NL

Definability in the Monadic Second-Order Theory of Successor
Author(s): J. Richard Büchi and Lawrence H. Landweber
Source: The Journal of Symbolic Logic, Jun., 1969, Vol. 34, No. 2 (Jun., 1969), pp. 166170

Published by: Association for Symbolic Logic
Stable URL: https://www.jstor.org/stable/2271090

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

DEFINABILITY IN THE MONADIC SECOND-ORDER THEORY OF SUCCESSOR ${ }^{1}$

J. RICHARD BÜCHI and LAWRENCE H. LANDWEBER

§1. Introduction. Let $\mathscr{D}=\left\langle D, P_{1}, P_{2}, \cdots\right\rangle$ be a relational system whereby D is a nonempty set and P_{i} is an m_{i}-ary relation on D. With \mathscr{D} we associate the (weak) monadic second-order theory $(W) M T[\mathscr{D}]$ consisting of the first-order predicate calculus with individual variables ranging over D; monadic predicate variables ranging over (finite) subsets of D; monadic predicate quantifiers; and constants corresponding to P_{1}, P_{2}, \cdots. We will often use (W) $M T[\mathscr{D}]$ ambiguously to mean also the set of true sentences of $(W) M T[\mathscr{D}]$.
In this note we study variants of the structure $\left\langle N,{ }^{\prime}\right\rangle$ where N is the set of natural numbers and ' is the successor function on N. Our results are a consequence of McNaughton's [7] work on the ω-behavior of finite automata and the decision procedure for $M T$ [N, '] given in [1]. The former is essential as we have been unable to obtain proofs which utilize only [1]'s characterization of ω-behavior. In [2] we discuss related results.
$\S 2$ studies definability in $M T\left[N,{ }^{\prime}\right]$. For every formula $C(X)$ of $M T\left[N,{ }^{\prime}\right]$ where X is a vector of unary predicate variables, the relation $C(X)$ is arithmetic and, in fact, is in the Boolean algebra over Π_{2}. In $\S 3$, we investigate the existence of decision procedures for $(W) M T\left[N,{ }^{\prime}, Q\right]$ where Q is a subset of N. Such theories were previously studied by Elgot and Rabin [4]. For any recursive Q, the decision problem for $M T\left[N,{ }^{\prime}, Q\right]$ is in $\Sigma_{3} \cap \Pi_{3}$. We also define a recursive Q for which $(W) M T\left[N,{ }^{\prime}, Q\right]$ is undecidable. This provides a rather natural example of an undecidable theory which is still arithmetic.
§2. Definability in $M T\left[N,{ }^{\prime}\right]$. In this section we study definability in $M T[N$, '] with respect to the arithmetic and classical Borel hierarchies. In particular we are interested in those relations definable by formulas $C(X), X$ a vector of free monadic predicate variables, of $M T\left[N,{ }^{\prime}\right]$. The main result is that every such relation is in the Boolean algebra over Π_{2} of the arithmetic hierarchy. In fact, Lemma 1 below also gives this result for a wider class of $C(X)$ than are definable in $M T\left[N,{ }^{\prime}\right]$. In the following x, y, z, \cdots are individual variables ranging over N.

Let Π_{0} be the class of recursive relations on $N^{n} \times P(N)^{k}$ where $P(N)$ is the power set of $N . \Pi_{1}\left(\Pi_{2}\right)$ is the class of relations presentable in the form $(\forall y) C\left(y, x_{1}, \cdots, x_{n}, X_{1}, \cdots, X_{k}\right)\left((\exists z)(\forall y) C\left(z, y, x_{1}, \cdots, x_{n}, X_{1}, \cdots, X_{k}\right)\right)$ where C denotes a recursive relation. Relations in Π_{3}, Π_{4}, \cdots are obtained by prefixing additional alternating quantifiers to relations in Π_{2}. The classes

[^0]Π_{0}, Π_{1}, \cdots comprise the arithmetic hierarchy. It is well known that $\Pi_{i+1}-\Pi_{i} \neq \varnothing$ for all i. Moreover, if Σ_{i} is the class of relations whose complements are in Π_{i}, then for all $i, \Pi_{i} \subset \Pi_{i+1} \cap \Sigma_{i+1}$. We refer the reader to Kleene [6] and Rogers [9, Chapters 14-15] for a complete discussion of the properties of the arithmetic hierarchy.

