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Abstract. We consider verification of safety properties for parameterized sys-
tems of timed processes, so called timed networks. A timed network consists of
a finite state process, called a controller, and an arbitrary set of identical timed
processes. In a previous work, we showed that checking safety properties is de-
cidable in the case where each timed process is equipped with a single real-valued
clock. It was left open whether the result could be extended to multi-clock timed
networks. We show that the problem becomes undecidable when each timed pro-
cess has two clocks.
On the other hand, we show that the problem is decidable when clocks range over
a discrete time domain. This decidability result holds when processes have any
finite number of clocks.

1 Introduction

One of the main current challenges in model checking is to extend its applicability
to parameterized systems. The description of such a system is parameterized by the
number of components, and the challenge is to check correctness of all instances in one
verification step. Most existing methods for model checking of parameterized systems
consider the case where each individual component is modelled as a finite-state process.

In this paper we study parameterized systems of timed processes, so called Timed
Networks (TNs). A TN represents a family of systems, each consisting of a finite-state
controller, together with finitely, but arbitrarily many timed processes (timed automata).
A timed process operates on a finite number of real-valued clocks. This means that a
TN operates on an unbounded number of clocks, and therefore its behaviour cannot be
captured by that of a timed automaton [AD94].

In [AJ03], we show decidability of the controller state reachability problem for
TNs: given a state of the controller, is there a computation from an initial configuration
leading to that state? This problem is relevant since it can be shown, using standard
techniques, that checking large classes of safety properties can be reduced to controller
state reachability. The decidability result in [AJ03] is given subject to the restriction that
each timed process has a single clock. As an example, this allows automatic verification
of a parameterized version of Fischer’s protocol (see e.g. [KLL � 97]). This protocol
achieves mutual exclusion by defining timing constraints on an arbitrary set of processes
each with one clock. We can show correctness of the protocol regardless of the number
of participating processes. The paper [AJ03] leaves open the case of multi-clock TNs,
i.e., TNs where each timed process may have several clocks.



In the literature, there are many applications where a number of timed automata
[AD94] run in parallel and where each of the timed automata has more than one clock.
For instance, the Phillips audio control protocol with bus collision [BGK � 96] has two
clocks per sender of audio signals. Also, the system described in [MT01] consists of
an arbitrary number of nodes, each of which is connected to a set of LANs. Each node
maintains timers to keep track of sending and receiving of messages from other nodes
connected to the same set of LANs. In a similar way to Fischer’s protocol, it is clearly
relevant to ask whether we can verify correctness of the protocol in [BGK � 96] regard-
less of the number of senders, or the protocol in [MT01] regardless of the number of
nodes.

The question is then whether the decidability result of [AJ03] can be extended to
multi-clock systems. In this paper we answer this question negatively. In fact, we show
that it is sufficient to allow two clocks per process in order to get undecidability. The un-
decidability result is shown through a reduction from the classical reachability problem
for 2-counter machines. The main ingredient in the undecidability proof is an encoding
of counters which allows testing for zero. The encoding represents each counter by a
linked list of processes, where ordering on elements of the list is reflected by ordering
on clock values of the relevant processes, and where the link between two elements in
the list is encoded by whether two clocks belong to the same process. The value of a
counter is reflected by the length of the corresponding list.

We also consider Discrete Timed Networks (DTNs): a variant of timed networks
where clocks are interpreted over a discrete time domain rather than a dense one. Sur-
prisingly, it turns out that the controller state reachability problem now becomes decid-
able. The decidability result holds regardless of the number of clocks allowed inside
each timed process. We show decidability using the theory introduced in [AČJYK00]
for verification of transition systems which are monotonic with respect to a well quasi-
ordering. More precisely, we define a counter abstraction for DTNs. This is an exact
abstraction of the system where we only count the number of processes which have
certain states and certain clock values. We show that such an abstraction induces a well
quasi-ordering, and that the behaviour of a DTN is monotonic with respect to that or-
dering.

Related Work Most works on verification of parameterized systems consider the case
where each component is a finite-state system. Applications include cache coherence
protocols [Del00,EK03], broadcast protocols [EFM99], mutual exclusion protocols
with linear topologies [KMM � 01], etc.

In [AMC02] a method is given for translating a timed automaton with several clocks
into the parallel composition of a finite number of automata each operating on a single
clock. This may give the impression that reachability problems for multi-clock TNs can
in a similar way be reduced to corresponding problems for single-clock TNs. However,
the construction given in [AMC02] will not work in our case. The reason is that, due
to the unbounded number of timed processes, it is not possible to keep track of clocks
belonging to the same process.

The works in [AAB00,AHV93] consider timed automata which are parameterized
in the the following sense: transitions are guarded with predicates which compare clocks
(and counters) with parameters possibly ranging over infinite domains. The models used



in these papers assume a finite number of clocks and are therefore orthogonal to the
models considered in this paper.

A work related to our result on DTNs is [GS92] where counter abstraction is used
to obtain a Petri net model for parameterized systems. However, a process in [GS92] is
assumed to be finite-state. Furthermore, counter abstraction in the case of DTNs yields
a model with a different behaviour than that of Petri nets.

Outline: Section 2 gives the definition of timed networks. Section 3 recalls the classi-
cal model of 2-counter machines. Section 4 shows how a configuration of a 2-counter
machine can be encoded by a configuration of a timed network, while Section 5 shows
how the transitions of a 2-counter machine can be simulated by transitions of a timed
network. We give the correctness proof for our encoding in Section 6. In Section 7
we give an algorithm for deciding the controller-state reachability problem for DTNs.
Finally in Section 8, we conclude and give some directions for future work.

2 Definitions

In this section, we define timed networks: families of (infinitely many) systems each
consisting of a controller and an arbitrary number of identical timed processes. The
controller is a finite state automaton while each process is a timed automaton [AD94],
i.e., a finite-state automaton which operates on a finite number of local real-valued
clocks ���������������
	 . The values of all clocks are incremented continuously at the same
rate. In addition, the network can change its configuration according to a finite number
of rules. Each rule describes a set of transitions in which the controller and a fixed
number of processes synchronize and simultaneously change their states. A rule may
be conditioned on the local state of the controller, together with the local states and
clock values of the processes. If the conditions for a rule are satisfied, then a transition
may be performed where the controller and each participating process changes its state.
Also, during a transition, a process may reset some of its clocks to 0.

We use
�

and ���� for the set of natural numbers and set of non-negative real num-
bers respectively.

Timed Networks A family of timed networks (timed network for short) � with �
clocks is a pair ��������� , where:

– � is a finite set of states. The set � is the union of two disjoint sets; the set ����� �"!
of controller states, and the set �$#���%&� of process states. These sets contain two
distinguished initial (idle) states, namely ')(+*-,.�0/213��� �"! and ')(+*-,�#�/415#��"%�� .

– � is a finite set of rules where each rule is of the form67
8 �9 8�:�
;< 67 8 �= � 9?> �8�:�

;< @�@�@A67 8�B= B 9C> B8�:B
;<

such that
8 � � 8�:� /D�E���F�"! , and for all GIH�JLKMGIKON we have:

8�P � 8�:P /4�Q#���%&� , and= P 9R> P
is a guarded command where = P

is a boolean combination of predicates
of the form SUTV� for SW/ �

, TX/ZY\[]��^$��K$��_$��`5a , �b/cYd� � �������e�&� 	 a and> P�f Y�� � �������e�&� 	 a .



Intuitively, the set � ���F�"! represents the states of the controller and the set �I#��"%&� repre-
sents the states of the processes. A rule of the above form describes a set of transitions
of the network. The rule is enabled if the state of the controller is

8 � and if there are N
processes with states

8 ���
@�@�@

� 8 B
whose clock values satisfy the corresponding guards.

The rule is executed by simultaneously changing the state of the controller to
8 :� and the

states of the N processes to
8 :� �

@�@�@
� 8�:B

, and resetting the clocks belonging to the sets> ����������� > B
.

For a guard = P
we write = P � � � �������e� � 	$� to denote the Boolean expression which re-

sults from substituting the occurrences of � � �������e��� 	 in = P
by � � �������e� � 	 respectively.

