
Augmenting Branching Temporal Logics
with Existential Quantification over
Atomic Propositions

ORNA KUPFERMAN, EECS Department, UC Berkeley, Berkeley,
CA 94720-1770, USA.
E-mail: orna@eecs.berkeley.edu

Abstract
In temporal-logic model checking, we verify the correctness of a program with respect to a desired behaviour by
checking whether a structure that models the program satisfies a temporal logic formula that specifies this behaviour.
One of the ways to overcome the expressiveness limitation of temporal logics is to augment them with quantification
over atomic propositions. In this paper we consider the extension of branching temporal logics with existential
quantification over atomic propositions. Once we add existential quantification to a branching temporal logic, it
becomes sensitive to unwinding. That is, unwinding a structure into an infinite tree does not preserve the set of
formulas it satisfies. Accordingly, we distinguish between two semantics, two practices as specification languages,
and two versions of the model-checking problem for such a logic. One semantics refers to the structure that models
the program, and the second semantics refers to the infinite computation tree that the program induces. We examine
the complexity of the model-checking problem in the two semantics for the logics CTL and CTL? augmented with
existential quantification over atomic propositions. Following the cheerless results that we get, we examine also the
program complexity of model checking; i.e. the complexity of this problem in terms of the program, assuming the
formula is fixed. We show that while fixing the formula dramatically reduces model-checking complexity in the tree
semantics, its influence on the structure semantics is poor.

Keywords: Branching temporal logics, expressive power, model checking, complexity.

1 Introduction

Temporal logics, which are modal logics that enable the description of occurrence of events
in time, serve as a classical tool for specifying behaviours of concurrent programs [21]. The
appropriateness of temporal logics follows from the fact that finite-state programs can be
modelled by finite propositional Kripke structures, whose properties can be specified using
propositional temporal logic. This yields fully-algorithmic methods for synthesis and for
reasoning about the correctness of programs. A powerful such method is model checking. In
model checking, we verify the correctness of a program with respect to a desired behaviour
by checking whether the program, modelled as a Kripke structure, satisfies (is a model of) the
temporal logic formula that specifies this behaviour. Recent methods and heuristics such as
BDDs [3, 4], modular model checking [7, 13], partial-order techniques, [29], on-the-fly model
checking [8, 2], and others, cope successfully with the known ‘state explosion’ problem and
give rise to model checking not only as a lovely theoretical issue, but also as a practical tool
used for formal verification.

Model-checking methods consider two types of temporal logics: linear and branching [17].
In linear temporal logics, each moment in time has a unique possible future. Accordingly,
linear temporal logic formulas are interpreted over a path in a Kripke structure and refer

J. Logic Computat., Vol. 9 No. 2, pp. 135–147 1999 c Oxford University Press

136 Augmenting Branching Temporal Logics

to a single computation of a program. In branching temporal logics, each moment in time
may split into several possible futures. Accordingly, branching temporal logic formulas are
interpreted over a state in a Kripke structure and refer to all the computations that start at this
state. The syntax of the logic controls the way in which these computations can be referred to
and determines the expressive power of the logic. Naturally, there is a trade-off between the
expressive power of the logic and the complexity of its model-checking problem: the more a
logic is expressive, the more expensive its model checking is.

Adding quantification over atomic propositions increases the expressive power of temporal
logics [24, 25, 22]. In this paper, we consider the extension of branching temporal logics with
existential quantification. Formally, if is a formula in some branching temporal logic L,
then 9p1 : : : pn , where p1; : : : ; pn are atomic propositions, is a formula in the logic EQL,
which augments L with existential quantification. The formula 9p1 : : : pn is satisfied in a
Kripke structureK iff there exists a Kripke structure that satisfies and differs from K in at
most the labelling of p1; : : : ; pn.

The model-checking problem for EQL stands somewhere between the model-checking and
the satisfiability problems for L. On the one hand, as in model checking, we are given both
a Kripke structure and a formula and we are asked whether the structure satisfies the for-
mula. On the other hand, as in satisfiability, we are asked about the existence of some Kripke
structure that satisfies the formula. Essentially, we can view the model-checking problem
for EQL as a restricted (or perhaps extended) version of the satisfiability problem for L, in
which the candidates to satisfy the formula are not all Kripke structures, but only a limited
subset of them. Here, naturally enough, comes the question of complexity. The satisfiability
problem for a branching temporal logic L is usually harder than its model-checking problem.
For example, the branching temporal logics CTL and CTL? have, respectively, EXPTIME
and 2EXPTIME complete satisfiability bounds [12, 26, 11, 9] and have, respectively, linear-
time and PSPACE-complete bounds for their model checking problems [6, 10]. Where does
the complexity of the model-checking problem for EQL stand? Is it necessarily between the
complexities of the model-checking problem and the satisfiability problem for L? To which
of them is it closer? Is it worth paying the increase in model-checking complexity for the
increase in the expressive power?

