
Relating Word and Tree Automata

Orna Kupferman Shmuel Safra Moshe Y. Vardi
Bell Laboratories* Tel Aviv Universityt Rice Universityt

Abstract I n the automata-theoretic approach to
verification, we translate specifications to au-
tomata. Complexity considerations motivate the
distinction between different types of automata.
Already in the 60's) it was known that deter-
ministic Biichi word automata are less expres-
sive than nondeterministic Biichi word automata.
The proof is easy and can be stated in a few
lines. I n the late 60's) Rabin proved that Buchi
tree automata are less expressive than Rabin tree
automata. This proof is much harder. I n this
work we relate the expressiveness gap between de-
terministic and nondeterministic Buchi word au-
tomata and the expressiveness gap between Buchi
and Rabin tree automata. W e consider tree au-
tomata that recognize derived languages. For a
word language L, the derived language of L , de-
noted LA, is the set of all trees all of whose
paths are in L. Since often we want to specify
that all the computations of the program satisfy
some property, the interest an derived languages
is clear. Our main result shows that L is rec-
ognizable b y a nondeterministic Buchi word au-
tomaton but not b y a deterministic Biichi word
automaton iff L A is recognizable b y a Rabin tree
automaton and not by a Biichi tree automaton.
Our result provides a simple explanation to the

*Address: 600 Mountain Avenue, Murray Hill, NJ
07974, U S A . Email: okaresearch. att . com

+Address: School of Mathematics, Tel Aviv 69978, Is-
rael. Email: saf rammath. tau. ac . il

$Address: Department of Computer Science, Hous-
ton, TX 77005-1892, U.S.A. Email: vardiacs .rice.edu
URL: http://www.cs.rice.edu/"vardi

expressiveness gap between Biichi and Rabin tree
automata. Since the gap between deterministic
and nondeterministic Biichi word automata is
well understood, our result also provides a char-
acterization of derived languages that can be rec-
ognized by Biichi tree automata. Finally, it also
provides an exponential determinization of Biichi
tree automata that recognize derived languages.

1 Introduction

While program verification was always a de-
sirable, but never an easy task, the advent of
concurrent programing has made it significantly
more necessary and difficult. The first step
in program verification is to come with a for-

mal specification of the program. One of the
more widely used specification languages for con-
current finite-state programs is temporal logic
[Pnu77, MP921. Temporal logic comes in two
varieties: linear and branching. In linear tem-
poral logics, formulas are interpreted over linear
sequences and describe a behavior of a single in-
finite computation of a program. In branching
temporal logics, formulas are interpreted over in-
finite trees and describe the behavior of the possi-
ble computations of a nondeterministic program.
In both versions, formulas are generated with re-
spect to a set AP of the program's atomic propo-
sitions. Each formula describes a language (of
either infinite words or infinite trees) over the al-
phabet 2 A P .

Automata on infinite objects also describe lan-
guages [ThoSO]. As automata on finite objects,
they either accept or reject an input object. Since

1043-6871/96 $5.00 0 1996 IEEE
322

http://rice.edu
http://www.cs.rice.edu/"vardi

a run on an infinite object does not have a final
state, acceptance is determined with respect to
the set of states visited infinitely often during the
run. For example, in the Buchi acceptance condi-
tion, some of the states are designated as accept-
ing states and a run is accepting iff it visits states
from the accepting set infinitely often [Buc62].
As temporal logics, automata on infinite objects
come in two varieties. Automata on infinite
words (word automata, for short) and automata
on infinite trees (tree automata). The automata-
theoretic approach to temporal logic uses the
theory of automata as a unifying paradigm for
program specification, verification, and synthesis
[ES84, VW86a, EJ91, VW94, BVW94, Kur941.
In this paradigm, both the program and the spec-
ification are translated to (or are given as) au-
tomata. Linear temporal logic formulas corre-
spond to word automata and branching tempo-
ral logic formulas correspond to tree automata.
Then, questions about programs and their spec-
ifications can be reduced to questions about au-
tomata. More specifically, questions such as sat-
isfiability of specifications and correctness of pro-
grams with respect to their specifications can be
reduced to questions such as nonemptiness and
containment of automata. These reductions yield
clean and optimal algorithms and are very help-
ful in implementing formal verification methods
[Var96].

An important factor to be considered when we
examine a specification language is its ability to
describe behaviors accurately. We can control
the expressive power of temporal logics by limit-
ing their syntax. For example, while the branch-
ing temporal logic CTL" permits an arbitrary
combination of linear-time operators in its path
formulas, its subset CTL restricts path formulas
to have only a single linear-time operator. This
restriction makes CTL less expressive than CTL*
[EH86].

