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ABSTRACT

In the usual approach to network equilibrium models, the
flow variables are modeled as continuous. When the problem
under study involves discrete decision makers each controlling
an indivisible unit of flow, another approach is called for.

We treat the problem as an n-person noncooperative game with
pure strategies corresponding to feasible paths through the
network. It is shown that pure-strategy Nash equilibria exist
and that any solution to an integer-variable analogue of the
usual network equilibrium model is such a Nash equilibrium. It
18 also shown that when individuals can control more than a
single unit of flow and want to minimize the sum of their costs,
pure-strategy Nash equilibria do not necessarily exist.

1. INTRODUCTION

A directed network of m arcs is given. Each of n indi-
viduals must select a directed path from his origin to his
destination. A directed path from an individual's origin to

his destination is termed feasible for that individual. If xk

individuals choose feasible paths containing arc k in the net-
work, the cost to each of these individuals is ck(xk) for that
part of the journey. Ck is assumed to be nonnegative and non-

decreasing as a function of x, for k=1, ..., m, If all in-

k
dividuals have chosen their routes, the total cost to an
individual traversing path S is z ck(xk). An equilibrium for
kes

the system is a set of feasible paths, one for each individual,
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54 ROSENTHAL

such that no individual can decrease his total cost by switch-
ing ufiilaterally to some other feasible path, We shall assume
in all that follows that at least one feasible path exists for
each individual.

The standard application of this type of model is to
interpret cost on an arc as the time needed to travel a road.
The individual seeks to minimize his total travel time assuming
that all other individuals' paths are fixed. The system is in
equilibrium when no individual can improve his position by
changing to another route.

There are at least two fruitful ways to approach this prob-
lem. Firstly, one might model the various flows as continuous,
rather than discrete, variables. This approach, reminiscent of
models of electrical networks, has been frequently taken, (See,
for example, Beckmann et.al. [1956]; Charnes and Cooper [1958];
Charnes and Cooper [196l1]; Dafermos and Sparrow [1969].) Sec-
ondly, one might view the problem as an n-person, noncooperative
game in which the pure strategies correspond to paths in the
network. Nash equilibria for such games are sought.

- In section 2 we describe the usual continuous-flow approach
to this problem and object to its use whenever the flows of the
system must be integer-valued. 1In section 3 the model is de-
scribed as an n-person noncooperative game for which Nash equi-
libria are sought. It is shown that pure-strategy Nash equilib-
ria always exist for games of this type and that any solution

to a certain integer-variable analogue of the continuous-=flow
problem of section 2 is such an equilibrium. In section 4, an
example is presented which illustrates that pure-strategy Nash
equilibria need not exist if individuals are allowed to control
more than one unit of flow and want to minimize the sum of their
costs.

2. THE CONTINUOUS-VARIABLES MODEL

Let xik denote the fraction of individual i's flow which
passes through arc k(i=1l,...,n; k=1,...,m) where the ck(-) are

now assumed to be defined over entire intervals. Consider the
problems:

m Xy
minimize ) [ © c (t)dt
k=1 © k

n
subject to X = 2 x, for k=1, ..., m; the equations char-
i=1 K

acterizing conservation of flow for each individual at each
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node; and 0 < x,.
— ik

values which solve this problem are all integer-valued,

< 1 for each individual and each arc. If
the xik
they represent an equilibrium for the system. If not, and the
individual flows are in actuality not divisible, one may have
difficulty interpreting the solution. Firstly, if it is used
as an approximation to a true equilibrium in a large problem,
in what sense is it a good approximation? Secondly, how should
one interpret the costs (or travel times) for fractional flows?
In the next section, we shall present an example which
indicates at least one sense in which the approximation is not
good. In the following example we discuss the interpretation
of costs for fractional flows. Consider a single individual
with two arcs leading from his origin to his destination;
cl(xl) = Vxl and c2(x2) = sz. Restricted to integer flows,
the single unit of flow may be sent down either path with cost
of one. Both are equilibria. The continuous-variables solu-
tion is to send 1/2 unit of flow through each arc. If the
cossg are viewed as travel times, then each half unit arrives
in —% time units. Thus, the total flow arrives in-zg < 1 time
units. We seem to have minimized the maximum travel time for
any part of the flow. Alternatively, we have minimized the

weighted average of the travel times; i.e., xl Vxl + x2 ¢x2.

Both of these interpretations are valid in general. As in this
example, however, it is not generally true that the sum of the
travel times is minimized.

