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2.1 Introduction

This chapter is meant as an introduction to infinite two-person games on directed
graphs. We will define what they are, how they are played, what exactly a
strategy is, what we mean when we say a game is won by a certain player, etc.
We will introduce fundamental notions such as determinacy, forgetful strategies,
memoryless strategies, and so on. And we will state fundamental results, which
will be proved in later chapters.

2.2 Games

A game is composed of an arena and a winning condition. We will first study
arenas and then add winning conditions on top of arenas.

2.2.1 Arenas

An arena is a triple

A = (V0, V1, E) (2.1)

where V0 is a set of 0-vertices, V1 a set of 1-vertices, disjoint from V0, and
E ⊆ (V0 ∪ V1) × (V0 ∪ V1) is the edge relation, sometimes also called the set
of moves. The union of V0 and V1 is denoted V . Observe that with this notation
the requirement for the edge relation reads E ⊆ V × V . The set of successors
of v ∈ V is defined by vE = { v′ ∈ V | (v, v′) ∈ E }.

The games we are interested in are played by two players, called Player 0
and Player 1. We will often fix σ ∈ {0, 1} and consider Player σ; if we then want
to refer to the other player, we will speak of him or her as Player σ’s opponent
and write Player σ. Formally, we set σ = 1− σ for σ ∈ {0, 1}.

Observe that there is no restriction on the number of the successors of a
vertex in an arena. Also, we don’t require that (V,E) is a bipartite graph with
corresponding partition {V0, V1}.

2.2.2 Plays

A play of a game with an arena as above may be imagined in the following way:
a token is placed on some initial vertex v ∈ V . If v is a 0-vertex then Player 0
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moves the token from v to a successor v′ ∈ vE of v; symmetrically, if v is a
1-vertex then Player 1 moves the token from v to a successor v′ ∈ vE of v. More
concisely, when v is a σ-vertex, then Player σ moves the token from v to v′ ∈ vE.
Next, when v′ is a σ-vertex, then Player σ moves the token from v′ to v′′ ∈ v′E.
This is repeated either infinitely often or until a vertex v without successors, a
dead end, is reached. Formally, a vertex v is called a dead end if vE = ∅.

We define a play in the arena A as above as being either

• an infinite path π = v0v1v2 · · · ∈ V ω with vi+1 ∈ viE for all i ∈ ω (infinite
play) or
• a finite path π = v0v1 · · · vl ∈ V + with vi+1 ∈ viE for all i < l, but vlE = ∅
(finite play).

A prefix of a play is defined in the obvious way.
Now that we know what arenas and plays are we need to explain what kind

of winning conditions we are going to use and how arenas together with winning
conditions make games.

2.2.3 Games and Winning Sets

Let A be an arena as above and Win ⊆ V ω. The pair

(A,Win) (2.2)

is then called a game, where A is the arena of the game and Win its winning
set. The plays of that game are the plays in the arena A. Player 0 is declared
the winner of a play π in the game G iff

• π is a finite play π = v0v1 · · · vl ∈ V + and vl is a 1-vertex where Player 1
can’t move anymore (when vl is a dead end) or
• π is an infinite play and π ∈Win.

Player 1 wins π if Player 0 does not win π.

2.2.4 Winning Conditions

We will only be interested in winning sets that can be described using the ac-
ceptance conditions that were discussed in the previous chapter. But recall that
these acceptance conditions made only sense when used with automata with a
finite state space—a run of an infinite-state automaton might have no recurring
state. We will therefore colour the vertices of an arena and apply the acceptance
conditions from the previous chapter on colour sequences.

Let A be as above and assume χ : V → C is some function mapping the
vertices of the arena to a finite set C of so-called colours; such a function will
be called a colouring function. The colouring function is extended to plays in
a straightforward way. When π = v0v1 · · · is a play, then its colouring, χ(π), is
given by χ(π) = χ(v0)χ(v1)χ(v2) · · · . So, when C is viewed as the state set of a
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finite ω-automaton and Acc is an acceptance condition for this automaton (in
the sense of the previous chapter), then we will write Wχ(Acc) for the winning
set consisting of all infinite plays π where χ(π) is accepted according to Acc.
Depending on the actual acceptance condition we are interested in, this means
the following, where π stands for any element of V ω.

