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Two-player games of incomplete information have certain portions of positions which are
private to each player and cannot be viewed by the opponent. Asymptotically optimal
decision algorithms for space bounded games are provided. Various games of incomplete
information are presented which are shown to be universal in the sense that they are the
hardest of all reasonable games of incomplete information. The problem of determining the
outcome of these universal games from a given initial position is shown to be complete in
doubly exponential time. “Private alternating Turing machines” are defined to be a new type
of alternating Turing machines related to games of incomplete information. The space
complexity S(n) of these machines is characterized in terms of the complexity of deterministic
Turing machines, with time bounds doubly exponential in S(n). Blindfold games are restricted
games in that the second player is not allowed to modify the common position.
Asymptotically optimal decision algorithms for space bounded blindfold games are provided.
Various blindfold games are also shown to have exponential space complete outcome
problems and to be universal for reasonable blindfold games. “Blind alternating Turing
machines” are defined to be private alternating Turing machines with restrictions similar to
those in blindfold games. The space complexity of these machines is characterized in terms of
the complexity of deterministic Turing machines with a single exponential increase in space
bounds.

1. INTRODUCTION

A two-player game G consists essentially of disjoint sets of positions for two
players named 0 and 1, plus relations specifying legal next-moves for the players. We
assume positions are strings over a finite alphabet. A position P contains portions
which are private to each player (invisible to their opponent) and the remaining
portions of P are common and may be publicly viewed by both players. The set of
legal next-moves for a given player must be independent of the opponent’s private
portions of positions.

* A preliminary version of this paper appeared as “Universal Games of Incomplete Information” in
the 11th Annual ACM Symposium for Theory of Computing, 1979.
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The game G is of perfect information if no position contains a private portion. On
the other hand, a game is blindfold if player 0 never modifies the common portion of
a position.

For example, consider the game PEEK of Fig. la. (PEEK was first described in
Stockmeyer and Chandra [18].) A position of PEEK consists of a box with two open
ends and containing various plates stacked horizontally within. The plates are
perforated by holes of uniform size in various places. The top and bottom of the box
are also perforated with holes. Each plate contains a knob on one of the open ends of
the box, and the plate may slide horizontally to either of two locations: “in” or “out.”
Once “out,” a plate can only be pushed “in,” and vice versa. The players stand at the
two open ends of the box. A move by a player a € {0, 1} consists of grasping a knob
from his side and pushing the corresponding plate either “in™ or “out.” The player
may also pass. If just after a move of player a the plates are aligned so that the
player can “peek” through a sequence of holes from the top to the bottom, then the
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Fic. 1. (a) A position of PEEK; (b) a position of PRIVATE-PEEK; (c¢) a position of BLIND-
PEEK.
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player wins. PEEK is a game of perfect information: each player knows the pattern
of holes on the plates and can view the location of all the plates.

To introduce private portions of positions, we place partial barriers on both ends of
the box, as in Fig. 1b. These barriers hide the location of some, but perhaps not all, of
the opponent’s plates. Also, we place a barrier on top of the box, as in Fig. 1b, so
each player only can view half of the top of the box. Both players are still aware of
the pattern of holes on each plate. However, each player can attempt to “peek”
through the box only from their half of the top of the box. Let PRIVATE-PEEK be
the resulting game of incomplete information. By requiring that the barriers on the
side of player 1 obscure the locations of all the opponent’s plates, we have the
blindfold game BLIND-PEEK (see Fig. 1c).

The outcome problem for a game G is the problem of determining the existence of a
winning strategy for player 1, given an initial position. If no a priori-bound is placed
on the size of positions of games, the outcome problem is undecidable (see the
computation games of Sect. 3). We consider a game to be reasonable if its space
bound for positions is O(n).

Given a class of games &, a game G is universal to # if (1) G €% and (2) the
outcome problem for each G’ € ¥ is log-space reducible (see Stockmeyer and Meyer
[17]; a log-space reduction is always polynomial time) to the outcome problem for
G. The game PEEK was shown universal to reasonable games of perfect information
in Stockmeyer and Chandra [18]. We show BLIND-PEEK is universal for all
reasonable blindfold games, and that PRIVATE-PEEK is universal for all reasonable
games. While the outcome problem for PEEK is complete (with respect to log-space
reductions) in exponential time, the outcome problem for BLIND-PEEK is complete
in exponential space, and the outcome problem for PRIVATE-PEEK is complete in
double exponential time.

A game with an easy-to-compute next-move relation can be considered to be a
computing machine. Game G accepts input w, depending on the outcome of the game
from an initial position containing w. Games of perfect information related in this
way to the alternating machine (A-TM) of Chandra, Kozen, and Stockmeyer [1] in
which existential states (identified with player 1) alternate with universal states
(player 0) during a computation. A nondeterministic Turing machine (N-TM) is
related to a game of perfect information with the second player absent, and a deter-
ministic Turing machine (D-TM) is related to a game of perfect information with at
most a single next-move from any position.

In this paper we introduce two new types: private and blind alternating machines.
We add to an 4-TM certain work tapes private to universal states (player 0); the
machine cannot read the private tapes while in existential states. The result is a
private alternating machine (PA-TM), as in Fig. 2. For a blind alternating machine
(BA-TM) we restrict a PA-TM so that the universal states can write only on their
private tapes, and on no other tapes. Acceptance of input strings by these machines is
defined by the outcome in corresponding computation games.

Let # be a set of functions on variable n. For each a € {D, N, 4, PA, BA}, let
aSPACE(#) be the class of languages accepted by a-TMs within some space bound
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An alternating Turing machine with a tape private to the universal states.

FiG. 2.
in.#, and let aTIME(# ) be the class of languages accepted by a-TMs within some

time bound in .#, Let EXP(# ) be the set of functions
(" e¢>0 and  F(n)€.#}.

We drop the set brackets in the above notation if .# is a singleton set and let
EXP(f(n)) denote EXP({f(n))}). For example, thie polynomial functions POLY (n) =

{n®|c> 1} can be defined in this notation as POLY (n) = EXP(log n).
Chandra, Kozen, and Stockmeyer [1] relate the space and time complexity of A-

TMs and D-TMs as follows:
For each function S(n) > log n,
ASPACE(S(n))=DTIME(EXP (S(n)))
ATIME(EXP (S(n))) = DSPACE(EXP (S(n))).
We characterize the space complexity PA-TMs and BA-TMs in terms of the time
and space complexity of 4-TMs and D-TMs as follows (see Fig. 3):
For each function S(n),
BASPACE(S(n)) = ATIME(EXP(S(n)))
= DSPACE(EXP(S(n))),

PASPACE(S(n)) = ASPACE(EXP(S(n)))
= DTIME(EXP(EXP(S(n)))).
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FiG. 3. Complexity jumps for a-TMs from aSPACE to deterministic time and space; a=A for
“alternation;” a = BA for “blind alternation;” a = P4 for “private alternation;” ¢ =N for “nondeter-
ministic.”

Also, the time complexity of PA-TMs, BA-TMs, and 4-TMs are all roughly the same:

PATIME(EXP(S(n))) = BATIME(EXP(S(n)))
= ATIME(EXP(S(n)))
= DSPACE(EXP(S(n))).

