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Abstract We study the complexity of finding extreme pure Nash equilibria in
symmetric network congestion games and analyse how it is influenced by the graph
topology and the number of users. In our context best and worst equilibria are those
with minimum or maximum total latency, respectively. We establish that both prob-
lems can be solved by a Greedy type algorithm equipped with a suitable tie breaking
rule on extension-parallel graphs. On series-parallel graphs finding a worst Nash equi-
librium is NP-hard for two or more users while finding a best one is solvable in poly-
nomial time for two users and NP-hard for three or more. additionally we establish
NP-hardness in the strong sense for the problem of finding a worst Nash equilibrium
on a general acyclic graph.

Keywords Network congestion game · Total latency · Extreme equilibria ·
Complexity

1 Introduction

Nash equilibria are one of the most common concepts in non-cooperative game theory.
The classic questions concering these stable states of a game, in which no selfish user
is unsatisfied and wants to change to a different strategy, are those of existence and
uniqueness.
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Modern algorithmic game theory brings up additional questions such as comput-
ability of equilibria and the overall performance of the system under selfish behav-
iour. Pigou (1920) gave a first negative answer by stating that in general selfish
non-cooperative behaviour does not lead to social optimal outcome. Papadimitriou
(2001) introduced the coordination ratio as the quotient of the social cost of a worst
Nash equilibrium and the minimum social cost. It is often called “price of anarchy”
as it reflects the degradation in performance due to missing central regulation.

Koutsoupias and Papadimitriou (1999) established a model (KP-model) in which
users of different sizes travel on parallel links with linear latency functions analogously
to uniform/related machines in scheduling. The price of anarchy of this game and vari-
ous similar models was studied extensively (Czumaj and Vöcking 2002; Mavronicolas
and Spirakis 2001; Feldmann et al. 2003; Fischer and Vöcking 2007).

The problems of finding extreme (best and worst) Nash equilibria concerning make-
span social cost for the KP-Model was addressed by Fotakis et al. (2002), who estab-
lished them to be NP-hard in the strong sense.

These hardness proofs rely on the different sizes of users and the corresponding
scheduling and bin-packing problems are easy to solve for unit-sized users. Addi-
tionally Epstein et al. (2007) show all Nash equilibria for unit-sized users on exten-
sion-parallel graphs, including the special case of parallel links, to have optimal
makespan.

Unit-sized users traveling through more complex graphs are modeled by network
congestion games. Rosenthal (1973) established the existence of pure Nash equilib-
ria in these games and Fabrikant et al. (2004) gave a polynomial time algorithm to
compute an arbitrary Nash equilibrium for a symmetric (single-commodity) network
congestion game by the use of a certain min-cost flow instance. On series-parallel
graphs this min-cost flow instance can be solved by the Greedy algorithm GBR of
Fotakis et al. (2005).

The price of anarchy of these games was studied for two social objectives:
Awerbuch et al. (2005) used the total latency as measure of social cost to establish that
for affine latency functions the price of anarchy is bounded from above and below by
5/2. This bound does also hold for the makespan objective, measuring the latency of
the longest path chosen by a user, due to results by Christodoulou and Koutsoupias
(2005).

Recently Gassner et al. (2008) analysed extreme Nash equilibria in network con-
gestion games for makespan social cost and showed that finding a worst equilibrium
is “easier” in the sense that a worst equilibrium can be found in polynomial time on
series-parallel networks while establishing a best one is NP-hard on this topology.

1.1 Contribution

We give a complete characterization of the complexity of finding Nash equilibria with
minimum or maximum total latency in network congestion games with non-decreasing
latency functions on edges.

On extension-parallel graphs both problems can be solved by the algorithm
GBR (Fotakis et al. 2005) with tie breaking according to the increase in cost. But
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Nash equilibria with extreme total latency 247

the problem of finding a best Nash equilibrium is slightly harder as this approach fails
for non-decreasing latencies.

The situation is more involved for series-parallel graphs: Unfortunately the problem
of finding a worst Nash equilibrium is NP-hard even for two users. Here finding the
best equilibrium is somehow easier, as we can find a best equilibrium for two users in
polynomial time but the problem is NP-hard for three or more users. On these graphs
we can adapt the dynamic programming approach given by Gassner et al. (2008) for
the makespan case to find extreme Nash equilibria in pseudo-polynomial time.

For finding a worst Nash equilibrium we additionally establish NP-hardness in the
strong sense on general acyclic networks.

These results are summarized in the following chart:

Find a . . . Nash equilibrium with Nash equilibrium with
on . . . minimum total latency maximum total latency

Extension-parallel graphs Polynomially solvable for
increasing latencies by
Greedymin (Sect. 3.1)

Polynomially solvable for
non-decreasing latencies by
Greedymax (Sect. 4.1)

Series-parallel graphs Polynomially solvable for
two users by Greedymin

NP-hard for three or more
users (Sect. 3.2)

NP-hard for two or more
users (Sect. 4.2)

Pseudo-polynomially solvable by dynamic programming for
fixed number of users (based on results of Gassner et al.
(2008), Sects .3.2 and 4.2)

General acyclic graphs NP-hard in the strong sense
(Sect. 4.3)

Road Map We start by introducing notation and preliminary results in Sect. 2 and
then establish our results on finding a best Nash equilibrium in Sects. 3 and 4 for a
worst Nash equilibrium, respectively.

2 Preliminaries

We consider a symmetric network congestion game, namely N unit-sized users each
choosing a path from the source s to the sink t in the directed graph G = (V, E). The
strategy set P of all users is thus the set of all simple s–t-paths in G. We denote by n
the number of vertices and m the number of edges of G. The edges are equipped with
non-decreasing latency functions �e:N0 → R

0+ for all e ∈ E modeling the congestion
effects. An instance of the game is thus given by [G = (V, E), (�e)e∈E , s ∈ V, t ∈
V, N ].

