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ABSTRACT
An automaton is synchronizing when there is a word that brings every state into one
and the same state. Such a word is called a synchronizing word, and Černý conjec-
tured in 1964 that if a n-state deterministic automaton is synchronizing, then it has a
synchronizing word of length at most (n− 1)2. The best bound known so far is cubic
in n and was obtained by Szykuła in 2017.

In this article, we study the synchronization properties of random deterministic
automata, for the uniform distribution. Berlinkov recently proved that they are syn-
chronizing with high probability. Our contribution is to study the typical length of
the smallest synchronizing word, when such a word exists: we establish that with
high probability, such an automaton with n states admits a synchronizing word of
length O(n log3 n). As a byproduct, we get that for most automata, the Černý conjec-
ture holds.
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1. Introduction

For a given automaton, a synchronizing word (or a reset word) is a word that brings
that automaton into one and the same state, regardless of the starting position. This
notion, first formalized by Černý in the sixties, arises naturally in automata theory
and its extensions, and plays an important role in several application areas, most of
them related to the idea of being able to reset a device from every unknown state
(see [30] for some examples). Beside applications, one of the reasons synchronizing
automata are still intensively studied in theoretical computer science is the following
question asked by Černý [9] back in 1964: “Does every synchronizing n-state au-
tomaton admit a synchronizing word of length at most (n− 1)2?” The upper bound
of (n − 1)2, as shown by Černý by providing a matching family of automata, is best
possible. This question, now known as the Černý conjecture, is one of the most fa-
mous conjectures in automata theory. Though established for important subclasses
of automata, the Černý conjecture remains open in the general case. The best known
bound is

( 7
48 + 2·15 625

1 597 536
)
n3 + o(n3) which is due to Shitov [27] who improved the
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bound of 114
685n

3 +O(n2) by Szykuła [29] which was the first improvement in decades
over the bound of 1

6 (n3−n) established in the early eighties by Pin and Frankl [26, 14].
Observe that there still is a significant gap between the quadratic bound conjectured
by Černý and the cubic one obtained by Szykuła. We refer the interested reader to
Volkov’s article [30] for a more detailed account on the Černý conjecture.

The study of random deterministic automata originates in the pioneer works of
Grusho [16] and Korshunov [21], who studied the typical size of the accessible part
and the asymptotic number of accessible automata, respectively. Since then, a lot of
results were obtained on the structure of large random deterministic automata, such
as [8, 2, 6], and on the average case analysis of algorithms dealing with automata,
such as [1, 10, 11]. The reader is referred to the survey [23] for more information on
this topic.

In this article, we consider the Černý conjecture from a probabilistic point of view
and look at the synchronization properties of random deterministic automata, for the
uniform distribution. The question is quite natural, and was proposed, for instance,
by Cameron [7]. Also, many experiments on the Černý conjecture were conducted
while attempting to solve it, and a significant amount of experimental evidences have
been collected. They suggest that most automata are synchronized by a short reset
word, of length sublinear in the number of states. Note that though it is computation-
ally easy to check whether an automaton is synchronizing, finding the shortest reset
word is hard [25] (for instance, deciding whether the shortest reset word as length `
is DP-complete, where DP is the closure of NP ∪ coNP for finite intersections).
Approximating the result is also difficult: Gawrychowski and Straszak [15] proved
that for every positive ε, it is NP-hard to approximate the length of the shortest
reset word within a factor of n1−ε. The best experimental results we are aware of
were obtained by Kisielewicz, Kowalski, and Szykuła [19]. Their experiments seem to
indicate that the expected length of the reset word grows in Θ(

√
n).

Berlinkov recently made a breakthrough [3] in this area by proving that the proba-
bility that a random automaton is not synchronizing is O(n− 1

2 |A|), for an alphabet A
with at least two letters. That is, random automata are synchronizing with high
probability.1 The techniques used in his proof allow to estimate precisely the prob-
ability of not being synchronizing (his result is tight for 2-letter alphabets), but do
not provide information on the length of the reset word.