This paper is organized as follows: the next section defines games of incomplete
information; Section 3 introduces our PA-TMs and BA-TMs; Section4 presents
decision algorithms for space bounded games, and also games with both alternation
and space bounds; Section 5 gives lower bounds on the complexity of space bounded
games; Section 6 considers the complexity of time bounded PR-TMs and BA-TMs;
Section 7 describes certain propositional formula games which are universal for
reasonable games; and Section 8 concludes the paper with mention to extensions and
applications of this work to multiplayer games and multiprocessing, in collaboration
with Gary Peterson. .
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2. Two-PLAYER GAMES OF INCOMPLETE INFORMATION

2.1. Game Definitions
A (two-player) game is a tuple G = (POS, i), where

(i) POS is the set of positions, with POS = {0, 1} X PP, X PP, X CP and PP,,
PP,, CP are sets of strings over a finite alphabet.

(i) +—<POS X POS is the next-move relation and H satisfies axioms
(A1), (A2) given below.

The players are named 0, 1. If p = (a, pp,, pp,, ¢p) is a position in POS, then p is
composed of a number a € {0, 1} indicating which player’s turn is next, a portion pp,
which is private to player 0, a portion pp, which is private to player 1, and a common
portion cp.

For a € {0, 1}, let POS, be the set of positions with Ist component a; thus POS,
are the positions for which it is player i’s next move.

Informally, a player wins by making the last move. Thus the object of the game is
to force the opponent into a position from which there is no next move. Formally, let
the set of winning positions be W= {p € POS|p+ p’ for no p’}. If p€ W A POS,
then p is a winning position for player 1.

Given a position p = (a, pp,, pp,, cp) let vis,(p) = (i, pp,, cp) be the portion visible
to player 1 and let priv,(p) = pp, be the portion of p private to player 1 (vis,(p) and
privy(p) are defined similarly, with O in place of 1).

The idea of imperfect information is captured in the following two axioms.
Axiom 1 asserts that a player cannot modify the portion of the position private to his
opponent. Axiom 2 asserts that a player’s possible moves next are independent of the
portion of the position private to his opponent.

Al. If p€ POS, and p - p’ then privy(p) = privy(p’).
A2. If p,g€EPOS,— W and vis,(p)=vis,(g) then {vis,(p')|ptp'}=
{vis,(¢") g+ ¢'}.
We also assume both Al and A2 hold with O exchanged with 1.

2.2. Plays and Strategies for Games

For any finite string 7 of positions, let last(n) be the last position of z. Fix an
initial - position p,€ POS. A play is a (possibly infinite) string 7=pyp,,.., of
positions such that p, = p, is the initial position, p, = p,, p, - ps,..., and last(z) € W
whenever 7 is finite. A play 7 is said to be a win for player 1 if = is finite and
last(n) € POS, A W.

A play prefix n is a finite nonnull initial substring of a play. Intuitively, a play
prefix represents a sequence of legal moves starting from an initial position. Note that
the players need not alternate. After any play prefix 7, the sequence vis, () represents
the extent of player 1’s knowledge about the game play to date. We define vis, ()
inductively. Let p = last(n). If 7 is of length 1 then vis,(n) = vis,(p). Suppose we are
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given p’ € POS such that p+ p’. The move p — p’ is a private move of player 0 if
both p€POS, and vis,(p)=vis,(p’). If the move is private then we Ilet
vis,(np’) = vis,(m) (intuitively, this first case ensures that player 1 cannot detect
moves of player 0 which do not modify that portion of p visible to player 1), and
otherwise vis,(n) = vis,(n), vis,(p).

The game tree T is the set of play prefixes. The root of T is the initial position p,.
Each play prefix 7 is considered a node of T. The children of n are those play
prefixes 7’ of length one more than n and such that 7 is a prefix of n’. Let T, be the
set of play prefixes 7 such that last(n) € POS, — W; thus it is player 1’s turn to move
at last(x).

A strategy for player 1 is a function o: 7, — T such that

(1) for any n € T,,0(r) is a child of #, and

(2) ifm,n' €T, and if vis,(n) = vis,(n’) then vis,(a(n)) = vis,(c(n')).

Thus o is a rule for player 1 to select his next move. Condition (2) says that this
selection must be made only on the basis of the knowledge player 1 has about the
progress of the game to date. (Note that this is not implied from axiom A2.) A play =
is a play induced by strategy ¢ if whenever 7’ is a prefix of 7 and n’ is in the domain
of o, then o(n’) is a prefix of 7. ¢ is called a winning strategy for player 1 iff every
play by strategy o is a win for player 1.

The outcome problem for game G is: given an initial position p, € POS, is there a
winning strategy for player 1?

Note that although games such as checkers and Go have standard.initial positions,
their rules may be readily generalized to n X n boards. Initial positions of games are
not always fixed in this paper, since we shall wish to consider the outcome problem
for games, given arbitrary initial positions. This allows us a meaningful notion of the
complexity of the outcome of these games. The complexity of various generalized
games of perfect information is considered in Schaefer [15], 1978, Even and Tarjan
[2], Fraenkel, Garey, and Johnson [3], Lichtenstein and Sipser [8], Fraenkel and
Lichtenstein [4], Stockmeyer and Chandra [18]. The complexity of a blindfold game
was first considered in Jones [6].

To model a game like two-player poker, in which players do not have perfect infor-
mation even at the start, we may simply add an initial move which allows player 0 to
choose both player’s cards; this is justified by Proposition 2.1, given below.

It should be clear that the outcome of a game is not affected if player O is allowed
to “cheat,” by viewing the private portions of player 1’s positions. For each position
p € POS, let p° be the position derived from p by making common to both players
that portion of p originally private to player 1. Let G° be the game so derived from
game G. It follows immediately from our definition of strategies that

ProposITION 2.1. Player 1 has a winning strategy in G from initial portion p, iff
player 1 has a winning strategy in G° from initial position pj.
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Nevertheless, the outcome of probabilistic strategies, as defined in Reif [11] are
highly dependent on the existence of private positions of both players.

2.3. Special Types of Games

A strategy o is Markov if o(n)=o(n') for all play prefixes 7, =’ such that
last(r) = last(n'). Markov strategies are independent of previous play except for the
current position. Thus it suffices to consider a Markov strategy to be a mapping from
the current position to the next position.

A game is perfect information if the private portions of any position is the fixed
value null, so that the only nontrivial information in a position is the common
portion. Thus POS~ {0, 1} X CP. For example, chess, checkers, and Go are all
games of perfect information.

PROPOSITION 2.2. In any game of perfect information, if player 1 has a winning
strategy o, then player 1 has a winning Markov strategy.

To prove this proposition we define a strategy ¢’ such that for any play prefix
m,6'(t)=0(n'), where n' is the lexically minimal play prefix such that
last(n) = last(z’). Then ¢’ is winning for player 1 if ¢ was. On the other hand,
strategies for games of incomplete information must generally depend on previous
play to determirie the possible private positions of the opponent.

A game is blindfold if the common portions of p and p’ are the same whenever
pE€POS, and p+ p’; thus there is no interchange of information from player 0to
player 1 in a blindfold game. Some examples of blindfold' games are given in
Section 7. Also see Jones [6]. The traditional German game of blind chess is not truly
a blindfold game since there is a gradual transfer of positional knowledge when
players .are informed of illegal moves.

A game is solitaire if on any play prefix on which player 1 has made at least one
move, the remaining moves of player O are deterministic. An initial sequence of
moves of player 0, preceding any move of player 1, may allow player O to develop its
private portion of the position. For example, Battleship, Mastermind, and of course
the card game of solitaire are all solitaire games.