• Muller condition (Acc = F ⊆P0(C)): π ∈ Wχ(Acc) iff Inf(χ(π)) ∈ F .
• Rabin condition (Acc = {(E0, F0), (E1, F1), . . . , (Em−1, Fm−1)}):

π ∈Wχ(Acc) iff ∃k ∈ [m] such that Inf(χ(π))∩Ek = ∅ and Inf(χ(π))∩Fk �=
∅,
• Streett condition (Acc = {(E0, F0), (E1, F1), . . . , (Em−1, Fm−1)}):

π ∈Wχ(Acc) iff ∀k ∈ [m].(Inf(χ(π)) ∩ Ek �= ∅ ∨ Inf(χ(π)) ∩ Fk = ∅),
• Rabin chain condition (Acc = {(E0, F0), (E1, F1), . . . , (Em−1, Fm−1)} where

E0 ⊂ F0 ⊂ E1 ⊂ F1 ⊂ . . . ⊂ Em−1 ⊂ Fm−1): like the Rabin condition.
• Parity conditions (the colour set C is a finite subset of the integers):

– max-parity condition: π ∈Wχ(Acc) iff max(Inf(χ(π))) is even.
– min-parity condition: π ∈Wχ(Acc) iff min(Inf(χ(π))) is even.

• Büchi condition (Acc = F ⊆ C): π ∈ Wχ(Acc) iff Inf(χ(π)) ∩ F �= ∅.
• 1-winning (Acc = F ⊆ C): π ∈ Wχ(Acc) iff Occ(χ(π)) ∩ F �= ∅.

For simplicity, we will just write (A, χ,Acc) instead of (A,Wχ(Acc)). To indicate
that we are working with a certain acceptance/winning condition, we will speak
of Muller, Büchi, . . . games. We will say a game is a regular game if its
winning set is equal to Wχ(Acc) for some χ and some acceptance condition Acc
from above, except for 1-acceptance.

Example 2.1. Let A = (V0, V1, E, χ) be the (coloured) arena presented in Fig-
ure 2.1. We have the 0-vertices V0 = {z1, z2, z5, z6} (circles) and the 1-vertices
V1 = {z0, z3, z4} (squares). The colours are C = {1, 2, 3, 4}. The edge relation E
and the colour mapping χ may be derived from the picture, i.e. χ(z4) = 2
or χ(z0) = 1. Note that we don’t have a dead end in our example. As a
winning condition we choose the Muller acceptance condition given by F =
{{1, 2}, {1, 2, 3, 4}}.

A possible infinite play in this game is π = z6z3z2z4z2z4z6z5(z2z4)ω. This
play is winning for Player 0 because χ(π) = 23121224(12)ω and Inf(χ(π)) =
{1, 2} ∈ F . The play π′ = (z2z4z6z3)ω yields χ(π′) = (1223)ω and Inf(χ(π′)) =
{1, 2, 3} /∈ F . Hence π′ is winning for Player 1.

When we want to fix a vertex where all plays we consider should start, we
add this vertex to the game: an initialized game is a tuple (G, vI) where vI is
a vertex of the arena of G. A play of such a game is a play of the uninitialized
game which starts in vI .

2.3 Fundamental Questions

There are several obvious questions to ask when one is confronted with an ini-
tialized game as introduced in the previous section.



26 René Mazala

z0

1

z1

2

z21

z33 z4 2 z5 4

z6

2

Fig. 2.1. Coloured example arena

First, it would be interesting to know if one of the players can play in such a
game that regardless of how the other moves, the emerging plays will be wins for
him. This is the question whether the game is “determined”. We will formalize
this by introducing the notions of strategy and winning strategy, and we will
state the fundamental result that every regular game is determined; the result
itself will be proved in Chapter 6.

Second, when we consider games on finite graphs these can be input for an
algorithm and an obvious question to ask is if one can effectively (and maybe
efficiently) determine which of the two players wins the game. This question will
be answered in Chapter 7; the complexity of determining the winner heavily
depends on the type of the game (the winning condition) one is interested in.

Third, it is not only interesting to know who wins a game, but also how
a winning strategy looks like. Clearly, a winning strategy will tell the player
what to do next depending on the moves that have been taken thus far. We
will be interested in situations where the winning strategies are simple in the
sense that the next move of the player does only depend on the current vertex
or on a bounded amount of information on the moves that led to the current
position—we will be interested in “memoryless” or “forgetful” strategies. We
will describe this formally and state the main result that for every regular game
there is a forgetful winning strategy and that parity games even allowmemoryless
strategies.

2.4 Strategies and Determinacy

In order to be able to define formally what it means for a player to win a game,
we need to introduce the notion of strategy.
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2.4.1 Strategies

Let A be an arena as usual, σ ∈ {0, 1}, and fσ : V ∗Vσ → V a partial function.
A prefix of a play π = v0v1 · · · vl is said to be conform with fσ if for every i
with 0 ≤ i < l and vi ∈ Vσ the function fσ is defined at v0 · · · vi and we have
vi+1 = fσ(v0 · · · vi). Note, that this also implies vi+1 ∈ viE. A play (finite or
infinite) is conform with fσ if each of its prefixes is conform with fσ. Now we
call the function fσ a strategy for Player σ on U ⊆ V if it is defined for every
prefix of a play which is conform with it, starts in a vertex from U , and does
not end in a dead end of Player σ. When U is a singleton {v}, we say fσ is a
strategy for Player σ in v.

