈ L he must have

remembered that the strategy was defined for q′ in the parent-node, and that the

arc from the parent node is labeled by a. The states of C are tuples 〈Q1, Q2, `〉 ∈

P(Q) ×P(Q) × (W ∩ L), where ` is the label of the arc from the parent node,

q′ ∈ Q1 means that C has to check (down) that the strategy can be followed for q ′,

and q′′ ∈ Q2 means that q′′ is already allowed at the parent node. Note that if a is

the label of the arc from the parent node, then the actions [a] and 〈a〉 are equivalent,

because in a tree there is no more than one parent node. So we shall write simply a

for both cases when we know from the context that it is right. If a is not the label

from the parent node, then [a] means immediate “wins”, and 〈a〉 means immediate

“lost” (for Player 0). Let

C := (P(Q)×P(Q)× `, St, δC , 〈{q0}, ∅, b〉 , true) where (5.7)

δC (〈Q1, Q2, `〉 , τ1) :=

IF ∀q ∈ Q1, {(d2, q2) : (q, d2, q2) ∈ τ1} satisfies δ(q), and (5.8)

∀(q′, ε, q) ∈ τ1, {(d2, q2) : (q, d2, q2) ∈ τ1} satisfies δ(q), and (5.9)

∀(q, [a], q′) ∈ τ1 : a = `⇒ q′ ∈ Q2, and (5.10)

∀(q, 〈a〉 , q′) ∈ τ1 : a = ` ∧ q′ ∈ Q2 (5.11)

THEN
∧

d∈next(W∩L)\{ε}

(
d, 〈{q′ : ∃ (q, d, q′) ∈ τ1}, Q

′
2, d〉

)
(5.12)

with Q′
2 := {q′′ : ∃ d1, q1, (q′′, d1, q1) ∈ τ1 or ∅ satisfies δ(q′′)}, (5.13)

ELSE false. (5.14)

Condition (5.9) is related to (5.3), (5.10) and (5.11) to (5.4) and (5.5) where a ∈ L,

and (5.12) to (5.4) and (5.5) where a ∈ L. In condition (5.8) there is no requirement

on the q 6∈ Q1, that’s why the condition (5.2) above is stronger. This is not a problem

for the following, as we are searching some winning strategy (one could define the

minimal valid strategy as in [Var98]).

The acceptance condition is easy to enunciate: it just requires that the run can be

followed, i.e., the transition is possible at each node. In the initial state 〈{q0}, ∅, b〉,

the letter b is not relevant. C is a one-way automaton with 4|Q| states.

Proposition 5.3.5 A two-way alternating parity automaton accepts an input tree

if and only if it has an accepting strategy over the input tree.



5.3. REDUCING THE HIERARCHY LEVEL 123

With the help of a so called annotation, we will check in the following whether a

strategy is accepting.

Annotation

The previous automaton C just checks that the strategy can be followed (ad infini-

tum) but forgets about the priorities of A . To check the acceptance condition, it

is necessary to follow each path of A up and down, and remember the priorities

appearing. Such a path can be decomposed into a downward path and several finite

detours from the path, that come back to their origin (in a loop). Because each node

has a unique parent and A starts at the root, we consider only downward detour

(each move a is in a detour). That is to say, if a node is visited more than once by a

run, we know that the first time it was visited, the run came from above. This idea

of detour is close to the idea of subgame in [Wal96b], see Section 4.2. To keep track

of these finite detours, we use the following annotation.

Definition 5.3.6 An annotation for A and a given tree T is a mapping

η : VT −→P(Q× [max]×Q) .

Intuitively (q, f, q′) ∈ η(x) means that from node x and state q there is a detour

that comes back to x with state q′ and the smallest priority seen along this detour

is f . By definition, the following conditions are required for the annotation η of a

given strategy τ , indeed a detour can stay in the node x (5.15, 5.16), go down to a

child y and come back immediately to x (5.17, 5.19), or go down to y, use another

detour from y and then come back to x (5.18, 5.20).

