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INTRODUCTION*

The formalism of regular expressions was introduced by S. C. Kleene [6]
to obtain the following basic theorems.

Synthesis: To every regular expression E one can effectively obtain a finite
automata é with binary output 2 such that E denotes the behavior of §é,§>.
Analysis: To every finite automaton é with binary output g one can effectively
construct a regular expression E such that the behavior of <é,£> is denoted by
E.

For simplified expositions of Kleene's theory see Copi-Elgot-Wright [L4],
Rabin-Scott [13], and Myhill [8].

It will be shown here that a more conventional formalism, a weak second-
order arithmetic, can be used in place of the formalism of regular expressions.
Our theorems 1, 2 section 4 are equivalent to Kleene's synthesis and analysis
theorems. This result is of interest for automata theory because formulas of
weak second-order arithmetic seem to be more convenient than regular expres-
sions for formalizing conditions on the behavior of automata. In addition, our
synthesis and analysis theorems yield rather complete information on the strength
of weak second-order arithmetic (see Section 5), thus providing an example of

applying automata theory to logic.

*The author wishes to thank Dr. J. B. Wright for many stimulating discussions.
Some of the results were announced in the Notices, American Mathematical So-
ciety. ("Decision Problems of Weak Second-Order Arithmetics and Finite Autom-
ata. Prelim. Report, Part I," Vol. 5, No. 7, December 1958).



1. NOTATIONS AND TERMINOLOGY

The following letters (possibly with subscripts) will be used as syntactic

variables with range as indicated,

X, ¥y, 2, t denote individual variables

X, Y, Z denote propositional variables

i, j, r, s, u denote monadic predicate variables

A, B, C, Dyeee. denote formulas of propositional calculus
A, 2, C, 2 denote formulas.

Besides the already mentioned (countable) lists of variables our formalism
contains the primitive symbols A,V , A, V, ~, 5, =,[,1,¥,3d, (,

) , 0, ' . The formulas of propositional calculus (p.f.'s) are obtained in the

conventional manner from A , "V and propositional variables by means of the

connectives and [ , ]. Examples of atomic formulas are i(o"), i(x), ra(t''').

Matrices are obtained by replacing all propositional variables in a p.f. A by
atomic formulas.
Formulas (of restricted, i.e. monadic, second-order-predicate calculus) are ob-
tained in the conventional manner from matrices by applying individual —and
predicate—quantifiers, and propositional connectives. A sentence is a formula
without free variables.

A method for indicating occurrences of free variables is explained by the
following examples. "D[X,Y,Z]" denotes a p.f. in which the indicated proposi-
tional variables but no others may occur. "D[i(o"), i(x), s(t')]" denotes the

matrix obtained by making the obvious substitutions in D(X,Y,Z], and may be ab-



breviated as "D(o,x,t)". ”g(il,ig,t)” denotes a formula in which the variables
i1,iz2,t but no others may have free occurrences. We will also abbreviate "[~A]"
by "A", and "[AAB]" by "AB".

We will often deal with n-tuples of objects. The symbol "M denotes con-
catenation of n-tuples. Thus for example "Hif\Hé’\Hl” and ”iff\iéﬁ\ié/\i4” de-
note respectively a 3-tuple of matrices and a L4-tuple of propositional variables.

NN N N S
The second component of the 3-tuple a b ¢ is b. The n-tuple 2 2 2 ... 2

"o

will also be denoted by "n". We next explain the use of a vector-notation which

will considerably condense the presentation and make it more comprehensible.

X?, X?, gn denote n-tuples of propositional variables
i?, Qn, En, EP denote n-tuples of monadic predicate variables
AR, BR, .icceeeo denote n-tuples of propositional formulas

]

For example, ”zm(t') Hr™(t), i®(t)]" stands for the m-tuples of matrices
whose components are ri(t') = Hi[ri(t),eeeerp(t), 12(t),eecein(t)],eeee,rp(t’) =
Hulri(t)yeoee,rm(t), i1(t")soeeerin(t’)]. "XB7Y" stand for the (n+l)-tuple
Xia\XéfT..f\Xﬁf\Y. At some places a notation for an n-tuple of propositional for-
mulas is used ambiguously to denote the conjunction of the p.f.'s occurring in

the n-tuple. Furthermore the superscripts on notation for n-tuples are often

omitted; in such cases it is clear from the context how they are to be restored.

Interpretation: We will not make use of any deductive structure on the syntactic

frame. However, propositional formulas and formulas will be interpreted. Be-
cause the interpretations are quite conventional we will not state rigorous defi-
nitions. Furthermore, we will make ambiguous use of the syntactic notations,

using them at times also for reference to the interpretation. The following list



will explain additional notations and terminology.

A,V truth values false, true
AL the n-tuple Jﬂfg\..../aiﬁg
predicate function from natural numbers to { A,V "}

(set of natural numbers)

special predicate predicate which is ultimately false (finite
set of natural numbers)

n-predicate n-tuple of predicates

special n-predicates n-predicate with special components (n-predi-
cate which is ultimately A7)

Further notations are introduced in the various sections.

2. WEAK SECOND-ORDER ARITHMHETIC

We now consider the following interpretation of the primitive symbols of

the restricted second-order system described in 1.

A,V true, false
A,V,~,D, = the usual truth functions
o, ' the natural number zero, the successor-func-

tion on natural numbers

individual variables range over natural numbers
predicate variables range over special predicates (finite sets

of natural numbers)
(3Ax), (Vx) there is a n.n.x, for all n.n.'s x

(ai), (Vi) there is a special predicate i, for all spec-
ial predicates i.



This leads in a conventional manner to a definition of satisfaction for

formulas, and truth for sentences. The resulting interpreted system will be

called weak second-order arithmetic (W.2.A). The notation ng g(i)" will be

used for the set of all special predicates i on natural numbers which satisfy

the formula C(i). The notations "X c(x)", "i g(in)" are used similarly. The

formula C(1i) defines the set 1 C(i) in W.2.A. C(i,x) is equivalent to B(i,x)

if 2%c(i,x) = 1&ke(1,x), i.eqif (Vi) (Vx). C(i,x)=B(i,x) holds in W.2.A.

Lemma 1: In W.2.A., to every formula g(in) one can effectively construct a for-
mula g*(in) such that i g*(;n) = i g(in) and g*(in) is of the form

(§) ° K[3(0) I A (Vt) B[i(t),J(t),3(t")], whereby j is a r-tuple s
of predicate variables and (Jj) is a prefix of quantifiers (va) and (\/jv)o
Proof: It is clear that one can construct a formula é(x) such that o is the
only number satisfying é(x)° Now if o occurs in g(i) and g(i,x) is obtained
by substituting x for o in 2(1): then 9__(1) = (dx) [Z2(x) A g(i,x)} holds for
i. Thus we have obtained a formula gl(i) equivalent to g(i) in which o does
not occur. The next step is to construct from gl<i) an equivalent formuls
gg(i) in which no iterations of ' occur and no ' occurs in argument places of
i. This i1s easily accomplished by introduction of new predicate variables which
are appropriately quantified. Then 23(3) is obtained by passing to prenex form.

Next we repeatedly apply to gg(i) identities of the form (prefix 1) (3 x)

(prefix 2) A(xX,000.) .=. (prefix 1) (3 J) (\/x) (prefix 2) (Jy) [i(y) A 3(x)>D
A(Xy00.)] and their duals, to obtain a formula _g_4( i) equivalent to g( i) which
is of the form 24(3): (predicate prefix) (individual prefix) [Matrix]. Because

the matrices are constructed from monadic predicate variables only we can make



use of Behmann's [1] device of moving individual quantifiers into the matrix of
24(3). The result is a formula 25(1) equivalent to g(i), and of form Cs(1):
(predicate prefix) 4 [(J+)D,(t) V (Y t)Ey,1 (£)V ceeeee V (V£)By n(t)]. Now
we note that predicate quantification is over special predicates, and therefore
identities of the form (W/t)E(t) ..=.. (V) » (o) vV (F+)[4(t) F(+")E(t)] hola
in W.2.A. If we accordingly replace each constituent (ﬂ't)Ev,u(t) in gﬁ(i)’
making use of different j's, and then move the newly introduced predicate-quanti-
fiers into the prefix, the result is a formula Ce(1i) equivalent to C(i) and of
the form, gs(i): (predicate prefix) A [Ay(o) V (3 t)By(t)]. Now we remark
again that predicate quantification is over special predicates, and therefore
identities of the form A(o) V (Ft)B(t) ..=.. (F3) * [A(o) D jlo) IANL)[(t)A
j(t') ©B(t)] hold in W.2.A. Accordingly we replace each Ay(o) V (Ft)By(t) in
Ce(i), making use of different j's, and then move the new predicate quantifiers
into the prefix. The result is a formula g*(;) equivalent to g( i) and of the

form required in lemma 1.

5. TFINITE AUTOMATA

We will now define automata as syntactic entities. We refer to Section 6
for motivation. In Section 6, our concept also is compared with other defini-

tions of 'finite automaton."

