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Abstract. We propose a general definition of composition operator on
Markov Decision Processes with rewards (MDPs) and identify a well
behaved class of operators, called safe, that are guaranteed to be non-
extensive w.r.t. the bisimilarity pseudometrics of Ferns et al. [10], which
measure behavioral similarities between MDPs. For MDPs built using
safe/non-extensive operators, we present the first method that exploits
the structure of the system for (exactly) computing the bisimilarity dis-
tance on MDPs. Experimental results show significant improvements
upon the non-compositional technique.

1 Introduction

Probabilistic bisimulation of Larsen and Skou [13] is the standard equivalence for
analyzing the behaviour of Markov chains. In [12], this notion has been extended
to Markov Decision Processes with rewards (MDPs) with the intent of reducing
the size of large systems to help the computation of optimal policies.

However, when the numerical values of probabilities are based on statistical
sampling or subject to error estimates, any behavioral analysis based on a notion
of equivalence is too fragile, as it only relates processes with identical behaviors.
This is a common issue in applications such as systems biology [15], games [4], or
planning [7]. Such problems motivated the study of behavioral distances (pseudo-
metrics) for probabilistic systems, firstly developed for Markov chains [9,17,16]
and later extended to MDPs [10]. These distances support approximate reasoning
on probabilistic systems, providing a way to measure the behavioral similarity
between states. They allow one to analyze models obtained as approximations
of others, more accurate but less manageable, still ensuring that the obtained
solution is close to the real one. For instance, in [2,3] the pseudometric of [10] is
used to compute (approximated) optimal polices for MDPs in applications for
artificial intelligence. These arguments motivate the development of methods to
efficiently compute behavioral distances for MDPs.

Realistic models are usually specified compositionally by means of operators
that describe the interactions between the subcomponents. These specifications
may thus suffer from an exponential growth of the state space, e.g. the parallel
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composition of n subsystems with m states may cause the main system to have
mn states. To cope with this problem, algorithms like [10,7,5] that need to in-
vestigate the entire state space of the system and even more recent proposals [1],
that avoid the entire state space exploration using on-the-fly techniques, are not
sufficient: one needs to reason compositionally.

Classically, the exact behavior of systems can be analyzed compositionally
if the considered behavioral equivalence (e.g. bisimilarity) is a congruence w.r.t.
the composition operators. When the behavior of processes is approximated by
means of behavioral distances, congruence is generalized by the notion of non-
extensiveness of the composition operators, that describes the relation between
the distances of the subcomponents to that of the composite system [9].

In this paper we study to which extent compositionality on MDPs can be
exploited in the computation of the behavioral pseudometrics of [10], hence how
the compositional structure of processes can be used in an approximated analysis
of behaviors. To this end we introduce a general notion of composition operator
on MDPs and characterize a class of operators, called safe, that are guaranteed
to be non-extensive. This class is shown to cover a wide range of known operators
(e.g. synchronous and asynchronous parallel composition), moreover its defining
property provides an easy systematic way to check non-extensiveness.

We provide an algorithm to compute the bisimilarity pseudometric by ex-
ploiting both the on-the-fly state space exploration in the spirit of [1], and the
compositional structure of MDPs built over safe operators. Experimental results
show that the compositional optimization yields a significant additional improve-
ment on top of that obtained by the on-the-fly method. In the best cases, the
exploitation of compositionality achieves a reduction of computation time by a
factor of 10, and for least significant cases the reduction is that of a factor of 2.

2 Markov Decision Processes and Behavioral Metrics

In this section we recall the definitions of finite discrete-time Markov Decision
Process with rewards (MDP), and of bisimulation relation on MDPs [12]. Then
we recall the definition of bisimilarity pseudometric introduced in [10], which
measures behavioral similarities between states.

We start recalling a few facts related to probability distributions that are es-
sential in what follows. A probability distribution over a finite set S is a function
µ : S → [0, 1] such that

∑
s∈S µ(s) = 1. We denote by ∆(S) the set of probability

distributions over S. Given µ, ν ∈ ∆(S), a distribution ω ∈ ∆(S×S) is a match-
ing for (µ, ν) if for all u, v ∈ S,

∑
s∈S ω(u, s) = µ(u) and

∑
s∈S ω(s, v) = ν(v);

we denote by Π(µ, ν) the set of matchings for (µ, ν). For a (pseudo)metric
d : S×S → [0,∞) over a finite set S, the Kantorovich (pseudo)metric is defined
by Td(µ, ν) = minω∈Π(µ,ν)

∑
u,v∈S ω(u, v)d(u, v), for arbitrary µ, ν ∈ ∆(S)1.

Definition 1 (Markov Decision Process). A Markov Decision Process is a
tuple M = (S,A, τ, ρ) consisting of a finite nonempty set S of states, a finite

1 Since S is finite, Π(µ, ν) describes a bounded transportation polytope [8], hence the
minimum in the definition of Td(µ, ν) exists and can be achieved at some vertex.
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nonempty set A of actions, a transition function τ : S × A → ∆(S), and a
reward function ρ : S ×A→ R.

The operational behavior of an MDPM= (S,A, τ, ρ) is as follows: the process
in the state s0 ∈ S chooses nondeterministically an action a ∈ A and it changes
the state to s1 ∈ S, with probability τ(s0, a)(s1). The choice of a in s0 is rewarded
by ρ(s0, a). The executions are transition sequences w = (s0, a0)(s1, a1) . . . ; the
challenge is to find strategies for choosing the actions in order to maximize the re-
ward Rλ(w) = limn→∞

∑n
i=0 λ

iρ(si, ai), where λ ∈ (0, 1) is a discount factor. A
strategy is given by a function π : S → ∆(A), called policy, where π(s0)(a) is the
probability of choosing the action a at state s0. Each policy π induces a probabil-
ity distribution over executions defined, for an arbitrary w = (s0, a0)(s1, a1) . . . ,
by Pπ(w) = limn→∞

∏n
i=0 π(si)(ai)·τ(si, ai)(si+1). The value of s ∈ S according

to π, written V πλ (s), is the expected value of Rλ w.r.t. Pπ on the measurable
cylinder set of the executions starting from s. The mapping V πλ : S → R is the
value function according to π. The value functions induce a preorder on policies
defined by π � π′ iff V πλ (s) ≤ V π′λ (s), for all s ∈ S. A policy π∗ is optimal for an
MDP M if it is maximal w.r.t. � among all policies for M. Given M, there al-
ways exists an optimal policy π∗, but it might not be unique; it has a unique value
function V π

∗

λ satisfying the following system of equations known as the Bellman
optimality equations: V π

∗

λ (s) = maxa∈A
(
ρ(s, a) +λ

∑
t∈S τ(s, a)(t) ·V π∗λ (t)

)
, for

all s ∈ S. As reference on MDPs we recommend to consult [14].