We can also control the expressive power of

automata. One way to do it is to restrict their
transition relations to be deterministic. Every
automaton on finite words can be determinized.
This is not true for automata on infinite words.
In [Lan69], Landweber proved that determinis-
tic Buchi word automata are less expressive than
nondeterministic Buchi word automata. That is,
he showed that there exists a language of infinite
words that is recognizable by a nondeterminis-
tic Buchi word automaton but not recognizable
by any nondeterministic Buchi word automaton
'. Today, the gap between nondeterministic and
deterministic Buchi word automata is well under-
stood. While nondeterministic Buchi automata
can describe any w-regular language, determin-
istic Biichi automata can describe an w-regular
language L iff there exists a regular language W
such that L contains exactly all words that have
infinitely many prefixes in W [Lan69].

Another way to control the expressive power of
automata is by defining various acceptance con-
ditions. For example, one may wonder whether
there exists an acceptance condition for which de-
terministic automata are as expressive as nonde-
terministic ones. In 1966, McNaughton answered
this question to the positive. In the suggested
acceptance condition, now known as the Rabin
acceptance condition, we have a set of pairs of
subsets of the states. A run is accepting iff there
exists a pair (G, B) for which the run visits states
from G infinitely often but visits states from B
only finitely often. McNaughton showed that de-
terministic Rabin word automata are as expres-
sive as nondeterministic Rabin word automata
and that they are both as expressive as nonde-
terministic Buchi word automata [McN66]. A
different picture is drawn when we consider au-
tomata on infinite trees. In 1969, Rabin showed

'It is easy to see that deterministic automata on infi-
nite trees are less expressive than their nondeterministic
counterpart. Indeed, only the latter can quantify over
paths existentially [TW68].

that, though their expressive power with respect
to words coincide, nondeterministic Buchi tree
automata are less expressive than nondetermin-
istic Rabin tree automata [Rab69]. That is, there
exists a language of infinite trees that is recogniz-
able by a Rabin tree automaton but not recog-
nizable by any Buchi tree automaton.

Let us use DBW, BW,DRW, RW, BT, and
RT to denote, respectively, deterministic Buchi
word, Buchi word, deterministic Rabin word, Ra-
bin word, Biichi tree, and Rabin tree automata.
We sometimes refer by these notations also to the
set of languages recognizable by the correspond-
ing automata. So, for example, BW \ DBW de-
notes the set of languages that are recognizable
by BW and are not recognizable by DBW. Let
us also use DBW < BW to indicate that this
set is not empty; i.e., that DBW are less ex-
pressive than BW. Summarizing the expressive-
ness results we have mentioned so far, we have
DBW < BW = DRW = RW and BT < RT.

There is a price to expressive power. The more
expressive a language is, the higher is the com-
plexity of solving questions about it. For exam-
ple, the complexities of the model-checking and
the satisfiability problems for the logic CTL* are
significantly higher than these for its less ex-
pressive subset CTL [SC85, VS851. Similarly,
while the containment problem for DBW can
be solved in NLOGSPACE [WVS83, I(ur871, it
is PSPACE-complete for BW [Wol82]. Finally,
while the complexity of the nonemptiness prob-
lem for BT can be solved in quadratic time
[VW86b], it is NP-complete for RT [Eme85,
VS85, EJ881. The interested readers can find
more examples in [EmeSO, ThoSO].

In the automata-theoretic approach to verifi-
cation, we translate specifications to automata.
Which type of automata? The answer, obvi-
ously, should be “the weakest type that is still
strong enough to express the required behaviors
accurately”. In this paper we consider tree au-

tomata that describe derived languages. Let L
be a language of words. The derived language of
L, denoted La, consists of all trees all of whose
paths are in L. Since often we want to specify
that all the computations of the program sat-
isfy some property, the interest in derived lan-
guages is clear. Branching temporal logic formu-
las that describe derived languages constitute a
strict fragment of CTL*. In fact, this fragment,
called strongly linear in [GK94], is a strict frag-
ment of the universal fragment VCTL* of CTL*.
A necessary and sufficient condition for CTL* for-
mulas to be strongly-linear is given in [CD88]: a
CTL* formula $J is strongly linear iff omitting all
its path quantifiers results in an LTL formula e
such that t,b and A< are equivalent.

Let us go back to automata. Proving that
DBW < BW, Landweber showed that the lan-
guage L1 = (0 + l)*lw (only finitely many 0’s) is
in BW \ D B W . The proof is simple and can
be stated in a few lines. Much harder is the
proof that BT < RT. In [Rab69], Rabin had
to use a complicated construction and a compli-
cated inductive argument. Interestingly, the lan-
guage that Rabin used in his proof is the derived
language of L1. That is, the set of all trees all
of whose paths have only finitely many 0’s. In
terms of temporal logics, if follows from Landwe-
ber’s result that the LTL formula FG1 can not
be translated to a DBW, and it follows from Ra-
bin’s result that the CTL” formula AFGl can
not be translated to a BT.

Our main result shows that Rabin’s choice
of L1 was not at all arbitrary. We prove that
for every word language L, we have that L E
BW \ DBW iff L A E RT \ BT. Our proof sug-
gests an additional proof and provides a simple
explanation to the expressiveness gap between
Buchi and Rabin tree automata. Since the gap
between DBW and BW is well understood, it
also provides a characterization of derived lan-
guages that can be described by BT.

