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Abstract I n  the automata-theoretic approach to 
verification, we translate specifications to au- 
tomata. Complexity considerations motivate the 
distinction between different types of automata. 
Already in the 60's) it was known that deter- 
ministic Biichi word automata are less expres- 
sive than nondeterministic Biichi word automata. 
The proof is  easy and can be stated in  a few 
lines. I n  the late 60's) Rabin proved that Buchi 
tree automata are less expressive than Rabin tree 
automata. This proof is much harder. I n  this 
work we relate the expressiveness gap between de- 
terministic and nondeterministic Buchi word au- 
tomata and the expressiveness gap between Buchi 
and Rabin tree automata. W e  consider tree au- 
tomata that recognize derived languages. For a 
word language L,  the derived language of L ,  de- 
noted LA, is the set of all trees all of whose 
paths are in L. Since often we want to specify 
that all the computations of the program satisfy 
some property, the interest an derived languages 
is clear. Our main result shows that L is rec- 
ognizable b y  a nondeterministic Buchi word au- 
tomaton but not b y  a deterministic Biichi word 
automaton iff L A  is recognizable b y  a Rabin tree 
automaton and not by a Biichi tree automaton. 
Our result provides a simple explanation to the 
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expressiveness gap between Biichi and Rabin tree 
automata. Since the gap between deterministic 
and nondeterministic Biichi word automata is 
well understood, our result also provides a char- 
acterization of derived languages that can be rec- 
ognized by  Biichi tree automata. Finally, it also 
provides an  exponential determinization of Biichi 
tree automata that recognize derived languages. 

1 Introduction 

While program verification was always a de- 
sirable, but never an easy task, the advent of 
concurrent programing has made it significantly 
more necessary and difficult. The first step 
in program verification is to come with a for- 

mal specification of the program. One of the 
more widely used specification languages for con- 
current finite-state programs is temporal logic 
[Pnu77, MP921. Temporal logic comes in two 
varieties: linear and branching. In linear tem- 
poral logics, formulas are interpreted over linear 
sequences and describe a behavior of a single in- 
finite computation of a program. In branching 
temporal logics, formulas are interpreted over in- 
finite trees and describe the behavior of the possi- 
ble computations of a nondeterministic program. 
In both versions, formulas are generated with re- 
spect to a set AP of the program's atomic propo- 
sitions. Each formula describes a language (of 
either infinite words or infinite trees) over the al- 
phabet 2 A P .  

Automata on infinite objects also describe lan- 
guages [ThoSO]. As automata on finite objects, 
they either accept or reject an input object. Since 
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a run on an infinite object does not have a final 
state, acceptance is determined with respect to 
the set of states visited infinitely often during the 
run. For example, in the Buchi acceptance condi- 
tion, some of the states are designated as accept- 
ing states and a run is accepting iff it visits states 
from the accepting set infinitely often [Buc62]. 
As temporal logics, automata on infinite objects 
come in two varieties. Automata on infinite 
words (word automata, for short) and automata 
on infinite trees (tree automata). The automata- 
theoretic approach to temporal logic uses the 
theory of automata as a unifying paradigm for 
program specification, verification, and synthesis 
[ES84, VW86a, EJ91, VW94, BVW94, Kur941. 
In this paradigm, both the program and the spec- 
ification are translated to (or are given as) au- 
tomata. Linear temporal logic formulas corre- 
spond to word automata and branching tempo- 
ral logic formulas correspond to tree automata. 
Then, questions about programs and their spec- 
ifications can be reduced to questions about au- 
tomata. More specifically, questions such as sat- 
isfiability of specifications and correctness of pro- 
grams with respect to their specifications can be 
reduced to questions such as nonemptiness and 
containment of automata. These reductions yield 
clean and optimal algorithms and are very help- 
ful in implementing formal verification methods 
[Var96]. 

An important factor to be considered when we 
examine a specification language is its ability to 
describe behaviors accurately. We can control 
the expressive power of temporal logics by limit- 
ing their syntax. For example, while the branch- 
ing temporal logic CTL" permits an arbitrary 
combination of linear-time operators in its path 
formulas, its subset CTL restricts path formulas 
to have only a single linear-time operator. This 
restriction makes CTL less expressive than CTL* 
[EH86]. 

