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 TH1 JOURNAL OF SYMBOLIC LOGIC

 Volume 34, Number 2, June 1969

 DEFINABILITY IN THE MONADIC SECOND-ORDER THEORY
 OF SUCCESSOR'

 J. RICHARD BUCHI and LAWRENCE H. LANDWEBER

 ?1. Introduction. Let 9 = <D, 1, P2, ... > be a relational system whereby D

 is a nonempty set and Pi is an mj-ary relation on D. With 9 we associate the (weak)
 monadic second-order theory (W)MT[9] consisting of the first-order predicate
 calculus with individual variables ranging over D; monadic predicate variables
 ranging over (finite) subsets of D; monadic predicate quantifiers; and constants
 corresponding to P1, P2,. * . . We will often use (W)MT[?9] ambiguously to mean
 also the set of true sentences of (W)MT[i].

 In this note we study variants of the structure <N, '> where N is the set of natural
 numbers and ' is the successor function on N. Our results are a consequence of
 McNaughton's [7] work on the w-behavior of finite automata and the decision
 procedure for MT[N, '] given in [1]. The former is essential as we have been unable
 to obtain proofs which utilize only [1]'s characterization of co-behavior. In [2] we
 discuss related results.

 ?2 studies definability in MT[N, ']. For every formula C(X) of MT[N, '] where
 X is a vector of unary predicate variables, the relation C(X) is arithmetic and, in
 fact, is in the Boolean algebra over r2. In ?3, we investigate the existence of decision
 procedures for (W)MT[N, ', Q] where Q is a subset of N. Such theories were
 previously studied by Elgot and Rabin [4]. For any recursive Q. the decision
 problem for MT[N,', Q] is in Z3 C [I3. We also define a recursive Q for which
 (W)MT[N,', Q] is undecidable. This provides a rather natural example of an
 undecidable theory which is still arithmetic.

 ?2. Definability in MT[V, ']. In this section we study definability in MT[N, ']
 with respect to the arithmetic and classical Borel hierarchies. In particular we are
 interested in those relations definable by formulas C(X), X a vector of free monadic
 predicate variables, of MT[N, ']. The main result is that every such relation is in
 the Boolean algebra over r2 of the arithmetic hierarchy. In fact, Lemma 1 below
 also gives this result for a wider class of C(X) than are definable in MT[N, ']. In the
 following x, y, z, * * * are individual variables ranging over N.

 Let HO be the class of recursive relations on Nn x P(N)k where P(N)
 is the power set of N. H1 (1712) is the class of relations presentable in the
 form (Vy)C(y,xl, xi * , X., Xi, X * *, Xk) ((3z)(Vy)C(z,y, xi * * *, Xn, Xi,, X *, Xk))
 where C denotes a recursive relation. Relations in 113, 114,... are obtained by
 prefixing additional alternating quantifiers to relations in 12. The classes
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 DEFINABILITY IN THE MONADIC SECOND-ORDER THEORY 167

 IIo, HI, . * * comprise the arithmetic hierarchy. It is well known that Hi,+ - Hi 0
 for all i. Moreover, if is the class of relations whose complements are in Hi, then
 for all i, [1i c [I + 1 r + 1. We refer the reader to Kleene [6] and Rogers [9,
 Chapters 14-15] for a complete discussion of the properties of the arithmetic
 hierarchy.

 A formula C(x1,j , x.,X, X, ... , Xk) of MT[N, '] is in Hk(k) if the correspond-
 ing relation is in Hk(Zk). To simplify the notation we do not distinguish between
 formulas and the relations they define. X is always used as an abbreviation for a
 vector of unary predicate variables. We implicitly use the obvious correspondence
 between co-sequences on {T, F}k, k-tuples of unary predicates on N and k-tuples of
 subsets of N. Let In = {T, F}n. In* is the set of finite sequences on In. To simplify
 the notation we omit the subscript on In.