A key observation that should be made before answering these questions is that once we
add existential quantification to a branching temporal logic L, it becomes sensitive to un-
winding. That is, unwinding of a Kripke structure into an infinite computation tree does not
preserve the set of EQL formulas it satisfies. Consequently, we distinguish between two se-
mantics for EQL. The first is the structure semantics given above. The second, which we call
EQLt, corresponds to a tree semantics. According to this semantics, a Kripke structure K
satisfies a formula 9p1 : : : pn iff there exists a computation tree that satisfies and differs
from the computation tree obtained by unwindingK in at most the labels of p1; : : : ; pn. Intu-
itively, it is harder for K to satisfy a formula in the structure semantics: among the infinitely
many computation trees that we have as candidates for satisfaction in the tree semantics,
only finitely many, those in which nodes that correspond to the same state of K have the
same labelling, are candidates in the structure semantics. The logics EQL and EQLt differ in
their practices as specification languages, differ in their expressive power, and differ in their
model-checking complexities. Nevertheless, we found in the literature no awareness of this
sensitivity.

We show that existential quantification increases the expressive power of CTL and CTL?,
in both semantics. In particular, existential quantification in the tree semantics is strong

Augmenting Branching Temporal Logics 137

enough to replace satellites. A satellite, as introduced in [1], is a small finite state machine,
linked to a design to be verified. It can read the design at any moment and it records particu-
lar events of interest, for possible use in the specification of the design. A concept similar to
satellites is introduced in [19] as observer processes. For example, we can define a satellite
Raise(s) which detects cycles in which the signal s is raised. Satellites overcome the ex-
pressiveness limitations of CTL and are used successfully as a part of the formal-verification
system in IBM Haifa. The price of satellites is the increase in the state space, which now
consists of the product of the state space of the design with the state space of the satellite.
Existential quantification leaves the design clean and shifts this price to the specification. For
example, instead of checking a CTL formula which requires the activation of the satel-
lite Raise(s), we can check the EQCTLt formula obtained by taking the conjunction of
with 9qAG(s ! AXq) ^ AG(:s ! AX:q) and replacing each occurrence of Raise(s) by
s^:q. Note that the quantified proposition q labels a node iff s holds in its predecessor node.
In fact, by [16], existential quantification is sufficient to express any occurrence of events in
the past that can be expressed by linear temporal logic. In addition, we can use existential
quantification to count y modulo z. The way we use formulas in the structure semantics is
different. There, formulas describe a single computation which is a partially ordered set [20].
For example, the formula 9q(q^AG(q ! AXAXq)^AG(q ! sendi) specifies that process
i sends a message in all its even positions.

We analyse the complexity of the model-checking problem for the logics EQCTL, EQCTLt,
EQCTL?, and EQCTL?

t
. Lichtenstein and Pnueli argued that when analysing the complex-

ity of model checking, a distinction should be made between complexity in the size of the
input structure and complexity in the size of the input formula; it is the complexity in size
of the structure that is typically the computational bottleneck [18]. Following this approach,
we consider also the program complexity [27] of model checking for these logics; i.e. the
complexity of this problem in terms of the size of the input Kripke structure, assuming the
formula is fixed. Our main results are summarized in the table below.

Quantification with Quantification with
No Quantification structure semantics tree semantics

CTL model linear time NP-complete EXPTIME-complete
checking [6] [Theorem 4.1] [Theorem 4.2]
program NLOGSPACE-complete NP-complete P-complete
complexity [2] [HK94, Theorem 5.1] [Theorem 5.2]

CTL? model PSPACE-complete PSPACE-complete 2EXPTIME-complete
checking [10] [Theorem 4.1] [Theorem 4.2]
program NLOGSPACE-complete NP-complete P-complete
complexity [2] [Theorem 5.1] [Theorem 5.2]

Examining our results, we conclude the following. First, in the structure semantics, ex-
istential quantification takes the model-checking problem for CTL from P to NP-complete.
Thus, we cannot expect an algorithm that does better than a naive check of all the possible
labellings for the quantified propositions. The same penalty (moving from a deterministic
complexity class to its nondeterministic variant) applies also for CTL?. There, however, as
PSPACE = NPSPACE, it seems we do not really pay for it. Second, in the tree semantics,
existential quantification makes model checking as hard as satisfiability (this holds for every
branching temporal logic that satisfies the small branching degree property). We show that
these results hold also for very limited fragments of EQCTL and EQCTL?; e.g. when the

138 Augmenting Branching Temporal Logics

propositional assertions are in 2CNF or when only a single quantified proposition is allowed.
In addition, we show that there are branching temporal logicsL for which the model-checking
problem for EQL is harder than the satisfiability problem for L. As for satisfiability, we show
that for logics L that satisfy the finite model property, the satisfiability problems for EQL and
EQLt are as hard as the satisfiability problem forL. Thus, as far as satisfiability is concerned,
we can have existential quantification for free.

Things become surprising when we turn to consider the program complexity. Mysteri-
ously, while model checking in the tree semantics is harder than model checking in the struc-
ture semantics, we have that the program complexity of model checking is lower in the tree
semantics. The elucidation of this mystery lies in the fact that the model-checking problem
for EQLt is closer to the satisfiability problem for L than the model-checking problem for
EQL is. While this disfavours the tree semantics when we consider model-checking com-
plexity, it advantages the tree semantics when we fix the formula. It follows from our results
that in the structure semantics, fixing the formula still leaves us with the naive algorithm that
checks all possible labelling for the quantified propositions. In the tree semantics, we can ap-
ply automata-theoretic methods to obtain model-checking procedures which are polynomial
in the size of the Kripke structure. We cannot, however, reach the space-efficient program
complexity of model checking for CTL and CTL?.

