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Abstract

We considertwo-playergameswhich areplayedon a fi-
nite statespacefor an infinite numberof rounds. The
gamesareconcurent thatis, in eachround,thetwo play-
erschooseheirmovesindependenthandsimultaneously;
thecurrentstateandthe two movesdeterminea successor
state. We consideromeaya-regular winning conditionson
the resultinginfinite statesequence.To modelthe inde-
pendenthoiceof moves,both playersareallowedto use
randomizatiorfor selectingtheir moves. This givesrise
to thefollowing qualitativemodesof winning, which can
be studiedwithout numericalconsiderationsoncerning
probabilities:sure-win (playerl canensurewinning with
certainty),almost-sue-win (player1 canensurewinning
with probability 1), limit-win (player 1 canensurewin-
ning with probability arbitrarily closeto 1), bounded-win
(player 1 can ensurewinning with probability bounded
away from 0), positive-win(player1 canensurewinning
with positive probability),andexist-win (player1 canen-
surethatat leastone possibleoutcomeof the gamesatis-
fiesthewinning condition).

We provide algorithmsfor computingthe setsof win-
ning statedor eachof thesewinning modes.In particular
we solve concurrentRabin-chaingamesin n®(™) time,
wheren is thesizeof thegamestructureandm is thenum-
berof pairsin the Rabin-chaircondition. While this com-
plexity is in line with traditionalturn-basedgameswhere
in eachstateonly one of the two playershasa choice
of moves,our algorithmsare considerablymoreinvolved
thanthosefor turn-basedyames.This is becauseoncur
rentgamesviolatetwo of themostfundamentaproperties
of turn-basedyames.First, concurrengamesarenot de-
termined,but ratherexhibit a more generalduality prop-
erty which involvesmultiple modesof winning. Second,
winning strat@iesfor concurrengamesmnay requireinfi-
nite memory
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1214 and F33615-C-98-3614the ARO MURI grant DAAH-04-96-1-
0341, the MARCO grant 98-DT-660, and the NSF CAREER award
CCR-9501708.

1 Intr oduction

Gamegrovideamodelfor systemsomposeaf interact-
ing componentslin particular theinteractionof acompo-
nentwith its environmentis naturallymodeledasa two-
playergame componenvs.environmenfAL W89, Dil89,
PR89 KV96, AHK97]. The gameis playedon a finite
statespaceand producesan infinite path: in eachround,
dependingon the currentstateof the game,the moves
of oneor both playersdeterminethe next state[Sha53.
Questionghat may interestus aboutsuchgamesinclude
thefollowing: Doesplayerl (say a processhave a strat-
egy to meeta specification(say acquirea resource)no
matterhow player?2 (the otherprocesseshehae? Does
player2 (say acontroller)have a stratayy to keepplayerl
(the process)rom violating a specification?Following a
successfulradition,we focuson w-regularspecifications.
Dependingon the compleity of the specificationwe can
classify the resulting gamesas safety (O), reachability
(©), Buchi (O¢), co-Buchi (¢0O), or Rabin-chain(cer
tainrestrictedboolearcombination®of OG and<&O). The
significanceof Rabin-chainspecificationgwinning con-
ditions) is that every finite-stategamewith an w-regular
winning condition can be reducedto anotherfinite-state
gamewith a Rabin-chaircondition(thisis essentiallybe-
causeevery w-regular propertycanbe specifiedby a de-
terministicRabin-chairautomaton]Mos84, Tho9(Q. For
example, the “receptiveness’condition [Dil89], that no
ervironmentcaninvalidatethefairnessassumptionabout
acomponentyieldsaBiichigamen thecaseof weakfair-
ness,and a Rabin-chaingamein the caseof strongfair-
ness.

Systemsin which the interaction betweenthe com-
ponentsis asynchronougive rise to turn-basedgames,
wherein eachround only one of the two playerscan
chooseamongseveral moves. On the other hand, syn-
chronousinteractionleadsto concurent games,where
in eachround both playerscan choosesimultaneously
andindependentlyamongseveralmoves[AHK97]. Both
typesof gamescanbe playedwith deterministicor ran-
domizedstratgyies. A player that usesa deterministic
stratgly mustselecta move basednthe currentstateand



on the history of the game. A playerthatusesa random-
izedstrategyy selectsnotamove, but a probabilitydistribu-
tion over moves;the move to be playedis thenchosenat
randomaccordingo thedistribution. Randomizedtrate-
gies are not helpful for winning turn-basedgames,but
they canbehelpful for winning concurrengames.To see
this, considerthe concurrenteachability(¢) gamecalled
MATCHBIT: in eachround, both playerssimultaneously
andindependentlehoosea bit (0 or 1); thewinning con-
dition is satisfiedif thetwo bits matchin ary round. For
eachdeterministicstrateyy of player 1, thereis a corre-
spondingstrateyy for player2 thatpreventsplayerl from
winning (thestratay for player2 alwayschoosesadiffer-
entbit thanthe one chosenby the strateyy for player1).
However, if both playerschoosetheir bits truly simulta-
neouslyandindependentlythenit is extremely “lik ely”
thatthe choserbits will matchin someround. This intu-
ition canbecapturednathematicallyoy randomizationif
player1 chooseder bits at random,with uniform prob-
ability, then player 1 wins with probability 1/2 at each
round,andshecanwin thegamewith probability 1.

We study concurrentgames, played with random-
ized stratgjies: concurrent,as simultaneous,indepen-
dent choice of moves is neededto adequatelymodel
synchronousystemsplayedwith randomizedstrateies,
asrandomizedchoiceof movesis neededo adequately
analyzethe simultaneousjndependenthoice of moves
[Sha53. Our mainresultis to solve concurrentRabin-
chaingamesplayedwith randomizedstrateyies. The so-
lution we presentppliesbothto deterministicconcurrent
games,in which the currentstateand the moves deter
mineauniquesuccessostate andto probabilisticconcur
rentgamesjn which the currentstateandthe movesde-
terminea probability distribution for the successostate.
Probabilisticconcurrengamegeneralizeseveralmodels,
includingMarkov chains,Markov decisionprocessegje-
terministicaswell asprobabilisticturn-basedyamesand
deterministicconcurrentgames. Previously, solutionsto
gameshave beenknown only for (1) all varietiesof deter
ministic turn-basedgjamesBL69, GH82 EJ9] Tho93,
(2) concurrenRabin-chaingamesplayedwith determin-
istic strat@ies(thesegamescanbe solvedlik e turn-based
games)AHK97], and(3) concurrenteachabilitygames,
playedwith randomizedstratgies [dAHK98]. We note
that alreadythe casefor probabilisticturn-basedyames
wasopen,eventhoughthesegamescanbe analyzedwith
deterministicstrateyies.