Configurations A configuration � of a timed network ���E����� with � clocks is a tuple
of the form ���
� 8 ��� ��� � , where � is a finite index set,

8 / � ���F�"! , � H	� 9 �Q#��"%�� , and
� H Y J ����������� a 9 � 9 ��
� .

Intuitively, the configuration � refers to the controller whose state is
8
, and to 
 ��


processes, whose states are defined by � . The clock values of the processes are defined
by � . More precisely, for SLH J3KXS K � and G /�� , � ��S �e�)G�� gives the value of clock�� in the process with index G .

We use 
 ��
 to denote the number of processes in � , i.e., 
 ��
 [�
 ��
 . Also, we shall use
�� to denote the mapping � 9 � �� such that ��+� G���[�� � S ��� G�� .
Example 1. Figure 1 shows graphical representation of a configuration in a timed
network with two clocks, given by ��Y J ���.��� a�� 8 ���I��� � where �]��J\� [ 8 �����]��� � [8�� ���I��� � [ 8��

and � � ��Jd� [�� � J ��� ����� �Q[�� � �.��� ���!� �Q["�.� � ��� � ��J\�0["�.� � ��� � ��� �0[J � # ��� � ��� ��[$� � % .
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Fig. 1. Graphical representation of a configuration in a timed network with two clocks.

Transition Relation The timed network � above induces a transition relation & 9 on
the set of configurations. The relation & 9 is the union of a discrete transition rela-
tion & 9(' , representing transitions induced by the rules, and a timed transition relation
& 9*) which represents passage of time.

The discrete relation & 9+' is the union , ��-/. & 9 � , where & 9 � represents a tran-
sition performed according to rule 0 . Let 0 be a rule of the form described in the
above definition of timed networks. Consider two configurations � [ �!�
� 8 ��� ��� �
and � : [ �1�
� 8�: ��� : ��� : � . We use �2& 9 � � :

to denote that there is an injection3 HOY J �������e�&N a 9 � such that for each G3H J K G�KbN and SDH�J K S4Kb� we
have:

1.
8 [ 8 � , �]� 3 � G��&��[ 8�P

, and= P �!� � � 3 � G���� ����������� 	 � 3 � G��&��� holds. That is, the rule 0 is enabled.



2.
8�: [ 8�:� , and � : � 3 �)G�����[ 8�:P

. The states are changed according to 0 .
3. If �� / > P

then � : � 3 �)G��&�Q["� , while if ����/ > P
then � : � 3 � G��&�Q[���.� 3 � G���� . In

other words, a clock is reset to � if it occurs in the corresponding set > P
. Otherwise

its value remains unchanged.
4. � : ���+�$[ �]���+� and � : ��� �Q[���+���+� , for � /+��� range � 3 � , i.e., the process states

and the clock values of the non-participating processes remain unchanged.

For a configuration � [ ��� � 8 ���I��� � and �Q/ � �� , we use � �	� to denote the con-
figuration �!�
� 8 ���I��� : � where � : ���+��[$��.���+��
�� for each � / � and S H�J K S KD� .
A timed transition is of the form �+& 9 )� � � :

where � : [ � �	� . Such a transition lets
time pass by � . We use ��& 9() � :

to denote that � & 9()� � � :
for some ��/L���� .

We define & 9 to be & 9 '�� & 9() and use �& 9 to denote the reflexive transitive
closure of & 9 . Notice that if ��& 9 � :

then the index sets of � and � :
are identical and

therefore 
 ��
�[ 
 � : 
 . For a configuration � and a controller state
8
, we use ���& 9 8

to
denote that there is a configuration � :

of the form �!� : � 8�: ��� : ��� : � such that � �& 9 � :
and

8 : [ 8
.

Reachability A configuration ������� � [C��� � 8 ���I��� � is said to be initial if
8 [ ')(+*-,+� ,

�I�)G�� [ ')(+*-,�# , and � .� G�� [ � for each G]/ � and S H�JLKbS2KM� . This means that
an execution of a timed network starts from a configuration where the controller and all
the processes are in their initial states, and the clock values are all equal to � . Notice
that there is an infinite number of initial configurations, namely one for each index set
� .

Controller State Reachability Problem (TN �)� � -Reach)

Instance A timed network � �E����� with � clocks and a controller state
8��

.

Question Is there an initial configuration � ����� � such that � ����� � �& 9 8��
?

Controller state reachability is relevant, since it can be shown, using standard tech-
niques [VW86,GW93], that checking safety properties (expressed as regular languages)
can be translated into instances of the problem. In [AJ03] we show that TN �&Jd� -Reach
is decidable. In this paper we show

Theorem 1. TN �1� � -Reach is undecidable.

3 2-Counter Machines

In this section we recall the standard definition of counter machines. Here, we assume
that such a machine operates on two counters which we call � � and � �

.
A two-counter machine � is a tuple ��� � � � where � is a finite set of local states

with a distinguished initial local state ! ���"� � /#� , and � is a finite set of instructions. An
instruction $ is a triple ��! � ��%'& �'! � � , where ! � �(! � /)� and %'& is either an increment (of
the form � � 
*
 or � � 
*
 ); a decrement (of the form � � & & or � � & & ); or a zero testing (of
the form � � [��,+ or � � [ �,+ ). A configuration - of a two-counter machine is a triple� ! �/. � �0. � � , where ! /1� represents the local state, and . � �/. � / �

represent the



values of the counters � � and � �
respectively. The counter machine � induces a transition

relation � on the set of configurations, which is defined as usual using the standard
interpretations of counter operations. We use �� to denote the reflexive transitive closure
of � . In a similar manner to timed networks, we use - �� ! to denote that there is a
configuration - : [ ��! : �/. : � �0. :� � such that - �� - :

and ! : [ ! . We define the initial
configuration -	����� � to be ��! ���"� � � � � � � . The control state reachability problem for a 2-
counter machines (CM-Reach) is: given local state ! � check whether - ����� � �� ! � . The
following result [Min61] is well-known.

Theorem 2. CM-Reach is undecidable.

In our correctness proof (Section 6), we use the relation

B
� , with N `�� , on configura-

tions, where -
B
� - :

iff there is a sequence - � � - � �
@�@�@

� - B
with - � [ - and

- B [ - :
. The relation

B
� is extended to local states in a similar manner to �� . Notice

that �� [ � B B
� .

4 Encoding of Configurations

We show undecidability of TN ��� � -Reach through a reduction from CM-Reach. Given a
counter machine �L[ � � ��� � , we shall derive a timed network ����[ ����� ����� � with two
clocks. In this section, we perform the first step in the reduction; namely we describe
how to construct the set � � . Also, we describe how configurations of � are encoded as
configurations of � � . Finally, we introduce a special type of encodings, called proper
encodings, which we use in our simulation of � .

States According to the model described in Section 2, the set � � will consist of two
disjoint sets of states: the set � ���F�"!� of controller states and the set � #��"%��� of process
states. The set � ��� ��!� contains three types of states:

1. The initial controller state ')(+*-,+� .
2. Local states of � : all members of � have copies in � ���F�"!� .
3. Temporary states: the set � ��� ��!� contains a state ��� & � for each increment instruction

$ / � . These states are used as intermediate states during the simulation of incre-
ments (Section 5). The set � ���F�"!� also contains the state ! : ����� � (recall that ! � �"� � is the
initial local state of � ). This state is used as an intermediate state in the initialization
phase of the the simulation (Section 5).

The set � #���%&�� contains two types of states:

1. The initial process state ')(+*-, # .
2. Six states 	�
��� , �]')(� , *���
��� , 	�
���� , �3')(�� , and *���
���� , used for encoding the two coun-

ters (as described below).

Encodings Each configuration - of � will be encoded by a set of configurations in��� . The local state of - will be encoded by the controller state. Each counter will be
modelled by a counter encoding. A counter encoding arranges a set of processes as a
circular list. The ordering among elements of the list is defined by the clock values.



