Once and For All

Orna Kupferman
Department of Computer Science
The Technion
Haifa 32000, Israel

E-mail: ornab@cs.technion.ac.il

Abstract

It has long been known that past-time opera-
tors add no expressive power to linear temporal
logics. In this paper, we consider the extension
of branching temporal logics with past-time oper-
ators. Two possible views regarding the nature
of past in a branching-time model induce two dif-
ferent such extensions. In the first view, past is
branching and each moment in time may have
several possible futures and several possible pasts.
In the second view, past is linear and each mo-
ment in time may have several possible futures
and a unique past. Both views assume that past
is finite. We discuss the practice of these exten-
sions as specification languages, characterize their
expressive power, and examine the complexity of
their model-checking and satisfiability problems.

1 Introduction

Temporal logics, which are modal logics that
enable the description of occurrence of events in
time, serve as a classical tool for specifying be-
haviors of concurrent programs [Pnu77]. The ap-
propriateness of temporal logics for algorithmic
verification follows from the fact that finite-state
programs can be modeled by finite propositional
Kripke structures, whose properties can be spec-
ified using propositional temporal logic. This
yields fully-algorithmic methods for synthesis and
for reasoning about the correctness of programs.
These methods consider two types of temporal
logics: linear and branching [Lam80]. In linear
temporal logics, each moment in time has a unique
possible future, while in branching temporal log-

Amir Pnueli
Department of Computer Science
Weizmann Institute of Science
Rehovot 76100, Israel

E-mail: amir@wisdom.weizmann.ac.il

ics, each moment in time may split into several
possible futures. Thus, if we model a program
by a Kripke structure, then linear temporal logic
formulas are interpreted over paths in the Kripke
structure (and thus refer to a single computation
of the program), while branching temporal logic
formulas are interpreted over states in the Kripke
structure (and thus refer to all the computations
of the program).

Striving for maximality and correspondence to
natural languages, philosophers developed tem-
poral logics that provide temporal modalities that
refer to both past and future [Pri57, Kam68].
Striving for minimality, computer scientists usu-
ally use temporal logics that provide only future-
Since program computations
have a definite starting time and since, in this
case, past-time modalities add no expressive
power to linear temporal logics [GPSS80], this
seems practical. Nevertheless, enriching linear
temporal logics with past-time modalities makes
the formulation of specifications more intuitive

time modalities.

and does not increase the complexity of the va-
lidity and the model-checking problems [LPZ85,
Var88].

Is the same true of branching temporal logics?
Examining this question, we found in the litera-
ture several logics that extend branching tempo-
ral logics with past-time modalities. Yet, as we
soon specify, we did not find a logic that meets
our understanding of past in a branching-time
model: we distinguish between two possible views
regarding the nature of past. In the first view,
past is branching and each moment in time may

have several possible futures and several possible
pasts. In the second view, past is linear and each
moment in time may have several possible futures
and a unique past. Both views assume that past
s finite. Namely, they consider only paths that
start at a definite starting time.

Before going on with our two views, let us
consider the branching temporal logics with past
that we found in the literature. The original
version of propositional dynamic logic (PDL), as
presented by Pratt in [Pra76], includes a con-
verse construction. The converse construction
reverses the program, thus enabling the specifi-
cations to refer to the past. As each state in a
program may have several predecessors, converse-
PDL corresponds to the branching-past interpre-
tation. Beyond our aspiration to replace the
PDL system with branching temporal logics used
nowadays, our main complaint about the con-
verse construction is that it allows infinite paths
in the reversed programs. Thus, it does not re-
flect the (helpful, as we shall show) fact that pro-
grams have a definite starting time. As a re-
sult, combining the converse construction with
other constructions, e.g. the loop construction
and the repeat construction, results in quite com-
plicated logics [Str81, Var85, VWS86]: they do
not satisfy the finite model property, their decid-
ability becomes more expensive, and no model-
checking procedures are presented for them. In
addition, while converse-DPDL satisfies the tree
model property [VW86], the logics we introduce
for the branching-past interpretation do not sat-
isfy it. So, intuitively, our branching past is
“more branching”. In spite of this, our logics sat-
isfy the finite model property. The same tolerance
towards paths that backtrack the transition rela-
tion without ever reaching an initial state is found
in POTL, which augments the branching tem-
poral logic B(X, F,G) with past-time modalities
[PW84], and in the reverse operators in [Sti87].

A logic PCTL*, which augments the branch-
ing temporal logic CTL* with past-time modali-
ties, is introduced in [HT87]. Formulas of PCTL*

are interpreted over computation trees. Thus,
PCTL* corresponds to the linear-past interpre-

tation. However, the semantics of PCTL* makes
the usage of past-time modalities very limited.
Actually, past cannot go beyond the present. For
example, the PCTL* formula EX EYtrue (“ex-
ists a successor state for which there exists a pre-
decessor state that satisfies {rue”) is not satisfi-
able. It is not surprising then, that PCTL* is
not more expressive than CTL* (a similar limited
past is discussed in [LS94]). Another augmen-
tation of CTL* with past-time modalities is the
ockhamist computational logic (OCL), presented
in [ZC93]. We found the semantics of OCL un-
satisfactory, as it is interpreted over structures
which are not fusion closed.