Let G = (A,Win) be an arbitrary game with A as usual, and fσ a strategy for
Player σ on U . The strategy fσ is said to be a winning strategy for Player σ
on U if all plays which are conform with fσ and start in a vertex from U are
wins for Player σ.

Example 2.2. We use the game from Example 2.1.
When Player 1 moves from z0 to z0 every time the token is located on z0,

then he will win every play that visits z0. This means, in particular, that f1

defined by f1(yz0) = z0 and f1(yz4) = z6 (or = z1) is a winning strategy for
Player 1 on W1 = {z0, z1}.

Each play that doesn’t begin in z0 or z1, visits the vertex z2 at some point.
Player 0 should under no circumstances move the token from z2 to z0 because
his opponent could win as described above. Hence, his only chance is to move
the token from z2 to z4. The resulting plays will visit z2 and z4 infinitely often.

Player 1 should not choose vertex z2 every time the token visits vertex z4

because this would result in a play with suffix (z2z4)ω which is a win for Player 0.
So, Player 1 should once in a while move the token from z4 to z6.

The situation for Player 0 in vertex z6 is a bit more complicated. If he always
decides for moving the token to z3, then the resulting play has the form π =
· · · (z6z3z2z4(z2z4)∗)ω and is a loss for him. Similarly, he will loose if he always
moves the token to z5. But he is able to win if he alternates between z3 and z5.
To sum this up, consider the function f0 defined by

f0(π) =


z4 if π ∈ V ∗z2

z3 if π ∈ V ∗z5z2z4(z2z4)∗z6

z5 if π ∈ V ∗z3z2z4(z2z4)∗z6

z3 if π ∈ (V \ {z3, z5})∗z6

. (2.3)

This is a winning strategy for Player 0 on W0 = {z2, z3, z4, z5, z6}.

We say that Player σ wins a game G on U ⊆ V if he has a winning strategy
on U .

Example 2.3. In the game from Examples 2.1 and 2.2, Player 1 wins on {z0, z1}
whereas Player 0 wins on {z2, z3, z4, z5, z6}.
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When (G, vI) is an initialized game, we say Player σ wins it if he wins G on
the singleton set {v}.

Clearly, every initialized game has at most one winner:

Remark 2.4. For any game G, if Player 0 wins G on U0 and Player 1 wins G on
U1, then U0 ∩ U1 = ∅.

Exercise 2.1. Proof the above remark by contradiction.

Given a game G, we define the winning region for Player σ, denotedWσ(G)
or Wσ for short, to be the set of all vertices v such that Player 0 wins (G, v).
Clearly:

Remark 2.5. For any game G, Player σ wins G on Wσ(G).

Exercise 2.2. Proof the above remark by showing that if U is a family of sets of
vertices such that Player σ wins on each element U ∈ U , then Player σ wins on⋃
U∈U

U .

2.4.2 Transforming Winning Conditions

In the previous chapter, we have seen how acceptance conditions for ω-automata
can be transformed into one another. The same can be done with games. This
will be explained in this section.

We first note:

Remark 2.6. For every regular game (A, χ,Acc) there exists a Muller winning
condition Acc′ such that (A, χ,Acc) and (A, χ,Acc′) have the same winning
regions.

The main result says that it is enough to consider parity games. Therefore,
parity games are of our interest in the whole volume.

Theorem 2.7. For every Muller game (A, χ,F) there exists a parity game
(A′, χ′,Acc′) and a function r : V → V ′ such that for every v ∈ V , Player σ
wins ((A, χ,F), v) if and only if Player σ wins ((A′, χ′,Acc′), r(v)).

Proof. The proof will be similar to the transformation of Muller conditions in
Rabin conditions for ω-automaton in the previous chapter: We modify the LAR
memory with hit position from Transformation 1.20 to contain colours instead
of vertices because the acceptance condition for our games was defined for the
colour sequence. But we have to keep track of the visited vertices too. This is
done in a product construction. We will see that the constructed Rabin condition
can be rewritten as Rabin chain or max-parity condition.

Let (A, χ,F) be a Muller game, C the (finite) set of colours, and a marker
� /∈ C, a symbol not occurring in C. Now set our LAR memory to

C̃ := {w ∈ (C ∪ {�})∗ | |w| ≥ 2 ∧ |w|
 = 1 ∧ ∀a ∈ C(|w|a ≤ 1) } . (2.4)
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C̃ is the set of all words w over the alphabet C ∪ {�} where � and at least one
colour are infixes of w and each colour appears at most once.

