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ABSTRACT

We study here the class of timed automata with a single clock which is reset at each
transition. We adapt for these automata the classical results for finite automata: the
Kleene theorem, the closure under complementation and the Pumping Lemma. We
provide an algorithm for the elimination of stuttering steps, which is essential in com-
plementation. This algorithm relies upon the properties of the Kleene algebra of sets
of real numbers, namely the existence of a normal form for sets of reals generated from
intervals with rational bounds, using boolean operations, summation and star.

Keywords: Real-time automata, rational expressions, Kleene algebra.

1. Introduction

The search for an appropriate class that may bear the name of real-time regular lan-
guages has produced several results like [AD94, AFH94, HRS98]. The features sought
for were: closure under complementation and/or relationship to some monadic logic
of order over the real-time axis that generalizes MSO over words [Tho97, Wil94]. The
relationship with some rational expressions was not under attention when assigning
the label regular to a class of languages. It is already known [ACM97, BP99, Di99b]
that rational (or regular) expressions do not easily fit the classes of timed automata
or event-clock automata. This amounts to the problem of giving semantics for con-
catenation: in the presence of a total operation like in [ACM97] one direction of the
Kleene theorem is missing [Her99]. For obtaining both directions of the Kleene the-
orem a partial operation on timed words or signals is needed for the semantics of
concatenation, see [BP99, Di99b].

In this paper we study a class of automata which we claim to be the largest exten-
sion from finite automata still carrying the decidability of both the emptiness and the
universality problems, a Pumping Lemma and, moreover, a Kleene theorem in which
the semantics of the associated rational expressions is based upon a total “concatena-
tion” operation. The automata we study, called Real-Time Automata (RTA), can be

1A preliminary version of this paper appeared as [Di00].
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regarded as timed automata with a single clock which is reset at each transition, and
they appeared (in a slightly different version) in connection to the so-called Simple
Duration Calculus [DW96].

However, even at this lowest level of introduction of timing constraints into fi-
nite automata we find that complementation raises a specific problem: the subset
construction can be adapted to handle timing constraints, but it works only if the
automata are stuttering-free, i.e., two states labeled with the same symbol are not
connected by any transition. We also find out that language determinism, i.e., the
property that each signal is associated with a unique run that starts in an initial state,
cannot be captured by local properties like state-determinism or stuttering-freeness:
stuttering-free state-deterministic RTA are less expressive than RTA.

We solve this problem by introducing the Kleene algebra of sets of real numbers.
The rôle of concatenation from Kleene algebras of languages is taken here by addition
of sets of real numbers. This operation models the process of removing one stuttering
transition by “fusing” the adjacent states. We then study the sub-Kleene algebra
generated by finite unions of intervals with rational bounds and prove a normal form
theorem for this subalgebra, result which is based on properties of integer division and
roughly says that elements in this subalgebra are “ultimately periodic”. This result
is not a corollary of the normal form for rational languages over a one letter alphabet
because the Kleene algebra that arises from intervals with nonnegative integer bounds
has two generators whose generated subalgebras are not disjoint but which cannot
generate one another.

We have chosen here the “signals” approach for modeling real-time systems, hence
stuttering elimination might look a peculiarity of this semantics. However, if one
chooses the “timed words” semantics [AD94] the stuttering-freeness property would
translate to the absence of epsilon-transitions and the technique for removing these
would be the one we develop here. The determinization construction would be the
same and, roughly speaking, similar to the determinization construction for event-
clock automata [AFH94].

It is worth mentioning that the aim of this study is not to compare the expres-
sive power of real-time automata with the existing models [AD94, AFH94, HRS98],
but rather to point out the properties carried by the class of languages defined by
RTA. It is clear that real-time automata are insufficiently expressive to be used for
modeling distributed real-time systems, see the nonrational language from section
5. However we may observe that they are incomparable to (recursive) event-clock
automata [AFH94, HRS98] which are so far the largest determinizable subclass of
timed automata. This situation occurs as real-time automata may accept languages
consisting of signals in which two actions may be separated by an interval with integer
length while event-clock automata may not.

The rest of the paper is divided as follows: in the next section we remind what
RTA are, their associated expressions and what are the problem posed by their com-
plementation. In the third section we introduce the Kleene algebra of sets of positive
reals and we prove the normal form theorem. The fourth section contains the con-
structions that accomplish stuttering elimination and determinization and the fifth is
reserved for a pumping lemma and expressivity issues concerning real-time automata.
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We end with a section containing short comments and directions of further study.

2. Real-time automata and their rational expressions

We denote R≥0 and R>0 the sets of nonnegative, resp. positive numbers, Q≥0 the set
of nonnegative rational numbers and, for each n ∈ N, [n] = {1, . . . , n}. Int denotes
the set of intervals having bounds in Q≥0 ∪ {∞} and including the empty set. For
some arbitrary set A, some I ∈ Int, α ∈ I and a function f : I −→ A we say that f

has a discontinuity at α iff there exist a, b ∈ A, a 6= b and some ǫ > 0 such that

∀x ∈ (α − ǫ, α), f(x) = a and ∀x ∈ (α, α + ǫ), f(x) = b

The discontinuity2 is left iff we also have that f(α) = b.

Definition 2.1 A signal over a finite alphabet Σ is a function σ : [0, e) −→ Σ where
e is a nonnegative number, function which has finitely many discontinuities, all of
them being left discontinuities.

Hence the domain of a signal σ splits into finitely many intervals [ei−1, ei) on which σ

is constant. We denote by dom(σ) the domain of σ, endp(σ) its endpoint and Sig(Σ)
the set of signals over Σ. Subsets of Sig(Σ) are called real-time languages.

For σ1, σ2 ∈ Sig(Σ) with dom(σi) = [0, ei) (i = 1, 2) define their concatenation
σ1; σ2 = σ as the signal with dom(σ) = [0, e1 + e2) and such that

σ(t) =

{

σ1(t) for t ∈ [0, e1),

σ2(t − e1) for t ∈ [e1, e1 + e2).

Hence (Sig(Σ), “; ”, σǫ) becomes a noncommutative monoid whose unit is the signal
σǫ with dom(σǫ) = [0, 0) = ∅. Then concatenation can be extended to sets of signals:

L1; L2 = {σ1; σ2 | σ1 ∈ L1, σ2 ∈ L2}

and gives rise to star:

L∗ =
⋃

n∈N

Ln

where L0 = {σǫ} and Ln+1 = Ln; L.