In this paper, we consider the logics CTLj, and
CTLy,, as well as their sub-languages CTL;, and
CTLjp. Syntactically, CTL;, and CTLy, are ex-
actly the same: both extend the full branching
temporal logic CTL* with past-time modalities.
Semantically, we have two completely different in-
terpretations. Formulas of CTLj, are interpreted
over states of a Kripke structure with a definite
initial state. Since each state in a Kripke struc-
ture may have several successors and predeces-
sors, this interpretation induces a “branching ref-
erence” to both future and past. Accordingly,
we regard CTLj, formulas as describing a sin-
gle computation which is a partially ordered set
[PW84]. The initial state corresponds to a sin-
gle initial process, a state with several succes-
sors corresponds to creating new processes, and
a state with several predecessors corresponds to
merging processes. Unlike [PW84], we consider
only paths that start in the initial state and thus
ignore computations which can be traversed back-
wards an infinite number of steps. For example,
the CTL;, formula AG(term — ((EPterm;) A
...A(E Pterm,)) states that the entire system can
terminate only after all its n processes have ter-
minated. Formulas of CTL},, on the other hand,
are interpreted over nodes of a computation tree
obtained by, say, unwinding a Kripke structure.
Since each node in a computation tree may have
several successors but only one predecessor (ex-
cept the root that has no predecessor), this inter-
pretation induces a linear reference to past and

a branching reference to future. Accordingly, we
regard CTL7, formulas as describing a set of com-
putations of a nondeterministic program, where
each computation is a totally ordered set. The
branching in the tree represents non-determinism
or interleaving due to concurrency. For example,
the CTL}, formula AG(grant — P(req)) states
that grant is given only upon request. Note that
there is no path quantification over P(req). It is
clear from the semantics that a request should be
found along the path that led from the root to
the state in which the grant is received.

We investigate the exzpressive power of the
two extensions. We first compare the two ap-
proaches to past. We show that, unlike the case
of CTL*, which is insensitive to unwinding (that
is, unwinding of a Kripke structure preserves the
set of CTL* formulas it satisfies), augmenting a
branching temporal logic with past-time modal-
ities makes it sensitive to unwinding. We then
consider the increase in the expressive power of
branching temporal logics due to the addition of
past-time modalities. As was shown in [GPSS80],
past-time modalities do not increase the expres-
sive power of linear temporal logic. We show here
that when branching temporal logics are consid-
ered, the situation is diversified. In addition, we
compare the power of past with the power of his-
tory variables, and check whether past can help
CTL to compete successfully with CTL*.

We consider the model-checking and the satisfi-
ability problems for the logics CTL,;, and CTLy,.
While the model-checking problem for CTL,, is
in linear time, as the one for CTL [CESS86], aug-
menting CTL with linear past makes its model-
checking problem PSPACE-hard. Typically, the
gap follows from the fact that CTL;,, actually
subsumes the expressive power of linear tempo-
ral logic. Since the linear-past (rather than the
branching-past) approach corresponds to the nat-
ural way branching temporal logics have been
used to represent computations, these news are,
all in all, sad. For consolation, we show that
branching past does not increase the cost also in
the case of CTL*, thus the model-checking prob-
lem for CTLj, is PSPACE-complete, as is the one

for CTL* [EL85]. Comfort can also be found in
the fact that the satisfiability problem for both
CTLy, and CTL;, is EXPTIME-complete, as is
the one for CTL. Since Pinter and Wolper have
already established an exponential upper bound
for satisfiability of POTL, it is not surprising that
augmenting CTL with branching-past modalities
preserves its exponential satisfiability. Neverthe-
less, our procedure for CTL,;, demonstrates how
the fact that past is finite makes life much easier.
The procedure for CTL,, is also very simple, us-
ing a translation of CTL;, formulas into formulas
in CTL augmented with existential quantification
over history variables.

2 Branching logics with past operators
2.1 Branching past: the logic CTL;j,

The logic CTLj, extends CTL* by allow-
ing past-time operators. As CTL*, it combines
both branching-time and linear-time operators.
A path quantifier £ (“for some path”) can pre-
fix a formula composed of an arbitrary combina-
tion of the linear-time operators X (“next time”),
U (“until”), Y (“yesterday”), and S (“since”).
There are two types of formulas in CTLj,: state
formulas, whose satisfaction is related to a spe-
cific state, and path formulas, whose satisfaction
is related to a specific path. Formally, let AP be
a set of atomic proposition names. A CTLj, state
formula is either:

o True, Fulse (represented in the sequel as ¢
and f, respectively), or p, for p € AP.

® —p1 or 1 V iy, where ¢ and ¢, are CTLj,
state formulas.

o E¢y, where ¢ is a CTLj, path formula.
A CTLj, path formula is either:
o A CTLj, state formula.

o by, 1 V gy, Xby, 1 Uthy, Yaby, o1 1Py 5Py,

where 1, and ¢, are CTLj, path formulas.

CTLj, is the set of state formulas generated by
the above rules.