Now we can define our game (A′, χ′,Acc′). As vertices we choose

V ′ := V ′
0 ∪ V ′

1 with V ′
0 := V0 × C̃ and V ′

1 := V1 × C̃ . (2.5)

The set of edges is given by

E′ :=
{
((v, q), (v′, ϕ(v′, q)))

∣∣ v ∈ V, v′ ∈ vE, q ∈ C̃
}

(2.6)

where ϕ : V × C̃ → C̃ is the memory update function that deletes the marker,
replaces the colour c := χ(v′) of the given vertex v′ by the marker and finally
appends c. Formally, ϕ is defined as

ϕ(v′, q) :=


x�yzc if q = xcy�z

xy�zc if q = x�ycz

qc else (c is not an infix of q)
(2.7)

for each v′ ∈ V and each q ∈ C̃ with c := χ(v′). The function that transforms
the initial vertex can be set to

r(v) := (v, �χ(v)) . (2.8)

The new colouring function χ′ : V ′ → ω is defined by

χ′(v, x�y) :=

{
2 ∗ |y| − 1 if { c ∈ C | c infix of y } /∈ F
2 ∗ |y| otherwise

. (2.9)

We conclude the description of the construction by declaring Acc′ to be a max-
parity condition.

Now we have to prove the correctness of this construction which is similar to
Lemma 1.21 in the previous chapter. Let π = v0v1 · · · ∈ V ω be an infinite play in
A. The corresponding play π′ in A′ is uniquely determined: The projection onto
the first component p1(π′) = π is our original play, and the second component
is p2(π′) = q0q1 . . . ∈ C̃ω with qi = xi�yi defined by q0 := �χ(v0) and qi+1 :=
ϕ(vi+1, qi) for each i ∈ ω. Let F := Inf(χ(π)) be the set of infinitely often
visited colours in the play π. Hence, from some point j ∈ ω on the marker �
stays within the last |F | + 1 positions: ∀i ≥ j |yi| ≤ |F |. Second, the marker
must infinitely often occur in position |F |+1, positions numbered from right to
left, because each colour from F is infinitely often moved to the end. That is,
{ k ≥ j | |yk| = |F | and yk forms the set F } is infinite. Thus, by construction
of χ′, we have that the highest colour visited infinitely often in π′ has the even
value 2 · |F | if F ∈ F and the odd value 2 · |F | − 1 otherwise. For finite plays,
the situation is even simpler.

In summary, a play π is winning for Player 0 in A if and only if π′ is winning
for him inA′. Conversely, every play π′ inA′ starting in a vertex r(v) corresponds
to a play π in A, for which the same holds. So, Player 0 wins the initialized game
(A, v) if and only if he wins (A′, r(v)). ��
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Fig. 2.2. Example for the reduction

Example 2.8. Let A be the arena in Figure 2.2, and F = {{b}} a Muller accep-
tance condition. The example play π = z1z2z0z1z

ω
2 is winning for Player 0. The

winning regions are W0 = {z2} and W1 = {z0, z1}. The constructed max-parity
game A′ is presented in Figure 2.3. We get

π′ = (z1, �a)(z2, �ab)(z0, �ba)(z1, b�a)(z2, �ab)(z2, a�b)ω (2.10)

with the colouring χ′(π′) = 133132ω which is winning for Player 0 too. The
winning region W ′

0 for Player 0 is the set of all vertices with z2 in the first
component. W ′

1 is the complement of W
′
0.

z0, �a

1

z1, �a

1

z2, �ab

3

z2, a�b

2

z0, b�a

1

z1, b�a

1

z0, �ba

3

z2, �b

2

Fig. 2.3. Constructed max-parity game

2.4.3 Determinacy

In all of our example games, the winning regions for Player 0 and Player 1
partition the set of vertices of the game. When a game has this property, we will
say it is determined.

Martin (see, e. g., [119], [95]) showed that every game with a Borel type
winning set is determined. In Chapter 6, we will show the following special case
of Martin’s theorem.

Theorem 2.9. Every parity game is determined.

Together with Theorem 2.7, the previous theorem implies:

Corollary 2.10. Every regular game is determined.
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2.4.4 Forgetful and Memoryless Strategies

The objective of this section is to introduce some notions that help to explain
how complex a winning strategy is.