Before the work presented in this article, only partial results were obtained con-
cerning the typical length of the shortest reset word for uniform random deterministic
automata: Skvortsov and Zaks [28] proved that the Černý conjecture holds with high
probability for large alphabets whose cardinality grows with the number of states, at
the rate nβ for some β > 1

2 . They also proved that the probability of having a short
reset word is non-negligible, but not tending to 1, for alphabets with at least four
letters [31].

In this paper, we prove that when the automaton is chosen uniformly at random
among deterministic and complete n-state automata on an alphabet with at least two

1with high probability means “with probability that tends to 1 as n goes to infinity”.
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letters, the Černý conjecture holds with high probability. More precisely, we show
that with high probability, a random n-state automaton admits a synchronizing word
of length O(n log3 n). Even if the Černý conjecture is settled in the positive, this
result remains interesting, as it yields that most automata admit a synchronizing
word of length almost linear (up to some logarithmic factors).

Our proof also gives another way to show that automata are synchronizing with
high probability, based on a method that completely differs from Berlinkov’s work [3].
He used recent results on synchronization, as well as some advanced properties of ran-
dom mappings. In our proof, we directly build words that iteratively shrink the set
of states, using only basic discrete probabilities and variations on the probabilistic
pigeonhole principle (also known as the Birthday Paradox). The proof proposed by
Berlinkov is arguably more complicated, but also more precise, since it gives a sharp
estimation of the probability of not being synchronizing.2 Also note that our main
result is used by Berlinkov and Szykuła [5] to prove that the probability that the con-
jecture does not hold for a random synchronizing binary automaton is exponentially
small in its number of states.

This article is the long version of the extended abstract [24] presented at the
conference RANDOM in 2016, which contained none of the proofs and where the
discussions were limited due to the lack of space.

2. Definitions and Notations

For any integer n ≥ 1, let [n] = {1, . . . , n} be the set of integers between 1 and n.
The cardinality of a finite set E is denoted by |E|.

2.1. Probabilities

Let (E, s) be a pair where E is a set and s is a size function from E to Z≥0. The
pair (E, s) is a combinatorial set3 when for every integer n ≥ 0, the set En of size-n
elements of E is finite. To simplify the definitions, we also assume that En 6= ∅ for
every n ≥ 1, which will always be the case in the following. Let (Pn)n≥1 be a sequence
of total functions such that for each n ≥ 1, Pn is a probability on En. We say that a
property P holds with high probability for (Pn)n≥1 when Pn[P holds]→ 1 as n→∞.

We will often consider the uniform distribution on E, which is the sequence (Pn)n≥1
defined by Pn[{e}] = 1

|En| for any e in En: A sentence like “property P holds with high
probability for the uniform distribution on E” therefore means that the probability
that P holds tends to 1 as n tends to infinity, when for each n we consider the
uniform distribution on En. The reader is referred to [13] for more information on
combinatorial probabilistic models.

2Knowing the probability of not being synchronizing is important in many situations, especially
for the average case analysis of algorithms, as illustrated in the conclusions of [3]. Berlinkov also
replies precisely to a question asked by Cameron [7].

3The size is often clear in the context (number of nodes in a tree, ...) and can be omitted.
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2.2. Mappings, Random Mappings and Random p-Mappings

A mapping on a set E is a total function from E to E. When E is finite, a mapping f
on E can be seen as a directed graph with an edge i → j whenever f(i) = j. An
example of such a graph is depicted in Figure 1 page 346.

Let f be a mapping on E. The element x ∈ E is a cyclic point4 of f when there
exists an integer i > 0 such that f i(x) = x. In the sequel, E will often be the set of
states of an automaton, and we will therefore use the term “state” instead of “point”.

1

2

34

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Figure 1: A mapping for n = 18. The cyclic points are indicated in bold.