In our context a flow is a function f :P → N0 that assigns integer values to paths in
the network. The latency on a path is the sum of the latencies on its edges that depends
on the total flow on the edge:

�P ( f ) :=
∑

e∈P

�e

⎛

⎝
∑

P ′ ∈P : e∈P ′
fP ′

⎞

⎠
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We denote by fe :=∑
P∈P : e∈P fP the flow on edge e uniquely induced by the

flow f defined on paths.
Note that there may be different so-called flow-decompositions or flows on paths

that correspond to the same flow on edges. Even more, Gassner et al. (2008) give an
example that the property of a feasible flow to be at Nash equilibrium might depend
on the flow decomposition.

A stable state of the system is a choice of paths such that no user can benefit by
deviating from her choice given those of the other users:

Definition 1 (Nash equilibrium, Nash flow) A flow f = ( fP )P∈P is at Nash equilib-
rium, if and only if for all paths P1, P2 with fP1 > 0 we have

�P1( f ) ≤ �P2( f̃ ) with f̃ P =
⎧
⎨

⎩

fP − 1 if P = P1
fP + 1 if P = P2
fP otherwise

.

Rosenthal (1973) established that every instance of a network congestion game pos-
sesses a least one pure strategy Nash equilibrium. We want to analyse Nash equilibria
with respect to an additional measure of quality, our social objective:

Definition 2 (Total latency social cost) The total latency C( f ) of a flow f in a net-
work G = (V, E) with edge latency functions �e is defined as

C( f ) =
∑

e∈E

�e( fe) fe

We denote the highest latency experienced by a user as the makespan Cmax( f ) of
a flow f :

Cmax( f ) := max
P∈P : fP>0

�P ( f )

While all Nash equilibria on parallel links have optimal makespan the situation is
more difficult for total latency social cost already on this very easy topology:

Example 1 (Nash equilibria with different social cost) Consider the graph G in Fig. 1
consisting of just two nodes s, t and two parallel edges e1, e2 between them with
latency �e1(x) = x and �e2(x) = 2x . Two users want to travel from s to t .

Fig. 1 Two Nash equilibria on parallel links need not have the same total latency (Example 1)
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Fig. 2 Nash equilibria on parallel links need not be optimal concerning total latency (Example 2)

In this setting there are two Nash equilibria: One sending all flow on edge e1 for
costs of four and the second one sending one user on each edge e1 and e2 resulting in
lower costs of three. The latter one is also optimal.

In general no Nash equilibrium is optimal concerning total latency even on parallel
links:

Example 2 (No optimal Nash equilibrium) Consider a slight modification of the pre-
vious Example 1 given in Fig. 2. We again consider the graph G with two parallel
links but with latencies �e1(x) = x , �e2(x) = 2x + ε for 0 < ε < 1/2. Two users
travel from s to t . The unique Nash equilibrium sends both users on edge e1 for costs
of four, while the optimal solution splits the flow resulting in cost of 3 + ε.

Examples 1 and 2 motivate to study the following two problems:

Definition 3 (Best Nash equilibrium problem (BNash))
Given: Network congestion game [G = (V, E), (�e)e∈E , s ∈ V , t ∈ V , N ]
Output: Nash equilibrium f with minimum total latency

Definition 4 (Worst Nash equilibrium problem (WNash))
Given: Network congestion game [G = (V, E), (�e)e∈E , s ∈ V , t ∈ V , N ]
Output: Nash equilibrium f with maximum total latency

We are going to examine the dependence of the complexity of both problems on
the topology of the underlying network. Thereby, we look at extension-parallel graphs
including parallel links, series-parallel and arbitrary (acyclic) graphs as the complexity
of the problems defined above varies on these topologies. We start with the recursive
definition of series-parallel and extension-parallel graphs:

Definition 5 (Series-parallel and extension-parallel graphs) A single edge e = (s, t)
is series-parallel with start terminal s and end-terminal t by definition. Let Gi be
series-parallel with start-terminal si and end-terminal ti (i = 1, 2). Then the graph
S(G1, G2) obtained by identifying t1 as s2 is a series-parallel graph, with s1 and t2 as
its terminals (series composition). The graph P(G1, G2) obtained by identifying s1
as s2 and also t1 as t2 is a series-parallel graph (parallel composition) with s1(= s2)

and t1(= t2) as its terminals.

Extension-parallel graphs are a special case of series-parallel ones, in which every
series composition is only an extension composition E(G1, e = (s2, t2)) or E(e =
(s1, t1), G2), namely an extension-parallel graph is extended by adding a single edge e
either to its source or sink.
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Fig. 3 Series-parallel but not
extension-parallel graph

The smallest graph that is series-parallel but not extension-parallel is the one shown
in Fig. 3 with three vertices s, v and t and four edges, two connecting each s to v

and v to t , respectively. The restriction of the more general series composition to
extension compositions is crucial: On extension-parallel graphs all Nash equilibria
have equal and optimal makespan (Epstein et al. 2007) while already on the smallest
only series-parallel graph mentioned above this is not true for all choices of latency
functions on edges. In particular, in the instance given in Fig. 3 one Nash equilib-
rium f uses paths P1 := {e1, e2}, P2 := {e3, e4} with Cmax( f ) = 4 but a second
Nash flow g sending users on paths Q1 := {e1, e4} and Q2 := {e3, e2} has makespan
Cmax(g) = 3.

To clearly express the relation of flows in a series- or extension-parallel graph and
its components, we denote the restriction of a flow f in graph G = P(G1, G2) or
G = S(G1, G2) to one of the components Gi by f |Gi . In parallel composed graphs
G = P(G1, G2) we use the notation f = f1 ∪ f2 to express that f sends users
on exactly those paths chosen by f1 in G1 and f2 in G2. In contrast to that we
refer to the canonical summation of two flows f, g in one graph G as f + g with
( f + g)P = fP + gP for all paths P in G. Additionally we denote by δP the flow that
sends one unit along path P and zero flow on all other paths.