For deterministic games, played with deterministic
stratgies, thereis only a single“mode” of winning: the
uniqueoutcomeof thegameeitherdoesor doesnot satisfy
the winning condition. For fixed randomizedstrateies,
there are mary possibleoutcomesand therefore mary
modesof winning: playerl canensurea win with prob-
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ability 1 (asin the gameMATCHBIT), or with probabil-
ity greaterthan7/8, etc. We areinterestedn the follow-
ing “qualitative” modesof winning [dAHK98]: sure-win
(playerl hasa stratgy which guaranteethatall possible
outcomessatisfythewinning condition),almost-sue-win
(playerl hasastrateyy which guaranteeawin with prob-
ability 1), andlimit-win (for eachreale > 0, playerl has
astratgy which guaranteeawin with probability1 — ).
The limit modeis illustrated by the reachabilitygame
SKIRMISH, which is derived from a gameof [KS81]:
playerlis hiding; hergoalis to run andreachhomeuwith-
out beinghit by a snavball; player2 is armedwith a sin-
gle snowball. Therearethreestates swet, Shides @NAShome
andthe winning conditionis $speme The only statewith
more than one move for either playeris the state spige,
whereplayer 1 mustchoosebetweenhide and run, and
player2 mustchooséetweerwait andthrow. Theeffects
of the movesareshawn in Figurel. To seethatfrom the
statespige player1 canlimit-win, givenary € > 0, sup-
posethatplayerl choosesun with probabilitye andhide
with probabilityl — . Ontheotherhand,playerl cannot
almost-winfrom spige if sShenever choosesun, sherisks
that player2 alwayschooseswait, confiningherin spjge;
if in any roundshechoosesun with positive probability;
then the stratgy of player 2 that chooseghrow in that
roundcauseserto losewith positive probability.

We provide algorithmsthat compute,given a concur
rentprobabilisticRabin-chairgame the setsof sure-win,
almost-sure-winandlimit-win statesor eachplayer All
three setscan be computedin time n®(™) wheren is
the size of the gamestructureand m is the numberof
pairsin the Rabin-chaincondition. While this complex-
ity is in line with the solutionfor turn-basedrabin-chain
games[EJ9]], our algorithmsare considerablymorein-
volvedthanthosefor turn-basedjames.This hasseveral
reasons.

First, while turn-basedyamesare determined BL69]
(in every state,eitherplayer 1 hasa “winning” stratey,
which guaranteea win no matterwhat player2 does,or



player2 hasa “spoiling” stratgy, which guaranteeshat
thewinning conditionis violatedno matterwhatplayerl
does)concurrengamesaregenerallynotdeterminedFor
example,in the gameMATCHBIT, neitherdoesplayer1
have awinning strat@y nor doesplayer2 have a spoiling
stratgyy. Insteacbf determinag, concurrengamesxhibit
amorecomplex form of duality, whichis basednthefol-
lowing modesof losing: exist-loss(player2 hasa strately
that guaranteeshat somepossibleoutcomeof the game
is a loss), positive-losqplayer2 hasa stratgy thatguar
anteesalosswith positive probability),andbounded-loss
(player2 hasa stratayy thatguaranteea losswith proba-
bility e for somez > 0). We shaw thatfor all concurrent
Rabin-chaingames,the sure-win statesare the comple-
mentof theexist-lossstatesthealmost-sue-winstatesare
the complemenbf the positive-lossstatesandthe limit-
win statesarethe complemenbdf the bounded-losstates.

Second, in sharp contrast with turn-basedgames
[BL69], the limit-winning strateies for a concurrent
gamemayrequireaninfinite amountof memoryaboutthe
history of the game. This phenomenoroccursnot with
reachabilitybut with Biichi games. Consideragainthe
gameSKIRMISH, togethemwith the Biichi winning condi-
tion O spome Thelimit-win statesarespomeandshige. AS
explainedabove, for everye, from spige playerl canreach
shomeWith probabilityatleastl — . However, if playerl
usesthe sameprobability e to chooserun in every visit
to shige: DY alwayschoosinghrow player2 canensurahat
the probability of infinitely mary visitsto spomeis 0. The
proofthatthereareno finite-memory(ratherthanmemo-
ryless)winning stratgjiesfollows a similar argument.On
theotherhand for ¢ > 0, aninfinite-memorystrateyy that
ensuresvinningwith probabilityatleastl —e canbecon-
structecasfollows: for k > 0, letej, = 1—(1—¢g)~1/2""",
sothat]],>,(1 — ex) = 1 — &; then,at spige, chooserun
with probability e, wherek is the numberof prior visits
to shome Thus,the constructionof winning stratgiesfor
concurrengamesoftenhingeson theanalysisof thelimit
behaior of infinite-memoryrandomizedstratayies. In the
paperwe provide acompletecharacterizationf thetypes
of winning andspoiling stratgiesneededor the various
subclassesf concurrengames.

Third, the fact that both players can chooseamong
several moves at a state breaksthe standardrecursve
divide-and-conqueaipproactio thesolutionof turn-based
Rabin-chaingames[McN93, Tho9g. For example,the
setof statesfrom which player1 cannotreacha goal no
longer forms a propersubgame.Our algorithmsare in-
steadpresentedn symbolicform, using u-calculusnota-
tion, which, asfirst remarledin [EJ9]], offersa power-
ful tool for writing andanalyzingalgorithmsthattraverse
statespaceslt alsosuggests way for implementingthe
algorithmssymbolically potentiallyenablingthe analysis

of systemswith large statespace§BCM+90].

2 Games

For afinite setA4, aprobability distributionon A4 is afunc-
tionp: A~ [0,1] suchthat}_ ., p(a) = 1. We denote
the setof probability distributionson A by D(A). Given
adistributionp € D(A), we denoteby Supfp) = {z €

A | p(z) > 0} the supportof p. A (two-player)game
structue G = (S, Moves, Moves, Ty, T, p) consistsof

thefollowing components:

o A finite statespaceS.

e Two finite setsMoves, Moves of moves. For con-
veniencewe assumeéMoves N Moves = (.

e Two move assignmentd’; : S — 2Moves \ ¢, for
i € {1,2}. TheassignmenI'; associatesvith each
states € S the nonemptysetI';(s) C Moves of
movesavailableto playeri at states.

e A probabilistictransitionfunctionp: S x Moves x
Moves — D(S), which associatesvith every state
s € Sandmovesa; € T'i(s) andas € T'y(s) a
probability distribution p(s, a1, a2) € D(S) for the
successostate.
At everystates € S, playerl choosesmovea; € T'y(s),
andsimultaneoushandindependentlyplayer2 choosesa
moveas € I'y(s). Thegamethenproceeddo the succes-
sor statet with probability p(s, a1, a2)(t), forall ¢t € S.
For all statess € S andmovesa; € T'y(s) anday €
s (s), we indicateby (s, a1,a2) = Supfp(s,as,az))
the set of possiblesuccessor®f s when movesay, as
are selected. A path of G is an infinite sequencs =
S0, 81, 82, - - . Of statedgn S suchthatfor all k& > 0, there
are movesa¥ € Ty(sy) andaX € Ta(s;) suchthat
Sk+1 € 0(sk, ak, ak¥). Wedenoteby Q2 thesetof all paths.
We definethesizeof thegamestructurej to beequalto
the numberof entriesof the transitionfunction d; specif-
iCEl”y, |g| = ZSES EaEF1(s) EbEF2(s) |6(S7a7 b)|
Notethatthis definitionassumeshatthe probabilitynum-
berscanberepresenteth constanspacethisassumption
is consenrative with respecto the upperboundcomple-
ity resultsthat we presentin the paper We say that a
gamestructureg is turn-basedif at every stateat most
oneplayercanchooseamongmultiple moves;thatis, for
every states € S thereexistsatmostonei € {1, 2} with
IT;(s)| > 1. We saythata gamestructureg is determin-
isticif |0(s,a1,a2)| = 1forall s € Sandall a; € T'y(s),
as €Ty (8)

2.1 Strategies

A strategy for playeri € {1,2} is amappingmr; : St +—
D(Moves) thatassociatewith every nonemptyfinite se-



quences € ST of statesrepresentinghe pasthistory
of the game,a probability distribution 7;(¢) usedto se-
lect the next move. Thus, the choice of the next move
can be history-dependenand randomized. For all se-
quencess € S* andstatess € S, we require that
Supfr;(os)) C I'i(s). We denoteby II; the setof all
stratgiesfor playeri € {1, 2}.