Definition 1. A (finite E/g-automaton with input X% and transit X@ is a 2m-tuple

Em’\Em[Zm,gn] of propositional formulas. (Note that no propositional variables
occur in Em). A (binary) output of a n/m-automaton with transit Y™ is a propo-

sitional formula U[Y"].



The transition-recursion of an automaton E™ “H™ is the 2m-tuple of matrices

Em

(1), 10(8) ]

(o)

i}

™(t")

it defines recursively a functional which will be denoted by r = E(E,E,i)-

The output-recursion of an automaton with output Emf\gy"U, is obtained by

adding the matrix u(t) = U[r (t)] to the transition-recursion. It defines re-

cursively a functional which will be denoted by u = V(E,H,U,1).

The "input to output" functional u = W(E,E,U,E) might be defined to be the
behavior of the automaton with output. However, this is inconvenient for estab-
lishing relations to W.2.A., because in general u = ¥(i) will not be special
even for special i. We therefore will deal with a special sort of output only.

It will be seen in Section 6 that this is not essentially a restriction.

Definition 2. U[Xm] is a special output of the automaton E "Em if

uly] = vlEly,All.

It is easy to see that in case U is special the output recursion defines
an operator ¥ such that ¥(i) or ~y(i) is special whenever i is special. This
makes the operator definition of behavior manageable in W.2.A. However, it is
more convenient to work with the set B consisting of all special i for which
~j(i) is special, rather than with § directly. This leads to the following defi-

nition of behavior, which is closely related to Kleene's [6] (see Section 7).

Definition 3. The behavior B(E™,H™,U) of a n/m-automaton with special output

is the set of all special n-predicates ip for which the predicate u = W(E,E,U,EL



determined by the output-recursion, is ultimately true, i.e., (I x) (\/t)zu(t).
By the length of a special n-predicate i? we mean the smallest number x

such that EP(t) = :ﬁf for t > x. By definitions 2,3 one easily proves,

(*) If U is a special output of the automaton E™ H™, and if i" is a n-predi-
cate of length Y, then i € B(E,H,U) .=. U[x(¥+1)] vwhereby r = ((E,H) is
given by the transition-recursion of Ef\g.

Lemma 2: If U is a special output of the E/g-automaton E@’\Em then so is ~U.

Furthermore the behaviors B(E,H,U) and B(E,H,~U) are complementary subsets

of the set of all special n-predicates.

Proof: That ~U again is special follows directly by definition 2. That the be-
haviors of U and ~U are complementary is best seen by referring to (*).

m
Definition 4: An n/m-automaton with output, E ’\Em’\U, is in expanded form if

H® and U are of the form

HY2,0e0,¥m,X0] ¢ YaKi[XPIV eeveeeo. VYpKR[XD]

U [Yi,e0.,Yy] P YiV YoV ieeeeeao V Y

Lemma 3: To every n/m-automaton Em’\gm(\U one can construct a E/E-automaton

Qk/TLFV\W which is in expanded form, and such that if U is special output of

k:

E% ™ then W is special output of G L¥

and the behavior B(G,L,W) is equal to

B(E,H,U).

Proof: We indicate the construction of G, L, W in case g=2’\2, and U[Y1,Yo]
Yi. The given automaton then consists of p.f's E;, Es, Hl[Yl,Yg,KP], Hg[Yl,Yg,zp].

The first step in the construction is to obtain disjunctive forms for H;,Ho,

and U. Let this be,



HilY1,Y2,X] .=. Y1Y2A11[X] V Y1§EA12[§] V'?lYaAls[K] v ¥1¥oA14(X]

(1)

HalY1,Y2,X] +=. Y1¥oho1[X] V ¥1¥ehon[X] v ¥1¥ahos[X] v Y1¥oAzs(X]

(2)

~
Now we let k = 2 2 2 2 and construct G5, H

(3)

L1[21,22,23,Z4,X] :

L2(21,22,23,24,X] :

(4)

L3(21,22,23,24 :2{_] :

L4lZ1,22,23,24,X]

(5)

U[Yl,Yg] . Y1Y¥5 Y Y1Yo

K » W as follows,

G1 : EiEs Gz : B1Es

Go : Elﬁg Gge : EiEp

Z1A11[X]A21[X] V ZoA12[X1A22[X] V Z3A13[X1A23[X] V Z4h14[X]A24 [X]
Z1A11[X]A21[X] V Zohy2[X]A22[X] V ZaA1a [&]Kes[ﬁ] V Z4h14 [K_ﬁz‘; (x]
Z1K11(X1A22(X] V Z2K1o[X1A22(X] V ZaK13[X 1823 (X] V ZaR14 (X ]A24(X]

22811 [X)R21[X] VZoA12[X1R22[X] \ Z3K1a[X)Aaa[X] Z4A1a[X 1Rz [X]

W[Z15Z2)Z:3:Z4] 21V 7o

By definition 4, and (3), (4), (5) it is clear that G" L W is in expanded form.

Next we obtain from (1) the identities ﬁv[Yl,Yg,g] = Y1YoRya [X17/ Ya¥oRya(X] V

Y1¥ohya[X] V ¥1¥oAva[X]. Together with (1) and (4) this yields,

L1[Y1Y2, Y1Y¥s, Y1Ys, YiY¥o, X]
Lo[YiYe, Yi1¥o, YiYs, Yi¥s, X1 .
LalY1Ys, Yi¥z, YiYs, Yai¥s, X1 .

La(Y1Y2, Y1Y2, Y1Y¥2, Ya1Y2, X] .

Hi[Y1,Y2,X] H2[Y1,Y2,X]

~

H1(Y1,Y2,X] Ha[Y1,Y2,X]

Ui

il

Hy[Y1,Y2,X] HalYy,Y2,X]

~

. El [Yl,Yg,_)_(_] Ho [Yl:YZ:K]

il

and from (2) and (5) we get,

(7) WlY1Y2, Y1Yo, YiYs, YiYo] .

UlY1Y2]



N\
Now assume that U is a special output of E H. Let (_J_[Yl,Yg] stand for
~ N T N~
Y:Ys Y:1Ys YiYs Y:Yo. Then using in order (7), definition 2, (7), (6) one

I

obtains W[C[Y1,Y2]] = W[L[C[Y1Y2],/\]]. This means that W[Z] = W[L[Z,/\]] holds
NN NN NN NN

for the values VAAN, AVANAL,AAVA, and AAAV of Z. Because of the
particular form (5) of W the restriction of the range of Z can be omitted,

N\
which by definition 2 means that W is special output of G L.

~
Next let i be any n-predicate and let r1 rp = §{(E,H,i), sf\s{\s{\s‘} =

§(97L;£) » SO that

r(o) E s(o)
(8) (9)
r(t') = Hr(t),i(t)] s(t')

G

Lls(t),1(t)]

11}

Using (3), (6), (8), (9) one shows by an induction on t that si(t) = ry(t) ra(t),
sa(t) = ry(t) Ta(t), sa(t) = Fo(t) ra(t), sa(t) = F1(t) Fo(t) hold for all t.
Because of (7) this yields, (Vt)-W[s(t)] = U[r(t)]. By definition 3 it fol-

lows that B(G,L,W) = B(K,H,U).

{ m ) m
Lemma 4. Let f_:_m H be ann E/Q-automaton in expanded form and let L~ be de-

~
fined by, L"[Y', X"1 : E'[Y%, ff\vl v EY", & Al
N\ N\ N
(a) 1If i_n J is any n 2-predicate and if Em = _c_(g,g_,im j), and §_m = §(E,L,i"),

then (t) [r(t) D s(t)].

n

(b) 1If i" is any n-predicate, and s™ = g(_]g_,;_,i_n), and s,(x') =7/, then there

1]

exists a special predicate j of length < x such that also rv(x’) =V, in case

rt = E(Eyﬂ:lnr\g]) .

Proof: By assumption _I-_I_n is of form

(1) gm[gm,ln/\z] : Ylgm[gn/\z] V...V Ymﬁ[gnf\z].

10



N
Now let 1 J be any'éf\?-predicate and let r = {(E,H,i Jj), s = {(E,L,i). Then

by definition 3 and the construction of L,

r(o) =E

(2) -
r(t') =Hlx(t),1(t) 3(t)]
s(o) =E

(3)
s(t") E[E( ),1(t) V] [ ( ))1(t)-/\—]

hold for all t. Making use of (1), (2), (3) it follows by induction on t that
(Vt)[r(t)Ds(t)]. Thus part (a) of the lemma is established.