324

The difficult part in the proof is to show that
if LA E BT, then L E DBW. Given a Buchi tree
automaton U that recognizes LA, we construct a
deterministic Buchi word automaton A that rec-
ognizes L. For U with n states, the automaton A
has 2n+1 states. We can expand A in a straight-
forward way to a deterrninistic tree automaton
that recognizes La. This suggests an exponen-
tial determinization for Buchi tree automata that
recognize derived languages.

2 Preliminaries

A Buchi
word automaton is A = (E, Q, 6, Qo, F) , where C
is the input alphabet, Q is a finite set of states,
S : Q x E ---f 2Q is a transition function, Qo E Q
is a set of initial states, and F C_ Q is a set of ac-
cepting states. Since A may have several initial
states and since the transition function may spec-
ify many possible transitions for each state and
letter, A may be nondeterministic. If lQol = 1
and S is such that for every q E Q and a E E, we
have that IS(q, a) [5 1, then A is a deterministic
automaton.

Given an input word a = a0 0-1 in E",
a run of A on a can be viewed as a function
r : W -+ Q where r (0) E Qo and for every i 2
0, we have r (i + 1) E 6(r(i) ,a i) ; i.e., the run
starts in one of the initial states and obeys the
transition function. Note that a nondeterministic
automaton can have many runs on 0. In contrast,
a deterministic automaton has a single run on 0.
For a run r , let i n f (r) denote the set of states
that r visits infinitely often. That is,

i n f (r) = { q E Q : for infinitely many i 2 0,
we have r (i) = 4) .

As Q is finite, it is guaranteed that i n f (r) #
0. The run r is accepting iff i n f (r) n F # 8.
That is, iff there exists a state in F that r visits
infinitely often. A run which is not accepting
is rejecting. An automaton A accepts an input

325

word a iff there exists an accepting run of A on
a. The language of A is the set of all words in
Cw that A accepts.

The infinite binary tree is the set T = (0, l}*.
The elements of T are called nodes, and the
empty word E is the root of T . For every x E T ,
the nodes x . 0 and z 1 are, respectively, the
left and right successors of x. Each node z
is the root of the subtree T" of T . Formally,
T z = {x y : y E 5"). The subtrees T"'O and
T"'l are, respectively, the left and right subtrees
of T". We sometimes simply say that 7'"'' is the
left subtree of 2. A path T of the tree T is a
set 7r c T such that e E 7r and for every z E 7r,

exactly one successor of z is in 7r '. Note that
each path T c T corresponds to a unique word
in (0, 1)". For example, the leftmost path corre-
sponds to 0". For a path T and j 2 0, let TL]
denote the node of length j in T , and let TJ denote
the suffix n [j] . ~ [j + l] 1 . . of T . Given an alphabet
E, a E-labeled tree is a function V : T + C that
maps each node of T to a letter in E. We some-
times extend V to paths and use V (T) to denote
the infinite word V(n[O]).V(n[l]>-V(7r[2]) . . -. We
denote by CT the set of all E-labeled trees.

Tree automata run on such E-labeled trees.
A Buchi tree automaton is U = (E, Q, 6, Qo, F) ,
where C, Q, Qo, and F , are as in Buchi word au-
tomata, and S : Q x C ---f 2QxQ is a (nondetermin-
istic) transition function. Intuitively, in each of
its transitions, U splits into two copies. One copy
proceeds to the left subtree and one copy pro-
ceeds to the right subtree. A pair (ql, qT) E S(q, a)
means that if U is now in state q and it reads the
letter a, then a possible transition is one in which
the copy that proceeds to the left subtree moves
to state ql and the copy that proceeds to the right
subtree moves to state qr.

A run of U on an input E-labeled tree V is
a Q-labeled tree r such that r (~) E Qo and for

2We denote strict containment by C.

every IC E T , we have that (.(IC . O) , T (I C . 1)) E
S(r(z),V(Lc)). If, for instance, r (0) = 42 , V (0) =

~ (0 . 0) = q1 and ~ (0 . 1) = q 2 , or ~ (0 . 0) = 44 and
r (0 . 1) = 45. Given a run r and a path 7r c T ,
we define

a, and S (q 2 , a) = ((41, q 2) , (q4,45)} , then either

inf(r1n) = { q E Q : for infinitely many 2 E 7r ,

we have .(IC) = q}.

A run r is accepting iff for all paths 7r c T ,
we have inf(rl.ir) f? F # 0. That is, iff for each
path .ir C T there exists a state in F that r visits
infinitely often along T . An automaton U accepts
V iff there exists an accepting run of U on V . In
the sequel, when we write tree automata, we refer
to automata with any acceptance condition, thus,
in particular, Buchi automata.