A game is nondeterministic if POS, A (POS — W) is empty. Note that a nondeter-
ministic game can always be made a game of perfect information without modifying
its outcome, by simply letting the private portions of positions be in the common
portion of positions.

A game is deterministic if the next move relation — is, hence for each portion
p € POS, there is at most one position p’ € POS such that p = p’.

2.4. Complexity Bounds on Games

Let G=(POS,—) be a game. Let us assume for any position p € POS, the
positions {p’ | p + p’} are ordered , (p)s.... -4 (P) so that i, (p) is the ith position
derived by a next-move from p. A next-move transducer for H is a one-to-one
encoding function f that maps positions into Z* for some finite alphabet Z. The next-
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move transducer, when given initial position p,,i, and f(p) for some position p,
produces f(; (p)). The space used to write p, is not counted in the space of the
transducer, but the space used to write f(p) is counted.

Let a move pt p’ be an alternation if p' € W and either (p€ POS, and
p' € POS)) or (p€ POS, and p’ € POS,).

Game G has time bound T(n) (alternation bound A(n), space bound S(n), respec-
tively) if on.each position p, € POS of length n from which player 1 has a winning
strategy, there is. some ¢ such that for each play = induced from o,z has <T(n)
moves (7 has <A4(n) alternations, the next move transducer requires <.S(n) work tape
cells for the moves of =, respectively).

It is interesting to note that any game with a fixed initial position and finite time or
space bound, can be represented as a physical object with a finite game board and a
finite set of tokens for marking positions.

Let G be a reasonable game if it has space bound O(n).

3. PRIVATE AND BLIND ALTERNATING MACHINES

The alternating machine proposed by Chandra, Kozen, and Stockmeyer [1] has a
natural correspondence to games of perfect information. The states of alternating
automata are named either wuniversal or existential. The sequencing between
existential and universal states corresponds to the alternation of moves by players in
the play of a game. L2 ;

We introduce here a new type of alternating machine with private tapes which have
a natural correspondence to games of incomplete information. In fact, we will define
the languages accepted by these machines by the existence of winning strategies for
the corresponding computation games. :

Let a private alternating machine (PA-TM) be a tuple

M= (S7 Q’ qI!Z’F'J #! b: t! tp55)=

where

S is a finite set,

Q< {0,1} x S is the state set,

q, € Q is the initial state, _

X, I are the finite sets of input and fape symbols with Z < T,

#,b € I' — X are the distinguished endmarker and blank symbols,

t is the number of tapes and t, is the number of private tapes,

SS (@ XTI X (Q XTI X {left, right, static}’) is the transition relation, with
restrictions given below.

If g=(a,s) is a state in Q, then g is composed of -a number a € {0,1} and a
common portion s € S. If a=1 then g is an existential state and otherwise if a =0
then g is a universal state.
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There is a read-only input tape. Initially the input tape contains #w#, with the
input tape head scanning the first symbol of w, where w € Z* is an input string. (We
assume there are no transitions past the endmarkers #.) There are also 71— 1 work
tapes, initially containing two-way infinite strings of the blank symbol b. The tapes
L,..., t, are private work tapes; they can only be written on from a universal state, and
the transitions from each existential state are independent of the contents of the
private work tapes (these restrictions to & are made precise below). The other
t—t,— 1 tapes are common work tapes and might be written on from any state of Q.
The contents of a tape are given as (L, R), where L is the nonblank suffix of the
portion of the tape to the left of the scan head, and R is the nonplank prefix of the
portion of the tape just under and to the right of the scan head.

We now define the computation game G = (POS, ), where POS are the
positions (to be defined) of M and the next moves - € POS X POS are as defined by
the transition relation & of M. The player | which makes moves from existential
states is called the existential player and the player 0 which makes moves from
universal states is called the universal player.

Let a position of M be a tuple p = (a, pp,, PP, cp), where

(i) a€ {0, 1} indicates that the current state is either existential (@ =1) or
universal (a = 0),

(ii) the portion pp, private to the universal player contains the contents of the
private tapes,

(iii) the portion pp, private to the existential player 1 is null

(iv) the common portion cp is a pair whose first part is the common portion of
the state, and whose second part is the contents of the common work tapes.

Thus the portion vis,(p) visible to the existential player is all of p but the contents of
the private tapes, and the portion vis,(p) visible to the universal player is all of p.
(This is justified by Proposition 2.1.) We require G to satisfy axioms (Al), (A2);
this gives us our required restrictions on the transition function é of M. (NOTE. We
may further decompose each of the states into a private component, with restrictions
to the transition relation just as given here for the private tapes. This additional
complication given in our original (Reif [11]) definition of PA-TMs is not required as
long as there is at least one cell of one private tape which may be used to store the
state of the universal player.)

For any input string @ € Z'*, let the initial position p,(w) have initial state g, and
tape contents initialized as described above. We introduce some (redundant)
terminology to aid the reader’s intuition. The accepting states are those universal
states with no successors. The rejecting states are those existential states with no
successors. Each play of G is called a computation sequence and the game tree T
called a computation tree. The input string w € Z* is accepted by M if the existential
player has a winning strategy. The computation sequences induced by a winning
strategy form an accepting subtree of T. Let the language of M be
L(M)= {w € Z*|w is accepted by M}.
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The PA-TM is a natural generalization of various types of machines previously
described in the literature. If M has no private tapes, it is an alternating machine (A-
TM) as described by Chandra, Kozen, and Stockmeyer [1]. These have computation
games which are of perfect information. If M is further restricted to allow only those
universal states which are accepting (i.e., have no successors), then it is a nondeter-
ministic Turing machine (N-TM) as is now common in the literature. If the transition
relation of M is still further restricted to be deterministic, then we have a deter-
ministic Turing machine (D-TM or just TM), the machine originally envisioned by
Turing.

We now define still another type of machine. Let a BA-TM be a PA-TM restricted
so that the universal player can never modify the common portion of any position,
ie., can mever write on nor move the heads of the common tapes nor modify the
common portion of the state. (Note that this property is easy to decide from
inspection of the transition relation of M.) The computation game of BA-TM is by
definition a blindfold game. Thus we have defined for each game type g in
% = {incomplete information, blindfold, perfect information, nondeterministic, deter-
ministic} a corresponding machine type m(g) in .# = {private alternating, blind alter-
nating, alternating, nondeterministic, deterministic} with computation game of type g.

The winning strategies of computation games can be recursively enumerated, and
thus the language of each P4-TM and BA-TM is recursively enumerable. Also, the D-
TMs accept all the recursively enumerable sets and each D-TM is a PA-TM and a
BA-TM. Hence we have

THeOREM 2.1. The PA-TMs and BA-TMs each accept precisely the recursively
enumerable sets.

We next consider the computational complexity of PA-TMs and BA-TMs. M has
space bound S(n) (time bound T(n), alternation bound A(n), respectively) if for each
input string w € L accepted by M there is an accepting subtree T’ such that no tape
has more than §(n) nonblank cells on any configuration (each computation sequence
n € T' has at most T(n) moves, each 7 € T’ has at most 4(n) alternations, respec-
tively). Thus computation game G,, has space bound O(S(n + O(1))) (time bound
T(n 4+ O(1)), alternation bound A(n + O(1)), respectively) if M has space bound S(n)
(time bound T(r), alternation bound 4 (n), respectively).

By the usual tape encoding techniques (where we encode each 2/¢ consecutive
work tape cells as a 2/e-tuple in a new tape alphabet), we have a constant space
compression result:

THEOREM 3.2. For any ¢ > 0 and machine M of machine type g space bound
S(n), there is a machine with space bound £S(n) that accepts the same language as
M, and with the same machine type g as M with no additional tapes or alternations.