As a motivation, consider the game from Example 2.1 again. We argued that
in order to win it is necessary for Player 0 to alternate between moving the
token to z3 and z5 when it is on z6. More precisely, it is necessary not to stick
to one of the two vertices from some point onwards. This means that Player 0
has to remember at least one bit, namely whether he moved to z3 or z5 when
the token was on z6 the last time. But from our argumentation, it is also clear
that it is not necessary to remember more than that. In other words, a finite
memory is sufficient for Player 0 to carry out his strategy. We will say Player 0
has a forgetful strategy. The situation is much easier for Player 1. He does not
need to remember anything; he simply moves to z0 every time the token is on
z0. We will say Player 1 has a memoryless strategy.

Let G be a game as usual. A strategy fσ is said to be finite memory or
forgetful if there exists a finite set M , an element mI ∈ M , and functions
δ : V × M → M and g : V × M → V such that the following is true. When
π = v0v1 · · · vl−1 is a prefix of a play in the domain of fσ and the sequence
m0,m1, . . . ,ml is determined by m0 = mI and mi+1 = δ(vi,mi), then fσ(π) =
g(vl,ml).

Forgetful strategies that don’t need memory at all, that is, where one can
chooseM to be a singleton, are calledmemoryless or positional. Observe that
a memoryless strategy fσ has the property that whenever fσ is defined for πv
and π′v, then fσ(πv) = fσ(π′v). This allows us to view memoryless strategies
as partial functions Vσ → V , and, for ease in notation, we will often use this
representation.

Example 2.11. In Example 2.2, the strategy f1 for Player 1 is memoryless. To
see this, observe that we can choose M to be a singleton, say M = {m}, and
set g(z0,m) = z0 and g(z3,m) = g(z4,m) = z2. So, Player 1 has a memoryless
winning strategy onW1 = {z0, z1}. Using the simplified notation, we could write
f1(z0) = z0 and f1(z3) = f1(z4) = z2.

Player 0 needs to store which one of the colours 3 (occurring on vertex z3)
and 4 (on vertex z5) he visited last. This can be done with a memoryM = {3, 4}.
More precisely, one can choose mI = 3,

δ(v,m) =


3 if v = z3

4 if v = z5

m otherwise
. (2.11)

and

g(v,m) =


z4 if v = z2

z3 if v = z6 and m = 4
z5 if v = z6 and m = 3

. (2.12)

Thus, Player 0 has a forgetful winning strategy on W0 = {z2, z3, z4, z5, z6}.
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In Example 2.2, we already stated that Player 0 must not move from z6 to
the same successor every time he visits z6. So, Player 0 can’t have a memoryless
winning strategy.

We say that Player σ wins a game G forgetful when he has a forgetful
strategy for each point of his winning region. Accordingly, it is defined what it
means to win with finite memory, memoryless, and positional.

Exercise 2.3. Give an example for a game G such that Player 0 wins forgetful
on each {v} for v ∈ W0, but he has no forgetful winning strategy on W0. Can
you give an example where G is regular?

In exercise 2.2, the reader was asked to show that if U is some set of vertices
such that Player σ wins a given game G on every element of U , then he wins
G on U . This is easy to see. In Exercise 2.3, the reader is asked to provide an
example that shows that the corresponding statement is not true for forgetful
strategies. However, a corresponding statement is true for memoryless strategies
under a certain condition:

Lemma 2.12. Let G = (A,Win) be any game with countable vertex set V ,

V ∗Win ⊆Win and Win/V ∗ ⊆Win, (2.13)

where Win/V ∗ := { η ∈ V ω | ∃w ∈ V ∗ with wη ∈Win } is the set of all suffixes
of Win. Let U be a set of vertices such that Player σ has a memoryless winning
strategy for each element from U . Then Player σ has a memoryless winning
strategy on U .

Before we turn to the proof observe that the two conditions on the winning set
are satisfied in every regular game: A prefix of a winning play can be substituted
by any other finite word; the set of infinitely often visited colours stays the same.

Proof. The proof uses the axiom of choice. For every u ∈ U , let fuσ : Vσ → V
be a partial function which is a memoryless winning strategy for Player σ on u.
Without loss of generality, we assume that for every u ∈ U the domain of fuσ ,
denoted Du, is minimal with respect to set inclusion.

Let < be a well-ordering on U (therefore we choose V to be countable) and
D :=

⋃
u∈U

Du. We have to define a memoryless winning strategy fσ : D → V .