Consider a tree au-
tomaton U = (C , Q , S , Q o , F) . For S C: Q, we
denote by U S the tree automaton (E, Q, 6, S, F) ,
i.e., U with S as the set of initial states, and de-
note by U [SI the set of trees accepted by U s . A
state q of U is null iff U [{ q }] = 0. We assume
that U [Qo] # 0 and eliminate all null states and
all transitions that involve null states (i.e., tran-
sitions (41, qT) for which either ql or qr is null).

For S C Q and a E C, we denote by 6 ~ (S , a)
the set of states reachable from S by reading a,
on the left branch, disregarding what happens on
the right branch, i.e.,

SL(S, a) = (41 : exists qT such that
q T) E USES G?, 4).

The set S~(s,a) is defined symmetrically for
the right. For two states q and q', and a E C, we
say that q' is a-reachable from q iff q' E S L (q , a) U

For a word language L C E", the derived lan-
guage of L, denoted by LA, is the set of all trees
all of whose paths are labeled with words in L.
Formally,

SR((I, a).

For a tree language X and a word language L,
we say that L derives X iff X = LA. We say that
X is derivable iff there exists some word language
L such that L derives X.

For a word language L and a letter a , let La =
{G : a . o E L} . Let U be a tree automaton, S a
subset of the states of U , and let U [SI = LA. It
is a good exercise to see that

Indeed, L"n contains exactly all trees that are
either left or right subtrees of some tree in LA,
with root labeled a. Moreover, as L A is derivable,
then each left subtree of some tree in L A is also a
right subtree of some tree in LA, and vice versa.
Hence, we can strengthen the above and have

U [6L(S, a)] = U [SR(S, a)] = L"A.

What if instead taking S we would have taken
some subset S' of S? Then, obviously (e.g., when
S' = 0), it might be that

U [SL(S ' , a)] U U [SR(S', a)] c L"A,

Also, here, though U [SI is derivable, it might
be that U [S,(S', a)] # U [SR(S', a)]. For exam-
ple, in a case where U [6 ~ (S ' , a)] = L a a but

Let U [SI = LA. For a set S' C S, a letter a,
and a direction d E {left, right}, we say that S'
d-covers (S, a) , iff U [Sd (S ' , a)] = L"A. That is, S'
d-covers (S, a) iff the set of states reachable from
S' by reading a on the d-branch suffices to accept
all trees accepted by the set of states reachable
from S by reading a , on either the left or the
right branch.

U [SR(S', a)] c L"A.

Lemma 2.1 Let U be a tree automaton, S a sub-
set o f the states of U , and let U [SI = LA. Then,
for every S' S S , and a letter a, either S' left-

Proof: If S' does not left-cover (S , a) , there ex-
ists a tree V E L"A \ U [SL(S', a)] . Consider all
trees that have a as their root, V as the left sub-
tree, and some tree in L"a as the right subtree.
All these trees are in L a , yet none of them is
in U [S']. Hence, as L A = U [SI, they are all in
U [S \ S']. Therefore, since their right subtree is
an arbitrary tree in Lan, it must be that S \ S'
right-covers (S , a). 0

3 Determinization

Theorem 3.1 If L C Cw is such that L a is rec-
ognized by a Buchi tree automaton, then L is rec-
ognized by a deterministic Buchi word automa-
ton.

Proof: Given a Buchi tree automaton U =

(E, Q , 6, Qo, F) that recognizes LA, we construct
a deterministic Buchi word automaton A =

(E,2Q x (0 , l}, v, (SO, l), 2Q x (1)) that recog-
nizes L .

Intuitively, the states of A consist of subsets
of the states of U plus a green light that can be
either off (0) or on (1). The initial state of A is
the set of initial states of U with the green light
on. Below we describe the transition function v.

We consider only states (S ,g) of A for which
U [SI is derivable. The initial state clearly satis-
fies this property and, by the definition of v be-
low, states that do not satisfy it are not reachable
in A from the initial state.

For a state q = (S ,g) with S # 8 and g E
(0, l}, we define v, for all a E E, as follows.

0 If S n F left-covers (S,a) , then v (q , a) =

(&(S n F, a) , 1).

0 Otherwise, by Lemma 2.1, S \ F right-
covers (S , a) , in which case v (q , a) =

(SR(S \ F, 4 , O) .
For a state q = (8, g) with g E (0, l}, we define
v (q , a) = 0 for all a E E.

That is, A always tries to proceed with states
from F . As long as it succeeds, the green light is
on. Only when states in F might not suffice, A
proceeds with states not in F and turns the green
light off. It is easy to see that A is deterministic.
We show that it recognizes L.

Before we get to the proof we need the fol-
lowing definitions. In each step of A, its run
on a word a E E" (and let a = a0 . 01 ..e) ei-
ther gets stuck (in the case it is in a state (0, g)),
or takes a left move (in the case it proceeds ac-
cording to a left-covering set), or takes a right
move (in the case where it proceeds according to
a right-covering set). This fixes, for any word a
on which the run does not get stuck, an infinite
path 7ru C T . Precisely, for every j > 0, we have
that 7r,[j] = ~ , [j - 11 - 0 if A takes a left move in
its j ' s step, and 7rcb] = 7ru[j - 11 e 1 if A takes a
right move. Consider a node IC E xu. The node IC

has two subtrees. One subtree contains the suf-
fix of nu. We say that this subtree continues with
T,. The other subtree is disjoint with T,. We say
that this subtree quits nu.

