Augmenting Branching Temporal L ogics
with Existential Quantification over
Atomic Propositions

ORNA KUPFERMAN, EECS Department, UC Berkeley, Berkeley,
CA 94720-1770, USA.
E-mail: orna@eecs.berkeley.edu

Abstract

In temporal-logic model checking, we verify the correctness of a program with respect to a desired behaviour by
checking whether a structure that models the program satisfies atemporal logic formulathat specifies this behaviour.
One of the ways to overcome the expressiveness limitation of temporal logics isto augment them with quantification
over atomic propositions. In this paper we consider the extension of branching temporal logics with existential
quantification over atomic propositions. Once we add existential quantification to a branching tempora logic, it
becomes sensitive to unwinding. That is, unwinding a structure into an infinite tree does not preserve the set of
formulas it satisfies. Accordingly, we distinguish between two semantics, two practices as specification languages,
and two versions of the model-checking problem for such alogic. One semantics refers to the structure that models
the program, and the second semantics refers to the infinite computation tree that the program induces. We examine
the complexity of the model-checking problem in the two semantics for the logics CTL and CTL* augmented with
existential quantification over atomic propositions. Following the cheerless results that we get, we examine aso the
program complexity of model checking; i.e. the complexity of this problem in terms of the program, assuming the
formulais fixed. We show that while fixing the formula dramatically reduces model-checking complexity in the tree
semantics, itsinfluence on the structure semantics is poor.

Keywords: Branching temporal logics, expressive power, model checking, complexity.

1 Introduction

Temporal logics, which are modal logics that enable the description of occurrence of events
in time, serve as a classical tool for specifying behaviours of concurrent programs|[21]. The
appropriateness of temporal logics follows from the fact that finite-state programs can be
modelled by finite propositional Kripke structures, whose properties can be specified using
propositional temporal logic. This yields fully-algorithmic methods for synthesis and for
reasoning about the correctness of programs. A powerful such method is model checking. In
model checking, we verify the correctness of a program with respect to a desired behaviour
by checking whether the program, modelled as a Kripke structure, satisfies (isamodel of) the
temporal logic formulathat specifies this behaviour. Recent methods and heuristics such as
BDDs[3, 4], modular model checking[7, 13], partial-order techniques, [29], on-the-fly model
checking [8, 2], and others, cope successfully with the known * state explosion’ problem and
giverise to model checking not only as a lovely theoretical issue, but also as a practical tool
used for formal verification.

M odel -checking methods consider two types of temporal logics: linear and branching [17].
In linear temporal logics, each moment in time has a unique possible future. Accordingly,
linear tempora logic formulas are interpreted over a path in a Kripke structure and refer

J. Logic Computat., Vol. 9 No. 2, pp. 135-147 1999 (© Oxford University Press

136 Augmenting Branching Temporal L ogics

to a single computation of a program. In branching temporal logics, each moment in time
may split into several possible futures. Accordingly, branching temporal logic formulas are
interpreted over astate in a Kripke structure and refer to all the computationsthat start at this
state. The syntax of thelogic controlsthe way in which these computations can be referred to
and determines the expressive power of the logic. Naturally, there is a trade-off between the
expressive power of the logic and the complexity of its model-checking problem: the more a
logic is expressive, the more expensive its model checkingis.

Adding quantification over atomic propositionsincreases the expressive power of temporal
logics[24, 25, 22]. Inthis paper, we consider the extension of branching temporal logicswith
existential quantification. Formally, if) is aformulain some branching temporal logic £,
then dp; ...p,0, wherepy, ..., p, are atomic propositions, is aformulain the logic EQL,
which augments £ with existential quantification. The formula3p; ... pyy is satisfied in a
Kripke structure K iff there exists a Kripke structure that satisfies+) and differsfrom K in at
most the labelling of py, ..., pn.

The model -checking problem for EQL stands somewhere between the model-checking and
the satisfiability problemsfor £. On the one hand, asin model checking, we are given both
a Kripke structure and a formula and we are asked whether the structure satisfies the for-
mula. On the other hand, asin satisfiability, we are asked about the existence of some Kripke
structure that satisfies the formula. Essentially, we can view the model-checking problem
for EQL as arestricted (or perhaps extended) version of the satisfiability problem for £, in
which the candidates to satisfy the formula are not all Kripke structures, but only a limited
subset of them. Here, naturally enough, comes the question of complexity. The satisfiability
problem for a branching temporal logic £ isusually harder than its model-checking problem.
For example, the branching temporal logics CTL and CTL* have, respectively, EXPTIME
and 2EXPTIME complete satisfiability bounds[12, 26, 11, 9] and have, respectively, linear-
time and PSPACE-compl ete bounds for their model checking problems[6, 10]. Where does
the complexity of the model-checking problem for EQL stand? Isit necessarily between the
complexities of the model-checking problem and the satisfiability problem for £? To which
of them isit closer? Is it worth paying the increase in model-checking complexity for the
increasein the expressive power?