2.1. Real-time automata defined

Definition 2.2 A real-time automaton (RTA for short) is a tuple A =
(Q, Σ, λ, ι, δ, Q0, Qf ) where Q is the (finite) set of states, Σ is the (finite nonempty)
alphabet, δ ⊆ Q × Q is the transition relation, Q0, Qf ⊆ Q are the sets of initial,
resp. final states, λ : Q −→ Σ is the state labeling function and ι : Q −→ Int is the
time labeling function.

2This definition of discontinuity amounts to considering the discrete topology on A.
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We also call the pair
(

λ(q), ι(q)
)

the label of the state q.
RTA work over signals: a run of length n ≥ 1 is a sequence of states (qi)i∈[n]

connected by δ, i.e., (qi, qi+1) ∈ δ, ∀i ∈ [n − 1]. The run is accepting iff it starts in
Q0 and ends in Qf .

A run is associated with a signal σ iff there exist some sequence of “splitting”
points 0 = e1 ≤ . . . ≤ en+1 = endp(σ) such that ei+1 − ei ∈ ι(qi) and σ(t) = λ(qi)
for all t ∈ [ei, ei+1) and all i ∈ [n]. Hence the “splitting” points must contain all the
discontinuities in the signal but this inclusion might be strict, case in which we say
that the run is stuttering.

When a signal σ is associated with some accepting run we say that σ is accepted
by A. The language of A is the set of signals associated with some accepting run of
A and is denoted L(A). Two RTA are equivalent iff they have the same language.
If we denote the class of all RTA whose alphabet is Σ as RTA(Σ), then we may define
the class of real-time recognizable languages over Σ as

TRec(Σ) = {L ∈ Sig(Σ) | ∃A ∈ RTA(Σ) s.t. L(A) = L}

As an example, the automaton in Figure 1 accepts the signal σ : [0, 9) −→ {a, b}
where σ(x) = a for x ∈ [0, 2.5) and σ(x) = b for x ∈ [2.5, 9). The accepting run which
is associated with this signal is (q, r, s, t) and the splitting points are e1 = 0, e2 = 2.5,
e3 = e4 = 6.5 and e5 = 9. Note that the run is stuttering.

q, a r, b s, b t, b
[2, 3] [4, 4] [0, 1) (1, 3)

Figure 1: An example of a real-time automaton.

Real-time automata can be viewed as state-labeled timed automata [ACM97] with
a single clock which is reset at each transitions. It is easy to define a class of real-time
automata that work over timed words instead of signals and to transport to that
setting the results of this study. Most notably stuttering steps would translate into
epsilon-transitions in the timed words setting.

On the other hand, a RTA in RTA(Σ) is, from a syntactic point of view, a “finite
presentation” of a classical automaton over the (uncountable) set of symbols Σ×R≥0,
where a state q labeled (a, I) embodies a whole family of states labeled with (a, α)
for all α ∈ I. However the comparison stops at this syntactic level since semantically
Σ × R≥0 comes with a structure which is unavailable for the set of symbols in a
classical automaton, structure which allows the “fusion” of two symbols sharing the
same state label. It is this structure that allows the acceptance of the signal σ in
the above example by splitting the symbol (b, 6.5) into three symbols (b, 4), (b, 0) and
(b, 2.5).

We end this subsection with the following adaptation of the decidability of the
emptiness problem for finite automata.
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Proposition 2.3 The emptiness problem for RTA is decidable.

The proof relies on the algorithm for computing the sets of accessible states and then
checking whether a final state is accessible, which can be done in linear time w.r.t.
card(Q) · card(δ).

2.2. Rational expressions and the Kleene theorem

We have observed that labels in RTA are finite presentations of sets of symbols from
Σ×R≥0. This observation can be further extended to considering rational expressions
over ΣInt := Σ × Int with the aim of obtaining a Kleene theorem:

Definition 2.4 Consider Rat(ΣInt, the set of rational (or regular) expressions over
ΣInt, i.e., defined by the following grammar

E ::= 0 | 1 | aI | E + E | E; E | E∗

where the atoms aI are any symbols from ΣInt.
A rational expression E ∈ Rat(ΣInt) will be called also as real-time rational

expression.

There are two types of semantics for real-time rational expressions: the first one,
called henceforth abstract, is the classic semantics in terms of words over the set of
symbols ΣInt and is denoted | · |. For this semantics, |0| is the empty set and |1| is
the set containing the empty word over ΣInt, word which is denoted 1 too.

The second semantics, called the real-time semantics or simply the semantics,
is in terms of signals and is denoted ‖ · ‖:

‖aI‖ = {σ ∈ Sig(Σ) | dom(σ) = [0, e), e ∈ I and ∀t ∈ [0, e) σ(t) = a}

‖E+F‖ = ‖E‖ ∪ ‖F‖ ‖0‖ = ∅

‖E; F‖ = ‖E‖; ‖F‖ ‖1‖ = {σǫ}

‖E∗‖ = ‖E‖∗

Note also that ‖a[0,0]‖ = {σǫ} for any a ∈ Σ.
The following straightforward property relates the two types of semantics:

Proposition 2.5 For each real-time rational expression E ∈ Rat(ΣInt),

‖E‖ =
⋃

{

‖w‖ | w ∈ |E|
}

Define the class of real-time rational languages over Σ as

TReg(Σ) = {L ∈ Sig(Σ) | ∃E ∈ Rat(ΣInt) such that ‖E‖ = L}

Theorem 2.6 (Kleene theorem for RTA, [Di99a]) TRec(Σ) = TReg(Σ).
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The Kleene theorem would follow almost immediately from proposition 2.5 and the
classical Kleene theorem [HU] if we would have transition-labeled real-time automata
rather than state-labeled. Since this kind of automata will further show useful, we
define them here and provide the straightforward translations from and to RTA:

Definition 2.7 A transition-labeled RTA (t-RTA for short) is a tuple A =
(Q, Σ, δ, Q0, Qf) where Q, Σ, Q0 and Qf have the same names and properties as
in RTA and the transition relation δ satisfies δ ⊆ Q×Σ× Int×Q with card(δ) < ∞.