Given a word a E E", we first show that if A
accepts U , then a E L.

cepting run of A on a. Since T is accepting, it
does not get stuck and there are infinitely many
j ' s with gj = 1. Consider the following (not nec-
essarily binary) Q-labeled tree. The tree has a
root labeled E. Nodes of length 1 are labeled
with states in SO. For i 2 0, the nodes of length
i + 1 have the following successors. If A proceeds
from S; with a left move, then nodes labeled with
a state in S; \ F have no successors and a node
labeled with a state q E S; n F has as successors
nodes labeled with states that are a;-reachable
from 4. In a dual way, if A proceeds from Si with
a right move, then nodes labeled with a state in
Sin F have no successors and a node labeled with
a state in Si \ F has as successors nodes labeled
with states that are a;-reachable from it. The

Let 7- = (So , go), (Sl, g1), (52,92), . . . be the ac-

327

way we define A implies that the nodes of length
i + 1 are labeled with all states in S,.

By Konig’s lemma, we can therefore pick a se-
quence r’ = qo,q1, . . . such that for all j > 0, we
have that q, E S,, q,+l is a,-reachable from q,,
and there are infinitely many j ’ s with q, E F .
We show that there exists a tree V, accepted by
U, in which V(T,) = a. As U recognizes LA, this
implies that a E L. We define V according to T’,

proceeding over r,,.
For each node 7r,[j] of T,,, if the run of A on U is

in S, and takes a left (right) move, let q be such

There exists some tree in U [{ q }] . Our tree V has
this tree as the right (left) subtree of 7r,[j] (. i.e. as
the subtree that quits T,), it has V(n,[j]) = aJ ,
and definition proceeds to 7ru[j + 11. It is easy to
see that U accepts V with a run that agrees with
r over nu.

We now show that if A does not accept a, then

Let r = (so,go),(S1,g1),(S~,g2),... bethere-

that (q,+1,q) E S(q+J,) ((4&+l) E 6(cl,,a,)).

I

a # L .

jecting run of A on a. We first consider the case
where there exists j 2 0 for which S, = 0. In-
tuitively, the existence of such j implies that all
runs of U on a tree with a path labeled a even-
tually get stuck. For a word T E Cw and j > 0,
let V,3 be the tree derived from (7”. We prove
that for all T E L and for all j 2 0 for which T

agrees with a on their first j letters, we have that
V; E U [S,]. The proof proceeds by induction on
1 as follows. Since U [So] = LA, then clearly, for
all T E L, we have V: E U [SO]. Assume that the
claim holds for words in L that agree with a on
their first j letters. Let T E L be such that T

agrees with U on their first + 1 letters. By the
definition of A, we have that U[S,+1] contains
either all trees that are left subtrees in some tree
in U [S,] with root labeled a,, or all trees that are
right subtrees in such a tree. Recall that a, = r,.
Hence, since is the left and right subtree
in V,3, that has a root labeled T, and that, by

328

the induction hypothesis, is in U [S,], it must be
that V;+l E U[S,+1] and we are done. Assume
now, by way of contradiction, that U E L. Then,
by the above, there exists j > 0 for which both
S, = 0 and VJ E U [S,]. This, however, is not
possible.

We now consider the more intriguing case,
where S, # 8 for all j 2 0. We show that
there exists a tree V , rejected by U , such that
V(T,) = a and all other paths are labeled with
words in L. It follows that a $E‘ L. We define V
according to T , proceeding over T,. For all j 2 0,
we have V (T , [~]) = a,. The subtree that quits
7r , in level j is defined as follows:

0 If Sj n F left-covers (Sj, aj), we chose as the
right subtree some tree in U [SL(S~ n F, aj)].

0 Otherwise (in which case Sj \ F right-covers
(S j , aj)), we chose as the left subtree some
tree in U [6 ~ (S j \ F, aj)] \U [6 ~ (S j n F, uj)];
i.e., a tree that causes V not to be accepted
by runs T with ~ (n , [j]) E Sj n F .

For all j 2 0, we denote by V, the subtree of n,[j]
that quits T,. That is, V, is the right subtree of
n,[j] whenever A takes a left move and it is the
left subtree of 7ru[j] whenever A takes a right
move. Since T never reach a state with Sj = 0, it
is guaranteed that for all j 2 0, if A takes a left
move, then U [6 ~ (S j n F, aj)] # 0. In addition,
since A takes a right move only when Sj n F
does not left-cover (S j , aj), it is guaranteed that
if A takes a right move, then U [6 ~ (S j \ F, aj)] \
U [6~(Sj n F,aj)] # 0. Thus, in both cases, a
suitable V, exists.