The length of the list reflects to the value of the counter. To define counter encodings,
we shall use the six process states 	�
��� , �]')(� , *���
��� (used for encoding of � � ), and 	�
���� ,
�]')(�� , *���
���� (used for encoding of � �

). The states 	�
��  and *���
��� are the states of the first
and last processes in the list encoding the value of ��� . All processes in the middle of
the list will be in state �]')(  . The states 	�
�� � , �]')( � , and *���
�� � play similar roles in the
encoding of � �

. Formally, a configuration � [b�!�
� 8 ���I��� � is said to be a � � -encoding
of value . if there is an injection

3
from the set Y�� �������e�0. 
 J a to � such that the

following conditions are satisfied

– �I� 3 ��� ��� [ 	�
��  , �]� 3 � . 
4Jd����[ * ��
��  , and �I� 3 �)G��&� [ �]')(  for each G H J$K G K
. .

– �I���+� / Y ')(+*-,�# ��	�
����
� �3')(�����*���
�� �
a if � / � � range � 3 � .
– � � � 3 � G���� ^(� � � 3 � G 
 Jd��� for each G H ��K G K . .
– � � � 3 � G���� [ � � � 3 �&� G	
DJ\� ����� � . 
+� ���&� , for each G�H ��K G�K�. 
DJ .

The first condition states that the processes which are part of a � � -encoding are in one
of the local states 	�
��  , �3')(  , or * ��
��  . The second condition states that the processes
which are not part of a � � -encoding are in one of the local states ')(+*-,\# ��	�
�� � , �]')(�� , or*���
���� . The third and the fourth conditions show how the processes which are part of
a � � -encoding are ordered as a circular list. The position of each process in the list is
reflected by values of its clocks � � and � �

. More precisely, the ordering among the � �
clocks reflects the positions of the processes in the list. Also, clock � �

of each process
(except the last process) is equal to clock � � of the next process. Finally, clock � �

of the
last process is equal to clock � � of the first process (giving the list a “circular” form).
We use � ��*)� � � � to denote the value . of a �d� -encoding � .
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Fig. 2. (a) Graphical representation of ordering among clocks in �	� -encodings. (b) a �
� -encoding
satisfying the ordering on clocks described in (a).

Example 2. Figure 2(b) shows a � � -encoding of value � . Figure 2(a) shows a graphical
representation of the ordering among clock values. In Section 5 we shall use such a
graphical representation to explain the different steps in the simulation of � . Each ellipse



contains clocks of equal values. Clocks in successive ellipses have increasing values,
i.e., they are ordered from left (lower clock values) to right (higher clock values). The
upper halves of the ellipses represent the � � -clocks, while the lower halves represent
the � �

-clocks. Each process is denoted by an edge whose end points are its two clocks.
Such an edge is labelled by the current state of the process.

A � �
-encoding and its value � ��* � � � � are defined in a similar manner (replacing the

states 	�
��  , �]')(� , and *���
��  by 	�
�� � , �3')(�� , and *���
���� in the encoding).
A configuration � [ �!�
� 8 ���I��� � is said to be an encoding if the following two

conditions are satisfied:

–
8 [ ! for some !$/ � , i.e.,

8
is the copy of a local state of � .

– � is both a � � - and a � �
-encoding.

If � satisfies the above conditions (i.e. if � is an encoding), we define the signature

 '�� � � � of � to be the triple ��! �/. ���/. � � , where . �L[ � ��*)� � � � and . � [ � ��* � � � � .
Intuitively, the triple ��! �/. �\�0. � � will correspond to a configuration of � . Notice that
several (in fact infinitely many) configurations may have the same signature. However,
all such configurations will have the same local states and the same orderings on clock
values, and therefore will correspond to the same configuration in � .

Proper Encodings In our simulation of � we shall rely on a particular kind of encod-
ings, called proper encodings. An encoding � of the form �!�
� 8 ��� ��� � is said to be
proper if it satisfies the following condition:

– For each G / � with �]� G�� �[ ')(+*-,�# , �]^ � � �)G��e��� � �)G�� ^ J .

In other words, all clocks participating in the encoding have values between (not in-
cluding) zero and one. Certain steps of the simulation (see the decrementing operation
in Section 5) are not possible to carry out without an upper bound on clock values of the
processes. Working with proper encodings guarantees such an upper bound (namely an
upper bound of one).

5 Encoding of Transitions

In this section, we perform the second step in deriving the timed network � � [� � � ��� � � from the counter machine �L[ � � ��� � . More precisely, we describe the set of
rules ��� . The set ��� contains the following rules:

Incrementing For each instruction $3[M��! �\�(����
 
]�(! � � in � there are two rules in � � ,
namely

'���� � � H
67 !��9
��� & �

;< 67
	�
�� 

�3^2��� 9 Y�����a
�3')( 

;< 67 ')(+* ,�#
�10�� , 9 Y�� � a

	�
�� 

;<

and the rule

'���� �� H
67
��� & �9
! �

;<c67
	�
�� 

�3^2� � 9 Y�����a
	�
�� 

;<b67 *���
�� 
�10�� , 9 Y�� � a*���
�� 

;<



The total effect of the two rules is to increment the value of a � � -encoding by adding
one more process to the list. The rule '�� �

� � changes the state of the process which is
currently first in the list to �3')(  . This process will be placed in the second position
in the new encoding. At the same time a new process is picked from the set of idle
processes, and its state is changed to 	�
��  . The new process will be placed first in the
list. Furthermore, the rule resets (and therefore equates) clock � � and � �

respectively
of the two above mentioned processes. This is done in order to maintain the invariant
that clock � �

of each process (except the last process) is equal to clock � � of the next
process (recall the definition of an encoding from Section 4). The result of applying rule'���� � � on a � � -encoding of value � is shown in Figure 3(b).

Rule '���� �� resets clock � � of the process which is now in state 	�
��� and clock � �
of

the process which is last in the list. This is done in order to maintain (i) the invariant
that clock � � of a process (here the first process) is smaller than clock � � of the next
process; and (ii) the invariant that clock � �

of the last process is equal to clock � � of the
first process. The result of applying rule '���� �� is shown in Figure 3(c).

(c)

(b)

(a)

last1

last1

mid1

last1

fst1

mid1

fst1 mid1 mid1

mid1 mid1

mid1 mid1fst1

Fig. 3. Simulating
��� ��� � �����	� ��
� on a � � -encoding

Some remarks about rules '�� �
� � and '�� �

��
:

– After execution of '���� � � , the controller will be in state ��� & � and therefore '���� �� is
the only rule which may eventually be enabled after execution of '�� �

� � .
– The guard � ^ � � in the definition of '���� � � is to guarantee that all clocks have

positive values before the rule is applied. This makes sure that we avoid the scenario
where we “accidentally” equate some clocks with the ones which are reset during
the application of '�� �

� � . The same reasoning applies to the guard � ^ � �
in the



definition of the rule '�� �
��
. Similar guards exist in the rest of the rules described in

this section.
– After application of '���� �� , the resulting encoding will not be proper, since clocks

have just been reset and their values are now zero. We can re-create a proper en-
coding by letting time pass through a timed transition. Again, a similar reasoning
is applicable to the rest of the rules described in this section.

Also, for each instruction of the form ��! � �0� � 
)
]�(! � � , there are two rules similar to
the rules described above (replacing the states 	�
��  , �]')(  , and * ��
��  by 	�
�� � , �3')( � and*���
���� , respectively).

Decrementing For each instruction $ [V��! ���(��� & &$�(! � � in � there is a rule in � � ,
namely

( , � � H
67 ! �9
! �

;< 67 * ��
���� � [ J 9��')(.*-,�#
;< 67

	�
���
��^ � � 9 Y�� � a

	�
���

;< 67
�3')( � � [ J 9 Y�� � a* ��
���

;<

The rule ( , � � decrements the value of a �d� -encoding by removing the last process of
the list. More precisely, it changes the state of the last process to ')(+*-, # (i.e. removes
that process from the list), and changes the state of the process which is next last from
�]')(� to *���
��  . In order to do that, we have to be able to identify the process which is
next last in the list. Since all processes in the middle of the list are in state �]')(  , we
cannot identify the next last process simply by checking process states. Instead, we wait
until the value of clock � � of the last process is equal to one. At that point of time, the
process with clock � �

equal to one is the next last process. Also, the rule resets (and
therefore equates) clock � � of the first process and clock � �

of the next last process
(which will now become last in the list). Figure 4 shows the effect of applying the rule
to a ��� -encoding.