 A recursive operator (RO) Z = a?(X) is an operator mapping co-sequences
 over the finite set I = {T. F}n into co-sequences over a finite set S which can be
 presented in the form

 (1) Zt = (Yi(t))

 whereby Xt = XO ... Xt and (D and q are recursive functions from I* into S and
 from N into N respectively. Sup Z is the set of members of S appearing infinitely
 often in the co-sequence Z = ZO, Z1, * - ..
 LEMMA 1. Let Z = d/(X) be a RO and U c 2S. Then the relation F(X) given by

 (2) (3Z)[Z = l(X) A Sup Z E U]

 is in the Boolean algebra over [12 of the arithmetic hierarchy.
 PROOF. F(X) can be written as

 V . (3x)(Vy)[y ? x (D D(X(y)) E B] A A (vx)(3y)[y 2 x A FD(YX(y)) = s].
 Be U seB

 The relations given by [y 2 x A ?(D((y)) = s] and [y 2 x D ?(D (y)) E B] are
 recursive because (D and + are recursive. Hence F(X) is a Boolean combination of
 formulas of the form (Vy)(3x)M(X, x, y) where M is recursive so F(X) is in the
 Boolean algebra over 112. Q.E.D.
 A finite automata operator (FAO) is a RO Z = a1(X) which can be presented

 in the form

 (3) ZO = c, Zt' = H[Xt, Zt]

 whereby H: I x S -> S and c E S. Let C(X) be a formula of MT[N, ']. The main
 definability results of [1] and [7] (see [2] for more details) state that from C we can
 effectively construct a presentation of a FAO Z = 6@(X) as in (3) (i.e., obtain H, S,
 and c) and a U c 2s such that

 C(X) I = (3Z)[Z = 9(X) A Sup Z e U].
 Hence by Lemma 1 we have

 THEOREM 1. Every relation between subsets of N which is definable in MT[N, ']
 is arithmetical, and in fact occurs in the Boolean algebra over H2. Furthermore, given
 a formula C(Xi * * * ,, X.) of MT[N,'] one can construct an index of the relation C
 in the Boolean algebra over H2.
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 168 J. RICHARD BJCHI and LAWRENCE H. LANDWEBER

 In contrast, all relations R(yj, Y * * , xi, - - - * Xj) appearing in the function-
 quantifier hierarchy over recursive relations are definable in MT[N, ', 2x] (see [8]).

 We can also consider C(X) as defining a subset of the Cantor space of w-
 sequences over I, namely, the set of co-sequences over I which satisfy C. Those
 sets that are both open and closed in the usual totally disconnected topology

 on this space are of the form UW,1 U - - * U Un whereby wi e I* and U-, =

 {X I (3t)[Xt = w]}. A set is open if it is a denumerable union of sets which are both
 open and closed. G6(F,) is the class of sets which are denumerable intersections
 (unions) of open (closed) sets. G6,5 Goal ,... and Fa6, F,6,, - * -sets are defined in
 the obvious manner. The Borel hierarchy is the increasing sequence of classes G, G6,
 Gr, ,,. * - (see [9, Chapter 15] for a comparison of the Borel and arithmetic hierar-
 chies).

 If C is recursive, there is an effective procedure which decides whether C(X) or
 C(X) is true after being given some finite portion Xt = XO--- Xt of X.

 Hence, if X0 is such that Xot = Xt, then C(X)_ C(X0). This implies that
 every recursive set of X's is open and closed. But every C(X) of MT[N, '] is a
 Boolean combination of expressions of the form (Vx)(3y)M(x, y, X) where for

 fixed x and y kM(x, y, X) is open and closed (since M is recursive). Thus by
 Theorem I we obtain

 COROLLARY 1. If C(X) is aformula of MT[N,'], then the relation C(X) is in
 the Boolean algebra over G6 of the Borel hierarchy.

 We conclude this section with an example of a C(X) of MT[N,'] which is
 neither a G6 nor an FG (and therefore neither a 2 nor a 112) The following remark
 is observed in [3].

 (1) A set C(X) is a G6, if and only if, there is a set W of words over I such
 that C(X) holds if and only if w < X for infinitely many w E W.