2 Preliminaries

The logic CTL? combines both branching-time and linear-time operators. A path quantifier,E
(‘for some path’), can prefix an assertion composed of an arbitrary combination of the linear-
time operators X (‘next time’), and U (‘until’). There are two types of formulas in CTL?:
state formulas, whose satisfaction is related to a specific state, and path formulas, whose
satisfaction is related to a specific path. Formally, let AP be a set of atomic proposition
names. A CTL? state formula is either:

� true, false, or p, for all p 2 AP ;

� :'1 or '1 _ '2, where '1 and '2 are CTL? state formulas;

� E 1, where 1 is a CTL? path formula.

A CTL? path formula is either:

� a CTL? state formula;

� : 1, 1 _ 2, X 1, or 1U 2, where 1 and 2 are CTL? path formulas.

The logic CTL? consists of the set of state formulas generated by the above rules. We use
the usual abbreviations ^ (‘and’), ! (‘implies’), A (‘for all paths’), F (‘eventually’), and G
(‘always’).

The logic CTL is a restricted subset of CTL? in which the temporal operators must be
immediately preceded by a path quantifier. Formally, it is the subset of CTL? obtained by
restricting the path formulas to be X'1, '1U'2, or their negations, where '1 and '2 are
CTL state formulas.

The semantics of CTL? is defined with respect to a Kripke structureK = hAP;W;R;w0; Li,
where AP is the set of atomic propositions,W is a set of states, R �W �W is a transition
relation that must be total (i.e. for every w 2 W there exists w0 2 W such that R(w;w0)),
w0 is an initial state, and L : W ! 2AP maps each state to a set of atomic propositions true

Augmenting Branching Temporal Logics 139

in this state. A path of K is an infinite sequence � = w0; w1; w2; : : : of states such that for
all i � 0 we have R(w;w0). For a path � and an index j � 0, we use �j to denote the suffix
wj ; wj+1; wj+2; : : : of �.

The notation K;w j= ' indicates that a CTL� state formula ' holds at the state w of the
Kripke structure K. Similarly, K;� j= indicates that a CTL� path formula holds at a
path � of the Kripke structure K. When K is clear from the context, we write w j= ' and
� j= . Also, K j= ' if and only if K;w0 j= '.

The relation j= is inductively defined as follows.

� For all w, we have w j= true and w 6j= false.

� w j= p for p 2 AP iff p 2 L(w).

� w j= :p for p 2 AP iff p 62 L(w).

� w j= :'1 iff w 6j= '1.

� w j= '1 _ '2 iff w j= '1 or w j= '2.

� w j= E iff there exists a path � = w0; w1; : : :, with w0 = w, such that � j= .

� � j= ' for a state formula ', iff w0 j= ' where � = w0; w1; : : :.

� � j= : 1 iff � 6j= 1.

� � j= 1 _ 2 iff � j= 1 or � j= 2.

� � j= X iff �1 j= .

� � j= 1U 2 iff there exists i � 0 such that �i j= 2 and for all 0 � j < i, we have
�j j= 1.

Given two Kripke structures K = hAP;W;R;w0; Li and K 0 = hAP 0;W 0; R; w00; L0i,
we say that K 0 is fp1; : : : ; png-different from K iff AP 0 = AP [fp1; : : : ; png, W 0 = W ,
R0 = R, w00 = w0, and for all w 2 W and p 2 AP n fp1; : : : ; png, we have that p 2 L0(w)
iff p 2 L(w).

The logic EQCTL? is obtained by adding existential quantification to CTL?: if is a CTL?

formula and p1 : : : pn are atomic propositions, then 9p1 : : : pn is an EQCTL? formula. The
semantics of 9p1 : : : pn is given by K j= 9p1 : : : pn iff there exists a Kripke structure K 0,
such that K 0 j= andK 0 is fp1; : : : ; png-different fromK. Note that EQCTL? is not closed
under negation. Thus, formulas of the form 8p1 : : : pn are not EQCTL? formulas. The logic
EQCTL is defined similarly, by adding existential quantification to CTL.

Given a formula 9p1 : : : pn , we call the atomic propositions p1 : : : pn quantified propo-
sitions and we call all the other propositions in free propositions. Note that satisfaction of
an EQCTL? formula with no free propositions in a Kripke structureK is independent of AP
and L. A frame is a Kripke structure with no AP and L. A frame K = hW;R;w0i satisfies
an EQCTL? formula 9p1 : : : pn iff there exists a Kripke structure K 0 = hAP;W;R;w0; Li
such that K 0 j= .

A tree is a set T � IN� such that if x � c 2 T where x 2 IN� and c 2 IN, then also x 2 T ,
and for all 0 � c0 < c, we have that x � c0 2 T . The elements of T are called nodes, and the
empty word � is the root of T . Given an alphabet �, a �-labelled tree is a pair hT; V i where
T is a tree and V : T ! � maps each node of T to a letter in �. A computation tree is a
�-labelled tree with � = 2AP for some set AP of atomic propositions.