(b)

(a)

last1

last1

mid1

fst1 mid1 mid1

fst1

Fig. 4. Simulating
��� � � �
����� � � 
 � on a � � -encoding



Some remarks about the rule ( , � � :
– Identifying the next last process (by waiting until some clocks are equal to one)

uses the assumption that we start from a proper encoding. This implies that clocks
of processes participating in the encoding have all values which are less than one.
If this property is violated then the rule is not enabled (and will not become enabled
through passage of time).

– The rule is not enabled in case the value of the � � -encoding is equal to zero, since
there will be no processes in state �]')(  .

– Waiting for clock � � of the last process in the � � -encoding to become equal to one
may enforce clocks of processes in the � �

-encoding to become greater than one.
More precisely, this happens if some clock in a process which is part of the � �

-
encoding has a greater value than clock � � of the process which is currently in state*���
��  . After applying ( , � � , the value of such clocks will be greater than one, and
therefore the resulting configuration will not be a proper encoding.
Figure 5 illustrates this scenario. We consider a proper encoding (shown in Fig-
ure 5(a)) with signature � !�����J ��Jd� such that clock � � of the process in state *���
�� 
( � � � � ) is smaller than that of the process in state * ��
���� ( � � % � ). In order to enable
the rule ( , � � , we let time pass until clock � � of the process *���
��� becomes equal to
one (shown in Figure 5(b)). However, at this point of time, both clock � �

of a pro-
cess in state �]')(�� and � � of the process in state *���
���� have become larger than one
(1.3). Therefore, after applying the ( , � � , we get an encoding (of value ��! � ��� ��Jd� )
shown in Figure 5(c), which is not proper. This prevents any later application of
decrementing and zero-testing rules.
In order, to maintain the possibility of maintaining proper encodings in our simula-
tion, we combine the rule ( , � � with the rotation rules described below.

T=0.65

last1

0.95

0.0

fst1

0.0

0.95

last1

0.2

0.35

mid1

0.3

0.35

fst1

0.2

0.3

fst2

0.1

0.25

mid2

0.25

0.65

0.65

0.1

last2

last1

0.85

1.0

mid1

0.95

1.0

fst1

0.85

0.95

dec

(c)

(b)

(a)

s2 fst2

0.75

0.9

mid2

0.9

1.3

1.3

0.75

last2

0.85

1.0

idlep

s1

fst2

0.75

0.9

mid2

0.9

1.3 0.75

last2

1.3

s1

Fig. 5. Decrementing may result in an improper encoding.



In a similar way to incrementing, there is also a rule corresponding to an instruction of
the form � ! � �(� � & &$�(! � � .
Rotation To make it always possible to obtain a proper encoding after decrementing
the value of a � � - or a � �

-encoding (see the decrementing rule above), we add a set of
rotation rules. More precisely, for each state !E/ � , the set � � contains the following
two rules

00% ���� H
67 !9

!

;< 67
	�
�� �

��^ � � 9��
�3')(��

;< 67 *���
����� � [ J 9 Y�� � a
	�
�� �

;< 67
�3')(��� � [ J 9 Yd� � a*���
�� �

;<

00% � � �
� H

67 !9
!

;< 67
	�
�� ��!��^2� � � � � � � [ J\� 9 Y�� � a*���
����

;< 67 *���
�� �� � [ J 9 Y�� � a
	�
�� �

;<

Let us first explain the rule 00% � �� . The rule does not correspond to any instruction
in � ; nor does it change the signature of the encoding. In simulating � , we use the
rotation rules in connection with decrementing. Recall that if $�[O� ! �\�(��� & &$�(! � � then
applying a rule ( , � � will not give a proper encoding in case the � �

-encoding has clocks
with greater values than clock � � of the last process in the � � -encoding (see Figure 5).
The role of 00%�� �� then is to decrement clock values of processes which are part of a
� �

-encoding while preserving the signature of the whole encoding. More precisely, the
rule 00% � �� moves the process which is in state * ��
���� and makes it first in the � � -encoding.
This amounts to a rotation of the list corresponding to the � �

-encoding. The rotation
can be repeated until sufficiently many processes in the � � -encoding have been moved.
When there are no clocks in the � �

-encoding with greater clock values than clock � �
of the last process in the � � -encoding, the rotation stops and ( , � � can now safely be
applied.

We illustrate the role of 00%�� �� through Figure 6. In a similar manner to Figure 5 we
are interested in simulating a decrement instruction. However, instead of following the
scenario of Figure 5, we now perform the following steps:

1. Wait for clock � � of the process in state *���
���� to become equal to one (Figure 6(b)).
2. Apply the rule 0(%�� ����

. This results in an encoding (shown in Figure 6(c)) where
clock � � of the process in state *���
�� � ( � � % ) is smaller than that of the process in
state *���
��  ( � ��� ).

3. Wait until clock � � of the process in state *���
��� becomes one (Figure 6(d)).
4. Apply the decrementing rule. Notice that the resulting encoding (shown in Fig-

ure 6(e)) has all clock values less than one.

After the last step, we can perform a timed transition and obtain a proper encoding.
Also if, before applying ( , � � , there is a clock in the � �

-encoding of the same value
as clock � � of the process in state *���
��� , then we need to apply 00%�� ���� once more after
decrementing (this scenario does not occur in Figure 6, but is considered in the correct-
ness proof).
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Fig. 6. Decrementing preceded by rotation

Notice that we cannot apply the rotation rule in case the value of the � �
-encoding is

zero. This is due to the fact that the rule requires at least one process in state �3')( � . The
rule 00%�� � �

�
has the same role as 00%�� �� with the difference that it can be applied when the

value of the � �
-encoding is zero.

There are also similar rules 00%�� � � and 00% � � � � which are used to rotate a �d� -encoding
and which are used in connection with rules of the form ( , � � with $I[ ��!��\�(� � & &$�(! � � .
Zero Testing For each instruction $4[V��! �\�(��� [�� + �(! � � in � there is a rule in � � ,
namely

��
��
� H

67 !��9
! �

;<b67
	�
�� ����^ � �e� � � � � [ Jd� 9 Y�� � a*���
�� 

;<b67 * ��
�� � � [ J 9 Yd���\a
	�
�� 

;<

The rule checks that the value of the encoding is zero by testing that there are no pro-
cesses in state �3')(� . This is done by verifying that the process which is next last in the
list is the same as the process which is first in the list. We identify the next last process
in a similar manner to the case with decrementing. More precisely, we wait until the
value of clock � � of the last process is equal to one. At that moment, we check the



process with clock � �
equal to one, and check whether that process has a state equal

to 	�
��� . Notice that, clock � �
of the first process and clock � � of the last process are

now both equal to one and the encoding is no more proper. In order to be able to obtain
a proper encoding again, we reset both these clocks and interchange the states of the
processes in states 	�
��  and * ��
��  respectively.

Notice the similarity between the rules ��
��
�

and 00%�� � � � .
Some remarks about the rule ��
��

�
:

– The rule � 
��
�

is not enabled from an encoding � with 
 '���� � �3[ ��! �/. � �/. � � and
. � �[ � , since, in such an encoding, values of clocks � � of the process in state*���
��  and � �

of the process in state 	�
��� are different.
– Sometimes the rule � 
��

�
must be combined with the rotation rules according to the

same scenarios explained for the decrementing rule.