We use the following abbreviations in writing
formulas:

e A,—, and <, interpreted in the usual way.
o At = =E- (“in all paths”).

o [p =tU1 (“eventually in the future”).

e Pt =15y (“sometime in the past”).

o Gtp =-F— (“always in the future”).

o Hiy=-P-1 (“always in the past”).

o 1Sty = =((~1h1) S (=) (“dual since”).

A past formula is a formula in which no future-
time operators occur. Similarly, a future formula
is a formula in which no past-time operators oc-
cur.

The logic CTLy, is an extension of the branch-
ing temporal logic CTL. In CTL, the temporal
operators X, U, and their negations must be im-
mediately preceded by a path quantifier. CTL,,
allows also the temporal operators Y, 5, and their
negations. Asin CTL, they must be immediately
preceded by a path quantifier. Formally, it is the
subset of CTLj, obtained by restricting the path
formulas to be X 1, p1Ups, Y1, 1592, or their
negations, where ¢; and ¢, are CTL,, state for-
mulas.

We define the semantics of CTLj, with respect
to a Kripke structure K = (W, R, w° L), where
W is a set of states, R C W x W is a transition
relation that must be total in its first element, w°
is an initial state for which there exists no state
w such that (w,w®) € R, and L : W — 247 maps
each state to a set of atomic propositions true
in this state. For (w;,ws) € R, we say that w,
is a successor of wy, and w; is a predecessor of
wy. A pathin K is an infinite sequence of states
T = wg,wi,..., such that wy = w°® and for all
i > 0, we have (w;, w;41) € R.

We use w = ¢ to indicate that a state formula
o holds at state w. We use 7,j = ¢ to indicate
that a path formula ¢ holds at position j of the
path . The relation | is inductively defined as
follows (assuming an agreed K).

e Forall we W, wkEtand w £ f.

e For an atomic proposition p € AP, w | p iff
p € L(w).

o w k= iff wE ¢r.
e whkE Vg iff wiE g orwl e,

o w = Et iff there exist a path 7 = wg, wy, . ..
and j > 0 such that w; = w and 7, j = 4.

e 7,7 = ¢ for a state formula ¢, iff w; = ¢.
o T,j E iy iff w5 b= .

o T jE LIVl w5 ¢ orm, j I .
e T, iEXY iff 1,5+ 1F .

e T, jEY Y iff j>0and 7,5 — 1 9.

o 7, E ¥ Uy iff there exists £ > j such that
T,k |E ¥y and 7,1 =y for all j <i < k.

o T,j = 15, iff there exists 0 < £k < j
such that 7,k &= ¢, and 7,7 | ¢ for all
k< i<

Note that the past-time operator Y is interpreted
in the strong sense. That is, in order to satisfy
a Y requirement, a state must have some prede-
cessor. For a Kripke structure K, we say that
K E piff w® = .

We consider also the logic QCTL,,, obtained
by adding quantifiers to CTL,,. Every CTL,,
formula is a QCTL,, formula and, in addition,
if ¥ is a QCTL,, formula and p is an atomic
proposition occurring free in ¢, then dp% is also a
QCTL,, formula. The semantics of dp%) is given
by K = dp¢ iff there exists a Kripke structure
K’ such that K’ = v and K’ differs from K in at
most the labels of p. We use Vpiy to abbreviate
—|3p_|’¢.

2.2 Linear past: the logic CTLj,

The logic CTLj, has the same syntax as CTL,.
We define its semantic with respect to Kripke
structures in which each state has a unique path
leading from the initial state to it. We call such
Kripke structures computation trees. Below, we
define formally computation trees and the seman-
tics of CTL,.

A treeis aset T C IN* such thatif z-c € T
where 2 € IN* and ¢ € IN, then also z € T, and
forall0 < ¢ < ¢, z-¢ € T. The elements of T are
called nodes, and the empty word € is the root of
T. For every x € T, the nodes z - ¢ where ¢ € IN
are the successors of ©. We consider here trees
in which each node has at least one successor. A
path p of a tree T is a set p C T such that € € p
and for every = € p there exists a unique ¢ € IN
such that z - ¢ € p. For a path p and 5 > 0,
let p; denote the node of length j in p. Given
an alphabet X, a Y-labeled lree is a pair (1, V)
where T is a tree and V' : T' — 3 maps each node
of T to a letter in Y. A computation tree is a
Y-labeled tree with ¥ = 24 for some set AP of
atomic propositions.

We define the semantics of CTLj, with respect
to a computation tree (T,V). We use z = ¢
to indicate that a state formula ¢ holds at node
x € T. We use p,j | ¢ to indicate that a path
formula % holds in position j of the the path p C
T. The relation | is defined similarly to the one
of CTLj,, taking a node z here instead a state
w there, and a path p here, instead 7 there. In
particular, we have:

e & = Ev iff there exist a path p and j > 0
such that p; = z and p,j | ¢1.

o p,j = for a state formula o, iff p; = .

For a computation tree (T,V), we say that
(T, V) Epiff e = p.