By the construction, the labels along the path
7rm form the word a. It is not hard to see that all
the other paths of V are labeled with words in L.
To see this, note that each such other path has
some finite prefix a0 e a 1 . aj that agrees with a
and has a suffix that continues as a path in Vj.
Also, by the definition of V , all the subtrees V,
that quit T , satisfy V, E U [Sj+l].

Hence, it is sufficient to prove that for all i 2 0,
all trees Y in U [Si], and all paths 7 c T , we
have that a0 . 01 . . . ai-1 . Y (7) E L. The proof
proceeds by induction on i . Since U[So] = LA,
then clearly, all the paths in trees in U[So] are
in L. Assume now that for all trees Y in U [Si]
and all paths 7 c Y , we have that 00.01 . . . 0i-1.

Y(7) E L. Let Y’ be a tree in U[S;+l] . There
exists a tree in U [Si] such that this tree has a root
labeled oi and has Y’ as its left or right subtree.
Therefore, by the induction hypothesis, all the
paths B c T have 00.01 . . . 0i-1. (a i . Y’(B)) E L,
and we are done.

It remains to see that V is rejected.
LetbbearunofUonVandletqo,ql ,q2, . . . be

the sequence of states that b visits along 7ru. We
say that a state q j agrees with U if the following
holds.

Sj n F left-covers (Sj, aj) and qj E Sj n F ,
or

0 S j r l F does not left-cover (Sj,aj) and
q j E Sj 1 F .

We say that a run b agrees with U iff almost all
the states along 7ru agree with U . That is, if there
exists IC 2 0 for which all states qj with j 2 k
agree with U .

In order to show that no run of U accepts V ,
we prove the following two claims:

Claim 1. For every run b on a tree V with
V[7ru] = a, if b agrees with U then b is a
rejecting run.

Claim 2. If a run b accepts V , then there exist
a tree V’ and an accepting run b‘ of U on V’,
such that V‘[nu] = a and b’ agrees with U .

the sequence of states that b visits along 7rD. If b
agrees with U , then there exists k 2 0 such that
for every j 2 k , it is possible that q j is in F only
when Sj n F left-covers (Sj, oj). That is, only in
steps whose corresponding steps in T cause the
green light to turn on. Since T is a rejecting run,
there are only finitely many such states. Thus,
a run b that agrees with U can visit only finitely
many states in F along 7ru. Hence, it is a rejecting
run.

We now prove Claim 2. We first show that
if b accepts V , then for every j 2 0, the sub-
tree VTu[21 is in U [S j] . The proof proceeds by
induction on j . Since So = Qo, the case j = 0
is straightforward. Assume now that VTuIjl E

U [S j] . Consider the case where A takes a left
move. Then, Sj+l = 6 ~ (S j n F, aj). Since Sj n F
left covers (Sj,aj), then all the left subtrees of
trees in U [SJ] with root labeled aj are in U [S j + l] ,

and we are done. The case where A takes a right
move is similar.

Consider a state q j that appears in the run b
along 7rn. If j > 0 and qj-1 agrees with U , then,
by the definition of U , the state q j must be in Sj.
Also, qo is always in SO. Therefore, if j = 0 or
qj -1 agrees with U , and qj does not agree with U ,

then one of the following holds:

Sj n F left-covers (Sj , aj) and q j E Sj \ F , or

0 Sj n F does not left-cover (Sj ,a j) and
qj E sj n F .

Since whenever Sj n F does not left-cover (Sj, aj)
we have as V, a tree that leaves all the states in
Sj n F “helpless” (5 U [6 ~ (S j n F, a j)]) , the
latter disagreement can not happen in an accept-
ing run. Hence, if we come across a state qj such

According to the above clairns, there exists no
accepting run of U on V . Indeed, assuming that
such a run exists, leads to a contradiction.

We start with Claim 1. Let b be some run on
a tree V with V[7ru] = a, and let q o , q 1 , . . . be

that j = 0 or q j - 1 agrees with U , and qj does not
agree with U , then it must be that Sj n F left-
covers (S j , aj) and qj E Sj \ F. Moreover, since
r is a rejecting run (and hence visits only finitely
many states in which the green light is on), there

329

are only finitely many j ’ s for which Sj n F left-
covers (S j , aJ). Thus, there exists k > 0 such
that for all j 2 k , we have that Sj n F does not
left-cover (SJ,oJ). By the above, if k = 0 or if
qk-1 agrees with v , then so do all qJ for j 2 k .