∀ q, q′ ∈ Q, x ∈ VT , a ∈ W ∩ L, f, f
′ ∈ [max] :

(q, ε, q′) ∈ τ(x)⇒ (q,Ω(q′), q′) ∈ η(x) , (5.15)

(q1, f, q2) ∈ η(x) ∧ (q2, f
′, q3) ∈ η(x)⇒ (q1,min(f, f ′), q3) ∈ η(x) , (5.16)

(q, [a], q1) ∈ τ(x) ⇒ ∀y ∈ VT : x a−→ y ⇒[
(q1, a, q

′) ∈ τ(y)⇒ (q,min(Ω(q1),Ω(q′)), q′) ∈ η(x)
]
, (5.17)

(q, [a], q1) ∈ τ(x) ⇒ ∀y ∈ VT : x a−→ y ⇒
[
(q1, f, q2) ∈ η(y) ∧ (q2, a, q

′) ∈ τ(y)

⇒ (q,min(Ω(q1), f,Ω(q′)), q′) ∈ η(x)
]
. (5.18)

The next conditions have to be “synchronized” with the automaton C that checks
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the strategy. The a-successor y of x is “chosen” by C :

(q, 〈a〉 , q1) ∈ τ(x) ⇒ ∃y ∈ VT : x a−→ y ∧[
(q1, a, q

′) ∈ τ(y)⇒ (q,min(Ω(q1),Ω(q′)), q′) ∈ η(x)
]
, (5.19)

(q, 〈a〉 , q1) ∈ τ(x) ⇒ ∃y ∈ VT : x a−→ y ∧
[
(q1, f, q2) ∈ η(y) ∧ (q2, a, q

′) ∈ τ(y)

⇒ (q,min(Ω(q1), f,Ω(q′)), q′) ∈ η(x)
]
. (5.20)

Considering An := P(Q× [max]×Q) as an alphabet, the aim is now to construct

a one-way automaton D on (An×St)-labeled trees that checks that the annotation

satisfies these requirements. Conditions 5.15 and 5.16 above can be checked in each

node (independently) without memory. For conditions 5.17 to 5.20, the automaton

has to remember the whole η(x) from the parent node x, and the part of τ(x) leading

to the current node. Let

D := (An×P(Q×Q), An× St, δD , 〈∅, ∅〉 , true) ,

where

δD(〈η0, α〉 , 〈η1, τ1〉) :=

IF conditions 5.15 and 5.16 hold for η1 and τ1 AND

∀(q, q1) ∈ α : (q1, a, q
′) ∈ τ1 ⇒ (q,min(Ω(q1),Ω(q′)), q′) ∈ η0 (5.21)

∀(q, q1) ∈ α : (q1, f, q2) ∈ η1 ∧ (q2, a, q
′) ∈ τ1

⇒ (q,min(Ω(q1), f,Ω(q′)), q′) ∈ η0 (5.22)

THEN
∧

d∈next(W∩L)\{ε}

(
d, 〈η1, {(q, q1) : exists (q, d, q1) ∈ τ1}〉

)

ELSE false .

Condition (5.21) is related to (5.17, 5.19), and (5.22) to (5.18, 5.20). We recall that

in the case that (q, 〈a〉 , q1) ∈ τ1, the 〈a〉-transition has to be synchronized with the

one of the automaton C : the product automaton that we will define later has to

chose an a-successor and follow the run of C and D from this successor.

Similarly to C , D is a one-way automaton with 2|Q|2m · 2|Q|2 = 2|Q|2(m+1) states,

and the acceptance condition is again trivial. Note that if a part of the tree is not

visited by the original automaton A , the strategy and annotation can be empty on

this part. The automaton D does not check that the annotation is minimal, but this

is not a problem. With the help of the annotation one can determine if a path of A

verify the acceptance condition or not, as showed in the next part of the proof.
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Parity Acceptance

Up to now the automata C and D together just check that the strategy and anno-

tation for the run of A are correct, but do not verify that the run of A is accepting,

i.e., that each path is valid. With the help of the annotation we can “simulate”

(follow) a path of A with a one-way automaton, and determine the parity condition

for this path. This one-way automaton does not go into the detours, but reads the

smallest priority appearing in them. Let

E := (Q× [max], An× St, δE , 〈q0, 0〉 ,Ω0) ,

δE (〈q, i〉 , 〈η1, τ1〉) :=
∨

(q,d,q′)∈τ1,d=[a]∨d=〈a〉

(〈a〉 , 〈q′,Ω(q′)〉) ∨
∨

(q,f,q′)∈η1

(ε, 〈q′, f〉) .