If f is a mapping on E and x ∈ E, the height of x is the smallest i ≥ 0 such
that f i(x) is a cyclic point. The height of a cyclic point is therefore 0. The height of
a mapping on E is the maximal height of an element of E. The mapping depicted in
Figure 1 has height 3, and its maximal height is reached by the state 9.

A random mapping of size n ≥ 1 is a mapping on [n] taken with the uniform
distribution amongst the nn possibilities. Random mappings have been intensively
studied in the litterature, see for instance the book of Kolčin [20] or the analytic
approach developed by Flajolet and Odlyzko in [12].

If p is a probability mass function on [n], a random p-mapping is the distribution
on the mappings on [n] such that the probability of a mapping f is

∏
i∈[n] p(f(i)):

the image of each i ∈ [n] is chosen independently following the probability p.

Example 1. Assume that n = 3 and that p is the probability on {1, 2, 3} defined by

p(1) = 1
2 , p(2) = 1

3 , and p(3) = 1
6 ,

then a random p-mapping has probability
1
3 ×

1
6 ×

1
3 = 1

54
to be the mapping 1 7→ 2, 2 7→ 3 and 3 7→ 2, and probability

1
2 ×

1
3 ×

1
6 = 1

36
to be the identity.

4We will also say that x is an f-cyclic point when the mapping under consideration is not clear
in the context.
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A result stated as “a random p-mapping satisfies property P with high probability”
means that for any sequence (pn)n≥1, where pn is a probability on [n], the probability
that a pn-random mapping on [n] satisfies P tends to 1 as n tends to infinity. It is
therefore a very strong result that does not depend on the choice of (pn)n≥1.

2.3. Automata and Synchronization

Let A be a finite alphabet, a deterministic automaton on A is a pair (Q, δ), where Q
is a finite set of states and δ is the transition function, a (possibly partial) function
from Q×A to Q. If p, q ∈ Q and a ∈ A are such that δ(p, a) = q, then (p, a, q) is the
transition from p to q labelled by a, and is denoted by p a−→ q. It is the a-transition
outgoing from p.

Note that in this article, we are not interested in initial and final states since they
do not change anything regarding synchronization. We will also focus on deterministic
automata only, and therefore, throughout the article, we will simply call “automaton”
a deterministic automaton with no initial and final states.

An automaton A = (Q, δ) on A is classically seen as a A-labelled directed graph,
whose set of vertices is Q and whose edges are the transitions of A.

An automaton is complete when its transition function is a total function and
incomplete otherwise. The transition function is extended inductively to Q × A∗ by
setting δ(p, ε) = p for every p ∈ Q and, for every u ∈ A∗, δ(p, ua) = δ(δ(p, u), a)
when everything is defined, and undefined otherwise. If u ∈ A∗, we denote by δu the
(possibly partial) function from Q to Q defined by δu(p) = δ(p, u), for all p ∈ Q.

If A = (Q, δ) is an automaton on A, an extension of A is an automaton B = (Q,λ)
on A such that for all p ∈ Q and for all a ∈ A, if δ(p, a) is defined then λ(p, a) = δ(p, a).
The automaton B is therefore obtained from A by adding some missing transitions.
We denote by Ext(A) the set of all the extensions of an automaton A. If H is a set
of automata, we denote by Ext(H) the union of all the Ext(A) for A ∈ H.

LetA be an automaton on the alphabet A. Two states p and q ofA are synchronized
by the word w ∈ A∗ when both δw(p) and δw(q) are defined and equal.

A synchronizing word, or reset word, for an automaton A = (Q, δ) is a word w ∈ A∗
such that δw is a constant map: there exists a state r ∈ Q such that for every p
in Q, δw(p) = r. An automaton that admits a synchronizing word is said to be
synchronizing.

2.4. Random Automata

In the sequel, the set of states of an n-state automaton will always be [n]. With this
condition, there are exactly n|A|n complete automata with n states on |A|. Therefore,
for the uniform distribution, each size-n complete automaton has probability n−|A|n.