Definition 2 (Stochastic Bisimulation). Let M = (S,A, τ, ρ) be an MDP.
An equivalence relation R ⊆ S × S is a stochastic bisimulation if whenever
(s, t) ∈ R then, for all a ∈ A, ρ(s, a) = ρ(t, a) and, for all R-equivalence classes
C, τ(s, a)(C) = τ(t, a)(C). Two states s, t ∈ S are stochastic bisimilar, written
s ∼M t, if they are related by some stochastic bisimulation on M.

To cope with the problem of measuring how similar two MDPs are, Ferns
et al. [10] defined a bisimilarity pseudometrics that measure the behavioural
similarity of two non-bisimilar MDPs. This is defined as the least fixed point of
a transformation operator on functions in [0,∞)S×S .

LetM = (S,A, τ, ρ) be an MDP and λ ∈ (0, 1) be a discount factor. The set
[0,∞)S×S of [0,∞)-valued maps on S × S equipped with the point-wise partial
order defined by d v d′ iff d(s, t) ≤ d′(s, t), for all s, t ∈ S, forms an ω-complete
partial order with bottom the constant zero-function 0, and greatest lower bound
given by (

d
i∈N di)(s, t) = infi∈N di(s, t), for all s, t ∈ S. We define a fixed point

operator FMλ on [0,∞)S×S , for d : S × S → [0,∞) and s, t ∈ S, as follows:

FMλ (d)(s, t) = maxa∈A
(
|ρ(s, a)− ρ(t, a)|+ λ · Td(τ(s, a), τ(t, a))

)
.

FMλ is monotonic [10], thus, by Tarski’s fixed point theorem, it admits a least
fixed point. This fixed point is the bisimilarity pseudometric.

Definition 3 (Bisimilarity pseudometric). LetM be an MDP and λ ∈ (0, 1)
be a discount factor, then the λ-discounted bisimilarity pseudometric for M,
written δMλ , is the least fixed point of FMλ .
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The pseudometric δMλ enjoys the property that two states are at zero distance if
and only if they are bisimilar. Moreover, in [6] it has been proved, using Banach’s
fixed point theorem, that for λ ∈ (0, 1), FMλ has a unique fixed point.

3 Non-Extensiveness and Compositional Reasoning

In this section we give a general definition of composition operator on MDPs that
subsumes most of the known composition operators such as the synchronous,
asynchronous, and CCS-like parallel compositions. We introduce the notion of
safeness for an operator and prove that it implies non-extensiveness. Recall that,
non-extensiveness corresponds to the quantitative analogue of congruence when
one aims to reason with behavioral distances, as advocated e.g. in [11,9].

Definition 4 (Composition Operator). Let Mi = (Si, Ai, τi, ρi), i = 1..n,
be MDPs. A composition operator on M1, . . . ,Mn is a tuple op = (A, opτ , opρ)
consisting of a nonempty set A of actions and the following operations

• on transitions functions: opτ :
∏n
i=1∆(Si)

Si×Ai → ∆(S)S×A,

• on reward functions: opρ :
∏n
i=1 RSi×Ai → RS×A.

where, S =
∏n
i=1 Si denotes the cartesian product of Si, i = 1..n. We denote by

op(Mi, . . . ,Mn) the composite MDP (S,A, opτ (τ1, . . . , τn), opρ(ρ1, . . . , ρn)).

Below we present examples, for two fixed MDPsMX = (X,AX , τX , ρX) and
MY = (Y,AY , τY , ρY ), of some of the known parallel composition operators.

Example 5. Synchronous Parallel Composition can be given as a binary
composition operator | = (AX ∩AY , |τ , |ρ), where

(τX |τ τY )((x, y), a)(u, v) = τX(x, a)(u) · τY (y, a)(v) ,

(ρX |ρ ρY )((x, y), a) = ρX(x, a) + ρY (y, a) .

The processMX | MY reacts iffMX andMY can react synchronously. Actions
are rewarded by summing up the rewards of the components. �

Example 6. CCS-like Parallel Composition can be defined by the composi-
tion operator ‖ = (AX ∪AY , ‖τ , ‖ρ), where

(τX ‖τ τY )((x, y), a)(u, v) =


τX(x, a)(u) if a /∈ AY and v = y

τY (y, a)(v) if a /∈ AX and u = x

τX(x, a)(u) · τY (y, a)(v) if a ∈ AX ∩AY
0 otherwise

(ρX ‖ρ ρY )((x, y), a) =


ρX(x, a) if a /∈ AY
ρY (y, a) if a /∈ AX
ρX(x, a) + ρY (y, a) if a ∈ AX ∩AY

In the process MX ‖ MY , the components synchronize on the same action,
otherwise they proceed asynchronously. Asynchronous parallel composition can
be defined as above, requiring that the MDPs have disjoint set of actions. �
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Before introducing the concept of non-extensiveness for a composition oper-
ator, we provide some preliminary notations. Consider the sets Xi, the functions
di : Xi×Xi → [0,∞), for i = 1..n, and p ∈ [1,∞]. We define the p-norm function
‖d1, . . . , dn‖p :

∏n
i=1Xi ×

∏n
i=1Xi → [0,∞) as follows:

‖d1, . . . , dn‖p((x1, . . . , xn), (y1, . . . , yn)) = (
∑n
i=1 di(xi, yi)

p)
1
p if p <∞ ,

‖d1, . . . , dn‖∞((x1, . . . , xn), (y1, . . . , yn)) = max1≤i≤n di(xi, yi) .