A key observation that should be made before answering these questions is that once we
add existential quantification to a branching temporal logic £, it becomes sensitive to un-
winding. That is, unwinding of a Kripke structure into an infinite computation tree does not
preserve the set of EQL formulasit satisfies. Consequently, we distinguish between two se-
manticsfor EQL. Thefirstis the structure semantics given above. The second, which we call
EQL;, corresponds to a tree semantics. According to this semantics, a Kripke structure K
satisfies aformuladp; . .. p, iff there exists a computation tree that satisfies ¢/ and differs
from the computation tree obtained by unwinding K in at most thelabelsof py, ..., p,. Intu-
itively, it is harder for K to satisfy aformulain the structure semantics: among the infinitely
many computation trees that we have as candidates for satisfaction in the tree semantics,
only finitely many, those in which nodes that correspond to the same state of K have the
same labelling, are candidates in the structure semantics. Thelogics EQL and EQL; differin
their practices as specification languages, differ in their expressive power, and differ in their
model-checking complexities. Nevertheless, we found in the literature no awareness of this
sengitivity.

We show that existential quantification increases the expressive power of CTL and CTL*,
in both semantics. In particular, existential quantification in the tree semantics is strong

Augmenting Branching Temporal Logics 137

enough to replace satellites. A satellite, asintroduced in [1], is a small finite state machine,
linked to a design to be verified. It can read the design at any moment and it records particu-
lar events of interest, for possible use in the specification of the design. A concept similar to
satellites is introduced in [19] as observer processes. For example, we can define a satellite
Raise(s) which detects cycles in which the signal s is raised. Satellites overcome the ex-
pressiveness limitations of CTL and are used successfully as a part of the formal-verification
system in IBM Haifa. The price of satellites is the increase in the state space, which now
consists of the product of the state space of the design with the state space of the satellite.
Existential quantification leavesthe design clean and shifts this price to the specification. For
example, instead of checking a CTL formula) which requires the activation of the satel-
lite Raise(s), we can check the EQCTL, formula obtained by taking the conjunction of
with 3¢AG(s —» AX q) AN AG(—s — AX —~q) and replacing each occurrence of Raise(s) by
s A —g. Notethat the quantified proposition ¢ labelsanodeiff s holdsin its predecessor node.
In fact, by [16], existential quantification is sufficient to express any occurrence of eventsin
the past that can be expressed by linear temporal logic. In addition, we can use existential
quantification to count y modulo z. The way we use formulas in the structure semanticsis
different. There, formulas describe a single computation which isa partially ordered set [20].
For example, theformuladg(gA AG(¢ - AX AX q) AAG(q — send;) specifiesthat process
i sendsamessage in al its even positions.

We analyse the complexity of the model-checking problemfor thelogicsEQCTL, EQCTL;,
EQCTL*, and EQCTL}. Lichtenstein and Pnueli argued that when analysing the complex-
ity of model checking, a distinction should be made between complexity in the size of the
input structure and complexity in the size of the input formulg; it is the complexity in size
of the structure that is typically the computational bottleneck [18]. Following this approach,
we consider also the program complexity [27] of model checking for these logics; i.e. the
complexity of this problem in terms of the size of the input Kripke structure, assuming the
formulaisfixed. Our main results are summarized in the table below.

Quantification with Quantification with
No Quantification structure semantics tree semantics

CTL model linear time NP-complete EXPTIME-complete
checking [6] [Theorem 4.1] [Theorem 4.2]
program NLOGSPACE-complete | NP-complete P-complete
complexity || [2] [HK94, Theorem 5.1] | [Theorem 5.2

CTL* | model PSPACE-complete PSPACE-complete 2EXPTIME-complete
checking [20] [Theorem 4.1] [Theorem 4.2]
program NLOGSPACE-complete | NP-complete P-complete
complexity || [2] [Theorem 5.1] [Theorem 5.2]

Examining our results, we conclude the following. First, in the structure semantics, ex-
istential quantification takes the model-checking problem for CTL from P to NP-compl ete.
Thus, we cannot expect an algorithm that does better than a naive check of al the possible
labellings for the quantified propositions. The same penalty (moving from a deterministic
complexity class to its nondeterministic variant) applies also for CTL*. There, however, as
PSPACE = NPSPACE, it seems we do not really pay for it. Second, in the tree semantics,
existential quantification makes model checking as hard as satisfiability (this holds for every
branching temporal logic that satisfies the small branching degree property). We show that
these results hold also for very limited fragments of EQCTL and EQCTL*; e.g. when the

138 Augmenting Branching Temporal L ogics

propositional assertions are in 2CNF or when only a single quantified proposition is alowed.
In addition, we show that there are branching temporal logics £ for which the model-checking
problem for EQL isharder than the satisfiability problem for £. Asfor satisfiability, we show
that for logics £ that satisfy the finite model property, the satisfiability problemsfor EQL and
EQL; areashard asthe satisfiability problemfor £. Thus, asfar assatisfiability is concerned,
we can have existential quantification for free.

Things become surprising when we turn to consider the program complexity. Mysteri-
oudly, while model checking in the tree semanticsis harder than model checking in the struc-
ture semantics, we have that the program complexity of model checking is lower in the tree
semantics. The elucidation of this mystery lies in the fact that the model-checking problem
for EQL, is closer to the satisfiability problem for £ than the model-checking problem for
EQL is. While this disfavours the tree semantics when we consider model-checking com-
plexity, it advantages the tree semantics when we fix the formula. It follows from our results
that in the structure semantics, fixing the formula gtill leaves us with the naive algorithm that
checksall possible labelling for the quantified propositions. In the tree semantics, we can ap-
ply automata-theoretic methods to obtain model -checking procedures which are polynomial
in the size of the Kripke structure. We cannot, however, reach the space-efficient program
complexity of model checking for CTL and CTL*.