The logic LTL, is an extension of the linear
temporal logic LTL. It extends LTL by allowing
also the past-time operators Y and 5. The logic
CTL;, is the linear-past extension of CTL. As
past is linear, path quantification of past-time op-
erators is redundant. Thus, we require the tem-
poral operators X and U be to preceded by a
path quantifier, yet we impose no equivalent re-
striction on the operators Y and 5. Note that
this implies that in CTL,,, path quantifiers are
followed by LTL, formulas that have in them a
single, and outermost, future-time operator. We
consider also the logic EQCTL,,, obtained by
adding existential quantifiers to CTL;,. Precisely,

if ¢ is a CTL;, formula and p,,.. ., p, are atomic
propositions, then dp;...dp,v is an EQCTL,
formula. The semantics of dp;...dp,% is given
by (17, V) = 3p1...3p, ¢ iff there exists a com-
putation tree (T, V'), such that (T, V') = ¢ and
V! differs from V in at most the labels of the p;’s.

3 Expressiveness

3.1 Branching past versus linear past

A Kripke structure K can be unwound into an
infinite computation tree. We denote by (T, Vi)
the computation tree obtained from unwinding
K. Each state in K may correspond to several
nodes in (Tx,Vk), all having the same future
(i.e., they root identical subtrees) yet differ in
their past (i.e., they have different paths leading
to them). Intuitively, unwinding of the Kripke
structure has two implications: it makes past lin-
ear and it makes past finite. In order to show
that the two approaches to past induce different
logics, we show that satisfaction of CTLj, is sen-
sitive to unwinding. Namely, we show that there
exists a Kripke structure K and a formula ¢ such

that K |= ¢ and (T, Vi) I~ ¢.

K, : K, : 0
D D
C» D

Figure 1: The Kripke structures K; and K.

Theorem 3.1 Satisfaction of CTLy, is sensitive
to unwinding.

Proof: Consider the Kripke structure K; ap-
pearing in Figure 1. The computation tree in-
duced by K, is (Tk,,Vk,) where T, = 0* and
Vk, is defined by Vi, (¢) = 0 and Vi, (z) = {p}
for all z € 0. Tt is easy to see that while K, |~
AF(pANAY p), we have (Tk,, Vk,) E AF(pAAY p).

U

Note that since CTLj, assumes a finite past,
both K, and (Tk,, Vk,) satisfy AGAP-p. Also,
as both w® and € have no predecessors, then
w® £ EYt and € £ EYt. Clearly, for all w # w°
and © # ¢, we have w E EYt and 2 = FY1i.
Thus, both CTLj, and CTL}, can characterize
the starting point of the past.

The logics QCTL and EQCTL are also sen-
sitive to unwinding. Consider the formula ¢ =
3qAG(p <+ AX¢q) and consider the Kripke struc-
tures K, and K, appearing in Figure 1. Though
K5 can be obtained by unwinding K, we have
K £ ¢ and K, | . In the sequel, we compare
QCTL with CTL,,, and thus interpret it over
Kripke structures, and compare EQCTL with
CTLy,, and thus interpret it over computation
trees.

3.2 Expressive power

We say that two formulas ¢, and ¢, are equiv-
alent (@1 ~ ¢y) if for every Kripke structure K,
we have K = ¢ iff K | ¢;. We say that two
path formulas ¢, and v, are congruent (1, = 1)
if for every Kripke structure K, path 7 in it, and
position j > 0, we have 7,j & ¢, iff 7,5 | ..
The notions of equivalence and congruence are
defined similarly for logics with linear past, only
that we define them with respect to computation
trees. When comparing expressive power of two
logics L; and L,, we say that L; is more expres-
sive than L, (L, > L,) provided that for every
formula @5 of Lo, there exists an equivalent for-
mula ¢; of Ly. Also, L is as expressive as Lo
(Ly = Ly) if both L; > Ly and Ly > Ly, and L,
is strictly more expressive than L, (Ly > L) if
both L; > L, and Ly # L.

In this section we consider the expressive power
of branching temporal logics with past with re-
spect to branching temporal logics without past.
Our results are summarized in the hierarchy pre-
sented in Figure 2. In the Figure, we use L «— L,
to indicate that Ly > L., we use L; < L5 to in-
dicate that Ly = L, and we use L, — L, to
indicate that L, # L, and L, # L,.

We first prove that CTLj,= CTL*. While
CTLj, is interpreted over computation trees,
CTL* is interpreted over Kripke structures. How-

QCTL(,p - CTL(,p

QCTL = T
gootn, —— CTh = T

@ i $

EQCTL, =—— CTL, —— CTL},

——= CTL},

Figure 2: Hierarchy of expressive power.

ever, as CTL* is insensitive to unwinding, this
causes no difficulty. We use the Separation The-
orem for LTL,, quoted below.

Theorem 3.2 [Gab87] Any LTL, formula is
congruent to a boolean combination of past and

future LTL, formulas.

Lemma 3.3 Let E¢ be a CTLy, formula all of
whose state subformulas are in CTL*. F1) is con-
gruent to a disjunction of formulas of the form
pA Eq where p is a past LTL, formula and Eq is

a CTL* formula.

Proof: By the Separation Theorem, % is con-
gruent to a boolean combination, ¥, of future
and past LTL, formulas. Without loss of gen-
erality, ¢/ is of the form V/, ,.,(p: A ¢;), where
forall 1 < i< n, p; is a past I:TLP formula and
¢; is a future LTL, formula. As past is linear,
path quantification over past LTL, formulas can
be eliminated using the congruences below.