140 Augmenting Branching Temporal Logics

3 Expressive power

A Kripke structure K can be unwound into an infinite computation tree in a straightforward
way. We denote by hTK ; VKi the computation tree obtained from unwinding K. Formally,
for every node w, let d(w) denote the degree of w (i.e. the number of successors that w has,
and note that for all w we have d(w) � 1), and let succR(w) = hw0; : : : ; wd(w)�1i be an
ordered list ofw’s R-successors (we assume that the nodes ofW are ordered). We first define
the W -labelled tree hTK ; V wK i that corresponds to K inductively as follows:

(1) " 2 TK and V w
K
(") = w0.

(2) For y 2 TK with succR(V wK (y)) = hw0; : : : ; wmi and for 0 � i � m, we have y �i 2 TK
and V w

K
(y � i) = wi.

Now, hTK ; VKi is the computation tree obtained from hTK ; V
w

K
i by taking the label of a node

x 2 TK to be L(V w
K
(x)) instead V w(x).

Each state in K may correspond to several nodes in hTK ; VKi. Since all these nodes have
the same future (i.e. they are roots of identical subtrees) and since CTL can refer only to
the future, CTL is insensitive to unwinding. That is, for every CTL formula ' and for every
Kripke structure K, we have that K j= ' iff hTK ; VKi j= '. Insensitivity to unwinding
is an important property for a branching temporal logic. For logics which are insensitive
to unwinding, we can model check their formulas with respect to a finite Kripke structure,
and adopt the result for its infinite computation tree. Symmetrically, we can model check
an infinite computation tree using, say, automata-theoretic methods, and adopt the result for
all Kripke structures that can be unwound into this tree. Augmenting CTL with past-time
modalities, it becomes sensitive to unwinding. Since past-time modalities can be expressed
by existential quantification [16], we have the following:

THEOREM 3.1
EQCTL is sensitive to unwinding.

PROOF. Consider the EQCTL formula ' = 9qAG(p $ AXq) and consider the Kripke
structure

K = hfpg; fw0; w1g; fhw0; w1i; hw1; w1ig; w0; fhw0; fpgi; hw1; ;igi:

Since p 2 L(w0) and since w1 is a successor of w0, it must be that q holds in the state w1

of a Kripke structure that satisfies AG(p $ AXq) and is fqg-different from K. On the
other hand, since p 62 L(w1) and and since w1 is the only successor of itself, it must be that
q does not hold in the state w1 of a Kripke structure that satisfies AG(p $ AXq) and is
fqg-different from K. Thus, there exists no Kripke structure that satisfies AG(p $ AXq)
and is fqg-different from K. Hence, K 6j= '. We now show that hTK ; VKi j= '. Consider
the computation tree hTK ; V 0

K
i over the alphabet 2fp;qg, where V 0

K
(0) = fpg, V 0

K
(1) = fqg,

and for all x � 2, we have that V 0
K
(x) = ;. Clearly, hTK ; V 0

K
i j= AG(p $ AXq) and thus,

hTK ; VKi j= '.

So, it makes sense to define two different semantics for EQCTL. The first corresponds to
the original structure semantics and the second, which we call EQCTLt, corresponds to a tree
semantics. Precisely, an EQCTLt formula ' = 9p1 : : : pn is satisfied in a Kripke structure
K, denoted K j=t ', iff there exists a computation tree hTK ; V

0

K
i such that hTK ; V

0

K
i j=

and V 0
K

differs from VK in at most the labelling of p1; : : : ; pn; i.e. for every x 2 TK and for

Augmenting Branching Temporal Logics 141

every p 2 AP n fp1; : : : ; png, we have p 2 VK(x) iff p 2 V 0
K
(x). Note that K j= ' implies

that K j=t '. It is the other direction which makes EQCTL sensitive to unwinding.
An interesting example of the sensitivity of EQCTL to unwinding is the formula '1 =

9q(q ^ (AX:q) ^ AG(q $ AXAXq) ^ AG(q ! p)). The formula is suggested in the
literature for specifying the propertyG2(p) = ‘p holds in all even places’. When interpreted
over computation trees, '1 indeed specifies G2(p). To see this, note that the quantified
proposition q holds in exactly all the even places. Yet, for a Kripke structure with a state that
can be reached from the initial state by both an even number and an odd number of transitions
(e.g. a Kripke structure that consists of a single state with a self loop), any labelling of q fails,
even if this Kripke structure does satisfy G2(p). Hence, '1 is appropriate only for the tree
semantics.

We have just seen that EQCTLt is strong enough to specify G2(p). In fact, the formula
'2 = 9q(q ^ AG(q ! AXAXq) ^ AG(q ! p)) specifies G2(p) faithfully with respect to
both the tree and the structure semantics. As opposed to '1, the formula '2 enables states
which can be reached from the initial state by both an even and an odd number of transitions,
and can be labelled with q. As CTL cannot specify G2(p) [28], we have the following:

THEOREM 3.2
EQCTL and EQCTLt are both strictly more expressive than CTL.

Theorems 3.1 and 3.2 clearly hold also with respect to EQCTL?.
Insensitivity to the sensitivity of EQCTL and EQCTL? to unwinding exists also when com-

paring these logics with tree automata [11]. Indeed, EQCTL?
t

is as expressive as symmetric
pair automata on infinite binary trees. Nevertheless, the translation of EQCTL?

t
into 2S2,

which is the base of this equivalence, does not hold for EQCTL?. Similarly, it is EQCTLt,
only, which is as expressive as symmetric Büchi automata on infinite binary trees.