Transitions of the form (q, a, I, r) ∈ δ will be called a-transitions.
Since a transition-labeled RTA is a finite automaton over a finite subset of ΣInt, we

may speak of its language in the classical sense, as the set of words over ΣInt which
are concatenations of the labels of some accepting run. Let’s call this the abstract
language and denote it as Labs(A). The real-time language accepted by A, or
simply the language of A, denoted L(A), is then the union of the semantics of each
word in Labs(A), with this abstract word viewed as a rational expression over ΣInt,
that is,

L(A) =
⋃

{

‖w‖ | w ∈ Labs(A)
}

(1)

The translations between RTA and transition-labeled RTA are the usual transfor-
mations of a state-labeled automaton into a transition-labeled one and back, with a
special case when the empty signal is accepted by the t-RTA:

• Given some RTA A = (Q, Σ, λ, ι, δ, Q0, Qf), a transition-labeled RTA with the
same language is B = (Q ∪ {t0}, Σ, θ, {t0}, Qf) where t0 6∈ Q and

θ =
{(

q, λ(r), ι(r), r) | (q, r) ∈ δ
}

∪
{(

t0, λ(q), ι(q), q
)

| q ∈ Q0

}

• For the reverse, given some transition-labeled RTA B = (Q, Σ, θ, Q0, Qf ) a RTA
whose language is L(B) is A = (θ ∪ {qǫ}, Σ, δ, λ, ι, T0, Tf ) where

– for each RTA state (q, a, I, r) ∈ θ, λ
(

(q, a, I, r)
)

= a and ι
(

(q, a, I, r)
)

= I;

– λ(qǫ) = a for some a ∈ Σ (assumed nonempty) and ι(qǫ) = [0, 0];

– T0 = {(q, a, I, r) | q ∈ Q0} ∪ {qǫ};

– Tf = {(q, a, I, r) | r ∈ Qf} ∪ {qǫ | σǫ ∈ L(B)};

– δ =
{(

(q, a, I, r), (r, b, J, s)
)

| (q, a, I, r), (r, b, J, s) ∈ θ
}

Hence, when σǫ ∈ L(B) we must add to A an initial and final state for accepting σǫ.
Note that this state is neither the source nor the target of any transition.

The proof of the Kleene theorem is then the following: each RTA A is equivalent
to some t-RTA, whose abstract language equals the abstract semantics of some real-
time rational expression E due to the classical Kleene theorem. Then, by combining
properties 2.5 and equation 1 we obtain that the (timed) semantics of E and the
language of A are equal. The reverse implication is similar. ✷
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We end this subsection with a procedure for removing the zeroes from the time
labels in RTA which is a straightforward adaptation of the epsilon-elimination pro-
cedure for finite automata [HU]: for each t-RTA A = (Q, Σ, δ, Q0, Qf) we split each
transition (q, a, I, r) with 0 ∈ I in two, the first being

(

q, a, I \ {0}, r
)

and the second
(

q, a, [0, 0], r
)

. Then we may compare transitions (q, a, [0, 0], r) with transitions with
the empty word in finite automata. Hence, for each state q in A, we define

ǫ(q) = {q′ ∈ Q | there exists a run
(

(qi−1, ai, [0, 0], qi)
)

i∈[n]
with q = q0, q

′ = qn}

and then construct a t-RTA A = (Q, Σ, δ, Q0, Qf ) equivalent to A, where

δ =
{

(q, a, I \ {0}, r) | ∃(q, a, I, s) ∈ δ and r ∈ ǫ(s)
}

Qf = Qf ∪ {q ∈ Q | Qf ∩ ǫ(q) 6= ∅}

Note that when translating transition-labeled RTA without zero labels into state-
labeled RTA, we will get the special initial state qǫ whose time label is [0, 0], needed
for not loosing the empty signal from the accepted language. Hence:

Proposition 2.8 Each transition-labeled RTA is equivalent to some t-RTA in which
the interval labels of the transitions do not contain 0.

Each RTA is equivalent to some RTA in which there exists a single state whose
interval label contains 0, the label of this state is actually [0, 0] and no transition
enters or leaves this state.

2.3. The problem of complementation of real-time automata

The usual way of showing that a class of automata is closed under complementation
is to prove that the automata can be transformed such that for each word there
exists a unique run that starts in an initial state, for then complementation would be
accomplished simply by complementing the set of final states. The notions that assure
the uniqueness of the run for RTA are state-determinism combined with stuttering
freeness:

Definition 2.9 A RTA A is language deterministic iff each signal in L(A) is
associated with a unique run that starts in an initial state.

A is stuttering-free iff

• there exists a state qǫ ∈ Q0 whose time label contains 0; its time label is actually
ι(qǫ) = [0, 0] and it is not connected to any other state;

• the time labels of all the other states do not contain 0;

• for each transition (q, r) ∈ δ, λ(q) 6= λ(r).

A is state-deterministic iff initial states have disjoint labels and transitions start-
ing in the same state have disjoint labels too, i.e., whenever r 6= s and either r, s ∈ Q0

or (q, r), (q, s) ∈ δ then either λ(r) 6= λ(s) or ι(r) ∩ ι(s) = ∅.
A is called deterministic iff it is both state-deterministic and stuttering-free.
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The translations of these notions for transition-labeled RTA are the following:

Definition 2.10 A t-RTA A is transition-deterministic iff it has a single initial
state and for each state q ∈ Q and symbol a ∈ Σ, if two distinct a-transitions leave q

then their time labels are disjoint, i.e., if (q, a, I, r), (q, a, J, s) ∈ δ then either I = J

plus r = s or I ∩ J = ∅.
A is stuttering-free iff the time labels of the transitions do not contain zero and

there are no two distinct adjacent transitions labeled with the same symbol, i.e., if
(q, a, I, r), (r, b, J, s) ∈ δ then a 6= b.

A is deterministic iff it is state-deterministic and stuttering-free.

Proposition 2.11 The translations between RTA and t-RTA provided in section 2.2
are such that

• state determinism in RTA is translated to transition determinism in t-RTA and
vice-versa and

• stuttering-freeness in RTA is translated to stuttering-freeness in t-RTA and vice-
versa.

It is clear that determinism implies language determinism while state-determinism
itself does not. But a more important observation is that stuttering-free RTA are
strictly less expressive than general RTA: consider the language LN = {σ : [0, n) −→
{a} | n ∈ N} of constant signals with integer length which is accepted by the RTA in
the Figure 2.

q, a
[1, 1]

Figure 2: An RTA for the language LN.

Proposition 2.12 LN cannot be accepted by any stuttering-free RTA.