Note that, if (Xi, di) are (pseudo)metric spaces, ‖d1, . . . , dn‖p is a (pseudo)metric
on
∏n
i=1Xi, known in the literature as the p-product (pseudo)metric.

Definition 7. Let p ∈ [1,∞]. A composition operator op on MDPsM1, . . . ,Mn

is p-non-extensive if δ
op(M1,...,Mn)
λ v ‖δM1

λ , . . . , δMn

λ ‖p. A composition operator
is non-extensive if it is p-non-extensive for some p.

Non-extensiveness for a composition operator ensures that bisimilarity is a
congruence with respect to it —direct consequence of Theorem 4.5 in [10].

Lemma 8. Let Mi = (Si, Ai, τi, ρi) be an MDP and si, ti ∈ Si, for i = 1..n,
and op be a p-non-extensive composition operator on M1, . . . ,Mn. Then,

i) if p <∞, δ
op(M1,...,Mn)
λ ((s1, . . . , sn), (t1, . . . , tn)) ≤ (

∑n
i=1 δ

Mi

λ (si, ti)
p)

1
p

ii) if p =∞, δ
op(M1,...,Mn)
λ ((s1, . . . , sn), (t1, . . . , tn)) ≤ maxni=1 δ

Mi

λ (si, ti).

Corollary 9. Let Mi = (Si, Ai, τi, ρi) be an MDP, si, ti ∈ Si, for i = 1..n, and
op be a non-extensive composition operator on M1, . . . ,Mn. If si ∼Mi

ti for all
i = 1..n, then (s1, . . . , sn) ∼op(M1,...,Mn) (t1, . . . , tn).

In general, proving non-extensiveness for a composition operator on MDPs
is not a simple task, since one needs to consider the pseudometrics δMi

λ which

are defined as the least fixed point of FMi

λ . A simpler sufficient condition that
ensures non-extensiveness is the following:

Definition 10. Let Mi = (Si, Ai, τi, ρi), for i = 1..n, be MDPs and p ∈ [1,∞].
A composition operator op on M1, . . . ,Mn is p-safe if, for any di pseudometric
on Si, such that di v FMi

λ (di), it holds

F
op(M1,...,Mn)
λ (‖d1, . . . , dn‖p) v ‖FM1

λ (d1), . . . , FMn

λ (dn)‖p .

A composition operator on MDPs is safe if it is p-safe for some p ∈ [1,∞].

Theorem 11. Any safe composition operator on MDPs is non-extensive.

The examples of compositional operators that we have presented in this sec-
tion are all 1-safe, hence non-extensive.

Proposition 12. The composition operators of Examples 5–6 are 1-safe.
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4 Alternative Characterization of the Pseudometric

In this section we give an alternative characterization of δMλ based on the notion
of coupling that allows us to transfer the results previously proven for Markov
chains in [1,5] to MDPs. Then, we show how to relate this characterization to
the concept of non-extensiveness for compositional operators on MDPs.

Definition 13 (Coupling). Let M = (S,A, τ, ρ) be an MDP. A coupling for
M is a pair C = (ρ, ω), where ω : (S × S)×A→ ∆(S × S) is such that, for any
s, t ∈ S and a ∈ A, ω((s, t), a) ∈ Π(τ(s, a), τ(t, a)).

Given a coupling C = (ρ, ω) forM and a discount factor λ ∈ (0, 1), we define
the operator Γ Cλ : [0,∞)S×S → [0,∞)S×S , for d ∈ [0,∞)S×S and s, t ∈ S, by

Γ Cλ (d)(s, t) = maxa∈A
(
|ρ(s, a)− ρ(t, a)|+ λ

∑
u,v∈S d(u, v) · ω((s, t), a)(u, v)

)
.

Note that, any coupling C = (ρ, ω) forM induces an MDP C∗ = (S×S,A, ω, ρ∗),
defined for any s, t ∈ S and a ∈ A by ρ∗((s, t), a) = |ρ(s, a) − ρ(t, a)|, and Γ Cλ
corresponds to the Bellman optimality operator on C∗. This operator is mono-
tonic and has a unique fixed point, hereafter denoted by γCλ , corresponding to
the value function for C∗ (see [14, §6.2]).

Next we see that the bisimilarity pseudometric δMλ can be characterized as
the minimum γCλ among all the couplings C for M.

Theorem 14. Let M be an MDP. Then, δMλ = min
{
γCλ | C coupling for M

}
.

Theorem 14 allows us to transfer the compositional reasoning on couplings.
To this end, we introduce the notion of composition operator on couplings.

Definition 15. Let Mi = (Si, Ai, τi, ρi) be MDPs, for i = 1..n. A coupling
composition operator for M1, . . . ,Mn is a tuple op∗ = (A, op∗ρ, op

∗
ω) consisting

of a nonempty set A, and the following operations, where S =
∏n
i=1 Si.

• op∗ρ :
∏n
i=1 RSi×Ai → RS×A,

• op∗ω :
∏n
i=1∆(Si × Si)Si×Si×Ai → ∆(S × S)S×S×A,

Let Ci = (ρi, ωi) be a coupling for Mi, for i = 1..n, we denote by op∗(C1, . . . , Cn)
the composite coupling (op∗ρ(ρ1, . . . , ρn), op∗ω(ω1, . . . , ωn)). Moreover, op∗ is called
lifting of a composition operator op on M1, . . . ,Mn if, for all i = 1..n and Ci
coupling for Mi, op

∗(C1, . . . , Cn) is a coupling for op(M1, . . . ,Mn).