Givena states € S andtwo stratgjiesw; € II; and
o € I, we defineOutcomess, m;,m2) C Q to bethe
setof pathsthat canbe followed by the game,whenthe
gamestartsfrom s andthe playersusethe stratgiesm;
andmy. Formally, so, s1, 82,... € Outcomeés, 7y, m2)
if so = s andif for all k¥ > 0 thereexist movesal €
T'1(sx) anda¥ € Ta(sy) suchthatm (s, ..., sk)(af) >
0, m2(s0,---,8%)(a5) > 0, andp(sk, af,af)(sk+1) >
0. Oncethe startingstates andthe stratgiesz; andns
for the two playershave beenchosenthey giveriseto a
probability spaceover the paths.Hence the probabilities
of eventsare uniquely defined,wherean eventf C 2
is a measurableset of paths. For aneventé C Q, we
denoteby Prit:"2(&) the probability that a path belongs
to £ whenthe gamestartsfrom s andthe playersusethe
stratgiesm; andw,. We distinguishthe following types
of stratgies:

e A stratgy  for playeri € {1,2} is deterministicf
for all v € ST thereexistsa € Moves suchthat
m(o)(a) = 1.

o A stratgy 7 is memoryless$f 7(os) = =(s) for all
s € Sandallo € 5*.

o A strat@y = is finite-memonyf thedistribution cho-
senateverystates € S depend®nly on s itself, and
on a finite numberof bits of informationaboutthe
pasthistory of thegame.

We indicatewith II?, IIM, II¥ the classesf determin-
istic, memorylessand finite-memorystratgies; we let
oPM — IPNIM, andwelet TT¥ (for history-dependeit
betheclassof all strateyies.

2.2 Winning conditions

We considemwinningconditionsexpressedby LTL formu-
las, whoseatomic propositionscorrespondo subsetsof

statesWe write 5 |= ¢ to denotethefactthatapaths sat-
isfiesa winning conditiony. Givena winning condition
¢, wedenoteby [¢] = {5 € Q| 5 = ¢} thesetof paths
thatsatisfy. For all initial statess € S, the setof paths
{s0,51,82,... € [¢] | so = s} is measurabl¢var8s.

Givenaninitial states € S anda winning condition,

we considetthefollowing winningmodedor player1:

Sure. We saythat player1 wins surely if the playerhas
a stratgyy to ensurethat ¢ holds on every path, or
dr € II; . Vo € Iy .OUtCOITIESS,ﬂ'l,ﬂ'Q) - [[(p]]

Almost. We saythat player 1 wins almostsurly if the
player hasa stratgy to win with probability 1, or
dr, € 11 .Vmy €115 . PI';TI’F2(|[()0]]) =1.

Limit. We saythatplayerl winslimit surelyif theplayer
hasastrateyy to win with probabilityarbitrarily close
to 1’ or sup7r1 elly infﬂ'Zenz Pr:hﬂz(l[(p]]) =1

Bounded. We say that player 1 winsboundedly
if the player has a stratgy to win with
probability bounded away from 0, or
SUDy, en, Infryem, PR ([0]) > 0.

Positive. We saythatplayerl winspositivelyif theplayer
hasa stratgy to win with positive probability, or
dry € II; .Vmy € 115 . Pfgrl’WQ([(p]]) > 0.

Existential. We say that player 1 winsexistentially
if the player has a stratggy that en-
sures that at least one path satisfies ¢, or
I, € II;.Vmy € II,.0utcomets, my, m2)N[¢] # 0.

Analogousdefinitions apply for player 2. We abbrevi-

ate the winning modesby sure, almost limit, bounded
positive and exist We call thesewinning modesthe
gualitative winning modesbecausehey canbe decided
without resortingto numericalcomputation,as will be
shavn in the course of the paper Using a nota-
tion derived from alternating tempoal logic [AHK97],

given a playeri € {1,2}, a winning mode A €

{sure, almost limit, boundedpositive exist} and a win-

ning condition, we denoteby (i) ¢ the setof states
from which playeri canwin in mode A the gamewith

winning conditiony. For eachplayeri € {1, 2} andwin-

ning conditionyp, the containment$old:

{@Nsure v C (@) aimost T (@M imit ©
Cc «i»bounded‘,@ Cc «i»positiveSD c <<i>)e<ist90 .

In general this containment cannot be strengthened
to equality even for deterministic concurrentgames
[dAHK98]. We presentwo theoremghatsummarizethe
relationsbetweenthesesetsof winning states;the theo-
remsfollow from the algorithmsandargumentgpresented
in the later sections. The first theoremstatesthat, for
turn-basedgames,someinclusionscan be strengthened
to equalities.

Theorem1l For every LTL formula ¢, and for i €
{1, 2}, thefollowing assertionshold:
1. For probabilistic turn-based games, we have
«i»almostSO = «i»limit ®.
2. For deterministic turn-based games, we have
(@D sure p = (DN amoste = (I imit ¢.
Thefirst partof thetheoreris aconsequencef theresults

presentedn the following sections;the secondpart fol-
lows from the determinag resultsof [BL69] (exceptfor



the terminology). The secondtheoremexpresseshe du-
ality betweerthe winning conditionsfor playersl and?2.
For corveniencegivensubsetsB;, B, C S of stateswe
write =B, for S\ By, andB; A Bz, By V B, for By N By,
By U By, respectiely.

Theorem 2 (Duality Theorem) For everyLTL formula
o, wehave:

«l»sure(P = _‘<<2»exist P
«1»almost90 = _‘«2»positive_‘90
1 imit ¢ = ={2)bounded ¢ -

For a mode € {sure,almostlimit, boundedpositive
exist}, definethe dual A of \ by Ste = exist, almost=

positive limit = boundedandX = . In view of thedual-
ity theorem|n this paperwe will focuson algorithmsfor
computingthe winning stateswith respecto thewinning
conditionssure, almost andlimit.

In the following sections,we considerwinning con-
ditions that consistin safetyand reachabilityproperties,
andon winning conditionsthat correspondo the accept-
ing criteria of Buichi, co-Biichi, and Rabin-chain(or par
ity) automatgdMos84, Tho9(J. We call gameswith such
winning conditionssafety reacability, Buchi, co-Blchi,
and Rabin-dain games,respectiely. We remark that
the ability of solving gameswith Rabin-chainwinning
conditionssufiicesfor solving gameswith respecto ar
bitrary w-regular winning conditions. In fact, we can
encodea generalw-regular condition as a deterministic
Rabin-chairautomatonBy takingthe synchronougprod-
uct of the automatonand the original game,we obtain
an(enlaged)gamewith a Rabin-chairwinning condition
[Tho95 LW95, KPBV95, BLV96]. The setof winning
statesof the original structurecan be computedby com-
putingthe setof winning statesof this enlagedgame.