In a similar way to the previous rules, there is also a rule corresponding to an instruction
of the form $][ � !����0� � [��,+ �(! � � .
Initialization The initial phase consists of the following two rules.
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	�
�� 
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����

;<
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;< 67
	�
���
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	�
���
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�� 
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�� �
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�� �
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The role of the initialization rules is to bring � � from its initial configuration (where
the controller and all processes are idle) into a configuration which is an encoding of
the initial configuration - � �"� � of � . The rule '�� ' � � takes the controller into the temporary
state ! : ����� � . It also picks four processes such that two processes become the first and last
processes in the �d� -encoding (with value zero) and the other two processes become the
first and last processes in the � � -encoding (also with value zero). Clock � �

of the first
process and clock � � of the last process are reset. Rule '��
' � � changes the controller
state to ! ����� � and completes the creation of the � � -encoding and � �

-encoding. This is
done by first checking that some time has passed (through the guard �]^2� �

), and then
resetting both clock � � of the process which is now in state 	�
��� (	�
���� ), and clock � �

of
the process which is now in state *���
��� ( *���
���� ).



6 Correctness

In this section we prove the correctness of the construction described in Section 4 and
Section 5.

Let � [ � � ��� � be a counter machine and let ���D[ � ���
�&���+� a timed network
derived from � as described in Section 4 and Section 5. Let � and & 9 be the transition
relations induced by � and � � respectively.

In this section, we show that if ! � is a control state in � then the following holds.

Theorem 3. - ����� � �� ! � iff � ����� � �& 9 ! � for some initial configuration � � �"� � of � � .

The proof of Theorem 3 is given in Subsections 6.1 and 6.2 each showing one direction
of the equivalence.

In the proofs we need some definitions. Let � [ � ���&��� be a timed network. We
define [�� � to denote & 9()�� & 9 � � & 9() , i.e. [�� � corresponds to performing a
discrete transition according to the rule 0 , preceded and followed by a timed transition.
We define [�� to be , ��-/. [�� � . For a set �

f � of rules, we let �
�$[���� � �
denote

that � �3[�� � � �
for some 0L/�� . We use �[�� , �[�� � and �[��	� to denote the reflexive

transitive closure of the respective relations.
We introduce a new type of encodings to describe the effect of the rule '���� � � . For

. ` J , a configuration � [ �1�
� 8 ���I��� � is said to be a semi- � � -encoding of value . if
there is an injection

3
from Y � �������e�0. 
 J�a to � such that the following conditions are

satisfied

– � is defined as in a � � -encoding.
– � � � 3 �!� �&� [ � ��� 3 ��J\�&� ^ � � � 3 � . 
DJ\�&� ^+� � � 3 ��J\�&� .
– � � � 3 � G���� ^(� � � 3 � G 
 Jd��� for each G H �3K G K . .
– � � � 3 � G���� [ � � � 3 � G 
 Jd��� , for each G H J K2G K . .

A graphical representation of a semi- � � -encoding is shown in Figure 3(b).
In a similar manner to a � � -encoding, we use � ��* � � � � to denote the value . of a

semi- � � -encoding � .
A configuration �L[M���
� 8 ��� ��� � is said to be a Type J semi-encoding if it satisfies

the following two conditions:

–
8 [ ��� & � for some increment (of the form $2[ � ! � �0����
 
]�'! � � or of the form
$][ ��!\� �0� � 
)
]�(! � � ).

– � is both a � �
-encoding and a semi- �d� -encoding.

In such a case, we define 
 '�� � � � of � to be the triple


��� & � �/. � �0. ���

, where . � [
� ��* � � � � and . � [ � � * � � � � . Also, we define ��,� � � � � to be � ! � �/. � �0. � � . Intuitively,
��,���e� � � is the signature of the configuration which occurs next time we perform a
discrete transition (by rule '�� �

��
) in our simulation.

The notion of a semi-encoding of Type J can be extended to a proper semi-encoding
in the same manner as before, i.e. we require clocks of all processes which are not idle
to have values strictly between zero and one. A (proper) semi-encoding of Type � is
defined in a similar manner.



6.1 if-direction

The if-direction follows immediately from the the following lemma.

Lemma 1. For any configuration � [C�!�
� 8 ��� ��� � and initial configuration � ���"� � in��� , if � ����� � �& 9 � then one of the following holds.

1.
8

is not a member of � , (i.e.
8

is either a temporary state or the state ')(+*-, � ).
2. � is an encoding such that - ����� � �� 
 '�� � � � .

Proof. Suppose that � ����� � �& 9 � . If � ����� � & 9() � then the result follows immediately.
Otherwise, � ����� � �[�� � , i.e., there is a sequence

� ����� � [ � � [�� ��� � � [�� � � � � [�� � �
@�@�@

[�� � ��� � � B [ �
Let � P [ �!�
� 8 P ��� P ��� P � for G H � K G KDN . We notice that

8 � [O')(+* , � . By definition of
the rules, it must be the case that 0 � [c'�� ' � � and therefore

8 �$[ ! : � �"� � . In other words,
both � � and � � satisfy the claim of the Lemma. Lemma 1 follows from the following
property:

For each �3K G K2N , it is the case that � P
is either

– an encoding with - ����� � �� 
 '�� � � P � ; or
– a semi-encoding with -	� �"� � �� ��,� �e� � P � .

This property is shown using an induction on G . For the base case we observe that, by
definition of the rules, it follows that 0 � [ '�� ' � � and therefore 
 '�� � � � �E[ -	���"� � . For
the induction step, we observe that, for each G3H � K G3^ N , it follows from the rule
definitions that one of the following cases is satisfied:

1. 0 P [ '�� �
� � for some $ [ � !����0����
 
]�'! � � , � P

is an encoding with

 '�� � � P � [ � ! � �0. � �/. � � , and � P

� � is a Type J semi-encoding with 
 '�� � � P
� � � [


��� & � �/. � 
DJ �/. � �
.

2. 0 P [ '�� �
��

for some $ [ ��! � �(� � 
 
]�(! � � , � P
is a Type J semi-encoding

with 
 '�� � � P � [ 

��� & � �/. � �/. � �

, and � P
� � is an encoding with 
 '�� � � P

� � � [� ! � �/. �\�/. � � .
3. 0b[ ( , � � for some $Z[ � ! � �(� � & &$�(! � � , � P

is an encoding with 
 '�� � � P �X[� ! � �/. � �/. � � , . � _ � , and � P
� � is an encoding with 
 '�� � � P

� � � [� ! � �/. � & J �/. � � .
4. 0Q[ 00%�� � � for some ! / � and 
 '���� � P � [ 
 '�� � � P

� � � .
5. 0Q[ 00%�� � � � for some !$/ � and 
 '�� � � P ��[ 
 '�� � � P

� ��� .
6. 0 [ ��
��

�
for some $ [ ��!��\�(��� [ � + �(! � � , with 
 '�� � � P �O[ � !���� � �0. � � and


 '�� � � P
� ����[W� ! � ��� �0. � � .

7. Similar cases corresponding to instructions which change counter � �
.

6.2 only-if direction

The only-if-direction follows from the following lemma.



Lemma 2. If -	����� �
B
� ! � then � ���"� � �& 9 ! � , for each N ` � and initial configuration

� ����� � of � with 
 � � �"� � 
+`2N 
 # .

The reason for the condition 
 � ���"� � 
 `bN 
 # is that the sum of counter values never
exceeds N in the path from - ���"� � to ! � . Furthermore, each � � - (or � �

)-encoding uses
. 
 � processes for representing a counter value . . The lemma then states that the
initial configuration, from which we start the simulation of the path from - ����� � to ! � ,
should be sufficiently large to incorporate all counter values which arise along that path.

Proof of Lemma 2 To show Lemma 2 we use some definitions.
Let �4[ �1� � 8 ���I��� � be a (semi-)encoding. Let GI/ � be the (unique) index such

that �]� G�� [ *���
��  . We define
� � �", 
�� � � � �Q[�� � �)G�� . In other words,

� � �", 
�� � � � � is the
highest among values of clocks belonging to processes which are part of the (semi-
) � � -encoding. We define

� ����,�
�� � � � � in a similar manner, and define
� ����,�
���� � �D[

� �  � � � �", 
�� � � � �e� � ����,�
�� � � � �&� .
Let �],�*���� � � � � be the size of the set �

f � such that � /�� iff �]���+�c/Y�	�
�� �
� �3')(�����*���
���� a and
� � �", 
�� � � � �I^ � � ���+� . In other words, �3,e* ��� � � � � is the num-

ber of processes which are part of the � �
-encoding and which have clocks with val-

ues higher than any clock of a process which is part of the � � -encoding. We define
�],�*���� � � � � in a similar manner. Notice that it may be the case that both �],�*���� � � � ��[��
and �],�*���� � � � � [ � (if the maximum clock values are equal in the �\� - and the � �

-
encoding).