2 Prdiminaries

Thelogic CTL* combinesboth branching-timeand linear-time operators. A path quantifier, £
(‘for some path’), can prefix an assertion composed of an arbitrary combination of the linear-
time operators X (‘next time’), and U (‘until’). There are two types of formulasin CTL*:
state formulas, whose satisfaction is related to a specific state, and path formulas, whose
satisfaction is related to a specific path. Formally, let AP be a set of atomic proposition
names. A CTL* state formulais either:

e true, false, or p, for all p € AP;
e —(py OF 1 V o, Where p; and ¢, are CTL* state formulas;
e Evy, wheret; isaCTL* path formula.

A CTL* path formulais either:

e aCTL* state formula;
o —w)y, 1 Ve, X1hq, OF Y1 Utbe, Wherep; and ip, are CTL* path formulas.

The logic CTL* consists of the set of state formulas generated by the above rules. We use
the usual abbreviations A (‘and’), — (‘implies’), A (‘for al paths'), F' (‘eventudly’), and G
(‘dways’).

The logic CTL is a restricted subset of CTL* in which the temporal operators must be
immediately preceded by a path quantifier. Formally, it is the subset of CTL* obtained by
restricting the path formulas to be X, 1 Ug», or their negations, where ¢, and ¢» are
CTL state formulas.

Thesemanticsof CTL* isdefined with respect to aKripke structure K = (AP, W, R, w°, L),
where AP isthe set of atomic propositions, W isaset of states, R C W x W isatransition
relation that must be total (i.e. for every w € W there exists w’' € W such that R(w, w'")),
wP isaninitia state, and L : W — 247 maps each state to a set of atomic propositions true

Augmenting Branching Temporal Logics 139

in this state. A path of K isan infinite sequence = = wq, w1, ws, ... Of states such that for
al i > 0 wehave R(w,w'). For apath = and anindex j > 0, we use 7/ to denote the suffix
Wi, Wj41,Wj42,- - - of .

The notation K, w = ¢ indicatesthat a CTL* state formula ¢ holds at the state w of the
Kripke structure K. Similarly, K, = |= « indicates that a CTL* path formula ¢ holds at a
path = of the Kripke structure K. When K is clear from the context, we write w = ¢ and
7 E . Also, K = ¢ if andonly if K, w® | .

Therelation |= isinductively defined as follows.

e For al w, wehavew = trueand w [~ false.

ewpforp e AP iff p € L(w).

ew | -pforpe APiff p & L(w).

e w =~y iff w 1.

cew =1 Vo iffw =@ orw | ¢o.

e w |= Ev iff thereexistsapath 7 = wg, wy, . .., With wy = w, such that 7 |= 1.
o 7 = for astate formula g, iff wo = p wherem = wo, wy,

o E iy iff T £ .

o =y Vb iff m =1y O T = 4o,

o = X¢iff rl = b,

o T |= 9 Uty iff there exists i > 0 such that 7 |= ¢, and for al 0 < j < 4, we have
™ = 1.

Given two Kripke structures K = (AP, W, R,w°, L) and K' = (AP",W', R,w'®, L"),
we say that K' is{ps,...,p,}-different from K iff AP' = APU{p1,...,pn}, W' =W,
R = R,w' = w® andforal w e Wandp € AP\ {p1,...,pn}, Wwehavethat p € L' (w)
iff p e L(w).

Thelogic EQCTL* isobtained by adding existential quantificationto CTL*: if ¢ isaCTL*
formulaand p, . .. p, areatomic propositions, then3p; ...p,¢ isan EQCTL* formula. The
semanticsof Ap; ...pyY isgivenby K = Jp; ... p, o iff there exists aKripke structure K,
suchthat K’ = ¢ and K’ is{py, . .., p, }-different from K. Note that EQCTL* isnot closed
under negation. Thus, formulasof theformVp; ... p,v arenot EQCTL* formulas. Thelogic
EQCTL isdefined similarly, by adding existential quantificationto CTL.

Given aformula3p; ... p,, we cal the atomic propositions p; . . . p, quantified propo-
sitions and we call all the other propositionsin ¢ free propositions. Note that satisfaction of
an EQCTL* formulawith no free propositionsin a Kripke structure K is independent of AP
and L. A frameis aKripke structure withno AP and L. A frame K = (W, R, w®) satisfies
an EQCTL* formula3p; . .. p,v iff there existsa Kripke structure K’ = (AP, W, R,w°, L)
suchthat K' |= 4.

AtreeisasetT C IN* suchthatif z-c € T wherexz € IN* andc € IN, thenalsoz € T,
andforal 0 < ¢ < ¢,wehavethat z - ¢’ € T. The elementsof T' are called nodes, and the
empty word € istheroot of T'. Given an alphabet ¥, a ¥-labelled treeisapair (T, V') where
Tisatreeand V : T' — X maps each node of T to aletter in . A computation tree is a
Y-labelled tree with = = 247 for some set AP of atomic propositions.