2.3 Winning and spoiling strategies

For A € {sure, almost positive exist}, a A-winning strat-
egy is a stratgy for player 1 that realizesthe existential
guantifierin the definitionsof sure,almost,positive, and
existentialwinning modesfor all s € (1) ¢. A limit-
winningfamily of strategiesfor ¢ is afamily {m[¢] | ¢ >
0} of strateyiesfor playerl suchthatfor all realss > 0, all
statess € g(l))“mit , andall stratgjiesm, of player2, we
have P 5h72 ([¢]) > 1—¢. A bounded-winningtrategy
for ¢ is astratey 7m; suchthat,for somee > 0, we have
P ™2 ([¢]) > € for all strategiesn,, of player2. A spoil-
ing strategy for player?2 for condition andmodeX €
{sure, almost limit, boundedpositive exist} is a (family
of) winning strateiesfor player2, for condition—y, and
for mode). We areinterestedn determiningthe smallest

classof stratgiesin which winning and spoiling strate-
giesareguaranteedbo exist, with respecto theinclusions
oM c MM C ¥ C . Thefollowing lemmawill

be usedto shaw that, for several typesof games finite-
memoryspoiling stratgiesfor almostmodemay not ex-
ist. The lemmais proved by noting that a gameunder
a fixed finite-memorystrateyy is equivalentto a Markov
decisionprocessandusingresultsfrom [CY90, BdA95)].

Lemmal Considerany concurentgameg and any
LTL formula . If player2 hasa finite-memoryspoiling
strategy for modealmostand for ¢, then {1))amosty =

€1 M imit -

3 Safetyand Reachability Games

In this sectionwe summarizesomeresultson concurrent
safetyandreachabilitygamesfrom [dAHK98]. The pre-
sentationis rephrasedsignificantly in a framework that
allows us to extend the resultsto Biichi, co-Biichi, and
Rabin-chainwinning conditions.

3.1 Safetygames

The winning condition of a safetygameis a formula of
theform OB, whereB C S is asubsebf states.To solve
theseggamesyve usethecontollable predecessooperator
Prg : 2% — 29 definedfor all s € S andX C S by:

s € Prg(X) iff Ja € '1(s).Vb € I'y(s).d(s,a,b) C X.

)
The subscriptl of Prg indicatesthatthe predecessaop-
eratorrefersto playerl; we candefinePre, by exchanging
thesubscriptsl and2in (1). Thesetof winning statesan
be computedoy the p-calculusexpression{1)sye OB =
{1 amostOB = {1 Wimit OB = vX . (Pre(X) AB). The
following theoremsummarizegheresultson safetygames
[dAHK98].

Theorem3 Thefollowing assertionsold.

1 (WsueOB = {1)amostOB = {1 )imit OB, and
for A € {sure,almostlimit}, we have (1)), Oy =
(2hx O

2. The compleity of computing{1)sue Oy, and the
mostrestrictiveclassesn which winning and spoil-

ing strategiesare guaranteedo existare givenin Ta-
ble 1(a).

The predecessavperatorPrehasbeendefinedon the ba-
sis of the movesavailableto both players. However, ac-
cordingto our definition of strateyy, at eachstatea player
chooses distribution over the moves, ratherthana sin-
gle move. Hence,it is naturalto rephrasehe definition
in termsof distributions over moves; sucha formulation



Compleity | Winning | Spoiling
Sure O(n) neM oM
Almost O(n) npM oM
Limit O(n) neM g

(a) Safetygames.

Compleity | Winning | Spoiling
Sure O(n) neM nM
Almost |  O(n?) nM n
Limit O(n?) v oM

(b) Reachabilitygames.

Compleity | Winning | Spoiling
Sure O(n?) neM oM
Almost O(n?) v oA
Limit 0O(n?) m g

(c) Buchigames.

Compleity | Winning | Spoiling
Sure O(n?) nPM v
Almost |  O(n®) nM n
Limit O(n?) v oA

(d) Co-Bichigames.

Compleity | Winning | Spoiling
Sure O(n*™m) neM oM
Almost | O(n?>m+1) A oA
Limit O(n?m+1) m ma

(e) Rabin-chairgames.

Table 1: Upperboundsfor the time complexity of solv-
ing w-regular games,andtypesof winning and spoiling
stratgies; n is the size of the gameand,in Rabin-chain
gamesymn is thenumberof acceptingpairs.

will alsogeneralizéo the predecessaoperatorgequired
to solve othertypesof gamessuchasreachabilitygames.
Fors € S, X C S, & € D(T1(s)), and&; € D(Ta(s))

we denoteby

PEE(X)= Y > D &(a)&(0)p(s,a, b))

a€l1(s) bela(s) teX

the one-roundprobability of a transitioninto X when
playersl and2 play at s with distributions&; andé&., re-
spectvely. With thisnotationfor all X C S thedefinition
of Precanberephraseds

s € Pre(X) iff
3¢ € D(Ti(s)) - Vés € D(Ta(s)) . P52 (X) = 1.

3.2 Reachability games

Thewinning conditionof a reacability gameis aneven-
tuality formula ©B, where B C S is a subsetof states.
Reachabilitygpamesaremorecomple thansafetygames,
sincethe setsof sure, almost, and limit-winning states
do not coincide [dAHK98]. To computethesesets of
winning stateswe introducethreepredecessooperators
Spre Apre, Lpre : 25 x 25 — 25, correspondingdo the
winningmodessure, almost andlimit. Thesepredecessor
operatorsaredefinedin Table2. We candefinesymmet-
rical operatordor player2 by exchangingthe subscripts
1 and? in the definitions. We notethatfor all X, Y C S
we have Spre(Y, X) = Prg(X) for i € {1,2}; thenota-
tion Spre(Y, X) hasbeenintroducedonly for notational
uniformity. For mode) € {sure, almostlimit} andcon-
dition ©B, whereB C S, thesetof winning stateanbe
computedby:

(1WA OB =vY . uX . (Apre, (Y, X)VB) (2)

whereApreis Spreif A = sure, Apreif A = almost and
is Lpreif A = limit. Usingthe equalitySprg (Y, X) =

Pre (X) for all X,Y, in the caseof surereachability(2)

reducesto {1)sue ©B = uX . (Pre(X) Vv B), which

is the standardormulafor turn-basedeachabilitygames
[TW68]. Exceptfor the notation, thesealgorithmsare
equivalentto thosegivenin [dAHK98].

Intuitively, the algorithmscan be understoodas fol-
lows. For the modesure, formulapX . (Pre(X) v B)
computesateachiterations thesetof stateghatcanreach
B surelyin at most: rounds. For the modealmost for-
mula(2) statesthe existenceof asetY = (1)amostOB,
and of a seriesof setsB = X; Cc X, C --- C
X, =Y. Forl < i < k, thesetX; is obtainedby
X, = Apre (Y, X,;_1). The operatorApre, (Y, X;_1)
stateshatplayerl canplay a distribution over movesthat
ensureghatY is notleft, andthat with someprobability
X;_1 is entered.Hence,from every stateof Y thereis a
positive probabilityof reachingB in atmostk rounds and
sinceY is never left, the probability of eventuallyreach-
ing B is 1. Thealgorithmfor modelimit is similar, except



s € Sprg (Y, X) iff 3¢ € D(T(s)) . V& € D(Ta(s)) . PS4 (X) =1

s € Apre, (Y, X) iff 3¢ € D(T1(s)).VE € D(Ta(s)) . [PE152(Y) = 1 A PS282(X) > 0]

s € Lpre, (Y, X) iff Ya>0.3¢ € D(T1(s)) . V& € D(Ta(s)) . P52 (X) > aP5%2(-Y)

Table2: Definition of the predecessasperatorsSprg, Apre,, andLpre,, for s € S andX,Y C S.

thatthe operatorLpre, (Y, X;_1) relaxesthe conditionof
Apre, (Y, X;_1) by allowing a probability of escapdrom
Y, provided the probability of progressto X;_; canbe
madearbitrarily largerthanthe probability of escapdrom
Y. This arbitrarily large ratio accountdor beingableto
reachB with probabilityarbitrarily closeto 1.

