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ABSTRACT 

I n  the usuaZ approach t o  network equitibriwn modeZs, the 
fZow variables are modezed as continuous. When the probZem 
under study invo Zves discrete decision makers each contro Z Zing 
an indivisibZe uni t  of fZow, another approach is caZZed for.  
We treat  the probZem as an n-person noncooperative game with 
pure strategies corresponding t o  feasib Ze paths through the 
network. 
and that any soZution t o  an integer-variabZe analogue of the 
usual network equiZibriwn mode2 is such a Nash equiZibriwn. I t  
is aZso shown that when individuaZs can controZ more than a 
singZe uni t  of f tm and want t o  mininrize the sum of the ir  costs,  
pure-strategy Nash equiZibria do not n e c e s s h Z y  ex i s t .  

I t  is shown that pme-strategy Nash equiZibria ex i s t  

1. INTRODUCTION 

A directed network of m arcs  i s  given. Each of n indi- 

A directed path from an individual 's  or igin t o  
viduals must s e l e c t  a directed path from h i s  or ig in  t o  h i s  
destination. 

k h i s  dest inat ion is  termed feasible  fo r  t h a t  individual. I f  x 

individuals choose feasible  paths containing a rc  k i n  the net- 
work, the cost  t o  each of these individuals is  c (x ) fo r  t h a t  

p a r t  of the  journey. c is  assumed t o  be nonnegative and non- 

decreasing as a function of x f o r  k = 1, . . . , m. I f  a l l  in- 

dividuals have chosen t h e i r  routes,  the t o t a l  cost  t o  an 

individual traversing path S i s  1 ck(xk).  A n  equilibrium f o r  

the  system i s  a set of feas ib le  paths, one for  each individual,  

k k  

k 

k 

kcs 
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54 ROSENTHAL 

such t h a t  no individual can decrease h i s  t o t a l  cost by switch- 
ing un i l a t e ra l ly  t o  some other  feas ib le  path. W e  s h a l l  assume 
i n  a l l  t h a t  follows t h a t  a t  l e a s t  one feas ib le  path e x i s t s  f o r  
each individual. 

The standard application of this type of m o d e l  is  t o  
in t e rp re t  cost  on an a rc  as the  time needed to  t r ave l  a road. 
The individual seeks to minimize h i s  t o t a l  t r ave l  time assuming 
t h a t  a l l  other individuals '  paths a re  fixed. The system is  i n  
equilibrium when no individual can improve h i s  posi t ion by 
changing t o  another route. 

l e m .  F i r s t l y ,  one might model the  various flows a s  continuous, 
ra ther  than d iscre te ,  variables. This approach, reminiscent of 
models of electrical  networks, has been frequently taken. (See, 
f o r  example, Beckmann et.al. [19561; Charnes and Cooper 119581; 
Charnes and Cooper 119611 ; Dafermos and Sparrow 119691 .) Sec- 
ondly, one might view the  problem as an n-person, noncooperative 
game i n  which the  pure s t r a t eg ie s  correspond t o  paths i n  the 
network. Nash equi l ibr ia  f o r  such games are sought. 

~ I n  sect ion 2 w e  describe the usual continuous-flow approach 
t o  t h i s  problem and object  to  i t s  use whenever the flows of the 
system must be integer-valued. In  sect ion 3 the  model is de- 
scribed as an n-person noncooperative game f o r  which Nash equi- 
l ibria are  sought. I t  is shown t h a t  pure-strategy Nash equilib- 
r ia  always e x i s t  for games of this type and t h a t  any solut ion 
t o  a ce r t a in  integer-variable analogue of the  continuous-flow 
problem of sect ion 2 is such an equilibrium. I n  section 4 ,  an 
example is  presented which i l l u s t r a t e s  t h a t  pure-strategy Nash 
equi l ibr ia  need not e x i s t  i f  individuals are allowed t o  control  
more than one u n i t  of flow and want t o  minimize the  sum of t h e i r  
costs  . 

There are a t  least two f r u i t f u l  ways t o  approach t h i s  prob- 

2. THE CONTINUOUS-VARIABLES MODEL 

L e t  x denote the  f rac t ion  of individual i ' s  flow which i k  
passes through arc  k ( i = l ,  . . . ,n; k=l , .  . . ,m) where the c ( * )  are 

now assumed to be defined over e n t i r e  intervals .  Consider the  
problem: 

k 

Xk 
minimize 1 jo c k ( t ) d t  

k=l 

subject t o  \ = x f o r  k = 1, ..., m; the  equations char- i k  i=l 
acter iz ing conservation of flow f o r  each individual a t  each 
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NETWORK EQUILIBRIUM PROBLEM 55 

node; and 0 c x c 1 f o r  each individual and each arc. I f  

the xik values which solve t h i s  problem are a l l  integer-valued, 

they represent an equilibrium f o r  the system, 
individual flows are i n  ac tua l i ty  not d iv is ib le ,  one may have 
d i f f i cu l ty  interpret ing the  solution, F i r s t ly ,  i f  it is used 
as  an approximation t o  a true equilibrium i n  a large problem, 
i n  what sense is  it a good approximation? Secondly, how should 
one in t e rp re t  the  costs  (or  t r ave l  times) f o r  f rac t iona l  flows? 