140 Augmenting Branching Temporal L ogics
3 Expressive power

A Kripke structure K can be unwound into an infinite computation tree in a straightforward
way. We denote by (Tk, Vi) the computation tree obtained from unwinding K. Formally,
for every node w, let d(w) denote the degree of w (i.e. the number of successorsthat w has,
and note that for al w we have d(w) > 1), and let succr(w) = (wo, ..., wq(w)—1) bean
ordered list of w’s R-successors (we assume that the nodes of W are ordered). Wefirst define
the TV -labelled tree (T, V%) that correspondsto K inductively as follows:

(D eeTkandV¥(e) =ud.
(2) Fory € Tk with succr(V¥#(y)) = (wo, ..., wp)yandfor0o <i < m,wehavey-i € Tk
and V¥(y - i) = w;.

Now, (T, Vi) isthe computation tree obtained from (Tx, V¢) by taking the label of anode
z € Tk tobe L(VY¥(z)) instead V¥ (z).

Each state in K may correspond to several nodesin (T, Vi). Since al these nodes have
the same future (i.e. they are roots of identical subtrees) and since CTL can refer only to
the future, CTL isinsensitive to unwinding. That is, for every CTL formula and for every
Kripke structure K, we have that K |= ¢ iff (Tk,Vk) E ¢. Insensitivity to unwinding
is an important property for a branching temporal logic. For logics which are insensitive
to unwinding, we can model check their formulas with respect to a finite Kripke structure,
and adopt the result for its infinite computation tree. Symmetrically, we can model check
an infinite computation tree using, say, automata-theoretic methods, and adopt the result for
al Kripke structures that can be unwound into this tree. Augmenting CTL with past-time
modalities, it becomes sensitive to unwinding. Since past-time modalities can be expressed
by existential quantification [16], we have the following:

THEOREM 3.1
EQCTL is sensitive to unwinding.

PrROOF. Consider the EQCTL formula ¢ = dgAG(p <+ AXq) and consider the Kripke
structure

K= <{p}7 {wovwl}, {<w07w1>7 <w17w1>}7w0, {(wo, {p}>7 <w17 (Z))})

Since p € L(wp) and since w; is a successor of wy, it must be that ¢ holds in the state w;
of a Kripke structure that satisfies AG(p <+ AX¢q) and is {¢q}-different from K. On the
other hand, since p ¢ L(w;) and and since w; isthe only successor of itself, it must be that
g does not hold in the state w; of a Kripke structure that satisfies AG(p <+ AXgq) and is
{q}-different from K. Thus, there exists no Kripke structure that satisfies AG(p < AXq)
and is {¢}-different from K. Hence, K [~ . We now show that (T, Vi) = . Consider
the computation tree (T, V) over the alphabet 2{7-¢}, where V. (0) = {p}, Vi (1) = {q},
and for al z > 2, we havethat V}, () = 0. Clearly, (T, Vi) E AG(p + AXq) and thus,
<TK, VK> ': P, .

So, it makes sense to define two different semantics for EQCTL. The first corresponds to
the original structure semantics and the second, which we call EQCTL, correspondsto atree
semantics. Precisely, an EQCTL; formulay = dp; ... p,1 is satisfied in aKripke structure
K, denoted K =, , iff there exists a computation tree (T, V) such that (Tx, Vi) |= 4
and V. differsfrom Vi in at most thelabelling of p1, ..., py; i.e. for every z € Tk and for

Augmenting Branching Temporal Logics 141

everyp € AP\ {p1,...,pn}, wehavep € Vg (z) iff p € Vj.(z). Notethat K |= ¢ implies
that K |=; ¢. It isthe other direction which makes EQCTL sensitive to unwinding.

An interesting example of the sensitivity of EQCTL to unwinding is the formula ¢, =
Jq(g N (AX—q) N AG(q <+ AXAXq) N AG(q — p)). The formulais suggested in the
literature for specifying the property G2(p) = ‘p holdsin all even places. When interpreted
over computation trees, ¢, indeed specifies G2(p). To see this, note that the quantified
proposition ¢ holdsin exactly all the even places. Yet, for a Kripke structure with a state that
can bereached fromtheinitia state by both an even number and an odd number of transitions
(e.g. aKripke structure that consists of asingle state with aself loop), any labelling of ¢ fails,
even if this Kripke structure does satisfy G2(p). Hence, ¢, is appropriate only for the tree
semantics.

We have just seen that EQCTL, is strong enough to specify G2(p). In fact, the formula
w2 = 3q(g N AG(q - AXAXq) N AG(q — p)) specifies G2(p) faithfully with respect to
both the tree and the structure semantics. As opposed to ¢4, the formula ¢, enables states
which can be reached from the initial state by both an even and an odd number of transitions,
and can be labelled with . As CTL cannot specify G2(p) [28], we have the following:

THEOREM 3.2
EQCTL and EQCTL, are both strictly more expressive than CTL.

Theorems 3.1 and 3.2 clearly hold also with respect to EQCTL*.

Insensitivity to the sensitivity of EQCTL and EQCTL* to unwinding exists also when com-
paring these logics with tree automata [11]. Indeed, EQCTL is as expressive as symmetric
pair automata on infinite binary trees. Nevertheless, the translation of EQCTL} into 252,
which is the base of this equivalence, does not hold for EQCTL*. Similarly, it is EQCTL,,
only, which is as expressive as symmetric Biichi automata on infinite binary trees.