Next let i be any n-predicate, let s = ((E,L,i), and suppose that sy(x') =
/. Then by definition 3 the predicates 1 and s satisfy (3) for all t, so that

by (1) we obtain

spo) = E, 0 = lyeeeee,m
(4) ~
sp(t') = sv(t)Kp [i(t') Y] 30 = lyeeeee,m
V=l,o.o,m
Y=-/\.,v

Now we stepwise choose a sequence of truth values j(x),....,j(0) and a sequence
of indices Vg4l e+ V, according to the following specifications. TI. Let
Vx4l be V. II. If vy.y has already been obtained choose vy,j(y) such that Svy(Y)
N /-\- .
and KVy+l,Vy [i"(y) J(y)] hold. That these choices are possible clearly fol-
lows by the assumption s,(x) = Vand (4). Let now the values r(0),.....,r(x")
be defined from i(0),....,i(x), j(0),.....,3(x) by the recursions (2), so that
\/ ~
= . 1 = ! 1
by (1), rpo) =EBy; r(t') = o, M. ,m tu(t)Ky ,[1(t)  3(t)] for + < x. Then
by using II one stepwise obtains rvo(o), Kvl,vo[i(oyf‘j(o)],.....,rvx(x),

Kvx+1,vx[1(x) 3(x)1, er+1(x+l Therefore by I, ry(x') = V. Thus by extend-

11



ing the sequence j(0),....,j(x) letting j(t) = A_for t > x, we obtain a spe-
cial predicate j such that j is of length < x, and ri(x') = Vin case r =

t(E,H,i"). Therefore also part (b) of the lemma is established.

N

Lemma 5. For every E/g-automaton with output E? H™ U one can construct a num-

ber h and an output W such that

(a) uUly]ow(y]

N

(b) Z1 =3YA HZ1, AN o0 e A2y = HIZy 1,A] DL U[Z1]1V....VU[Zh]

n
I

2

(¢) 1f U[Y]DU[H[Y,Al] then W is special output of E H.

Proof: The construction of h and W[Y"] from H"[Y",X"™] and U[Y ] proceeds by
the following rules,
I. Let UglY] eV, let Ui[Y] be U[Y].
II. If Ugl[Y] = Ugy(Y] is not tautologous, let UgyplY] be Ukyy [YIV Uy [H[Y, A]]
III. If UglY] = UgqplY] is tautologous, let h be k, let W be Uy, and stop.

From this construction it is clear that Uy[Y]1DUi[Y], UL[Y]DU2(X], «©c..
Because there are only a=2(2m) truth-functions on m arguments the construction
must reach a stage k<a such that Uy and Uy,; denote the same truth function,

i.e., such that Ug[Y] = Ug, [Y]. The next step in the construction then clearly
must use the stoprule ITT. Thus the construction always ends in k<a steps,
yielding an h and a W»

Suppose now for example that h turns out to be 3, so that W is Uz and Uz = U,.
Letting K[Y] stand for H[Y,A] it follows from the construction, (1) Un[Y] =.
U[YIVUIK[Y]], and (2) UalY] = U2[Y] M Ux[K[Y]], and (3) UslY] = Us[Y]VUs[KIY]].

By (1), U[g]bUg[x] and by (2), Uz[Y]1DUs[Y]. Therefore U[Y]DUs[Y]. Be-

cause W is Uz this established part (a) of the lemma.
12



Next suppose Zi1 = Y1, Z2 = K[Z1], Zs = K[Z2], and Us[Y1]. Then by (2),
U2[Z11VUz2[Z2]. This yields by (1), U[21]VU[Z2]VU[Zz]. Because Uz is W and
K[-] is H[-»/A] this established part (b) of the lemma.

Now suppose U[Y]DU[K[Y]]. Then by (1), U2[Y]DU[K[Y]], and also by (1),
U[K[Y]1]DU=(K[Y]]. Therefore Uz2[Y]DU2[K[Y]]. From this, by using (2), Us[Y]D
Us[K[Y]] is similarly obtained. But also Uz[K[Y]]DUs[Y], because of (3) and
Us = Ug. Thus, Us[Y] = Us[K[Y]]. Because Uz is W and K[Y] is H[Y, A] this

means that W is a special output of EAE. This establishes part (c) of the lem-

ma.

' YW
Lemma 6: To every E’xa/g-automaton with special output E® H® U in expanded

N N
form one can construct a E/g-automaton with special output Em _L_m W such that

. . el . -, /\. /\/-\
for every special n-predicate i", 1eB(G,L,W) = (2J)[i JeB(E,H,U)] and E L W
is again in expanded form.
Proof: The construction of L_m, W is as follows,

(1) LIY,X] : HIY,X VIVEHY,X Al

N\
(2) h, W[Y] : apply construction of lemma 4 to E L U.
Assume now that E H U is in expanded form and U is special. Then by defini-

