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ABSTRACT

We describe an automata-theoretic approach to automatic verification of concurrent
finite-state programs by model checking. The basic idea underlying this approach is that
for any temporal formula we can construct an automaton that accepts precisely the compu-
tations that satisfy the formula. The model-checking algorithm that results from this
approach is much simpler and cleaner than tableau-based algorithms. We use this

approach to extend model-checking to probabilistic concurrent finite-state programs.
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1. Introduction

While program verification was always a desirable, but never an easy task, the advent of concurrent
programming has made it significantly both more necessary and more difficult. Indeed, the conceptual com-
plexity of concurrency increases the likelihood of the program containing errors. To quote from [OL82]:
‘“There is rather large body of sad experience to indicate that a concurrent program can withstand very care-
ful scrutiny without revealing its errors.”” The introduction of probabilistic randomization into algorithms (cf.
[FR80, LR81]) compounds the problem, since “intuition often fails to grasp the full intricacy of the algo-
rithm” [PZ84], and *‘proofs of correctness for probabilistic distributed systems are extremely slippery”
[LR81].

The first step in program verification is to come up with a formal specification of the program. One of
the more widely used specification languages for concurrent programs is temporal logic which was introduced
by Pnueli [Pn81) (see the survey in [SM82]). Temporal logic comes in two varieties: linear time and branch-
ing time ([EH83, La80]). For simplicity we concentrate here on linear time, though our approach is also
applicable to branching time. A linear temporal specification describes the computations of the program, so a

program meets the specification (is correct) if all its computations satisfy the specification.

In the traditional approach to concurrent program verification (cf. [HO83, MP81, OL82, PZ84]) the
correctness of the program is expressed as a formula in first-order temporal logic. To prove that the program
is correct, one has to prove that the correctness formula is a theorem of a certain deductive system. Con-
structing this proof is done manually and is usually quite difficult. It often requires an intimate understand-
ing of the program. Furthermore, the only extent of automation that one can hope for, is that the proof be

checked by a machine.

A different approach was introduced in {[CES83, QS82] for finite-state programs, i.e., programs in which
the variables range over finite domains. The significance of this class follows from the fact that a significant

number of the communication and synchronization protocols studied in the literature are in essence finite-
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state programs. Since each state is characterized by a finite amount of information, this information can be
described by certain atomsc propositions. This means that a finite-state program can be viewed as a finite
propositional Kripke structure and that it can be specified using propositional temporal logic. Thus, to verify
the correctness of the program, one has only to check that the program, viewed as a finite Kripke structure,
satisfies (is a model of) the propositional temporal logic specification. This approach is called verification by
model-checking, and was further studied in [LP85, EL85a, EL85b]. The advantage of the model-checking
approach, described in [AK85] as ‘“‘one of the most exciting development in the theory of program correct-
ness”, is that it can be done algorithmically (for a description of an implementation and applications see
[CES83, CM83]).

In view of the attractiveness of the model-checking approach, one would like to extend its applicability
as much as possible. We are interested here in two extensions. First, we would like to extend the approach
to deal with extensions of the standard temporal logic [LPZ85, Wo83, WVS83]. Secondly, we would like to
extend the model-checking approach to deal with probabilistic programs, since the introduction of probabilis-
tic randomization into algorithms has been shown to be extremely useful [CLP84, FR80, LR81, Ra80, Ra82,
Ra83]. Unfortunately, we found that the tableau-based model-checking algorithms in the literature (cf.
[LP85]) involve the intricacies of the logic at hand and do not make intuitively clear what extensions are pos-
sible. On the other hand, we found that an approach based on the connection between propositional tem-

poral logic and formal language theory is much more fruitful.

The connection between propositional temporal logic and formal language theory has been quite exten-
sively studied [GPSS80, Ka68, LPZ85, Pe85, Si83, SVW85, WVS83]. This connection is based on the fact
that a computation is essentially an infinite sequence of states. Since every state is completely described by a
finite set of atomic propositions, a computation can be viewed as an infinite word over the alphabet of truth
assignments to the atomic propositions. One of the most enlightening results in this area is the fact that
temporal logic formulas can be viewed as finite-state acceptors. More precisely, given any propositional tem-
poral formula, one can construct a finite automaton on infinite words ([Bu62, Mu63]) that accepts precisely
the sequences satisfied by the formula [WVS83]. (The inverse construction also exists if one uses one of the
extended logics in (WVS83].)