 Here w < X (w is initial segment of X) stands for (3t)Yt = w. Now define C(X) by,

 (2) [XO A (Vx)(3y)[x < y A Xy]] V [-XO A (3x)(Vy)[x < y = sXy]].

 Suppose C is a G6. Then, by (1), there exists a W c I* such that

 (3) C(X) ._. W n {w I w < X} is infinite.
 Define the sequence wo, wI, w2, * - - by

 wo = shortest v, v E W A v of form FFk,
 wn+1 = shortest v, v e W A v of form wnTFFk.

 By (2) Fo belongs to C, therefore by (3) wo exists and F < wo. Assume inductively
 that wn exists and F ? Wn. Then by (2) WnTFIO belongs to C, therefore by (3) wn+1
 exists and F < wn +1. Thus (4) really defines a sequence of words, and clearly
 wi E W, F < wO < w1 < W2 *.. Thus, by (3) and (2), the sequence Y having all
 wi's as initial segments belong to C. But this is contradictory, as Y starts with F
 and has infinitely many T's. Thus C 0 G6, and similarly one shows C 0 Go. But
 x ? y is definable in MT[N, '], and therefore C is. Consequently, (2) provides an
 example of a set C, definable in MT[N, '], but neither in G0 nor F,.

 ?3. Decision problems for extensions of MT[N, ']. Elgot and Rabin [4] have
 studied the existence of decision procedures for extensions of MT[N, ']. In parti-
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 DEFINABILITY IN THE MONADIC SECOND-ORDER THEORY 169

 cular they have shown that MT[N, ', Q] is decidable if Q is either of {Xk I x E N},

 {kX I x E NJ or {x! I x e N} where k is a fixed natural number. The results are ob-
 tained by reducing the decision problem for MT[N, ', Q] to that for MT[N, ']

 and then applying the procedure given in [1]. If Q = {(x, 2x) I x E N}, then the
 corresponding weak monadic theory is undecidable [8].

 Let Q be a subset of N. If WMT[N, ', Q] is undecidable, then so is MT[N, ', Q].
 This follows from the definability of ' X is a finite set' in MT[N, '], by the formula

 (3x)(Vt)[t 2 x =>-N Xt] where t 2 x is an abbreviation of (V Y). Yt A

 (Vw)[Yw' D Yw] D Yx.
 If Q is not recursive, then WMT[N, ', Q] is undecidable (e.g., O'' 'E Q can not be

 effectively decided). If Q is recursive, the hierarchy result of ?2 can be applied to

 give an upper bound to the complexity of decision problems for MT[N,', Q].

 +(y, Z) is a universal predicate for rI2 if for each P(Z) E i2, there is an e, such that
 for all Z, b(ep, Z) =P(Z).

 THEOREM 2. If Q is recursive, then truth in MT[N, ', Q] is in E3 fl 13.
 PROOF. Let T(e, Z) be a universal predicate for all predicates P(Z) in 12,

 which is itself in 12 [6]. By Theorem 1, there is a recursive function B which maps

 every formula @D(Z) of MT[N, '] into a Boolean expression BD, and a recursive
 function f which maps every formula 4)(Z) of MT[N, '] into a finite sequence
 fo = <fo. * * .. i f,.n> of numbers, such that for any Z c N,
 (1) ?D(Z) holds in MT[N, '] ._. B0[Y(f 1, Z), - - , FT(fUDn, Z)].

 Let x(e) stand for T(e, Q), and note that because T E 112 and Q is recursive it
 follows that X E 112. Furthermore, (1) may be restated as,

 (2) ?(Q) holds in MT[N, ', Q] m-. B[X(f,1), - - -* X(fo,n)]

 Note that the functions B, fare recursive, and all sentences of MT[N, ', Q] are
 of form ID(Q) where O(Z) is a formula of MT[N, ']. It follows that (2) provides for

 a recursive reduction of {E I Y true in MT[N, ', Q]} to the set X (i.e. a Turing
 machine can be built which, given a sentence I of MT[N,', Q] and an oracle for

 membership in X, decides whether or not Z is true). Thus, truth in MT[N, ', Q] is
 reducible to some x E 112 It follows, by a well-known result of Post (see [9, p. 314]),

 that truth in MT[N, ', Q] belongs to 3 n 113. Q.E.D.
 Theorem 2 shows that for no recursive Q is it possible to prove MT[N, ', Q]

 undecidable by the standard method of showing that all recursive relations are
 definable.