Given V and b, we define V‘ and b’ as follows.
Let k be as above. If k = 0, then b agrees with
U , we define b‘ = b, V‘ = V, and we are done.
Otherwise, consider the set Sk. It is guaranteed
that s k \ F right-covers (Sk,ak). Let qfc be a
state in SI, \ F for which there exist q and q’
such that (q’, q) E S(q(c, (Tk) and the right subtree
of 7ru[j] (the one that continues with T,) is in
U [{ q }] . Since s k \ F right-covers (Sk , a k) and
since the right subtree of 7r,[j] is in U [Sk+l], it
is guaranteed that such qk exists. The tree V’
has some tree in U[(q’}] as the left subtree of
7r,[j] (instead vk that was there in V). The run
b’ has b’(i.r,[k]) = qfc, and it continues on the left
and right subtrees with some accepting run. It is
guaranteed that along the suffix 7 r t , all the states
agree with v.

We are still not done. The run b’ is not a le-
gal run: replacing qk with q i , we did not make
sure that q(c is ak-1-reachable from qk-1. We now
climb up 7r,, and repair b‘ further. By definition,
q(c E S k . Therefore, there exists qkYl E S k - 1

such that qfc is ak-1-reachable from qfc-l. Let
q be such that (q ,qk) E 6(qL-l,ak), in case we
reach s k with a left move, or (qfc, q) E 6(qfc-l, Ok) ,

in case we reach SI, with a right move. We de-
fine as some tree in U [{ q }] . The run b‘ has
b’(7ra[k-1]) = qkPl and it continues on VLPl with
some accepting run. Since qL-l E S k - 1 we can
go on climbing 7ro until we reach the root of V.
It is easy to see that the repair results in a legal
run b’ that agrees with v. Since each path of b‘
eventually reaches a subtree of an accepting run,
b’ is accepting.

0

4 Relating Word and Tree Automata

Given a deterministic word automaton A =

(E, Q, 6, Qo, F) , let At = (E, Q, &, Qo, F) be the
tree automaton where for every q E Q and a E
C with 6 (q , a) = q’, we have &(q ,a) = (q’ ,q’) .
Since each prefix of a word in Cw corresponds to
a single prefix of a run of A, the following lemma
is straightforward.

Lemma 4.1 For every deterministic word au-
tomaton A and word language L , if A recognizes
L, then At recognizes LA.

We note that the fact A is deterministic is
crucial. A similar construction for a nondeter-
ministic A results in At whose language may be
strictly contained in LA. The dual construction,
as we shall now see, does work also for nonde-
terministic automata. Given a tree automaton
U = (E, Q, 6, Qo, F) , we define the word automa-
tonu, = (C,Q,S, ,Qo,F) , whereforeveryq E Q
and a E C, we have S,(q,a) = {q’ : q’ is a-
reachable from q in 6).

Lemma 4.2 For every tree automaton U and
word language L , if U recognizes LA, then U,
recognizes L .

Proof: We first prove that if a E L then U,
accepts D . Let V, be the tree derived from {a}.
Since V, E LA, there exists an accepting run r
of U on it. It is easy to see that each path of T

suggests a legal and accepting run of U, on a.
Assume now that U, accepts a. It is easy to see
that then, we can construct a tree V such that
V has a path labeled D and V is accepted by U .

U Hence, it must be that o E L.

We can now relate the expressiveness gap be-
tween RT and BT and the one between BW and
DBW.

330

References Theorem 4.3 For every word language lan-
guage L,

L E BW\ DBW # La E RT\BT.

Proof: We prove the following four claims. The
+- direction follows from the first two claims and
the e direction follows from the last two.

1. L E BW =+ La E RT.

2. LA E BT + L E DBW.

3. L A E RT + L E BW

4. L E DBW + La E BT.

Lemma 4.1 implies Claim 4. Also, as BW =
DRW, the lemma implies Claim 1 too. Claim 3
follows from Lemma 4.2 and the fact that BW =

RW. Finally, Claim 2 follows from Theorem 3.1.
0

Given a CTL* formula $I and a Buchi tree au-
tomaton U, associated with $I, we can use the
characterization in [CD88] in order to determine
whether $I is strongly linear [GK94], in which
case the language of U4 is derivable. When the
language of U$ is derivable, it follows from Theo-
rem 4.3 that the linear requirement that $ im-
poses on all computations can be specified by
a deterministic Buchi word automaton and that
the automaton U$ may be determinized as well.

Our results may also be used to obtain sim-
ple proofs for inexpressibility results for temporal
logics. It is known, for example, that formulas
of CTL can be translated to BT [VW86b]. As
the LTL formula FGp can not be translated to
a D B W , it follows from Theorem 4.3 that the
CTL* formula AFGp can not be expressed in
CTL [EH861 and that the CTL formula AFAGp
is not strongly linear [CD88].

Acknowledgment We thank Anca Browne and
Mihalis Yannakakis for carefully reading an early
draft of this work.

[Buc62]

[BVW94]

[CD88]

[EH861

[EJ88]

[EJ91]

[Eme85]

[Emego]

J.R. Buchi. On a decision method in re-
stricted second order arithmetic. In Proc.
Internat. Congr. Logic, Method and Phi-
10s. Sci. 1960, pages 1-12, Stanford, 1962.
Stanford University Press.