To use the above connection, we view a finite-state program as a finite-state generator of infinite words.
Thus, if P is the program and ¢ is the specification, then P meets ¢ if every infinite word generated by P,
viewed as a finite-state generator, is accepted by ¢, viewed as a finite-state acceptor. This reduces the
model-checking problem to a purely automata-theoretic problem: the problem of determining if the automa-
ton Pn;is empty, i.e., if it accepts no word.

There are a number of benefits from this approach. First, we obtain a very simple and clean algorithm
for model-checking for linear time temporal logic (compare to the algorithm in [LP85]). This algorithm
makes the complexity bounds of [LP85] obvious and even lets us extend them. We can easily show that the
space complexity of model checking is polynomial in the size of the specifications and polylogarithmic (in fact
O(logn)) in the size of the model. Note that this is quite significant as the programs to which model check-

ing is applied can be very large and using even linear space could make implementation difficult. Another
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aspect of model checking that is made much more straightforward is the introduction of a fairness assump-
tion on the execution of the program as is done in [CES83, EL85a, EL85b, LP85).

A second benefit of our approach is that it makes extending model-checking to more expressive tem-
poral logics easy. The standard temporal logic, which consists of the connectives X (“‘next’), G (‘‘always”),
and U (“until”), either cannot express certain properties [Wo83] or cannot express them conveniently
[LPZ85]). For that reason, eztended temporal logics was introduced in [Wo83, WVS83], and past temporal
connectives were introduced in [LPZ85]). To extend our model-checking algorithm to these logics, one only
needs to show that given a formula, one can build a finite automaton on infinite strings that accepts the

models of the formula. The rest of the algorithm goes unchanged.

For probabilistic programs the situation becomes more complex. In such programs there is a probabil-
ity measure defined on the set of computations. The notion of correctness now becomes probabilistic: the
program is correct if the probability that a computation satisfies the specification is one. However, the
automata-theoretic approach is still very useful. A model-checking algorithm for probabilistic programs was
obtained using this approach by Vardi [Va85]. The time complexity of his algorithm is, however, doubly
exponential in the length of the specification, vs. a singly exponential for non-probabilistic programs [LP85],

rendering it quite impractical.

Using a finer analysis we show here that for a somewhat restricted specification language, we can get a
model-checking algorithm, which is significantly simpler than the algorithm in [Va85], and has an exponential
time complexity in the length of the Speciﬁcation (the time complexity in the size of the program is linear).
This complexity is the same as the one obtained in [LP85] in the non-probabilistic case and is considered
acceptable, since the specifications tend to be usually quite short. The algorithm is again based on the reduc-
tion to the emptiness problem, the only difference with the non-probabilistic case being that the program is

augmented to remember some of its history.

2. Temporal Logics and Automata

Linear time propositional temporal logic (PTL) has been defined in a number of publications [GPSS80,
Pn81]. We review it briefly and give a full definition in Appendix A. Formulas of PTL are built from a set
Prop of atomic propositions and are closed under the application of boolean connectives, the unary temporal
connective X (next), and the binary temporal connective U (until). PTL is interpreted over computations. A
computation is a function I:w—2P"?, which assigns truth values to the elements of Prop at each time instant
(natural number). Such computations can also be viewed as infinite words over the alphabet 2772, We shall
see that the set of computations satisfying a given formula are exactly those accepted by some finite automa-

ton on infinite words.

The type of finite automata on infinite words we consider is the one defined by Biichi [Bu62]. A Biichi
automaton is a tuple A=(X,S,p,Sy,F), where



° Y is an alphabet,

° S is a set of states,
) p:S%XE—2%is a nondeterministic transition function,
. SeC S is a set of starting states, and

. FC S is a set of designated states.

The automaton A is said to be semi-deterministic if |p(s,a)| <1 for each s€S and acX. (If we also have
that |Spl=1, then A is deterministic.) A run of A over a infinite word w=aap * - - , is a sequence 8g,8;, " * -,
where 8€S and 8;€p(8;1,4,), for all i2>1. A run &y,8, - - - is accepting if there is some designated state that
repeats infinitely often, i.e., for some s€F there are infinitely many ¢'s such that sz=s. The infinite word w is
accepted by A if there is an accepting run of A over w. The set of infinite words accepted by A is denoted
L(A).

The following theorem establishes the correspondence between PTL and Biichi automata.