For our positive results we modify the algorithm GBR introduced by Fotakis et al.
(2005) which works as follows: The users are iteratively assigned to a path minimizing
the latency induced by the users already assigned. To be more precise denote by fi

the result of GBR in the i th iteration, f0 the constant zero flow on all edges and

L+( fi ) := min
P∈P

∑

e∈P

�e( fi,e + 1) = min
P∈P

�P ( fi + δP ) (1)

the minimum latency for a new (i + 1)st user. Thus GBR chooses a path Pi+1 of
user (i + 1) such that the latency on Pi+1 is L+( fi ) after the assignment. Fotakis et
al. (2005) establish that this algorithm yields a Nash equilibrium on series-parallel
graphs.

This path Pi+1 is in general not uniquely determined by (1) but there is a set P+( fi )

of paths with minimal latency for an additional (i + 1)st user. We add tie breaking
rules to select a specific path from this set:

Definition 6 (Greedymin and Greedymax) In the following we denote by
Greedymin the algorithm GBR that chooses among the candidate paths P+( fi ) one
with minimal cost increase:

Pi+1:= argmin
P∈P+( fi )

∑

e∈P

�ce( fi,e + 1)
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The cost increase �ce :N → R
0+ for all edges e ∈ E is defined as

�ce(1) = �e(1) and �ce(n) = n · �e(n) − (n − 1) · �e(n − 1) for all n ≥ 2.

Greedymax denotes the analog algorithm which chooses a candidate path with max-
imal cost increase.

To ease the notation if flows are constructed out of several components we some-
times use �ce( f ) for a flow f with the natural meaning of �ce( fe), i.e., we leave out
the restriction to edge e.

Observe that the running time of Greedymin [Greedymax] is still polynomial in the
input size of the network congestion game on a series-parallel graph as in the (i +1)th
iteration we just have to find a lexicographic shortest s–t-path for the fixed edge labels
(�e( fi,e + 1),�ce( fi,e + 1)) [(�e( fi,e + 1),−�ce( fi,e + 1))], which can be done in
linear time on these acyclic graphs with the help of a topological sorting of the vertices.

To show that our variants of GBR have the desired properties we later use the
following result of Epstein et a. (2007) about Nash equilibria on extension-parallel
graphs.

Theorem 1 (Epstein et al. 2007) On extension-parallel graphs all Nash equilibria
of a symmetric network congestion game have the same makespan which equals the
optimal one.

Observing that L+( f ) of a Nash flow f for N users is the makespan of a Nash
equilibrium with N + 1 users yields the following corollary.

Corollary 1 On extension-parallel graphs any two Nash equilibria f and g of a
symmetric network congestion game have L+(g) = L+( f ).

We are now prepared to study first best and then worst Nash equilibria on several
graph topologies.

3 Best Nash equilibrium

3.1 Extension-parallel graphs

In this section we want to establish, that on these graphs we can find a best Nash
equilibrium in polynomial time by applying Greedymin if the latency functions are
increasing. Unfortunately Greedymin fails for only non-decreasing functions.

Theorem 2 On extension-parallel graphs Greedymin solves BNash for increasing
latency functions.

Proof We prove the result by induction on the number of composition step necessary
to construct the graph G of the underlying network congestion game [G = (V, E),

(�e)e∈E , s ∈ V, t ∈ V, N ].
The base case of the induction on a single edge is trivial. The extension composi-

tion G = E(G1, e2) is also easy, as the cost of any equilibrium f in G decomposes
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into the cost of the flow restricted to G1 and the cost on e2, which is N · �e2(N )

where the first summand is minimum among the Nash equilibria on G1 by induction
hypothesis.

The interesting case is that of a parallel composition G = P(G1, G2): Let f be the
result of Greedymin on G and fi := f |Gi , i = 1, 2 the flows in the two components.
W.l.o.g. we assume Cmax( f ) = Cmax( f1) and thus f1 sends 0 < k ≤ N users from s
to t .

Let g be another Nash equilibrium of the game and gi := g|Gi the flows in the two
graph components, where g1 sends 0 ≤ l ≤ N users from s to t . We want to show
that C( f ) ≤ C(g).

If l = k we are done, as by induction hypothesis we know that fi does not induce
higher costs than gi , i = 1, 2 and hence

C( f ) = C( f1) + C( f2) ≤ C(g1) + C(g2) = C(g).

For the case l < k consider the flow ḡ constructed from the two flows ḡi , i = 1, 2
in the two graph components as the result of Greedymin with l and N − l users, respec-
tively. Hence ḡ sends as many users as g in the two component graphs but the paths
are chosen according to Greedymin. Using the induction hypothesis on each graph
component we conclude

C(g) = C(g1) + C(g2) ≥ C(ḡ1) + C(ḡ2) = C(ḡ).

Thus it suffices to compare the cost of ḡ and f to prove the result.
Observe that ḡ is Nash: First of all ḡ1 and ḡ2 are Nash so no user wants to change her

strategy within her graph component. Additionally no user can benefit from changing
to the other component as no user can do so in g and Cmax(gi ) = Cmax(ḡi ) as well as
L+(gi ) = L+(ḡi ), i = 1, 2 due to Theorem 1 and Corollary 1.

The two Nash flows f and ḡ share l paths in G1 and N −k paths in G2. This “basic”
flow sends in all N − k + l users via ḡ1 ∪ f2. The Nash flow f sends additional k − l
users on paths P1, . . . , Pk−l through G1 and ḡ sends the same number of additional
users through G2 on paths Q1, . . . , Qk−l . Thus we know

f =
(

ḡ1 +
k−l∑

i=1

δPi

)
∪ f2 and ḡ = ḡ1 ∪

(
f2 +

k−l∑

i=1

δQi

)

Informally, the basic idea of the next and final steps is to show that all paths
P1, . . . , Pk−l , Q1, . . . , Qk−l have makespan latency once they are chosen and hence
Greedymin working on G and not on the components separately chooses the cheaper
ones due to its tie breaking.

