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Let SC be the interpreted formalism which makes use of individual
variables t, x , y, z, ... ranging over natural numbers, monadic predicate
variables q ( ), r ( ), s ( ), i ( ), ... ranging over arbitrary sets of natural
numbers, the individual symbol 0 standing for zero, the function symbol'
denoting the successor function, propositional connectives, and quantifiers
for both types of variables. Thus SC is a fraction of the restricted second
order theory of natural numbers, or of the first order theory of real numbers.
In fact, if predicates on natural numbers are interpreted as binary ex­
pansions of real numbers, it is easy to see that SC is equivalent to the first
order theory of [Re, -t-, Pw, Nn], whereby Re, Pw, Nn are, respectively,
the sets of non-negative reals, integral powers of 2, and natural numbers.

The purpose of this paper is to obtain a rather complete understanding
of definability in SC, and to outline an effective method for deciding truth
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of sentences in Sc. This answers a problem of A. Tarski's, which was dis­
cussed by R. M. Robinson [10J.

A congruence of finite rank on words is a congruence with finite partition
of concatenation; a multi-periodic set of words is a union of congruence
classes of a congruence of finite rank. These concepts are intimately related to
that of a finite automaton (Kleene [5J, Myhill [6J, Copi, Elgot, and Wright [3J),
and turn out to be the key to an investigation of SC. Our results concerning
SC may therefore be viewed as an application of the theory of finite automata
to logic. In turn, SC arises quite naturally as a condition-language (Church
[2J) on finite automata or sequential circuits, and"sequential calculus" is
an appropriate name for Sf'. The significance of the decision method for
SC is that it provides a method for deciding whether or not the input
(i)-to-output (u) transformation of a proposed circuit A (i, r, u) satisfies
a condition C(i, u) stated in sc.

An important role in our theory of SC is played by Lemma 1, the Sequential
Lemma. This is a combinatorial statement about w-sequences, which may
well be of importance elsewhere. It turns out to be a simple consequence of
Ramsey's Theorem A. The usefulness of the "Unendlichkeitslernma" of
Konig (also known as the "fan-theorem" in its intuitionistic version) in
related problems of automata theory was first observed by Jesse B. Wright.
Because of its affinity to Konig's lemma the present application of Ramsey's
theorem was suggested. The author wishes to thank Dr. Wright for his
continued assistance in the work presented here.

1. Notations

i denotes an n-tuple of predicate variables. Expressions like A[i(O)],
B[i(t), i(t')J denote propositional formulas in the indicated constituents.
En' fln , denote the classes of formulas of SC of the following type:

E I : (3r) .. A[r(O)J 1\ (Vt)B[i(t), r(t), r(t')] 1\ (3t) C[r(t)J,
III : (Vr) . A[r(O)J v (3t) B[i(t), r(t), r(t')J v (Vt) C[r(t)J,
En+l : (3r) . F(i, r), whereby FE Iln,
Iln+l: (Vr) . F(i, r ), whereby FEE".

The quantifiers (3t)~ A (t) for (3t) [x < t < y 1\ A (t)J, (Vtn A (t) for
(Vt) [x ~ t < y J A (t)J, (3'''t)A (t) for (Vx) (3t) [x < t 1\ A (t)J, (V,,,t)A (t)
for (3x) (Vt)[x < t J A (t)J, (3j),,,A (j) for (3j) [(3'''t)j(t) 1\ A (j)J can be
defined in Sf'. The classes E'j' and Il'j' of formulas are defined as follows:

2.~'t : (3r) . A[r(O)J 1\ (Vt) B[i(t), r(t), r(t')J 1\ (3"'t) C[r(t)],
Il'; : (Vr) . A[r(O)J v (3t) B[i(t), r(t), r(t')] v (VOJt) C[r(t)].

Also the following classes of formulas will play an essential role:

EO : (3r) . A[r(x)J 1\ (Vt)~ B[i(t), r(t), r(t')J 1\ C[r(y)J,
Il": (Vr) . A[r(x)] v (3tn B[i(t), r(t), r(t')J v C[r(y)].