For each v ∈ D, let u(v) be the minimal vertex in U (with respect to the
well-ordering) with v ∈ Du(v), and set fσ(v) := f

u(v)
σ (v). Clearly, fσ is well

defined and memoryless. We have to show that fσ is a winning strategy on U .
Assume π = v0v1 · · · is a play starting in U and conform with fσ. In each

σ-vertex vj of the play π, Player σ has to choose the strategy f
u(vj)
σ . Let i

be such that u(vi) is minimal (with respect to the well-ordering) in the set
{ u(vj) | j ∈ ω and vj ∈ D }. Then, from this moment i on, the strategy fσ

follows the strategy f
u(vi)
σ . The domain Du(vi) was minimal with respect to

set inclusion, thus, the play vivi+1 · · · is a suffix of a play that starts in u(vi),
visits vi, and is conform to f

u(vi)
σ . Hence, π ∈ V ∗(Win/V ∗) ⊆ Win by our two

conditions, which completes the proof. ��
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Fig. 2.4. Example for the construction of a memoryless strategy

Example 2.13. Let A be the max-parity game in Figure 2.4. Clearly, Player 0
wins on each v ∈ U = {z1, z2}, i. e. with the memoryless strategies

• fz10 (z1) = z2 and fz10 (z2) = z3,
• fz20 (z2) = z1 and fz20 (z1) = z0.

To find a memoryless strategy on U , Player 0 can not set f0(z1) = fz10 (z1) and
f0(z2) = fz20 (z2) because this yields an infinite loop in z1 and z2 which is a loss
for him. If z1 < z2 in the well-ordering of U , then we get f0 ≡ fz10 . This is a
memoryless winning strategy on U .

In Theorem 6.6 in Chapter 6 we will show the following.

Theorem 2.14. In every parity game, both players win memoryless. This is
called memoryless determinacy of parity games.

From this, together with the construction in the proof of Theorem 2.7, we
can conclude:

Corollary 2.15. In every regular game, both players win forgetful. Analogously,
this is called forgetful or finite memory determinacy of regular games.

Proof. Let (A, χ,F) be a Muller game, A′ the max-parity game as constructed
in the proof of Theorem 2.7, and V ‘ = V × C̃ the set of vertices of A′ with
C̃ defined in Equation 2.4. The memoryless determinacy of parity games yields
memoryless winning strategies f ′

0 and f ′
1 on the winning regions W ′

0 and W ′
1

with W ′
0 ∪W ′

1 = V ′.
Now the observations in the proof of Theorem 2.7 allow us to construct

forgetful strategies in A. The winning regions are Wσ = { v ∈ V | (v, �χ(v)) ∈
W ′
σ } for σ ∈ {0, 1}. We can use the finite memory M = C̃ for both strategies.

As initial memory state of (A, v) we choose mI = �χ(v). The memory update
function δ is equal to ϕ from Equation 2.7. The forgetful strategies g0 and g1

are defined by

gσ(v, q) := f ′
σ((v, q)) (2.14)

for σ ∈ {0, 1}, v ∈ Vσ ∩Wσ, and q ∈ C̃.
Clearly, these strategies are forgetful winning strategies because gσ simulates

f ′
σ. ��

Note that the initial memory state in the previous construction could be
chosen arbitrarily.
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Exercise 2.4. Using the results from the previous chapter, determine how much
memory is sufficient and necessary to win Rabin and Muller games.

Theorem 2.14 states that parity games enjoy memoryless determinacy, that
is, winning strategies for both players can be chosen memoryless. It is easy to
show that in certain Muller games both players need memory to win. In between,
we have Rabin and Streett conditions. For those, one can actually prove that
one of the two players always has a memoryless winning strategy, but we will
not carry out the proof in this volume.

Theorem 2.16. In every Rabin game, Player 0 has a memoryless winning strat-
egy on his winning region. Symmetrically, in every Streett game, Player 1 has a
memoryless strategy on his winning region.

This theorem can also be applied to certain Muller automata on the grounds
of the following observation. A Muller condition (F0,F1) can be rephrased as
Rabin condition if and only if F1 is closed under union.

Example 2.17. We got a memoryless strategy for Player 1 in our Example 2.11.
His winning condition F1 is expressible as Rabin condition:
{({3}, {4}), ({4}, {3}), ({1}, {2})}. He wins a play if it loops, for instance, finitely
often through one of the colours 3 or 4 and infinitely often through the other
colour. Note that the winning condition cannot be rephrased as a parity condi-
tion, that is, Rabin chain condition (on the same graph).

2.5 Solving Games with Simple Winning Conditions

In this section, we prove special instances of Corollaries 2.10 and 2.15 and The-
orem 2.14.

2.5.1 Reachability Games and Attractors

For a start, we consider games which do not really fit into the framework that
we have used thus far. Given an arena A = (V0, V1, E) and a set X ⊆ V the
reachability game R(A, X) is the game in which a play π (be it finite or
infinite) is winning for Player 0 if some vertex from X or a dead end belonging
to Player 1 occurs in π. This is different from the games we have studied so far
because a dead end for Player 0 does not need to be a loosing position for him.
Strategies for reachability games are defined as before, but with the difference
that a strategy for Player 0 does not need to be defined for arguments that end
in a vertex from X .

Proposition 2.18. Reachability games enjoy memoryless determinacy.