Though we will not need it directly in the sequel, it is convenient to have an idea
of the typical shape of a random deterministic automaton, which is provided by many
results of the literature [16, 6, 8, 2]. With high probability, such an automaton has
a huge terminal strongly connected component C of size around νn, for some known
constant ν > 1

2 that only depends on the size of the alphabet. States that are not in C
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can reach it using a very short path, and there are only a few number of cycles that
does not belong to C. As a consequence, starting from any state one can reach ≈ νn
states of the automaton (this is the property used for random sampling in [8]).

Moreover, Bassino, David and Sportiello [2] proved that random accessible deter-
ministic automata are minimal with high probability for alphabets of size at least
three, and with probability tending to γ, for some positive γ, for two-letter alpha-
bets. This implies that, when looking at the described languages, these distribution
is not degenerated and provide a way to study random languages for the uniform
distribution related to the state complexity.

See the survey [23] for an account on the typical properties of uniform random
deterministic automata.

Observe that one can also see the uniform distribution on complete automata
with n states as drawing uniformly at random and independently in [n] the image of
each δ(p, a), for all p ∈ [n] and for all a ∈ A. These alternative way to look at random
automata will widely be used in the sequel, especially in the following way: Let A be
a fixed incomplete automaton with n states. The uniform distribution on complete
automata of Ext(A) is obtained by choosing uniformly at random and independently
in [n] the ending state of the transitions that are undefined in A.

3. Preliminary Classical Results

In this section, we recall some classical results that will be useful in sequel. Though
elementary, these results are the main ingredients of this article.

We start with the following classical property of synchronizing automata: an au-
tomaton is synchronizing if and only if every pair of states can be synchronized.

Lemma 2. Let A be an n-state automaton and ` be a non-negative integer. If
for every pair of states (p, q) in A there exists a word u of length at most ` such
that δu(p) = δu(q), then A admits a synchronizing word of length at most `(n− 1).

Proof. Assume by induction that we successfully synchronized i ≥ 2 pairwise dis-
tinct states q1, . . . , qi using a word u of length smaller than or equal to `(i − 1): for
all j, k ∈ {1, . . . , i}, δu(qj) = δu(qk). Let qi+1 be a state distinct from q1, . . . , qi and
let v be a word of length at most ` that synchronizes δu(q1) and δu(qi+1). Then the
word uv synchronizes q1, . . . , qi+1 and has length at most `i. �

Our next lemma is a bit technical, but it will be used several times in the following,
in particular to generalize some results on random mappings to random p-mappings.

Lemma 3. Let n and ` be two positive integers such that ` ≤ n. Let (E,≤) be a
totally ordered finite set of cardinality n. Let f be a mapping from E to R≥0, and
denote by s the sum of the images of the elements of E by f : s =

∑
x∈E f(x). The

following result holds:∑
x1<x2<···<x`

f(x1)f(x2) · · · f(x`) ≤
(
n

`

)( s
n

)`
,
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where the sum ranges over all increasing `-tuples of elements of E. The sum on the
left is therefore maximal when f(x) = s

n , for every x ∈ E.

Proof. Let ν(f) denote the number of elements x ∈ E such that f(x) is different
from s

n :

ν(f) =

∣∣∣∣∣
{
x ∈ E | f(x) 6=

s

n

}∣∣∣∣∣ .
We prove by induction on the value of ν that every mapping from E to R≥0 whose
images sum to s satisfies the inequality stated in the lemma.

If ν(f) = 0, then we have
∑
x1<···<x`

f(x1) · · · f(x`) =
(
n
`

) (
s
n

)` since there are
(
n
`

)
increasing sequences x1 < · · · < x`.