4 Model-checking complexity

The model-checking problem for a variety of branching temporal logics can be stated as fol-
lows: given a branching temporal logic formula ' and a finite Kripke structureK = hAP;W;
R;w0; Li, determine whetherK satisfies '. When some of the logics are sensitive to unwind-
ing, there are two possible interpretations of this problem. The first interpretation, which is
the one appropriate for EQCTL and EQCTL?, asks whether K j= '. In the second interpre-
tation, which is the one appropriate for EQCTLt and EQCTL?

t
, we are given ' andK and are

asked to determine whetherK j=t '. In this section we consider model-checking complexity
for the two interpretations.

THEOREM 4.1
(1) The model-checking problem for EQCTL is NP-complete.

(2) The model-checking problem for EQCTL? is PSPACE-complete.

PROOF. (1) We first prove membership in NP. In order to check whether a Kripke structure
K satisfies an EQCTL formula 9p1 : : : pn , we guess a Kripke structureK 0 that differs from
K in at most the labelling of p1 : : : pn, and then check, in linear time [6], whetherK 0 satisfies
the CTL formula . To prove hardness in NP, we perform a reduction from SAT. Clearly, a
propositional formula � over the propositions p1 : : : pn is satisfiable if and only if the EQCTL
formula 9p1 : : : pn� is satisfied in a one-state frame.

142 Augmenting Branching Temporal Logics

(2) Both membership and hardness in PSPACE follow from being CTL? model-checking
PSPACE-complete [10]. While hardness is immediate, Savitch’s Theorem [23] is required
for the membership.

1

K5

K5
4K4

4 3

2

2,01,4

1,3

1,2

1,1 1,0

2,1

3,2

3,13,0

2,4 2,3

2,2

4

0

3 2

1

3,3

4,44,3

4,2

4,1

4,0 3,4

FIG. 1. The frames K4, K5, and K5
4 .

THEOREM 4.2
(1) The model-checking problem for EQCTLt is EXPTIME-complete.

(2) The model-checking problem for EQCTL?
t

is 2EXPTIME-complete.

PROOF. (1) We first prove membership in EXPTIME. Given a set D � IN and an EQCTLt
formula' = 9p1 : : : pn , letAD; be a Büchi tree automaton that accepts exactly all the tree
models of with branching degrees in D. By [27], such AD; of size O(jDj � 2j j) exists.
Given a Kripke structure K = hAP;W;R;w0; Li and a set S of atomic propositions, let
AK;S be a Buchi tree automaton that accepts exactly all the (2AP[S)-labelled trees hTK ; V 0

K
i

for which V 0
K

differs from VK in at most the labels of the propositions in S. It is easy to see
that such AK;S of size O(jKj � 2jSj) exists. Taking D as the set of branching degrees in TK
and taking S = fp1 : : : png, we get that K j=t ' iff L(AK;S) \ L(AD;) 6= ;. By [27], the
latter can be checked in time poly(jKj � 2j'j).

For proving hardness in EXPTIME, we reduce the satisfiability problem for CTL, proved
to be EXPTIME-hard in [12], to EQCTLt model checking. For every m � 1, let Km denote
the frame hf1; : : : ;mg; f1; : : : ;mg�f1; : : : ;mg; 1i. The frameK4 is presented in Figure 1.
Since a CTL formula is satisfiable iff it is satisfied in a tree of branching degree j j,
and since unwinding Kj j results in such a tree, satisfiability of can be reduced to model
checking Kj j with respect to the EQCTLt formula 9p1 : : : pn , where p1 : : : pn are exactly
all the atomic propositions in .

(2) The model-checking procedure for EQCTL?
t

is similar to the one for EQCTLt. Here,
following [11], we have that AD; is a Rabin tree automaton with 22

j j

states and 2j j

pairs. By [9], checking the nonemptiness of L(AK;S) \ L(AD;) can then be done in time

poly(jKj � 22
j'j

). To prove hardness of EQCTL?
t

model checking in 2EXPTIME, we reduce
satisfiability of CTL?, proved to be 2EXPTIME-hard in [26], to EQCTL?

t
model checking.

Since a CTL? formula is satisfiable iff it is satisfied in a tree of branching degree j j, the
same reduction that works for EQCTLt works also here.

Augmenting Branching Temporal Logics 143

As CTL subsumes propositional logic, EQCTL model checking being NP-hard is far from
surprising. What, however, if we restrict CTL to subsume only a subset of propositional logic
for which satisfiability is in P ? Let 2CNF-EQCTL denote the subset of EQCTL in which the
propositional assertions are in 2CNF.

THEOREM 4.3
The model-checking problem for 2CNF-EQCTL is NP-hard.