A formula $C\left(x_{1}, \cdots, x_{n}, X_{1}, \cdots, X_{k}\right)$ of $M T\left[N,{ }^{\prime}\right]$ is in $\Pi_{k}\left(\Sigma_{k}\right)$ if the corresponding relation is in $\Pi_{k}\left(\Sigma_{k}\right)$. To simplify the notation we do not distinguish between formulas and the relations they define. X is always used as an abbreviation for a vector of unary predicate variables. We implicitly use the obvious correspondence between ω-sequences on $\{T, F\}^{k}, k$-tuples of unary predicates on N and k-tuples of subsets of N. Let $I_{n}=\{T, F\}^{n} . I_{n}^{*}$ is the set of finite sequences on I_{n}. To simplify the notation we omit the subscript on I_{n}.

A recursive operator (RO) $Z=\mathscr{A}(X)$ is an operator mapping ω-sequences over the finite set $I=\{T, F\}^{n}$ into ω-sequences over a finite set S which can be presented in the form

$$
\begin{equation*}
Z t=\Phi(\bar{X} \phi(t)) \tag{1}
\end{equation*}
$$

whereby $\bar{X} t=X 0 \cdots X t$ and Φ and ϕ are recursive functions from I^{*} into S and from N into N respectively. Sup Z is the set of members of S appearing infinitely often in the ω-sequence $Z=Z 0, Z 1, \cdots$.

Lemma 1. Let $Z=\mathscr{A}(X)$ be a $R O$ and $U \subseteq 2^{S}$. Then the relation $F(X)$ given by

$$
\begin{equation*}
(\exists Z)[Z=\mathscr{A}(X) \wedge \sup Z \in U] \tag{2}
\end{equation*}
$$

is in the Boolean algebra over Π_{2} of the arithmetic hierarchy.
Proof. $F(X)$ can be written as

$$
\bigvee_{B \in U} \cdot(\exists x)(\forall y)[y \geq x \supset \Phi(\bar{X} \phi(y)) \in B] \wedge \bigwedge_{s \in B}(\forall x)(\exists y)[y \geq x \wedge \Phi(\bar{X} \phi(y))=s]
$$

The relations given by $[y \geq x \wedge \Phi(\bar{X} \phi(y))=s]$ and $[y \geq x \supset \Phi(\bar{X} \phi(y)) \in B]$ are recursive because Φ and ϕ are recursive. Hence $F(X)$ is a Boolean combination of formulas of the form $(\forall y)(\exists x) M(X, x, y)$ where M is recursive so $F(X)$ is in the Boolean algebra over Π_{2}.
Q.E.D.

A finite automata operator (FAO) is a $\mathrm{RO} Z=\mathscr{A}(X)$ which can be presented in the form

$$
\begin{equation*}
Z 0=c, \quad Z t^{\prime}=H[X t, Z t] \tag{3}
\end{equation*}
$$

whereby $H: I \times S \rightarrow S$ and $c \in S$. Let $C(X)$ be a formula of $M T\left[N,{ }^{\prime}\right]$. The main definability results of [1] and [7] (see [2] for more details) state that from C we can effectively construct a presentation of a FAO $Z=\mathscr{E}(X)$ as in (3) (i.e., obtain H, S, and c) and a $U \subseteq 2^{S}$ such that

$$
C(X) . \equiv .(\exists Z)[Z=\mathscr{E}(X) \wedge \sup Z \in U]
$$

Hence by Lemma 1 we have
Theorem 1. Every relation between subsets of N which is definable in $M T\left[N,{ }^{\prime}\right]$ is arithmetical, and in fact occurs in the Boolean algebra over Π_{2}. Furthermore, given a formula $C\left(X_{1}, \cdots, X_{n}\right)$ of $M T\left[N,{ }^{\prime}\right]$ one can construct an index of the relation C in the Boolean algebra over Π_{2}.

In contrast, all relations $R\left(y_{1}, \cdots, y_{m}, X_{1}, \cdots, X_{n}\right)$ appearing in the functionquantifier hierarchy over recursive relations are definable in $M T\left[N,{ }^{\prime}, 2 x\right]$ (see [8]).

We can also consider $C(X)$ as defining a subset of the Cantor space of ω sequences over I, namely, the set of ω-sequences over I which satisfy C. Those sets that are both open and closed in the usual totally disconnected topology on this space are of the form $U_{w_{1}} \cup \cdots \cup U_{w_{n}}$ whereby $w_{i} \in I^{*}$ and $U_{w}=$ $\{X \mid(\exists t)[\bar{X} t=w]\}$. A set is open if it is a denumerable union of sets which are both open and closed. $G_{\delta}\left(F_{\sigma}\right)$ is the class of sets which are denumerable intersections (unions) of open (closed) sets. $G_{\delta \sigma}, G_{\delta \sigma \delta}, \cdots$ and $F_{\sigma \delta}, F_{\sigma \delta \sigma}, \cdots$ sets are defined in the obvious manner. The Borel hierarchy is the increasing sequence of classes G, G_{δ}, $G_{\delta \sigma}, \cdots$ (see [9, Chapter 15] for a comparison of the Borel and arithmetic hierarchies).