F \/ (ping:) = \/ E(pihg) ~ \/ (piNEqg;).

1<i<n 1<i<n 1<i<n

O

Theorem 3.4 CTL;*p = CTL*.

Proof: Given a CTLj, formula ¢, we translate
¢ into an equivalent CTL* formula. The trans-
lation proceeds from the innermost state subfor-
mulas of ¢, using Lemma 3.3 to propagate past

outward. Formally, we define the depth of a state
subformula £ in ¢ as the number of nested E’s in
¢, and proceed by induction over this depth. Sub-
formulas of depth 1 have atomic propositions as
their subformulas and therefore they satisfy the
Lemma’s condition. Also, at the end of step ¢ of
the induction, all subformulas of depth ¢ are writ-
ten as disjunctions of formulas of the form pA Fq¢
where p is a past LTL, formula and Fq is a CTL*
formula. Thus, propagation can continue. In par-
ticular, at the end of the inductive propagation,
@ is written as such a disjunction. Then, as the
past formulas refer to the initial state, we replace
Yq with f, replace pSq with ¢, and we end up
with a CTL* formula.]

As our semantics allows past to go beyond the
present, Theorem 3.4 is much stronger than the
PCTL* = CTL* result in [HT87]. In all the
Ly < L5 relations in Theorems 3.5, 3.6, and 3.7
below, the L, < L, part follows by syntactic con-
tainment and we prove only strictness.

Theorem 3.5 CTL < CTL, < EQCTL, =
EQCTL.

Proof: In [EH86], Emerson and Halpern show
that the CTL* formula AF(pA X p) has no equiva-
lent of CTL. As AXAF(pAY p) ~ AF(pAXp), we
have CTL < CTL;,. The specification “g holds
at all even places” is expressible in EQCTL;, us-
ing the formula ¢ = Ip(p A AG(p — AXAXp) A
AG(p — ¢q)). Extending Wolper’s result from
[Wol83], ¢ has no equivalent of CTL*. Hence,
as CTL;,, < CTL*, we have CTL;, < EQCTL,,.

To prove EQCTL;, = EQCTL, we prove that
EQCTL;, < EQCTL. Equivalence then follows by
syntactic containment. Given an EQCTL,, for-
mula v, we translate ¢ into an equivalent EQCTL
formula. Let ¢ be a formula of the form Y, or
@15y, and let p be a fresh atomic proposition.
We define the formula label(ip, p) as follows:

o label(Yp1,p) = —p AN AG(p1 — AXp) A
AG(~py — AX —p).

o label(p1Spa,p) = (p < w2) N AG(p —
AX(p = (1 V 92))) N AG(mp —

AX(p = ¢2)).

The definition of label(p, p) guarantees that if a
computation tree (T, V) satisfies label(yp, p), then
for every node z € T, we have z | p iff for ev-
ery path p C 7T and j > 0 with p; = z, we have
p,J = @. The above observation is the key to
our translation. Given v, we translate it into an
equivalent EQCTL formula by replacing its path
subformulas ¢ of the form Y, or ¢;5¢,, with a
fresh atomic proposition p,, conjuncting the re-
sulted formula with label(y, p,), and prefixing it
with dp,. Replacement continues for the past for-
mulas in label(p, p,), if exist. It is easy to see that
the translation is linear. For example, the for-
mula AXAF(pAYp) is translated to the formula
JgAXAF (pAg) A—gNAG(p — AX Q) NAG(—p —
AX~q). U

Theorem 3.6 CTL < CTL,, < QCTL,, =
QCTL.

Proof: Consider the CTL;, formula ¢ =
EF((EYp) A EY-p) and consider the Kripke
structures K; and K, presented in Figure 1. It
is easy to see that K; = ¢ and K, £ ¢. As K,
can be obtained by unwinding K, and as CTL is
not sensitive to unwinding, no CTL formula can
distinguish between K, and K,. Hence CTL <
CTL,;,. As with linear past, CTL,, < QCTL,,
follows from the inexpressibility of “¢ holds at all
even places” in CTLy,.

To prove QCTL,, = QCTL, we suggest a trans-
lation of QCTL,, formulas into QCTL formulas.
We assume a normal form for QCTL;, in which
the allowed past operators are EY, ES, and ES.
Intuitively, we would have liked to do something
similar to the translation of CTL;, formulas into
EQCTL. However, since a state in a Kripke struc-
ture may have several predecessors, which do not
necessarily agree on the formulas true in them, we
cannot do it. Instead, we label K in two steps:
for every past formula ¢, we first label with p,
all the states that satisfy . Then we require p,
to be the least such labeling, guaranteeing that
only states that satisfy ¢ are labeled. Let ¢ be a
formula of the form EY ¢, E@;Sp,, or Ep,S¢s,
and let p be a fresh atomic proposition. We define
the formula spread(yp, p) as follows:

o spread(EY ¢,,p) = AG(p1 — AXp).

o spread(Ep1Sps,p) = AG(ps — p) A
AG(p — AX((#1V @2) = p))-

o spread(Ep1S¢q,p) = (p < ¢3) A AG(p —
AX (g2 — p)) N AG((p2 A 1) — p).