 If Q is the set of primes, then (Vx)(3y)[y > x A Q(y) A Q(y')] states the twin
 prime problem in MT[N, ', Q]. Indeed, this sentence is in the first order theory of

 <Ng ', <, Q>. Hence, the problem as to whether (W)MT[N, ', primes] is decidable,
 would seem very difficult. Namely, a positive answer would settle the twin prime
 problem, while on the negative side, the standard methods of proving theories
 undecidable is not available.

 THEOREM 3. There is a recursive Q such that WMT[N, ', Q] is undecidable.2
 PROOF. Let R be a recursively enumerable set of primes which is not recursive.

 Let ri, r2, ... be a recursive enumeration of R and let Qo = {rpjj i = 1, 2,.***,

 2 Michael 0. Rabin has obtained a similar result (personal correspondence).
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 170 Y. RICHARD BucHI and LAWRENCE H. LANDWEBER

 wherebyp, is the ith prime. QO is obviously recursive. To prove that WMT[N, ', QO]
 is undecidable it is sufficient to show that the first order theory (FT) of

 <N, Ml, M2, - *, Qo> is undecidable whereby Mk stands for the set of multiples
 of k. Just note that each Mk is definable in WMT[N,', QO] by the formula

 Mk(w): (VX) X Xw A (Vy)[X(y + k) = Xy] = XO.
 From the definition of R and QO we obtain

 (*) .R(k) ._. k # 1 A (3y)[Mk2(y) A Qo(y)].

 Let Sk be the sentence k # 1 A (3y)[Mk2(y) A QO(y)]. By (*) Zk is true in
 FT[N, M1, M2, - *, Qo] if and only if k E1 R. But R is not recursive so there is no

 effective procedure for deciding truth in FT[N, M1, M2, - * *, Qo]. Q.E.D.
 PROBLEM 1. Is there an 'interesting' recursive Q such that (W)MT[N, ', Q] is

 undecidable? How about Q = primes?

 Although WMT[N, ', QJ] is undecidable, we have not classified its decision
 problem in the arithmetic hierarchy. This suggests

 PROBLEM 2. Is there a recursive Q such that the decision problem for

 (W)MT[N, ', Q] is in 3 rl 113 but not in the Boolean algebra over H12?
 Another interesting question is,
 PROBLEM 3. Is there a recursive Q such that WMT[N,', Q] is decidable but

 MT[N, ', Q] is undecidable?

 A negative answer to Problem 3 should imply the decidability of MT[M, '] as a
 consequence of the decidability of WMT[N, '] (Q = o). Hence, a negative answer
 might be quite difficult.

 BIBLIOGRAPHY

 [1] J. R. BUIcm, On a decision procedure in restricted second order arithmetic, Proceedings
 of the international congress on logic, methodology and the philosophy of science, Stanford
 University Press, Stanford, California, 1962.

 [2] J. R. BucHi and L. H. LANDWEBER, Solving sequential conditions by finite state operators,
 Purdue Report CSD TR 14.

 (31 M. DAVIS, Infinitary games of perfect information, Advances in game theory, Princeton
 University Press, Princeton, New Jersey, 1964, pp. 85-101.

 [4] C. C. ELGOT and M. 0. RABIN, Decidability and undecidability of extensions of second
 (first) order theories of (generalized) successor, this JOURNAL, vol. 31 (1966), pp. 169-181.

 [5] S. C. KLEENE, Introduction to metamathematics, Van Nostrand, New York, Amsterdam and
 Noordhoff, Groningen, 1952.

 [6] S. C. KLEENE, Hierarchies of number theoretic predicates, Bulletin of the American Mathe-
 matical Society, vol. 61 (1955), pp. 193-213.