Theorem 2.1. [WVS83] Given a PTL formula ¢, one can build a Biichi automaton A4=(%,S,p,5,F), where
v=2P"" and |51$20(I¢|), such that L(Ay) is exactly the set of computations satisfying the formula ¢. [}

The proof of Theorem 2.1 is central to our approach, so we give it in Appendix B. The reader will notice
that the construction is actually quite simple.

Theorem 2.1 makes the theory of Biichi automata very relevant to temporal logic. The following
theorem states some important results about the emptiness problem for Biichi automata, i.e., the problem of
determining for a given Biichi automaton A whether A accepts some word.

Theorem 2.2.
(1) [EL85a,EL85b] The emptiness problem for Biichi automata is solvable in linear time.

(2) [SVWS85] The emptiness problem for Biichi automata is solvable in nondeterministic logarithmic space.
|

We shall use Theorems 2.1 and 2.2 to establish upper bounds for model checking.
3. Non-Probabilistic Model Checking

3.1. Propositional Temporal Logic

We are given a finite-state program and a PTL formula that specifies the legal computations of the pro-
gram. The problem is to check whether all computations of the program are legal. Before going further, let

us define these notions more precisely.

A finite-state program is a structure of the form P=(W,sy,R,V), where W is a finite set of states, so€ W
is the initial state, RC W? is a total accessibility relation, and V: W—+2P7P asgigns truth values to propositions
in Prop for each state in W. Let u be an infinite sequence ug,u; - - - of states in W such that ug=sj, and
w;Ru;, for all i>0. Then the sequence V{ug), {w;) - - - is a computation of P. We will say that P satisfies
an PTL formula ¢ if all computations of P satisfy ¢.
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Note that a finite state program P=(W,8,R,V) can also be viewed as a Biichi automaton
Ap=(Z, W, 8,p, W) where £=2""" and s’ €p(s,0) iff (s,s' )ER and a=V[s). As this automaton has a set of

accepting states equal to the whole set of states, any infinite run of the automaton is accepting.

Thus, for a finite-state program P and a PTL formula ¢, the model checking problem is to verify that
all sequences accepted by the automaton Ap satisfy the formula ¢. By Theorem 2.1, we know that we can
build an automaton A4 that accepts exactly the sequences satisfying the formula ¢. The model checking
problem thus reduces to the automata-theoretic problem of checking that all sequences accepted by the auto-
maton Ap are also accepted by the automaton A4. Equivalently, we need to check that the automaton that
accepts L(Ap)nm is empty.

First, note that one can build an automaton that accepts the language L{A4) by building the automaton
A.4. By Theorem 2.1, the number of states in this automaton is 2€!#). To take the intersection of the two

automata, one can use the following result:

Lemma 8.1. [Ch74]: Given two Biichi sequential automata A=(X,S,8,0,F) and B=(L,S' ,8' o,p' ,F'),
one can construct an automaton with 2|5]:|S' | states that accepts L(A)NL{B). ]

Note that in our case the set of accepting states in one of the automata is exactly the whole set of states. In

this case it can be shown that the resulting automaton will have |S]:|S’ | states.

Consequently, we can build an automaton for L(Ap)NL{Ay), which has | W)-2X#D states, that we need to

check for emptiness. Using Theorem 2.2 gives us the following two results.

Theorem 8.2.

(1) Checking whether a formula ¢ is satisfied by a finite-state program P can be done in time

o(||P| .20(|¢|))_

(2) Checking whether a formula ¢ is satisfied by a finite-state program P can be done in space
O((log||PiI+61)%). [

Part (1) is the result appearing in [LP85]. Note however how much simpler and clearer our algorithm is
(we urge the reader to compare). Part (2) refines the result in [SC85], which says that model-checking is
PSPACE-complete. Given our automata-theoretic approach, it was reasonably straightforward to obtain it
using Theorem 2.2(2). Note also that it is quite significant as the programs to which model checking is
applied are often very large. For instance, if the finite-state program is given as a product of small com-
ponents (Py, - - - Pi) (cf. [Ha84]), the model checking can be done without building the product machine,
using space O((log||Py||+ - - - +log||Py|)?) which is usually much less than the space needed to store the pfo-

duct machine.

Finally, note that if we want to add a fairness assumption to the execution of the program we are
checking as is done in [CES83, EL85a, EL85b, LP85], this is also easy to do in our framework. In the context
of a finite-state program, most fairness conditions studied in the literature can be viewed as a Biichi style
acceptance condition imposed on the program viewed as an automaton. Clearly, our approach also works
when the program is a Biichi automaton rather than an automaton without acceptance conditions. We will

elaborate on this point in the full paper.