The definition of spread(y, p) guarantees that if
a Kripke structure K satisfies spread(ep, p), then
for every state w for which w = ¢, we have w |=
p. We now define the formula label(p, p) which
guarantees that the labeling of p is tight.

label(p, p) = spread (g, p)A
Vr(spread(p,r) — AG(p — 1)).

If a Kripke structure K satisfies label(y, p), then
for every state w, we have w |= p iff w | .
Once label(p, p) is defined, we proceed as in the
linear-past case. As there, the translation is lin-
ear. Note that the fact that past is finite plays a
crucial role in our translation. Only thanks to it
we are able to determine labeling of Eg; S, in
w® and then to spread labeling forward. Ul

As QCTL satisfies the finite model property,
Theorem 3.6 implies that CTL;, satisfies the fi-
nite model property as well. The logic POTL,
which essentially differs from CTL;, in allow-
ing infinite past, does not satisfy this property
[PW84]. Indeed, the fact that CTL,;, assumes
a finite past, makes it an “easy” language. On
the other hand, CTL;, does not satisfy the tree
model property. To see this, consider the for-
mula EF((EYp) A EY -p) which is satisfied in
K, yet no computation tree can satisfy it. As
EQCTL does satisfy the tree model property, we
could not do without universal quantifiers in the
translation.

Theorem 3.7 CTL;, > CTLy,
CTLy, and CTL;, > CTL*.

cTL;, >

Proof: In [EH86], Emerson and Halpern show
that the CTL* formula K G Fp has no equivalent
of CTL. It is easy to extend their proof to con-
sider also CTL;, and CTLy,. Hence, CTLj, >

CTLy, and CTLj, > CTLg,. In the proof of The-
orem 3.6, we point on a CTL,, formula ¢ which
distinguishes between a Kripke structure and its
unwinding. Since CTL* is not sensitive to un-
winding, ¢ has no equivalence of CTL*. Hence,

CTLj, > CTL*. O

4 Model checking

The model-checking problem for a variety of
branching temporal logics can be stated as fol-
lows: given a branching temporal logic formula ¢
and a finite Kripke structure K = (W, R, w°, L),
determine whether K satisfies . When some of
the logics are sensitive to unwinding, there are
two possible interpretation of this problem. The
first interpretation, which is the one appropriate
to branching past, asks whether w° = . In the
second interpretation, which is the one appropri-
ate to linear past, we are given ¢ and K and are
asked to determine whether (Tx,Vk) E ¢. In
this section we consider model-checking complex-
ity for the two interpretations.

Theorem 4.1 The model-checking problem for
CTLyy, is in linear lime.

Proof: We present a model-checking procedure
for CTL;,. Our procedure is a simple extension of
the eflicient model-checking procedure for CTL in
[CESS86], and is of complexity linear in both the
length of the formula and the size of the Kripke
structure being checked. As there, the algorithm
labels with a formula ¢ exactly all the states that
satisfy ¢. This is done by recursively labeling the
Kripke structure with the subformulas of ¢. Once
the Kripke structure is labeled with the subfor-
mulas of ¢, it is possible to label it also with
. Handling of past-time modalities is symmet-
ric to the one suggested in [CES86] for future-
time modalities, switching successors and prede-
cessors. Careful attention, however, should be
payed to the fact that past is finite. While finite-
ness of the past does not influence checking of
Ep15¢,, it does influence checking of Ep,5,.
When past is finite, a state w for which there ex-
ists a path from w° to w such that all the states

in this path satisfy ¢, satisfies E;Sp,. Accord-
ingly, labeling w® with a fresh atomic proposition
init, we have Ep, 5y ~ EpyS(ga A (init V ¢1)).
Thus, the modality £S5 is handled using the same
procedure that handles the modality ES.]

Theorem 4.2 The model-checking problem for
CTLy, 1s PSPACE-complele.

Proof: Hardness in PSPACE follows from
hardness of the model-checking problem for
CTL*. To prove membership in PSPACE, we
present a PSPACE model-checking algorithm.
Our algorithm uses the PSPACE model-checking
algorithm for LTL, [Var88] and it is based on the
method of reducing branching-time model check-
ing to linear-time model checking [EL85]. Ac-
cording to this method, nested formulas of the
form F§ are evaluated by recursive descent. For
example, in order to model check EX EXGp, we
first model check F X Gp using the model checker
for LTL and label every state that satisfies it
with a fresh atomic proposition ¢. Then, we
model check F X ¢. In order to adopt this method
for CTLj,, we should guarantee that the model
checker for LTL, considers only paths that start
in the initial state. This can be easily done by la-
beling the initial state with a fresh atomic propo-
sition init and conjuncting each linear-time for-
mula checked with Pinit. For example, in or-
der to check FX F X Pp, we first model check, in
PSPACE, the formula E((X Pp) A (Pinit)) and
label every state that satisfies it with a fresh
atomic proposition g. Then we model check,
again in PSPACE, the formula E((Xg¢)A(Pinit)).
It is easy to see that the overall complexity is

PSPACE. U

Theorem 4.3 The model-checking problem for
CTLy, is PSPACE-hard.