We can also control the expressive power of 

automata. One way to do it is to restrict their 
transition relations to be deterministic. Every 
automaton on finite words can be determinized. 
This is not true for automata on infinite words. 
In [Lan69], Landweber proved that determinis- 
tic Buchi word automata are less expressive than 
nondeterministic Buchi word automata. That is, 
he showed that there exists a language of infinite 
words that is recognizable by a nondeterminis- 
tic Buchi word automaton but not recognizable 
by any nondeterministic Buchi word automaton 
'. Today, the gap between nondeterministic and 
deterministic Buchi word automata is well under- 
stood. While nondeterministic Buchi automata 
can describe any w-regular language, determin- 
istic Biichi automata can describe an w-regular 
language L iff there exists a regular language W 
such that L contains exactly all words that have 
infinitely many prefixes in W [Lan69]. 

Another way to control the expressive power of 
automata is by defining various acceptance con- 
ditions. For example, one may wonder whether 
there exists an acceptance condition for which de- 
terministic automata are as expressive as nonde- 
terministic ones. In 1966, McNaughton answered 
this question to the positive. In the suggested 
acceptance condition, now known as the Rabin 
acceptance condition, we have a set of pairs of 
subsets of the states. A run is accepting iff there 
exists a pair (G, B )  for which the run visits states 
from G infinitely often but visits states from B 
only finitely often. McNaughton showed that de- 
terministic Rabin word automata are as expres- 
sive as nondeterministic Rabin word automata 
and that they are both as expressive as nonde- 
terministic Buchi word automata [McN66]. A 
different picture is drawn when we consider au- 
tomata on infinite trees. In 1969, Rabin showed 

'It is easy to see that deterministic automata on infi- 
nite trees are less expressive than their nondeterministic 
counterpart. Indeed, only the latter can quantify over 
paths existentially [TW68]. 



that, though their expressive power with respect 
to words coincide, nondeterministic Buchi tree 
automata are less expressive than nondetermin- 
istic Rabin tree automata [Rab69]. That is, there 
exists a language of infinite trees that is recogniz- 
able by a Rabin tree automaton but not recog- 
nizable by any Buchi tree automaton. 

Let us use DBW, BW,DRW, RW, BT, and 
RT to denote, respectively, deterministic Buchi 
word, Buchi word, deterministic Rabin word, Ra- 
bin word, Biichi tree, and Rabin tree automata. 
We sometimes refer by these notations also to the 
set of languages recognizable by the correspond- 
ing automata. So, for example, BW \ DBW de- 
notes the set of languages that are recognizable 
by BW and are not recognizable by DBW. Let 
us also use DBW < BW to indicate that this 
set is not empty; i.e., that DBW are less ex- 
pressive than BW. Summarizing the expressive- 
ness results we have mentioned so far, we have 
DBW < BW = DRW = RW and BT < RT. 

There is a price to expressive power. The more 
expressive a language is, the higher is the com- 
plexity of solving questions about it. For exam- 
ple, the complexities of the model-checking and 
the satisfiability problems for the logic CTL* are 
significantly higher than these for its less ex- 
pressive subset CTL [SC85, VS851. Similarly, 
while the containment problem for DBW can 
be solved in NLOGSPACE [WVS83, I(ur871, it 
is PSPACE-complete for BW [Wol82]. Finally, 
while the complexity of the nonemptiness prob- 
lem for BT can be solved in quadratic time 
[VW86b], it is NP-complete for RT [Eme85, 
VS85, EJ881. The interested readers can find 
more examples in [EmeSO, ThoSO]. 

In the automata-theoretic approach to verifi- 
cation, we translate specifications to automata. 
Which type of automata? The answer, obvi- 
ously, should be “the weakest type that is still 
strong enough to express the required behaviors 
accurately”. In this paper we consider tree au- 

tomata that describe derived languages. Let L 
be a language of words. The derived language of 
L,  denoted La,  consists of all trees all of whose 
paths are in L. Since often we want to specify 
that all the computations of the program sat- 
isfy some property, the interest in derived lan- 
guages is clear. Branching temporal logic formu- 
las that describe derived languages constitute a 
strict fragment of CTL*. In fact, this fragment, 
called strongly linear in [GK94], is a strict frag- 
ment of the universal fragment VCTL* of CTL*. 
A necessary and sufficient condition for CTL* for- 
mulas to be strongly-linear is given in [CD88]: a 
CTL* formula $J is strongly linear iff omitting all 
its path quantifiers results in an LTL formula e 
such that t,b and A< are equivalent. 