tions 2, L,

(3) UlY] : YiVYa V...V Yy

(1) Uly] = UE[LA A]
By using (4), (3), (1), (3) in this order one shows U[Y]DU[L,[Y,A]].
Therefore, by (2) and lemma 5 (c), W is a special output of EAL

~~~ VY
Next assume i Jjep(E,H,U), and let r = {((E,H,i J) and s = ¢{(E,L,i). Then

by definition 3, (3x) (V¥+t)3 Ulr(t)], and by (1), lemma L(a), (Vt) [r(t)Ds(t)].

15



Therefore it follows by (3) that (Fx) (Vt)y Uls(t)]. By (2) and lemma 5(a)
this yields (3 x) (‘v’t);’ W(s(t)]. Therefore, by definition 3, ieB(E,L,W). Thus
~

we have shown that (3 Jj)[i JeB(E,H,U)] D _':L_GB(E,L,W)-

Assume now that ieB(E,L,W), and let s = ((E,L,1). Then if Y is the length
of i it follows by (*) that W[s(}¥+1)]. Because of (3) and lemma 5(b) this im-
plies that Uls(¥+1)IV..... V U[s(¥+h+1)], and by (3), there are v,p < h such
that s ({+p+l) =V . Because Ef\g is in expanded form and because of (1) we
therefore can apply lemma 4(b) to conclude that there is a j of length < l+p
such that r(Y+p+l) =V, for r = t(E,H,i J). Using (3) we obtain U[r(Y+p+1)].
Now observe that i(t) =A., and j(t) =4\, for t>1+p. Because U is special out-

~ (o0}

put of E H it therefore follows that (Vt)x +p+1 Ulzx(t)]. By definition 3 this
means that i?’\jeB(E,E,U). Thus we have concluded the proof of lemma 6 by show-

ing that 1eB(E,L,W) D (I “JeB(E,H,U)].

L. ANALYSIS AND SYNTHESIS

We begin by establishing a synthesis result for formulas of W.2.A. which
do not contain predicate-quantifiers. Using the lemmas of Sections 2 and 3 one

then easily extends the result.

Lemma 7: To every formula C(i") of the form K[i(o)]/\(Vt)B[E(t),l(t')] one can
~

construct a n/m-automaton E® H™ and a special output U[fn] such that B(E,H,U) =

ic(1).

Proof: We first determine whether or not B[A,A]. In case ﬁT__,{}], we take

~
for E H any automaton and for U the output /\. Then clearly U is special out-
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put and B(E,H,U) = ig(l) are both empty. Thus in this case Lemma 7 is estab-
lished.
Let us next consider the case B[A,A]. Then we take m to be n+2, and EM
m m .
to be V7. H we define as follows.
N /ﬂ\
Hy[Y" 21 Zo, X°] @ X, FOr V = 1lyeeeee, 0
N\ N
Hpa (X% 21 22, 271 @ A
~ N\ o~
HpiolY® 21 Z2, XP1 ¢ ZaK[XPIV Z2:22B[YR,XR].
As output we choose the formula
N\ ~
uly® ZleZ] i ZiK[APIVZ1ZB[YR,A].
Noting that B[Zﬁﬁlﬁ]’ and using definition 2, one easily checks that U is a spe-

N\
cial output of Efwg. Furthermore, the transition-recursion of E H is clearly

equivalent to the recursion

r(0) = Vv s V=1,0000,n42
rpo(l) = K[i(o)]

ry(t") = 1,(t) 5 V=1yeeoayn
rpa(t) = A

rpo(t') = ryo(t) Bl1(t),1(t1)]

and therefore the operator r® = {(E,H,i") can also be defined by

I‘V(O) = v » vV = l,o'--,n+2
I'(t') = i.v(.t) 5] VYV = l,noc-,n
rn+l(t') = A

K[1(0)IA (V%)L T BlA(x),1(x")]

rp+2(tt)

Consequently, the output-operator u = W(E,E,U) is defined by

u(o) K[A]

n

u(t') = K[1(0)IA(VYx)S™ BIL(x),i(x') IABIL(t),Al.
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Because B[A,A] it follows that for any special i, u = y(E,H,U) is ultimately
V just in case K[i(0)] A (Vt)B[i(t),i(t')]. TI.e., by definition 3, B(E,H,U) =

fe(a).

Theorem 1: (synthesis) For every formula C(i%) of W.2.A. one can construct a
~~ m ' A

n/m-automaton E® H®™ with special output U[Y™] such that B(E,H,U) = ic(i), i.e.,

such that the behavior of _E_lAEAU is Jjust the set of special n-predicates which

satisfy C(1i).

Proof: Using Lemma 1 we first construct the formula C*¥(i) equivalent to C(i).
Let us for example assume that C¥(i) is as follows, C¥(1) : (Vr) (I s) -
K[r(o),s(0)] A(Vt) B[i(t),r(t),s(t),x(t'),s(t')]. Next we use the construc-

. N\
tion of Lemma 7 to obtaln an automaton E; Hj with special output Ui such that
for special i, r, s,

NN

(1) i r 5 ep(E1,H1,U) .= K(o) A(Yt)B(t).

) BN
Using Lemma 3 we next construct Ep Ho Uz in expanded form and such that

(2) B(Ez2,H2,U2) = PB(E1,H1,U1).

By repeated application of the construction of Lemma 6 starting with Ex Ho U
N M . ~

one obtains Ez Hs Us such that for special i, r, i r €B(Es,Hs,Us) .=.

N TN
(3s)i r s eB(Ez,Hs,U2] and therefore by Lemma 2,

(3) _i_f\E GB(ES’ES:Es) ENEDIFA S €B(Ez,Hz2,Uz) ]

Because the complementation destroys the expanded form we are forced to use Lem-
~

ma 3 again to obtain _E_4/\f_{_4 Us in expanded form and such that

(4) B(E4sHs,Us) = B(Es,Ha,Us).

~ M
By repeatedly applying Lemma 6 we next construct Es Hs Us such that for every
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N\
special i, i €p(Es,Hs,Us) -=. (r).i r €B(Eq,Hs,Us) and therefore by Lemma 2,

~ N\
(5) i eB(Bs,Hs,Us) .= ~ (3r) i r eB(Ey,Ha,Uas)
From (1),++0....,(5) it clearly follows that i €B(Es,Hs,Us) .=. C¥(i). Be-
cause C* is equivalent to C this shows that the behavior of E5 Hs Us is iC(i).

We next obtain a rather strong converse to Theorem 1.

/N m/\
Theorem 2: (analysis) To every E/g-automaton with special output E@ H™ U one
can construct a formula C(i®) of W.2.A. such that iC(i) = B(E,H,U), and such

that furthermore C(i) is of the form (3 JjP).K[J(0)] A (Y +)B[i(t),4(t),(t")].

Proof: By definition 3 it is clear that for every special i, 1 eB(E,E,U) =
() [z(0)=EA(Y ) [x(t")=hIx(t),1(t) 1] A (Fx) (V) Ulr(t)]]. However, the
range of (EHE) in this formula may not be restricted to special predicates. On
the other hand, because U is assumed to be special, the formula may be slightly
modified so that the range of (= r) can be restricted to special predicates.
Namely, it is clear that for any special i,
(1) 1e (BEU)..=.(Tr)(Tx) . r(o)=E (Vo)5lr(+)=(t)IA(VE)2la(t)= A
AU r(t)]1].
It remains to change this definition of B in W.2.A. to one of the simple form
required in Theorem 2. This is accomplished by using the following device for
changing the individual quentification (3 x) to a quantification (233) over re-
stricted predicates,
(2) 1 eB(E,E0)..=..(Ix)(FJ) - (VO3(s1) Di()] Ax(o)=E A (V1) 5(¢) D
[x(t)=1(£) 1] A (F)[3() D [1(t)= AAU[x(¢)1]].
To see that (2) is correct in case (Jr)(JJj) is interpreted as ranging over spe-

cial predicates we observe that the right sides of (1) and (2) are equivalent

17



because of an obvious one-to-one relationship between numbers x and restricted

predicates j satisfying (WVt)[3(t') D j(t)].

Thus the right side of (2) is a formula C(i) as required in Theorem 2.

5. DEFINABILITY IN W.2.A.

We will use the notation "[0, x+1, Hoi]" to denote W.2.A. This is in-
tended to indicate that we are dealing with an interpreted system which be-
sides first-order quantification over natural numbers contains O, the function
x+1l, and quantification over special predicates. Similar notations for other
interpreted systems, all containing first-order quantification over natural num-
bers, are used below. "_:E]OC" indicates quantification over eventually constant
monadic functions from natural numbers to natural numbers.

The following systems are known to be very strong in the sense that all re-
cursively enumerable predicates are definable in each.

[0, =, x+1, Zot] GBael [5]

[0, =, x+y, x.y] Gbdel [5]

[0, x+1, 2x, 3pi] vRobinson [14]
(In fact these systems are equivalent in the sense that the same predicates on
natural numbers can be defined in each.) In contrast we will now show that
[0, x+1, d,1] is much weaker, in particular the only monadic predicates on nat-

ural numbers definable in W.2.A. are those which are ultimately periodic.

Definition 5: A formula of W.2.A is said to be in normal form if it is of the

following type, C(1™, x1,.-+; xp) : (3 JM(K[3(0)] A (Y)BLA(t), 3(t), J(£)IA

Arld(xa) T Ao A ARLa(x ) ]
18



Theorem 3: For every formula g(in, xl,...,xp) of W.2.A. one can construct an
equivalent formula g*(in, xl,...,xp) which is in normal form, i.e., every predi-
cate on numbers and special predicates definable in W.2.A. is definable by a

formula in normal form.

Proof: Suppose first that ,A,(in) is a formula without free individual variables.
Then by Theorem 1 one can construct an automaton EAE with special output U such
that B(E,H,U) = -%A;(l) Next, by Theorem 2 one can construct a formula ﬁ*(i) in
normal form such that TA%(1) = B(E,H,U). It follows, (1) = Aax(1). Thus,

(1) If é(_:i_.) does not contain free individual variables one can construct a
normal é*(_l_) equivalent to A(i).

Let us next start with a formula 9__ which contains free individual variables,
say for example g(_i,xl,xz). Let A be defined thus, é(i,sl,SZ) : s1(o0) A
s2(0) A (V1) [s1(t') D sa(t)A (V) [sa(t')Dsa(t) 1A (Vhrta) [s1(t1)8 b)) salt)Eats)
o g(i,tl,tg)]o It is then easy to see that é(i,sl,sg g_(_i,xl,x2), in case x1+1,
Xo+l are respectively the length of the special predicates si,so. Re-stating
this we obtain C(1,x1,x2) .= (Fs1s2)[A(i,81,82) A sa(x1)8a(x1) A sa(x2)s3(x2) ],
and therefore,
(2) g(i,xl:xz) eI (aslszrlrz)-i(_i_:sl;sz) N (V) [ra(t)=sa(t)] A

(Wt) [ra(t)=sa(t') I A si(xa)Tal(x1) A sa(x2)Ta(x2).

Finally we use (1) to obtain a é*(_i_,si,sz) in normel form and equivalent to A.
Replacing in the right side of (2) A by A* and performing some obvious shifts
of quantifiers will then yield a g* equivalent to g such that g* is in normal

form.
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Corollary 1: There is a procedure for deciding whether or not a sentence of

2
W.2.A. is true.

Proof: Because of Theorem 3 it is sufficient to indicate a procedure which de-