3.2. Temporal Logic with Past Connectives

In [LPZ85], temporal logic is extended with past temporal connectives. This extension does not increase
the expressive power of the logic, but it facilitates expressing certain properties. The works in [BK84,Png4|
illustrate the utility of the past extension of temporal logic for modular program verification. We consider
here two past connectives: Y (previous) and S (since). They are formally defined in Appendix A. Given our
automata-theoretic approach, extending the model checking algorithm to PTL with past connectives is
straightforward. All we need to do is show that Theorem 2.1 holds also for the extension of PTL with past
connectives. The proof is a simple extension of the proof of Theorem 2.1 and is given in Appendix B.
Extending model-checking to PTL with past connectives was first done in [LP85], where the fact that this
extension is possible is called ‘‘surprising”. Our automata-theoretic approach not only makes such an exten-

sion easy and quite obvious, but it also yields the space bound of Theorem 3.2(2).

3.3. Extended Temporal Logic

In [Wo83] it was shown that PTL is not as expressive as one would like it to be. For example, one can-
not express in PTL the following statement: the property p holds in every even state of the computation. To
remedy this deficiency, an extended temporal logic that incorporates nondeterministic finite automata as tem-
poral connectives was introduced {Wo83]. In [WVS83], three different versions of this extension were defined
and studied further. The difference between the three versions is the type of acceptance conditions used for
the finite automata defining the connectives. The three types of acceptance are finite acceptance (some prefix
is accepted by the standard notion of acceptance for finite words), looping acceptance (the automaton has
some infinite run over the word) and repeating acceptance (the automaton has a Biichi acceptance condition).
These acceptance conditions give rise to three logics: ETL, ETL; and ETL,, correspondingly. These logics
are defined in Appendix A.

Again, all we need to do to obtain a model checking algorithm for these logics is to show that given a
formula of the logic, we can build a Biichi automaton accepting the models of the formula. For ETL; and
ETL, it was shown in [WVS83] that the exact analogue of Theorem 2.1 holds. Our model checking algo-
rithm is thus applicable to these logics. For ETL,, the following theorem was shown in [SVW85]:

Theorem 3.8. Given an ETL, formula ¢, one can build a Biichi sequential automaton A4=(Z,S,p,5,F),
where £=2""? and |5]< O(exp|¢|%) such that L(Ay) is exactly the set of computation satisfying the formula
¢. 0l

Note that the only difference between Theorem 3.3 and Theorem 2.1 is that the automaton built in
Theorem 3.3 is exponential in the square of the length of the formula as opposed to exponential in the length
of the formula in Theorem 2.1. This makes model checking for ETL, somewhat less practical. However, we
believe that this case shows very well the power of our automata-theoretic approach. It separates the hard
part of the model checking algorithm {building the automaton) from the rest and enables us to use immedi-
ately whatever results are available for that problem. We challenge anybody to develop a model checking

algorithm for ETL, without using an automata-theoretic approach.



4. Probabilistic Model Checking

4.1. Probabilistic Programs

Following [HS84, LS82] we model probabilistic programs by Markov chains. A (labelled) Markov chain
I=(W,P,w,V) over an alphabet I consists of a state space W, an initial state wo€ W, a transition probability
function P: W‘-»[o,l], such that EWP(u,v)=1 for all ¥€ W, and a valuation V:W—X. For an infinite sequence

w==wg,w;, ' * * of states, we define V{w) as the infinite word V{wo) V{wy) - - - .

As in the theory of Markov processes (see [KSK66]), we now define a probability space called the
sequence space ¥=({1,A,u), where 0=W" is the set of all infinite sequences of states starting at wp, A is a
Borel field generated by the basic cylindric sets

A(wo;'”l: .. :wl)={wen PW=thhy, Wy, ... Wy, 7 }:
and p is a probability distribution defined by
I‘(A(WO’wl"";wn))"_"P(wO’wl)'P(wl:wn)' ne P(wn—l,wn)'

A probabilistic program is a Markov chain over the alphabet 2777, Thus, if weQ, then V(w) is a com-
putation of the program. Let ¢ be a formula, and let A(¢) be the set {w : V{w)k=¢}. It can be shown that
A(¢) is a measurable set. We say that the program II satisfies the formula ¢ if u(A(¢))=1, that is, if almost
all computations of the program II s#tisfy ¢. The probabilistic model-checking problem is to determine if a

probabilistic finite-state program satisfies a given formula.