These may be called regular formulas.
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Let i be a k-tuple of predicates. The 2k states of i are the k-tuples of
truth-values. i may be viewed as an infinite sequence i(0)i(l)i(2) ... of
states. The variables u, v, w, ... will be used for words (i.e., finite sequences)
of states; uv denotes the result of juxtaposing the words u and v. A congruence
is an equivalence relation u o: v on words such that u (/) v implies
uw o: vw and wu (/) wv; it is of finite rank n in case there are n equivalence
classes. A set Y' of words is multi-periodic if Y' = 8'1 U ... u 8'm- whereby
8'1' ... 8'm are some of the congruence classes of a congruence of finite rank.

Note that the value of a regular formula R(i, x, y} depends only on the
word i(x) i(x+l} ... i(y-l}. If fJf is the set of all words i(O} i(l} ... i(h}
such that R(i, 0, h+l), then the formula R(i, x, y) is said to determine
the set fJf of words. The symbol "IO" will be used also to denote the class
of all sets fJf of words determined by formulas R in IO. Similarly, the symbol
"It' is used also to denote the class of all sets iF(i) defined by formulas
F(i} in If. Corresponding remarks hold for Il", Ilf, I 1 , Ill'

2. The Sequential Lemma
The working of the decision-method for SC is based on induction and

a rather more sophisticated property of infinity, namely Theorem A of
Ramsey [9]. Essential parts of this theorem can actually be formulated
in SC, in the form of a surprising assertion about the division of infinite
sequences into consecutive finite parts.

LEMMA 1. Let i be any k-tuble of predicates, and let 8'0' ... , 8'n be a partition
of all words on states of i into finitely many classes. Then there exists a division
i(O} i(I} ... i(x1-1}, i(x1} i(x1+1) ... i(x2-1}, i(x2} i(x2+1} ... i(xa-l),
... of i such that all words i (xp ) i (xp + 1) ... i (xq -1) belong to one and the
same of the classes 8'0' , 8'n.

PROOF. Assume i, 8'0' , 8'n are as supposed in Lemma 1. For 0 < c :S n
let P, consist of all {Y1' Y2} such that Y1 < Y2 and i(Y1) i(Y1+ 1) ... i(Y2- 1)E
8'c- Then Po, ... , Pn clearly is a partition of all 2-element sets of natural
numbers. By Ramsey's Theorem A it follows that there is an infinite
sequence Xl < X2 < Xa < ... and a O:S c < n such that {xp , xq } E P,
for all xp < xQ . By definition of P, this yields the conclusion of Lemma 1.

3. Finite Automata, Multi-periodic Sets, and IO-formulas
The following methods and results are borrowed from the theory of finite

automata, and playa very essential role in the study of sc. The reader is
referred to Buchi [1], where some of the details are carried out in similar
form, and where further references to the mathematical literature on finite
automata are given. The basic result is

LEMMA 2. The following are equivalent conditions on a set fJf of words:

(a) fJf is determined by a formula F(i, x, y) oj IO.
(b) There is a "finite automata recursion" r(O} = I, r(t') - J[i(t), r(t}],

and an "output" U[r(t)] such that a word i(O} i(l) ... i(x-l} belongs to
9t just in case the recursion yields an r(x) such that U[r(x)] holds.
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The implication a ~ b is shown in essence by Myhill's [6J "subset­
construction"; nearly in the present form the details are in [lJ Lemma 7.
The implication b~ a is trivial, (3r) . r(x) = 1/\ (Vt)nr(t') - J (t) J /\ U[r (y)J
clearly determines f3f.

The set :?l defined by (b) is sometimes called the behavior of [I, J, UJ.
In this terminology Lemma 2 says that .Eo is exactly the class of all behaviors
of finite automata with outputs. It is easy to see that the class of behaviors
is closed under disjunction and complementation. For example, if f3f is- -the behavior of [I, J, UJ, then clearly ;~ is the behavior of [I, J, U].
Therefore by Lemma 2,

LEMMA 3. If the formulas R(i, x, y), S(i, x, y) determine EO-sets of words,
then so do the formulas R(i, x, y) /\ S(i, x, y), R(i, x, y) v S(i, x, y), and
"-' R(i, x, y).