Once again if d = 〈a〉, the automaton has to be synchronized with C and D to

choose the right a-successor. At each step E either goes down following the strategy,

or simulates a detour with an ε-move and the corresponding priority. The second

component ([max]) of the states of E just remembers the last priority seen. We can

transform E into a nondeterministic one-way automaton E ′ without ε-moves with

the same state space. Note that E can possibly stay forever in the same node by

using ε-transitions, either in an accepting run or not. This possibility can be checked

by E ′ just by reading the current annotation, with a transition true or false.

We will use E and E ′ to find the invalid paths of the run of A , just by changing

the acceptance condition: Ω0(〈q, i〉) := i+ 1.

Proposition 5.3.7 The one-way tree automaton E ′ accepts a (An×St)-labeled tree

if and only if the corresponding run of A is not accepting.

But E ′ is not deterministic, and accepts a tree if E ′ has some accepting run. We

can view E ′ as a word automaton: it follows just a branch of the tree. For this

reason it is possible to co-determinize it: determinize and complement it in a singly

exponential construction (see [Tho97]) to construct the automaton E that accepts

those of the (An× St)-labeled trees that represent the accepting runs of A .

We will define the product B′ := C × D × E of the previous automata, that

accepts a (An× St)-labeled input tree if and only if the corresponding run of A is

accepting. Let

B
′ := (QC ×QD ×QE

, An× St, δB′ , q0,B′ , Acc) ,

δB′(〈qC , qD , qE 〉 , 〈η1, τ1〉) := 〈δC (qC , 〈τ1〉), δD(qD , 〈η1, τ1〉), δE (q
E
, 〈η1, τ1〉)〉 ,

where QC is the state space of C , and so on. The acceptance condition Acc of B ′

is then exactly the one of E : ΩB′(〈qC , qD , qE 〉) = Ω
E
(q

E
).
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We define the automaton B to be the“projection”of B ′: B nondeterministically

guesses the labels from An× St, B has no input alphabet. Finally B is a one-way

tree-automaton that is equivalent to A : it accepts the same trees. The strategy and

annotation depended on the input tree, now after the projection, B can search the

run of A for each input tree. The automaton B has (like B ′) 4|Q| ·2|Q|2(m+1) ·2c|Q|m =

2|Q|2(m+1) · 2|Q|(2+cm) states. As a one-way automaton, B cannot distinguish T and

G. In other words, it has an accepting run on T if and only if it has one on G.

Positional strategy on G gives a “regular” run on T .

5.4 Complexity and Strategies

The one-step reduction of Lemma 5.3.2 is in exponential time in the description

of T ∈ Treen+1 and A , and the size of the output is also exponential. For this

reason the complexity of the complete solution of a parity game on a Caucal graph

or on a HPDGS is a tower of exponentials whose height is the level of the graph.

More precisely to obtain the best complexity bound one should not reduce the game

to a finite graph and rather use the results from [KV00] or [Wal96b] that give an

exponential time solution to parity games over 1 − HPDGS. We define Tower,

the “tower of exponentials” function, by Tower(0, k) = k and Tower(n + 1, k) =

2Tower(n,k). So [KV00] or [Wal96b] together with Theorem 5.2.1 and Lemmas 5.3.1

and 5.3.2 yield the following:

Theorem 5.4.1 Given a Higher Order Pushdown Game System of level n and size

k (of the finite description) one can determine the winner in time Tower(n, k).

The classical translation from parity game to µ-calculus to MSO and the correspond-

ing decision procedure is already non-elementary (in the number of priorities) for

level 1 graphs. And following [Wal96a] the (one-step) transformation of an MSO-

formula from the unfolding to the original graph is also non-elementary.

Using the reductions presented here, one can compute a winning strategy for a

1-HPDGS game which is a finite automaton that reads the current configuration and

outputs the“next move”, like in [KV00, Cac02b]. But it is more natural to consider a

pushdown strategy as introduced in [Wal96b]. It is a pushdown transducer that reads

the moves of Player 1 and outputs the moves of Player 0. It needs additional memory

(the stack), but the computation of the “next move” can be done in constant time.