To be more precise, we show for i = 1, . . . , k − l that

�Pi

⎛

⎝ḡ1 +
i∑

j=1

δPj

⎞

⎠ = Cmax( f ) and �Qi

⎛

⎝ f2 +
i∑

j=1

δQ j

⎞

⎠ = Cmax( f ).
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We first analyze the latency of paths P1, . . . , Pk−l in the iteration they are chosen
by Greedymin on G and can bound it from above and below by Cmax( f ) as follows:

�Pi

⎛

⎝ḡ1 +
i∑

j=1

δPj

⎞

⎠ ≤ �Pi ( f1) ≤ Cmax( f )

�Pi

⎛

⎝ḡ1 +
i∑

j=1

δPj

⎞

⎠ ≥ �Pi (ḡ1 + δPi ) ≥ L+(ḡ1) ≥ Cmax(ḡ) = Cmax( f )

Analogous arguments apply to paths Q1, . . . , Qk−l in the iteration they are chosen
by Greedymin on G2 and this also tells us, that all paths P1, . . . , Pk−l , Q1, . . . , Qk−l

are pairwise edge disjoint for increasing latency functions.
Now we can use the disjointness of paths and the tie breaking rule of Greedymin to

compare the costs of f and ḡ:

C( f ) − C(ḡ) = C(ḡ1 ∪ f2) +
k−l∑

i=1

∑

e∈Pi

�ce

⎛

⎝ḡ1 +
i∑

j=1

δPj

⎞

⎠

−
⎡

⎣C(ḡ1 ∪ f2) +
k−l∑

i=1

∑

e∈Qi

�ce

⎛

⎝ f2 +
i∑

j=1

δQ j

⎞

⎠

⎤

⎦

=
k−l∑

i=1

⎡

⎣
∑

e∈Pi

�ce(ḡ1 + δPi ) −
∑

e∈Qi

�ce( f2 + δQi )

⎤

⎦

≤ 0 due to tie breaking of Greedymin on G

The case k > l can be treated analogously and this completes the proof. ��

The following example establishes that in general Greedymin does not work for
non-decreasing latencies and thus the assumption of Theorem 2 is necessary:

Example 3 (Greedymin fails for non-decreasing latency functions) Consider the
graph G in Fig. 4 with five parallel edges between s and t . There is one edge

Fig. 4 Greedymin fails for
non-decreasing latencies on
parallel links (Example 3)
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e1 with latency �e1(x) =
{

3 x ≤ 1

6 x > 1
and the remaining four edges have latency

�ei (x) = 2x + 2, i = 2, . . . , 5. We want to send nine users from s to t .
Greedymin assigns the first user to edge e1, then in some order adds one user to

each of the other edges. In the sixth iteration all edges are candidate edges and the
algorithm compares the cost increase:

�ce1(2) = 9 > 8 = �cei (2) i = 2, . . . , 5

Thus Greedymin assigns the remaining four users one to each of the edges e2, . . . , e5
which results in total latency 51. But assigning only one job to every edge e2, . . . , e5
and five users to e1 is also Nash and has costs of 46.

In the proof of Theorem 2 we used strict monotonicity of the latency functions to
establish that the paths chosen by users in Nash flow f but not in g are edge disjoint.
This is not true for Example 3 as here the two Nash equilibria differ by more than one
user on edge e1.

3.2 Series-parallel networks

In series-parallel graphs the best Nash equilibrium is not guaranteed to be found by
GBR (with any tie breaking rule) for three or more users, even for increasing latency
functions.

Example 4 (Best Nash flow not found by GBR) Consider the graph shown in Fig. 5
for three users.

The solution of GBR for the graph given in Fig. 5 is unique and has a unique path
decomposition sending one user on the lower edges e2 and e4 and the other two on the
direct edge e5 with costs C( f ∗) = 16. However, there is a Nash equilibrium f with
cost C( f ) = 15 which sends one user on the direct edge e5 and both other users on
one upper e1 (e3) and one lower edge e4 (e2) such that all edges are used by exactly
one user.

The good news is that for two users we can use Greedymin to find a best Nash
equilibrium on series-parallel graphs in polynomial time.

Theorem 3 Greedyminsolves BNash for two users on series-parallel graphs.

Proof Again, we use induction on the number of composition steps necessary to con-
struct G. If G is a single edge every Nash equilibrium send both users over this one
edge and thus Greedymin finds a best one.

Fig. 5 Best Nash equilibrium
not found by GBR on
series-parallel network
(Example 4)

123



Nash equilibria with extreme total latency 255

For the induction step let f be the result of Greedymin which sends the users on
paths P1, P2 and g an arbitrary equilibrium in G which uses paths Q1, Q2. We analyse
the cost of f in comparison to that of g in several cases depending on the allocation
of the four paths in G1 and G2.

1. G = S(G1, G2): As Greedymin on Gi chooses exactly the parts of P1, P2 in Gi

we know by induction hypothesis that f |Gi is a best equilibrium on Gi , i = 1, 2. As
g also decomposes into two Nash equilibria in G1, G2 and the cost of the flow in G
is just the sum of the costs of the flows in G1, G2 we conclude that C( f ) ≤ C(g).

2. G = P(G1, G2):
2.1. P1 ∈ G1 and P2 ∈ G2:

2.1.1. Q1 ∈ G1 and Q2 ∈ G2: To be Nash both f and g can only use shortest
paths w.r.t. �e(1) in both components and the costs are just the sum of the
latency of these paths. Hence C( f ) = C(g).