Proof. The proof is based on the intuition that a stuttering-free RTA for LN would
need an infinite number of states:

Suppose we had a stuttering-free automaton A = (Q, Σ, δ, λ, ι, T0, Tf ) which would
recognize LN. We may consider Σ = {a} since any state with other state-labels cannot
be in an accepting run. Then, since the automaton is stuttering-free, δ = ∅. Hence the
number of accepting runs in A equals the number of initial and final states. Denote
then µ the max in R≥0 ∪ {∞} of the time labels of these initial and final states. But
then both the assumption µ = ∞ and µ < ∞ lead to a contradiction:

If µ = ∞ then for some state q ∈ Q0∩Qf we have that ι(q) = (|l,∞) where (| is any
left parenthesis. Then any constant signal σ : [0, α) −→ {a} with α ∈ (|l,∞) would be
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accepted by A, contradicting the assumption that only signals with natural endpoints
are accepted.

On the other hand, if µ < ∞ then any constant signal σ : [0, n) −→ {a} with
n ∈ N, n > µ, is not accepted by A, again a contradiction. ✷

This proof can be easily adapted for showing that event-clock automata [AFH94,
HRS98] cannot accept the language LN or the following language:

|[b](0,∞)|; LN; |[b](0,∞)|

that contains all signals starting with b, continuing with a and ending in b and having
the property that the distance between the b → a discontinuity and the a → b

discontinuity is a natural number. Hence the class of languages accepted by event-
clock automata does not contain the class of real-time rational languages as defined
here.

Despite Proposition 2.12, there is no problem in building a RTA for the complement
of LN: it is the RTA in Figure 3(a) below. Also in Figure 3(b) we have an example
of some stuttering RTA which is equivalent with the stuttering-free RTA in the same
figure, at (c).

q, a
[1, 1]

r, a
(0, 1)

q, a
[2, 3]

q, a
[2, 3]

r, a
[4,∞)

(a) (b) (c)

Figure 3: The complement of LN is accepted by the RTA at (a). The stuttering RTA
at (b) is equivalent to the stuttering-free one at (c).

Hence we discover the need of computing the “sum” of two intervals and the “star”
of some interval, i.e., some operations that satisfy the following relations suggested
by Figure 3:

R \ {1}∗ = {1}∗ + (0, 1) and [2, 3]∗ = {0} ∪ [2, 3] ∪ [4,∞)

3. The Kleene algebra of sets of real numbers

The powerset of the nonnegative numbers P(R≥0) is naturally endowed with an op-
eration of “concatenation”: it is addition extended over sets:

X + Y = {x + y | x ∈ X, y ∈ Y } for all X, Y ⊆ R

whose unit is 0 = {0}.
Moreover we can define a star operation via the usual least fixpoint construction

X∗ =
⋃

n∈N

nX
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where the multiples of X are defined as usual: 0X = 0 and (n + 1)X = nX + X .
The following theorem can be easily verified:

Theorem 3.1 The structure P(R≥0) =
(

P(R≥0),∪, +, (·)∗, ∅,0
)

is a commutative

Kleene algebra, i.e., (P(R≥0),∪, ∅) is an idempotent monoid, (P(R≥0), +,0) is a
commutative monoid, + distributes over ∪ and (·)∗ satisfies the following equations
[Con71, Koz94]:

X + Y ⊆ Y ⇒ X∗ + Y ⊆ Y (2)

0 ∪ (X + X∗) ⊆ X∗ (3)

X∗ + Y ∗ = (X + Y )∗ + (X∗ ∪ Y ∗) (4)

Because a complement operation is available, ¬X = R≥0 \ X , we actually get a
commutative complemented Kleene algebra, i.e., a boolean algebra which is
also a commutative Kleene algebra.

Note also that summation with singletons distributes over intersection:

{x} +
(

Y ∩ Z
)

=
(

{x} + Y
)

∩
(

{x} + Z
)

(5)

but distributivity of summation over intersection is not valid in general as the following
example shows:

(

(2, 3) + (4, 5)
)

∩
(

(2, 3) + (5, 6)
)

= (7, 8)

(2, 3) +
(

(4, 5) ∩ (5, 6)
)

= ∅

3.1. Normal forms

Denote K(Int) the sub-(commutative complemented Kleene) algebra generated by
Int in P(R≥0), that is the family of sets which can be obtained from intervals of Int

by applying union, summation, star and complementation.

Definition 3.2 A set X ∈ K(Int) can be written in normal form iff there exist
finite unions of rational intervals X1, X2 and some naturals k ∈ Q≥0, N ∈ N such
that

X = X1 ∪ (X2 + {k}∗) (6)

and X1 ⊆ [0, Nk), X2 ⊆ [Nk, (N + 1)k) (7)

We call N the bound of the normal form.

We will work with normal forms in which X1 and X2 are unions of disjoint intervals.
It is straightforward how to transform some normal form such that this property
holds.

Normal forms are not unique: for the normal form in the definition and some p ∈ N,
the following expression:

X =
(

X1 ∪
(

X2 + {0, k, 2k, . . . , (p − 1)k}
)

)

∪
(

X2 + {pk} + {k}∗
)
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is a normal form too, but with bound N + p.
Any finite union of rational intervals X can be put into normal form: when X is

bounded from above by M then X = X ∪
(

∅ + {1}∗
)

is a normal form with bound
⌈M⌉. When X is unbounded, suppose X = X1 ∪ [M,∞) is some decomposition of it
into disjoint intervals where M 6∈ N. Then

X =
(

X1 ∪
[

M, ⌈M⌉
)

)

∪
(

[

⌈M⌉, ⌈M⌉+ 1
)

+ {1}∗
)

is a normal form with bound ⌈M⌉.

Proposition 3.3 For each set X written into normal form as X = X1∪
(

X2+{k}∗
)

,
X = ∅ iff both X1 and X2 are empty.

This property, though trivial, has its own importance since we will use normal forms
as time labels in automata and we still want to have a decidable emptiness problem
for the resulting automata.

Sometimes, after the application of different operations to normal forms we might
not be able to get directly a normal form; instead, we might get a weak normal form,
which is a decomposition like equation 6 but without the additional requirement 7 on
the existence of the bound. As an example we have the following:

• X =
(

(2, 3) ∪ (4, 6)
)

∪
(

(

[6, 7) ∪ [8, 9)
)

+ {3}∗
)

is written in normal form with

bound 2 since we have X1 = (2, 3) ∪ (4, 6) ⊆ [0, 6), X2 = [6, 7) ∪ (8, 9) ⊆ [6, 9).