Suppose next that R (i, x, y) is the EO-formula (3r) . K (x) /\ (Vt)~H (t) /\ L(y).
Then clearly (3z)~R(i, x, y) is equivalent to (3sr)· s(x) /\ (Vtn[(s(t') ")s(t))
/\ (s(t)s(t') ") K(t)) /\ (s(t)") H(t))J /\ [s(y)L(y)J, which is again in EO.
Therefore by Lemma 3,

LEMMA 4. If the [ormula R(i, x, y) determines a EO-set of words, then so do
the formulas (3znR(i, x, y) and (VznR(i, x, y).

Suppose again that R(i, x, y) is a EO-formula. By Lemma 2 it follows
that

(1) R(i, 0, y) .. -x , (3r) . r(O)_ 1/\ (V't)[r(1') =J(t)J /\ U(y)

for properly chosen matrices I, J[i(t), r(t)J, and U[r(y)]. It clearly
follows that

(2) R(i, 0, y). . (Vr) . [r(O) ~-: 1/\ (Vt)[r(t') =c-c= J(t)JJ ") U(y).

By (Ii it follows that (3y) R(i, 0, y) is equivalent to a Ecformula. By
(2) it follows that (Vy) R(i, 0, y) is equivalent to (Vr). [r(O) =c=c 1/\ (Vt)[r(t')
=::= J (t)J) ") (Vt) I. (t), and therefore to (3r). r(O) .== I /\ (Vt) [r rt') J (t)JC (t)
Thus,

LE1\I:\IA 5. If R (i, x, y) determines a }.'O-set of words, then (3t) R (i, 0, t )

is equivalent to a L'ciormllla, and (Vt) R (i, 0, t) is eqllioalcnt to a Ecformllla
01 type (3r). K(O) /\ (Vt)H(t).

As a consequence of Lemma 2, one thus obtains a rather clear picture of
definability by EO-formulas. However, a further characterization of behaviors
is needed for the study of SC.

LDI:\IA 6. A set .!-f of words satisfies (b) 01 Lemma 2 (i.e., is the behavior
01 some [initc automaton with Olltpllt) if and onls] i] it is multi-periodic,

This fact has been observed by several authors; a proof can be found
in Rabin and Scott [HJ. By Lemma 2 it follows that EO consists exactly of
the multi-periodic sets of words.
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4. Definability by E{"-formulas

We will now show that also the class E{", just like EO, is closed under
Boolean operations.

LEMMA 7. If FI(i) and F 2(i) are E{"-formulas, then also FI(i) V F 2(i)

is equivalent to a E{"-formula.

PROOF. For c = I, 2 let Fc(i) be the formula

(3rc) . Kc(O) 1\ (Vt)Hc(t) 1\ (3Wt)L
c(t ).

Then clearly the E~-formula

(3s r Ir2) . [s(O) K J (0) v 5(0) K2(0)J 1\ (Vt)[[s(t) - s(t')J 1\ [s(t)HI(t)
v s(t)H2(t)JJ 1\ (3 wt)[s(t)LI(t) v 5(t)L2(t)J

is equivalent to FI(i) v F 2(i).

That E1 also is closed under conjunction follows by

LEMMA 8. A formula of form (3r)· K(O) 1\ (Vt)H(t) 1\ (3wt)L
I(t) 1\ (3wt)L

2(t)

is equivalent to a E{"-jormula.

PROOF. If the predicate s(t) is defined from Pl(t) and P2(t) by the recur­
sion s(O) = F, s(1') ~= [5(t) PI(t) v s(t) P2(t)J, then it is easy to see that
[(3 W t ) pdt) 1\ (3W t ) P2(t) J (3 W t ) s (t) . Using this device with PI and P2
corresponding to LI and L2, one obtains a E{"-formula as required in
Lemma 8.

Using all previous lemmas, one can now establish the closure of E{"
under complementation.

LEMMA 9. To every formula A (i) in E1 one can obtain a formula B(i)
in E{" equivalent to "'"' A (i).