Proof. The proof is constructive in the sense that on finite graphs it can be
immediately turned into an algorithm which computes the winning regions and
the memoryless winning strategies.
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Let A be an arena as usual and X ⊆ V . The winning region for Player 0 in
R(A, X) and a memoryless winning strategy for Player 0 are defined inductively.
In the inductive step, we use the function pre : P(V )→P(V ) defined by

pre(Y ) = { v ∈ V0 | vE ∩ Y �= ∅ } ∪ { v ∈ V1 | vE ⊆ Y } (2.15)

Inductively, we set X0 = X ,

Xν+1 = Xν ∪ pre(Xν) (2.16)

for all ordinals ν, and

Xξ =
⋃
ν<ξ

Xν (2.17)

for each limit ordinal ξ. Let ξ be the smallest ordinal such that Xξ = Xξ+1. We
claim that W := Xξ is Player 0’s winning region. Clearly, for every v ∈ W \X
there exists a unique ordinal ξv < ξ such that v ∈ Xξv+1 \Xξv . By the above
definition, we furthermore know that for every v ∈W∩V0\X there exists v′ ∈ vE
such that v′ ∈ Xξv . We set f0(v) = v′ and claim that f0 is a memoryless strategy
for Player 0 onW . This can be easily proved by transfinite induction: One shows
that f0 is winning for Player 0 on Xν for every ν ≤ ξ. Hence, W ⊆W0.

On the other hand, let W ′ = V \W and assume v ∈ W ′. Then v /∈ X . If
v is a dead end, it must be a dead end of Player 0 because all dead ends of
Player 1 belong to X1. But, on a dead end belonging to Player 0, Player 1 wins
immediately. If v is no dead end and belongs to V0, we have v′ /∈ W for every
v′ ∈ vE because otherwise v would belong to W . Similarly, if v is no dead end
and belongs to V1, there exists v′ ∈ vE such that v′ /∈ W because otherwise
v would belong to W . If we set f1(v) = v′ in this case, then f1 is clearly a
memoryless strategy for Player 1. Every play conform with this strategy and
starting in W ′ has the property that all its vertices belong to W ′. Since W ′

does not contain vertices from X or dead ends of Player 1 this play must be
winning for Player 1. Hence, f1 is a winning strategy for Player 1 on W ′ and
V \W =W ′ ⊆W1, that is, W0 =W and W1 = V \W . ��

The winning region of Player 0 in a reachability game R(A, X) is denoted
Attr0(A, X) and called 0-attractor of the set X in the arena A. A memoryless
winning strategy f0 as described in the above prove is called a corresponding
attractor strategy for Player 0. 1-attractor and attractor strategy for Player 1
are defined symmetrically, simply by exchanging V0 and V1 in the arena.

Exercise 2.5. Let A be an arbitrary arena, X ⊆ V , and aX : P(V ) → P(V )
the function defined by

aX(U) := X ∪ pre(U) . (2.18)

Show that aX is monotone with respect to set inclusion and that Attr0(A, X) is
the least fixed point of aX .
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Exercise 2.6. Show that in a finite arena with n vertices and m edges the at-
tractor of any set can be computed in time O(m+ n).

Exercise 2.7. Let A be an arena and Y = V \ Attrσ(A, X) for some X ⊆ V .
Show that σ cannot escape Y in the sense that vE ⊆ Y for every v ∈ Y ∩ Vσ
and vE ∩ Y �= ∅ for every v ∈ Y ∩ Vσ.

This exercise motivates the following definition. A σ-trap is a subset Y ⊆ V
such that vE ⊆ Y for every v ∈ Y ∩ Vσ and vE ∩ Y �= ∅ for every v ∈ Y ∩ Vσ.
A function which picks for every v ∈ Y ∩ Vσ a vertex v′ ∈ vE ∩ Y is called a
trapping strategy for Player σ.

Remark 2.19. The complement of a σ-attractor is a σ-trap.

The above remark tells us that, without loss of generality, we can assume
that arenas have no dead ends. Let (A,Acc) be an arbitrary game with A =
(V0, V1, E). For σ ∈ {0, 1}, we set Uσ = Attrσ(A, ∅). Then Player σ wins (A,Acc)
on Uσ memoryless. Now, let V ′

0 = V0 \ (U0 ∪ U1) and V ′
1 = V1 \ (U0 ∪ U1) and

consider the arena A′ = (V ′
0 , V

′
1 , E ∩ ((V ′

0 ∪ V ′
1) × (V ′

0 ∪ V ′
1))). Clearly, A′ does

not have any dead end. Further, for every v ∈ V ′
0 ∪V ′

1 , Player 0 wins (A′,Acc, v)
iff he wins (A,Acc, v) and, symmetrically, Player 1 wins (A′,Acc, v) iff he wins
(A,Acc, v). More specifically, winning strategies for (A′,Acc) can be used in
(A,Acc).