• Y =
(

(2, 3)∪(4, 7)
)

∪
(

[5, 7]+{3}∗
)

is a weak normal form which is not a normal

form: there is no N ∈ N such that [5, 7] ⊆
[

3N, 3(N + 1)
)

and (2, 3) ∪ (4, 6) ⊆
[0, 3N).

However both expand to the same set:

X = Y = (2, 3) ∪ (4, 7] ∪
⋃

n≥3

[3n − 1, 3n + 1]

Lemma 3.4 Weak normal forms can be transformed into normal forms.

Proof. Throughout this proof, (| will denote any left parenthesis.
Take X = X1 ∪ (X2 + {k}∗) some weak normal form and define M =

sup(supX1, sup X2). Two cases arise:

1. M = ∞. This means that there exists some L ∈ R≥0 such that (|L,∞) ⊆ X .

Define then n =

⌊

L

k

⌋

, that is nk ≤ L < (n + 1)k. Then for each i ≥ n + 1,

X2 + {ik} ⊆
[

(n + 1)k,∞
)

⊆ (|L,∞). It follows that X is a finite union of
intervals

X = X1 ∪

(

n
⋃

i=0

(

X2 + {ik}
)

)

∪ (|L,∞)

and thus we know how to transform it into normal form.
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2. M < ∞. Define then n =

⌊

M

k

⌋

+ 1, i.e., (n − 1)k ≤ M < nk and further

Z1 = X1 ∪

[(

n−1
⋃

i=0

(

X2 + {ik}
)

)

∩ [0, nk)

]

Z2 =

(

n
⋃

i=1

(

X2 + {ik}
)

)

∩
[

nk, (n + 1)k
)

We claim that X = Z1 ∪
(

Z2 + {k}∗
)

which is a normal form with bound n.

To prove this, observe first that for each i > j, i, j ∈ N,
(

X2 + {ik}
)

∩ [0, jk) = ∅

Moreover, for each j ∈ N, using distributivity of summation of singletons over inter-
section (property 5) we get

(

X2 + {jk}
)

∩
[

(n + j)k,∞
)

=
(

X2 ∩ [nk,∞)
)

+ {jk} = ∅

due to the fact that X2 ⊆ [0, M ] ⊂ [0, nk). This also implies that, for each i ≤ j,
i, j ∈ N,

(

X2 + {ik}
)

∩
[

(n + j)k,∞
)

= ∅

Therefore, by the same distributivity property 5 we get
(

X2 + {k}∗
)

∩
[

(n + j)k, (n + j + 1)k
)

=

=

( n+j
⋃

i=j+1

(

X2 + {ik}
)

)

∩ [(n + j)k, (n + j + 1)k) =

=

( n
⋃

i=1

(

X2 + {ik}
)

)

∩ [nk, (n + 1)k) + {jk}

and further

X = X1 ∪
(

X2 + {k}∗
)

= X1 ∪

(

(

X2 + {k}∗
)

∩
(

[0, nk) ∪
⋃

j≥0

[(n + j)k, (n + j + 1)k)
)

)

= X1 ∪

( n−1
⋃

i=0

(

X2 + {ik}
)

∩ [0, nk)

)

∪

⋃

j≥0

(

( n
⋃

i=1

(

X2 + {ik}
)

∩ [nk, (n + 1)k)

)

+ {jk}

)

= Z1 ∪
(

Z2 + {k}∗
)

✷
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3.2. A normal form theorem

The key result for normal forms is the following:

Theorem 3.5 Each X ∈ K(Int) can be written in normal form.

Proof. We must show that the result of any operation applied to some normal forms
can be put into normal form. We first list some useful identities valid in P(R) [Con71]:

X∗∗ = X∗ (8)

(X ∪ Y )∗ = X∗ + Y ∗ (9)

(X∗ + Y )∗ = {0} ∪ (X∗ + Y ∗ + Y ) (10)

We employ the notations lcm(p, q) and gcd(p, q) where p, q ∈ Q≥0 as the generalization
of lcm and gcd from integers. The formal definitions are:

lcm(p, q) = min{r ∈ Q≥0 | ∃l, m ∈ N such that lp = r = mq}

gcd(p, q) =
pq

lcm(p, q)

We also use the following ultimately periodicity property:

Given n distinct positive rationals ai ∈ Q≥0 we have that {a1, . . . , an}∗

is ultimately periodic, i.e., there exist some finite set of rationals B and
some rationals q, r ∈ Q≥0 such that

{a1, . . . , an}
∗ = B ∪

(

{q} + {r}∗
)

(11)

This property can be seen as an equivalent form of the normal form theorem for
rational languages over a one letter alphabet. For a direct proof note first that, given
two rationals p, q ∈ Q≥0,

{p, q}∗ = B ∪
(

{

lcm(p, q)
}

+
{

gcd(p, q)
}∗
)

where B =
{

α ∈ Q≥0 | α < lcm(p, q), α = lp+mq, l, m ∈ N
}

= {p, q}∗∩
[

0, lcm(p, q)
)

.
The property 11 follows from this by induction upon the number of elements in the
starred set.

Fix now two normal forms X = X1 ∪ (X2 + {k}∗) with bound M and Y = Y1 ∪
(Y2 + {l}∗) with bound N and denote m = lcm(k, l). We then get the following form
for X ∪ Y :

X1 ∪ Y1 ∪





(m/k−1
⋃

i=0

(

X2 + {ik}
)

∪

m/l−1
⋃

i=0

(

Y2 + {il}
)

)

+ {m}∗





This is a weak normal form and Lemma 3.4 shows how to transform it into normal
form.

For X + Y distributivity of + over ∪ transforms it into:
(

X1 + Y1

)

∪
(

X1 + Y2 + {l}∗
)

∪
(

X2 + Y1 + {k}∗
)

∪
(

X2 + Y2 + {k}∗ + {l}∗
)
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An instantiation of identity 9 gives {k}∗ + {l}∗ = {k, l}∗. The ultimately periodicity
property 11 gives a normal form for this set and thence we have above a union of
weak normal forms which we already know how to bring to normal form.

For X∗ we have two cases. The first one occurs when one of X1 and X2 contains
a nonpoint interval. Then the set X∗ is a finite union of rational intervals, so it
can be easily brought into normal form. To prove this claim, note that for each

nonpoint interval, e.g., (a, b] (that is b−a > 0), denoting m0 =

⌈

a

b − a

⌉

, we have that

(a, b]∗ = 0∪
m0−1
⋃

i=1

(ia, ib]∪(m0a,∞) since the choice of m0 assures that (m0+1)a < m0b.