As we shall see later, our model-checking algorithms do not depend on the actual transition probabili-

ties. Thus we take the size of the program to be the number of nonzero entries in the transition matrix.

4.2. Probabilistic Universality and Emptiness

Theorems 2.1 and 3.3 enable us reduce the probabilistic model-checking algorithm to a purely
automata-theoretic problem, as we did for non-probabilistic model checking. Let IT=( W,P,wg, V) be a finite
Markov chain over X, with ¥p=(0,A,u) its associated sequence space, and let B be an w-automaton on T.
Let A(B) be the set {w:V{w)EL(B)}. It can be shown that A(B) is a measurable set. We say that B is
universal with respect to Il if u(A(B))=1. The probabilistic universality problem is to decide, given II and B,
whether B is universal with respect to II. Clearly, the probabilistic model checking is reducible to the proba-
bilistic universality problem. For technical reason it is also useful to investigate the dual notion. We say
that B is empty with respect to Il if u(A(B))==0. The probabilistic emptiness problem is to decide, given II
and B, whether B is empty with respect to I1.

Probabilistic emptines's and universality for w-automata were studied in [Va85]. It was shown there
that both problems are PSPACE-complete, when the complexity is measured relative to the size of the auto-
mata. (On the other hand, standard emptiness is NLOGSPACE-complete, while standard universality is
PSPACE-complete [SVW85]). Since our construction of automata from formulas (Theorems 2.1 and 3.3) is

exponential, reducing probabilistic model-checking to either probabilistic universality or probabilistic
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emptiness yields an algorithm that requires exponential space [Va85]. In the following sections we show that

for some restricted versions of temporal logic we can improve this upper bound by one exponential.

To achieve this improvement, we have to use a more general definition of w-automata. A Streett auto-
maton is a tuple A=(L,S5,p,5,,F), where I, S, p, and Sy are the alphabet, state set, transition function, and
starting states, respectively, and Fg(25)2 is a collection of pairs of sets of states [St82]. A run of A is accept-
ing if for each pair (L,U)EF, if some state in L occurs in the run infinitely often, then some state in U occurs
in the run infinitely often. We call this a Streeff acceptance condition. Note that a Biichi automaton
A=(Z,5,p,50,F) can be describe as a Streett automaton A=(Z,S,p,S,(5,F)). The opposite translation (given a

__Bllc_l_xx automaton, construct an equivalent Street automaton) is possible, but at the cost of an exponential

3 . - T
increase in the size of the automaton.

4.3. A Restricted Temporal Logic

Let F¢ be a shorthand for the formula trueU¢. Intuitively, F¢ says that eventually ¢ has to be true.
Let TL(X,F) be the fragment of PTL where X and F are the only temporal connectives allowed. We will
develop an efficient probabilistic model checking for TL(X,F). To get the essential idea across, we start by

considering the sublanguage TL(F), where the only temporal connective is F.

We want to check, that given a program P, the set of computations of P that satisfy a formula ¢ is of
measure 1, or equivalently, that the measure of the set of computations that satisfy —¢ is 0. The basic idea
underlying probabilistic model checking is to replace probabilistic quantification, i.e., ‘‘there exists a set of
computations of positive measure’”, by standard quantification, i.e., “‘there exists a computation’. This can
be done if we manage to describe computations that ‘‘represent’ sets of computations. We now develop this

notion of ‘‘representation’.

Let w=aj,a; - - - be an infinite word over an alphabet ©. Define lef(w) to be the set of letters in w,
ie., lefw)={ecr:dA> 1,6=¢;}. Define lim(w) to be the set of letters that occur in w infinitely often, i.e.,
lim(w)={a€L:|{i:a7=a}|=00}. Two infinite words w and w' are limit equivalent iff w=uav and
w' =uav' , where u€L", a€L and let{av)=lim(w)=Ilim{w ' )=let(av' ).
Lemma 4.1. [SC85] Let ILII! :w—2F be two time structures such that IT and IT' are limit equivalent,
and let ¢ be a formula of TL(F). Then II,0/=¢ if and only if I’ ,0k=¢. []

Lemma 4.1 can be interpreted as saying that a computation ‘‘represents’ all computations that are
limit equivalent to it. To reduce probabilistic quantification to standard quantification we also have to
ensure that the computation ‘‘represents’” a set of positive measure. It turns out that this can be ensured by
requiring the computation to be probabilistically fair, i.e, whenever a state appears in the computation
infinitely often all probabilisj:ic choices are taken infinitely often. The nice thing about this condition is that

it can be expressed by a Streett acceptance condition.