Proof: We prove hardness in PSPACE using
the same reduction used in [SC85] for proving
that model checking for LTL is PSPACE-hard.
There, Sistla and Clarke associate with a polyno-
mial space Turing machine M and an input word
w, a Kripke structure K and an LTL formula),

such that K | ¢ iff M accepts w. The formula
1 uses the X operator to describe the possible
successors of a configuration of M and uses the
F operator to ensure that an accepting configu-
ration is eventually reached. A similar formula,
that uses the operators F' and Y can be written
in CTLy,. The formula is of the form FF¢, where
¢ is a past LTL, formula, asserting that the cur-
rent configuration is accepting, and that it has
been reached by a valid run of M on w. As 9,
the length of £ is polynomial in M and w. L]

5 Satisfiability

As with model checking, there are two interpre-
tations of the satisfiability problem for a branch-
ing temporal logic which is sensitive to unwind-
ing. The first interpretation, which is the one ap-
propriate to branching past, asks whether there
exists a Kripke structure K and a state w® in it,
such that w® has no predecessors and w°® = . In
the second interpretation, which is the one appro-
priate to linear past, we are given ¢ and are asked
to determine whether there exists a computation
tree (1, V) such that (T, V) = . In this section
we consider satisfiability complexity for the two
interpretations.

Theorem 5.1 The satisfiability problem for
CTLy, is EXPTIME-complete.

Proof: Hardness in EXPTIME follows from
hardness of the satisfiability problem for CTL. To
prove membership in EXPTIME we extend the
tableau method for CTL used in [EH85]. The
puzzle in this method lays in the fact that the
quotient construction does not preserve model-
hood. Let K’ denote the quotient structure of
a Kripke structure K. A formula of the form
Ap1Ups which is satisfied in K might not be
satisfied in K’ due to cycles introduced into it.
Emerson and Halpern solve this puzzle by show-
ing that if K is a model for a CTL formula ¢, then
K’ is “almost” model for ¢ (a pseudo-Hintikka
model), and that a model of size exponential in
the size of ¢ can be constructed from it. This
establishes a small model property for CTL and
yields a tableau-based satisfiability procedure.

The fact that CTL;, assumes a finite past
makes the extension of the above described
method easy. The crucial point is that when past
is finite, the quotient construction preserves mod-
elhood with respect to all past-time modalities.
Indeed, paths that get stuck in a cycle introduced
into K’ do not reach the initial state and can thus
be ignored. Hence, if K is a model for a CTL,,
formula, then K’ is a pseudo-Hintikka model for
it, in which the only eventualities that may not
be fulfilled are of the form AU. We now sketch
how, given K', we construct an exponential size
model for ¢ from it. As a first step we construct a
Kripke structure, K", in which every state satis-
fies all its subformulas that have an outermost fu-
ture modality (modulo the assumption that every
state satisfies its subformulas that have an outer-
most past modality). This is done using the “ma-
trix construction” for CTL [EHS85]. Since each
transition in K" exists in K’, then each state in
K" satisfies also all its subformulas that have an
outermost and universal past modality. It is thus
left to worry only about subformulas that have
an outermost existential past modality. Some of
these subformulas may be satisfied in K but for
some it may be required to add transitions to K”.
Still, these transitions are contained in the tran-

sitions of K’ and can be added to K" preserving
the fulfillment of AU formulas. [

Theorem 5.2 The satisfiability problem for
CTLy,, s EXPTIME-complete.

Proof: Hardness in EXPTIME follows from
hardness of the satisfiability problem for CTL.
To prove membership in EXPTIME we use the
linear translation of CTL;, formulas into EQCTL
formulas and reduce satisfiability of CTL;, to sat-
isfiability of CTL. Let ¢ be a CTL;, formula and
let dp; ... 3p,p beits equivalent EQCTL formula.
We show that ¢ is satisfiable iff ¢ is satisfiable.
Recall that if ¢ is defined over the set AP of
atomic propositions, then ¢ is defined over the
set AP U{p1,...,p,}. Also, while satisfaction of
¢ is checked with respect to Kripke structures,
satisfaction of v is checked with respect to com-
putation trees. Assume first that is satisfiable.

Then, there exists a Kripke structure K such that
K E . Since CTL is not sensitive to unwinding,
then (Tk,Vk) E ¢. Clearly, (Tk, Vi) satisfies
1 too. Assume now that) is satisfiable. Then,
there exists a computation tree (T, V) such that
(T',V) E 3p1 ... Ipap. Hence, there exists a com-
putation tree (7', V’), such that V' differs from V'
in at most the labeling of the p;’s and (T, V') = ¢.
By the finite model property of CTL, this implies
that there exists a Kripke structure in which ¢ is

satisfied. [l

6 Discussion

Our complexity results are summarized in the
table below:

|| Model checking

CTLyp || linear time
CTL;, || PSPACE-hard

| Satisfiability |
EXPTIME-complete
EXPTIME-complete

CTLj, || PSPACE-complete | 7
CTL; || 7 ?