It is not always possible to find coupling composition operators that lift a
composition operator on MDPs. Nevertheless, the composite operators presented
in Examples 5–6 can be lifted on couplings. We show in the next example how
this can be done for the CCS-like parallel composition. For the other example
the construction is similar.
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Example 16. The composition operator of Example 6 can be lifted on couplings
by the operator ‖∗ = (AX ∪AY , ‖ρ, ‖ω)

(ωX ‖ω ωY )(((x, y), (x′, y′)), a)((u, v), (u′, v′)) =

=


ωX((x, x′), a)(u, u′) if a /∈ AY , (v, v′) = (y, y′)

ωY ((y, y′), a)(v, v′) if a /∈ AX , (u, u′) = (x, x′)

ωX((x, x′), a)(u, u′) · ωY ((y, y′), a)(v, v′) if a ∈ AX ∩AY
0 otherwise

Note how the definition above mimics the one in Example 6. �

Next we adapt the concept of safeness to coupling composition operators.

Definition 17. Let Mi = (Si, Ai, τi, ρi) be MDPs, i = 1..n and p ∈ [1,∞]. A
coupling composition operator op∗ on M1, . . . ,Mn is p-safe if, for all i = 1..n,
Ci coupling for Mi and di : Si × Si → [0,∞) such that di v Γ Ciλ (di), it holds

Γ
op∗(C1,...,Cn)
λ (‖d1, . . . , dn‖p) v ‖Γ C1λ (d1), . . . , Γ Cnλ (dn)‖p .

A coupling composition operator is safe if it is p-safe for some p ∈ [1,∞].

As done for Proposition 12, the lifting in Example 16 can be shown to be 1-safe.
Non-extensiveness for an operator is ensured if it admits a lifting composition

operator on couplings that is safe, as proven by the following theorem.

Theorem 18. Let op∗ be a coupling composition operator that lifts a composi-
tion operator op on M1, . . . ,Mn. If op∗ is safe, then op is non-extensive.

5 Exact Computation of Bisimilarity Distance

Inspired by the characterization given in Theorem 14, in this section we propose
a procedure to exactly compute the bisimilarity pseudometric. This extends to
MDPs a method that has been proposed in [1] for Markov chains. We also show
how this strategy can be optimized to cope well with composite MDPs.

For a discount factor λ ∈ (0, 1), the set of couplings for M can be endowed
with the preorder Eλ, defined by C Eλ D iff γCλ v γDλ . Theorem 14 suggests to
look for a coupling for M which is minimal w.r.t. Eλ. The enumeration of all
the couplings is clearly unfeasible, therefore it is crucial to provide an efficient
search strategy which prevents us to do that.

A Greedy Search Strategy: We provide a greedy strategy that explores the
set of couplings until an optimal one is eventually reached.

Let M = (S,A, τ, ρ) and C = (ρ, ω) be a coupling for M. Given s, t ∈ S,
a ∈ A, and µ ∈ Π(τ(s, a), τ(t, a)), we denote by C[(s, t), a/µ] the coupling (ρ, ω′)
for M, where ω′ is such that ω′((s, t), a) = µ and ω′((s′, t′), a′) = ω((s′, t′), a′)
for all s′, t′ ∈ S and a′ ∈ A with ((s′, t′), a′) 6= ((s, t), a).
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Lemma 19. Let M = (S,A, τ, ρ) be an MDP, C be a coupling for M, s, t ∈ S,
a ∈ A, µ ∈ Π(τ(s, a), τ(t, a)), and D = C[(s, t), a/µ]. If ΓDλ (γCλ)(s, t) < γCλ(s, t),
then γDλ < γCλ .

The lemma above states that C can be improved w.r.t. Eλ by locally updating
it as C[(s, t), a/µ], with a matching µ ∈ Π(τ(s, a), τ(t, a)) such that∑

u,v∈S γ
C
λ(u, v) · µ(u, v) <

∑
u,v∈S γ

C
λ(u, v) · ω((s, t), a)(u, v) ,

where a ∈ A is the action that maximizes Γ C(γCλ)λ(s, t). A matching µ sat-
isfying the condition above can be obtained as a solution of a Transportation
Problem [8] with cost matrix (γCλ(u, v))u,v∈S and marginals τ(s, a) and τ(t, a),
hereafter denoted by TP (γCλ , τ(s, a), τ(t, a)). This gives us a strategy for moving
toward δMλ by successive improvements on the couplings.

Now we give a necessary and sufficient condition for termination.

Lemma 20. Let M = (S,A, τ, ρ) be an MDP and C be a coupling for M. If
γCλ 6= δMλ , then there exist s, t ∈ S, a ∈ A, and µ ∈ Π(τ(s, a), τ(t, a)) such that
ΓDλ (γCλ)(s, t) < γCλ(s, t), where D = C[(s, t), a/µ].

The above result ensures that, unless C is optimal w.r.t Eλ, the hypotheses of
Lemma 19 are satisfied, so that, we can further improve C following the same
strategy. The next statement proves that this search strategy is correct.

Theorem 21. δMλ = γCλ iff there exists no coupling D for M s.t. ΓDλ (γCλ) < γCλ .

Remark 22. In general, there could be an infinite number of couplings (ρ, ω).
However, for each fixed d ∈ [0,∞)S×S , the linear function mapping ω((s, t), a)
to
∑
u,v∈S d(u, v) · ω((s, t)a)(u, v) achieves its minimum at some vertex of the

transportation polytope P = Π(τ(s, a), τ(t, a)). Since the number of such ver-
tices is finite, using the optimal transportation schedule (which is a vertex in P )
for the update ensures that the search strategy is always terminating. �

Compositional Heuristic: Assume we want to compute the bisimilarity dis-
tance for a composite MDP M = op(M1, . . . ,Mn). The greedy strategy de-
scribed above moves toward an optimal coupling for M starting from an arbi-
trary one. Clearly, the better is the initial coupling the fewer are the steps to the
optimal one. The following result gives a heuristic for choosing such a coupling
when op admits a safe lifting coupling composition operator.