PROOF. Suppose A (i) is in E{", say

(I) A (i) : (3r) . K[r(O)J 1\ (Vt) H[i(t), r(t), r(1')J 1\ (3 W t ) L[r(t)].

If V, Ware states of r and if x = XOXI ... X h is a word of states of i,
then define

[V,x, WJl: V .H[XO,V,UIJI\H[XI,UI,U2J I\H[X2,U2,UaJ1\ .. • I\H[Xh,Uh,WJ,
V."'Vh

[V, x, WJ2: V . H[Xo, V, UJ 1\ •• • 1\ H[Xh,Uh,WJ 1\ [L[UIJ v ... v L[UhJJ.
V."'Vh

(Read [ J1 as "there is an H-transition from V by x to W", and [ J2 as
"there is an H-transition through L from V by x to W".) Next define the
binary relation C/) on words of states of i:

xC/) JI : /\ ([V, x, WJl [V, y, WJI) 1\ A ([V, x, WJ2 - [V, y, WJ2)'
VW {.\~

If m is the number of states of r, then clearly C/) is the intersection of
m 2+m2 dichotomies. Therefore, C/) is an equivalence relation of finite
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rank a <22m2. Furthermore, using the definitions of [ J1 and [ J2' one
obtains, UJ is a congruence relation on words. By Lemmas 2 and 6 it therefore
follows that one can find formulas E1(i, x, y), ... , Ea(i, x, y) such that
(2) E 1 , ••• , Ell. are EO-formulas, and (3) E 1 , ••• Ell. determine the con­
gruence classes of UJ.

Next one applies Lemma 1 to the partition E 1 , ... , Ea. It follows that
for any i

(4) (3s)wCv'y)(Vx)~[s(x)s(y)::> £l(i, x, y)]

v ... v (3s)w(Vy)(Vx)~[s(x)s(y) ::> Ea(i, x, y)].

If one defines for 1 :S c, d < a,

FC,d(i) : (3s)w . (3x)[s(x) A Ec(i, 0, X)J A (Vy)(VX)~[S(X)s(y) ::> Ed(i, x, Y)J,

then clearly each disjunct of (4) is equivalent to a disjunction of FC.d's.
Therefore,

(5)

for 1 ~ c,d ::;; a.

holds for all i.
Suppose now that Fc.d(i) A Fc.d(j). Then, by definition of F C. d and by

(3) there are Xl < X2 < Xa < and Yl < Y2 < Ya ... such that

i(O) i(x1-l) UJ j(0) j(Yl-l),
i(xp) i(xp+1-1) UJ j (Yp) : .. j(YP+1-1), p = 1,2, :-I ••..

By definition of UJ and (1) it therefore follows that A(i) -- A(j). Thus
if FC,d(i) A FC,d{j), then A (i) == A (j). Or restating this result,

(6) (Vi)[Fc.d(i) ::> A (i)J v (Vi)[Fc,d(i) ::> '" A (i)],

If now one defines the set tP of pairs (c, d) by

(7) tP(c,d) == '" (3j)[A (j) A Fc,d(j)], for 1 ?; c,d ;;? a,

then it follows by (5) and (6) that,

(8) '" A (i) == V FC,d(i).
4'(c. eI)

By (2), definition of F C. d' and Lemmas 3, 4, 5 it follows that FC,d is
of form

FC.d(i) =~ (3spq)' 1(0) A evt) J(t) A (3t) :\1(t) A (3")t) s(t)

for some matrices I[p(O), q(O)], ][i(t), s(t), q(t), p(t), q(t'), p(t')J, :\1[q(t)].
Note that (3t) :\1(t) A (3'ut) s(t) may be replaced by (3("t)[(3x)~ l\1(x) A s(t)J.
Furthermore, (3x):,:\1(x) may be replaced by r(t), if r(O)== F, r(t f

) == [r(t )v:\1 (t)]
are conjoined to 1(0) and ](t), respectively, and (3r) is added to the prefix.
Therefore, each FC.d(i) is equivalent to a E{')-formula. By (8) and Lemma 7
it follows that ",.-1 (i) is equivalent to a E{"-formula, which concludes the
proof of Lemma 9.