PROOF. For every n � 1, let (n) =
V
j 6=i AG((:pi) _ (:pj)) where i and j range over

1 : : : n. For every Kripke structure K, we have that K j= (n) iff at most one pi holds in
each state ofK. Note that all the propositional assertions in (n) are in 2CNF. Given a graph
with n nodes, we can use (n) to specify properties whose decidability is NP-hard. For
example, given an undirected graph G = hV;Ei with jV j = n, let KG = hV;E0; vi, where
E0 = E [fhv; vi : v 2 V g, and v is an arbitrary node in V , and let

' = 9p1 : : : pn[(n)^ p1 ^EX(p2 ^EX(p3 ^ : : :^EX(pn�1 ^EX(pn ^EXp1)) � � �))]:

It is easy to see that both KG and ' are of size polynomial in the size of G and that KG j= '

iff there exists a Hamiltonian circle in G.

Theorem 4.3 implies that it is the modality of CTL, by itself, that makes EQCTL model
checking NP-hard. Proving the lower bounds in the theorems above, we reduce hard problems
to model checking of formulas in which the number of quantified propositions is linear in the
size of the reduced problem. Thus, there is still a hope that if we restrict EQCTL and EQCTLt
to have a fixed number of quantified propositions, we get easier logics. The theorems below
refute this hope. For i � 0 and j � 0, let (i; j)-EQCTL denote the restricted subset of
EQCTL in which only i quantified propositions and j free propositions are allowed, and
similarly for EQCTLt.

THEOREM 4.4
The model-checking problem for (1; 0)-EQCTL is NP-hard.

PROOF. We reduce SAT to (1; 0)-EQCTL model checking. Intuitively, we do something
similar to that done for proving that EQCTL model checking is NP-hard. Since, however,
a propositional formula � may talk about more than one proposition, we translate a formula
�(p0; : : : ; pn�1) into a CTL formula that instead of talking about the value of pi in the initial
state, talks about the value of a single atomic proposition q in a state located i positions from
the initial state. Formally, for n � 1, let Kn be the frame hf0; : : : ; n� 1g; R; 0i where
R = fh0; 1i; h1; 2i; : : : ; hn� 2; n� 1i; hn� 1; 0ig. The frame K5 is presented in Figure 1.
Giving a propositional formula � over p0; : : : ; pn�1, let be the CTL formula obtained from
replacing each occurrence of pi in � by (EX)iq. For example, if � = (p0 _ p1)^ (:p1 _ p2),
then = (q_EXq)^(:EXq_EXEXq). It is easy to see that � is satisfiable iffKn j= 9q .

Note that constructing above, we needed a fragment of (1; 0)-EQCTL that contains the
temporal operator EX only. The satisfiability problem for this fragement can be solved in
linear time. Nevertheless, model-checking complexity of this fragement is NP-hard. Thus,
there are branching temporal logics with existential quantification for which model checking
is harder than satisfiability.

THEOREM 4.5
The model-checking problem for (1; 1)-EQCTLt is EXPTIME-hard.

144 Augmenting Branching Temporal Logics

PROOF. We reduce satisfiability of CTL to (1; 1)-EQCTLt model checking. Typically, we do
something similar to that done for proving that EQCTLt model checking is EXPTIME-hard.
Yet, as here we have only a single quantified proposition, we have to encode the states of
Km, as we did for the initial state in the proof of Theorem 4.4. Given m � 1 and n � 1, let
Kn

m
= hfstartg;W;R;w0; Li be the Kripke structure defined as follows:

� W = f1; : : :mg � f0; : : : ; n� 1g;

� R = fh(i; n� 1); (k; 0)i; h(i; j); (i; j + 1)i : 1 � i; k � m; 0 � j � n� 2g;

� w0 = (1; 0);

� for all 1 � i � m, we have L((i; 0)) = fstartg and L((i; j)) = ; for all j 6= 0.

The frame of K5
4 is presented in Figure 1. Now we have to translate a CTL formula

 (p0; : : : ; pn�1) into a formula that instead of talking about the value of pj at a state i of
Km, talks about the value of q at the state located j positions after the state (i; 0) in Kn

m
. For

example, the formula EF (pj ^ AGpi) is translated to the formula

EF (start ^ (EX)jq ^ AG(start ! (EX)iq)):

Such a translation may increase the formula by at most a factor of j j (because of the
extra EXs). Formally, we present a function f such that of length m over p0 : : : pn�1 is
satisfiable iff 9qf() is satisfied in Kn

m
. We define f by induction on the structure of as

follows (Q stands for either E or A):

� f(pi) = (EX)iq;

� f(: 1) = :f(1);

� f(1 _ 2) = f(1) _ f(2);

� f(QX 1) = (QX)mf(1);

� f(Q 1U 2) = Q(strat! f(1))U(start ^ f(2)).

Note that the definition of Kn

m
guarantees that path quantification in f() plays a role only

when interpreted in states f1; : : : ;mg � fn� 1g.

In fact, a more sophisticated construction can avoid the free proposition start (e.g. by encod-
ing the beginning of a sequence which encodes the assignment to the atomic propositions by
a sequence that does not appear elsewhere), thus showing that the EXPTIME lower bound
holds even for (1; 0)-EQCTLt.

We have seen that the model-checking problem for EQCTLt and EQCTL?
t

is as hard as
the satisfiability problem for CTL and CTL?, respectively. We now show that existential
quantification does not harm satisfiability complexity, for both semantics.

THEOREM 4.6
(1) The satisfiability problem for EQCTL and EQCTLt is EXPTIME-complete.