TheoperatorSprecanbecomputedike Pre. Thecom-
putationof the operatorsApre and Lpre is presentedn
Section6. The computationalso enablesthe derivation
of the winning and spoiling (families of) stratgies; we
omit the detailsdue to spacelimitations. The follow-
ing theorem from [dAHK98], summarizeshe resultsfor
reachabilitygames.

Theorem4 Thefollowing assertionsold.

1. For B C S and X € {sure,almostlimit}, we have
(1hx 0B =—~(2)x O-B.

2. The complity of computingthe sets of winning
states,andthe mostrestrictiveclassesn which win-
ning and spoiling strategies are guaranteedto exist
are givenin Table 1(b).

4 Buchi and Co-Buchi Games

4.1 Bulchi games

The winning condition of a Buchi gameis a formula
OoB, where B C S is a subsetof states. For A €

{sure, almost limit} and B C S, thesetof winning states
canbecomputeds:

(I)rooB = ©)
vY . puX . [(=B A Xpre (Y, X))V (BAPra(Y))] .

For A = sur, this expressiorreducego {1))suye DCB =
vY . pX . [(-B A Pre (X)) VvV (B A Prg(Y))], which
coincideswith the solution of [EJ9]. For the mode
almost formula (3) statesthe existenceof a setY =
{(1)amostO<© B, andof aseriesof setsX; € Xo C --- C
X =Y. Sincelpre (Y,0) = 0, wehave X; C B; from
X1, the operatorPre (Y') ensureghatY is not left. For
1 < i < k, theoperatorApre, (Y, X;_1) ensureshatY” is

not left, andthatwith someprobability, from X; we pro-
ceedto X; 1. Hence from everystateof Y thereis apos-
itive probability of reachingB in at mostk rounds.Since
Y is never left, the probability of eventuallyreachingB

infinitely oftenis 1. Thealgorithmfor modelimit is simi-
lar, exceptthatfor 1 < ¢ < k theoperatoi_pre, (Y, X;_1)

relaxes the condition of Apre, (Y, X;_;) by allowing a
probability of escapdrom Y, providedthe probability of
progresgo X;_; canbe madearbitrarily larger thanthe
probabilityof escapdrom Y. We do notneedto relaxthe
conditionfor Xy, writing for instanceB ALpre, (Y,Y). In

fact,we have Lpre, (Y,Y) = Pra (Y): if the probability
of leaving Y canbe madearbitrarily small,thenPre (Y)

holds. Thefollowing theoremsummarizeghe resultsfor

Buichigames.

Theorem5 Thefollowing assertionhold.

1. For B C S and\ € {sur,almostlimit}, we have
(1) OOB = =((2); ©O-B.

2. The compleity of computingthe sets of winning
states,andthe mostrestrictiveclassesn which win-
ning and spoiling strategies are guaranteedto exist
are givenin Table 1(c).

Thewinningandspoilingstratgiescanbeconstructedn
thebasisof the u-calculusexpression(3) andof theprede-
cessopperatorappearingn it; we omit theconstructions
dueto lack of space.

4.2 Co-Bichi games

The winning condition of a co-Blchi gameis a formula
of the form ¢0OB, where B C S is a subsetof states.
The solution for sure co-Biichi gamescoincideswith
the solution for deterministicturn-basedgames[EJ91:
(IYsueoB = pX . vY . [(B APra(Y)) VvV (-B A
Pre (X))].

To gain some intuition about co-Buchi gamesfor
modesalmostand limit, considerthe gamesdepictedin
Figure2. States; is the only stateat which the players
canchooseamongmorethanonemove;in bothgamesve
haveT';(s1) = {a,b,c} andT'2(s1) = {d, e, f}; thewin-
ning conditionis ©O{sg, 51, s2}. Intuitively, from state
s1, therearethreetypesof transitions:successransitions



Figure 2: Co-Buchi gamesG, and G,. States; is the only stateat which the playerscan chooseamongmore than
onemove; in bothgameswe have I'1 (s1) = {a,b,c} andT'2(s1) = {d, e, f}. Thewinning conditionis ¢OB, where

B = {80,81,82}.

to sg, failure transitionsto s4, and nuisancetransitions
to s3. Failure transitionscauseplayerl to lose; success
transitionbring playerl closerto winning; nuisancdran-
sitionscauseplayerl to loseonly if they arerepeatedn-
finitely often. A transitionto {s;, s»} is neutral:the out-
comeof the gamedepend®on whetherfailure transitions,
or infinitely mary nuisanceransitionsoccur

In gameg;, playerl canwin with probability 1 from
s1 by playingmovesa andb with probability 1/2 each.In
fact,if playerl usesthis distribution, then(a) no move of
player2 cancausea failure transition,and (b) the prob-
ability of a succesdransitionis proportionalto that of
a nuisanceransition,so that the probability of infinitely
mary visits to s3 is 0. On the other hand,in gamegG,
player1 cannotwin with probability 1 from s;. In fact,
to avoid failure player 1 must play move a determinis-
tically; player2 canthenforce infinitely mary visits to
s3 by playing move e.! Neverthelessplayer1 canwin
gameg, from s; with probabilityarbitrarily closeto 1 by
playing move a with probability 1 — e andmove b with
probabilitye, andlettinge — 0. This distributionensures
that(a) the probability of succesganbe madearbitrarily
largerthantheprobabilityof failureby choosing:, and(b)
for every g, the probability of successs proportionalto
the probability of nuisancePart (b) ensureshatthe prob-
ability of infinitely mary nuisancdransitionds 0; part(a)
ensureghatthe probability of successanbe madearbi-
trarily closeto 1.

The solutionformulas(2) and(3) for reachabilityand
Biichi gamesinvolved two-agumentpredecessoopera-

1An infinite-memoryspoiling policy for player2 consistsn playing
ats; movesd and f with probability (1/2)(1+1/2**") eachandmove

e with probability1 — (1/2)1/2"*" wherek is thenumberof previous
Visits to s1.

tors,suchasLpre, (Y, X). In fact,thealgorithmsfor solv-

ing thesegamemeedto considernly two typesof transi-
tions: successgransitions(to X)) andfailureones(to —Y).

To solve co-Biichi gameswe needpredecessaoperators
thattake threeargumentsX, Y, Z C S: asuccessfulran-
sition is onethatentersX; afailure transitionis onethat
leaves Z, anda nuisancedransitionis onethatleavesY'.

Correspondingo almostand limit modes,we introduce
theoperatorsAFpre, , LFpre, : 2% x 29 x 25 — 25, The
definitionsreflectthe previousanalysis.For all s € S and
X,Y,Z C S,welet:

s € AFpre (Z,Y, X) iff
38 € Ryo .
& € D(T1(s)) . V& € D(T2(s)) .
Psg2(7) =1

A
PE2(X) 2 BPEE ()

s € LFpre (Z,Y, X) iff
Va € Rso .38 € Rso -
& € D(T1(s)) . V& € D(Ta(s)) .
P§&(X) > aP§:(-2)

A
ps€1,€z (X) > /3p851,£2 (=Y)

For B C S andmode\ € {sure,almostlimit}, thesetof
winning statesof co-Blichigamesds givenby:

(B A AFpre (Z,Y, X))
ayrooB=vZ.uX.vY. V
(=B A Apre (Z, X))



where AFpre (Z,Y,X) = Pra(Y) if A = sumr,
MFpre (Z,Y,X) = AFpre (Z,Y, X) if A = almost and
AFpre (Z,Y,X) = LFpre (Z,Y,X) if A = limit. For
A = sure, the above formula reducedo the solution for
deterministidurn-basedjamesof [EJ9]].