I n  the next section, w e  s h a l l  present an example which 
indicates a t  l e a s t  one sense i n  which the  approximation is  not 
good. 
of costs  f o r  f rac t iona l  flows. Consider a s ingle  individual 
with two arcs  leading from h i s  or ig in  t o  h i s  dest inat ion;  

- i k  - 

I f  not,  and the 

I n  the following example w e  discuss the in te rpre ta t ion  

c (x ) = and c (x ) = &-. Restricted t o  integer  flows, 1 1  2 2  2 
the  s ing le  u n i t  of flow may be sen t  down e i the r  path with cost  
of one. Both are equi l ibr ia .  The continuous-variables solu- 
t ion  is t o  send 1/2 u n i t  of flow through each arc. 
costs  are viewed as t r ave l  times, then each half  u n i t  a r r ives  

i n  - time uni ts .  Thus, the t o t a l  flow arr ives  i n  - C 1 time 

units.  We seem t o  have minimized the maximum t r ave l  t i m e  f o r  
any p a r t  of the  flow. 

weighted average of the t r ave l  times; i .e.,  x 

Both of these in te rpre ta t ions  are va l id  i n  general. 
example, however, it is not generally t rue  t h a t  the sum of the  
t rave l  times is  minimized. 

I f  the 

fi fi 
2 2 

Alternatively,  w e  have minimized the 

5 + x2 5. 1 
A s  i n  t h i s  

3 .  THE GAME-THEORETIC MODEL 

The individuals are assumed t o  be playing a game i n  which 
the pure strategies fo r  each are the individuals '  feas ib le  
paths. The payoffs ( to be minimized) a re  the sums of the costs 
of the arcs used. Nash equi l ibr ia  are sought. In  t h i s  case 
these correspond to equi l ibr ia  f o r  the system. For general 
n-person games, however, one is not guaranteed t h a t  any Nash 
equi l ibr ia  must exis t ;  unless the individual s t ra tegy sets are 
extended to include a l l  possible randomizations over the sets 
of pure s t ra teg ies .  (See Nash [19511,) (The cost of playing 
a randomized s t ra tegy is  taken t o  be the expected cost over the 
relevant pure s t ra tegies . )  
spond t o  f rac t iona l  solutions t o  the continuous-variables m o d e l .  
For t h i s  c lass  of games, however, it is  not necessary to  intro- 
duce randomizations, since pure-strategy Nash equi l ibr ia  always 
exis t .  

These randomizations do not corre- 
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56 RDSENTHAt 

Theorem: 
pure-strategy Nash equilibria always ex is t .  
8OhtiOn t o  the follauing problem is a pure-strategy Nash 

I n  games derived from netuork equilibrium models, 
Furthermore, any 

equi ZibYium: 

m xk 

k=l t=O 
Minimize 1 ( 1 c k ( t ) )  

n 
1 

i=l 
subject t o  xk = 

equations characterizing conservation of flaw a t  
each node f o r  each individuat; and X i k  = 0 or 1 

xik for  k = 1, ..., mi the i f o r i = l ,  ..., n; k = l ,  ..., me 

Proof: Since solut ions t o  (*) always e x i s t  (whenever the con- 
s t r a i n t s  are consistent)  it su f f i ces  to  es tab l i sh  that each is  
an equilibrium. L e t  (x' ) solve ( * I e  Assume  it does not give 

rise to  an equilibrium. Then some individual j taking some 
path S under (x' ) can reduce h i s  cost by switching t o  some 

i k  

i k  

suf f ices  t o  show t h a t  no pure s t ra tegy  is  better). 
the  new values 

Consider 

x'  + 1 i f  i = j ,  ksT\S 

x' - 1 i f  i = j ,  kaS\T 

X '  otherwise 

i k  

i k  

i k  , I 

(xyk) is c lea r ly  f eas ib l e  for (*). 

evaluated a t  (xik) is: 