Lemma 4.2. Probabilistic model-checking for TL(F) is reducible to the emptiness problem for Streett auto-

mata.
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Sketch of Proof. As in §3.1, we view the program as a finite automaton. Here we impose on this automaton
a Street acceptance condition to ensure that it accepts only probabilistically fair sequences. For a program
P, call the resulting automaton Ap. We now have to check that the language L(Ap)NL(A-4) is empty. We
now combine Ap and A.4 in a construction similar to that of Lemma 3.1 to get a Streett automaton Ap_,

such that P satisfies ¢ iff Ap_4 is empty. ||

The emptiness problem for Streett automata was studied in [EL85a,EL85b], where a quadratic time
algorithm is given. Thus, one would expect the reduction of Lemma 4.2 to yield an algorithm whose time
complexity is quadratic in the size of the program and exponential in the size of the formula. It turns out
that the Streett automata generated in the reduction have a special structure that enables us to get better

bounds.

Theorem 4.3: Checking whether a TL(F) formula ¢ is satisfied by a probabilistic finite-state program P can
be done in time Of||P||-2%#D). []

We do not know whether the space bound of Theorem 3.2(2) holds for probabilistic model checking.

We now want to extend these ideas to the logic TL(X,F). Unfortunately, Lemma 4.2 does not hold for
TL(X,F). The solution is to generalize our notion of limit to deal with sequences of letters. Let w=ga5 - - -
be an infinite word over an alphabet £. For 0<i<j, let w;; denote the finite word a;a;4; - - - a;;. Define
k-let{w) to be the set of k-words in w, i.e., k—let(w)={u€2” = Fy 1,w; iy p=u}. Define k-lim(w) to be the set
of k-words that occur in w infinitely often, i.e., k-lim{w)={ucZ* : |{i: w; i p=u}|=oc0}. Two infinite words
w and w' are k-limit equivﬁlent if w—=uzv and w' =uzv’', where u€L’ 2zX* and
k-let(zv)=k-lim(w)=k-lim(w ' )=k-let(zv) Note that our previous notion of limit equivalence is really

1-limit equivalence.

Lemma 4.4. Let ¢ be a formula of TL(X,F) with k-1 occurrences of the connective X. Let ILII' :w—2F"? be
two time structures such that Il and II’ are k-limit equivalent, Then II,0}=¢ if and only if I1' ,0(=¢. |]

We see now that our notion of ‘‘representation’’ of a set of computation by a single computation is not
an absolute one, but is rather relative to the formula at hand. Again, we need to ensure that the computa-
tion represent a set of positive measure, and again the necessary condition is one of ‘‘probabilistic fairness’’.
Here, however, we have to require probabilistic fairness with respect to subcomputations of length k. This
can be done by augmenting the program so that every states ‘‘remembers’” the previous computation of

length k. Details will be given in the full paper.

Theorem 4.5 Checking whether a TL(X,F) formula f is satisfied by a probabilistic finite-state program P can
be done in time O(||P}|-29M%). []

Note the increase in the complexity with respect to the length of the formula. We do not know if this bound

can be improved.
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4.4. Adding Past Connectives

We now consider TL{X,F) extended with the past connectives Y and S. We do not allow, however,
future connectives inside past formulas. That is, we do not allow an X or F to appear in the scope of Y or S.
We call this fragment past—-TL{X,F). Though it seems somewhat restricted, this fragment has in fact the
same expressive power as PTL [LPZ85]. (Note, however, that the translation in [LPZ85] from PTL to
past—-TL{X,F) has a nonelementary complexity.)

Beforing dealing with past-TL(X,F), we examine the pure past fragment TL(Y,S), where only the tem-

poral connectives Y and S are allowed.
Lemma 4.6. Let ¢ be a TL(Y,S) formula. Then the automaton Ay is semi-deterministic. []

While probabilistic emptiness and universality for non-deterministic Biichi automata are PSPACE-

complete [Va85], they are much easier for semi-deterministic automata.

Theorem 4.7.

(1) Checking whether a TL(Y,S) formula ¢ is satisfied by a probabilistic finite-state program P can be done
in time O(||P]|-2#D).,

(2) Checking whether a TL(Y,S) formula ¢ is satisfied by a probabilistic finite-state program P can be done
in space O((log]|Pj|+|¢)?). (]
Theorem 4.7 suggests that if we can separate the future and past components of past-TL(X,F) formu-

las, then we might be able to extend Theorem 4.5 to past-TL{X,F). We show in the full paper that this is

indeed the case.