2.1.2. W.l.o.g. Q1, Q2 ∈ G1: Let f1 be the result of Greedymin on G1. f1
chooses paths P1 and P̄2 in G1. Greedymin on G did not choose P̄2 instead
of P2 thus we have one of the following two cases:

2.1.2.1. �P̄2
( f1) > �P2( f ): We can conclude from the construction of f1

and the induction hypothesis for Greedymin on G1 that

C( f ) = �P1( f ) + �P2( f ) < �P1( f1) + �P̄2
( f1) = C( f1) ≤ C(g)

2.1.2.2. �P̄2
( f1) = �P2( f ) and

∑
e∈P̄2

�ce( f1,e) ≥ ∑
e∈P2

�ce( fe):
Again by applying the induction hypothesis we can compare the cost
of f and g:

C( f ) =
∑

e∈P1

�e(1) +
∑

e∈P2

�e(1)

=
∑

e∈P1

�e(1) +
∑

e∈P2

�ce( fe)

≤
∑

e∈P1

�e(1) +
∑

e∈P̄2

�ce( f1,e)

= C( f1)

≤ C(g)

2.2. W.l.o.g. P1, P2 ∈ G1:
2.2.1. Q1, Q2 ∈ G1: As we can restrict both flows to G1 we know by induction

hypothesis that C( f ) ≤ C(g).
2.2.2. Q1, Q2 ∈ G2: Due to the Nash property of g, no user wants to change

to a path in G1, and in f no user wants to change to G2. Together with
monotonicity of the latency functions this implies

�Q j (g) ≤ �Pi ( f ) and �Pi ( f ) ≤ �Q j (g) for all i, j ∈ {1, 2}
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Hence �P1( f ) = �P2( f ) = �Q1(g) = �Q2(g) and so C( f ) = C(g).
2.2.3. Q1 ∈ G1 and Q2 ∈ G2: Greedymin on G did not choose Q2 instead of

P2 so we have exactly one of the following cases:
2.2.3.1. �Q2(g) > �P2( f ): In the following we show that this case contra-

dicts g being Nash. For this purpose we construct a path Q̄2 in G1
and show that the user on path Q2 would want to change to Q̄2.
Let v1 = s, v2, . . . , vk = t be the vertices in P2 and vi1 = s, vi2 , . . . ,

vil = t those that also lie on P1. Let π j,1, π j,2 be the path segments
between vi j and vi j+1 of P1, P2, respectively for j = 1, . . . , l − 1.
Let Q̄2 be the path through vertices vi1 , . . . , vil using path segments
π̄ j , j = 1, . . . , l − 1 where π̄ j = π j,1 if there is an edge e ∈ π j,2
with e ∈ (P2 ∩ Q1)\P1 and π̄ j = π j,2 otherwise.
Let ḡ be the flow that uses paths Q1, Q̄2 and j ∈ {1, . . . , l − 1}
arbitrary.
If π̄ j = π1, j we know that Q1 does not intersect π1, j as it shares an
edge with π j,2 and G is series-parallel. We additionally use that P1
is a shortest s-t-path w.r.t. �e(1) and conclude

∑

e∈π̄ j

�e(ḡe) =
∑

e∈π j,1

�e(1) ≤
∑

e∈π j,2

�e(1) ≤
∑

e∈π j,2

�e( fe)

If π̄ j = π2, j we have

∑

e∈π̄ j

�e(ḡe) =
∑

e∈π j,2

�e(ḡe)

=
∑

e∈π̄ j,2\Q1

�e (1)︸︷︷︸
≤ fe

+
∑

e∈π̄ j,2∩Q1∩P1

�e (2)︸︷︷︸
= fe

≤
∑

e∈π̄ j,2

�e( fe)

By summing over j we conclude �Q̄2
(ḡ) ≤ �P2( f ) < �Q2(g) which

contradicts g being Nash as the user on path Q2 wants to switch
to Q̄2.

2.2.3.2. �Q2(g) = �P2( f ) and
∑

e∈Q2
�ce(ge) ≥ ∑

e∈P2
�ce( fe): Using

that P1 and Q1 are both shortest paths w.r.t. �e(1) we have

C( f ) =
∑

e∈P1

�e(1) +
∑

e∈P2

�ce( fe)

≤
∑

e∈Q1

�e(1) +
∑

e∈Q2

�ce(ge)

= C(g)

��

123



Nash equilibria with extreme total latency 257

In contrast to this positive result we can use a construction similar to Example 4 to
establish (weak) NP-hardness of the problem to find a best Nash equilibrium for three
or more users.

Theorem 4 The problem BNash is NP-hard on series-parallel graphs for three or
more users.

Proof The proof of weak NP-completeness of the decision version of BNash uses
a reduction from the NP-hard even–odd partition problem as stated in Garey and
Johnson (1979):

Even–odd partition (EOP for short):
Given: Finite set A = {a1, a2, . . . , a2n}, a size w(ai ) ∈ Z

+ for each ai ∈ A
and 2B = ∑2n

i=1 w(ai ).
Question: Does there exist a subset A′ ⊂ A with

∑
a∈A′ w(a) = B and A′

contains exactly one element of {a2i−1, a2i } for i = 1, . . . , n.

We may assume without loss of generality that

w(a2i−1) < 2w(a2i ) and w(a2i ) < 2w(a2i−1) holds for i = 1, . . . , n. (2)

Given an instance I (EOP) then an instance I (BNash) is defined by a graph
G = (V, E) with V = {v1, v2, . . . , vn, vn+1} with two parallel edges between vi

and vi+1 for i = 1, . . . , n and an edge e+ = (s, t). The latency functions of the two
edges between vi and vi+1 are �(x) = w(a2i−1)x and �(x) = w(a2i )x for i = 1, . . . , n
and �e+(x) = (B/2)x . Three users travel from s = v1 to t = vn+1. We denote G\{e+}
by G ′.

We show that I (EOP) is a YES-instance if and only if there exists a Nash equilib-
rium f in G of I (BNash) with C( f ) ≤ 5B/2.

Let I (EOP) be a YES-instance and A′ its solution. Construct a flow f in G by
sending one user along the edges with slope w(a′) for a′ ∈ A′, the second user on the
remaining edges of G ′ and the third user on edge e+.
The cost of f can be calculated as follows

C( f ) =
∑

e∈E

�e( fe) · fe =
∑

e∈E

�e(1) =
∑

a∈A

w(a) + 1

2
B = 2B + 1

2
B = 5

2
B

Additionally f is a Nash flow: Both users in G ′ can not benefit from changing their
path in G ′ due to (2) and as both chosen paths have latency B they do not want to
change to edge e+ either. The user on edge e+ also has no incentive to change to any
path in G ′.

Conversely assume f to be a Nash flow with cost C( f ) ≤ 5B/2.