Lemma 2 follows immediately from the following lemma.

Lemma 3. For each N ` � and initial configuration � � �"� � , if - � �"� �
B
��- and 
 � ����� � 
�`N 
*# , then there exists a proper encoding � such that ������� � �[�� � and 
 '�� � � ��[ - .

Proof. We prove this lemma by induction on N .
In the base case ( N [�� ), we have -D[�-	� �"� � and 
 � ����� � 
 ` # . By the definition of'�� ' � � , this rule is enabled. Let � � be such that � ����� � & 9 ����� � � � � . Define � � [ � �	� �� with

�L^1� � ^ J . We have � � & 9 )� � � � �
. Rule '��
' � � is now enabled. Let � �

be such that
� � & 9 ����� � � � �

. By definition of '�� ' � � , � �
is an encoding and 
 '�� � � � � [ - ���"� � . Let � � be

such that � ^ � � ^ J & � � �", 
���� � � � . � � exists by the definition of � � , '�� ' � � and '�� ' � � .
Let ��� [ � �	� ��

. �	� is a proper encoding with 
 '�� � �
����[ - ���"� � . Notice that the transitions
& 9 � �"� � � and & 9 ���"� � � are enabled only because 
 � ����� � 
+`+# .

For the induction step, assume that - ����� �
B

� �� - and 
 � ���"� � 

` N 
 � . We know that
there is a - � with - � �"� �

B
� - � � - . By the induction hypothesis, it follows that there

is a proper encoding �
� such that 
 '�� � � ���3[ - � and � ���"� � �[�� � � . We need to show
that there is a proper encoding � with 
 '�� � � � [ - and � � �[�� � . This follows from the
following lemma.

Lemma 4. Let - � and - �
be configurations of � , where - ��� - �

and - �
is of the

form � ! �/. � �/. � � . Let � � be a proper encoding such that 
 '�� � � � � [ - � and 
 � � 
5`
.L� 
 . � 
 # . There is a proper encoding � �

such that 
 '�� � � � ��[ - �
and � � �[�� � �

.

The proof of Lemma 4 follows from Lemma 5, Lemma 6, Lemma 9, and Lemma 10:



– Lemma 5 and Lemma 6 state that an increment can be simulated by an application
of the rule '���� � � followed by an application of the rule '���� �� .

– Lemma 9 states that a decrement can be simulated by the rule ( , � � possibly pre-
ceded and followed by a number of rotations. This lemma follows from Lemma 7
and Lemma 8.

– Lemma 10 deals with zero testing and is similar to Lemma 9.

The condition 
 � � 
+`�. � 
 . � 
 # in the claim of Lemma 4 is relevant only in Lemma 5,
since this is the only case where the value of a counter is increased.

Lemma 5. Consider an instruction $ [ � ! �\�0�d��
)
]�(! � � . Let � � be a proper encoding
with 
 '�� � � ����[ ��!����/. �\�/. � � and 
 � � 
+` . � 
 . � 
 � . There is a proper semi-encoding
� �

of Type J such that 
 '�� � � � ��[ 

��� & � �/. � 
DJ �/. � �

and � � [�� � � � �

�
� �

.
A similar result holds in case $ is of the form � ! � �0� � 
 
]�'! � � .

Proof. Since 
 � � 
 ` . � 
 . � 
�� , there is at least one process in � � whose state is')(+*-,�# (we need . � 
 � processes for the � � -encoding and . � 
 � processes for the
� �

-encoding, which means that we have at least one process left to be in state ')(+*-,�# ).
This together with the fact that � � is a proper encoding implies that '���� � � is enabled
from � � , i.e., there is configuration � � with � � & 9 ��� � �

�
� �

. Define � � [ � �	��
where

� ^ �5^ J & � ����,�
��e� � � � . Such a � exists by definition of '���� � � and since � � is a proper
encoding. By the definitions it follows that � � is a proper semi-encoding of Type J with

 '�� � � � � [ 


��� & � �0. � 
DJ �/. � �
and � � & 9 ��� � �

�
� � & 9 )  � � �

.

Lemma 6. Consider an instruction $ [ � ! � �(� � 
 
]�(! � � . Let � � be a proper semi-
encoding of Type J with 
 '�� � � � � [ 


��� & � �/. � �0. � �
. There is a proper encoding � �

such that 
 '�� � � � ��[W� ! � �/. �\�0. � � and � � [�� ��� � �

�
� �

.
A similar result holds in case $ is of the form � ! ���0� � 
 
]�'! � � .

Proof. Since � � is a proper semi-encoding of Type 1, it follows that '�� �
��

is enabled
from � � , i.e., there is a configuration � � with � ��& 9 � � � �

�
� �

. Define � � [ � � ��
where

� ^ �I^cJ & � � �", 
��e� � � � . Such a � exists by definition of '���� �� and since � � is proper
semi-encoding. By the definitions it follows that � � is a proper encoding with 
 '���� � � ��[� ! � �0.L� �/. � � and � � & 9 ��� � �

�
� � & 9()  � � �

.

Lemma 7. Let � � be a proper encoding with �3,e*���� � � � ��� _ � and 
 '�� � � �e�c[� ! �/. � �0. � � . There is a proper encoding � �
such that �3,e* ��� � � � � � [ �],�*���� � � � � � &DJ ,


 '�� � � � � [ 
 '�� � � � � , and either � � [�� ��% � �

� � �
or � � [�� �"% � � �

� � �
.

A similar result holds in case �3,e*���� � � � � � _ � .

Proof. We distinguish between two cases, namely when . � _ � and when . � [�� .
First, we assume that . � _ � . Define � � [ � �	� �� where � � [ J & � � �", 
�� � � � � � . Such

a � � exists since � � is a proper encoding. From the definition of � � and the fact that . � _
� it follows that 00%�� �� is enabled from � �

, i.e., there is a � � with � � & 9 �"% � �

� � � . Define
� � [ � � � �� where ��^ � � ^ J�& � � �", 
�� � � � � . Existence of � � follows from the manner in
which � � is chosen, definition of the rule 0(%�� �� , and since � � is a proper encoding. By the
definitions it follows that � � is a proper encoding with �3,e*���� � � � � � [ �3,�*���� � � � � � &2J ,
and 
 '�� � � � ��[ 
 '�� � � � � .



The case when . � [$� is similar. Here we replace the rule 0(%�� � �� by the rule 00%�� � � �� ,
and obtain � � & 9 )  � � � � & 9 �"% � � �

� � � & 9 )� � � � �
.

Lemma 8. Consider an instruction $ [ � ! �\�0�d�/&�&$�(! � � . Let � � be a proper encoding
with 
 '�� � � � �$[ � ! � �/. � �/. � � and . � _ � . If �3,�*���� � � � � �$[ � then there is a proper
encoding � �

such that 
 '�� � � � � [ ��! � �/. � &2J �/. � � and one of the following holds.

1. If
� ����,�
�� � � � � � _ � � �", 
�� � � � � � then � � [������ � � � �

.
2. If

� ����,�
���� � � ����[ � � �", 
�� � � � ��� and . � _ � then � � [�� ��� � � � [�� �"% � � ��
� �

.
3. If

� ����,�
�� � � � � ��[ � � �", 
�� � � � � � and . � [�� then � � [�� ��� � � � [�� �"% � �
� ��

� �
.