4.6. Probabilistic Concurrent Programs

So far we have viewed programs as Markov chains. This model assumes that all transitions of the pro-
grams are probabilistic. This is adequate for sequential programs, since a nonprobabilistic transition can be
viewed as a transition with probability 1. But for concurrent programs, where many processes are running
concurrently, some transitions are, inherently nondeterministic. The nondeterminism arises from two sources.
The first source is the processes themselves. First, processors can die and restart at arbitrary times. Further-
more, processes start running certain protocols only when they need to, e.g., when they are trying to use
some shared resource, and we do not want to make any probabilistic assumptions about that. The second
source of nondeterminism is the asynchronicity of the system; some processes may run much faster than other
processes. It is convenient to imagine a scheduler, that decide which process is going to perform the next
step. Though we do not want to make any probabilistic assumption about the scheduler, we will assume that

it is not a pathological one, i.e., it satisfies some fairness condition.

In [Va85] concurrent Markov chains are suggested as a model for probabilistic concurrent programs. A
concurrent Markov chain II=(W)N,F,P,wy, V) over an alphabet ¥ consists of a state space W, a set of non-
deterministic states NC W, a set of fasr states FC N, a transition probability function P: W?—[0,1], such that
EWP(u,v)=1 for all u€ W=—N, a starting state wo€E W, and a valuation V:W—3X. The idea is that W-N is the

set of states where a probabilistic transition has to be made, N is the set of states where a nondeterministic
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transition has to be made, and F is the set of states where the nondeterminism comes from the fair scheduler.
If uEN, then we interpret P(u,v) to mean that there is a possible transition from u to v if and only if
P(u,v)>0. A probabilistic concurrent program is a concurrent Markov chain over the alphabet 2777, In the
full paper we will show how our approach to model checking is easily extensible to probabilistic concurrent

programs.

6. Concluding Remarks

We have described an automata-theoretic approach to model checking and its application to probabilis-
tic model checking. We strongly believe, and hope we have convinced the reader, that an automata-theoretic
approach to the applications of propositional temporal logic is extremely helpful. This approach summarizes
the relevant facts about temporal logic into one proposition: the fact that for any temporal formula ¢ we can
construct an automaton Ay that accepts precisely the computations that satisfy ¢. This has the tremendous
advantage of enabling us to separate the problems: the logical problem, which is to build the automaton from
the formula, and the automata-theoretic problem, which is to relate the program to the automaton. We can-

not stress too much how helpful we have found this separation in understanding and extending model check-

ing. We again urge the reader to compare the clarity of the results obtained using our method to that of the

model-checking results obtained using tableau-based approaches.

Our results on probabilistic model checking make a first step towards obtaining usable algorithms for
this difficult problem. The two most obvious open questions in this area are the optimality of our upper

bounds and whether the results of §4 can be extended to full temporal logic.
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Appendix A: Propositional Temporal Logic
Future Fragment

Formulas of PTL are built from a set of atomic propositions Prop and are closed under boolean opera-
tions, and the application of the unary temporal connective X (next) and of the binary temporal connective U
(until). PTL is interpreted over computations IL:w—2P7. The function IT can be thought of giving the set

of propositions true at each time point ¢€w. For a computation IT and a point f€w, we have that:
° I1,s=p for pE€Prop iff p€ll(s)
o ILi=£/\yiff II,i=¢ and I1,s=¢
. II,¢=-¢ iff not Il,il=¢
o ILi=X¢ifl M,i+1=¢
° IL#g=¢Uy iffl for some j2> 1, I, sk=¢ and for all k, {<k<jILK=§
We will say that II satisfies a formula ¢, denoted IT=¢, iff I1,0}=4¢.
Past Fragment

We consider PTL extended with two past operators: Y (previous) and S (since). The operator Y is unary
and is the past analogous of next (Y) and the operator S is binary and is the past analogous of until (U).

Their semantics are defined as follows:

. H,i=Y¢ iff i>0 and II,i~1}=4¢

. II,i=€5y iff for some 0< <1, I,j=v and for all k, j<k<jILk=¢.
Ezxtended Temporal Logic

We consider the extended temporal logic (ETL) where we have nondeterministic finite-state automata

as connectives:

Every nondeterministic finite automaton A=(X,S,R,8,F), where T is the input alphabet {a, . . . ,a,}, §
is the set of states, p:SX X —2° is the transition relation, 8€ES is the initial state, and FC S is a set of
accepting states (or a set of designated states, see below), is considered as an n-ary temporal connective.
That is, if ¢y, . . . ,§, are formulas, then so is A(¢;, . . . ,@,).