We would like to comment here on the prob-
lems which are still open (and which we hope
to close in the full version). Probably the
most interesting one is finding a tight bound for
CTL;, model checking. While an EXPTIME up-
per bound is straightforward (e.g., by the linear
translation to EQCTL), we did not find an EX-
PTIME lower bound. A good excuse for this
is our conjecture that the problem is PSPACE-
complete. In more detail, the automata-theoretic
framework from [BVW94] can be used to reduce
the model-checking problem for CTL;, to the 1-
letter nonemptiness problem of weak alternat-
ing automata. Unlike CTL, where the automata
are of linear size, the automata for CTL,, are
of exponential size. We believe that, as with
CTL, the structure of these automata enables
a space-efficient 1-letter nonemptiness procedure.
Automata-theoretic techniques can also be used,
we conjecture, to achieve 2EXPTIME algorithms
for the satisfiability problem of both CTLF, and
CTLj,, as well as for the model-checking prob-
lem for CTLj,. The idea, as suggested to us by

Moshe Vardi, is that each state of the automaton
is associated not only with formulas that should
hold on the future (as is usually the case with
automata-theoretic techniques), but also with
formulas whose satisfaction in the past is guar-

anteed.

References

[BVW94]

[CES86]

[EHS5]

[EHS6]

[EL85]

[Gabs7]

[GPSS80]

[HT87]

[Kam68]

[Lam80]

O. Bernholtz, M.Y. Vardi, and P. Wolper.
An automata-theoretic approach to
branching-time model checking. In CAYV,
Proc. 5th Int. Workshop, 1994.

E.M. Clarke, E.A. Emerson, and A.P.
Sistla. Automatic verification of finite-
state concurrent systems using temporal
logic specifications. ACM Transactions

on Programming Languages and Systems,
8(2):244-263, January 1986.

E.A. Emerson and J.Y. Halpern. Decision
procedures and expressiveness in the tem-
poral logic of branching time. Journal of
Computer and System Sciences, 30:1-24,
1985.

E.A. Emerson and J.Y. Halpern. Some-
times and not never revisited: On branch-
ing versus linear time. Journal of the ACM,

33(1):151-178, 1986.

E.A. Emerson and C.-L. Lei. Modalities
for model checking: Branching time logic
strikes back. In POPL, Proc. of the Twelfth
ACM Symposium, pages 84-96, 1985.

D. Gabbay. The declarative past and im-
perative future. In Temporal Logic in Spec-
ification, LNCS 398, 1987.

D. Gabbay, A. Pnueli, S. Shelah, and
J. Stavi. On the temporal analysis of fair-
ness. In POPL, Proc. of the Tth ACM Sym-
posium, pages 163-173, 1980.

Th. Hafer and W. Thomas. Computation
tree logic CTL*and path quantifiers in the
monadic theory of the binary tree. In Proc.
14th ICALP, volume 267 of LNCS, pages
269-279, 1987.

J.A.W. Kamp. Tense Logic and the Theory
of Order. PhD thesis, UCLA, 1968.

L. Lamport. Sometimes is sometimes “not
never” - on the temporal logic of programs.
In POPL, Proc. of the 7th ACM Sympo-
sium, pages 174-185, 1980.

[LPZ85]

[LS94]

[Pnu77]

[Pra76]

[Prib7]

[PW84]

[SC85]

[Sti87]

[Str81]

[Var85]

[Var88]

[VWS6]

[Wol83]

[ZC93)]

O. Lichtenstein, A. Pnueli, and L. Zuck.
The glory of the past. In Logics of Pro-
grams, LNCS 193, pages 196-218, 1985

F. Laroussinie and Ph. Schnoebelen. A hi-
erarchy of temporal logics with past. In
Proceedings of STACS, 1994.

A. Pnueli. The temporal logic of programs.
In FOCS, Proc. 18th IEEE Symposium,
pages 46-57, 1977.

V.R. Pratt. Semantical considerations
on floyd-hoare logic. In FOCS, Proc. of
the 17th IEEE Symposium, pages 109-121,
1976.

A. Prior. Time and Modality. Oxford Uni-
versity Press, 1957.

S. Pinter and P. Wolper. A temporal logic
for reasoning about partially ordered com-
putations. In PODC, Proc. of the 3rd ACM
Symposium, pages 28-37, 1984.

A.P. Sistla and E.M. Clarke. The complex-
ity of propositional linear temporal logic.
J. ACM, 32:733-749, 1985.

C. Stirling. Comparing linear and branch-
ing time temporal logics. In Temporal Logic
. Specification, LNCS 398, pages 1-20,
1987.

R.S. Street. Propositional dynamic logic of
looping and converse. In Proc. of the 13th

ACM STOC, pages 375383, 1981.

M.Y. Vardi. The timing of converse: Rea-
soning about two-way computations. In
Logics of Programs, LNCS 193, pages 413—
424, 1985

M.Y. Vardi. A temporal fixpoint calcu-
lus. In POPL Proc. 15th ACM Symposium,
pages 250-259, 1988.

M.Y. Vardi and P. Wolper.
theoretic techniques for modal logics of pro-

grams. Journal of Computer and System
Science, 32(2):182-21, April 1986.

P. Wolper. Temporal logic can be more ex-
pressive. Information and Control, 56(1-

2):72-99, 1983.

A. Zanardo and J. Carno. An ockhamist
computational logic: past-sensitive necessi-
tation in CTL*. Journal of Logic and Com-
putation, 3(3):294-268, June 1993.

Automata-