Note that by definition Fc,d = EcEiJ.EdEd ... , and by (5) and (6) the
set A is the finite union of all F C• d such that", tP(c, d). Furthermore,
the sets of words Ec are all multi-periodic. Thus our proof also yields
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LDI!IlA 10. Let d be a set of w-sequences of states definable by a It-formula.
Then d = !/I U ... U !/m . whereby each !/k is of form ~!?l~~ ..., for
multi-periodic sets '6', !fi of words.

This provides a rather clear understanding of It-definability, because
multi-periodic sets of words have been investigated in automata theory.

5. Definability in SC
The following lemma may be proved by methods similar to those in

[IJ Lemma 1.

LDIMA II. To every formula A (i) in. SC one can obtain an equivalent
formula B(i) belonging to some In.

Furthermore a Icformula can be transformed to an equivalent It­
formula (see end of proof of Lemma 9). Repeated application of Lemma 9
now clearly yields an equivalent Ir-formula to every In-formula. Thus
we obtain

THEOREM I. To every formula A (i) of SC there is an equivalent formula
B(i) in Ii-

We add the following remarks:

1. Because of Lemma 10 this theorem provides a clear understanding
of which relations A (il •... , in) on predicates are definable in SC.

2. It is easy to see that I:'- and I 2-formulas define the same relations.
Therefore, the hierarchy In' fln collapses at n = 2. This result cannot be
improved much; the set U consisting of all infinite i's is definable by a
1:2- (a 1:~)formula, but not by a fl2-formula .

3. Using Theorem 1, one easily shows that also formulas A (i, Xl' ... , xm)

of SC, containing free individual variables, have a normal form, namely,

(3r) . K [r (0)JI\ (Vt)H [i( t ).r (t ).r (t') JA (3 wt )L[r (t)] AU I [r(x l ) JA ..• AU [r (xm ) ].

This yields rather complete information on definability in Sc. For example,
4. A conjecture of Robinson [lOJ: A relation .?l(x l , ... , xm ) on natural

numbers is definable in SC if and only if it is definable in SCfln, which is
like SC except that the variables i, j, r, ... range over finite sets of natural
numbers, This follows by remark 3 and methods similar to those in the proof
of Lemma 12, Section 6. Similarly, one shows a relation .?l(i l •... , im)

on finite sets of natural numbers is definable in SC if and only if it is definable
in SCfln. For a complete discussion of definability in SCfln see Biichi [1].

5. Theorem 1 holds in a stronger version: there is an algorithm which
to any formula A (i) in SC yields an equivalent formula B(i) in It See
next section.

6. A Decision Method for SC
To obtain a method for deciding truth of sentences in SC we need a

further lemma, whose proof again is typical for automata theory:



8 MATHEMATICAL LOGIC

LEMMA 12. There is an effective method for deciding truth of sentences A
in L't

PROOF. Let C(r) be a formula of form K[r(O)] r; (Vt)H[r(t), r(t')]
/\ (3,vt) L[r(t)]. Suppose r is a k-tuple of predicates such that C{r)
holds. Then there are Xl < X2 < ... such that L[r(x1 )] , L[r(x2)]' ....
Because r has but a finite number of states, there must be a repetition
r(xp ) = r(x q ) of some state V. Therefore, (3r) C(r) implies the assertion

(1) There are words x = XOX1 ••• X, and y = Y1Y2 ••• Yb of states
and a state V such that L[V], and K[XoJ /\ H[Xo, X1J /\ ... /\H[Xa_vX aJ
/; H[Xa, VJ, and H[V, Y1J /\ H[Y1 , Y2J r. ... /\ H[Yb - 1, Yb ] /\ H[Yb , V].