Proposition 23. Let op be a composition operator on M1, . . . ,Mn, and op∗ be
a p-safe coupling composition operator that lifts op. Then,

(i) γ
op∗(C1,...,Cn)
λ v ‖γC1λ , . . . , γ

Cn
λ ‖p, for any Ci coupling for Mi;

(ii) δ
op(M1,...,Mn)
λ v γop

∗(D1,...,Dn)
λ v ‖δM1

λ , . . . , δMn

λ ‖p, where Di is a coupling
for Mi which is minimal w.r.t. Eλ.

Proposition 23(ii) suggests to start from the coupling op∗(D1, . . . ,Dn), i.e.,
the one given as the composite of the optimal couplingsDi for the subcomponents

Mi. This ensures that the first over-approximation of δMλ , that is γ
op∗(D1,...,Dn)
λ ,

is at least as good as the upper bound given by non-extensiveness of op.
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Algorithm 1 On-the-Fly Bisimilarity Pseudometric

Input: MDP M = (S,A, τ, ρ); discount factor λ ∈ (0, 1); query Q ⊆ S × S.
1. C ← (ρ, empty); d← empty; visited← ∅; exact← ∅; toComp← Q; // Initialize
2. while ∃(s, t) ∈ toComp do
3. for all a ∈ A do guess µ ∈ Π(τ(s, a), τ(t, a)); UpdateC (M, (s, t), a, µ)
4. d← BellmanOpt(λ, C, d) // update the current estimate
5. while C[(u, v), a] is not optimal for TP(d, τ(u, a), τ(v, a)) do
6. µ← optimal schedule for TP(d, τ(u, a), τ(v, a))
7. UpdateC (M, (u, v), a, µ) // improve the current coupling
8. d← BellmanOpt(λ, C, d) // update the current estimate
9. end while

10. exact← exact ∪ visited // add new exact distances
11. toComp← toComp \ exact // remove exactly computed pairs
12. end while
13. return d�Q // return the distance restricted to the pairs in Q

6 A Compositional On-the-Fly Algorithm

In this section we provide an on-the-fly algorithm for computing the bisimilarity
distance making full use of the greedy strategy presented in Section 5. Then, we
describe how to optimize the computation on composite MDPs.

LetM = (S,A, τ, ρ) be an MDP, Q ⊆ S×S, and assume we want to compute
δMλ restricted to Q, written δMλ �Q. Our strategy has the following features:

– when a coupling C is considered, γCλ can be computed solving the Bellman
optimality equation system associated with it;

– the current coupling C can be improved by a local update C[(u, v), a/µ] that
satisfies the hypotheses of Lemma 19.

Note that, γCλ�Q can be computed considering only the smallest independent
subsystem containing the variables associated with the pairs in Q. Therefore, we
do not need to store the entire coupling, but we can construct it on-the-fly.

The computation of δMλ �Q is implemented by Algorithm 1. We assume the
following global variables to store: C, the current partial coupling; d, the current
partial over-approximation of δMλ ; toComp, the pairs of states for which the
distance has to be computed; exact, the pairs of states (s, t) such that d(s, t) =
δMλ (s, t); visited, the pair of states considered so far.

At the beginning C and d are empty, there are no visited states and no exact
distances. While there are pairs (s, t) left to be computed we update C calling
the subroutine UpdateC on a matching µ ∈ Π(τ(s, a), τ(t, a)), for each a ∈ A.
Then, d is updated on all visited pairs with the over-approximation γCλ by calling
BellmanOpt . According to the greedy strategy, C is successively improved and
d is consequently updated, until no further improvements are possible. Each
improvement is demanded by the existence of a better transportation schedule.
When line 10 is reached, d(u, v) = δMλ (u, v) for all (u, v) ∈ visited, therefore
visited is added to exact and removed from toComp. If no more pairs have to be
considered, the exact distance on Q is returned.
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Algorithm 2 UpdateC (M, (s, t), a, µ)

Input: MDP M = (S,A, τ, ρ); s, t ∈ S; a ∈ A, µ ∈ Π(τ(s, a), τ(t, a))
1. C ← C[(s, t), a/µ] // update the coupling
2. visited← visited ∪ {(s, t)} // set (s, t) as visited
3. for all (u, v) ∈ {(u′, v′) | µ(u′, v′) > 0} \ visited do // for all demanded pairs
4. visited← visited ∪ {(u, v)}
5. // propagate the construction
6. for all a ∈ A do guess µ′ ∈ Π(τ(u, a), τ(v, a)); UpdateC (M, (u, v), a, µ′)
7. end for

The subroutine UpdateC (Algorithm 2) updates the coupling C and recur-
sively populates it on all demanded pairs. BellmanOpt(λ, C, d) solves the smallest
independent subsystem of the Bellman optimality equation system on the MDP
induced by C, that contains all the visited pairs. Notice that, the equation sys-
tem can be further reduced by Gaussian elimination, substituting the variables
associated with pairs (u, v) ∈ exact with d(u, v).

Compositional Optimizations: Algorithm 1 can be modified to handle com-
posite MDPs efficiently. Assume M = op(M1, . . . ,Mn) and to have a safe
coupling composition operator op∗ that lifts op. The compositional heuristic de-
scribed in Section 5 suggests to start from the coupling op∗(D1, . . . ,Dn) obtained
by composing the optimal couplings Di for eachMi. This is done running Algo-
rithm 1 in two modalities: master/slave. For eachMi, the master shares the data
structures Ci, di, visitedi, toCompi and exacti with the corresponding slave to keep
track of the computation of δMi

λ . When a new pair ((si, . . . , sn), (t1, . . . , tn)) is
considered, the master runs (possibly in parallel) n slave threads of Algorithm 1
on the query {(si, ti)}. At the end of these subcomputations, the couplings Ci
are optimal, and they are composed to obtain a coupling for M. Note that, the
master can reuse the values stored by the slaves in their previous computations.