The object ive function 
0 

X' S-l k 

ksS\T t = O  ka (SnT)U (ScnTc) t = O  

x'+1 
k 1 C k ( t )  + 1 C k ( t )  + c 1 C k ( t )  1 

ksT\ t = O  

X '  m k  
= 1 1 C k ( t )  + 1 ck(x; + 1) - 1 C k ( X p  

k=l t = O  kaT\S kS \T  

X '  m k 

k=l t = O  
< 1 ( 1 c k ( t ) ) .  A contradiction. 1 1  
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NETWORK EQUILIBRIUM PROBLEM 57 

The problem (*) is, of course, closely related t o  the 
minimization problem associated with the continuous-variables 
model. In  par t icu lar ,  i f  the c ( 0 )  i n  the continuous-variables 

k 
problem happen t o  be appropriate s t ep  functions, the two mini- 
mands are  the same. ( N o t e  t h a t  the proof does not make use of 
the assumption t h a t  the c ( 0 )  are nonnegative o r  nondecreasing.) k 

t 

A 

Fig. 1 

Not every pure-strategy equilibrium solves (*). In  Fig- 
ure 1, individual 1 t rave ls  from A t o  B; individual 2 t rave ls  
from A t o  C. The arc  costs are: 

c (x ) = x 2 c (x 1 = x2, 2 c3(x,) = 0, 
1 1  1’ 2 2 

4 4  5 5  6 6  
c ( x )  =o,  c ( x )  = o ,  c ( X I  = I .  

I f  individual 1 takes arcs  1 and 3 and individual 2 takes arcs 
2 and 6 ,  t h i s  c lear ly  r e su l t s  i n  an equilibrium. Also an equi- 
librium re su l t s  i f  individual 1 takes arcs  2 and 4 and individ- 
u a l  2 takes arcs  1 and 5. 
and the continuous-variables problem. 

The second equilibrium solves (*) 
The f i r s t  solves neither.  

y C .  
l3 

Fig. 2 
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58 ROSENTHAL 

The continuous-variables m o d e l  is sometimes used as an 
approximation t o  the  d iscre te  model f o r  la rge  problems. 
t h i s  approach may be good enough f o r  many p rac t i ca l  purposes, 
one should keep i n  mind the  poten t ia l  p i t f a l l s  of rounding t o  
nearby integer  solutions.  In  par t icu lar ,  the amount of flow 
on a particular arc may be grea t ly  dis tor ted.  Consider the 
network i n  Figure 2.  
each t ravel ing t o  a d i f f e ren t  T (i=l, ..., 6) .  Each has two i 
routes: a d i r e c t  route which costs 40 t i m e s  the  square of the 
flow; and an ind i r ec t  route  through node A. The cos t  on the  
arc from S t o  A is seven plus  the flow. The arcs  from A t o  
the various T a l l  possess zero costs. A t  the continuous- i 
variables  solut ion each individual sends half  of h i s  flow on 
each of h i s  feas ib le  paths. 
the flow passes through node A. Thus the t r a f f i c  on the  arc 
from S to A is 3 a t  the "approximate" solut ion and 6 a t  the 
equilibrium. 

While 

Six individuals or ig ina te  a t  node S, 

A t  the  unique equilibrium a l l  of 

4. DISPATCHING 

I n  t h i s  sect ion,  w e  extend the  m o d e l  to  allow f o r  the 
poss ib i l i t y  t h a t  an individual may control  more than one u n i t  
of flow. 
patching of taxicabs. 
example t h a t  pure-strategy equi l ibr ia  need not exist when a 
dispatcher wants t o  minimize the sum of h i s  costs. 
help t o  point  up the somewhat surpr is ing nature of the  theorem 
i n  the  previous section. 

A n  example from t r a f f i c  flow might be cent ra l  dis-  
For the extended m o d e l  w e  s h a l l  show by 

This may 

4 

A 

Fig. 3 

I n  Figure 3 ,  one vehicle  t r ave l s  from A t o  B under the 
control of player 1. Two vehicles t r ave l  from A t o  C. The 
two vehicles t rave l l ing  from A t o  C are under the  control  of 
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NETWORK EQUILIBRIUM PmBLEM 59 

the same individual,  player 2. The costs are: 

O i f x  = 1  2 

c ( X I  = 2x + 3, c (x ) =  6 if x2 = 2, c (x ) = 4x3, c (x ) = O .  1 1  1 2 2  3 3  4 4  

7 i f  x2 = 3 

Denote a path to e i the r  dest inat ion which commences on arc 1 as 
L and on arc 2 as R. Represent the f i r s t  player 's  pure strate- 
g ies  as r d w s ,  the  second player 's  as columns. 
T a b l e  1 w i l l  be the  total costs t o  players 1 and 2 ,  respectively,  
of the relevant s t ra tegy  combinations. 
no pure-strategy Nash equilibria when both players are minimizers. 

The payoffs i n  

The game i n  T a b l e  1 has 

2L,OR 1L,1R OL,2R 

Table 1 
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