We also have a constant speed-up result:

THEOREM 3.3. For any ¢ > 0 and any machine M of any type in %, with time
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bound T(n) such that inf, ., T(n)/n = co and at least one tape, there is a machine of
the same type as M with time bound eT(n) and the same number of tapes, that
accepts the same language as M.

Proof. There is a constant d upper bounding the number of next possible moves
from any given position of M. Thus there are at most d' positions of M reachable
after ¢t moves from any given position. We construct a simulating machine M’ of the
same type as M and which accepts the same strings as M. As in Theorem 3.2, we
encode each ¢ consecutive cells of each tape of M as a t-tuple in the tape alphabet of
M’. M’ will have a distinguished state associated with each of the 29 possible
strategies of the existential player within the next ¢ existential moves from any given
position. Also, M' will have an additional tape, private to the universal player, which
will contain a counter 4, where 0 <4 <t A move by the universal player of M is
private if it does not modify the common portion of the position. Given input string
w E Z". the simulation will proceed in at most T(n2)/t phases, where in each phase M’
simulates ¢ nonprivate steps of M. At the start of a phase, 4 is set to t. Then M’
moves one cell left, two cells right, and then one cell left on each of its tapes so as to
determine the current relevant tape contents. Then the existential player of M’ is
allowed, by a single state transition, to choose its strategy for the next ¢ existential
steps of M (if no such strategy exists, M’ rejects).

The universal player of M’ then executes a series of rounds, each of which requires
only a single step of M’ and furthermore each is undetectable to the existential player
of M". At the start of a round, we can inductively assume that ¢ — 4 is the number of
nonprivate steps of M so far simulated by M’ during this phase. On this round the
universal player of M’ simulates #' = min(z, 4) steps of M (some of these steps may
be existential; for these moves the strategy previously chosen by the existential player
of M’ is used. At the end of the round, 4 is privately subtracted by ¢' —¢,, where 7, is
the number of steps of the round which are private to the universal player. If now
A > 0 then we proceed to the next round, and otherwise we terminate the round. After
the last round, the universal player makes visible to the existential player all (if any)
the modifications to the common portion of the position which were made on the
simulated nonprivate moves during this phase. M’ makes four additional moves of
the tape heads: (left, twice right, and left again) to update the tapes, and then the
simulation proceeds to the next phase. M' makes at most 10 steps for every 7 steps of
M, and the total time bound of M’ is n + [n/t] + 10[T(n)/t] < eT(n) if n < 55¢T(n)
and we let = 20/e. On the other hand, there are only a constant number of inputs of
length n > %¢T(n), and for these inputs we can use the finite state control to decide
acceptance within time n. [

Next we show that the computation games of various types of machines are
universal for the corresponding classes of games. Fix some functions S(n) 2> logn
and A(n) and let g be a game type in ¥. Let % be the class of games of fixed game
type g with space bound S(n) and alternation bound A (n). Let us assume that the set
of positions derived by a single move from any given position of length n, can be
computed in deterministic space MS(n). For each game G = (POS, -) of #, let B
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be the deterministic log space mapping from positions in POS to their binary string
representation. Let N be a binary string encoding the deterministic space M.S(n)
next move transducer for . .

Clearly, there is a machine Mg such that for each game G € # and position p of
G, M accepts (Ng,Bg(p)) iff player 1 has a winning strategy in G from initial
position p. Thus M, decides the outcomes of all the games of %. Furthermore, M
has corresponding machine type m(g) (i.e., its computation game is of type g) has
tape alphabet {0, 1, b,#]}, space bound S(n)+ MS(S(n)), and alternation bound
A(n). If MS(S(n))=0(S(n)) then by Theorem 3.2, M, need to have only space
bound S(n). Thus we have shown:

THEOREM 3.4. If MS(S(n))= 0(S(n)) then the computation game G"¥ is a
universal game for the game class % .

By applying the space compression Theorem 3.2, we have

COROLLARY 3.4. For each game type GE %, if .# is the class of reasonable
games (i.e., with space bound S(n) = n) of type g, then there is a linear space bounded
machine M 4 of corresponding type m(g) such that GM# is a universal game for % .

4. DECISION ALGORITHMS FOR SPACE BOUNDED GAMES
It is easy to show

THEOREM 4.1. Any deterministic (nondeterministic, respectively) game with space
bound S(n)>logn can be decided in deterministic (nondeterministic, respectively)
space O(S(n)). '

.. By applying the result of Savitch [14] we can easily show

COROLLARY 4.1. Any nondeterministic game with space bound S(n)> log n can
be decided in deterministic space O(S(n)?). :

We consider now in turn decision algorithms for deciding games of perfect infor-
mation, then games of incomplete information, and finally blindfold games.

4.1. Deciding a Game of Perfect Information

THEOREM 4.2.  For any S(n) 2 log n, the outcome of any game G of perfect infor-
mation with space bound S(n) can be decided in deterministic time 2°%™.

This result will be utilized in Section 4.2. For completeness, we give here an
algorithm similar to a procedure previously given by Chandra, Kozen, and
Stockmeyer [1] for determining acceptance of an alternating machine with a space
bound. We assume S(n) is constructible (else try the method below with
S(n)=0, 1,...).
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Let G=(POS, ). Given an initial position p, of length n, we construct a set
POS(p,) of all positions reachable by moves of G from p, and with space <S(n).
Since G has position size bound S(n) there must be a constant ¢ independent of n
such that |POS(p,)| < 5.

We will also construct a sequence of mappings from POS(p,) to {true, false}.
Initially, let /(p) = false for each p € POS(p,). We then compute a new mapping f(/)
such that for each p € POS(p,),

f()(p) = false if p€ W APOS,,
=\ lp’) if pEPOS, —W,

prp'
= true if p€WAPOS,,

= A\ «p’) if pEPOS,—W.

prEp’

Let I* be the mapping derived by repeatedly applying f to / until there is no change.
This requires at most |[POS(p,)| iterations and 29 deterministic time per iteration,
since we have assumed that the next-moves in all games are computable in linear
space. Thus 29 total time is required. Then we can show there is a 1-1
correspondence between Markov strategies o of player 1 and labelings /* constructed
by the above process. In particular, the positions mapped by /* to true correspond to
the positions appearing in winning plays induced by some such g, and vice versa.
Thus we can show [*(p,) = true iff player 1 has a winning Markov strategy for p,.
By Proposition 2.2, Markov strategies suffice.

Since any labeling /* of Theorem 4.2 with [*(p;) = true corresponds to a winning
Markov strategy whose plays are each of length <2°"”, we have

CoROLLARY 4.2. If G is a game of perfect information with space bound
S(n) > logn then G has time bound 2°",

4.2. Eliminating Incomplete Information from a Game

We now give a powerset construction for transforming a game G = (POS, ) of
incomplete information into a game G* = (POS*, ") of perfect information whose
positions are sets of positions of G. (The construction is somewhat reminiscent of the
subset construction in finite state automata.) Our decision algorithms will rely on this
construction, which entails an exponential blow-up in space complexity. In
Section 5.3, we show that, in the worst case, such a complexity blow-up must occur.