Hence from the m0-th iteration the intervals start to overlap. This observation can
be easily adapted to prove our claim.

The second case is when both X1 and X2 consist of point intervals. Applying
identity 9 we get X∗ = X∗

1+
(

X2+{k}∗
)∗

. Then by the ultimately periodicity property

11 X1 can be written into normal form, so we may concentrate on
(

X2 + {k}∗
)∗

.
By identities 10 and 9 we further get

(

X2 + {k}∗
)∗

= {0} ∪
(

X2 + X∗
2 + {k}∗

)

= {0} ∪
(

X2 +
(

X2 ∪ {k}
)∗
)

Finally the ultimately periodicity property 11 tells us that
(

X2 ∪ {k}
)∗

can be put
into normal form and therefore this case reduces to a summation of normal forms.

For ¬X the strength of the normal form, i.e., the additional requirement on the
existence of the bound N helps us giving directly the result: it is

¬X =
(

¬X1 ∩ [0, Nk)
)

∪
(

(

¬X2 ∩ [Nk, (N + 1)k)
)

+ {k}∗
)

and the bound of this normal form is N too. ✷

In [CG98] it is proved that the set of finite unions of n-dimensional normal forms
in which X1 = ∅ forms a boolean algebra. The essential novelty in our result is the
closure of 1-dimensional normal forms under star.

Though the theorem is based on the same technique that gives the normal form
of rational languages over a one-letter alphabet it cannot be a simple corollary of
that. Even if we restrict attention to the algebra generated by intervals with natural
bounds, denote it NInt, we find two generators: the point set {1} and the nonpoint
interval (0, 1). Neither of them may generate the other: {1} generates just sets with
isolated points or complements of such sets (i.e., countable or co-countable sets), while
(0, 1) generates just finite unions of intervals (it cannot generate (0, 1) + {1}∗).

One might also think that the result follows from Eilenberg’s theory of automata
with multiplicities [Ei74]. But this is not the case either since in that work star
is defined via some formal power series and one cannot prove, unless defining some
suitable equivalence on power series, that e.g. [0, 1)∗ = [0,∞).

Finally note the interesting relation which holds between the two generators of
NInt, showing they are not independent:

(0, 1)∗ = (0 ∪ (0, 1)) + {1}∗ (12)
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3.3. Matrices of normal forms

At the end of this section we make a brief excursion into matrix theory. We construct,
as in [Koz94] the Kleene algebra of n×n matrices over P(R≥0) whose operations are
based upon the operations in the Kleene algebra P(R≥0):

(A ∪ B)ij = Aij ∪ Bij (A + B)ij =

n
⋃

k=1

(Aik + Bkj)

A∗ =
⋃

n∈N

nA

where 0A = In and (n + 1)A = nA + A, In denoting the unit for matrix summation.
If we write in detail the components of A∗ we have:

(A∗)ij =
⋃

{

Ai i1 +Ai1i2 +. . .+Aimj | i1, . . . , im∈ [n], m∈N
}

∪ {0 | i = j} (13)

The star of a matrix A can be computed by the following well-known Floyd-
Warshall-Kleene algorithm [Con71, Ei74]: we recursively define a sequence of n + 1
matrices A(k) (0 ≤ k ≤ n) with

A(0) = A ∪ In

A(k)ij = A(k − 1)ij ∪
(

A(k − 1)ik +
(

A(k − 1)kk

)∗
+ A(k − 1)kj

)

(14)

Proposition 3.6 ([Ei74]) A(n) = A∗ for any matrix over P(R≥0).

The classical proof may run as follows: one proves first that (nA)ik + (mA)kj ⊆

((n+m)A)ij . This implies that (A∗)ik+
(

(A∗)kk

)∗
+(A∗)kj ⊆ (A∗)ij . Then one shows

that A(k)ij ⊆ (A∗)ij by induction on k and hence get the left-to-right inclusion.
The right-to-left inclusion follows by proving that

A(k)ij =
⋃

{

Ai i1 + Ai1i2 + . . . + Aimj | i1, . . . , im ∈ [k], m ∈ N
}

∪ {0 | i = j}

by induction on k.

Corollary 3.7 If A is a matrix of normal forms then A∗ can be transformed into a
matrix of normal forms too.

Corollary 3.8 For each matrix of normal forms A if for all indices i 6= j we have
that 0 6∈ Aij then for all indices i 6= j, 0 6∈ (A∗)ij .

Proof. This is a corollary of relation 13: for any i1, . . . , im ∈ [n] consider the sum
Ai i1 + Ai1i2 + . . . + Aimj . As we assumed i 6= j we must have some p ∈ [m] such that
ip 6= ip+1. Thence 0 6∈ Aipip+1

and therefore the sum itself does not contain 0. ✷

Note however that for any i, (A∗)ii will always contain 0.
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4. Determinization and complementation of RTA

The above theory suggests that “periodic” constraints may replace intervals in the
definition of RTA.

Definition 4.1 An augmented real-time automaton is a tuple A =
(Q, Σ, δ, λ, ι, Q0, Qf ) where Q, Σ, Q0, Qf , δ and λ are the same as in RTA while
ι : Q −→ K(Int) (actually ι gives a normal form).

Augmented RTA work similarly to RTA: runs have the same definition and a signal
σ with dom(σ) = [0, e) is associated with a run of length n iff there exist 0 = e0 ≤
. . . ≤ en = e with ei−ei−1 ∈ ι(qi) and σ(t) = λ(qi) for all t ∈ [ei−1, ei) and all i ∈ [n].
The emptiness problem is again decidable in linear time w.r.t. card(Q). Note that
we need a preliminary step in which states q whose interval label denotes the empty
set are removed. It is here where we need Proposition 3.3.

The different notions of determinism remain unchanged for augmented RTA; hence
we will speak of state-deterministic augmented RTA and stuttering-free augmented
RTA in the sense of Definition 2.9.

We also have a transition-labeled version of augmented RTA, called in the sequel
augmented t-RTA, which are tuples B = (Q, Σ, δ, Q0, Qf ) like t-RTA, the difference
being that the transition relation is time-labeled with normal forms instead of just
intervals: δ ⊆ Q×Σ×K(Int)×Q. The different notions of determinism in Definition
2.10 are the same for augmented t-RTA, the translations between RTA and t-RTA
and back from subsection 2.2 work with augmented automata too and Proposition
2.11 is valid for augmented automata.