Let us go back to automata. Proving that 
DBW < BW, Landweber showed that the lan- 
guage L1 = (0 + l)*lw (only finitely many 0’s) is 
in BW \ D B W .  The proof is simple and can 
be stated in a few lines. Much harder is the 
proof that BT < RT. In [Rab69], Rabin had 
to use a complicated construction and a compli- 
cated inductive argument. Interestingly, the lan- 
guage that Rabin used in his proof is the derived 
language of L1. That is, the set of all trees all 
of whose paths have only finitely many 0’s. In 
terms of temporal logics, if follows from Landwe- 
ber’s result that the LTL formula FG1  can not 
be translated to a DBW, and it follows from Ra- 
bin’s result that the CTL” formula AFGl  can 
not be translated to a BT. 

Our main result shows that Rabin’s choice 
of L1 was not at  all arbitrary. We prove that 
for every word language L,  we have that L E 
BW \ DBW iff L A  E RT \ BT. Our proof sug- 
gests an additional proof and provides a simple 
explanation to the expressiveness gap between 
Buchi and Rabin tree automata. Since the gap 
between DBW and BW is well understood, it 
also provides a characterization of derived lan- 
guages that can be described by BT. 
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The difficult part in the proof is to show that 
if LA E BT, then L E DBW. Given a Buchi tree 
automaton U that recognizes LA, we construct a 
deterministic Buchi word automaton A that rec- 
ognizes L. For U with n states, the automaton A 
has 2n+1 states. We can expand A in a straight- 
forward way to a deterrninistic tree automaton 
that recognizes La. This suggests an exponen- 
tial determinization for Buchi tree automata that 
recognize derived languages. 

2 Preliminaries 

A Buchi 
word automaton is A = (E, Q, 6, Qo, F ) ,  where C 
is the input alphabet, Q is a finite set of states, 
S : Q x E ---f 2Q is a transition function, Qo E Q 
is a set of initial states, and F C_ Q is a set of ac- 
cepting states. Since A may have several initial 
states and since the transition function may spec- 
ify many possible transitions for each state and 
letter, A may be nondeterministic. If lQol = 1 
and S is such that for every q E Q and a E E, we 
have that IS(q, a ) [  5 1, then A is a deterministic 
automaton. 

Given an input word a = a0 0-1 in E", 
a run of A on a can be viewed as a function 
r : W -+ Q where r (0 )  E Qo and for every i 2 
0, we have r ( i  + 1) E 6(r( i ) ,a i ) ;  i.e., the run 
starts in one of the initial states and obeys the 
transition function. Note that a nondeterministic 
automaton can have many runs on 0. In contrast, 
a deterministic automaton has a single run on 0. 
For a run r ,  let i n f ( r )  denote the set of states 
that r visits infinitely often. That is, 

i n f ( r )  = { q  E Q : for infinitely many i 2 0, 
we have r ( i )  = 4 ) .  

As Q is finite, it is guaranteed that i n f ( r )  # 
0. The run r is accepting iff i n f ( r )  n F # 8. 
That is, iff there exists a state in F that r visits 
infinitely often. A run which is not accepting 
is rejecting. An automaton A accepts an input 
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word a iff there exists an accepting run of A on 
a. The language of A is the set of all words in 
Cw that A accepts. 

The infinite binary tree is the set T = (0, l}*. 
The elements of T are called nodes, and the 
empty word E is the root of T .  For every x E T ,  
the nodes x . 0 and z 1 are, respectively, the 
left and right successors of x. Each node z 
is the root of the subtree T" of T .  Formally, 
T z  = {x y : y E 5"). The subtrees T"'O and 
T"'l are, respectively, the left and right subtrees 
of T". We sometimes simply say that 7'"'' is the 
left subtree of 2. A path T of the tree T is a 
set 7r c T such that e E 7r and for every z E 7r, 

exactly one successor of z is in 7r '. Note that 
each path T c T corresponds to a unique word 
in (0, 1)". For example, the leftmost path corre- 
sponds to 0". For a path T and j 2 0, let TL] 
denote the node of length j in T ,  and let TJ denote 
the suffix n [ j ] . ~ [ j + l ]  1 . .  of T .  Given an alphabet 
E, a E-labeled tree is a function V : T + C that 
maps each node of T to a letter in E. We some- 
times extend V to paths and use V ( T )  to denote 
the infinite word V(n[O]).V(n[l]>-V(7r[2]) . . -. We 
denote by CT the set of all E-labeled trees. 

Tree automata run on such E-labeled trees. 
A Buchi tree automaton is U = (E, Q, 6, Qo, F ) ,  
where C, Q, Qo, and F ,  are as in Buchi word au- 
tomata, and S : Q x C ---f 2QxQ is a (nondetermin- 
istic) transition function. Intuitively, in each of 
its transitions, U splits into two copies. One copy 
proceeds to the left subtree and one copy pro- 
ceeds to the right subtree. A pair (ql, qT) E S(q, a )  
means that if U is now in state q and it reads the 
letter a,  then a possible transition is one in which 
the copy that proceeds to the left subtree moves 
to state ql and the copy that proceeds to the right 
subtree moves to state qr. 