Fix some initial position p, € POS. We will assume that the set of positions
reachable by moves from p, is finite. For each play prefix = of G we construct a
position P(r) of G* with common portion the set {last(z") |7’ is a play prefix with
vis, () = vis,(n’)}. (This is the set of current possible positions after =, from player
1’s point of view, by viewing only vis,(n).) Let the private portions of P(r) be null
(thus G* is a game of perfect information) and let the next player to move in P(n) be
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the same as in last(r). Note that if vis,(7) = vis, ('), then the next player to move in
last(x) is the same as in last(z’). Hence

P(m)=P(n') iff  vis, () = vis,(z').

We allow no next-move from P(r) € POS™ if it is player I’s turn to move and 7 is
some play prefix of G with last(z) € W. (Thus player 0 wins at P(n) for any = which
is winning for player 0.) Otherwise, we let P(m) -~ P(n') be a move of G* if m, 7’
are play prefixes of G and 7’ is a child of z. (Thus, moves of G* from P(z) simulate
all possible moves of G from position last(r).) Fix P(p,) to be the initial position of
G*.

THEOREM 4.3. Player 1 has a winning strategy in G from initial position p, iff
player 1 has a winning strategy in G* from P(p,).

Proof. We establish a 1-1 correspondence between winning strategies of G and
winning Markov strategies of G*.

Case 1. Let o be a winning strategy for player 1 in G. For each play prefix 7* of
G*, where it is player 1’s turn to move at last(z"), let *(n*) =" P(o(n)) for any
play prefix 7 of G such that P(n) =last(r*). ¢* is now shown by contradiction to be
a winning Markov strategy for G*. Suppose n* is a play of G* induced from ¢* but
z* is not winning for player 1. Then there is a play 7 of G induced from o, where
P(n)=last(z*), and such that 7 is not winning for player 1. But this contradicts our
assumption that ¢ is winning,.

Case 2. On the other hand, let o™ be a winning strategy for player 1 in G*. By
Proposition 2.2, we can assume without loss of generality that ¢* is a Markov
strategy. For each play prefix # of G, where it is player 1’s turn to move in last(z), let
() be a child of 7 such that ¢*(n*)=n"P(o(r)) for any play prefix z* of G*
such that P(r) = last(z ). Again, o can easily be shown by contradiction to be a
winning strategy for G. 1

Note that we do not yet have a space bound for G*. Next we give a decision
algorithm for G. We show our algorithm can be executed by an alternating machine
whose computation game is essentially G* and whose space bound is 273",

ALGORITHM A.

Input a game G = (POS, i) of incomplete information, with initial position p,.
P {p}
WHILE true DO

P'«{p'|p+p',pEP}

W(P)« {pEP|pt p' for no p’'}

Ve« {vis,(p)| pE P’}

IF P< POS, THEN
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BEGIN
COMMENT player 1’s move
IF W(P)+#+ @ THEN L1: REJECT
ELSE L2:v « an existentially chosen element of V'
END
ELSE
BEGIN
COMMENT player 0’s move with P < POS,
IF W(P)=P THEN L3: ACCEPT
ELSE L4: v « a universally chosen element of v
END _
P {p' € P! |vis,(p') =)
oD

Intuitively, the algorithm tests for the existence of a winning strategy for player 1
by simulating all possible plays by all possible strategies simultaneously. Trial
strategies are extended existentially, one step at a time. At each step all possible
moves of player 2 are simulated to determine whether the strategy is adequate so far.
If not, it is rejected; if so, it is continued to be extended. The invariant of the while
loop is that P is a set of the form

{last(n") | vis, () = vis,(n’), =’ is a play prefix from p,}

for some play prefix 7 from p, in G. Thus, P is equivalent to the common portion of a
position of the game G*. This loop invariant also implies that either P < POS, or
Pc POS,, since it can be determmed from the visible portion of a position whose
turn it is. _

We have four conditions within the body of the while statement. In the case L1 is
reached, it is player I’s turn and player O had a sequence of moves against this partial
strategy that lead to a position p € POS, A W. In this case we must reject, since the
partial strategy has been shown inadequate. At L2, it is player 1’s move and he has a
next-move from every possible position. In this case the strategy is extended existen-
tially one move step in all possible ways. In the cases L3 or L4 are reached, player 0
has the initiative. At L3, he has no next-move, so this branch of the trial strategy is
winning for player 1. At L4, player 0’s next-move is chosen universally among all
possible, reflecting the fact that any strategy of player 1 must fail them all.

Thus Algorithm A implements the game G* by use of an alternating machine.
Algorithm A accepts exactly when there is a winning strategy for player I, since the
algorithm establishes a one-to-one correspondence between these winning strategies
and finite accepting subtrees of the computation tree of the alternating machine.

Since there are no more than 295™) positions of G reachable from
Pps |P|< 29 50 Algorithm A can be executed by an alternating machine with
space bound 205t
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THEOREM 4.4. The outcome of any game G of incomplete information with space
bound S(n) can be decided by an alternating machine with space bound 2°®™.

By Theorems 4.2 and 4.4 We have

THeOREM 4.5. The outcome of any game G of incomplete information with
space bound S(#) can be decided in deterministic time 22°“"".

4.3. A Decision Algorithm for Blindfold Games
We show here

THEOREM 4.6. Any blindfold game G with space bound S(n) can be decided in
nondeterministic space 225",

Proof. Let G=(POS,F) as in the proof of Theorem 4.4. Since the game is
blindfold, the cardinality of ¥, in step L4 of Algorithm A, is always exactly L.

Let Algorithm A be modified to A’ by substituting at step L4 “let v be the unique
element in V.” The resulting Algorithm A’ is obviously nondeterministic (since we
utilize only existential choice). We claim that if G is blindfold, then Algorithm A’
accepts iff player 1 has a winning strategy. To see this, we simply observe that since
the game is blindfold, the moves chosen by player 1 in its winning strategy are
oblivious to any moves by player 0. |

4.4. Games with Both Alternation and Space Bounds

THeOREM 4.7. For any game G of perfect information with alternation bounds
A(n) and space bound S(n) > log n, the outcome of G can be decided in deterministic
spaces (A(n)+ S(n)) S(n).

Proof. By Theorem 3.2 we can show that the outcome of G can be decided by an
alternation machine M with alternation bound A (n) and space bound S(n). Borodin
has shown (see Chandra, Kozen, and Stockmeyer [1]) that the acceptance problem
for M can be decided in space (4(n) + S(n)) S(n). 1§

Now let G be a game of incomplete information with alternation bound 4 (n) and
space bound S(n)>log n. Fix an initial position of length n. By Theorem 4.3, the
game G™, of perfect information has the same outcome as G, and by the proof of
Theorem 4.4, G* is the computation game of an alternating machine with space
bound 2™, G* has the same alternation bound 4 (n) as G. Thus by Theorem 4.7,

THEOREM‘ 4.8. For any game G of incomplete information with alternation bound
A(n) and space bound S(n) > log n, the outcome of G can be decided in deterministic
space (A(n) + 1) 206,
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5. Lower Bounps oN THE COMPLEXITY OF SPACE BOUNDED GAMES

To derive our lower bounds, we use the technique of encoding computations of a
standard type of machine into one of our new types of machines. Then we can apply
hierarchy results known for the standard type of machine, to obtain the desired lower
bounds for our new types of machines.

5.1. Lower Bounds on Games of Perfect Information

This technique was utilized by Chandra, Kozen, and Stockmeyer [1] to obtain
lower bounds for games of perfect information. They show

THEOREM 5.1. For each S(n) > log n,

ASPACE(S(n)) 2 DTIME(EXP(S(n)))

(see definition of EXP in the Introduction).