Informally, algorithm(4) canbeunderstoodsfollows.
For the modealmost we canwrite the fixpoint Z* of (4)
asanincreasingsequencef setsX; C --- C X = Z*
obtainedasfollows. SinceAFpre, (Z*,Y,0) = Pre(Y)
andApre, (Z*,0) = @ forall Y C S, thefirst setis X; =
vY . [BAPra(Y)] = {(1)sue OB. Forl <i < k, theset
X1 is obtainedfrom X; in oneof two ways:

e eitherX;;; = X; U {s;},
wheres; ¢ B ands; € Apre, (Z*, X;);

e Or X;11 = X;UY;,
whereY; C B andY; C AFpre (Z*,Y;, X;).

If X;1 is obtainedn thefirst way, thenats; playerl can
avoid leaving Z* while proceedingwith positive proba-
bility to X;. If X, is obtainedin the secondway, then
fromY; C B playerl canavoid leaving Z*, while going
to X; with probability proportionalto that of leaving Y;.
Puttingthesetwo obsenationstogethey we canshav by
inductiononi, fromé = k — 1 downtoi = 0, that

Z*\ Xi C {1)amost(OO(B A (Z* \ X)) V OX;).

This shovs that Z* C {(1))amost©OB, which is onedi-
rection of (4). The proof of the reversecontainmentis
basedon the complementatiomf the p-calculusformula
(4), andis omitteddueto spaceconstraints.

For the modelimit, we againwrite the fixpoint Z* of
(4) asanincreasingsequencef setsX; € X, C --- C
X, = Z* with X3 = {1)syeOB. Forl < i < k,
setX;,1 is obtainedfrom X; in oneof thetwo waysde-
scribedfor modealmost exceptthat Apre is replacedby
Lpre and AFpre s replacedby LFpre Proceedingsimi-
larly to modealmost we canshow by inductionon s that
Z\X; C {1 imit (OO(BA(Z*\X;))VOX;). Thisleads
to Z* C {1 )imit ©OB; the proof of thereverseinclusion
is againbasedon the complementatiomf the p-calculus
expression(4). The computationof operatorsAFpre and
LFpreis givenin Section6. Thefollowing theoremsum-
marizesheresultsfor co-Blichigames.

Theorem6 Thefollowing assertiongold.

1. For B C S and\ € {sure almostlimit}, we have
(1hx ©0OB = ~((2)z OO~ B.

2. The complity of computingthe sets of winning
states,andthe mostrestrictiveclassesn which win-
ning and spoiling strategies are guaranteedto exist
are givenin Table 1(d).

5 Rabin-Chain Games

Thewinning conditionof aRabin-dhaingameis aformula

m—1

p= \/ (OOU2 A =O0U2i41) (5)
i=0

wherem > 0 is the numberof acceptingpairs, and
0 = Uyn C Uzt C Usp2 € - C Uy = 8

[Mos84]. Perhapsa moreintuitive characterizatiorof p

is thatof a parity game[EJ9]. For0 < i < 2m — 1, let

B; = U; \ U;41 bethesetof statesof color i. Thetotal

numberof colorsis 2m. Givenapaths, let Infi(s) C S be
the setof stateshatoccurinfinitely oftenalongs, andlet

MaxCols) = max{i € {0,...,2m — 1} | B;NInfi(3) #

0} bethelargestcolor appearingnfinitely oftenalongthe
path.Then,we have [p] = {5 € Q | MaxCo((s) is even}.

For thewinning modeA = sure, the setof winning states
canbe computedusingthe formulaof [EJ9T:

<<1»surep = MX2m—1 VYo o . -- 'MXl VY.
((B() A PTQ(YE))) V---V (Bgm_l A PTQ(XQm_1))).

For the winning modesalmostandlimit, the solutionof a
Rabin-chaingameis obtainedby recursvely nestingthe
solution of the algorithm for co-Biuichi games. In fact,
the co-Biichiacceptingconditioncorresponds$o a Rabin-
chaingamewith only two colors, By and B;. In the nest-
ing, thereis oneinstanceof the co-Biichi algorithm for

eachacceptingpair 0 < ¢ < m, correspondingo the
colors By; and B2; 1. The nestinginvolvesnot only the
p-calculusexpression(4), but also the definition of the
predecessooperators. To understandhis latter nesting,
whichis akey pointof thealgorithm,let usrevisit thedef-
inition of operatorLFpre,. For X,Y,Z C S, the opera-
tor LFpre, (Z,Y, X) consistof two conditions hierarchi-
cally combined:at the top level, the condition{«, Z, X);

at the next (and bottom) level, the condition {3,Y, X).

Theseconditionshave thefollowing meaning:

e The condition{«, Z, X) requiresthat the probabil-
ity of enteringX canbe madearbitrarily largerthan
theprobabilityof leaving Z, andthatthe next lower-
level conditionis alsosatisfied Furthermoreif there
areno lower-level conditions thenthe probability of
goingto X mustbepositive.

e Thecondition(3,Y, X) requireghateithertheprob-
ability of enteringX is somenon-zerdractionof the
probability of leaving Y or, if thereare lower-level
conditions thatthe next lower-level conditionis sat-
isfied.

We write the hierarchicalcombinationof conditionsasa
sequencestartingwith the top-level condition, and pro-



ceedingn orderof decreasingevel. We will have:
LFprel(Z7 Y, X) =
Lpre (Y, X) =

(@, Z,X) ©
(a,Y, X)

8,v,X) (6)

()
forall X,Y C S. In orderto definethe operatorAFpre,,
we definealsoa~-triple, for all Z, X C S

e The condition (v, Z, X'} requiresthat the probabil-
ity of leaving Z is 0, andthat the next lower-level
conditionis satisfied. Furthermore,f thereareno
lower-level conditions thenthe probability of going
to X mustbe positive.

With this definition,for all Z, Y, X C S we will have:
Apre, (Y, X) =
AFpre (Z2,Y,X) =

(7,Y,X)
(v,Z,X)©®

(8)
9)
Formally, to definethe meaningof a sequencé of a, g,
and v-triples, we define separatelythe quantifier prefix

Q(#) andthe quantifierfreepart P(6) of §. The mean-
ing of thesequencé is thendefinedby:

(B,Y, X).

s e iff Q(F).3& € D(T1(s)).V& € D(T2(s)).P(0).
Thequantifierprefix Q(6) is definedasfollows:
Q(0) =
Q({a,Y,X)®0) = (VaX >0.9(0))
Q(8,Y,X) ©0) = (3bx >0.2(0))
Q(7,Y, X) ©6) = Q(6)
(

Thequantifierfree partP(0) is definedasfollows:

P({a,Y, X)) = (P54 (X) > ax Py (7Y)
P((B,Y, X)) = (Ps*(X) > Bx Ps+#2(=Y)

P((v,Y, X)) = (P4 (Y) = 1A P#(X) > 0)
PE(0) 2 axPi (oY)

P, Y, X)®0) < P(6) >
51 106 > 5Xp§1 £2(2Y)

P, v, x) @) = (T2 B )

rmon=( FEg)

In our algorithms whenthetriple (3,Y, X) occursbefore
theendof thesequencet will alwaysbefollowedby the
triple (o, Y, X'), for someX’ C S. Hence,eitherthe
probability of X is a non-zerofraction of the probability
of leaving Y, or elsethe following triple («,Y, X') en-
suresthatthe probability of leaving Y is either0, or can
be madearbitrarily small.
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5.1 Two-pair Rabin-chain games