A similar result holds in case $ is of the form ��! ���0� � & &$�'! � � .
Proof. Define � � [ � �	� �� where � � [ J & � ����, 
�� � � � � � . Such a � � exists since � � is a
proper encoding. From the definition of � � and the fact that . � _ � it follows that ( , � �
is enabled from � �

, i.e., there is a � � with � � & 9
��� � � � � . Now there are three cases

depending on the values of
� � �", 
�� � � � � � and

� � �", 
�� � � � � � as follows:

1. If
� ����, 
�� � � � � �2_ � ����,�
�� � � � � � then define � � [ � � � �� where �O^ � � ^RJ &� � �", 
���� ���d� . Existence of � � follows from the manner in which � � is chosen, def-

inition of the rule ( , � � , and since �
� is a proper encoding. By the definitions
it follows that � �

is a proper encoding with 
 '�� � � � � [ � ! � �/. � &2J �/. � � , and
� � & 9*)� � � � � & 9

��� � � ��� & 9()  � � � �
.

2. If
� � �", 
�� � � � � � [ � � �", 
�� � � � � � and . � _ � . It follows that clock � � of the last

process in the � �
-encoding has value J in � � . Therefore, the rule 00%�� � �� is enabled

from � � , i.e., there is a ��� with � � & 9 �"% � � ��
��� . Define � � [ � �	� �� where �E^ � � ^J & � � �", 
�� � � ���d� . Existence of � � follows from the manner in which � � is chosen,

definitions of the rules ( , � � and 00% � � �� , and since � � is a proper encoding. By the
definitions it follows that � � is a proper encoding with 
 '�� � � � � [ � ! � �/. � &2J �/. � � ,
and � � & 9*)� � � � � & 9

��� � � ��� & 9 �"% � � ��
� � & 9*)� � � � �

.
3. If

� ����,�
�� � � � � �I[ � ����,�
�� � � � � � , but . � [ � . The proof is similar to the previous
case. Here, we use the rule 0(%�� � ���� instead of the rule 0(%�� ���� and obtain � � & 9 )  � �� � & 9

��� � � � � & 9 ��% � �
� ��

��� & 9 )� � � � �
.

From Lemma 7 and Lemma 8 we get the following.

Lemma 9. Consider an instruction $ [ � ! � �0� � &�&$�(! � � . Let � � be a proper encoding
with 
 '�� � � � ��[C� ! � �/. � �0. � � and . � _ � . There is a proper encoding � �

such that

 '�� � � � � [ ��! � �0. � &2J �0. � � and

� � �[�� Y �"% � � �� � ��% � �
� �� a � [������ � � � �[�� Y ��% � � �� � �"% � �

� �� a � �

A similar result holds in case $ is of the form ��! � �0� � & &$�'! � � .
The proof of the following lemma is similar to the proof of Lemma 9.

Lemma 10. Consider an instruction $ [R� ! � �0� � [$�,+ �'! � � . Let � � be a proper en-
coding with 
 '�� � � � �4[ ��! � ��� �0. � � . Then there is a proper encoding � �

such that

 '�� � � � � [ ��! � � � �0. � � and

� � �[�� Y �"% � � �� � �"% � �
� �� a � [�� � � � � � �[�� Y �"% � � �� � �"% � �

� �� a � �

A similar result holds in case $ is of the form ��! � �0� � [��,+ �(! � � .



7 Discrete Timed Networks

In this section, we show decidability of the controller state reachability problem for Dis-
crete Timed Networks (DTNs): timed networks in which the clocks assume values from
the set of natural numbers. The idea of the proof is to define an ordering on configura-
tions of the DTN. The ordering amounts to counter abstraction: for each configuration
we count the number of processes which are in a given state and whose clocks are equal
to some given values.

Discrete Timed Networks (DTN) The syntax of a DTN is the same as that of a TN
(see Section 2). A configuration is also of the same form as in a TN. The behaviour of
a DTN differs from that of a TN in two aspects, namely

– In a configuration ��� � 8 ���I��� � , the type of � is Y J �������e� � a 9 � 9 �
, i.e., clocks

have values which are natural numbers rather than reals.
– Timed transitions take only discrete steps, i.e., ��� & 9()  � � �

if � � [�� � �� where
��/ �

. Discrete transitions are defined in a similar manner to TN.

Thus, the transition relation & 9 defined in Section 2 is adapted to DTN as described
above.

Ordering: We define an ordering
�

on the set of configurations � of a DTN � with� clocks as follows. To define
�

, we first introduce a function
� H � #��"%&��� Y�� �������e� � �  
 J a 	 9 � 9 �

where � �  is the maximum natural number which occurs in the definitions of the rules
in the DTN. Given � / � #��"%&� , . ���������e�/. 	 / Y�� �������e� � �  
DJ a , and � [ ��� � 8 ���I��� �
we define

� ��� �/. � �������e�/. 	 �e� � � to be the size of the set � � f � such that for each indexG / � � , �I�)G���[�� and for each S�H JQK4S�K2� , one of the following conditions holds

– � � S �e� G���[ .  and .  K � �  .
– � � S �e� G�� _ .  and .  [ � �  
 J .

In other words,
� ��� �/. � �������e�0. 	$��� � � counts the number of processes in � whose states

are � and whose clock values are given by . �����������0. 	 respectively (we identify clock
values larger than � �  ). For � [ �1� � 8 ���I��� � and � : [ �!� : � 8�: ��� : ��� : �I/	� , we use
� � � :

to denote that the following two conditions hold:

–
8 [ 8�:

–
� ��� �0. � ���������0. 	 ��� � �AK � ��� �0. � �������e�0. 	 �e� � : � for each � / �$#��"%&� ,
. � ���������0. 	 / Y�� ��������� � �  
 J a .

Thus, the ordering
�

is trivially computable.
Well-quasi-ordering: An ordering

�
on the set of configurations is a well-quasi-

ordering if for each infinite sequence � � � � �\��� � ������� of configurations, there are G and
� with G ^ � and � P � ��
 . Well quasi-ordering of

�
follows from Dickson’s Lemma

[Dic13]: according to the ordering, we can represent a configuration by a vector of
natural numbers, where each entry of the vector is indexed by a tuple of the form��� �0. � ���������0. 	 � .



Lemma 11. The ordering
�

on the set of configurations of a DTN is a well-quasi-
ordering.

Lemma 12. The transition relation & 9 over the set of configurations of a DTN is
monotonic wrt

�
.

i.e, given configurations ���\��� � � � �
such that � � & 9 � �

and � � � � �
, there is a configu-

ration ��� such that � � & 9 ��� and � � � �	� .
Proof. To show that & 9 is monotonic with respect to

�
, we show that both & 9 � and

& 9 ) are monotonic with respect to
�

.
Monotonicity of & 9 � is straightforward. So we only show the monotonicity of

& 9 ) . Given � � ��� �
such that � � � � �

, we show that � �	�� � � �	��
.

– Given �2/ �$#��"%&� , . : � ���������/. :	 / Y J �������e� � �  
DJ a , the definition of & 9 ) and
the fact that the clocks with values larger than � �  are identified, it follows that� ��� �0. : � ���������0. :	 ��� � �	��� [ ��� � ������� � ���

� ��� �/. � �������e�0. 	 ��� � �
such that one of the following holds for each S�H JQKDS�K2� .
� if . :  K � �  , then . Q[ . :  & � .
� if . :  [ � �  
DJ , then � �  
DJ & � K�. ]K � �  
DJ .

– Given � � � � �
, for each � / �Q#���%&� , .L�����������0. 	W/ Y�� ��������� � �  
 J�a , we have

� ��� �/. �����������/. 	Q��� � ��� K � ��� �/. �\���������/. 	Q��� � � �
– Above two conditions imply that for each � / �I#��"%&� , . : � �������e�0. :	 /Y�� �������e� � �  
DJ a , we have

� ��� �0. : � ���������0. :	 �e� � � �� � K � ��� �/. : � ���������/. :	 ��� � �	�� �
i.e, � �	�� � � �	��

.

The Problem DTN � � � -Reach is defined in the same manner as TN �)� � -Reach ex-
cept that the timed network � in the definition of the problem is now given a discrete
interpretation as described above.

In this section we show

Theorem 4. DTN � � � -Reach is decidable for each � / �
.

To prove Theorem 4, we rely on the theory introduced in [AČJYK00].