By applying their version of Theorem 4.1, they have

CoROLLARY 5.1. For each S(n) > log n,
ASPACE(S(n))= DTIME(EXP(S(n))).

This is an elegant characterization of the power of space bounded alternation. We
aim to derive such characterizations for private and blind alternations.

5.2. Lower Bounds for Blindfold Games

THEOREM 5.2. For each S(n) > log n,
BASPACE(S(n)) 2 NSPACE(EXP(S(n))).

Proof. Let M be an N-TM with an input string w € Z". We assume M has a
constructible space bound ¢*™ for some constant ¢ > 0. (If it is not constructible, we
try the simulation below for S(n) =0, 1,.... If a player wins within the allotted space
then the simulation halts, accepting if the existential player wins, and rejecting if the
universal player wins. Otherwise if the space 25 is exceeded then the play restarts
with the space S(n) incremented by 1.) Let - be the next move relation of M. It will
be useful to assume that for each position p of M, that is, neither accepting nor
rejecting, there are exactly d next-moves (where d is a constant dependent only on M)
F1(P)ses F4(p). We consider the configurations of M to be strings over a finite
alphabet 4. Let D= {l,..,d} be considered symbols disjoint from A4 and let
4'=40UD.

We now construct a BA-TM M, with space bound S(n). The players will alternate
on each move. M, will require a unique state for each symbol in A’. Let the
existential player of M, choose (by entering the appropriate states) a string of the
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form por,p,T;ses 'k Py, Where ry,.,r, €D and p,.., py EA*. Let the universal
player of M, choose to privately (by use of a private tape) verify that one of the
following conditions is violated:

(i) p, is the initial configuration of M,
(ii) p, contains the accepting state of M, or
(i) p;=tr, (p;_,) fori= L.k

Note that if (i), (ii), and (iii) all hold then the string chosen by the existential player
of M, is an accepting computation (if the r; are ignored). This is the goal of the
existential player of M,. The universal player of M, is trying to verify that the string
chosen by the existential player is not an accepting computation.

(Note that it is essential that the universal player of M, privately choose to verify
(i), (ii), or (iii), or otherwise the existential player of M, could “cheat” by observing
which of (i), (i), or (iii) are tested and then varying the choice of string
Doy P1Fysms I Dy SO that not all of (i), (ii), and (iii) hold for any choice of the string.)

To verify (i) is violated, the universal player of M, may utilize log n cells of a
private tape for a pointer to symbols of the input string w. It is trivial to verify the
case (ii) is violated. For the case (iii) it is useful to define for each r € D, a function
F,:A'"XA"XA4'"X4'—4', such that for each a_,aya,a,€4’, if a,€D then
Fla_,,a,,a,,a,)=a, and otherwise if a_,a,a,a, are the j— 1,/ j+ 1,j+2
symbols of string #'p’rp then F,(a_,a,a,a,) is the jth symbol of the string rp, where
p="+,(p') for configurations p, p’, and r' € D. (Thus F, checks that p follows
correctly from p’ on taking the rth transition.)

To verify (iii) is violated, let the universal player choose to store on a private tape
a_,a,a,a, which are the j—1,/,j+ 1,7+ 2 symbols of r,_, p; _,r;p; for some i,
1<i<k, and some j, 1 <j< length(p,;). The universal player must then test that
F,(a_,a,a,a,) is the jth symbol of the string r;p;r;,. (Note that the universal
player just privately guesses when to start checking during some point during the
play of the game and so the BA-TM does not have to write down i.) The total space
cost is thus S(n), since j< 29, We let M, accept only if the universal player
cannot verify either (i), (ii), or (iii) has been violated. Thus M, accepts iff there exists
an accepting computation p, p,,..., p, of M. Clearly M, is blindfold since the moves
of the existential players are completely oblivious to the move of the universal
players.

By combining Theorems 4.6 and 5.2 we have
COROLLARY 5.2. For each S(n) > log n,
BASPACE(S(n)) = NSPACE(EXP(S(n))).

5.3. Lower Bounds for Games of Incomplete Information

The reader may inquire: did the proof of Theorem 5.2 utilize the full power of
private alternating machines? Indeed, it did not, since the simulation game was



COMPLEXITY OF TWO-PLAYER GAMES 293

blindfold. The following theorem uses a similar construction, but also employs the
dynamic interaction between the existential and universal player possible in general
games of incomplete information :

THEOREM 5.3. For each S(n) > logn,
PASPACE(S(n)) = ASPACE(EXP(S(n))).

Proof. Let M be an A-TM with input string @ € X,. We assume M has construc-
tible space bound ¢35, if for some constant ¢ > 1 (otherwise try S(n)=0, I,..., as
described in the proof of Theorem 5.2). Let 4,4’, and F be defined just as in
Theorem 5.2. The proof is similar, however, here we construct in deterministic log »
space a PA-TM M, with space bound S(r) which accepts iff M accepts. -

We will require again a unique state of M, for eacH symbol of 4'; all other states
will be associated with a null symbol. We also again let the player alternate on each
move. The players will choose (by entering the appropriate states) a string of the
form p,r, p,7y s ¥y Py» Where ..., 7, € D and py,..., p, € 4*. All these symbols will
be chosen by the existential player, except that if p, _, contains a universal state, then
the universal player publically chooses r; € D by writing r; on a public tape (this has
the effect of creating d branches on the game tree, sinice the subsequent choice of p,
by the existential player may be very dependent on observation of the universal
player’s choice of r,). Again we require the universal player to privately (by use of a
private tape) attempt to verify that one of the cases (i), (i), or (iii) is violated.

Note that if the cases (i), (ii), or (iii) hold for each choice of the r/s then the
existential player of M, has chosen a set of string which (if the r; symbols are
ignored) are an accepting subtree (i.e., these strings are the accepting computation
sequences induced by a winning strategy for the existential player in the game G™).
This is the goal of the existential player of M,, and we let M, accept if this goal is
achieved. Otherwise, if the universal player finds a v1olat10n of (1) (ii), or (111) then
M, rejects. |

Combining Theorems 4.5, 5.1, and 5.3 we have

COROLLARY 5.3. For each S(n) > log n,

PASPACE(S(n)) = ASPACE(EXP(S(n)))
= DTIME(EXP(EXP(S(n)))).

As a consequence of Corollary 3.4, and the results of this section, we have
(1) a space n bounded PA-TM M whose computation game GM is universal for
all reasonable games.

(2) a space n bounded BA-TM M’ whose computation game G’ is universal
for all reasonable blindfold games.
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By the hierarchy theorem for deterministic time complexity (Hartmanis and Stearns
[5] we have

CoOROLLARY 5.4. There is a ¢ > 1 such that if any D-TM decides the outcome of
G™ in time T(n), then T(n) > 2¢""*".
By space hierarchy results,

COROLLARY 5.5. Thereis a ¢ > 1 such that if any D-TM decides the outcome of
G"' in space S(n), then S(n) > c"/'°¢",

6. TiME BOUNDED BLIND AND PRIVATE ALTERNATING MACHINES

Let Eﬂ:; be the class of languages accepted by alternating machines with time
bound T'(n), with alternation bound 4 (n), and existential initial state. We now charac-
terize the time complexity of blind and private alternating machines in terms of the
time complexity of alternating machines.