Case 1: fe+ = 3
Let P be the path in G ′ whose edges have slopes min{w(a2i−1), w(a2i )}.
The latency on path P for one user would be less or equal to B due to the
choice of edges and thus at least one user wants to change from e+ to P as
�e+( f ) = �e+(3) = 3B/2. Hence f can’t be Nash in this case.
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Case 2: fe+ = 2
Let P1 be the path chosen by the user not traveling on e+ and P as in Case 1.
We know about the cost of f :

C( f ) = 2 · �e+(2) + �P1( f ) ≥ 2 · B +
∑

e∈P

�e(1) (3)

Equation (2) implies

∑

e∈P

�e(1) =
n∑

i=1

min{w(a2i−1), w(a2i )}

>

n∑

i=1

1

2
max{w(a2i−1), w(a2i )}

≥ 1

2
B (4)

Using Eqs.(3) and (4) we derive a contradiction to the assumption about the
cost of f :

C( f ) ≥ 2 · B +
∑

e∈P

�e(1) >
5

2
B

Case 3: fe+ = 1
Denote by P1 and P2 those paths in G ′ chosen by two of the users. From (2)
we know that P1 ∩ P2 = ∅ and hence

�P1( f ) + �P2( f ) = 2B (5)

In a Nash equilibrium no user wants to change from Pi , i = 1, 2 to edge e+:

B = �e+( fe+ + 1) ≥ �Pi ( f ) for i = 1, 2 (6)

Combining Eqs.(5) and (6) we conclude that �P1( f ) = B = �P2( f ) and
hence these disjoint paths give rise to an even–odd partition.

Case 4: fe+ = 0
This case cannot constitute a Nash equilibrium, as at least one user wants to
change to edge e+. ��

Gassner et al. (2008) give a dynamic programming approach on series-parallel
graphs that tests for a fixed number of users N in pseudo-polynomial time which of
the multisets {�1, . . . , �N } with 0 ≤ �i ≤ |V |·maxe∈E �e(N ) correspond to the latency
experienced by the 1 to N users in a Nash equilibrium of the network congestion game
on this graph. The social cost of a Nash equilibrium, in our meaning of total latency,
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can be equivalently formulated using the latencies of the users having chosen paths
P1, . . . , PN as

C( f ) :=
∑

e∈E

�e( fe) · fe =
N∑

i=1

�Pi ( f ).

Hence using the data generated by the dynamic programming approach, we simply
have to sum up the entries of each multiset that corresponds to a Nash flow in G and
take the minimum and this does not affect the pseudo-polynomial running time.

4 Worst Nash equilibrium

4.1 Extension-parallel graphs

Analogously to the case of finding the best equilibrium in Theorem 2 we can establish
a result for finding a worst Nash equilibrium by Greedymax and in this case we don’t
need increasing latencies as stated in the following theorem:

Theorem 5 Greedymax solves WNash on extension-parallel graphs for non-
decreasing latency functions.

Proof The proof is similar to the one for Greedymin but with one crucial difference,
as Theorem 5 holds for non-decreasing latencies in contrast to Theorem 2.

Observe that the base case of the induction on the number of decompositions nec-
essary to construct G and the induction step if the last composition is an extension
composition is easily verified.

The interesting case is the parallel composition G = P(G1, G2): We adopt the
notation of the proof of Theorem 2 and denote by f be the result of Greedymax on
G, fi := f |Gi , i = 1, 2 the flows in the two components with Cmax( f ) = Cmax( f1)

where f1 sends 0 < k ≤ N users from s to t . We also consider an arbitrary Nash
equilibrium g of the game with gi := g|Gi , i = 1, 2 where g1 sends 0 ≤ l ≤ N . We
want to show that C( f ) ≥ C(g).

Again if l = k we are done, as by induction hypothesis we know that fi does not
induce lower costs than gi , i = 1, 2 and hence

C( f ) = C( f1) + C( f2) ≥ C(g1) + C(g2) = C(g).

For the case l < k we use the flow ḡ constructed from the two flows ḡi , i = 1, 2
in the two graph components as the result of Greedymax with l and N − l users,
respectively. Applying the induction hypothesis on each graph component we con-
clude C(g) = C(g1) + C(g2) ≤ C(ḡ1) + C(ḡ2) = C(ḡ) and hence we only have to
compare the cost of ḡ and f to prove the result.

This flow ḡ is Nash because g is and Cmax(gi ) = Cmax(ḡi ) as well as L+(gi ) =
L+(ḡi ) due to Theorem 1 and Corollary 1.

We decompose the two Nash flows f and ḡ via a “basic” flow sending in all N −k+l
users by ḡ1 ∪ f2. The Nash flow f sends additional k − l users on paths P1, . . . , Pk−l
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through G1 and ḡ sends the same number of additional users through G2 on paths
Q1, . . . , Qk−l . Thus we know

f =
(

ḡ1 +
k−l∑

i=1

δPi

)
∪ f2 and ḡ = ḡ1 ∪

(
f2 +

k−l∑

i=1

δQi

)

Analogously to the proof of Theorem 2 we can establish that for i = 1, . . . , k − l

�Pi

⎛

⎝ḡ1 +
i∑

j=1

δPj

⎞

⎠ = Cmax( f ) and �Qi

⎛

⎝ f2 +
i∑

j=1

δQ j

⎞

⎠ = Cmax( f ).

Hence, edges in the intersection of two paths Qi1 , Qi2 with i1 = i2 must have constant
latency after the first of the two paths is chosen by Greedymax on G2. More precisely,
we know for any i ∈ {1, . . . , k − l} and any e ∈ Qi that

�e( f2 + δQi ) = �e

⎛

⎝ f2 +
i∑

j=1

δQ j

⎞

⎠ = �e

⎛

⎝ f2 +
k−l∑

j=1

δQ j

⎞

⎠

and thus

�ce
(

f2 + δQi

) ≥ �ce

⎛

⎝ f2 +
i∑

j=1

δQ j

⎞

⎠ ≥ �ce

⎛

⎝ f2 +
k−l∑

j=1

δQ j

⎞

⎠ . (7)

Hence the cost increase for a path Qi can only decrease due to the additional choice
of paths Q1, . . . , Qi−1.