Exercise 2.8. Work out the details of the above argument.

z0

z1 z2

Fig. 2.5. Dead end strategy for Player 1

Example 2.20. In the game depicted in Figure 2.5, Player 1 may prevent an
infinite play by moving the token to z2. This is a dead end for Player 0 and
Player 1 wins.

2.5.2 1-acceptance

Using what we have proved about reachability games, we can now easily solve
1-games.

Proposition 2.21. 1-games enjoy memoryless determinacy.
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Proof. Let G = (A, χ, F ) and define Y and V ′ by Y = Attr1(G, ∅) and V ′ = V \Y .
Let A′ = (V0 ∩ V ′, V1 ∩ V ′, E ∩ (V ′ × V ′)). Observe that A′ does not contain
any dead end of Player 0. We claim that W := Attr0(A′, χ−1(F )) is the winning
region of Player 0 in G.

Clearly, Y is a subset of the winning region of Player 1. Further, W ⊆ W0,
because on this set Player 0 can force the game into a dead end of Player 1 or a
vertex in χ−1(F ) and go on forever because A′ does not contain any dead end
of Player 0. Remember that V ′ is a 1-trap, that is, Player 1 cannot escape V ′.
And on both sets, Y and W we have memoryless winning strategies (attractor
and trapping strategies) for the respective players. It is now sufficient to show
that Player 1 has a memoryless winning strategy on Z := V ′ \W . Since Z is a
0-trap of A′, Player 1 can use his trapping strategy and the token will then stay
in Z forever or stay in Z until it is moved to a vertex in Y , which is winning for
Player 1 anyway. ��

Exercise 2.9. Show that for finite arenas, the winning regions of 1-games can be
computed in time O(m+ n). (See also Exercise 2.6.)

2.5.3 Büchi Acceptance

Obviously, Büchi games can viewed as parity games. So memoryless determinacy
follows from memoryless determinacy of parity games, which will be proved in
Chapter 6. Nevertheless, we give a straightforward proof along the lines of the
proofs that we have seen in the previous two subsections.

Theorem 2.22. Büchi games enjoy memoryless determinacy.

Proof. Like in the other solutions, we first describe how to construct the winning
region for Player 0 in a Büchi game (A, χ, F ).

We set Y = χ−1(F ), and define inductively:

Z0 = V , (2.19)

Xξ = Attr0(A, Zξ) , (2.20)

Y ξ = pre(Xξ) , (2.21)

Zξ+1 = Y ξ ∩ Y , (2.22)

Zξ =
⋃
ν<ξ

Zν , (2.23)

where the last equation only applies to limit ordinals ξ. Let ξ be the least ordinal
≥ 1 such that Zξ = Zξ+1. We claim W := Attr0(A, Zξ) is the winning region of
Player 0.

To proveW ⊆W0, we describe a memoryless winning strategy f0 for Player 0
on W . For every v ∈ V0 ∩ Zξ, there exists v′ ∈ vE ∩ Attr0(A, Zξ) and we set
f0(v) = v′. For every other v ∈ V0 ∩W , we know v ∈ Attr0(A, Zξ), and thus
we set f0(v) to the value of a respective attractor strategy. Now, the following is
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easy to see. First, if a finite play starting in W is conform with f0, then it ends
in a dead of Player 1, which means Player 0 wins. Second, if an infinite play
starting in W is conform with f0 it eventually reaches Zξ and from this point
onwards it will reach Zξ over and over again. But since Zξ ⊆ Y (this is because
ξ ≥ 1), the play will be winning for Player 0.

To prove that W0 = W , we argue that Player 1 has a memoryless winning
strategy on W ′ := V \W . The winning strategy is defined as follows. For every
v ∈ W ′ there exists a least ν such that v ∈ Xν \Xν+1. (Note that X0 = V and
Xν′ ⊆ Xν′′

for all ordinals ν′ and ν′′ with ν′′ < ν′.) Since Xν+1 is a 0-attractor,
V \Xν+1 is a 0-trap. We set f1(v) to the value of a trapping strategy for Player 1
if v �∈ Y . Otherwise, it follows that v �∈ pre(Xν), and thus, there exists some
v′ ∈ vE ∩ V \Xν . We set f1(v) = v′. By induction on ν, it is now easy to show
that f1 is a winning strategy for Player 1 on V \ Xν . It follows that f1 is a
winning strategy on W ′. ��

Exercise 2.10. Show that for a finite arena, the winning regions of a Büchi game
can be computed in time O(n(m+ n)).