THEOREM 6.2. For each T(n) such that inf, . T(n)/n= oo,
BATIME(T(n))= ZT™,

Proof. Let M be a BA-TM with time bound 7(n) > n and input string w € 2",
Since the existential player of M is oblivious to any move by the universal. player of
M, it might just as well have chosen its moves at the start of the computation, and
stored them into a consecutive sequence of tape cells. By Theorem 3.3, this can be
done in time T(n)/2 if we augment the tape alphabet so that each pair of moves of the
existential player is represented by a distinct symbol. Next, we let the universal player
choose all its moves and attempt to verify the resulting play is not accepting. By
Theorem 3.3 this can also be done in.time T(n)/2 using the augmented tape alphabet.
Thus the resulting machine M’ has time bound T(n) and accepts just the strings
accepted by M. Note that the moves of the existential player of M’ precede all the
moves of the universal player. Thus, all portions of positions of the universal player
can be considered common, so M’ is an alternating machine. Thus we have shown
BATIME(T(n)) < Z7™, (Note that this simulation is not particularly space efficient
since M’ may now require at least space T(n)/2.)

To show 21" < BATIME(T(n)), we first observe that if M, is an A-TM, where all
the moves of the existential player precede all moves of the universal player then the
existential player is oblivious to any subsequent moves of the universal player. If M,
has time bound T'(n), then since it has only one alternation, M, can be speeded up by
a factor of two to T(n)/2 without introducing any further alternations. Let M, be the
BA-TM derived from M, by introducing a new private tape for each original tape on
which the universal player did any writing or head movement operations. Each tape
operation of the existential player must be simulated, in the next succeeding step, by
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the universal player on these new private tapes. This slows the simulation time by a
factor of two, down to time T(r), and introduces T(rn)/2 alternations. The resulting
blind alternating machine M, accepts just the strings accepted by M,. §

The following results were first given in Peterson and Reif [9] in a more general
context of multiplayer games.

THEOREM 6.3. For any T(n), such that inf, _, T(n)/n = co,
PATIME(T(n)) = ATIME(T(n)).

Proof. First observe that any A-TM is a PA-TM, so PATIME(T(n)) contains
ATIME(T(n)). On the other hand, let M be a PA-TM with time bound 7'(n) and input
string @ € Z". We can assume a constant d bounding the maximum number of
common portions of positions possible from a single position of M.

We require a set I'" of d + 1 special new tape symbols for M’, one for each set of
next-moves of M which are indistinguishable to the existential player, and also one
distinguished symbol designating a “pass” move. We construct an 4-TM M’ which
simulates M in two stages. In the first stage of the simulation, the existential and
universal players alternatively write symbols of I’ on consecutive cells of a new tape
of M’. The existential player is allowed to terminate this stage at any time. In the
next stage, the universal player attempts to verify that there is some play 7 of M from
the initial position and consistent with previously chosen moves, such that 7 is not
winning for the existential player. If so, the machine M’ rejects, and otherwise M’
accepts. The total time for these two phases is 37(n), but this can be speeded up to
T(n) by Theorem 3.3. 1

7. UnIVERSAL GAMES ON PROPOSITIONAL FORMULAS

In this section we construct various propositional formula games which are
universal for reasonable games. These games and the reductions between them are
generalizations of work on games of perfect information in Stockmeyer and Chandra
[18].

Boolean variables take on values 1, 0 representing true, false, respectively. Let a
literal be a boolean variable or its negation. Let a propositional formula F be in k-
conjunctive (disjunctive) normal form if F consists of a conjunction (disjunction) of
formulas F,,F,...,F; with each F; a disjunction (conjunction, respectively) of at
most k literals.

We now consider games on propositional formulas which we show are universal
for all reasonable games.

Let G' be the game in which a position contains a propositional formula
F(X, Y, ¥Y", YY", a,5) in S5-conjunctive normal form, with X, ¥"°, ¥"' each
sequences of variables and a, s individual variables, and also a truth assignment to its
variables. The formula F and the truth assignment to the variables of X, Y, a, s are
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common to both players 1 and 0, but the truth assignment to the variables of
Y?° Y?! are private to player 0.

Player 1 moves by setting a to 1 and choosing a new truth assignment for the
variables of X. Player 0 moves by (a) setting a to 0, (b) setting s to the complement
of its previous truth assignement, and (c) then choosing a new truth assignment for
the variables of Y°, Y7*. The formula F is not modified by these moves, except for the
changes in the truth assignment to its variables. The loser is the first player whose
move yields a truth assignment for which the formula F is false.

LemMa 7.1. G! is universal for reasonable games of incomplete information.

Proof. Let M be a PA-TM with space bound 7. Let w € Z" be an input string to
M. We encode each position of G as a bit vector of length n’ = O(n) (where the
constant multiple depends only on the size of the tape alphabet of M), so that bits
1, 2...., k are those of vis,(p) (the portions of p common to both the existential and
universal players), and the bits k + 1,..., n’ contain those portions of p private to the
universal player.

Using the techniques of Stockmeyer [16], we may construct a linear size
propositional formula NEXT(Z,, Z,, T), where Z,, Z,, T are sequences of variables
each of length n’ and such that: if Z, encodes (by some fixed encoding which is
computable in O(logn) space by a D-TM) a position p, then there exists an
assignment to the variables of T such that NEXT(Z,, Z,, T) is true if and only if Z,
encodes some position p, derived from p, by a move of M.

We introduce new sequences of variables X, Y©, Y*°, Y?' of length m, m,[ 1,
where m=k+n' and I=n'—k Let Y=YY"'Y". Let X|[i,j| denote
X(@),X(i+ 1),..., X(j) for any 1 <i<j<m.

For distinct s,5§€ {0,1}, let NEXT,  (X,Y) be the formula derived from
NEXT(Z,,Z,,T) by substituting X[1,k], ¥Y**[1,1] for Z,, substituting Y°[1, k],
Y?$[1,1] for Z,, and substituting Y°[k + 1,m] for T. Also, let NEXT, (X, Y) be
derived from NEXT(Z,, Z,, T) by substituting Y°[1, k], ¥**[1, ] for Z,, substituting
X[1, k], YP*[1,1] for Z,, and substituting X[k + 1,m] for T. As usual we consider
player 1 to be identified with the existential player of M and player O to be identified
with the universal player of M. Without loss of generality, we assume the players
move in strictly alternating order, and the first player to move is existential. Then for
each a€ {0,1}, NEXT, defines legal moves by player a on switch variable
s€{0,1}.

Now we consider the formula

F(X, YS, Y*°, Y*!, a,5) = (a A s » NEXT, ,(X, ¥)) A (a A —s -» NEXT, ,(X, 1))
A (—a A s - NEXT, ,(X, Y))
A (—a A —s - NEXT, (X, Y)).

F can easily be put in 5-conjunctive normal form of size O(n) and is constructable in
O(log n) space by D-TM.
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Let P,(w) be the initial configuration of M on input w. Initially let s = a = 1. Also,
initially let the variables Y°[1, k] ¥"'[1,] be assigned to encode P,(w) and let all
other variables be assigned arbitrarily. Let formula F and this initial truth assignment
be the initial position of game G'. The player 1 wins game G' if and only if player 1
(the existential player) wins the computation game G if and only if M accepts input
. Thus we have a log-space reduction from the acceptance problem for M to the
outcome problem for G'. By Corollary 3.4, G is universal for universal games, $0
we conclude that G' is universal for reasonable games.

Let G2 be the game in which each position contains formulas WIN,(U, V<, V")
and WIN(U, ¥, ¥") in disjunction normal form and truth assignments to the
sequences of variables of U, V<, V'*.