Now we can use this observation and the tie breaking rule of Greedymax to compare
the costs of f and ḡ:

C( f ) − C(ḡ) = C(ḡ1 ∪ f2) +
k−l∑

i=1

∑

e∈Pi

�ce

⎛

⎝ḡ1 +
i∑

j=1

δPj

⎞

⎠

−
⎡

⎣C(ḡ1 ∪ f2) +
k−l∑

i=1

∑

e∈Qi

�ce

⎛

⎝ f2 +
i∑

j=1

δQ j

⎞

⎠

⎤

⎦

=
k−l∑

i=1

⎡

⎣
∑

e∈Pi

�ce

⎛

⎝ḡ1 +
i∑

j=1

δPj

⎞

⎠ −
∑

e∈Qi

�ce

⎛

⎝ f2 +
i∑

j=1

δQ j

⎞

⎠

⎤

⎦

≥
k−l∑

i=1

⎡

⎣
∑

e∈Pi

�ce

⎛

⎝ḡ1 +
i∑

j=1

δPj

⎞

⎠ −
∑

e∈Qi

�ce( f2 + δQi )

⎤

⎦ by (7)

≥ 0 due to tie breaking of Greedymax on G
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Fig. 6 Worst Nash equilibrium not found by GBR (Example 5)

Analogously we can treat the case k > l and analyze the intersection edges of paths
P1, . . . , Pk−l and this completes the proof. ��

4.2 Series-parallel networks

First of all we observe that GBR does in general not find a worst Nash equilibrium on
series-parallel networks independent of the tie breaking rule applied:

Example 5 (Worst Nash flow not found by GBR) Consider the series-parallel graph
shown in Fig. 6 in which we want to send two users from s to t .

GBR sends one user on path P1 = {e1, e3} and the other one on P2 = {e5}. The
resulting Nash flow f has makespan Cmax( f ) = 6 and cost C( f ) = 10.

We compare this to the Nash flow g with gQ1 = gQ2 = 1 with Q1 = {e1, e4} and
Q2 = {e2, e3}. This flow has also makespan Cmax(g) = 6 but cost C(g) = 12. Thus
GBR does not find the worst equilibrium.

Observe that g1:= g|G1 is not the worst Nash flow on G1 for two users (neither for
makespan nor cost), as sending both users on path P1 induces costs of 16 but also a
makespan of eight and thus does not constitute a Nash equilibrium any more if G1 and
G2 are composed in parallel. This tells us that a worst Nash flow in a parallel composed
graph does not necessarily consist of worst Nash flows in the two components.

In the following we want to show that it is hard to find the worst Nash equilibrium
in series-parallel graphs.

Theorem 6 The problem WNash is NP-hard on series-parallel graphs even for two
users.

Proof The proof of (weakly) NP-completeness of the decision version of WNash
uses a reduction from the even–odd partition problem as introduced in the proof of
Theorem 4.

Given an instance I (EOP) then an instance I (WNash) is constructed as a graph
G = (V, E) with V = {v1, v2, . . . , vn, vn+1} with two parallel edges between vi and
vi+1 for i = 1, . . . , n and an edge e+ = (s, t). The latency functions of the two edges
between vi and vi+1 are �(x) = w(a2i−1)x and �(x) = w(a2i )x for i = 1, . . . , n and
�e+(x) = Bx . Finally, two users travel from s = v1 to t = vn+1. We denote G\{e+}
by G ′.

We show that I (EOP) is a YES-instance if and only if there exists a Nash equilib-
rium f in G of I (WNash) with costs C( f ) ≥ 2B.
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Let I (EOP) be a YES-instance and A′ its solution. Construct a flow f in G by
sending one user along the edges with slope w(a′) for a′ ∈ A′ and one user on the
remaining edges of G ′.

The cost of f can be calculated as follows

C( f ) =
∑

e∈E

�e( fe) · fe =
∑

e∈E\{e+}
�e(1) =

∑

a∈A

w(a) = 2B

Additionally observe that f is a Nash flow: Both users can not benefit from changing
their path in G ′ due to (2) and as both chosen paths have latency B they have no
incentive to change to edge e+ either.

On the contrary assume f to be a Nash flow with cost C( f ) ≥ 2B.

Case 1: fe+ = 0
Denote by P1, P2 the paths chosen by the two users. No user choosing e+
implies that �Pi ( f ) ≤ B, i = 1, 2. Additionally (2) tells us that P1 ∩ P2 = ∅
in f . We can conclude that the slopes on the edges of P1 and P2 form an
even–odd partition.

Case 2: fe+ = 2
Consider the path P in G ′ including the “cheap” edges with slopes
wi = min{w(a2i−1), w(a2i )}, i = 1, . . . , n. We know that

∑n
i=1 wi ≤ B

by choice of ai and equation (2). But as the users on e+ experience latency
�e+(2) = 2B at least one user wants to change to P and hence this situation
is not Nash.

Case 3: fe+ = 1
Denote by P1 the path in G ′ chosen by the user not traveling on e+. As f is
Nash we conclude �P1( f ) ≤ B as otherwise the user on path P1 would want
to change to P as defined in Case 2. Taking into account that P1 ∩e+ = ∅, we
can use the cost of f to find the matching lower bound for the latency on P1:

2B ≤ C( f ) = �P1( f ) + �e+( f ) = �P1( f ) + B

Hence we have �P1( f ) = B and the slopes on P1 form a solution of I (EOP).

��
As described in Sect. 3.2 we can use the dynamic programming approach of Gassner
et al. (2008) to find a worst Nash equilibrium in pseudo-polynomial time.

4.3 General topologies

We strengthen the hardness result in Theorem 6 by showing that it is hard in the strong
sense to find the worst Nash equilibrium in general graph topologies.