4 Model-checking complexity

The model-checking problem for a variety of branching temporal logics can be stated as fol-
lows: given abranching temporal logic formulay and afinite Kripke structure K = (AP, W,
R,w°, L), determinewhether K satisfies o. When some of thelogics are sensitive to unwind-
ing, there are two possible interpretations of this problem. The first interpretation, which is
the one appropriate for EQCTL and EQCTL*, asks whether K |= . In the second interpre-
tation, which isthe one appropriatefor EQCTL, and EQCTL}, wearegiven ¢ and K and are
asked to determinewhether K |=; . Inthis section we consider model-checking complexity
for the two interpretations.

THEOREM 4.1
(1) The model-checking problem for EQCTL is NP-complete.

(2) The model-checking problem for EQCTL* is PSPACE-complete.

PROOF. (1) We first prove membership in NP. In order to check whether a Kripke structure
K satisfiesan EQCTL formuladp; . .. p,1, we guess aKripke structure K' that differsfrom
K inat most thelabelling of p; ... p,, andthen check, in linear time[6], whether K’ satisfies
the CTL formula. To prove hardness in NP, we perform a reduction from SAT. Clearly, a
propositional formula& over the propositionsp; . . . p,, issatisfiable if and only if the EQCTL
formuladp; ... p,¢ issatisfied in aone-state frame.

142 Augmenting Branching Temporal L ogics

(2) Both membership and hardness in PSPACE follow from being CTL* model-checking
PSPACE-complete [10]. While hardness is immediate, Savitch’'s Theorem [23] is required
for the membership. [|

N
(L)=—(0 ,
(43—=(4

4,0

K5

1

(o) ,
e
Sond ‘\0/ '\@/%9

&

@
@

FIG. 1. Theframes K,, K%, and K.

THEOREM 4.2
(1) The model-checking problem for EQCTL; is EXPTIME-complete.

(2) The model-checking problem for EQCTL} is 2EXPTIME-complete.

PROOF. (1) We first prove membership in EXPTIME. Givenaset D C IN and an EQCTL;
formulay = dp; ... p,o, let Ap , beaBichi tree automaton that accepts exactly all thetree
models of ¢ with branching degreesin D. By [27], such Ap ,, of size O(|D| * 2% exists.
Given a Kripke structure K = (AP, W, R,w", L) and a set S of atomic propositions, let
A s beaBuchi tree automaton that accepts exactly all the (247V5)-labelled trees (T, V)
for which V. differsfrom Vi in at most the labels of the propositionsin S. It is easy to see
that such Ax s of size O(|K | * 2191) exists. Taking D asthe set of branching degreesin Tx
andtaking S = {p; ...p,}, wegetthat K |=; ¢ iff L(Ak s) N L(Apy) # 0. By [27], the
latter can be checked in time poly (| K| * 2!1).

For proving hardness in EXPTIME, we reduce the satisfiability problem for CTL, proved
to be EXPTIME-hard in [12], to EQCTL; model checking. For every m > 1, let K,,, denote
theframe ({1,...,m},{1,...,m} x{1,...,m},1). Theframe K, ispresented in Figure 1.
Since a CTL formula ¢ is satisfiable iff it is satisfied in a tree of branching degree ||,
and since unwinding K resultsin such atree, satisfiability of ¢» can be reduced to model
checking K |, with respect to the EQCTL; formula3p; ... p,1, wherep; ... p,, are exactly
all the atomic propositionsin).

(2) The model-checking procedure for EQCTL is similar to the one for EQCTL,. Here,
following [11], we have that Ap,, is a Rabin tree automaton with 22" states and 2!V
pairs. By [9], checking the nonemptiness of £L(Ak,s) N L(Ap,) can then be donein time
poly(| K| * 227!). To prove hardness of EQCTL} model checking in 2EXPTIME, we reduce
satisfiability of CTL*, proved to be 2EXPTIME-hard in [26], to EQCTL}; model checking.
Since a CTL* formula) is satisfiable iff it is satisfied in atree of branching degree |¢|, the
same reduction that works for EQCTL; works also here. [|

Augmenting Branching Temporal Logics 143

As CTL subsumes propositional logic, EQCTL model checking being NP-hard is far from
surprising. What, however, if werestrict CTL to subsume only a subset of propositional logic
for which satisfiability isin P? Let 2CNF-EQCTL denote the subset of EQCTL in which the
propositional assertionsarein 2CNF.

THEOREM 4.3
The model-checking problem for 2CNF-EQCTL is NP-hard.

PROOF. For every n > 1, let ¢(n) = A;; AG((=p:) V (-p;)) where i and j range over
1...n. For every Kripke structure K, we have that K |= ¢ (n) iff a most one p; holdsin
each state of K. Notethat al the propositional assertionsin ¢(n) arein 2CNF. Given agraph
with n nodes, we can use v (n) to specify properties whose decidability is NP-hard. For
example, given an undirected graph G = (V, E) with |V| = n, let Kg = (V, E',v), where
E'=EU{(v,v) : v € V},and v isan arbitrary nodein V, and let

e=3p1...0n[VM) AP ANEX (p2 AEX (ps A .. .NEX (D1 NEX(pp NEXp1)) --+))].