If C is recursive, there is an effective procedure which decides whether $C(X)$ or $\sim C(X)$ is true after being given some finite portion $\bar{X} t=X 0 \cdots X t$ of X. Hence, if X_{0} is such that $\bar{X}_{0} t=\bar{X} t$, then $C(X) \equiv C\left(X_{0}\right)$. This implies that every recursive set of X 's is open and closed. But every $C(X)$ of $M T\left[N,{ }^{\prime}\right]$ is a Boolean combination of expressions of the form $(\forall x)(\exists y) M(x, y, X)$ where for fixed x and $y \mathscr{X} M(x, y, X)$ is open and closed (since M is recursive). Thus by Theorem 1 we obtain

Corollary 1. If $C(X)$ is a formula of $M T[N, ']$, then the relation $C(X)$ is in the Boolean algebra over G_{δ} of the Borel hierarchy.

We conclude this section with an example of a $C(X)$ of $M T[N, ']$ which is neither a G_{δ} nor an F_{σ} (and therefore neither a Σ_{2} nor a Π_{2}). The following remark is observed in [3].
(1) A set $C(X)$ is a G_{δ}, if and only if, there is a set W of words over I such that $C(X)$ holds if and only if $w<X$ for infinitely many $w \in W$.
Here $w<X(w$ is initial segment of $X)$ stands for $(\exists t) \bar{X} t=w$. Now define $C(X)$ by,

$$
\begin{equation*}
[X 0 \wedge(\forall x)(\exists y)[x \leq y \wedge X y]] \vee[\sim X 0 \wedge(\exists x)(\forall y)[x \leq y \supset \sim X y]] . \tag{2}
\end{equation*}
$$

Suppose C is a G_{δ}. Then, by (1), there exists a $W \subseteq I^{*}$ such that

$$
\begin{equation*}
C(X) . \equiv . W \cap\{w \mid w<X\} \text { is infinite } . \tag{3}
\end{equation*}
$$

Define the sequence $w_{0}, w_{1}, w_{2}, \cdots$ by

$$
\begin{align*}
w_{0} & =\text { shortest } v, v \in W \wedge v \text { of form } F F^{k}, \tag{4}\\
w_{n+1} & =\text { shortest } v, v \in W \wedge v \text { of form } w_{n} T F F^{k}
\end{align*}
$$

By (2) F^{ω} belongs to C, therefore by (3) w_{0} exists and $F \leq w_{0}$. Assume inductively that w_{n} exists and $F \leq w_{n}$. Then by (2) $w_{n} T F^{\omega}$ belongs to C, therefore by (3) w_{n+1} exists and $F \leq w_{n+1}$. Thus (4) really defines a sequence of words, and clearly $w_{i} \in W, F \leq w_{0}<w_{1}<w_{2} \cdots$. Thus, by (3) and (2), the sequence Y having all w_{i} 's as initial segments belong to C. But this is contradictory, as Y starts with F and has infinitely many T 's. Thus $C \notin G_{\delta}$, and similarly one shows $\sim C \notin G_{\delta}$. But $x \leq y$ is definable in $M T$ [$N,{ }^{\prime}$], and therefore C is. Consequently, (2) provides an example of a set C, definable in $M T\left[N,{ }^{\prime}\right]$, but neither in G_{δ} nor F_{σ}.
§3. Decision problems for extensions of $M T[N, ']$. Elgot and Rabin [4] have studied the existence of decision procedures for extensions of $M T$ [N, ']. In parti-
cular they have shown that $M T\left[N,{ }^{\prime}, Q\right]$ is decidable if Q is either of $\left\{x^{k} \mid x \in N\right\}$, $\left\{k^{x} \mid x \in N\right\}$ or $\{x!\mid x \in N\}$ where k is a fixed natural number. The results are obtained by reducing the decision problem for $M T\left[N,{ }^{\prime}, Q\right]$ to that for $M T\left[N,{ }^{\prime}\right]$ and then applying the procedure given in [1]. If $Q=\{(x, 2 x) \mid x \in N\}$, then the corresponding weak monadic theory is undecidable [8].