Semantically, we have:

. I,i=A(41, . . . ,04), where A=(L,S,p,8,F), iff there there exists an infinite word w=wow; - - - over L,
accepted by A, such that for all >0, if w;is a;, then IL,i+jl=¢s
Depending on the notion of acceptance we use for the automaton A, we define the three different versions of

the extended temporal logic ETL.

° ETL, (finite acceptance): an infinite word w is accepted by A if there is a finite run of A on a prefix of w

that ends in a state in F.
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. ETL,; (looping acceptance): an infinite word w is accepted by A if there is some infinite computation of

A on w

) ETL, (repeating or Biichi acceptance): an infinite word w is accepted by A if there is some infinite com-

putation of A on w that goes infinitely often through a state in F.

Appendix B: Proofs of Theorem 2.1
The construction uses the notion of the closure of a PTL formula ¢, denoted ef¢) defined as follows:
o ¢€ckd)
o &/\vEcld) — & yECl9)
o WECK$) — YEck)
. YEcl¢) not of the form - — ~E€cl¢)
o Xyecld) — yecks)
o (Uyecl(¢) — & ¥Ec9).
Intuitively, the closure of a formula ¢ is the set of its subformulas and their negation. Note that we have
|el(¢)|<2|¢|. The Biichi automaton we build for a formula ¢ is taken as the combination of two automata:
the local automaton and the eventuality automaton. The local automaton checks for ‘‘local inconsistencies™ in
the model, i.e., it checks for inconsistencies between consecutive states. The only thing the local automaton

does not check is that for eventuality formulas (i.e. formulas of the form £Uy) a point where ¢ is satisfied is

indeed eventually reached. This is done by the eventuality automaton.
Constructing the Local Automaton

The local automaton is L=(2“(¢),NL,pL,N¢,NL). The state set Ny will be the set of all sets u of formulas
in el{¢) that do not have any propositional inconsistency. Namely they must satisfy the following conditions

(we identify a formula ¢ with ~—¢):
. YEu iff ~y¢u.
o £ /\ ¢YEuiffl (Eu and YEu.
For the transition relation pz, we have that v€p;(u,a) if a=u and:
® Xyeu iff yev
° EUYEy iff Y€u or, §€Eu and EUYEY
Finally, the set of starting states Ny consists of all sets u such that ¢€u. The local automaton does not
impose any acceptance conditions.

The Eventuality Automaton

Given an PTL formula ¢, we define the set e(4#) of its eventualities as the subset of c{¢) that contains
all formulas of the form £Uy The eventuality automaton is E=(2“(¢),2‘(¢),p5,{0},{0}), where for the transi-
tion relation pg, we have that vEpg(y,a) iff:
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. u=#9 and for all EUyEa, either Y€a or EUYEY.
° u7#8 and for all §UYEx, either Y€a or EUYPEY.

Intuitively, the eventuality automaton tries to satisfy the eventualities in the model. When the current
state is @, it looks at the model to see which eventualities have to be satisfied. Thereafter, the current state

says which eventualities have yet to be satisfied.
Combining the Automata

We now combine the local and eventuality automata to get the model automaton. The model automa-
ton M=(2°%) Npuprs Nam,Fad is obtained by taking the cross product of L and E. Its sets of states is
Ny=N;x2%#®). The transition relation p,is defined as follows: (w,2)Eprf(2,v),e) iff wEp;(u,a) and 2€pg(v,a).
The set of starting states is Npg=NyX {#}, and the set of designated states is Fp=N;X{#}. Note that
| Npd < 218l 2ld#)l < 9314l

The automaton we have constructed, accepts strings over ockd), However, the models of ¢ are defined
by strings over 277P. So, the last step of our construction is to take the projection of our automaton on 2P,

This is done by mapping each element €2 into the element a€27"? such that bNProp=a. |]
Adding Past Connectives

We need to slightly modify the definition of the local automaton to take into account the past connec-
tives. The change is in the definition of the transition relation and of the initial states. For the transition

relation, we need to add the clause that vEp;(y,a) iff
° Yy€ev iff YEv, and
° ESyev iff YEv or, é€Ev and §UYEu.
And, the set of starting states now consists of all states u such that:
] ¢€u,
. Yy¢u, for all Y€cl(¢), and
o ESYeuiff peu. ||