0. Bernholtz, M.Y. Vardi, and P. Wolper.
An automata-theoretic
approach to branching-time model check-
ing. In D. L. Dill, editor, Computer Aided
Verzfication, Proc. 6th Int. Conference, vol-
ume 818 of Lecture Notes in Computer Sci-
ence, pages 142-155, Stanford, June 1994.
Springer-Verlag, Berlin.

E.M. Clarke and I.A. Draghicescu. Ex-
pressibility results for linear-time and
branching-time logics. In Proc. Worlc-
shop on Linear Time, Branching Tame,
and Partial Order in Logics and Mod-
els for Concurrency, pages 428-437. Lec-
ture Notes in Computer Science, Springer-
Verlag, 1988.

E.A. Emerson and J.Y. Halpern. Some-
times and not never revisited: On branch-
ing versus linear time. Journal of the ACM,
33(1):151-178, 1986.

E.A. Emerson and C. Jutla. The complex-
ity of tree automata and logics of programs.
In Proceedings of the 29th IEEE Sympo-
sium on Foundations of Computer Science,
White Plains, October 1988.

E.A. Emerson and C. Jutla. Tree au-
tomata, mu-calculus and determinacy. In
Proceedings of the 32nd IEEE Sympo-
sium on Foundations of Computer Science,
pages 368-377, San Juan, October 1991.

E.A. Emerson. Automata, tableaux, and
temporal logics. In Proc. Workshop on
Logic of Programs, volume 193 of Lecture
Notes an Computer Science, pages 79-87.
Springer-Verlag, 1985.

E.A. Emerson. Temporal and modal logic.
Handbook of theoretical computer science,
pages 997-1072, 1990.

331

[ES84]

[GK94]

[Kur87]

[Kur94]

[LanGS]

[McN66]

[MP92]

[Pnu77]

[Rab69]

[SC85]

[Tho901

E.A. Emerson and A. P. Sistla. Deciding
branching time logic. In Proceedings of the
16th ACM Symposium on Theory of Com-
puting, Washington, April 1984.

0. Grumberg and R.P. Kurshan. How lin-
ear can branching-time be. In Proceed-
ings of the First International Conference
on Temporal Logic, volume 827 of Lecture
Notes in Art(ficia1 Intelligence, pages 180-
194, Bonn, July 1994. Springer-Verlag.

R.P. Kurshan. Complementing determin-
istic Biichi automata in polynomial time.
Journal of Compututer and System Sci-
ence, 35:59-71, 1987.

R.P. Kurshan. Computer-Aided Verijica-
tion of Coordinating Processesl. Princeton
Univ. Press, 1994.

L.H. Landweber. Decision problems for w-

automata. Mathematical Systems Theory,
3:376-384, 1969.

R. McNaughton. Testing and generating
infinite sequences by a finite automaton.
Information and Control, 9:521-530, 1966.

Z. Manna and A. Pnueli. The Temporal
Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, Berlin, Jan-
uary 1992.

A. Pnueli. The temporal logic of programs.
In Proc. 18th IEEE Symposium on Foun-
dation of Computer Science, pages 46-57,
1977.

M.O. Rabin. Decidability of second or-
der theories and automata on infinite trees.
Transaction of the AIMS, 141:l-35, 1969.

A.P. Sistla and E.M. Clarke. The complex-
ity of propositional linear temporal logic.
J . ACM, 32:733-749,1985.

W. Thomas. Automata on infinite objects.
Handbook of theoretical computer science,
pages 165-191, 1990.

[TW68] J.W. Thatcher and J.B. Wright. Gener-
alized finite automata theory with an ap-
plication to a decision problem of seeond-
order logic. Mathematical System Theory,
2:57-81, 1968.

[Var96] M.Y. Vardi. An automata-theoretic ap-
proach to linear temporal logic. In Log-
ics for Concurrency: Structure versus Au-
tomata, volume 1043 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin,
1996.

M.Y. Vardi and L. Stockmeyer. Improved
upper and lower bounds for modal logics
of programs. In Proc 17th ACM Symp. on
Theory of Computing, pages 240-251,1985,

[VW86a] M.Y. Vardi and P. Wolper. An automata-
theoretic approach to automatic program
verification. In Proceedings of the First
Symposium on Logic in Computer Science,
pages 322-331, Cambridge, June 1986.

[VS851

[VW86b] M.Y. Vardi and P. Wolper. Automata-
theoretic techniques for modal logics of
programs. Journal of Computer and Sys-
tem Science, 32(2):182-221, April 1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning
about infinite computations. Information
and Computation, 115(1):l-37, November
1994.

[Wo182] P. Wolper. Synthesis of Communicating
Processes from Temporal Logic Specijica-
tions. PhD thesis, Stanford University,
1982.

[WVS83] P. Wolper, M.Y. Vardi, and A.P. Sistla.
Reasoning about infinite computation
paths. In Proc. 24th IEEE Symposium on
Foundations of Computer Science, pages

' 185-194, Tucson, 1983.

332