Conversely (1) implies (3r) C(r), because one has but tolet r = xVyVyVy ....
Thus, a method (I) which decides, for given propositional formulas K, H, L
and given state V, whether or not (1) holds will also be a method for
deciding truth of L'{"-sentences (3r) C(r). Clearly such a method (I) can
be composed from a method (II) which, for given propositional formula
H[X, YJ and given states V and W, decides whether or not

(2) There is a word x = X1X2 ••• X, such that H[V, Xl] /\ H[X1 , X 2J

/\ ... /\ H[Xa- 1, XaJ /\ H[Xa, W]. ,
Let n = 2k be the number of states, and note that in a word x = X1X2 •••

X, of length a > n there must occur a repetition Xp = X q , P < q < a.
Clearly if x satisfies (2), then so does the shorter word y = X1X2 •••

XpXq+lXq+ 2 ••• Xa. Therefore, to establish whether or not (2) holds, it
suffices to check among the finitely many words x of length ::s n. This
remark clearly yields a method (II) for (2), whereby Lemma 12 is es­
tablished.

Lemma 2 is proved in automata theory in a strong effective version.
Also the proof of Lemma 6 actually yields the following result:

(a) Let (/) be a congruence of finite rank on words. Given a method for
deciding X(/) Y and a set of representatives Xl' ... , X a of the congruence
classes of co, one can construct a finite automaton [I, J] and outputs
V 1 , ... , U, such that the congruence class of Xc is equal to the behavior
of [I, J, Vc)' Clearly also Lemmas 3, 4, 5, 7, 8, 11 hold effectively. This
leaves only the following two critical steps in the proof of the crucial Lemma 9:

(b) The ,Eo-formulas Ec(i, X, y), c = 1, ... , a can be effectively construct­
ed from A (i).

(c) The relation (jj(c, d) on the finite set {l, ..., a} can be effectively
construcj:ed from A (i) (so that the disjunction (8) can be effectively ob­
tained).

To prove (b) note that given A the definition of C/) in the proof of lemma 9
provides us with a method for deciding X(/) y. Because we also have a
bound 22m 2 on the rank a of o», it is possible to obtain a set of representa­
tives Xl' ... , Xa for the congruence classes. By (a) and Lemma 2 the asser­
tion (b) follows.
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To prove (c) we refer to the definition (7) of <J> in the proof of Lemma 9.
By Lemma 8 one can actually construct a Et-formula equivalent to
A (j) /\ Fe,d (j). Lemma 12 therefore provides a method for deciding whether
or not <J>(c, d) holds. This takes care of (c). Thus also Lemma 9 holds
effectively.

It now follows that Theorem 1 holds effectively; in particular, to every
sentence A in SC one can construct an equivalent sentence in Et Applying
Lemma 12 again, we have

THEOREM 2. There is an effective method for deciding truth of sentences in SC.

The strength of this result is best seen by noting some very special cases
which occur in the literature and have been obtained by rather divergent
methods:

1. The decidability of .E2-sentences of SC contains the result of Friedman
[4J, and implies the existence of various other algorithms of finite automata
theory as programmed by Church [2]. It also implies some of the results
of Wang [11].

2. In SC one can define x = y, x < y, x _ y (mod k) (for k = 1,2, ... ).
The decidability of SC therefore considerably improves a result of Putnam [7J.

3. In SC one can define "i is finite". Theorem 2 therefore implies the
decidability of SCfln , which was also proved in Biichi [1J, and according to
Robinson [10J is due to A. Ehrenfeucht.

4. The decidability of the first order theory of [Nn, +, Pw J follows from
Theorem 2 and improves the classical result of Presburger.

5. Theorem 2 is closely related to another classical result, namely, the
decidability of the monadic predicate calculus of second order, proved first
by Th. Skolem and later by H. Behmann. A modified form of Lemma 11
yields a rather simple solution to this problem.

7. Concluding Remarks: Unsolved Problems
A careful analysis of the decision method for SC would yield a complete

axiom system for Sc. The most interesting candidate for an axiom schema
is that part of Lemma 1 which is used in the proof of Lemma 9, namely,

(Ax) (Vi)(3s)", . (Vy) (Vx)i; [s(x)s(y) :J E(i, x, y)J

v (Vy)(Vx)i;[s(x)s(y) :J '" E(i, x, y)J

for any formula E(i, x, y) in .EO.
Such an analysis also shows that the same method yields a decision about

whether or not a sentence is true in SCper • which is like SC except that the
variables i, i. r, ... range over ultimately periodic sets of natural numbers.
In particular it can be seen that (Ax) also holds in SCper . However this is
not shown by using Ramsey's theorem; rather one uses the fact that every
element c of a finite semi-group has a power c" which is idempotent. These
remarks outline a proof of

THEORE:\I 3. A sentence A is true in SCper if and only if it is true in Sc.
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Using predicates i as binary expansions of real numbers, one obtains
as a corollary to Theorems 2 and 3

THEOREM 4. The first order theories of [Re, +, Pw, NnJ and [Ra, +, Pw, Nn]
are arithmetically equivalent, and decidable.