3. THE GAME-THEORETIC MODEL

The individuals are assumed to be playing a game in which
the pure strategies for each are the individuals' feasible
paths. The payoffs (to be minimized) are the sums of the costs
of the arcs used. Nash equilibria are sought. In this case
these correspond to equilibria for the system. For general
n-person games, however, one is not guaranteed that any Nash
equilibria must exist; unless the individual strategy sets are
extended to include all possible randomizations over the sets
of pure strategies. (See Nash [1951].) (The cost of playing
a randomized strategy is taken to be the expected cost over the
relevant pure strategies.) These randomizations do not corre-
spond to fractional solutions to the continuous-variables model.
For this class of games, however, it is not necessary to intro-
duce randomizations, since pure-strategy Nash equilibria always
exist.
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Theorem: In games derived from network equilibrium models,
pure-strategy Nash equilibria always exist. Furthermore, any
solution to the following problem is a pure-strategy Nash
equi librium:

X

m k
Minimize ) e, (t))
k=1 t=0
* < gubject to @, = z 2., for k=1, ..., m; the

1=1
equations characterizing comservation of flow at
each node for each individual; and x. ik = 0 or 1
for i =1, ..., ns k=1, ..., m

Proof: Since solutions to (*) always exist (whenever the con-
straints are consistent) it suffices to establish that each is
an equilibrium. Let (xik) solve (*), Assume it does not give

rise to an equilibrium. Then some individual j taking some
path S under (xik) can reduce his cost by switching to some

. ' .

path T; i.e, z ck(xk + 1) < z ck(xk). (Note that it
keT\S keS\T

suffices to show that no pure strategy is better). Consider

the new values

x}, + 1if i =3, keT\s
o _ _— ce s _ s
X = A%y 1if i j, keS\T
x! otherwise
ik

(xo ) is clearly feasible for (*). The objective function

evaluated at (x ) is:

x£+1 gi—l xi
keT\S tZ-O (S kzs\'r tZO % ks(snT)LzJ(schc) tZO %
m %k
z tZO c, (t) + z “ c (xp + 1) - kES\T e, (%))
x:

m
< z ( z Cx (t)). A contradiction. ||
k=1 t=0
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The problem (*) is, of course, closely related to the
minimization problem associated with the continuous-variables
model. In particular, if the ck(') in the continuous-variables

problem happen to be appropriate step functions, the two mini-
mands are the same. (Note that the proof does not make use of
the assumption that the ck(-) are nonnegative or nondecreasing.)

Fig. 1

Not every pure-strategy equilibrium solves (*). In Fig-
ure 1, individual 1 travels from A to B; individual 2 travels
from A to C. The arc costs are:

2
l.’

2
cz(xz) = X

X 29

cl(xl) Cy (x3) = 0,

c4(x4) = O, CS(XS) = 0, CG(X6) = 1.

If individual 1 takes arcs 1 and 3 and individual 2 takes arcs

2 and 6, this clearly results in an equilibrium. Also an equi-
librium results if individual 1 takes arcs 2 and 4 and individ-
ual 2 takes arcs 1 and 5. The second equilibrium solves (*)

and the continucus-variables problem. The first solves neither.

AP
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The continuous-variables model is sometimes used as an
approximation to the discrete model for large problems. While
this approach may be good enough for many practical purposes,
one should keep in mind the potential pitfalls of rounding to
nearby integer solutions. In particular, the amount of flow
on a particular arc may be greatly distorted. Consider the
network in Figure 2. Six individuals originate at node S,
each traveling to a different Ti (i=1,...,6). Each has two

routes: a direct route which costs 40 times the square of the
flow; and an indirect route through node A. The cost on the
arc from S to A is seven plus the flow. The arcs from A to
the various Ti all possess zero costs. At the continuous-

variables solution each individual sends half of his flow on
each of his feasible paths. At the unique equilibrium all of
the flow passes through node A, Thus the traffic on the arc
from S to A is 3 at the "approximate" solution and 6 at the
equilibrium.

4. DISPATCHING

In this section, we extend the model to allow for the
possibility that an individual may control more than one unit
of flow. An example from traffic flow might be central dis-
patching of taxicabs. For the extended model we shall show by
example that pure-strategy equilibria need not exist when a
dispatcher wants to minimize the sum of his costs. This may
help to point up the somewhat surprising nature of the theorem
in the previous section.

A
Fig. 3
In Figure 3, one vehicle travels from A to B under the

control of player 1. Two vehicles travel from A to C. The
two vehicles travelling from A to C are under the control of
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the same individual, player 2., The costs are:

0 if x2 =1
cl(xl) = 2xl + 3, cz(x2)= 6 if X, = 2, c3(x3) = 4x3, c4(x4)=0.
7 if x2 =3

Denote a path to either destination which commences on arc 1 as
L and on arc 2 as R. Represent the first player's pure strate-
gies as rows, the second player's as columns. The payoffs in
Table 1 will be the total costs to players 1 and 2, respectively,
of the relevant strategy combinations. The game in Table 1 has

no pure-strategy Nash equilibria when both players are minimizers.

2L,0R 1L,1R OL,2R

L 9,34 7,11 5,12

R| 0,30 6,15 | 7,14

Table 1
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