Before presentingthe solution for generalRabin-chain
gameswe presenthe solutionfor two-pair Rabin-chain
gamesthegenerakolutionwill bea straightforvardgen-
eralizationof the two-pair solution. In thesegames,we
have m = 2 andthe colorsare By, By, By, and B3. For
modelimit, the setof winning stateds givenby:

1 iimit p = vZ.uX3.0Y5.u X7 .0Y,. (10)

BS A <OZ,Z,X3>
\%
</85Y25X3)

(B,Ya, X3) )

By A (a, Z, X3) ®©
\%

<a7 Z7 X3> ©

o (St

\%
BO/\ ( <CM,Z,X3)@<ﬂ,Y:27X3) )
@(Oé, Y'2, X1) ® <6, Yo, X1>

The solutionfor modealmostis similar, exceptthat the
triple {a, Z, X3) is replacedwith (v, Z, X3) (theothera-
triple is unchanged)ln orderto analyzethis solution,it is
corvenientto write it in thefollowing form:

(1 imit p = vZ.uX3.0Y5. (11)

BB A (aa Z; X3)
LJ[Z, X3,Y5] vV ,

B> A <a7Z7X3> © </37}/27X3>

wherefor all T C B3 U B, we have:

LJ[Z, X3, Y5)(T) = pX;.vY%.

T
\%
Bl A ( (Oﬁ,Z,X3) O] </85Y25X3) )
@(Oé, Yv2; Xl)
V
Bo/\ ( <a7Z7X3>®<ﬂ7)/27X3> )
@(Oé, Y'25 Xl) ® <Ba YO, Xl)
Notethat, for all Z, X5,Y5 C S andT C B3 U B>, we
have LJ[Z, X3,Y>|(T) = T UQ for someQ C By U By:
i.e.,function LJ[](T") addsto T' asubsebf By U B;.
We give aninformal explanationof thealgorithm,with
the aid of the examplegamedepictedin Figure3. Sim-
ilarly to co-Buchi games the fixpoint Z* of (11) canbe
written asanincreasingsequencef setng(l) C X3(2) C
C X?Ek), wherefor 1 <4 < k, thesetX?E”l) is ob-
tainedfrom X3(") in oneof thetwo following ways:
Al. eitherX3(i+1) = X?Ei) U {s;}, wheres; € Bs and
8; € <a7 Z*JXE(IZ))’



af,ag,bg,cd, ce

Figure3: A Rabin-chaingamewith two-pair acceptingcondition. The colorsare By, By, B2, B3, with By = (§, By

{s3}, B2 = {s0,s2}, andBs = {s1,54,85}. ThemovesareI'i(s1) = {a,b}, T'2(s1) = {¢,d}, I'1(s3) = {a,b,c},
Ta(s3) = {d,e, f, g}, T1(s4) = {a,b}, T'2(s4) = {c,d}; atstatessg, s2, andss thetwo playershave only onemove.

A2. or x{7 = x{D Uy, wherev,? is afixpoint of
(11) thatsatisfieghefollowing conditions:

YN By = (0,25, Xy 0 (8,737, X5y (12)

vy = LJ1z*, X5, i (x{P U (v 0 By)).(13)

NotethatY;” C By U By U Bs.

In the gameof Figure 3, we have {(1)imitp = Z* =
{s0, 81, 82, 83, 84}, andthe set Z* is computedn k£ = 4
steps,with XV = {so}, X{? = {s0,5}, X =
{80,81, 82,53}, X§4) = {80, 81,82, 83,34}. The states
s; andsy areaddedaccordingo conditionAl above:

e at statesy, if player 1 plays movesa and b with
equalprobability, he canreachstates, with proba-
bility 1/2,andleave Z* with probabilityO;

e atstatesy, if playerl playsmove a with probability
1 — e andmove b with probabilitye, for e > 0, he
canreachss with probabilityatleastl — ¢, andleave
Z* with probabilityat moste.

States is addedtrivially accordingo conditionA2. The
nontrivial caseis for Y2(2) = {s2, 53}, addedto X§2) =
{s0, 51} accordingo conditionA2. This casds explained
below. '

Fori € {1,...,k — 1}, assumethat }’2(’) hasbeen
addedaccordingto condition A2. At 1/‘2(’) N By, asin
the caseof co-Buchi games,the gameproceedgo Xéi)
with probability arbitrarily largerthanthatof leaving Z*,
andequalto atleastafractionof theprobabilityof leaving
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v{HUux . At thestatess € Y, N(By UBy), theprede-
cessomperatorsorrespondo the nestingof two games:
thetop co-Blichigamewith colors B; and B, andobjec-
tive 00O B,, andabottompseudo-co-Bchigamewith col-

orsBy andBjy, andobjecti/e<>(X§i)V(Y2 g AB)vOBy).

Thesecondyamecorrespondso expression(13). We can
shaw that, unlessplayer2 playssothatplayerl canwin

the top game, player 1 can win the bottom gamewith

probability arbitrarily closeto 1.

To make this notionmoreprecisegivens € By (resp.
s € By), let 85 bethe sequencef 3 (resp.4) triples cor-
respondingo s in (10). If s € 4, then,giventhe values
for ax, andax, , we canconstructa suitabledistribution
& € D(I'y (s)) andselectsuitablevaluesfor Sx, andfx,
suchthat P (;) is satisfiedfor all & € D(I'2(s)). Given
& € D(Da(s)), we saythaté, satisfiesthe top gameif
P&182(X3) > 0, andwe saythaté, satisfiesthe bottom
gameotherwise.

Correspondingo this hierarchyof gamesijf thegame
entersY;’) N (Bp U By) therearetwo cases:

B1. If player2 choosesdistributionthatsatisfieghetop
game thenthegameproceedso Xs(’) with apositive
probabilitythatis arbitrarily largerthanthatof leav-
ing Z*, andequalto at leasta fraction of the proba-

bility of leaving ;" U X ().

B2. If player2 choose®nly distributionsthat satisfythe
bottomgame thenwe canrewrite the expressiorfor

YJ“ asfollows:



Vi = uX1 .0,

X v (By A YY)
Vo (By A e, Yy, X0))
Vo (Bo A, Yy, X1) 0 (B, Yo, X1))

By analogywith expression(4) for limit co-Bichi
games,n this casewe concludethat with probabil-
ity arbitrarily closeto 1, we have thateitherplayerl

wins thegamewhile stayingin Y;(i) N (BoU By), or
thegameproceedso X" U (B, n Y,{").
The preciseanalysisis morecomple, sinceplayer2 can
play a stratgy thatcauses mix of theabove casesNev-
erthelesswe can prove that with probability arbitrarily

closeto 1 the pathsthatenter)g(i) behae asfollows:
¢ eitherthey win in Yé“,

o or they leave Y}, proceedingo X (@ with proba-
bility arbitrarily larger thanthat of leaving Z*, and
equalto atleasta fraction of the probability of leav-
ing Y3 U X (.

Reasoningsin the caseof co-Biichigamesthisin turns
enablesus to prove by inductionon i, fromi: = k£ — 1
downtoi = 0, that

Z*\ X C (Wimic (0 A D(Z*\ X§0) v 0 X)),

which shavs Z* C {(1))imit p- The argumentfor the re-
verseinclusionvergeson the duality of the o and 3 con-
ditions, which in turn is proved on the basisof the algo-
rithmsfor the computatiorof the predecessasperators.