cides the truth of sentences C of form (E]i) * K[j(o)IN (Vi) Bl[j(t), j(t")].
We may furthermore assume that B[A ,/A], because otherwise the sentence C is
clearly false in W.2.A. g then is equivalent to the assertion,
(1) There is an x and a sequence of states Yy,....,Yx such that K[¥,], B[Yy,Y1],...
b BlYe1sYe)s Xx S A

Note that in case x > k = number of states of j there must occur a repeti-

tion in the sequence Zo’ Yi,....,Yy, say Zy =Y, for some 0 <y <z < x. Then

if Zo)"':zy:"':Zz:"':Zx is a B-sequence, the shorter sequence Xo:"':Zy:

Y

Y,415.-+5,Yx 1s still a B-sequence. Consequently the assertion (1) is equiva-

lent to,
(2) There is an x < k = number of states of j, and there is a sequence of states
Yo,...,Yx such that K[Yo], B[Yy,Ya],.-.., B[Yy 71,¥x], ¥, = A.
Because there are only a finite number of sequences Yg,....,¥x, x < Kk, it
is clear that one can effectively check whether or not (2) holds. Because ¢

is equivalent to (1), and (1) is equivalent to (2), this establishes Corollary 1.

Corollary 2: Every formula C(x) of W.2.A. defines an ultimately periodic set
Qg(x) of natural numbers, i.e., there are numbers Y (phase) and p (period) such

that (Vt)[g(1+t+p) = g_(;{+t).

2. As R. L. Vaught remarks, this result can be obtained from a theorem of A.
Ehrenfeucht; see Robinson [14].
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Every ultimately periodic set of natural numbers is definable in W.2.A. by

a formula Q_(X) -

Proof: By theorem 3 we may assume that C(x) is of the form C(x) : (3 j).K[j(o)]
N (¥t)B3(t), J(£')IAA[J(x)]. Now, let Yi,....,Yy be those states Y of j for
which A[Y], and for v = 1,...,a let, Cy(x) stand for (3j)[K(o) N (Vt)B(t) A

(F3) k(o) N

i

J(x) =¥,]. Then clearly, C(x) = Calx) V ... VCa(x), Cy(x)
(V)5 B(t) A 3(x) = Yyl A (23)[3(0) = Yy A (Vt)B(t)] hold in W.2.A. There-
fore, if Yi,....,Yy (b < a) are those states among Yi,...,Y, for which (3JJ)[j(o) =
Y A (V)B(1)], then C(x) = (33).K(0) A (W)p B(t) A [3(x) = X1 V «uruvi(x) =
Yy ] holds in W.2.A.

Next let k = number of states of j, and let YiyeeesYyse-e,Y, be the states

of j, and let ri,...,rx be defined by the recursion

ry(o) = K[Y,] sV=lyeceey k
(1)

n

ry(t") = ri(£)B[Y1,Yylv .c. v (t)B[Yk,Y, ] sV=lyeeeay k
One then easily shows that (3 j) [K(o) A (Vt)}; B(t) N [J(x) =Y1V...v
J(x) = K’b]] holds if and only if [ri(x) V ... V r(x)]. Consequently, '}\cg(x) =

Rlri(x) V.o v ry(x)]. Now r has 2K states, therefore a repetition must oc-

cur in _r_(o),...,;(Ek), say r(Y) = r(Y+p) whereby 1/+p§2k and 0 < p. By (1) it

then follows that r(¥+t) = r(I+p+t), for all t, so that X[ri(x)V ...vr (x)] =
)’c\g(x) is ultimately periodic with phase l and period p.

The second part of Corollary 2 is best shown by first obtaining definitions
in W.2.A. of the relations x=y, x<y, x=y (mod p), for fixed p.

Note also that the selection of Yj,e..,Yy from Yj,...,Y5 in the proof of

Corollary 2 can be effectivelymade (by Corollary 1). As a result one can ef-
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fectively find the phase and period of the set ﬁg(x).
By using similar methods to those employed in the proof of Corollary 2 one

shows that every relation R(x,y) definable in W.2.A. must be of the form R(x,y) =

V [x<y A Ap(x) A By(y-x)] v\/[y<x A Cy(y) A Dy(x-y)] whereby A,, By, Cy, are

V= ,07,8.- V=l,_.'.-,c

ultimately periodic. In particular y = f(x) is definable in W.2.A. if and only
if it is ultimately periodic, i.e., satisfies f(Y+x+p) = f(Y+x) + q, for some

Y,p,q (compare this with Robinson's [14] result on [O,x+l,2x,:ioi]). However,

the following result seems more informative.

Corollary 3: If R(x,y) well-orders a subset of natural numbers and is definable
by a formula C(x,y) of W.2.A., then the type & of R is less than w2. Conversely,
if o is an ordinal less than w2 one can find a formula C(x,y) of W.2.A. such

that ﬁ?g(x,y) is an o-well-ordering of all natural numbers.

Proof: Suppose R(x,y) is a well-ordering of natural numbers of type o, and for
N < & let An be the initial segment relative to R of type n. Then from a defi-
nition g(x,y) of R in W.2.A. one can easily obtain definitions of the sets An,
for n < wa; so that by Corollary 2 the sets An,n < w? are ultimately periodic.
Now it is easy to see that there is no strictly increasing w2-sequence of ulti-
mately periodic sets of natural numbers. Consequently if R(x,y) is definable
in W.2.A. then its type & must be less than w2. To indicate a proof of the sec-
ond part of Corollary 3, let us consider the case 0 = w3 + 2.. Because one can
define x=y(mod 3) and x<y, and x=y in W.2.A., it is clear that one can also de-
fine a relation R(x,y) which well-orders the natural numbers in sequence,

639512 c0ucceeslyliyTyooncaees2y5,8500uveass0,3.
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It seems clear that one could use Theorem 3 also to investigate the nature
A . .
of sets iC(i) definable in W.2.A. by formulas with free predicate variables.
However, a rather concrete characterization of these sets of finite sets is

given by Theorems 1 and 2, namely

Corollary 4: The sets of n-tuples of finite sets definable in W.2.A. are ex-

actly the behaviors of special outputs of finite automata with n-ary input.

We will terminate this section with the presentation of a first-order
theory which is equivalent to W.2.A. in a very strong sense. For this purpose
note that

(1) = X (2%
i(x)

defines a one-to-one mapping f from all special predicates (finite sets) of
natural numbers onto all natural numbers. f(i) = y simply means that for 1 =
length of i, i(0)i(1) .... i()) is the binary expansion of y. This mapping f
induces a natural one-to-one correspondence between relations on special predi-
cates and relations on natural numbers, let us say that R(ii,....,i,) and
S(x1,....,%,) are adjoined to each other in case R(iy,....,ip) = S(£(iy),..-.,
f(iy)), for all special ij3,...,i,. Let furthermore "Pwa(x)" stand for "x is a

power of 2."

Theorem 4: The first-order theory [=, +, Pwo] is equivalent to the weak second-
order theory [0, ', Eﬂoi] in the sense that a relation S(xl,....,xn) on natural
numbers is definable in [=, +, Pwp] if and only if its adjoined relation

R(iy,...,i,) is definable in [0, ', ani]' Moreover, from a definition

lna

(X15++.,%y) of S one can effectively obtain a definition D(ii,...,i,) of R,

23



and conversely.

Proof: Let S(i, j, s) be the adjoined to x+y=z, i.e., "S(i, j, s)" stand for
"F(1) + £(J) = f(s)." Then by formalizing the procedure of adding natural num-
bers in binary expansion one obtains the following definition of S in the weak
second-order theory [0, ,:Hoi],

s(1, §y 8) :+ (Fr).F(o) A (W) [x(t') = [x(£)i(t) V r()3(t) V

1(£)3() 11 A (V1) [s(t) = [r(2) v4(t) v 3(+) ]

whereby "X VY" stands for "XY¥ V YX." Furthermore, if U(i) is the adjoined to
Puo(x); then U(1) : (3 x) (Vt) [i(t) = (t=x)] is a definition of U in [o,',Zoi].
To prove Theorem 4 in one direction it therefore is sufficient to indicate a
translation of formulas C of [=, + , Pwz] into formulas C* of [0, ', U, S,'E%i]
such that gf(il,...,in) and g(xl,,..,xn) define adjoined relations. Because
every formula g of [=, + , Pwz] is easily changed to an equivalent one in which
no iteration of + occurs, the following specifications yield the required trans-
lation.. 1. [Xy+x,=X,1¥ is S(iv,iu,ip), 2. [Pwa(x,)]*is U(1,), 3. [g,\g]* is
C¥A D¥, b [~CI* 1s ~C%, 5. [(dxy)CI* 1s (J1y)C%.

To prove Theorem 4 in the other direction we note that
E(x,y) : Pwa(x)A (Juv) [(y = utx+v) A (u<v) A [v=0 V2x<v]] is a definition in
[=, + , Pwz] of "x is a power of 2, and x occurs in the representation of y as s
sum of powers of 2." It therefore is sufficient to indicate a translation of
formulas C of [0, ', Foi] into formulas g? of [=, + , Pwa, E] such that
go)xl,..n.,xn) and.g(il,....,in) define adjoined relations. If one notes that
i(x) means the same as E(x,f(i)), and that every formula g(il,.e..,in) can be

changed to an equivalent one in which o does not occur and ' only occurs in parts
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of form (Vt)[j(t) = 1(t')], then it is clear that the following specifications
yield such a translation. We single out the individual variable t and divide
the remaining ones in Xy,Xo,e++-«;y1;¥2se0eco - In [0, ' , J.1i] we make use of
Y1,Y¥25++0, and t only (while it is intended that in [=, + , Pwz, E] the range
of the y's is restricted to Pwz). 1. [1y(y,)1° is E(yu,xy), 2. [(\Jt)[iu(t) =
o

1(t9)1° 18 [xy = %y + X Vxy = xy + xy + 1], 3. [CAD]® is C°AD7, b [~C]

s ~C% 5. [(Z1,) ¢1° 1s (xy) ¢°, 6. [(Tyy) ¢1° 1s (Ty,) [Pwalyy) A Ol

By Theorem 4, Corollary 1, Corollary 4 one clearly obtains,

Corollary 5: The first-order theory [= , + , Pwp]is decidable. A relation
R(xl,.,..,xn) is definable in this theory if and only if its adjoined S(ii,e...,in)

is the behavior of a finite automaton with special output.

One might attempt to prove Corollary 5 directly by extending Presburger's

[10] method for [=, + ]. Corollary 1 would then follow by Theorem L.
Let Qo(x) stand for "x is a square." Then by Putnam [11], the first-order

theory [=, + , Qo] is undecidable. It is interesting to compare this with Corol-

lary 5, and one easily extends the results as follows,

Theorem 5: The first-order theory (=, + , P] is

(a) undecidable in case P(x) is ultimaetely a hyper-arithmetic-progression, i.e.,