Experimental Results: For Markov chains, in [1] it has already been shown
that an on-the-fly strategy yields, on average, significant improvements with
respect to the corresponding iterative algorithms.

ready

working stop

ai[1]

bi[−1]
ai+1[4]

1−pp

q

1−q
1

Here we focus on how the compositional opti-
mization affects the performances. To this end we
consider a simple yet meaningful set of experiments
performed on a collection of MDPs, parametric in
the probabilities, modeling a pipeline. The figure
aside specifies an element Ei(p, q) of the pipeline
with actions Ai = {ai, ai+1, bi}. Pipelines are mod-
eled as the parallel composition of different process-
ing elements, that are connected in series by means of synchronization on shared
actions. Table 1 reports the computation times of the tests2 we have run both

2 The tests have been made using a prototype implementation coded in Mathematicar

(available at http://people.cs.aau.dk/~giovbacci/tools.html) running on an
Intel Core-i5 2.4 GHz processor with 4GB of RAM.

http://people.cs.aau.dk/~giovbacci/tools.html
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Query Instance OTF COTF # States

All pairs

E0 ‖ E1 0.654791 0.97248 9
E1 ‖ E2 0.702105 0.801121 9

E0 ‖ E0 ‖ E1 48.5982 13.5731 27
E0 ‖ E1 ‖ E2 23.1984 19.9137 27
E0 ‖ E1 ‖ E1 126.335 13.6483 27
E0 ‖ E0 ‖ E0 49.1167 14.1075 27

Single pair

E0 ‖ E0 ‖ E0 ‖ E1 ‖ E1 16.7027 11.6919 243
E0 ‖ E1 ‖ E0 ‖ E1 ‖ E1 20.2666 16.6274 243
E2 ‖ E1 ‖ E0 ‖ E1 ‖ E1 22.8357 10.4844 243
E1 ‖ E2 ‖ E0 ‖ E0 ‖ E2 11.7968 6.76188 243

E1 ‖ E2 ‖ E0 ‖ E0 ‖ E2 ‖ E2 Time-out 79.902 729

Table 1. Comparison between the on-the-fly algorithm (OTF) and its compositional
optimization (COTF); E0 = E0(0.7, 0.2), E1 = E1(0.6, 0.2), and E2 = E2(0.5, 0.3).

on all-pairs queries and single-pair queries for several pipeline instances; timings
are expressed in seconds and, as for the single-pair case, they represent the av-
erage of 20 randomly chosen queries. Table 1 shows that the required overhead
for maintaining the additional data structure for the subcomponents, affects
the performances only on very small systems. In all other cases the composi-
tional optimization yields a significant reduction of the computation time that
varies from a factor of 2 up to a factor of 10. Notably, on single-pair queries the
compositional version can manage (relatively) large systems whereas the non-
compositional one exceeds a time-bound of 3 minutes. Interestingly, we observe
better reductions on all-pairs queries than in single-pairs; this may be due to fact
that the exact distances collected during the computation are used to further
reduce the size of the equation systems that are successively encountered.

7 Conclusions and Future Work

We have proposed a general notion of composition operator on MDPs and identi-
fied safeness as a sufficient condition for ensuring non-extensiveness. We showed
that the class of safe operators is general enough to cover a wide range of
known composition operators. Moreover, we presented an algorithm for comput-
ing bisimilarity distances on MDPs, which is able to exploit the compositional
structure of the system and applies on MDPs built over any safe operators. This
is the first proposal for a compositional algorithm for computing bisimilarity dis-
tances; before our contribution, the known tools were based on iterative methods
that, by their nature, cannot take advantage of the structure of the systems.

Our work can be extended in several directions. For instance, the notion of
safeness can be easily adapted to other contexts where bisimilarity pseudometrics
have a fixed point characterization. In the same spirit, one may obtain a sufficient
condition that ensures continuity of operators, which is the natural generalization
of non-extensiveness.
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A Transportation Problem

In 1941 Hitchcock and, independently, in 1947 Koopmans considered the problem
which is usually referred to as the (homogeneous) transportation problem. This
problem can be intuitively described as: a homogeneous product is to be shipped
in the amounts a1, . . . , am respectively, from each of m shipping origins and
received in amounts b1, . . . , bn respectively, by each of n shipping destinations.
The cost of shipping a unit amount from the i-th origin to the j-th destination
is ci,j and is known for all combinations (i, j). The problem is to determine an
optimal shipping schedule, i.e. the amount xi,j to be shipped over all routes (i, j),
which minimizes the total cost of transportation.

It can be easily formalized as a linear programming problem

minimize
∑m
i=1

∑n
j=1 ci,j · xi,j

such that
∑n
j=1 xi,j = ai (i = 1, . . . ,m)∑m
i=1 xi,j = bj (j = 1, . . . , n)

xi,j ≥ 0 (i = 1, . . . ,m and j = 1, . . . , n)

The set of schedules feasible for a transportation problem, which is formalized
as a conjunction of linear constraints, describes a (bounded) convex polytope in
R2, often called transportation polytope.

There are several algorithms in literature which efficiently solve (not neces-
sarily homogeneous) transportation problems. Among these we recall [8].

B Technical proofs

In this appendix we provide the proofs for all the results mentioned so far.

Proof (of Lemma 8). By si ∼Mi
ti and Theorem 4.5 in [10], we have that

δMi

λ (si, ti) = 0. The thesis follows by p-non-extensiveness of op and the definition
of p-product metric. ut

Proof (of Corollary 9). It follows by Lemma 8 and Theorem 4.5 in [10]. ut

Lemma 24. Let C be a coupling for M. Then, δMλ v γCλ .

Proof. Assume M = (S,A, τ, ρ) and C = (ρ, ω). In order to prove δMλ v γCλ , by
Tarski’s fixed point theorem, it suffices to show that FMλ (γCλ) v γCλ . Let s, t ∈ S.
Since ω((s, t), a) ∈ Π(τ(s, a), τ(t, a)) we have

FMλ (γCλ)(s, t) = maxa∈A
(
|ρ(s, a)− ρ(t, a)|+ λTγCλ (τ(s, a), τ(t, a))

)
≤ maxa∈A

(
|ρ(s, a)− ρ(t, a)|+ λ

∑
u,v∈S γ

C
λ(u, v)ω((s, t), a)(u, v)

)
= Γ Cλ (γCλ)(s, t) .