(2) The satisfiability problem for EQCTL? and EQCTL?
t

is 2EXPTIME-complete.

PROOF. (1) Hardness in EXPTIME follows from hardness of the satisfiability problem for
CTL. To prove membership in EXPTIME, we reduce satisfiability of a formula ' = 9p1 : : :
pn to the satisfiability of the CTL formula . This is straightforward for ' in EQCTL,
but requires some attention for ' in EQCTLt. Then, while satisfaction of is checked with
respect to Kripke structures, satisfaction of ' is checked with respect to computation trees. It
is easy to see that if is satisfiable then ' is satisfiable too. For the second direction, we need
the finite model property of CTL. The proof of (2) is similar, using the 2EXPTIME bounds
for CTL? [26, 11, 9].

Augmenting Branching Temporal Logics 145

5 Program complexity of model checking

In the previous section, we presented some cheerless results concerning the model-checking
complexity of branching temporal logics augmented with existential quantification over atomic
propositions. In this section we consider the program complexity of model checking for these
logics.

THEOREM 5.1
(1) [14] The program complexity of EQCTL model checking is NP-complete.

(2) The program complexity of EQCTL? model checking is NP-complete.

PROOF. (1) Membership in NP is immediate. In [14], Halpern and Kapron reduce satisfiabil-
ity of CNF formulas to model checking of a fixed formula ' in �1

1(9xMDL). Whatever the
logic �1

1(9xMDL) is,1 the formula ' is equivalent to an EQCTL formula. This establishes
hardness in NP.

(2) Hardness in NP follows from the hardness for EQCTL. We prove membership in NP.
In order to check whether a Kripke structure K satisfies an EQCTL? formula 9p1 : : : pn ,
we guess a Kripke structure K 0 that differs from K in at most the labelling of p1 : : : pn. As
the program complexity of CTL? model checking is in P, the result follows.

Thus, as long as we are interesting in the structure semantics, fixing the formula brings
no good news. Moreover, the fact that the program complexity of EQCTL? model checking
is NP-hard implies that the PSPACE complexity we have for EQCTL? model checking is
practically worse than the PSPACE complexity for CTL? model checking. Indeed, while
the time complexity of the first is exponential in the Kripke structure, we have that the time
complexity of the latter is exponential in the formula. Fortunately, the tree semantics (rather
than the structure semantics) corresponds to the natural way branching temporal logics have
been used to represent computations. There, as follows from the theorem below, the time
complexity is polynomial in the Kripke structure.

THEOREM 5.2
The program complexity of both EQCTLt and EQCTL?

t
is P-complete.

PROOF. Since the algorithms given in the proof of Theorem 4.2 are polynomial in the size
of K, membership in P is immediate. We prove hardness in P by reducing the Alternating
Graph Accessibility problem, proved to be P-complete in [15, 5], to model checking of a fixed
EQCTLt formula. In the Alternating Graph Accessibility problem, we are given a directed
graphG = hV;Ei, a partition E [U of V , and two designated vertices s and t. The problem
is whether alternating path(s; t) is true, where alternating path(x; y) holds if and only if:

(1) x = y, or

(2) x 2 E and there exists z such that hx; zi 2 E and alternating path(z; y), or

(3) x 2 U and for all z such that hx; zi 2 E, we have alternating path(z; y).

Given G; E ;U ; s, and t, we define KG = hft; exist, univg; V; E; s; Li, where for all w 2
E n ftg, we have L(w) = fexistsg, for all w 2 U n ftg, we have L(w) = funivg, and
L(t) = ftg. Consider the fixed formula

' = 9q[q ^ AG(q ! (t _ (exist ^EXq) _ (univ ^AXq))) ^ AF:q]:

1The logic �1

1
(9xMDL) consists of formulas of the form 9P9x where is a first-order formula that arises as

the translation of a modal formula with unary predicates in P and binary predicate R.

146 Augmenting Branching Temporal Logics

The two leftmost conjunctions in ' label with q nodes of hTKG ; VKGi that correspond to
states z 2 V for which alternating path(z; t) should still be verified in order to guarantee
that alternating path(s; t) holds. Since ' also requires that eventually no such z is left, we
have that alternating path(s; t) holds iff KG j=t '. Note that, as with G2(p), the formula '
is not appropriate for the structure semantics.

Acknowledgements

I thank Rajeev Alur and Moshe Vardi for helpful comments.
This research was supported in part by the Office of Naval Research Young Investiga-

tor award N00014-95-1-0520, by the National Science Foundation CAREER award CCR-
9501708, by the National Science Foundation grant CCR-9504469, by the Air Force Office
of Scientific Research contract F49620-93-1-0056, by the Army Research Office MURI grant
DAAH-04-96-1-0341, by the Advanced Research Projects Agency grant NAG2-892, and by
the Semiconductor Research Corporation contract 95-DC-324.036.

References
[1] I. Beer, S. Ben-David, D. Geist, R. Gewirtzman and M. Yoeli. Methodology and system for practical formal

verification of reactive hardware. In Proceedings of the 6th Workshop on Computer Aided Verification, Stanford,
June 1994. D. Dill, ed. pp. 182–193. Vol. 818 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
1994.