Let Q be a subset of N. If $W M T\left[N,{ }^{\prime}, Q\right]$ is undecidable, then so is $M T\left[N,{ }^{\prime}, Q\right]$. This follows from the definability of ' X is a finite set' in $M T[N$, '], by the formula $(\exists x)(\forall t)[t \geq x \supset \sim X t]$ where $t \geq x$ is an abbreviation of $(\forall Y), Y t \wedge$ $(\forall w)\left[Y w^{\prime} \supset Y w\right] \supset Y x$.

If Q is not recursive, then $W M T\left[N,{ }^{\prime}, Q\right]$ is undecidable (e.g., $0^{\prime \cdots \prime} \in Q$ can not be effectively decided). If Q is recursive, the hierarchy result of $\S 2$ can be applied to give an upper bound to the complexity of decision problems for $M T\left[N,{ }^{\prime}, Q\right]$. $\psi(y, Z)$ is a universal predicate for Π_{2} if for each $P(Z) \in \Pi_{2}$, there is an e_{p} such that for all $Z, \psi\left(e_{p}, Z\right) \equiv P(Z)$.

Theorem 2. If Q is recursive, then truth in $M T\left[N,{ }^{\prime}, Q\right]$ is in $\Sigma_{3} \cap \Pi_{3}$.
Proof. Let $\Psi(e, Z)$ be a universal predicate for all predicates $P(Z)$ in Π_{2}, which is itself in Π_{2} [6]. By Theorem 1, there is a recursive function B which maps every formula $\Phi(Z)$ of $M T\left[N,{ }^{\prime}\right]$ into a Boolean expression B_{Φ}, and a recursive function f which maps every formula $\Phi(Z)$ of $M T[N, ']$ into a finite sequence $f_{\Phi}=\left\langle f_{\Phi, 1}, \cdots, f_{\Phi, n}\right\rangle$ of numbers, such that for any $Z \subseteq N$,
(1) $\Phi(Z)$ holds in $M T\left[N,{ }^{\prime}\right], \equiv B_{\Phi}\left[\Psi\left(f_{\Phi, 1}, Z\right), \cdots, \Psi\left(f_{\Phi, n}, Z\right)\right]$.

Let $\chi(e)$ stand for $\Psi(e, Q)$, and note that because $\Psi \in \Pi_{2}$ and Q is recursive it follows that $\chi \in \Pi_{2}$. Furthermore, (1) may be restated as,

$$
\begin{equation*}
\Phi(Q) \text { holds in } M T\left[N,,^{\prime}, Q\right] . \equiv . B_{\Phi}\left[\chi\left(f_{\Phi, 1}\right), \cdots, \chi\left(f_{\Phi, n}\right)\right] . \tag{2}
\end{equation*}
$$

Note that the functions B, f are recursive, and all sentences of $M T\left[N,{ }^{\prime}, Q\right]$ are of form $\Phi(Q)$ where $\Phi(Z)$ is a formula of $M T[N, ']$. It follows that (2) provides for a recursive reduction of $\left\{\Sigma \mid \Sigma\right.$ true in $\left.M T\left[N,{ }^{\prime}, Q\right]\right\}$ to the set χ (i.e. a Turing machine can be built which, given a sentence Σ of $M T\left[N,{ }^{\prime}, Q\right]$ and an oracle for membership in χ, decides whether or not Σ is true). Thus, truth in $M T\left[N,{ }^{\prime}, Q\right]$ is reducible to some $\chi \in \Pi_{2}$. It follows, by a well-known result of Post (see [9, p. 314]), that truth in $M T\left[N,{ }^{\prime}, Q\right]$ belongs to $\Sigma_{3} \cap \Pi_{3}$.
Q.E.D.

Theorem 2 shows that for no recursive Q is it possible to prove $M T\left[N,{ }^{\prime}, Q\right]$ undecidable by the standard method of showing that all recursive relations are definable.