A run of U on an input E-labeled tree V is 
a Q-labeled tree r such that r ( ~ )  E Qo and for 

2We denote strict containment by C. 



every IC E T ,  we have that (.(IC . O ) , T ( I C  . 1)) E 
S(r(z),V(Lc)). If, for instance, r ( 0 )  = 42 ,  V (0 )  = 

~ ( 0 . 0 )  = q1 and ~ ( 0 . 1 )  = q 2 ,  or ~ ( 0 . 0 )  = 44 and 
r ( 0 .  1) = 45. Given a run r and a path 7r c T ,  
we define 

a, and S ( q 2 ,  a) = ((41, q 2 ) ,  (q4,45)} ,  then either 

inf(r1n) = { q  E Q : for infinitely many 2 E 7r ,  

we have .(IC) = q}.  

A run r is accepting iff for all paths 7r c T ,  
we have inf(rl.ir) f? F # 0. That is, iff for each 
path .ir C T there exists a state in F that r visits 
infinitely often along T .  An automaton U accepts 
V iff there exists an accepting run of U on V .  In 
the sequel, when we write tree automata, we refer 
to automata with any acceptance condition, thus, 
in particular, Buchi automata. 

Consider a tree au- 
tomaton U = ( C , Q , S , Q o , F ) .  For S C: Q, we 
denote by U S  the tree automaton (E, Q, 6, S, F ) ,  
i.e., U with S as the set of initial states, and de- 
note by U [SI the set of trees accepted by U s .  A 
state q of U is null iff U [ { q } ]  = 0. We assume 
that U [Qo] # 0 and eliminate all null states and 
all transitions that involve null states (i.e., tran- 
sitions (41, qT)  for which either ql or qr is null). 

For S C Q and a E C, we denote by 6 ~ ( S , a )  
the set of states reachable from S by reading a, 
on the left branch, disregarding what happens on 
the right branch, i.e., 

SL(S, a )  = (41 : exists qT such that 
q T )  E USES G?, 4). 

The set S~(s,a) is defined symmetrically for 
the right. For two states q and q', and a E C,  we 
say that q' is a-reachable from q iff q' E S L ( q ,  a )  U 

For a word language L C E", the derived lan- 
guage of L,  denoted by LA, is the set of all trees 
all of whose paths are labeled with words in L. 
Formally, 

SR((I, a). 

For a tree language X and a word language L,  
we say that L derives X iff X = LA. We say that 
X is derivable iff there exists some word language 
L such that L derives X. 

For a word language L and a letter a ,  let La = 
{G : a . o E L} .  Let U be a tree automaton, S a 
subset of the states of U ,  and let U [SI = LA. It 
is a good exercise to see that 

Indeed, L"n contains exactly all trees that are 
either left or right subtrees of some tree in LA, 
with root labeled a. Moreover, as L A  is derivable, 
then each left subtree of some tree in L A  is also a 
right subtree of some tree in LA, and vice versa. 
Hence, we can strengthen the above and have 

U [6L(S, a)] = U [SR(S, a ) ]  = L"A. 

What if instead taking S we would have taken 
some subset S' of S? Then, obviously (e.g., when 
S' = 0), it might be that 

U [SL(S ' ,  a)] U U [SR(S', a)] c L"A, 

Also, here, though U [SI is derivable, it might 
be that U [S,(S', a)] # U [SR(S', a)]. For exam- 
ple, in a case where U [ 6 ~ ( S ' , a ) ]  = L a a  but 

Let U [SI = LA. For a set S' C S, a letter a, 
and a direction d E {left, right}, we say that S' 
d-covers (S, a ) ,  iff U [Sd (S ' ,  a ) ]  = L"A. That is, S' 
d-covers (S, a) iff the set of states reachable from 
S' by reading a on the d-branch suffices to accept 
all trees accepted by the set of states reachable 
from S by reading a ,  on either the left or the 
right branch. 

U [SR(S', a ) ]  c L"A. 