in case P ultimately consists of the values of a polynomial of degree > 2.

(b) decidable in case P(x) is ultimately a geometric progression.

To better understand the jump in strength from [=, + ] to [=, + , .] it
would be interesting to know whether there is a recursive predicate P(x) such
that [=, + , P ] is undecidable without admitting definitions for all recursive

predicates.

25



_é. OTHER CONCEPTS OF FINITE AUTOMATA

Clearly our éoncept of finite automata is very closely related to that of
Church [3]. What we have callled the transition-recursion and output-recursion
of an automatoﬁ (with output) are restricted recursions in his sense. While
Church allows instantaneous action (the input at time t directly affects the
transit and output at the same time t), it is just a matter of convenience that
we have presented our theory in terms of automata with delayed action only; al-
g0 our restriction to special outputs is inessential (see Section 7). The be-
havior-concept used implicitly by Church is that of the operator u = y(1i) de-
fined by the output-recursion. We hope to show elsewhere how his synthesis pro-
cedure (Case II) can be extended to condition-formulas containing predicate-
quantifiers.

Recursions like our output-recursions were first used by Burks and Wright
[2]. Their concept of well-formed logical net is equivalent to our finite autom-
ata, except that instantaneous action occurs in logical nets.

In the following discussion it is intepded that a E/g-automaton (whose in-
put has n binary compoqents) represents in coded form a 2%/2™.automaton (whose
input has one 2"-ary component. Let 2o = (A, V], ZE = 2o Xeesex 2o (n factors).
Under the conventional interpretation of propositional formulas Em denote an element OGZE, while
g?[x?,AgP] may be interpreted to denote a funection T: Zm X ng?2£. Thus, with

N
an n/m-automaton gfr"g?[g? » X?] is associated a system < Xy, Ly, o, T > calledits

transition gystem. The elements of Y and 2, are respectiwly cdlled imput states and transit-

states, o 1s the initial-state and T the transit-function of the automaton. An

output U[Y™] may be interpreted to denote a subset of transit-states. These re-
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marks are intended to indicate how our notion of finite automats (with output)
is related to those used by Moore [9], Myhill [8], Rabin and Scott [13], and
others. While our notion is syntactic these authors take automata to be what
we called transition systems (with output set). The latter definition is not
correct if the mathematical concept "finite automaton'" is to correspond to
physical structures. Two physical systems (two syntactic systems) can be quite
different structurally (syntactically) and still display the same transition-
system. Also from a purely mathematical point of view it is not advisable to
identify automata with their transition-structure, as it then becomes impos-
sible to rigorously state existence of algorithms as, for example, in our Theo-
rems 1 and 2. The point is that an algorithm is better thought of as applying
to and yielding syntactic entities.

We will now indicate how our theory of behavior can be extended to autom-
ata with many inputs, each of which may have any number of binary components.
For this purpose it is convenient to extend propositional calculus so as to con-
tain w lists, each list consisting of w propositional variables. A notation
like "H[X®; Y¥; Z]" will be used to stand for a formuls of (extended) proposi-
tional calculus in which the variables X, Y, Z and only these may occur, and
furthermore the variables X belong to a first 1list, which precedes a second list
to which the variables Y belong, which precedes a third list to which the vari-

ables Z belong.

n
Definition 1'. A (finite) ni;.....;ny/m-automaton with inputs X",....,X, " and

'S n
transit Xm is a 2m-tuple E EP[Im;.Xgl;.....; Kkk] of propositional formulas

(no variables occur in Em).
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A (binary) output of such an automaton is a propositional formula U[Xm],

where Y@ is the transit of the automaton.
It is clear how one extends the notion of transition (output)-recursion,
introduced in Section 3, to n,j.....; Ek[g-automata (with output). Also for the

extension of the concept of special output we refer to Definition 2 in Section 3.

Definition 3'. The behavior B(E®, H®, U) of a ny;....; nj/m-automaton with spe-

cial output is the k-ary relation which holds for the special nj-predicate
i1500..,nK-predicate iy, just in case (Fx) (\/t)i Ulr(t)], whereby r™ = ¢(E,

YaRS
H, il;....;ik) is obtained by the transition-recursion of E H.

To obtain an extension of the analysis and synthesis Theorems 1 and 2, we
extend W.2.A. to contain w lists, each list containing & predicate variables.
A notation like "C(i;Jj)" will be used to denote a formula of (extended) W.2.A.
in which the variables i, j and only these may have free occurrences, and such
that the variables i all belong to the same list which precedes a 1list contain-

ny nNpo N3
ing all the variables j. A formula C(i1"; iz ; 1z ) of W.2.A. defines a ter-

nary relation il’ ig, T g(i15 iz; 13) on special nj-predicates, np-predicates,

naz-predicates.

ni n
Theorem 1'. (synthesis) To every formula C(ii ;.o..;ikk) of (extended) W.2.A.
one can construct a El;...o;gk/g-automaton Ep Em with special output U such

Clia;eeeesix).

g_—:-)

that the behavior B(E, H, U) is the k-ary relation f3;....;

)

Theorem 2'. (analysis) To every ni;....;ny/m-automaton E* H™ with special out-
n
put U one can construct a formula g(iﬁl;....;ikk) of W.2.A. such that the k-ary

relation il.,..ik C(i1;+..31x) is the behavior B(E, H, U).
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To prove Theorem 1' one at first simply disregards the grouping of the q =
Ny,Nz. ... . N variables in the formula C(i™1; ....;fk) and constructs the
q/g-autOmaton with special output according to Theorem 1. By properly group-
ing the q components of the input of this automaton one obtains a nij...;
Ek/g—automaton with special output as required in Theorem 1'. Similarly one
proves Theorem 2'.

It thus appears that the theory of behavior for automata with many inputs
does not present any additional difficulties, in case.one works with special predi-
cates rather than finite strings of input states. The reason for this is that
a k-tuple (i?l;..,;iik) of special n-predicates may be reinterpreted as one
special nj,ng....ny-predicate. In contrast a k-tuple (§}5""3ﬁk) of finite
strings of input states can not readily be reinterpreted as one finite string
of states. This seems to be the reason that no theory of behavior of automats
with many inputs occurs in the literature.

Our concept of finite El;,...;gk/g—automaton still is somewhat specialized
in that the components of each input and the transit are binary (i.e., can
take values in ZQ = { /A, V) only). Because we allow many components to occur
in an input (transit) there is of course the possibility of indirectly dealing
with automata whose sets of input states (transit states) have any finite car-
dinality, by way of binary coding. However, to obtain an entirely satisfactory
theory of nl;....;nk/m-automata (for any numbers Niye..esNk, m One would have
to replace 2o by Zoslagse-+» (i being a set of k elements), and one would have
to set up a calculus PCy, to replace propositional-calculus (PCz), such that

PCy contains variables Xy ranging over Zk and provides names Hk[Xkl,....,Xka]
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for all functions T: an X oosaX Zka—9 Zka' To generalize the results obtained
in Section 4 one would extend W.2.A. to contain variables iy ranging over monadic
funetions from natural numbers to Zk which ultimately take the fixed value

J\_k € Zk' It seems clear that this program could be carried out, and moreover
the form of the presentation in Section 4 would remain essentially unchanged.

We did not present our results in this general version because no calculus PCy

is available in the literature.

7. FINITE STRINGS VERSUS SPECIAL PREDICATES; REGULAR RELATIONS

According to our definition the behavior B of an E/g-automaton with spe-
cial output is a set of special n-predicates (infinite strings of input-states
which are ultimately A™). Simplifying Kleene's [6] theory of regularity, My-
hill [8], Rabin and Scott [13], and Copi, Elgot and Wright [4] work instead with
the set Bsg consisting of all finite strings of input states which turn on the
output. In this approach the restriction to special outputs is not needed, so
that it may seem at first that our concept of behavior is too specialized. How-
ever we will see in this section that on the contrary our theory of behavior is
more general in that it yields a rather natural extension of the concept of regu-
lar set of finite strings to regular relation on finite strings.

We begin by observing that there is a one-to-one mapping f of all finite
strings of elements of ZE onto all special n-predicates i? which have the prop-

erty i(1)=V ", if 1 is the length of i. Namely,

1= (Y eee ) o= (V) [A(6)=X JA [1(h )=V IA (V) op  [1(£)=A].
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In particular the empty string corresponds to the predicate i(o)=v7 i(t')=A.
To simplify the presentation we will identify finite strings with the corres-