When we recompose the game, a strategy for an n-HPDGS game is an n-HPDGS

with input and output which possibly needs to execute several transitions to compute

the “next move” from a given configuration.
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Our aim was to solve parity games and µ-calculus model-checking on HPDGS

and Caucal graphs, but after developing these techniques, we have as a by-product

a new proof of the decidability of the MSO logic over Caucal graphs, with new

complexity bounds. Given a graphG ∈ Graphn and an MSO formula ϕ, by definition

G = h−1(T ) for some tree T ∈ Treen, and one can transform ϕ into a formula ψ

such that ϕ is true in G if and only if ψ is true in T . Then one can transform ψ into

a tree automaton A running on T and use the previous reductions to determine if

A has an accepting run on T .
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Chapter 6

Conclusion

In this thesis we have considered different winning conditions: reachability, Büchi,

parity, Σ3; and different game graphs: Pushdown Game System (PDGS) and Higher

Order Pushdown Game System (HPDGS). We summarize now the different results.

6.1 Comparison of Both Approaches

After having developed a symbolic approach in Chapter 3 and techniques of game-

simulation in Chapters 4 and 5, we shall compare them (see Figure 6.1). The first

distinction is that both approaches do not solve the same problems. It was possible

to solve the Σ3 game with a symbolic method, whereas we did not find any game

reduction for it. On the other hand the game reduction was appropriate for parity

games in general and for HPDGS and Caucal graphs in particular. A reason why

no symbolic approach seems to be able to solve parity games is that there is no

simple expression of the winning region of one player in terms of attractor or fixed-

point (in the known µ-calculus formula the fixed-points are imbricated and cannot

be computed one after the other).

Nevertheless, reachability games and Büchi games, the typical cases in analysis

of safety and liveness conditions, are solved by both approaches and it is possible

to compare the results in terms of complexity. Given a PDGS (P0, P1,Γ,∆), P =

P0 ] P1, and a Büchi winning condition, which is a parity game with two colors,

the game reduction from [Wal96b] presented in Chapter 4 constructs a finite graph

with O(|Γ|2 2c|P |) vertices and O(|Γ|3 2c|P |) transitions. Then the Büchi game on

this finite graph can be solved in time O(|V |(|V |+ |E|)) where |V | is the number of

vertices and |E| the number of edges. So the upper bound is comparable to that of

the symbolic approach (Algorithm 3.4.8) which is O(|Γ| |∆| 2c′|P |2). But the major

129
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game graph /

winning condition
symbolic approach game-simulation

PDGS, reachability
O(|∆| 2c1(|P |+|Q|)2)

(Theorem 3.1.3)
O(|Γ|3 2c2|P ||Q|)

PDGS, Büchi
O(|Γ| |∆| 2c3|P |2)

(Theorem 3.4.9)
O(|Γ|5 2c4|P |)

PDGS, parity ?
exptime

(Theorem 4.2.2)

PDGS, Σ3
exptime

(Theorem 3.6.9)
?

HPDGS of level n, parity ?
tower of exponentials in n

(Theorem 5.4.1)

|P |: number of control states

|Γ|: size of the stack alphabet

|∆|: size of the transition relation

|Q|: number of states of the automaton defining the goal set R

Figure 6.1: Summary of the main results

difference is that in game reduction the whole finite graph is always constructed,

even if the winning region is trivial. This leads to a lower bound, whereas in the

symbolic approach the algorithm can be “lucky” if the winning region is small or

simple, or if the PDGS has several connected components, or other special effects

apply.

It is possible to adapt the game reduction of Chapter 4 to solve reachability

games. In this case the reachability game over a PDGS is transformed into a reach-

ability game over a finite graph, which is then solved in linear time. Nevertheless

we face again the problem that the whole finite graph is constructed, which is ex-

ponential in the description of the PDGS. Moreover if the goal set R is given by a

finite automaton with state space Q, then one has first to transform the PDGS using

Proposition 3.4.3 such that the membership in R is determined only by the control

state. For that P is replaced by P ×Q and Γ by Γ×Q. So this transformation has

an extra computational cost whereas the symbolic approach of Section 3.1 can start

directly with the finite automaton recognizing R. Again this is particularly relevant

if the winning region is trivial or simple.

Using the symbolic method we have also the new feature of optimal strategy. It
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is open how to extend this notion to the case of parity game.

6.2 Outlook

We mention here some possible tracks for future work.

One advantage of the symbolic approach is that the input and the output of the

algorithm are both alternating automata recognizing respectively the goal set and

the winning region. This might be used in a compositional way to consider more

refined winning conditions. On the other hand the result of a game reduction is a

pushdown strategy that could be used in his turn to define another game: it is a

PDGS.