Since γCλ = Γ Cλ (γCλ), we have FMλ (γCλ) v γCλ . ut
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Proof (of Theorem 11). Assume op is a safe composition operator on the MDPs
M1, . . . ,Mn, and letM = op(M1, . . . ,Mn). Then, for some p ∈ [1,∞] it holds

FMλ (‖δM1

λ , . . . , δMn

λ ‖p) v ‖FM1

λ (δM1

λ ), . . . , FMn

λ (δMn

λ )‖p .

By definition FM1

λ (δM1

λ ) = δM1

λ , therefore ‖δM1

λ , . . . , δMn

λ ‖p is a prefix point of

FMλ . By Tarski’s fixed point theorem it follows that δMλ v ‖δ
M1

λ , . . . , δMn

λ ‖p. ut
Proof (of Proposition 12). Let MX = (X,AX , τX , ρX), MY = (Y,AY , τY , ρY )
be MDPs, and d1 v FMX

λ (d1), d2 v FMY

λ (d2).

1. AssumeM =MX | MY , τ = τX |τ τY , and ρ = ρX |ρ ρY . We have to show

that FMλ (‖d1, d2‖1) v ‖FMX

λ (d1), FMY

λ (d2)‖1. Note that, for d ∈ AX ∩AY ,
ωX ∈ Π(τX(x, d), τX(x′, d)) and ωY ∈ Π(τY (y, d), τY (y′, d)), the function
ω : (X × Y )2 → [0, 1], defined by ω((u, v), (u′, v′)) = ωX(u, u′) · ωY (v, v′), is
a probability distribution on (X×Y )2. Moreover, by definition of |, it holds:

i. ω ∈ Π(τ((x, y), d), τ((x′, y′), d));
ii. ρ((x, y), d) = ρX(x, d)+ρY (y, d) and ρ((x′, y′), d) = ρX(x′, d)+ρY (y′, d).

Let x, x′ ∈ X, y, y′ ∈ Y , c ∈ AX ∩ AY and ω̃ ∈ Π(τ((x, y), c), τ((x′, y′), c))
be such that

FMλ (‖d1, d2‖1)((x, y), (x′, y′)) = |ρ((x, y), c)− ρ((x′, y′), c)|+
λ
∑
u,u′∈X
v,v′∈Y

(d1(u, u′) + d2(v, v′)) · ω̃((u, v), (u′, v′)) ,

i.e., ω̃ is the matching that minimizes the last summand, and c is the action
that maximize the whole expression (see the definition of FMλ ). To ease the
notation, let P and Q denote the following expressions:

P = |ρX(x, c)− ρX(x′, c)|+ λ
∑
u,u′∈X
v,v′∈Y

d1(u, u′) · ω̃((u, v), (u′, v′)) ,

Q = |ρY (y, c)− ρY (y′, c)|+ λ
∑
u,u′∈X
v,v′∈Y

d2(v, v′) · ω̃((u, v), (u′, v′)) .

By (ii) and |(A − B) + (C − D)| ≤ |A − B| + |C − D|, it is easy to see
that FMλ (‖d1, d2‖1)((x, y), (x′, y′)) ≤ P + Q. To prove the thesis it suffices

to show that P ≤ FMX

λ (d1)(x, x′) and Q ≤ FMY

λ (d2)(y, y′). Indeed

FMX

λ (d1)(x, x′) +FMY

λ (d2)(y, y′) = ‖FMX

λ (d1), FMY

λ (d2)‖1((x, y), (x′, y′)) .

Here we show only P ≤ FMX

λ (d1)(x, x′); the other inequality can be proven
similarly. Let a ∈ AX and ω̃X ∈ Π(τX(x, a), τX(x′, a)) be such that

FMX

λ (d1)(x, x′) = |ρX(x, a)− ρX(x′, a)|+ λ
∑
u,u′∈X d1(u, u′)ω̃X(u, u′) ,

Case c = a: By (i) we have that for any ωY ∈ Π(τY (y, a), τY (y′, a))

P ≤ |ρX(x, a)− ρX(x′, a)|+ λ
∑
u,u′∈X
v,v′∈Y

d1(u, u′) ω̃X(u, u′)ωY (v, v′)

= |ρX(x, a)− ρX(x′, a)|+ λ
∑
u,u′∈X d1(u, u′) ω̃X(u, u′)

= FMX

λ (d1)(x, x′) .
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Case c 6= a: By (i) we have that for any ωX ∈ Π(τX(x, c), τY (x′, c)) and
ωY ∈ Π(τY (y, c), τY (y′, c))

P ≤ |ρX(x, c)− ρX(x′, c)|+ λ
∑
u,u′∈X
v,v′∈Y

d1(u, u′)ωX(u, u′)ωY (v, v′)

= |ρX(x, c)− ρX(x′, c)|+ λ
∑
u,u′∈X d1(u, u′)ωX(u, u′)

≤ FMX

λ (d1)(x, x′) .

2. Assume M = MX ‖ MY , τ = τX ‖τ τY , and ρ = ρX ‖ρ ρY . We want to

prove FMλ (‖d1, d2‖1) v ‖FMX

λ (d1), FMY

λ (d2)‖1. Let x, x′ ∈ X, y, y′ ∈ Y ,
c ∈ AX ∪AY and ω̃ ∈ Π(τ((x, y), c), τ((x′, y′), c)) be such that

FMλ (‖d1, d2‖1)((x, y), (x′, y′)) = |ρ((x, y), c)− ρ((x′, y′), c)|+
λ
∑
u,u′∈X
v,v′∈Y

(d1(u, u′) + d2(v, v′)) · ω̃((u, v), (u′, v′)) . (1)

Case c /∈ AY : Notice first that, by definition of ‖, for v, v′ ∈ Y and arbitrary
ω ∈ Π(τ((x, y), c), τ((x′, y′), c)) it holds that

i. v 6= y or v′ 6= y′ =⇒ ω((u, v), (u′, v′)) = 0;
ii. ω((·, y), (·, y′)) ∈ Π(τX(x, c), τX(x′, c));
iii. ρ((x, y), c) = ρX(x, c), and ρ((x′, y′), c) = ρX(x′, c).