Itiseasy to seethat both K and ¢ are of size polynomial inthe size of G and that K¢ = ¢
iff there exists aHamiltonian circlein G. [|

Theorem 4.3 implies that it is the modality of CTL, by itself, that makes EQCTL model
checking NP-hard. Proving the lower boundsin the theoremsabove, we reduce hard problems
to model checking of formulasin which the number of quantified propositionsislinear in the
size of the reduced problem. Thus, thereisstill ahopethat if werestrict EQCTL and EQCTL,
to have a fixed number of quantified propositions, we get easier logics. The theorems below
refute this hope. For ¢ > 0 and 5 > 0, let (¢,7)-EQCTL denote the restricted subset of
EQCTL in which only ¢ quantified propositions and ;j free propositions are alowed, and
similarly for EQCTL;.

THEOREM 4.4
The model-checking problem for (1, 0)-EQCTL is NP-hard.

PROOF. We reduce SAT to (1,0)-EQCTL model checking. Intuitively, we do something
similar to that done for proving that EQCTL model checking is NP-hard. Since, however,
apropositional formula ¢ may talk about more than one proposition, we trandate a formula
&(po, ... ,pn—1) intoaCTL formulathat instead of talking about the value of p; in theinitial
state, talks about the value of asingle atomic proposition ¢ in a state located ¢ positionsfrom
the initial state. Formally, for n > 1, let K™ be the frame ({0,...,n — 1}, R,0) where
R = {(0,1),(1,2),...,(n —2,n —1),(n — 1,0)}. Theframe K? is presented in Figure 1.
Giving apropositional formula& over pg, ..., p,_1, let ¢ bethe CTL formulaobtained from
replacing each occurrence of p; in & by (EX)q. For example, if £ = (po V p1) A (=p1 V p2),
theny = (¢qVEXq)A(REXqVEXEXq). Itiseasy toseethat ¢ issatisfiableiff K™ |= Elqzb..

Note that constructing ¢» above, we needed a fragment of (1,0)-EQCTL that contains the
temporal operator EX only. The satisfiability problem for this fragement can be solved in
linear time. Nevertheless, model-checking complexity of this fragement is NP-hard. Thus,
there are branching temporal logics with existential quantification for which model checking
is harder than setisfiability.

THEOREM 4.5
The model-checking problem for (1, 1)-EQCTL, is EXPTIME-hard.

144 Augmenting Branching Temporal Logics

ProoF. We reduce satisfiability of CTL to (1, 1)-EQCTL, model checking. Typically, we do
something similar to that done for proving that EQCTL; model checking is EXPTIME-hard.
Yet, as here we have only a single quantified proposition, we have to encode the states of
K,,, aswedid for theinitial state in the proof of Theorem 4.4. Givenm > 1andn > 1, let
K" = ({start}, W, R,w°, L) be the Kripke structure defined as follows:

e W =A{1,...m}x{0,...,n—1}

o« R={((i,n — 1), (k,0)),((i,), (i,j + 1)) : 1 < i,k <m,0 < j <n—2};
w® = (1,0);

e forall 1 <i < m,wehave L((i,0)) = {start} and L((i,)) = @ foral j # 0.

The frame of K} is presented in Figure 1. Now we have to translate a CTL formula
Y(po, - - ., pn—1) into aformula that instead of talking about the value of p; at a state ¢ of
K, talks about the value of ¢ at the state located j positions after the state (¢, 0) in K7, . For
example, theformula EF (p; A AGp;) istranslated to the formula

EF(start A (EX) q A AG(start — (EX)'q)).

Such a trandation may increase the formula ¢ by at most a factor of || (because of the
extra EXs). Formally, we present afunction f such that) of length m over pg ...p,—1 iS
satisfiable iff 3¢ f(v) is satisfied in K. We define f by induction on the structure of ¢ as
follows () standsfor either E or A):

o f(pi) = (EX)'q;

o f(=¢1) =~ f(¥r);

o f(h1 Vihe) = f(Y1) V f(¢2);

o f(QX¢1) = (QX)™f(¥r);

o f(QrUrp2) = Q(strat — f(y1))U(start A f(1)2)).

Note that the definition of K" guaranteesthat path quantification in f () playsarole only
when interpreted in states {1, ..., m} x {n — 1}. ||

In fact, amore sophisticated construction can avoid the free proposition start (e.g. by encod-
ing the beginning of a sequence which encodes the assignment to the atomic propositions by
a sequence that does not appear elsewhere), thus showing that the EXPTIME lower bound
holdseven for (1, 0)-EQCTL,.

We have seen that the model-checking problem for EQCTL; and EQCTL is as hard as
the satisfiability problem for CTL and CTL*, respectively. We now show that existential
guantification does not harm satisfiability complexity, for both semantics.

THEOREM 4.6
(1) The satisfiability problem for EQCTL and EQCTL; is EXPTIME-compl ete.

(2) The satisfiability problem for EQCTL* and EQCTL} is 2EXPTIME-complete.