After the Σ3-condition of Section 3.6 it is possible to consider other conditions at

higher levels in the Borel hierarchy, or combinations of different conditions. During

the redaction of this thesis this has been partially done by Alexis Bouquet, Olivier

Serre and Igor Walukiewicz [BSW03]. They have used a game reduction and it seems

difficult to extend the symbolic approach to higher levels.

In the case of PDGS, an exptime lower bound was found by Igor Walukiewicz

[Wal96b] in the simple case of reachability games and this bound matches the upper

bound for parity games. Concerning HPDGS it is open how to find a lower bound

for reachability games or to simplify the construction in the restricted case of reach-

ability. Recall that the construction of Chapter 5 transforms a reachability game at

a higher level into a parity game on the lower levels.
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Bottom-up tree pushdown automata: Classification and connection with

rewrite systems. Theoretical Computer Science, 127(1):69–98, 1994. 4

[CDT02] Thierry Cachat, Jacques Duparc, and Wolfgang Thomas. Solving push-

down games with a Σ3 winning condition. In Proceedings of the 11th

Annual Conference of the European Association for Computer Science

Logic, CSL’02, volume 2471 of Lecture Notes in Computer Science,

pages 322–336. Springer, 2002. 3, 7, 63, 82



136 BIBLIOGRAPHY

[CK02] Didier Caucal and Teodor Knapik. A chomsky-like hierarchy of infinite

graphs. In Proceedings of the 27th International Symposium on Math-

ematical Foundations of Computer Science, MFCS’02, volume 2420 of

Lecture Notes in Computer Science, pages 177–187. Springer, 2002. 20

[Cor01] Olivier Corolleur. Étude de jeux sur les graphes de transitions des auto-
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[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata,

Logics, and Infinite Games: A Guide to Current Research, volume 2500

of Lecture Notes in Computer Science. Springer, 2002. 10, 11, 14, 15,

26, 45, 88, 109, 110, 121, 134
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3.11 Example (3.5.1) of a simple co-Büchi game . . . . . . . . . . . . . . 61

3.12 Example of a game on a Prefix-recognizable graph . . . . . . . . . . 66

3.13 A simple alternating automaton . . . . . . . . . . . . . . . . . . . . . 74

3.14 Pushdown game of Example 3.7.1, where u ∈ Σ∗ . . . . . . . . . . . 75

3.15 Automaton B′
1 from Algorithm 3.6.2 . . . . . . . . . . . . . . . . . . 76

3.16 Automaton B1 (simplified) . . . . . . . . . . . . . . . . . . . . . . . 76

3.17 Automaton B′
2 from Algorithm 3.6.2 . . . . . . . . . . . . . . . . . . 77

3.18 Automaton B2 (simplified) . . . . . . . . . . . . . . . . . . . . . . . . 77

3.19 Automaton C ′ recognizing Y N
∞ • Γ∗ . . . . . . . . . . . . . . . . . . . 77

3.20 Rough view of Automaton B′
1 from Algorithm 3.6.2 . . . . . . . . . 80

3.21 Rough view of Automaton C ′′ recognizing W0 . . . . . . . . . . . . . 83

4.1 Example of a simple pushdown game (Section 4.3) . . . . . . . . . . . 95

4.2 FSP corresponding to the PDGS (Section 4.3) . . . . . . . . . . . . . 96

4.3 Example (4.5.2) of a game on a Prefix-recognizable graph . . . . . . . 102

143



144 LIST OF FIGURES

4.4 Graph of the corresponding PDGS (Example 4.5.2) . . . . . . . . . . 102

5.1 The complete {a, b}-tree T1 obtained by unfolding of a finite graph . . 112

5.2 The same with a “bottom stack symbol” . . . . . . . . . . . . . . . . 113

5.3 Graph G1 for Γ = {a, b} . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 An initial part of the tree T2 . . . . . . . . . . . . . . . . . . . . . . 115

6.1 Summary of the main results . . . . . . . . . . . . . . . . . . . . . . . 130



Index

Symbols

Attr0(R) . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Attr+
0 . . . . . . . . . . . . . . . . . . . . . . . . . . 45, 64

χ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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mâıtrise“ in Mathematik an der

Universität Grenoble-1

1997-1998 Eintritt in die
”
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attaché temporaire d’enseignement et de recherche (ATER)“

(Wissenschaftlicher Mitarbeiter)
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