In the gameof Figure 3, the setY2(2) = {sg,83} IS
addedto theX§2) = {so0,51}. If we evaluate(13)in the
sameiterative fashionas(11), thenwhens; is addedwe
have Xl(l) = {s2,83,50}. Givenax,, playerl chooses
the distribution that playsmovesa andb with probability
ax, /(1 + 2ax,), and move ¢ with probability 1/(1 +
2ax,) each.Therearetwo cases:

o If player2 playsmovesd or e, thenthe gamefrom

YQ(Z) goesto s; and sz with probability 1/2 each.
This correspondso winning the top game. Indeed,
by choosingthe distribution for player 1 at state
s4 accordingto a sequenceyg,e1,€2, ... suchthat
H‘;‘;O(l — ¢;) is arbitrarily closeto 1, player1 can
proceedto so (and win the two-pair Rabin-chain
game)with probabilityarbitrarily closeto 1.

o If player 2 plays moves f or g, thenfrom sz the
gamegoesto s» with probability a x, timesgreater
thanthat of goingto s4. This corresponddo win-
ning the bottomgame.Indeed by choosingax, af-
ter eachvisit to s, accordingto a sequencexx,
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g, a1, s, ... suchthat [ (1 — ;) is arbitrarily
closeto 1, playerl canstayin {s2, s3} andvisit s,
infinitely oftenwith probabilityarbitrarily closeto 1.

The analysisof stratgjiesof player?2 that mix the above
behaviors is technicallymore difficult, but confirmsthat
player1 canwin the Rabin-chaingamewith probability
arbitrarily closeto 1.

5.2 GeneralRabin-chain games

Considera Rabinchaingameswith m > 0 pairsandac-
ceptingconditiondefinedasin (5). Definethepredecessor
operators:

ARprey, 11 = {7, Yam, Xom-—1)
ARprey. 5 1 = {7, Yom, Xom-1) © (B, Yom—2, Xam—1)

LRprel;, 11 = (@, Yom, Xom—1)
LRprel,, 51 = (@, Yom, Xom—1) © (B, Yom—2, Xom—1)

and,fori € {0,...,m — 2}, by:

ARpPre, ;1 = ARprey o 1 © (@, Yait2, X2i41)
ARprel | = ARprej ;1 © (B, Yai, Xoi41)-

For a winning mode A € {almostlimit}, let ARpre be
ARpreif A = almost andLRpreif A = limit.

The setof A-winning statescanbe computedoy defin-
ing the operatorAJ by AJ™ (T) T and, for i €
{0,...,m —1}, by

)\sz(T) = /J,XQH_l . l/sz,' .

A ( T V (Bait1 ANARpre;, ) > .

V(B2 A ARpréy; ;)
Thesetof winning stateds thengivenby

(Ix p = vYom . AJT5 1 (0). (14)

Thefollowing theoremsummarizeshe resultsfor Rabin-
chaingames.

Theorem?7 Thefollowing assertionshold.

1. For every Rabin-dain condition p and A €
{sure, almost limit}, wehave{(1)x p = ={(2)5 —p.

2. The compleity of computingthe sets of winning
states,andthe mostrestrictiveclassesn which win-
ning and spoiling strategies are guaranteedto exist
are givenin Table1(e).

Unlikein thepreviousclasse®f gameswinninga Rabin-
chain gamewith mode almost may require the use of



infinite-memorystratayies. To seethis, considera mod-
ification of the game skirRMISH of Figure 1, in which
from statese; We deterministicallyproceedo statesp;ge.
We consider4 colors (hencem = 2), with By = 0,
B; = {shide}, B2 = {Shome}, andBs = {sue}. It is easy
to seethatif playerl playswith a memorylessstratayy,
hewins with probability O: in fact,if he playsonly move
hide, player2 canreply with move wait; if he playsmove
runwith positive probability, player2 cancountetby play-
ing movethrowdeterministically Theargumenfor finite-
memorystratayiesis similar. Ontheotherhand,playerl
canwin with probability1 by playingmoverun with prob-
ability 1/2F+! andmove hidewith probability1 —1/2%+1,
wherek is the numberof prior Visits to {swet, Shome}-

Rabin-chaingamesalso exhibit the following global
duality betweenthe limit and almostwinning modesof
thetwo players.

Theorem8 Let p be a Rabin-dain condition. If
{2iimit 7p = 0, then {1)amostp = S, wheee as usual
S is thesetof all states.

Combiningthis resultwith the Duality Theorem(Theo-
rem2), we obtainthefollowing corollary.

Corollary 1  For a Rabin-dain condition p, we have
that «1»positivep 76 0 iff «l»limit p 75 0.

Intuitively, this corollary statesthat thereis somestate
from which a player canwin a Rabin-chaingamewith

positive probabilityonly if thereis somestatefrom which

it canwin with probability arbitrarily closeto 1. This

generalizego two-playerconcurrentRabin-chaingames
apropertythatholdsfor Markov chainswhereit is anim-

mediateconsequencef the decompositiorin closedre-

currentclasse$KSK66].

6 Appendix: Computation of
PredecessofOperators

Finally, we presentlgorithmsto decidewhethera states
belonggo the setscomputedy the predecessasperators
ARpre andLRpre Thesealgorithmsrely on u-calculus
expressionghatareevaluatedoverthesetI'; (s) of moves
of playerl ats (ratherthanon u-calculusexpressioreval-
uatedover the setof statesof the game).Givena states,
for all subset®f statesX, Y C S wedefinetwo functions
A3 2 2F2() 1y 2116) and By, : 2T1(8) 1y 212(9) py

AV (V2) =
{a €T1(s) | Vb €Ta(s).d(s,a,b) ZY — b€ o}

B% (V1) ={b € Ts(s) | Ja € Vi .0(s,a,b) N X # 0},
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whereV; C T'y(s) andV, C I'y(s). Givena sequencef
triplesd, we inductively definethe u-prefix M (8) andthe
conditionC(6) of § asfollows,for X,Y C S:

M@) =0
MO (@Y, X)) = Wy . M(8)
M@ (B,Y, X)) = vVx . M(0)
MO {7,Y, X)) = M(8)
C({a, Y, X)) = AV (B%x (Wx))
C((8,Y, X)) = A} (B% (Vx))
C({r,Y, X)) = AV (0)
Cl©(a,Y, X)) =C(0) v A} (Bx (Wx))
Cl0o(B,Y,X)) =C(0) A Ay (Bk (Vx))

We can decidewhethera states satisfiesa predecessor
predicateasfollows:

s€ (00 {(a,Y, X)) iff
B% (M0 ©(a,Y,X)).C(0®(a,Y,X))) =Ta(s)

se (00 (B,Y,X)) iff
M@ 6 (B,Y,X)).COO(B,Y,X))#0

s € (7,Y,X) iff B%(C({(7,Y,X))) =Ta(s).

In anm-pair Rabin-chaingame thesealgorithmsrely on
theassumptiorthatY,; C Yo, forall0 < i < k < m,
andthat Xop11 C X449 forall 0 < i < k < m. This
assumptionintroducedto simplify the requirednotation,
holdswhenthe u-calculusformula(14)is evaluatedn the
usualiterative fashion. Using (6), (7), (8), and(9), the
above algorithmsalsoenablethe computationof the pre-
decessooperatorsApre,, Lpre,, AFpre, andLFpre;: in
particularfor all s € S andX,Y, Z C S we have:

s € Apre, (Y, X) iff B% (A% (0)) =Ta(s)
s € Lpre (Y, X) iff B (uW . A3 (B (W))) = I'2(s)
s € AFpre (Z,Y, X) iff
vV . (AZ(0) A AL (B& (V) # 0
s € LFpre (Z,Y, X) iff
vV W . (A5 (B (W) A A3 (BX(V))) # 0.

Dueto spacelimitations, we omit the correctnesproofs
of thealgorithms.
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