Theorem 7 The problem WNash is NP-hard in the strong sense even on acyclic
graphs with two users.
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Proof Consider an instance I (BlockP) of the strongly NP-complete Blocking Path
problem:

Blocking Path Problem (BlockP for short) (Gassner et al. 2008):
Given: Digraph G = (V, E) with source s ∈ V and sink t ∈ V .
Question: Does there exist an s–t-path P ∈ P such that after deleting

the edges of P there is no path from s to t?

An instance I (WNash) of determining a worst pure Nash equilibrium is con-
structed as follows: I (WNash) is defined on a graph G ′ = (V, E ′) which contains
the same vertex set as G and E ′ = E ∪ {(s, t)}. Since G ′ is acyclic there exists a
topological sorting π :V → {1, . . . , n} of the vertices, i.e., π(i) < π( j) if (i, j) ∈ E .
Given any such sorting π the latency functions are given by

�e(x) = (π( j) − π(i)) · x for e = (i, j) ∈ E .

Observe that due to this definition of the latency functions of edges in G every path
from s to t is a shortest path with respect to the edge lengths �e(1). Let L∗ be the
length of a shortest path from s to t in G with respect to edge lengths �e(1) for e ∈ E .
Then the latency of (s, t) is defined by �(s,t)(x) = (L∗ + 1/2)x .

It remains to show that there exists a blocking path P∗ for I (BlockP) if and only
if there is a Nash equilibrium f in G ′ with cost C( f ) ≥ 2 · L∗ + 1/2.

Given a blocking path P∗ in I (BlockP) we choose paths P1 = P∗ and P2 = (s, t)
and construct a flow f with fP1 = fP2 = 1 while the flow on all other paths is equal
to zero. Hence, we know that C( f ) = 2 · L∗ + 1/2.

Additionally, f is a Nash equilibrium as neither the user on path P1 nor the user on
P2 can benefit from changing to another path: As every path P in G has latency L∗ as
long as there is one user on P2 and �P2( f̄ ) = 2L∗ +1 for f̄ P2 = 2, the user on path P1

is satisfied. For the user on P2 compare the flow f̃ with f̃ P1 = f̃ P = 1 for some path
P in G and observe that P shares at least one edge e′ with the blocking path P1 and
since all slopes of latency functions in G are integral, we have �e′(1) ≥ 1. Therefore,

�P ( f̃ ) =
∑

e∈P

�e( f̃ ) ≥
∑

e∈P\{e′}
�e(1) + �e′(2)

=
∑

e∈P

�e(1) + �e′(1) = L∗ + �e′(1) ≥ L∗ + 1.

Since �P2( f ) = L∗ +1/2 < �P ( f̃ ) holds for all alternative paths P in G we conclude
that f is a Nash equilibrium.

On the other hand, given a Nash equilibrium f with cost C( f ) ≥ 2 · L∗ + 1/2 we
distinguish three cases to show that there exists a blocking path in I (BlockP):

Case 1: Both user share a path, i.e., there is one path P1 with f (P1) = 2
But this situation is not stable and thus no Nash equilibrium: If P1 = (s, t)
we know that �P2( f ) = 2L∗ + 1. However, one user would be better off by
changing the flow to f̃ with f̃ P2 = f̃ P = 1 for some path P in G as then
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�P ( f̃ ) = L∗ < �P2( f ).
If P1 is a path in G, �P1( f ) = 2 · L∗ implies that one user wants to change
to P2 = (s, t) because her latency would be only L∗ + 1/2 this way.

Case 2: Both users travel on two distinct paths P1, P2 through G
W.l.o.g. we can assume that �P1( f ) ≥ �P2( f ). Consider the flow f̃ with
f̃ P2 = f̃(s,t) = 1 with �(s,t)( f̃ ) = L∗ + 1/2. Since f is a Nash equilibrium,
we have �P2( f ) ≤ �P1( f ) ≤ �(s,t)( f̃ ) and by integrality of the latencies we
conclude

C( f ) = �P1( f ) + �P2( f ) ≤ 2 · L∗.

This leads to a contradiction to the lower bound on the cost of f .
Case 3: Only one user travels through G on a path P1 and the second user on

P2 = (s, t)
We show that P1 is a blocking path in G. Assume that P1 is not blocking.
Then there exists a path P ′ from s to t in G such that P ′ does not share an edge
with P1. Hence, the flow f̃ with f̃ P1 = f̃ P ′ = 1 induces latency �P ′( f̃ ) = L∗
and implies �P2( f ) = L∗ + 1/2 > L∗ = �P ′( f̃ ). This contradicts f being
Nash and thus P1 is a blocking path in G. ��

5 Conclusion

We have provided a characterization of the complexity of finding extreme Nash equi-
libria w.r.t. total latency social cost. It turned out that finding best or worst equilibria
concerning this social objective function is in general more complex than for makespan
social cost:

On extension-parallel graphs all Nash equilibria are optimal w.r.t. makespan due to
Epstein et al. (2007) but still easy to find by Greedy type algorithms for total latency
social cost (Sects. 3.1 and 4.1).

Concerning series-parallel graphs Gassner et al. (2008) proved that GBR finds a
worst Nash equilibrium w.r.t. makespan but a best one is (weakly) NP-hard to find for
any fixed number of users. In contrast to these results the complexity in our setting
depends not solely on the graph topology but also on the number of users as we can
find a best Nash equilibrium w.r.t total latency for two users in polynomial time but
it is NP-hard to find for three or more (Sect. 3.2). Finding a worst Nash equilibrium
w.r.t. total latency is also (weakly) NP-hard for any fixed number of users (Sect. 4.2).

On acyclic digraphs finding a worst Nash equilibrium w.r.t. either makespan or total
latency is NP-hard in the strong sense (Gassner et al. 2008), Sect. 4.3). An interesting
open question is, whether finding a best Nash equilibrium w.r.t. total latency is NP-
hard in the strong sense either on acyclic graphs or even on series-parallel graphs if
the number of users is part of the input. The latter is true for makespan social cost due
to Gassner et al. (2008).

Acknowledgments I thank Sven O. Krumke and Florian Seipp for helpful discussions on the topic of
this work.
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