 [7] R. MCNAUGHTON, Testing and generating infinite sequences by a finite automaton, Informa-
 tion and control, vol. 9 (1966), pp. 521-530.

 [81 R. M. ROBINSON, Restricted set theoretical definitions in arithmetic, Proceedings of the
 American Mathematical Society, vol. 9 (1958), pp. 238-242.

 [9] H. ROGERS, JR., Theory of recursive functions and effective computability, McGraw-Hill,
 New York, 1967.

 PURDUE UNIVERSITY

 UNIVERSITY OF WISCONSIN

This content downloaded from 
�������������82.64.1.86 on Fri, 16 Feb 2024 11:03:40 +00:00������������� 

All use subject to https://about.jstor.org/terms


	Contents
	p. 166
	p. 167
	p. 168
	p. 169
	p. 170

	Issue Table of Contents
	Journal of Symbolic Logic, Vol. 34, No. 2 (Jun., 1969) pp. 161-320
	The Unsolvability of the Uniform Halting Problem for Two State Turing Machines [pp. 161-165]
	Definability in the Monadic Second-Order Theory of Successor [pp. 166-170]
	Finite Inseparability of Some Theories of Cylindrification Algebras [pp. 171-176]
	Hierarchies Based on Objects of Finite Type [pp. 177-182]
	Representation of Symmetric Probability Models [pp. 183-193]
	π㱳異㸱㰯獵瀾㱳畢㸱㰯獵戾⁓整猬 줭卥瑳Ⱐ慮搠䵥瑡捯浰汥瑥湥獳⁛灰⸠ㄹ㐭㈰㑝
	The Independence of Ramsey's Theorem [pp. 205-206]
	Real Numbers and Functions in the Kleene Hierarchy and Limits of Recursive, Rational Functions [pp. 207-214]
	Note on a Paper in Tense Logic [pp. 215-218]
	Eliminating the Continuum Hypothesis [pp. 219-225]
	Infinitary Logic and Admissible Sets [pp. 226-252]
	A Conjunctive Normal Form For S3.5 [pp. 253-255]
	A Note on Degrees of Subsets [pp. 256]
	On Modal Logic with Propositional Quantifiers [pp. 257-263]
	Probability Logic [pp. 264-274]
	On the Structure of Quantum Logic [pp. 275-282]
	Independence of Rose's Axioms for m-Valued Implication [pp. 283-284]
	Constructive Order Types on Cuts [pp. 285-289]
	Reviews
	Review: untitled [pp. 290]
	Review: untitled [pp. 290-292]
	Review: untitled [pp. 292-294]
	Review: untitled [pp. 294-295]
	Review: untitled [pp. 295]
	Review: untitled [pp. 295-296]
	Review: untitled [pp. 296]
	Review: untitled [pp. 296]
	Review: untitled [pp. 296-297]
	Review: untitled [pp. 297]
	Review: untitled [pp. 297-298]
	Review: untitled [pp. 298-299]
	Review: untitled [pp. 299-300]
	Review: untitled [pp. 300-301]
	Review: untitled [pp. 301-302]
	Review: untitled [pp. 302]
	Review: untitled [pp. 302]
	Review: untitled [pp. 302-303]
	Review: untitled [pp. 303]
	Review: untitled [pp. 303]
	Review: untitled [pp. 304]
	Review: untitled [pp. 304-305]
	Review: untitled [pp. 305]
	Review: untitled [pp. 305]
	Review: untitled [pp. 305-306]
	Review: untitled [pp. 306]
	Review: untitled [pp. 306-307]
	Review: untitled [pp. 307]
	Review: untitled [pp. 307]
	Review: untitled [pp. 307]
	Review: untitled [pp. 308]
	Review: untitled [pp. 308]
	Review: untitled [pp. 308]
	Review: untitled [pp. 308-309]
	Review: untitled [pp. 309]
	Review: untitled [pp. 310]
	Review: untitled [pp. 310]
	Review: untitled [pp. 310-311]
	Review: untitled [pp. 312-313]
	Review: untitled [pp. 313-314]
	Further Citations [pp. 314-320]