If Q is the set of primes, then $(\forall x)(\exists y)\left[y>x \wedge Q(y) \wedge Q\left(y^{\prime \prime}\right)\right]$ states the twin prime problem in $M T\left[N,{ }^{\prime}, Q\right]$. Indeed, this sentence is in the first order theory of $\left\langle N,{ }^{\prime},<, Q\right\rangle$. Hence, the problem as to whether (W) $M T\left[N,{ }^{\prime}\right.$, primes] is decidable, would seem very difficult. Namely, a positive answer would settle the twin prime problem, while on the negative side, the standard methods of proving theories undecidable is not available.
Theorem 3. There is a recursive Q such that $W M T\left[N,{ }^{\prime}, Q\right]$ is undecidable. ${ }^{2}$
Proof. Let R be a recursively enumerable set of primes which is not recursive. Let r_{1}, r_{2}, \cdots be a recursive enumeration of R and let $Q_{0}=\left\{r_{i}^{2} p_{i} \mid i=1,2, \cdots\right\}$,

[^1]whereby p_{i} is the i th prime. Q_{0} is obviously recursive. To prove that $W M T\left[N,{ }^{\prime}, Q_{0}\right]$ is undecidable it is sufficient to show that the first order theory ($F T$) of $\left\langle N, M_{1}, M_{2}, \cdots, Q_{0}\right\rangle$ is undecidable whereby M_{k} stands for the set of multiples of k. Just note that each M_{k} is definable in $W M T\left[N,{ }^{\prime}, Q_{0}\right]$ by the formula
$$
M_{k}(w):(\forall X) \cdot X w \wedge(\forall y)[X(y+k) \supset X y] \supset X 0
$$

From the definition of R and Q_{0} we obtain

$$
\begin{equation*}
R(k) . \equiv . k \neq 1 \wedge(\exists y)\left[M_{k^{2}}(y) \wedge Q_{0}(y)\right] \tag{}
\end{equation*}
$$

Let Σ_{k} be the sentence $k \neq 1 \wedge(\exists y)\left[M_{k^{2}}(y) \wedge Q_{0}(y)\right]$. By (*) Σ_{k} is true in $F T\left[N, M_{1}, M_{2}, \cdots, Q_{0}\right.$] if and only if $k \in R$. But R is not recursive so there is no effective procedure for deciding truth in $F T\left[N, M_{1}, M_{2}, \cdots, Q_{0}\right]$. Q.E.D.

Problem 1. Is there an 'interesting' recursive Q such that $(W) M T[N, ', Q]$ is undecidable? How about $Q=$ primes?

Although $W M T\left[N,{ }^{\prime}, Q_{0}\right]$ is undecidable, we have not classified its decision problem in the arithmetic hierarchy. This suggests

Problem 2. Is there a recursive Q such that the decision problem for (W) $M T\left[N,{ }^{\prime}, Q\right]$ is in $\Sigma_{3} \cap \Pi_{3}$ but not in the Boolean algebra over Π_{2} ?

Another interesting question is,
Problem 3. Is there a recursive Q such that $W M T\left[N,{ }^{\prime}, Q\right]$ is decidable but $M T\left[N,{ }^{\prime}, Q\right]$ is undecidable?

A negative answer to Problem 3 should imply the decidability of $M T\left[N,{ }^{\prime}\right]$ as a consequence of the decidability of $W M T\left[N,{ }^{\prime}\right](Q=\varnothing)$. Hence, a negative answer might be quite difficult.

BIBLIOGRAPHY

[1] J. R. Büch, On a decision procedure in restricted second order arithmetic, Proceedings of the international congress on logic, methodology and the philosophy of science, Stanford University Press, Stanford, California, 1962.
[2] J. R. Büchi and L. H. Landweber, Solving sequential conditions by finite state operators, Purdue Report CSD TR 14.
[3] M. Davis, Infinitary games of perfect information, Advances in game theory, Princeton University Press, Princeton, New Jersey, 1964, pp. 85-101.
[4] C. C. Elgot and M. O. Rabin, Decidability and undecidability of extensions of second (first) order theories of (generalized) successor, this Journal, vol. 31 (1966), pp. 169-181.
[5] S. C. Kleene, Introduction to metamathematics, Van Nostrand, New York, Amsterdam and Noordhoff, Groningen, 1952.
[6] S. C. Kleene, Hierarchies of number theoretic predicates, Bulletin of the American Mathematical Society, vol. 61 (1955), pp. 193-213.
[7] R. McNaUghton, Testing and generating infinite sequences by a finite automaton, Information and control, vol. 9 (1966), pp. 521-530.
[8] R. M. Robinson, Restricted set theoretical definitions in arithmetic, Proceedings of the American Mathematical Society, vol. 9 (1958), pp. 238-242.
[9] H. Rogers, Jr., Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967.

[^2]
[^0]: Received October 10, 1967; revised July 22, 1968.
 ${ }^{1}$ This research was supported by the National Science Foundation (Contract 4730-50-395).

[^1]: ${ }^{2}$ Michael O. Rabin has obtained a similar result (personal correspondence).

[^2]: PURDUE UNIVERSTTY
 UNIVERSITY OF WISCONSIN