PROOF. (1) Hardness in EXPTIME follows from hardness of the satisfiability problem for
CTL. To prove membership in EXPTIME, we reduce satisfiability of aformulay = Jp; ...
prp to the satisfiability of the CTL formula). This is straightforward for ¢ in EQCTL,
but requires some attention for ¢ in EQCTL,. Then, while satisfaction of ¢ is checked with
respect to Kripke structures, satisfaction of ¢ is checked with respect to computation trees. It
iseasy to seethat if ¢ issatisfiable then ¢ is satisfiable too. For the second direction, we need
the finite model property of CTL. The proof of (2) is similar, using the 2EXPTIME bounds
for CTL* [26, 11, 9]. [|

Augmenting Branching Temporal Logics 145

5 Program complexity of model checking

In the previous section, we presented some cheerless results concerning the model-checking
complexity of branching temporal |ogicsaugmented with existential quantification over atomic
propositions. In this section we consider the program compl exity of model checking for these
logics.

THEOREM 5.1
(1) [14] The program complexity of EQCTL model checking is NP-compl ete.

(2) The program complexity of EQCTL* model checking is NP-complete.

PROOF. (1) Membershipin NPisimmediate. In[14], Halpern and Kapron reduce satisfiabil -
ity of CNF formulas to model checking of afixed formulay in X1 (3xMDL). Whatever the
logic ©1 (3zMDL) is! the formula ¢ is equivalent to an EQCTL formula. This establishes
hardnessin NP,

(2) Hardness in NP follows from the hardness for EQCTL. We prove membership in NP.
In order to check whether a Kripke structure K satisfies an EQCTL* formuladp; ... pyv,
we guess a Kripke structure K’ that differs from K in at most the labelling of p; ...p,. As
the program complexity of CTL* model checking isin P, the result follows. [|

Thus, as long as we are interesting in the structure semantics, fixing the formula brings
no good news. Moreover, the fact that the program complexity of EQCTL* model checking
is NP-hard implies that the PSPACE complexity we have for EQCTL* model checking is
practically worse than the PSPACE complexity for CTL* model checking. Indeed, while
the time complexity of the first is exponential in the Kripke structure, we have that the time
complexity of the latter is exponentia in the formula. Fortunately, the tree semantics (rather
than the structure semantics) corresponds to the natural way branching temporal logics have
been used to represent computations. There, as follows from the theorem below, the time
complexity is polynomia in the Kripke structure.

THEOREM 5.2
The program complexity of both EQCTL; and EQCTL} is P-complete.

PROOF. Since the algorithms given in the proof of Theorem 4.2 are polynomiad in the size
of K, membership in P isimmediate. We prove hardness in P by reducing the Alternating
Graph Accessibility problem, proved to be P-completein[15, 5], to model checking of afixed
EQCTL; formula. In the Alternating Graph Accessibility problem, we are given a directed
graph G = (V, E), apartition £ U U of V', and two designated vertices s and ¢. The problem
is whether alternating_path(s, t) istrue, where alternating_path(z,) holdsif and only if:

(D) z=y,or

(2) = € £ and thereexists 2z such that (z, z) € E and alternating_path(z, y), or

(3) z € U andfor dl z such that (z, z) € E, we have alternating_path(z, y).

Given G,¢&,U, s, and t, we define K¢ = ({t, exist, univ},V, E s, L), where for al w €

&\ {t}, we have L(w) = {exists}, for dl w € U \ {t}, we have L(w) = {univ}, and
L(t) = {t}. Consider the fixed formula

w=3qqNAG(q — (tV (exisAEXq) V (univh AXq))) N AF—q|.

1Thelogic E} (3xMDL) consists of formulas of the form 3P 3z where ¢ isafirst-order formula that arises as
the translation of amodal formulawith unary predicates in P and binary predicate R.

146 Augmenting Branching Temporal L ogics

The two leftmost conjunctionsin ¢ label with ¢ nodes of (T, Vi,) that correspond to
states = € V for which alternating_path(z, t) should still be verified in order to guarantee
that alternating_path(s, ¢) holds. Since ¢ also requires that eventually no such z is left, we
have that alternating_path(s, t) holdsiff K¢ = ¢. Notethat, aswith G2(p), the formulay
is not appropriate for the structure semantics. [|

Acknowledgements

| thank Rajeev Alur and Moshe Vardi for helpful comments.

This research was supported in part by the Office of Naval Research Young Investiga-
tor award N00014-95-1-0520, by the National Science Foundation CAREER award CCR-
9501708, by the National Science Foundation grant CCR-9504469, by the Air Force Office
of Scientific Research contract F49620-93-1-0056, by the Army Research Office MURI grant
DAAH-04-96-1-0341, by the Advanced Research Projects Agency grant NAG2-892, and by
the Semiconductor Research Corporation contract 95-DC-324.036.

References

[1] I. Beer, S. Ben-David, D. Geist, R. Gewirtzman and M. Yoeli. Methodology and system for practical formal
verification of reactive hardware. In Proceedings of the 6th Wor kshop on Computer Aided Verification, Stanford,
June 1994. D. Dill, ed. pp. 182-193. Vol. 818 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
1994.

[2] O. Bernholtz, M. Y. Vardi and P. Wolper. An automata-theoretic approach to branching-time model checking.
In Computer Aided Verification, Proceedings of the 6th International Conference, Stanford, California, June
1994. D. L. Dill, ed. pp. 142-155. Vol. 818 of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
1994.