The following theorem says that we do not increase the expressive power of RTA
if we use normal forms instead of mere intervals:

Theorem 4.2 TReg(Σ) equals the class of languages accepted by augmented RTA.

The proof is very close to the one of Theorem 2.6 and is based on the following
property of rational expressions:

‖[a](a,b)∪((c,d)+{k}∗)‖ = ‖[a](a,b) + [a](c,d); [a]∗{k}‖

Of course, we also have to redefine rational expressions allowing normal forms as
indices for atoms.

The first step in determinization is the achievement of stuttering-freeness and the
proof runs smoother for augmented t-RTA:

Theorem 4.3 Each augmented t-RTA is equivalent to some stuttering-free aug-
mented t-RTA.

Proof. As a preliminary step, in the given augmented t-RTA we remove zeroes from
the time labels by applying Proposition 2.8, slightly modified for handling normal
forms instead of mere intervals. We also assume that all transitions with empty time
label have been removed.
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We achieve stuttering freeness by removing all stuttering a-transitions for some
a ∈ Σ, and then repeating this for all the other letters in Σ. The idea is to find, for
each pair of states (q1, q2) the set of positive numbers which are the duration of a
signal that is associated with some run starting in q1, ending in q2 and containing only
a-transitions. For this we need to recursively add all the intervals of the transitions
that may lie on such a run. This is the place where we apply the normal form theorem
3.5 and the algorithm for computing the star of a matrix of sets of positive numbers.
The formalization is the following:

Start with some augmented t-RTA A = (Q, Σ, δ, q0, Qf) and number its states as
Q={q1, . . . , qp}. Construct a matrix A whose elements are the interval labels of the
a-labeled states:

Aij =

{

X iff (qi, a, X, qj) ∈ δ

∅ otherwise

Then (A∗)ij consists of the lengths of signals associated with runs starting in qi,
ending in qj and consisting of a-transitions only. More formally,

(A∗)jk =
⋃

{

X1+. . .+Xm | (ri−1, a, Xi, ri)i∈[n] is a run in A and

r0 = qj , rn = qk

}

∪ {0 | j = k} (15)

This fact is a corollary of identity 13.
Computation of A∗ is done by the Floyd-Warshall-Kleene algorithm (14). Note

here the importance of Corollary 3.7: the elements of A∗ are still normal forms, hence
they may be used for labeling some new transitions of an augmented RTA. Hence,
while non-a-transitions will be preserved, the nonempty components of A∗ will replace
all a-transitions: their time label will be (A∗)ij and they will be connected only to
states from which no other a-transition is issued.

Formally, consider a disjoint copy of Q, Q′ = {q′i | qi ∈ Q}; the primed states will
be reached exactly after an a-transition. Build then B = (Q ∪ Q′, Σ, δ, Q0, Qf ∪ Q′

f )
where Q′

f is the set of copies of final states and

δ =
{

(q, b, X, r), (q′, b, X, r) | b 6= a, (q, b, X, r) ∈ δ
}

∪
{

(

qi, a, (A∗)ij \ {0}, q
′
j

)

|
(

A∗)ij \ {0} 6= ∅
}

The need for removing zero from the new transitions comes from the fact that we do
not want to add stuttering steps involving the other symbols from Σ.

The equivalence of A and B follows from the observation that a run
(

(ri−1, ai, Xi, ri)
)

i∈[n]
in A associated with some signal σ, can be transformed into a

run in B for σ by replacing all maximal sequences of a-transitions with the appro-
priate a-transition time-labeled from A∗ and by priming the state that follows this
transition.

Observe that by construction no two a-transitions are directly connected. On the
other hand, all non-a-transitions involving nonprimed states are just copied, hence
no stuttering transitions are added on these states. Finally, the primed states are
not involved in any stuttering transitions since they are targets of a-transitions and
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sources of non-a-transitions. This shows that by recursively applying this construction
for all letters in Σ we end with a stuttering-free augmented RTA. ✷

The number of states of the final t-RTA is 2card(Σ) · card(Q), since at each step
the states are at most duplicated. Concerning the number of transitions, note that,
for each a ∈ Σ, at each step the number of a-transitions is either doubled (if a is not
chosen at that moment for stuttering elimination) or squared. Since there is a single
step in which the number of a-transitions is squared, an upper bound for the number of
a-transitions would be 22·card(Σ) ·m2

a, where ma is the initial number of a-transitions.
Note that the earlier we choose to eliminate the stuttering a-transitions, the smaller
the number of a-transitions we obtain. This is because squaring would apply to a
smaller number of transitions. Of course the size of the resulting automaton would be
smaller if we mix the above procedure with the procedure that removes inaccessible
states.

The last step in the determinization process is the achievement of determinism
in stuttering-free automata. This time, the construction works smoother for state-
labeled automata:

Theorem 4.4 Each stuttering-free augmented RTA is equivalent to some determin-
istic augmented RTA.

Proof. Note that, as we work with state-labeled RTA, the given stuttering-free RTA
has the special initial state qǫ whose time-label is [0, 0] and which is not connected to
any other state.

Start with a stuttering-free augmented RTA B =
(

Q∪{qǫ}, Σ, δ, λ, ι, Q0∪{qǫ}, Qf

)

with qǫ 6∈ Q. For some subset of states S ⊆ Q we write λ(S) = a as a shortcut for
saying that all states in S are identically labeled with a. If B were untimed, the states
of the deterministic automaton would have been identically state-labeled subsets of
Q and we would draw a transition from some S1 with λ(S1) = a to some S2 with
λ(S2) = b iff S2 = {r ∈ Q | ∃q ∈ S1 s.t. (q, r) ∈ δ}. Taking into account the time
labels is done by splitting S2 into several “smaller” sets such that the time labels of
these give a partition of R>0.

To each U ⊆ Q with λ(U) = a we associate the set of time labels appearing in U :

T l(U) = {X ∈ K(Int) | ∃q ∈ U s.t. ι(q) = X}

Let R denote the set of triples [S, S′, a] where a ∈ Σ and S′ ⊆ S ⊆ Q with λ(S) = a.
Define then λ

(

[S, S′, a]
)

= a and

ι
(

[S, S′, a]
)

= R>0 ∩
(

⋂

T l(S′)
)

∩ ¬
(

⋃

T l(S \ S′)
)

where the usual conventions
⋂

∅ = R≥0 and
⋃

∅ = ∅ apply. Intuitively the control
passes through [S, S′, a] iff in B the control may pass through some state in S′ but
not through any of the states in S \ S′. We put R>0 in front of ι([S, S′, a]) because
otherwise we would lose stuttering-freeness. Also note that it is here where we need
the result that normal forms are closed under complementation, because we need to
put ι([S, S′, a]) into normal form and ι([S, S′, a]) contains complementation.
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Hence we build C = (R∪ {qǫ}, Σ, δ̃, λ̃, ι̃,R0,Rf ) in which

• δ̃ consists of transitions going from each [S, S′, a] ∈ R to each tuple [U, U ′, b]
defined by

U =
{

q ∈ Q | ∃r ∈ S′ s.t. (r, q) ∈ δ and λ(q) = b
}

and U ′ ⊆ U.