ponding n-predicate, i.e.,

(**)A finite n-string of length ! is a special n-predicate in of length
Y+l which takes the value i(}¥')=v™.

The definition of finite string behavior which occurs in the literature can,

in our notation, be formulated thus,

N
Definition 6. The sg-behavior of a g/g-automaton E H with arbitrary output U

is the set Bsg(l’ H, U) consisting of all n-strings i such that U[x(¥+1)], if
1 is the length of the string i and r = E(E, H, i) is the m-predicate determined

P
by the transition-recursion of E H.

Theorem 6. A set B of n-strings is the sg-behavior Esg(E, H, U) of some E/E'
automaton with arbitrary output if and only if it is the behavior (I, G, W) of

some n/q-automaton with special output.

Proof. Suppose first that B = Bsg(E; H, U), whereby U is an arbitrary output
/4 ~ ~
of the n/m-automaton E H. Let the n/m 2-automaton I G and its output W be

defined by,

I, :: B, G, [Y" z; X1 ¢ H[Y, X] JV = 1yeeven,m
~~
Iy + AN G (¥ Z; X ) X =MVIUXIVIX = AlZ
~ |
wiy® z] : Z

7, and therefore W[G[Y Z;A]] =W[Y Z],

N\
Then clearly Gp,q [Y Z';A]
which by definition Z means that W is special output of I G. Furthermore

note that the transition-recursions of the two automata are,
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_E(O) =E E(O) E, s(o) = /&

(1) (2)

r(t') = Hlr(t),i(t)] r(t')=Hir(t),1(t)]

r(t")= [i(t) = V] Ulz(t) IV Ii(t) = Als(t)
Now let i be any special predicate of length 1. If iep(I, G, W) then by (¥) of
Section 3 and (2), W[r(1+l)’\s(1+1)], i.e., s(I+1). Therefore by (2), [i(Y) =
V1 Uulx(f)1VIi(Y) = Als(Y). Because I is the length of i, i(Y) = A is not
the case, so that [i(X) =V JU[r(X)]. Consequently by definition 6, ieBSg(E,
H, U). These steps are reversible, so that also ieBsg(E, H, U) implies iep(I,
G, W). Thus we have constructed an automaton l’\g with special outpﬁt W such
that also B(I, G, W) = B. This proves Thecrem 6 in one direction.

Suppose next that B = B(I, H, W), whereby i’\g is an n/m-automaton with spe-
cial output. Define U[Y"] : W[H[Y",V"]]. Noting that B consists of finite
E—strings only, and using Definition 6 and (*) of Section 3, one easily shows
that ssg(;, H, U) = B(I, H, W) = B. This establishes Thearem 6 in the other di-

rection.

Theorem 6 shows that the restriction to special outputs in our analysis and
synthesis Theorems 1 and 2 (Section 4) is not a limitation in generality, but
rather a natural feature which appears when one works with special predicates in-
stead of finite strings. In fact it now is easy to obtain synthesis and analysis
theorems in terms of sg-behavior and without restriction on the outputs. For
this purpose we remark that the set of all finite n-strings can be defined by a

formula Sgn(i") of W.2.A.,

Sgn(_i_n) : () 30)ANVE)E5E) D JE) )T+ D i(t) =V [3(¢) D i(t) =]
and we define a formula g(i?) to be an sg-formula in case (Vi) g(i):DSgn(l)
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holds in W.2.,A. (by Corollary 1 one can effectively decide whether a formula of

W.2.A. is a sg-formula).

Theorem 7. Analysis: To every E/g-automaton E’jg with arbitrary output U one

can construct a sg-formula C(i") of W.2.A. such that C(i) defines the sg-behavior

Bsg(g, E’ U)‘

Synthesis: To every sg-formula g(i?) of W.2.A. one can construct a_g/g;automa-

N
ton E H with output U such that Bgg(E, H, U) = fc(1).

Proof: By Theorems 1, 2,and 6. Note that we actually established an effective
version of Theorem 6.

In short form Theorem 7 states that the sg-behaviors of E/E-automata with
arbitrary (binary) output are exactly the sets of finite n-strings definable
(by sg-formulas) in W.2.A. It has been shown that the sg-behaviors are the regu-

lar sets of finite strings (references at the beginning of this section). Thus,

Theorem 8. For any set B of finite n-strings the following are equivalent con-
ditions,

(1) B is the sg-behavior of an n/m-automaton with arbitrary output.

(2) B is the behavior of an n/m-automaton with special output.

(3) B is definable in W.2.A., (by a sg-formula).

(k) B is regular

In the literature sg-behavior has been studied only for automata with one
input. Consequently the concept of regularity has been limited to sets. On

the other hand we have seen in Section 6 that our theory of behavior can easily
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be extended to automata with many inputs. On the basis of Theorems 1', 2' (sec-
tion 6) and Theorem 8 the following definition suggests itself as a natural ex-
tension of the concept of regularity.
L1 Ak . .
A formula C(117;...c.31ip ) of (extended) W.2.A is called an sg-formula if

(ylila...ik).g(il;.....;ik):3 Seny(i1)+-..-Sgn(ik) holds in W.2.A.

n n
Definition 7. A relation R(ill;o..o.;ikk) on special ny-predicates (finite n,-

strings) is regular if it is definable by a formula (sg-formula) C(iy;....;iy)
of extended W.2.A.

Theorems 1' and 2' can now be restated in the following short form,

. R Nk .
Theorem 8'. A relation R(i17;..«..;51y ) on special n,-predicates (finite n,-
strings) is the behavior B(E, H, U) of a El;.....;gk/g-automaton with special

output, if and only if R is regular.

In case one prefers to work with finite strings one could extend Definition
6 to a definition of sg-behavior of many-input-automata with arbitrary output,
so as to obtain a corresponding extension of Theorem 6, and Theorem 7.

A binary relation on strings which naturally arises in connection with a

N\ n ~~
n/m-automaton E® H" is its equi-response relation ifepd” (mod E H). Two fin-

ite strings 1, j of input-states are in this relation if they produce the same

transit-state, i.e., if r(Y') = s(h') in case r = {((Ey H, 1), s = ((E, H, J),

1 = length of string i, and h = lengths of string j. It is easy to construct

a E;E/q-automaton with special output whose behavior is the relation il j@
~

(mod E H). Therefore, by Theorem 8', the equi-response relation of any n/m-

automaton is a regular relation on finite n-strings. In k-ary number theory
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(i.e., the theory of finite strings on the alphabet ll,....lk) the equi-response
relations module k/q-automata take the place of conventional congruence relations
in ordinary (l-ary) number theory. Correspondingly the concept of regularity

is the natural analogue in k-ary number theory to ultimate periodicity in ordi-
nary number theory.

Another example of a regular relation on special predicates is the adjoined
S(i,3,s) under binary expansion (see Section 5) to the relation x+y=z. More-
over Theorem 4 may be restated as follows. A relation R(xy,...xy) is definable
in the first-order theory [=, + , Pwz] if and only if it is the adjoined under

binary expansion to a regular relation S(il,....,ik) on special predicates.

In case one prefers to deal with finite strings the following modified con-
cept of binary expansion is appropriate. If Bgseeeesly are either 1 or 2 then
8g81-c 008y Trepresents ag2® + 12 + ..ie.. + en2?. In particular the empty
string represents the number O. It is easy to see that this yields a one-to-
one mapping x = g(i) from all finite 2-strings to all natural numbers. Further-
more one can modify the proof of Theorem 4 to obtain; a relation R(Xiyses.sXp)
is definable in [=, + , Pwo] if and only if its adjoined S(ijyes.esip) under
modified binary expansion is a regular relation on finite 2-strings.

Consequently the following two conditions on a relation R(Xij....,x,) on
natural numbers are equivalent.

(1) The adjoined S(il,o.o,ik) of R(xl,ooa.,xk) under binary expansion is a regu-
lar relation on special predicates
(2) The adjoined Sgg(iiyees,ikx) Oof R(X1yee.c,xx) under modified binary expen-

sion is a regular relation on finite 2-strings
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Let us call such a relation R a 2-regular relation on natural numbers so that,

Theorem 9. The relations definable in the first-order theory [=, + , Pwo] are

exactly the 2-regular relations on natural numbers.

For appropriate definition of k-regular relation (via adjoined under (modi-
fied) k-ary expansion) Theorem 9 holds if "2-regular" and "Pws" are replaced by
"k-regular" and "Pw" (Pwp(x) means x is a power of k). It thus appears that
the first-order theory [=, + , Pwk] is suitable for a study of regularity on the
alphabet 13,....,1x consisting of k letters. In this connection the following

remarks are of interest.

l. Let Ny denote the set of all finite strings on the alphabet li,...,lx, and
let the function gy:Nx —>Ni(N1 = set of natural numbers) be defined by
glo) = o
gx(ly, Lyy - Lyy) = Vok® + vakl + ...+ vkl
T.e., 8y is that one-to-one ennumeration of Ny in which every string of length
h precedes every string of length 1 > h, while strings of equal length are enum-
erated in lexicographic order reading from right to left. The inverse gil yields
the modified k-ary expansion of natural numbers. Let +k denote the adjoined to
+, i.e.,
x+°y = gi* (gp(x) + ggly)), for x, yeNy,

and let PwE denote the adjoined to Pwy, L1.e.,

Pwk(x) Pwy (gx(x)), for xeN .

We remark that it is easy to set up an algorithm for calculating x k y (simi-

lar to the conventional algorithm for addition in ordinary expansion), and that
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Pwk(é) simply means that ﬁ is 15 or X is 1y followed by zero or more occurrences