Monotonic Transition Systems (MTS) A monotonic transition system (MTS) is a tuple� ���	���
' �e� � ��
 9 ��$� , where

– � is a (potentially infinite) set of configurations.
– ���
' � f

� is a set of initial configurations.
–
�

is a computable ordering on � , i.e., for each � � � � � / � , we can check whether
� � � � �

. Furthermore,
�

is a well quasi-ordering.
– 
 9 is a binary transition relation on � . Furthermore, 
 9 is monotonic with respect

to
�

,



– � is defined as the upward closure � ��� of a finite set � � f
� , where � ��� [Y�� : / � 
�� � / � � � � � � : a .

We use �
 9 to denote the the reflexive transitive closure of 
 9 . For sets � � � � � f
� , we

say that �
�

is reachable from � � if there are � � / � � and � � / �
�

such that � � �
 9 � �
.

The reachability problem for MTS (MTS-Reach) is defined as follows:

Instance An MTS � ���	� � ' � � � �	
 9 ��$� .
Question Is � reachable from ���
' � ?

In [AČJYK00] we give sufficient conditions for decidability of MTS-Reach as fol-
lows. For � � f

� , we define � 0 , � � � � to be the set Y � 
�� � � / � � �/� 
 9 � � a . For
� � f

� , we say that �
f
� � is minor set of � � if

– for each �
�0/ � � there is � � /�� such that � � � � � .
– If � � � � � /�� and � � � � �

then � � [ � �
.

Since
�

is a wqo, it follows that each minor set is finite. However, for the same set,
there may be several minor sets. We use �]'�� to denote a function which, given � � f

� ,
returns a minor set of � � . We use �]'�� &�0�, � � � to denote the set �3'�� ��� 0�,+��Y�� a � �&� .

In [AČJYK00] we show that the following conditions are sufficient for decidability
of MTS-Reach.

Theorem 5. MTS-Reach is decidable if for each � / �

– we can check whether � / � � ' � .
– the set �3'�� &�0�,+� � � is finite and computable.

From DTN to MTS
A DTN �R[M� �E����� with � clocks, together with a controller state

8 �
induces an

MTS � ���	� � ' �e� � �	
 9 ���$� as follows

– � is the set of configurations of � .
– ���
' � is the set of initial configurations of � .
– By Lemma 11,

�
is computable and it is a well-quasi-ordering.

– 
 9 is the relation & 9 defined in Section 2 adapted to DTN as described above.
Furthermore, & 9 is monotonic wrt

�
by Lemma 12.

– �W[MY+� � � 8�� ��� ��� � a � , i.e., � is the set of all configurations with controller state8��
.

This means that a DTN indeed induces an MTS.

Notice that it is trivial to check whether a given configuration is initial. The follow-
ing lemma states that the induced transition system also satisfies the second sufficient
condition for decidability (see Theorem 5).

Lemma 13. Consider the MTS induced by a DTN. Then, for each configuration � we
can compute �3'�� &�0�, � � � as a finite set of configurations.



Proof. Given a configuration � :
, we compute �3'�� &�0�,+� � : � as follows. Since, & 9 [ & 9 )

� , ��-/. & 9 � , we compute �3'�� &�0�,+� � : ��[ �3'�� &�0 , ) � � : � � , ��-/. �]'�� &�0�,�� � � : � where
�]'�� &�0�, ) � � : � characterizes the set of configurations from which we reach � :

� through
passage of time and �3'�� &�0�,�� � � : � does the same through execution of a rule 0 .

For a configuration �L[O��� � 8 ���I��� � , we define �]'�� � � � � to be the minimum value
in the set Y ��+�)G�� 
+JQK4S�K � � G�/ � a , i.e, �]'�� � � � � denotes the minimum clock
value which occurs in � . We compute �]'�� &�0�, ) � � � as follows.

�3'�� &�0�, ) � � ��[ � ��� � 
 ��K ��K �]'�� � � � ���
where � � � is defined in a manner similar to the definition of � �	� .

Next, we show how to compute �3'�� &�0�,�� . Given a configuration � : [	 � : � 8�:� ��� : ��� :�

and a rule 0I/ � of the form67
8 �9 8 :�

;< 67 8 �= � 9C> �8 :�
;< @�@�@ 67 8�B= B 9C> B8 :B

;<

we compute a finite set of configurations � such that �]'�� &�0�, � � � : � [ . G"N�� �Q� . We
define � to be the set of all configurations of the form

	 � � 8 � ���I��� 

such that there

are three pairwise disjoint sets �� � � � '�� ��� � � �� � � � , ( and � � �/0�(�'�� � of indices and the
following holds.

– � : [ ��� � � � '�� � � � ����� � � � , ( ,
– �][ �� � � � '�� � � � � �� � � � , ( � � � � 0 (�'�� � , and
– there is a bijection

3 H �� � � � '�� � � � � �/0�(�'�� � 9 Y J �������e�&N a , which satisfies the
following conditions.
1. �I���+� [ 8����


�� , and the guard = ��� 
�� �!� � ���+� �����������E	����+��� holds. Furthermore,
� ��S �e��� �3/XY�� �������e� � �  
DJ a , for each � / � ��� � � � '�� � � � � � 0�( '�� � � and for
each S�H J$K4S�K2� .

2. � : ��� ��[ 8 :���

�� for � / ��� � � � '�� � .

3. � : ��� ��[ �]���+� for �E/ � ����� � � � , ( .
4. For each S�H J$K2S�K4� , � : ���+� [$� if � / �� � � � '�� � and ��]/ > ���


�� .
5. For each S2H�JLKbS2K � and for each � such that either � / �� � � � '�� � and�  �/ > ���


�� , or �E/ � ����� � � � , ( , �  ��� ��[ . G�N�� .�� � 
 J ��� : ���+�&� .
Observe that

– The set � � �/0�(�'�� � of indices with size . can correspond to infinitely many sets
of the same size. We equate all of them modulo renaming. Therefore, the sets
�� � � � '�� � � � � �� � � � , (�� � � �/0�(�'�� � are finite and effectively constructible.

– The conditions on the controller states are implicitly included by our notation,
which requires the controller states of � and � :

to be the controller states of 0 .
– The correctness of the above algorithm can be shown in a similar manner to the

proofs in [AJ03].

This, together with Theorem 5, proves Theorem 4.



8 Conclusions, Discussion, and Future Work

We have shown undecidability of controller state reachability for multi-clock timed
networks. We have also shown decidability of the problem when clocks are interpreted
over a discrete time domain.

In this paper, we assume a lazy behaviour for TNs. This means that we may choose
to let time pass instead of performing discrete transitions, even if that makes these
transitions disabled, due to some of the clocks becoming “too old”. In fact, we can use
the techniques in [JLL77] to show that, in the case of urgent behaviour, the controller
state reachability is undecidable even for single-clock TNs. Also, in this paper we only
consider safety properties. Liveness properties have been shown to be undecidable for
single-clock TNs in [AJ03].

The ordering we provide for proving decidability of DTN corresponds to an abstrac-
tion of configurations where we count the number of processes which are in a certain
state and which have certain clock values. In a similar manner to [GS92] we can view
this abstraction as a “Petri net”-like model where each place corresponds to one com-
bination of process states and clock values. In contrast to [GS92], the transitions in the
abstract model do not correspond to those of a Petri net. The main difference is that a
timed transition simultaneously moves all tokens from each place, corresponding to a
certain clock value, to the place corresponding to the next clock value. Comparing to
the model of Transfer Nets [FRSB02], a timed transition here corresponds to “paral-
lel transfers”, i.e. a set of transfers which are performed simultaneously. An alternative
way to prove our decidability result would be to simulate a DTN by a transfer net. One
ingredient in such a simulation is to simulate parallel transfers by sequences of transfer
operations.

There are several classes of protocols which can be modelled as multi-clock TNs,
such as the parameterized versions of the protocols in [BGK � 96] and [MT01]. This
means that, despite our undecidability result, it is interesting to design semi-algorithms
for multi-clock TNs. One direction for future work is to design acceleration techniques
which are sufficiently powerful to handle such classes of protocols.
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