[3] R. E. Bryant. Graph-based agorithms for boolean-function manipulation. |EEE Transactions on Computers,
C-35, pp. 1035-1044, 1986.

[4] J.R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill and L. J. Hwang. Symbolic model checking: 1020 states
and beyond. Information and Computation, 98, 142-170, 1992.

[5] A. K. Chandra, D. C. Kozen and L. J. Stockmeyer. Alternation. Journal of the Association for Computing
Machinery, 28, 114-133, 1981.

[6] E. M. Clarke, E. A. Emerson and A. P. Sistla. Automatic verification of finite-state concurrent systems using
tempord logic specifications. ACM Transactions on Programming Languages and Systems, 8, 244-263, 1986.

[7] E.M. Clarke, D. E. Long and K. L. McMillan. Compositional model checking. In Proceedings of the 4th IEEE
Symposium on Logic in Computer Science, R. Parikh, ed. pp. 353-362. |EEE Computer Society Press, 1989.

[8] C. Courcoubetis, M. Y. Vardi, P. Wolper and M. Yannakakis. Memory efficient algorithms for the verification
of temporal properties. Formal Methods in System Design, 1, 275-288, 1992.

[9] E. A. Emerson and C. Jutla. The complexity of tree automata and logics of programs. In Proceedings of
the 29th IEEE Symposium on Foundations of Computer Science, S. J. Kozen, ed. ACM Press, White Plains,
October 1988.

[10] E. A.Emersonand C.-L. Lei. Modalities for model checking: Branching timelogic strikes back. In Proceedings
of the Twelfth ACM Symposium on Principles of Programming Languages, pp. 84-96, New Orleans, January
1985.

[11] E. A. Emerson and A. P. Sistla Deciding branching time logic. In Proceedings of the 16th ACM Symposium
on Theory of Computing, De Millo, ed. ACM Press, Washington, April 1984.

[12] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. Journal of Computer and
System Sciences, 18, 194-211, 1979.

[13] O. Grumberg and D. E. Long. Model checking and modular verification. In Proceedings of the 2nd Conferance
on Concurrency Theory, pp. 250-265. Vol. 527 of Lecture Notes in Computer Science, J. Bagten and |. Groote,
eds. Springer-Verlag, Berlin, 1991.

Augmenting Branching Temporal Logics 147

[24] J. Y. Halpern and B. Kapron. Zero-one laws for modal logic. Annals of Pure and Applied Logic, 69, 157-193,
1994.

[25] N. Immerman. Number of quantifiers is better than number of tape cells. Journal of Computer and System
Sciences, 22, 384-406, 1981.

[16] O. Kupferman and A. Pnueli. Once and for al. In Proceedings of the 10th IEEE Symposium on Logic in
Computer Science, D. Kozen, ed. Computer Society Press, San Diego, June 1995.

[17] L. Lamport. Sometimes is sometimes ‘not never'—on the temporal logic of programs. In Proceedings of the
7th ACM Symposium on Principles of Programming Languages, pp. 174-185, ACM Press, January 1980.

[18] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their linear specification.
In Proceedings of the Twelfth ACM Symposium on Principles of Programming Languages, pp. 97-107, New
Orleans, ACM Press, January 1985.

[19] D. E. Long. Model Checking, Abstraction and Compositional Verification. PhD thesis, Carnegie-Mellon Uni-
versity, Pittsburgh, PA, 1993.

[20] S. Pinter and P. Wolper. A temporal logic for reasoning about partially ordered computations. In Proceedings of
the 3rd ACM Symposium on Principles of Distributed Computing, pp. 28-37, ACM Press, Vancouver, August
1984.

[21] A. Pnueli. Thetempora semantics of concurrent programs. Theoretical Computer Science, 13, 45-60, 1981.

[22] A. Pnueli and R. Rosner. On the synthesis of areactive module. In Proceedings of the Sixteenth ACM Sympo-
sium on Principles of Programming Languages, ACM Press, Austin, January 1989.

[23] W. J. Savitch. Relationship between nondeterministic and deterministic tape complexities. Journal of Computer
and System Sciences, 4, 177-192, 1970.

[24] A. P. Sistla. Theoretical Issues in the Design of Distributed and Concurrent Systems. PhD thesis, Harvard
University, Cambridge, MA, 1983.

[25] A. P. Sistla, M. Y. Vardi and P. Wolper. The complementation problem for Biichi automata with applications to
tempora logic. Theoretical Computer Science, 49, 217-237, 1987.

[26] M. Y. Vardi and L. Stockmeyer. Improved upper and lower boundsfor modal logics of programs. In Proceedings
of the 17th ACM Symposium on Theory of Computing, Pippenger, ed. pp. 240-251, ACM Press, 1985.

[27] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs. Journal of Computer
and System Science, 32, 182-21, 1986.

[28] P. Wolper. Temporal logic can be more expressive. Information and Control, 56, 72—99, 1983.

[29] P. Wolper and P. Godefroid. Partial-order methods for temporal verification. In Proceedings of the 4th Confer-
ence on Concurrency Theory, pp. 233-246, Hildesheim, August 1993. Vol. 715 of Lecture Notes in Computer
Science, E. Best, ed. Springer-Verlag, Berlin, 1993.

Received 28 September 1995