of 1x_1. Clearly < Ni, +, Pw; > is isomorphic to < Ny, +£, Pw¥ >, so that

[=, +, Pwk] may be interpreted as first-order theory of either of these systems.
Theorem 9 as well as the following remarks ought to be interpreted accordingly,

and we will often speak of a relation when we actually mean it's adjoined under

ga

2. Let x <k,y and X > ¥ denote respectively the initial segment relation and
terminal segment relation on Ny (or their adjoined). It is easy to construct a
k;klm-automaton with special output whose behavior is the relation x < y, so
that by Theorem 9 (2 replaced by k), this relation is definable in [=, + , Pwk].
Thus, by Theorem L,

The first-order theory of < Npes <y > is decidable..

In contrast we will show elsewhere that the first-order theory of < Nk s <k9’ >x >

is not decidable. Therefore, x >k»y is not definable in [=, + , Pwk]o

k.

~
3. Let x Ty denote the operation of concatenation on Ny (or its adjoined on N).

It is easy to see that

~

x By - x4 klgk(x).y
vhereby 1gy(x) is the length of the string x, i.e.,

lgk(x) = a .= k® <x+1< ka+l

. N . .
However, there is no definition of x ky in [=, + , Pwk], because this theory
. : : ' . ~kq .
is decidable while it was shown by Quine [12] that [=, ] is undecidable. It

o~
can be shown that [=, k] and [=, + , ] are equivalent in the sense that the

primitives of one of these theories are definable in the other.
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L. We have shown (see also Rabin and Scott [13]) that the relations x coy which
are equiresponse relations modulo automata with one k-ary input are exactly
. Nk
those right-congruence relations of the operation X “y which divide Nk into
finitely many classes. This emphasizes the analogy (remark following Theorem
8') of these relations to ordinary congruence relations of x + y = j,\iy. We
—~k

remark that while x "y is not definable in [=, + , Pwk], the equiresponse re-

lations are definable.

2+ The study of congruences is fundamental in elementary number theory. It
would be of great importance for a better understanding of regularity (behavior
of finite automata) to develop amalogously a theory of those (right, left) con-

gruence relations of if\ky whose partition is finite.

é. Every ultimately periodic set of natural numbers is definable in [=, +].
By Theorem 9 (extension to k) it follows,
Every ultimately periodic (i.e., l-regular) set of natural numbers is

k-regular, for every k.

7. Let An,k(x) stand for 1g (x) = O (mod n). It then is easy to see that
An,k(x) is k-regular, and therefore definable in [=, +, Pw,]. Because

Pwkn(x) =, [P (x)A A ,k(x)] V [x = 1] it follows that Pwyn is definable in

n
[=, +, Pwk]. Conversely, for n > 2, Pwy is definable in [=, +, Pwkn], because
Pwi(x) .=. Pwpn(x)V Pwpn(kx)V ...V Pwkn(kn'lx). Thus, for any k and n # O

the theories [=, +, Pwx] and [=, +, Pwn] are equivalent with respect to de-

finability. By theorem 9 (2 replaced by k) it follows,
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For any k and n # 0, the kn-regular relations on natural numbers

are exactly the k-regular relations.

8. Suppose that n > k and Pwy is k-regular. Let A(x) stand for (Ht)[kx <

nt o+ 1< kx+l]. Then A is the set of lengths of elements of Nk which belong
to the k-adjoined to Pwp. Therefore, because Pwp is k-regular it follows that
A must be ultimately periodic. Let h = phase, p = period of A, and let q be
the number of elements of A occurring in an interval (x, x+p-1), where x > h.
Take a > h such that A(a). Then also A(a+p), A(a+2p), ..., A(atvp), ..., i.e.,
there are b, by, bs, ... such that

k& < nP+1 < k8+1

(1)

k%+vp < nP+1 < kZ+yp+l , v=1,2, 3,
Note that there are exactly q < p members a, 8z, .., aq of A occurring in the
interval (a, a+p-1l), and that, because n > k, no ntl % ntg can have the same
length x (n% + 1 and n’2 + 1 cannot belong to the same interval (k¥, kx+l-l)).

It follows that a, ag, ..., aq, atp are in order the lengths of nb, nb+l, N

nb+q_l, n®*e - pP1, Therefore b1 = b+q, and similarly one shows by = b+vq,

v=1,2,3, .... It follows by (1) that

&P [P < n"% 0 < PP (kB

Therefore,
Topx2a) - ¥kt < n¥ < Ve [(xe1) - ¥ ,v=1,2,3, ...
Letting v approach infinity this clearly yields n% = kP.
Thus we have shown that for n < k, if Pw, is k-regular then n% = kP for
some p%O and q%O. This assertion extequ to all n > 2; because if n > 2 there

is an a such that n? >k, and by 7 if Pw, is k-regular then also Pwpa is k-
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regular, so that there are p#0 and gq#0 such that n®d = kP. Consequently, if

one defines

(a) x~3 : (Juv)[ufoA v£o N x* = yV] one obtains by 7,

(b) If n >2 then Pw, is k-regular (definable in [=, +, Pw]) if and only if
n=xk.

(c) The k-regular relations are exactly the n-regular relations if and only
if n = k.

(d) If n >2 and Pw, is k-regular (definable in [=, +, Pwy]) then also Pwy
is n-regular (definable in [=, +, Pwh]), and k-regularity and n-regular-

ity have the same meaning.

These facts can, of course, be stated in terms of sequences. For example,
the one-to-one mapping g;lgk of Ny takes regular relations on Ny onto regular
relations on N, just in case n = k.

To better understand the equivalence relation =, let us say that a number
x is simple if [(x =0V x =1V ~ (Juw)(A Ax =u")], and let spl(y) stand
for that simple number x of which y is a power. Then by elementary number
theoretic considerations (prime-decomposition) one shows,

(e) x=u .=. spl(x) = spl(y)
Furthermore, the simple numbers constitute a system of representatives for =,
and the equivalence class of a simple number x is {xnln%o}.

Because of (b), (c), (d) it follows that it is sufficient to deal with
k-regularity for simple k. The theory [=, +, Pw,] is equivalent to [=, +,
Pwy], for k = spl(n). (Note that a number k is simple just in case g.c.d.(ay,

ceey ay) =1 if k = plal..-pnan is the prime-decomposition of k.)
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By (b) it follows that Pws is not 3-regular. This seems to mean that
there is no finite automation with binary input and ternary output which trans-

lates binary expansions of numbers into the corresponding ternary expansions.

8. REMARKS ON FEEDBACK

The essentially new element added to pure switching circuits to obtain
sequential circuits is feedback. The presence of feedback in our finite autom-
ata is reflected in the recursiveness of the definition of the input to transit
operation r =V(i) of a finite automaton. In contrast, for a pure switching
circuit this operation is introduced by explicit definition. The relationship
of feedback to recursions was first clearly realized by Burks and Wright [2]
and Kleene [6], and is emphasized by Church's contribution to automata theory
(31.

A formalism, sufficiently rich to provide notations for all behaviors of
finite automata, must contain an operator corresponding to feedback. In
Kleene's [6] formalism of regular expressions, this operation is %. Copi,
Elgot, and Wright [4] and Myhill (8], in their modified version of Kleene's
theory use a related monadic operator *. In W.2.A. = [0, ', —Hoil it is the

finite-set-quantifier Eﬂoi which corresponds to feedback. This is best shown

by indicating how the primitive operators lJ, -, and * on regular sets can be
obtained in W.2.A.
For this purpose to every Sg,-formula g(i) of W.2.A we define the formu-

las C (i) and

12y
e

(i) as follows. First obtain a normal form of C(i), say

(1) : (32 K[i)]I A (V) BIL(t), J(t), 3(t")]
41
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Then define

V(1) : (@3) - KII)TA (VO B(E) A BIV, 3(¥), iy )IA (Vt)ﬁ.B[/_\;, ), 3]

W

A1)+ (T - K] A (VEY B, 4(8), §(8)]

Next for any Sg,-formulas g__(;), 2(1) of W.2.A. ve define gu_g_, c-D, _c_=* by
[c UDI(1) : ¢(i) Vv D(1)

[c - D) : (Fy) . Z@WATHL

[€¥1(1) = @s) . (Vxy)s(x) sly) (Vo)L B(8)D (L) IA ) () (W 86) (1))

It is easy to see that these operators on Sg,-formulas of W.2.A. define the op-
*

erations U, *, = on sets of finite n-strings. Note that ° corresponds to in-

dividual quantification, while the feedback-operation * i{s reflected as a fi-

nite-set quantification.

9. AN UNSOLVED PROBLEM

In essence our main result says that in [o, ’,_301] one can define only
very simple recursive operators u = W(i), namely, input to output operators of
finite automata. In contrast [o, ', 2x, fﬂoi] contains definitions for all re-

cursive operators u = ¥(i) (see Robinson [14]).

Problem 1: Is the weak second-order theory [o, 2x+1, 2x+2, Eﬂoi] decidable?

Which are the recursive operators definable in this theory?

Lo



These questions are of interest for automata theory, because via the enumer-
ation of finite strings on two letters 11, lp (see Section 7,;). The theory
VY /N
(o, 2x+1, 2x+2, F,i] is equal to the theory [o, 13 X, 1o X, :joi] on the set
No of finite strings. Let Eﬂooi denote quantification over all finite subsets
of Nk which in addition are chains with respect to the terminal segment rela-
tion on Ny. Then by a straightforward extension of the methods used in this

paper one obtains:

Theorem 10: The "very weak" second-order theory [o, II~§, cess I;NQ, ool
is decidable. All regular sets, and only regular sets, on the alphabet 1;,

.++, 1x can be defined by formulas C(x) of this theory.
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