Given (i)–(iii), it is easy to see that (1) can be rewritten as follows:

FMλ (‖d1, d2‖1)((x, y), (x′, y′)) = |ρX(x, c)− ρX(x′, c)|+
λ
∑
u,u′∈X d1(u, u′) · ω̃((u, y), (u′, y′)) + λd2(y, y′) .

By (i) and (ii), it also holds that

FMX

λ (d1)(x, x′) ≥ |ρX(x, c)− ρX(x′, c)|+
λ
∑
u,u′∈X d1(u, u′) · ω̃((u, y), (u′, y′)) .

From the above considerations, we have

FMλ (‖d1, d2‖1)((x, y), (x′, y′)) ≤ FMX

λ (d1)(x, x′) + λd2(y, y′)

≤ FMX

λ (d1)(x, x′) + λFMY

λ (d2)(y, y′)

≤ FMX

λ (d1)(x, x′) + FMY

λ (d2)(y, y′)

= ‖FMX

λ (d1), FMY

λ (d2)‖1((x, y), (x′, y′)) .

Case c /∈ AX : Similar to the previous case.
Case c ∈ AX ∩AY : Similar to 1. ut

Proof (of Theorem 14). Let M = (S,A, τ, ρ). For any fixed d ∈ [0,∞)S×S there
exists a coupling C = (ρ, ω) forM such that Γ Cλ (d) = FMλ (d). This can be defined
by taking ω such that, for all s, t ∈ S, Td(τ(s, a), τ(t, a)) =

∑
u,v∈S d(u, v) ·

ω((s, t), a)(u, v).
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Let D be a coupling for M such that ΓDλ (δMλ ) = FMλ (δMλ ). By definition,
FMλ (δMλ ) = δMλ , therefore δMλ is a fixed point for ΓDλ . By uniqueness of the
fixed point of ΓDλ we have δMλ = γDλ . Let D =

{
γCλ | C coupling for M

}
, we have

δMλ ∈ D and, by Lemma 24, δMλ is a lower bound for D. Hence, δMλ = minD. ut

Proof (of Theorem 18). By Theorem 14, for all 1 ≤ i ≤ n, there exist a coupling
Ci for Mi, such that δMi

λ = γCiλ . By hypothesis there exists 1 ≤ p ≤ ∞, such
that

Γ
op∗(C1,...,Cn)
λ (‖γC1λ , . . . , γ

Cn
λ ‖p) v ‖Γ

C1
λ (γC1λ ), . . . , Γ Cnλ (γCnλ )‖p .

Since, for 1≤ i≤n it holds Γ Ciλ (γCiλ ) = γCiλ = δMi

λ , we have that ‖δM1

λ , . . . , δMn

λ ‖p
is a pre-fixed point of Γ

op∗(C1,...,Cn)
λ . Therefore, by Tarski’s fixed point theorem, it

holds γ
op∗(C1,...,Cn)
λ v ‖δM1

λ , . . . , δMn

λ ‖p. By hypothesis op∗ is a lifting of op, that
is op∗(C1, . . . , Cn) is a coupling for op(M1, . . . ,Mn) and, by Lemma 24, we have

δ
op(M1,...,Mn)
λ v γop

∗(C1,...,Cn)
λ . Therefore δ

op(M1,...,Mn)
λ v ‖δM1

λ , . . . , δMn

λ ‖p. ut

Proof (of Lemma 19). By Tarski’s fixed point theorem, it suffices to show that
ΓD(γCλ) < γCλ . Assume C = (ρ, ω), D = (ρ, ω̄), and let s′, t′ ∈ S. If (s′, t′) 6= (s, t),
by definition of D, we have that for all a′ ∈ A, ω̄((s′, t′), a′) = ω((s′, t′), a′), hence
Γ Cλ (γCλ)(s′, t′) = ΓDλ (γCλ)(s′, t′). Since, by hypothesis, ΓDλ (γCλ)(s, t) < γCλ(s, t), we
have ΓD(γCλ) < γCλ . ut

Proof (of Lemma 20). If for all s, t ∈ S, a ∈ A, and µ ∈ Π(τ(s, a), τ(t, a)),
ΓDλ (γCλ)(s, t) ≥ γCλ(s, t), then γCλ = FMλ (γCλ). Since FMλ has a unique fixed point,
γCλ = δMλ . ut

Proof (of Theorem 21). We prove that δλ 6= γCλ if and only if there exists a
coupling D for M such that ΓDλ (γCλ) < γCλ .

(⇒) Assume δλ 6= γCλ . From Lemma 20, there exist s, t ∈ S, a ∈ A and
µ ∈ Π(τ(s, a), τ(s, a)) s.t. ΓDλ (γCλ)(s, t) < γCλ(s, t), where D = C[(s, t), a/µ]. As
in the proof of Lemma 19, we have ΓD(γCλ) < γCλ .

(⇐) Let D be such that ΓDλ (γCλ) < γCλ . By Tarski’s fixed point theorem
γDλ < γCλ . By Lemma 24, δλ v γDλ < γCλ . ut

Proof (of Proposition 23). We prove the two items separately.

(i) By hypothesis op∗ is a p-safe, hence for all Ci coupling for Mi, it holds

Γ
op∗(C1,...,Cn)
λ (‖γC1λ , . . . , γ

Cn
λ ‖p) v ‖γ

C1
λ , . . . , γ

Cn
λ ‖p. By Tarski’s fixed point

theorem, γ
op∗(C1,...,Cn)
λ v ‖γC1λ , . . . , γ

Cn
λ ‖p.

(ii) Since Di are minimal w.r.t. Eλ, by Theorem 14, we have δMi

λ = γDiλ . By

(i), it holds γ
op∗(D1,...,Dn)
λ v ‖δM1

λ , . . . , δMn

λ ‖p. Since op∗ is a lifting of op,

by Lemma 24, δ
op(M1,...,Mn)
λ v γop

∗(D1,...,Dn)
λ . ut
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