Case U ′ = ∅ stands for the situation when the length of the current state in the
signal is not in any of the sets from T l(U). Note how states [∅, ∅, a] time-labeled
with R>0 play the role of the trap states in finite automata.

• initial and final states are

R0 =
{

[S, S′, a] ∈ Q | S =
{

q ∈ Q0 | λ(q) = a
}

}

∪ {qǫ}

Rf =
{

[S, S′, a] ∈ Q | S′ ∩ Qf 6= ∅
}

∪
{

qǫ | σǫ ∈ L(B)
}

The proof that C is equivalent to B proceeds by induction on the number of dis-
continuities in a signal. The construction assures that, at each discontinuity, exactly
one state can be chosen such that the control goes to that state. ✷

The complexity of this construction is exponential in the number of states: by
denoting n = card(Q), observe first that the number of states [S, S′, a] where

card(S) = k is at most 2k ·

(

n

k

)

(at most due to the fact that some sets of states S

might not be consistently state-labeled). Therefore the cardinality of R is at most

n
∑

k=0

(

2k ·

(

n

k

))

= 3n

Theorem 4.5 TRec(Σ) is closed under complementation. The universality problem
for TRec(Σ) is decidable.

Proof. This is a corollary of Theorem 4.4 and Proposition 2.3. The important prop-
erty provided by the construction of the deterministic augmented RTA C in this the-
orem is that each signal (including the empty signal!) is associated with a unique run
that starts in T0. Hence the augmented RTA that accepts Sig(Σ) \ L(C) is obtained
by complementing the set of final states of C. ✷

Let us finally underline the need for theorem 3.5 in determinization: in our con-
struction, we actually build an automaton whose time labels are in fact extended
rational expressions (i.e., using complementation) over intervals. In the absence of
theorem 3.5, such an automaton would not be an augmented RTA any longer and
we would be in no position to decide whether, after complementing the set of final
states, the resulting automaton would still be an augmented RTA. This would make
questionable the decidability of the universality problem.

It is actually this problem what stops the application of the determinization con-
struction for RTA whose time labels lie in a class larger than Int in which comparison
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of the time bounds is effective - for example, the class of intervals whose bounds are
algebraic numbers. If this class of intervals is chosen for the time labels, it is unclear
whether the universality problem remains decidable.

5. The Pumping Lemma and expressivity issues

Lemma 5.1 (Pumping Lemma) If a language L is accepted by a RTA then there
exists N ∈ N such that each signal σ having at least N discontinuities can be factored
into three signals σ = σ1; σ2; σ3, such that σ2 contains at least one discontinuity and
for any n ∈ N we have σ1; σ

n
2 ; σ3 ∈ L.

Proof. The proof of this lemma is almost the same as in the untimed case, the
difference lying in the reference to discontinuities. Take A = (Q, Σ, δ, λ, ι, Q0, Qf) a
stuttering-free augmented RTA accepting L and define N = card(Q) + 1. It is clear
that each signal σ ∈ L having N discontinuities must be accepted by some run having
exactly N + 1 states, hence one of the state must be repeated throughout the run.
Since we assumed that A is stuttering-free we cannot have self loops at the repeated
state. Hence the part of the run which can be repeated must contain at least two
distinctly state-labeled states and therefore σ2 must contain a discontinuity. ✷

Proposition 5.2 The language Lnonreg = {σ ∈ Sig({a, b}) | endp(σ) ∈ [1, 3]} is not
real-time rational.

Proof. Supposing Lnonreg was real-time rational, we may pick up a signal σ ∈ Lnonreg

such that its number of discontinuities is more than the natural number N provided
by the Pumping Lemma. An example is the signal for which, for each k ∈ [N ],
σ(t) = a for t ∈

[

2k−2
N , 2k−1

N

)

and σ(t) = b for t ∈
[

2k−1
N , 2k

N

)

.
Then by the Pumping Lemma σ can be factored as σ = σ1; σ2; σ3 such that σ2 has

at least a discontinuity, (and hence endp(σ2) > 0) and σ1; σ
n
2 ; σ3 ∈ Lnonreg for any

n ∈ N. But then n · endp(σ2) ≤ 3 for all n ∈ N, which is in obvious contradiction
with endp(σ2) > 0. ✷

It is easy to build a state-labeled timed automaton [ACM97] with a single clock
accepting Lnonreg. Note also that the untiming of this language is a rational (untimed)
language. Here by the untiming of a real-time language L we mean the set of words
w for which there exist a signal σ ∈ L such that w represents the sequence of symbols
that appear in σ.

6. Conclusions and further work

We have presented here a Kleene algebra of sets of positive numbers where elements
have a finite representation and a class of real-time languages which is closed under
complementation and is defined by some automata and by rational expressions.

One question to be asked is whether the results concerning normal forms can be
applied to timed automata. Recently Bouyer and Petit [BP99] have proved a Kleene
theorem for timed automata that does not require renaming as in [ACM97]. It is
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possible that this theorem, correlated with our ultimately periodicity result, might
allow removing loops with silent transitions by induction on the structure of the au-
tomaton (see also [BDGP98]). Of course, timed automata would need to use periodic
constraints instead of intervals.

Another question is whether a normal form can be found for sets of intervals which
have any bounds (not necessarily rational) and are generated from finite sets of in-
tervals by union, complementation, concatenation and star. This question can also
be restated as follows: is emptiness decidable for expressions denoting sets of posi-
tive numbers which are constructed by applying boolean operations, summation and
star to intervals whose bounds are in some computable subset of R? Note that this
does not follow from the decidability of the emptiness problem for extended ratio-
nal expressions where concatenation is replaced by shuffle since P(R≥0) is not a free
commutative Kleene algebra. Neither we mean that our normal form result can be
extended to intervals with any bounds, since it is clear that one may no longer employ
the ultimately periodicity property 11.
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