[2] O. Bernholtz, M. Y. Vardi and P. Wolper. An automata-theoretic approach to branching-time model checking.
In Computer Aided Verification, Proceedings of the 6th International Conference, Stanford, California, June
1994. D. L. Dill, ed. pp. 142–155. Vol. 818 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
1994.

[3] R. E. Bryant. Graph-based algorithms for boolean-function manipulation. IEEE Transactions on Computers,
C-35, pp. 1035–1044, 1986.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill and L. J. Hwang. Symbolic model checking: 1020 states
and beyond. Information and Computation, 98, 142–170, 1992.

[5] A. K. Chandra, D. C. Kozen and L. J. Stockmeyer. Alternation. Journal of the Association for Computing
Machinery, 28, 114–133, 1981.

[6] E. M. Clarke, E. A. Emerson and A. P. Sistla. Automatic verification of finite-state concurrent systems using
temporal logic specifications. ACM Transactions on Programming Languages and Systems, 8, 244–263, 1986.

[7] E. M. Clarke, D. E. Long and K. L. McMillan. Compositional model checking. In Proceedings of the 4th IEEE
Symposium on Logic in Computer Science, R. Parikh, ed. pp. 353–362. IEEE Computer Society Press, 1989.

[8] C. Courcoubetis, M. Y. Vardi, P. Wolper and M. Yannakakis. Memory efficient algorithms for the verification
of temporal properties. Formal Methods in System Design, 1, 275–288, 1992.

[9] E. A. Emerson and C. Jutla. The complexity of tree automata and logics of programs. In Proceedings of
the 29th IEEE Symposium on Foundations of Computer Science, S. J. Kozen, ed. ACM Press, White Plains,
October 1988.

[10] E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time logic strikes back. In Proceedings
of the Twelfth ACM Symposium on Principles of Programming Languages, pp. 84–96, New Orleans, January
1985.

[11] E. A. Emerson and A. P. Sistla. Deciding branching time logic. In Proceedings of the 16th ACM Symposium
on Theory of Computing, De Millo, ed. ACM Press, Washington, April 1984.

[12] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. Journal of Computer and
System Sciences, 18, 194–211, 1979.

[13] O. Grumberg and D. E. Long. Model checking and modular verification. In Proceedings of the 2nd Conferance
on Concurrency Theory, pp. 250–265. Vol. 527 of Lecture Notes in Computer Science, J. Baeten and I. Groote,
eds. Springer-Verlag, Berlin, 1991.

Augmenting Branching Temporal Logics 147

[14] J. Y. Halpern and B. Kapron. Zero-one laws for modal logic. Annals of Pure and Applied Logic, 69, 157–193,
1994.

[15] N. Immerman. Number of quantifiers is better than number of tape cells. Journal of Computer and System
Sciences, 22, 384–406, 1981.

[16] O. Kupferman and A. Pnueli. Once and for all. In Proceedings of the 10th IEEE Symposium on Logic in
Computer Science, D. Kozen, ed. Computer Society Press, San Diego, June 1995.

[17] L. Lamport. Sometimes is sometimes ‘not never’—on the temporal logic of programs. In Proceedings of the
7th ACM Symposium on Principles of Programming Languages, pp. 174–185, ACM Press, January 1980.

[18] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their linear specification.
In Proceedings of the Twelfth ACM Symposium on Principles of Programming Languages, pp. 97–107, New
Orleans, ACM Press, January 1985.

[19] D. E. Long. Model Checking, Abstraction and Compositional Verification. PhD thesis, Carnegie-Mellon Uni-
versity, Pittsburgh, PA, 1993.

[20] S. Pinter and P. Wolper. A temporal logic for reasoning about partially ordered computations. In Proceedings of
the 3rd ACM Symposium on Principles of Distributed Computing, pp. 28–37, ACM Press, Vancouver, August
1984.

[21] A. Pnueli. The temporal semantics of concurrent programs. Theoretical Computer Science, 13, 45–60, 1981.
[22] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings of the Sixteenth ACM Sympo-

sium on Principles of Programming Languages, ACM Press, Austin, January 1989.
[23] W. J. Savitch. Relationship between nondeterministic and deterministic tape complexities. Journal of Computer

and System Sciences, 4, 177–192, 1970.
[24] A. P. Sistla. Theoretical Issues in the Design of Distributed and Concurrent Systems. PhD thesis, Harvard

University, Cambridge, MA, 1983.
[25] A. P. Sistla, M. Y. Vardi and P. Wolper. The complementation problem for Büchi automata with applications to

temporal logic. Theoretical Computer Science, 49, 217–237, 1987.
[26] M. Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for modal logics of programs. In Proceedings

of the 17th ACM Symposium on Theory of Computing, Pippenger, ed. pp. 240–251, ACM Press, 1985.
[27] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs. Journal of Computer

and System Science, 32, 182–21, 1986.
[28] P. Wolper. Temporal logic can be more expressive. Information and Control, 56, 72–99, 1983.
[29] P. Wolper and P. Godefroid. Partial-order methods for temporal verification. In Proceedings of the 4th Confer-

ence on Concurrency Theory, pp. 233–246, Hildesheim, August 1993. Vol. 715 of Lecture Notes in Computer
Science, E. Best, ed. Springer-Verlag, Berlin, 1993.

Received 28 September 1995