Here Re, Ra, Nn, Pw stand for the sets of non-negative reals, rationals,
integers, integral powers of 2, respectively.

It is interesting to note that SC becomes undecidable if the function 2x
is added (Robinson [10J). Also in case monadic predicate quantification
is replaced in SC by quantification over monadic functions, all recursive
relations become definable (Gcdel).

Problem 1. Let SC2 be like SC, except that the functions 2x+ I and
2x+ 2 are taken as primitives in place of x + 1. Is SC2 decidable?

This is of some interest, because the functions 2x+1 and 2x+2 can be
interpreted as the right-successor functions xl and x2 on the set of all
words on two generators I and 2.

Problem 2. Let SC(IX) be like SC, except that the domain of individuals
is the ordinal IX, and the well ordering on IX is added as a primitive. Is
SC(w2) decidable? '

As outlined in the introduction, Theorem 2 may be interpreted as a method
for deciding whether or not a given finite automaton satisfies a given
condition in Sc.

Problem 3. Is there a solvability algorithm for SC, i.e., is there a method
which applies to any formula ql, u) of SC and decides whether or not there
is a finite automata recursion A (I, r, u) which satisfies the condition
C (i.e., A(I, r, u):J C(I, u))?

REFERENCES

[1] BOCHI, J. R. "Weak Second Order Arithmetic and Finite Automata", Zeitschri]t
jur Math. Log. und Grundl. der Math., 6 (1960), pp. 66-92.

[2] CHURCH, ALONZO. "Application of Recursive Arithmetic to the Problem of
Circuit Synthesis", Notes at the Summer Institute at Symbolic Logic, Cornell, 1957,
pp. 3-50, and "Application of Recursive Arithmetic in the Theory of Computing
and Automata", Notes: Advanced Theory at the Logical Design at Digital Com­
puters, U. of Michigan Summer Session, 1959.

[3] COPI, I. M., C. ELGOT, and J. B. WRIGHT. "Realization of Events by Logical
Nets", Journal at the Association tor Computing Machinery, Vol. 5, No.2, April,
1958.

[4J FRIEDMAN, JOYCE. "Some Results in Church's Restricted Recursive Arithmetic",
Journal at Symbolic Logic, 22, pp. 337-342 (1957).

[5] KLEENE, S. C. "Representation of Events in Nerve Nets and Finite Automata",
Automata Studies, Princeton University Press, 1956, pp. 3-41.

[6J MYHILL, JOHN. "Finite Automata and Representation of Events", 'VADC
Report TR 57-624, Fundamental Concepts in the Theory at Systems, October 1957,
pp. 112-137.



BUeHl: Decision Method in Restricted Arithmetic 11

[7J PUTNAM, HILURY. "Decidability and Essential Undecidability", Journal o]
Symbolic Logic. 22 (1957). pp. 39-54.

[8J R-\BIN. M., and D. SCOTT. "Finite Automata and their Decision Problems",
I EM Journal. April 1959. pp. 114-125.

[9J RAMSEY. F. P .. "On a Problem of Formal Logic". Proc. London Math. Soc.,
(2) 30 (1929). pp. 264-286.

[IOJ ROBINSO:;. R. ~l. "Restricted Set-theoretical Definitions in Arithmetic", Proc.
Am. Math. Soc., 9 (1958). pp. 238-242.

[Ll ] WANG. HAO. "Circuit Synthesis by Solving Sequential Boolean Equations",
Zeitschrijt jur Math: Log. und Grundl. der Math., 5 (1959). pp. 291-322.