Lemma 2.1 Let U be a tree automaton, S a sub- 
set o f  the states of U ,  and let U [SI = LA. Then, 
for every S' S S ,  and a letter a,  either S' left- 



Proof: If S' does not left-cover (S ,  a ) ,  there ex- 
ists a tree V E L"A \ U [SL(S', a) ] .  Consider all 
trees that have a as their root, V as the left sub- 
tree, and some tree in L"a as the right subtree. 
All these trees are in L a ,  yet none of them is 
in U [S']. Hence, as L A  = U [SI, they are all in 
U [S \ S']. Therefore, since their right subtree is 
an arbitrary tree in Lan,  it must be that S \ S' 
right-covers (S ,  a). 0 

3 Determinization 

Theorem 3.1 If L C Cw is such that L a  is rec- 
ognized by a Buchi tree automaton, then L is rec- 
ognized by a deterministic Buchi word automa- 
ton. 

Proof: Given a Buchi tree automaton U = 

(E, Q ,  6, Qo, F )  that recognizes LA, we construct 
a deterministic Buchi word automaton A = 

(E,2Q x (0 ,  l}, v, (SO, l), 2Q x (1)) that recog- 
nizes L . 

Intuitively, the states of A consist of subsets 
of the states of U plus a green light that can be 
either off (0) or on (1). The initial state of A is 
the set of initial states of U with the green light 
on. Below we describe the transition function v. 

We consider only states (S ,g)  of A for which 
U [SI is derivable. The initial state clearly satis- 
fies this property and, by the definition of v be- 
low, states that do not satisfy it are not reachable 
in A from the initial state. 

For a state q = (S ,g )  with S # 8 and g E 
(0, l}, we define v, for all a E E, as follows. 

0 If S n F left-covers (S,a) ,  then v ( q , a )  = 

(&(S n F, a ) ,  1). 

0 Otherwise, by Lemma 2.1, S \ F right- 
covers ( S , a ) ,  in which case v ( q , a )  = 

(SR(S \ F,  4 , O ) .  
For a state q = (8, g) with g E (0, l}, we define 
v ( q , a )  = 0 for all a E E. 

That is, A always tries to proceed with states 
from F .  As long as it succeeds, the green light is 
on. Only when states in F might not suffice, A 
proceeds with states not in F and turns the green 
light off. It is easy to see that A is deterministic. 
We show that it recognizes L. 

Before we get to the proof we need the fol- 
lowing definitions. In each step of A, its run 
on a word a E E" (and let a = a0 . 01 ..e) ei- 
ther gets stuck (in the case it is in a state (0, g)), 
or takes a left move (in the case it proceeds ac- 
cording to a left-covering set), or takes a right 
move (in the case where it proceeds according to 
a right-covering set). This fixes, for any word a 
on which the run does not get stuck, an infinite 
path 7ru C T .  Precisely, for every j > 0, we have 
that 7r,[j] = ~ , [ j  - 11 - 0 if A takes a left move in 
its j ' s  step, and 7rcb] = 7ru[j - 11 e 1 if A takes a 
right move. Consider a node IC E xu. The node IC 

has two subtrees. One subtree contains the suf- 
fix of nu. We say that this subtree continues with 
T,. The other subtree is disjoint with T,. We say 
that this subtree quits nu. 

Given a word a E E", we first show that if A 
accepts U ,  then a E L. 

cepting run of A on a. Since T is accepting, it 
does not get stuck and there are infinitely many 
j ' s  with gj  = 1. Consider the following (not nec- 
essarily binary) Q-labeled tree. The tree has a 
root labeled E. Nodes of length 1 are labeled 
with states in SO. For i 2 0, the nodes of length 
i + 1 have the following successors. If A proceeds 
from S; with a left move, then nodes labeled with 
a state in S; \ F have no successors and a node 
labeled with a state q E S; n F has as successors 
nodes labeled with states that are a;-reachable 
from 4. In a dual way, if A proceeds from Si with 
a right move, then nodes labeled with a state in 
Sin F have no successors and a node labeled with 
a state in Si \ F has as successors nodes labeled 
with states that are a;-reachable from it. The 

Let 7- = (So ,  go), (Sl, g1), (52,92), . . . be the ac- 
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way we define A implies that the nodes of length 
i + 1 are labeled with all states in S,. 

By Konig’s lemma, we can therefore pick a se- 
quence r’ = qo,q1, . . . such that for all j > 0, we 
have that q, E S,, q,+l is a,-reachable from q,, 
and there are infinitely many j ’ s  with q, E F .  
We show that there exists a tree V, accepted by 
U, in which V(T,) = a. As U recognizes LA, this 
implies that a E L. We define V according to T’,  

proceeding over r,,. 
For each node 7r,[j] of T,,, if the run of A on U is 

in S, and takes a left (right) move, let q be such 

There exists some tree in U [ { q } ] .  Our tree V has 
this tree as the right (left) subtree of 7r,[j] (. i.e. as 
the subtree that quits T,), it has V(n,[j]) = aJ ,  
and definition proceeds to 7ru[j + 11. It is easy to 
see that U accepts V with a run that agrees with 
r over nu. 