The formulas WIN, and WIN, and truth assignments to variables UU V' are
viewed commonly by both players, but the truth assignment to the variables of V' are
private to player 0. Player 1 moves by changing the truth assignment to at most one
variable of U, while player 0 moves by changing at most one variable of V<, V.
Player a € {0, 1} wins if formula WIN, is true after a move by player a.

"THEOREM 7.1. G? is universal for reasonable games of incomplete information.

Proof. We now introduce sequences of variables U*, U®, ¥*,V*® of length
m' =4m+21+4. Let U=U" . U®? and let ¥ = V* . V%, The values of the sequences
of variables X, ¥ defined in the previous construction will, in legal plays of our game
G?, be contained in U, V" as in Figs. 4, o, 4, ;, 4, ;,4,0. The private portion V" of V¥
has the value of ¥Y*°, ¥*! and V© contains the values of other elements of V.

For each s€ {0,1} and player a€ {0,1}, let NEXT, (U, V) be the formula
derived from formula NEXT, (X, Y) by substituting variables as in Fig. 4, ;.

+m+ +M+ 9+ +m+ “~m+ +§ =+

X UA
B
1,0 ¥P0 ¥ | vPL [P
M
tl,u=m+1
X Tt
lju
0,1 vC | yPO Pl [lvd
" five
s
to,l’zm

1,1
’ ¥C | yF0 L [|v*
vB

tl,1=3m+£+3

X vt
e
0 A
0, 0 [V
v
=m"
to,D, m

FIGURE 4
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We describe a legal play such that if players 1 and O play legally then player I
wins if and only if M accepts input w. Let a legal cycle be a play which satisfies the
following restriction L for i=1,2,...,m':

player O changes the truth assignment of either V(i) or V2 (i).
player 1 changes the truth assignment of either U“(i) or U?(i).

within the legal cycle we also require restriction L’ to hold: for distinct 5, §€ {0, 1}
and each i, (¢, ymod m') < i<ty , player O assigns variables so that NEXT, = true
when i=1#,,, and for (f, ,modm’)<i<t,, player 1 assigns variables so that
NEXT, ;= true when i=t, .. Thus M accepts input w if and only if player 1 has a
winning strategy within legal players satisfying restrictions L and L’. The following
construction forces legal play by both players.

We now introduce some notation for operations on sequences of Z, Z’ of boolean
variables of length m'. Let @ be the boolean exclusive-or operative and let

Z@®'Z'=ZMW)dZ'(1)...., Z(n)® Z'(n)),
and let
AZ=(=(Zn)®Z(1)), Z(1)D Z(2)s... Z(n — 1)@ Z(n)).

Also let TH-TWO(Z) =V, ;. jcmAZ(i) A Z(j)) be the threshold-two function. For
simplicity of notation we define formulas U’ = A(U* @' U®), and V' =4(V* @' V?),
which are sequences which locate boundaries between contiguous 0’s or 1’s. To detect
illegal play we define

ILL, =TH-TWO(U") V \/ UWHOAV(i+ DASV(i—1))
1<ig<m’
ILL,=TH-TWO(V )V \/ (V@) AU+ 2)A=U()).
1<i<m’
Thus ILL, = true just if player a € {0, 1} has violated restriction L for a legal cycle.
For each player a € {0, 1}, let

ILL, = \/ Ut )N V'(t, ) N=NEXT; (U, V)).

sef{0,1)

ILL, =true just if restriction L’ has been violated by player a. Finally let
WIN,=ILL, VILL; and WIN,=ILL,V ILL;. Formulae WIN, and WIN, can
easily be put in disjunctive normal form of size O(n?) and can be coded into binary
strings of length O(n’ log n).

Given input w € Z", let p, be the initial position of formula game G' defined
previously. Let the initial position p, of formula game G’ contain formulas
WIN,, WIN, as defined above with the initial truth assignment of p, as in Fig. 4, ,
and U' =V’ =(1,0,0,.., 0) initially. It can be shown player 1 wins game G* from
initial position p, if and only if M accepts w. Thus by Corollary 3.4, G* is also a
formula game universal for all reasonable games. N
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Let G?# be the blindfold game derived from formula game G* by requiring that the
common variable sequence ¥© be empty.

THEOREM 7.2. G?*P is universal for all reasonable blindfold games.

Proof. To show this, we need only note that if M is restricted to BA-TM, then the
universal player can never modify the common tape. Hence the common variables V©
in our previous construction contain no information relevant to a configuration of M
though they are useful to insure legal play. Hence the variables V¢ used in the
construction may be added to the variables V' private to player 0. The result then
follows from our proof of Theorem 7.2. 1

Note. The game G? is essentially identical to the game PRIVATE-PEEK defined
in the Introduction. The variables can be put in 1-1 corresponding with the plates in
PRIVATE-PEEK game box. Furthermore, the variables of ¥* correspond to the
plates not visible to player 1. The clauses of WIN, and WIN, be put in 1-1
correspondence with locations of holes which perforate the plates so that player
a € {0, 1} can peek through from the top to the bottom of the box iff a clause of
WIN,, is satisfied.

Also, the formula game G*? is essentially the game BLIND-PEEK described in the
introductory section. Thus we conclude by Theorem 7.1 and 7.2,

(1) PRIVATE-PEEK is a universal reasonable game.
(2) BLIND-PEEK is a universal reasonable blindfold game.

Our log-space reduction from the computation game G" to the game G? has an
O(n log n) length bound. Thus by Corollary 5.4 and Theorem 7.1,

- CoOROLLARY 7.1. Thereis a ¢ > 1 such that if a D-TM decides the outcome of G’
or PRIVATE-PEEK in time T(n), then

T(n) > 23\/‘ m‘iog-‘n'

Also by Corollary 5.5 and Theorem 7.2,

COROLLARY 7.2. There is a ¢ > 1 such that if a D-TM decides the outcome of
G™ or BLIND-PEEK in space S(n), then S(n) > cV"/'°¥'".

8. CONCLUSION

This paper has considered the computational complexity of two player games of
incomplete information. Our general conclusion is that if the space is bounded by
S(n), then their outcome is an exponential more difficult to decide than for games of
perfect information with space bound S(n). Because of our lower bounds, our
decision algorithms for games of incomplete information are asymptotically optimal.
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It would be interesting to extend our results for the game of PRIVATE-PEEK to
prove other games, such as “blindfold chess™ are universal for all reasonable games
of incomplete information. The complexity of blindfold pursuit games on digraphs
were considered in an early draft of this paper (Reif [11]).

It is also interesting to note that our technique of introducing private storage to an
alternating machine, resulting in a PA-TM, could also be applied to any other basic
parallel machine type, such as a parallel RAM. In that case each processor might
have a private set of registers.

In Peterson and Reif [9] we investigate the complexity of multiple player games of
incomplete information. Our general conclusions for multiperson games with a
position size bound S(n) are:

(1) if the division of private information is not restricted, then the outcome
problem is undecidable even for 3 player games;

(2) however, the multiplayer games are decidable if the private information is
hierarchically divided among the players; and each additional player increases the
complexity of the outcome problem by a further exponential.

Reif and Peterson [13] also gave decision algorithms for various classes of
multiperson games of incomplete information. Peterson [10] applied the complexity
results of Peterson and Reif [9] to succinctness of string representation.

Applications of multiplayer games of incomplete information to distributed
multiprocessing problems and a related multiprocess logic are described in Reif and
Peterson [12].
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