We now show that if A does not accept a, then 

Let r =  (so,go),(S1,g1),(S~,g2),... bethere- 

that (q,+1,q) E S(q+J,) ((4&+l) E 6(cl,,a,)). 

I 

a # L .  

jecting run of A on a. We first consider the case 
where there exists j 2 0 for which S, = 0. In- 
tuitively, the existence of such j implies that all 
runs of U on a tree with a path labeled a even- 
tually get stuck. For a word T E Cw and j > 0, 
let V,3 be the tree derived from (7”. We prove 
that for all T E L and for all j 2 0 for which T 

agrees with a on their first j letters, we have that 
V; E U [S,]. The proof proceeds by induction on 
1 as follows. Since U [So] = LA, then clearly, for 
all T E L, we have V: E U [SO]. Assume that the 
claim holds for words in L that agree with a on 
their first j letters. Let T E L be such that T 

agrees with U on their first + 1 letters. By the 
definition of A, we have that U[S,+1] contains 
either all trees that are left subtrees in some tree 
in U [S,] with root labeled a,, or all trees that are 
right subtrees in such a tree. Recall that a, = r,. 
Hence, since is the left and right subtree 
in V,3, that has a root labeled T, and that, by 
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the induction hypothesis, is in U [S,], it must be 
that V;+l E U[S,+1] and we are done. Assume 
now, by way of contradiction, that U E L. Then, 
by the above, there exists j > 0 for which both 
S, = 0 and VJ E U [S,]. This, however, is not 
possible. 

We now consider the more intriguing case, 
where S, # 8 for all j 2 0. We show that 
there exists a tree V ,  rejected by U ,  such that 
V(T,) = a and all other paths are labeled with 
words in L. It follows that a $E‘ L. We define V 
according to T ,  proceeding over T,. For all j 2 0, 
we have V ( T , [ ~ ] )  = a,. The subtree that quits 
7r ,  in level j is defined as follows: 

0 If Sj n F left-covers (Sj, aj), we chose as the 
right subtree some tree in U [SL(S~  n F, aj)]. 

0 Otherwise (in which case Sj \ F right-covers 
(S j ,  aj)), we chose as the left subtree some 
tree in U [ 6 ~ ( S j  \ F, aj)] \U [ 6 ~ ( S j  n F, uj)]; 
i.e., a tree that causes V not to be accepted 
by runs T with ~ ( n , [ j ] )  E Sj n F .  

For all j 2 0, we denote by V, the subtree of n,[j] 
that quits T,. That is, V, is the right subtree of 
n,[j] whenever A takes a left move and it is the 
left subtree of 7ru[j] whenever A takes a right 
move. Since T never reach a state with Sj = 0, it 
is guaranteed that for all j 2 0, if A takes a left 
move, then U [ 6 ~ ( S j  n F, aj)] # 0.  In addition, 
since A takes a right move only when Sj n F 
does not left-cover (S j ,  aj), it is guaranteed that 
if A takes a right move, then U [ 6 ~ ( S j  \ F, aj)] \ 
U [6~(Sj n F,aj )]  # 0. Thus, in both cases, a 
suitable V, exists. 

By the construction, the labels along the path 
7rm form the word a. It is not hard to see that all 
the other paths of V are labeled with words in L. 
To see this, note that each such other path has 
some finite prefix a0 e a 1  . aj that agrees with a 
and has a suffix that continues as a path in Vj. 
Also, by the definition of V ,  all the subtrees V, 
that quit T ,  satisfy V, E U [Sj+l]. 



Hence, it is sufficient to prove that for all i 2 0, 
all trees Y in U [Si], and all paths 7 c T ,  we 
have that a0 . 01 . . . ai-1 . Y ( 7 )  E L. The proof 
proceeds by induction on i .  Since U[So] = LA, 
then clearly, all the paths in trees in U[So]  are 
in L.  Assume now that for all trees Y in U [Si] 
and all paths 7 c Y ,  we have that 00.01 . . . 0i-1. 

Y(7)  E L. Let Y’ be a tree in U[S;+l] .  There 
exists a tree in U [Si] such that this tree has a root 
labeled oi and has Y’ as its left or right subtree. 
Therefore, by the induction hypothesis, all the 
paths B c T have 00.01 . . . 0i-1. (a i .  Y’(B))  E L,  
and we are done. 

It remains to see that V is rejected. 
LetbbearunofUonVandletqo,ql ,q2,  . . .  be 

the sequence of states that b visits along 7ru. We 
say that a state q j  agrees with U if the following 
holds. 

Sj  n F left-covers (Sj, aj) and qj E Sj n F ,  
or 

0 S j  r l  F does not left-cover (Sj,aj) and 
q j  E Sj 1 F .  

We say that a run b agrees with U iff almost all 
the states along 7ru agree with U .  That is, if there 
exists IC 2 0 for which all states qj with j 2 k 
agree with U .  

In order to show that no run of U accepts V ,  
we prove the following two claims: 

Claim 1. For every run b on a tree V with 
V[7ru] = a,  if b agrees with U then b is a 
rejecting run. 

Claim 2. If a run b accepts V ,  then there exist 
a tree V’ and an accepting run b‘ of U on V’, 
such that V‘[nu] = a and b’ agrees with U .  

the sequence of states that b visits along 7rD. If b 
agrees with U ,  then there exists k 2 0 such that 
for every j 2 k ,  it is possible that q j  is in F only 
when Sj n F left-covers (Sj,  oj). That is, only in 
steps whose corresponding steps in T cause the 
green light to turn on. Since T is a rejecting run, 
there are only finitely many such states. Thus, 
a run b that agrees with U can visit only finitely 
many states in F along 7ru. Hence, it is a rejecting 
run. 

We now prove Claim 2. We first show that 
if b accepts V ,  then for every j 2 0, the sub- 
tree VTu[21 is in U [ S j ] .  The proof proceeds by 
induction on j .  Since So = Qo, the case j = 0 
is straightforward. Assume now that VTuIjl E 

U [ S j ] .  Consider the case where A takes a left 
move. Then, Sj+l = 6 ~ ( S j  n F, aj). Since Sj n F 
left covers (Sj,aj), then all the left subtrees of 
trees in U [SJ] with root labeled aj are in U [ S j + l ] ,  

and we are done. The case where A takes a right 
move is similar. 

Consider a state q j  that appears in the run b 
along 7rn. If j > 0 and qj-1 agrees with U ,  then, 
by the definition of U ,  the state q j  must be in Sj. 
Also, qo is always in SO. Therefore, if j = 0 or 
qj -1  agrees with U ,  and qj does not agree with U ,  

then one of the following holds: 

Sj n F left-covers (Sj ,  aj) and q j  E Sj \ F ,  or 

0 Sj n F does not left-cover (Sj ,a j )  and 
qj E sj n F .  

Since whenever Sj n F does not left-cover (Sj,  aj) 
we have as V, a tree that leaves all the states in 
Sj n F “helpless” (5 U [ 6 ~ ( S j  n F, a j ) ] ) ,  the 
latter disagreement can not happen in an accept- 
ing run. Hence, if we come across a state qj such 

According to the above clairns, there exists no 
accepting run of U on V .  Indeed, assuming that 
such a run exists, leads to a contradiction. 

We start with Claim 1. Let b be some run on 
a tree V with V[7ru] = a,  and let q o , q 1 , . .  . be 

that j = 0 or q j - 1  agrees with U ,  and qj does not 
agree with U ,  then it must be that Sj n F left- 
covers (S j ,  aj)  and qj E Sj \ F.  Moreover, since 
r is a rejecting run (and hence visits only finitely 
many states in which the green light is on), there 
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are only finitely many j ’ s  for which Sj n F left- 
covers ( S j ,  aJ). Thus, there exists k > 0 such 
that for all j 2 k ,  we have that Sj n F does not 
left-cover (SJ,oJ).  By the above, if k = 0 or if 
qk-1 agrees with v ,  then so do all qJ for j 2 k .  

Given V and b, we define V‘ and b’ as follows. 
Let k be as above. If k = 0, then b agrees with 
U ,  we define b‘ = b, V‘ = V, and we are done. 
Otherwise, consider the set Sk. It is guaranteed 
that s k  \ F right-covers (Sk,ak).  Let qfc be a 
state in SI, \ F for which there exist q and q’ 
such that (q’, q )  E S(q(c,  (Tk) and the right subtree 
of 7ru[j] (the one that continues with T,) is in 
U [ { q } ] .  Since s k  \ F right-covers (Sk ,  a k )  and 
since the right subtree of 7r,[j] is in U [Sk+l], it 
is guaranteed that such qk exists. The tree V’ 
has some tree in U[(q’}]  as the left subtree of 
7r,[j] (instead vk that was there in V). The run 
b’ has b’(i.r,[k]) = qfc, and it continues on the left 
and right subtrees with some accepting run. It is 
guaranteed that along the suffix 7 r t ,  all the states 
agree with v. 

We are still not done. The run b’ is not a le- 
gal run: replacing qk with q i ,  we did not make 
sure that q(c is ak-1-reachable from qk-1. We now 
climb up 7r,, and repair b‘ further. By definition, 
q(c E S k .  Therefore, there exists qkYl E S k - 1  

such that qfc is ak-1-reachable from qfc-l. Let 
q be such that (q ,qk)  E 6(qL-l,ak), in case we 
reach s k  with a left move, or (qfc, q )  E 6(qfc-l, Ok) ,  

in case we reach SI, with a right move. We de- 
fine as some tree in U [ { q } ] .  The run b‘ has 
b’(7ra[k-1]) = qkPl and it continues on VLPl with 
some accepting run. Since qL-l E S k - 1  we can 
go on climbing 7ro until we reach the root of V. 
It is easy to see that the repair results in a legal 
run b’ that agrees with v. Since each path of b‘ 
eventually reaches a subtree of an accepting run, 
b’ is accepting. 

0 

4 Relating Word and Tree Automata 

Given a deterministic word automaton A = 

(E, Q, 6, Qo, F ) ,  let At = (E, Q, &, Qo, F )  be the 
tree automaton where for every q E Q and a E 
C with 6 ( q , a )  = q’, we have &(q ,a )  = (q’ ,q’) .  
Since each prefix of a word in Cw corresponds to 
a single prefix of a run of A, the following lemma 
is straightforward. 

Lemma 4.1 For every deterministic word au- 
tomaton A and word language L ,  if A recognizes 
L,  then At recognizes LA.  

We note that the fact A is deterministic is 
crucial. A similar construction for a nondeter- 
ministic A results in At whose language may be 
strictly contained in LA. The dual construction, 
as we shall now see, does work also for nonde- 
terministic automata. Given a tree automaton 
U = (E, Q, 6, Qo, F ) ,  we define the word automa- 
tonu, = (C,Q,S, ,Qo,F) ,  whereforeveryq E Q 
and a E C, we have S,(q,a) = {q’ : q’ is a- 
reachable from q in 6). 

Lemma 4.2 For every tree automaton U and 
word language L ,  if U recognizes LA,  then U, 
recognizes L .  

Proof: We first prove that if a E L then U, 
accepts D .  Let V, be the tree derived from {a}.  
Since V, E LA, there exists an accepting run r 
of U on it. It is easy to see that each path of T 

suggests a legal and accepting run of U, on a. 
Assume now that U, accepts a. It is easy to see 
that then, we can construct a tree V such that 
V has a path labeled D and V is accepted by U .  

U Hence, it must be that o E L. 

We can now relate the expressiveness gap be- 
tween RT and BT and the one between BW and 
DBW. 
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References Theorem 4.3 For every word language lan- 
guage L, 

L E  BW\ DBW # La E RT\BT. 

Proof: We prove the following four claims. The 
+- direction follows from the first two claims and 
the e direction follows from the last two. 

1. L E BW =+ La E RT. 

2. LA E BT + L E DBW. 

3. L A  E RT + L E BW 

4. L E  DBW + La E BT. 

Lemma 4.1 implies Claim 4. Also, as BW = 
DRW, the lemma implies Claim 1 too. Claim 3 
follows from Lemma 4.2 and the fact that BW = 

RW. Finally, Claim 2 follows from Theorem 3.1. 
0 

Given a CTL* formula $I and a Buchi tree au- 
tomaton U, associated with $I, we can use the 
characterization in [CD88] in order to determine 
whether $I is strongly linear [GK94], in which 
case the language of U4 is derivable. When the 
language of U$ is derivable, it follows from Theo- 
rem 4.3 that the linear requirement that $ im- 
poses on all computations can be specified by 
a deterministic Buchi word automaton and that 
the automaton U$ may be determinized as well. 

Our results may also be used to obtain sim- 
ple proofs for inexpressibility results for temporal 
logics. It is known, for example, that formulas 
of CTL can be translated to BT [VW86b]. As 
the LTL formula FGp can not be translated to 
a D B W ,  it follows from Theorem 4.3 that the 
CTL* formula AFGp can not be expressed in 
CTL [EH861 and that the CTL formula AFAGp 
is not strongly linear [CD88]. 
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