Otherwise, ν(f) 6= 0 and we build another map g, starting from f , such that g also
sums to s, with ν(g) < ν(f) and having the following property:∑

x1<···<x`

f(x1) · · · f(x`) ≤
∑

x1<···<x`

g(x1) · · · g(x`). (1)

This is done as follows. Let y ∈ E be an element such that |f(y) − s
n | is minimal

amongst the y’s such that f(y) 6= s
n . We assume that f(y) − s

n > 0 (the proof is
similar if f(y)− s

n < 0). Since

f(y) > s

n
and

∑
x∈E

f(x) = s,

there exists an element z 6= y such that f(z) < s
n . Consider the new map g obtained

from f by changing the value at y and z the following way:

g(x) = f(x) if x 6= y and x 6= z,

g(y) = s

n
,

g(z) = f(z) + f(y)− s

n
.

One can directly verify that g is always non-negative and sums to s. Moreover, by
construction, we have ν(g) < ν(f). We claim that Equation (1) holds. To prove this
inequality, we distinguish three cases for the `-tuples:

• If (x1, . . . , x`) is an increasing `-tuple that does not contain y nor z, then we
have g(x1) · · · g(x`) = f(x1) · · · f(x`).

• We sum the contributions of tuples containing exactly one element of {y, z}:
if {x1, . . . , x`−1} are `− 1 elements of [n] \ {y, z}, the definition of g yields that

g(x1) · · · g(x`−1) g(y) + g(x1) . . . g(x`−1) g(z)
= f(x1) · · · f(x`−1) f(y) + f(x1) · · · f(x`−1) f(z).

Hence, the contributions of such tuples globally do not change the value of the
sum when switching from f to g.
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• If both y and z are in the tuple, then

f(x1) · · · f(x`) = f(y)f(z)
∏
xi 6=y
xi 6=z

f(xi),

g(x1) · · · g(x`) = g(y)g(z)
∏
xi 6=y
xi 6=z

g(xi) = g(y)g(z)
∏
xi 6=y
xi 6=z

f(xi).

Let α and β be the two positive real numbers defined by α = f(y) − s
n

and β = s
n − f(z). We have

g(z)g(y) = s

n

(
f(z) + f(y)− s

n

)
= s

n

( s
n

+ α− β
)

= s2

n2 + s(α− β)
n

,

whereas

f(y) f(z) =
( s
n

+ α
)( s

n
− β

)
= s2

n2 + s(α− β)
n

− αβ,

therefore f(y) f(z) ≤ g(y) g(z) and f(x1) · · · f(x`) ≤ g(x1) · · · g(x`) for such a
tuple.

This proves Equation (1) and concludes the proof by induction on the value of ν. �

Random mappings and random p-mappings have been studied intensively in the
literature [17, 12, 20], using probabilistic techniques or methods from analytic combi-
natorics. In this section, we only recall basic properties of the typical number of cyclic
points and of the typical height of a random p-mapping. This can be achieved us-
ing variations on the probabilistic pigeonhole principle only (also called the Birthday
Paradox); more advanced techniques can be used to obtain more precise statements,5
but we will not need such advanced properties. Such results are folklore, but our
exact statement given in Lemma 4 below is chosen to fit our needs in the sequel, and
we provide an elementary proof of it for self completeness (and because it is difficult
to find this exact statement in the literature). The lemma is proved in two steps. It
is first established for uniform random mappings then extended to general p-random
mappings, using Lemma 3.

Lemma 4. The probability that a random p-mapping of size n has more
than 2

√
n logn cyclic points or that it has height greater than 2

√
n logn is O( 1

n ).

Proof. We start with the number of cyclic points in the uniform case. For any
integer ` such that 1 ≤ ` ≤ n, the probability that there is a cyclic part of size ` in a
uniform random mapping is at most

P (n, `) =
(
n

`

)
`! n−` :

5For instance, limit distributions of some parameters [13] or even a notion of continuous limit for
random mappings.
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There are(
n

`

)
`!

different ways to choose the ` elements that form the cyclic part and the permutation
that is the restriction of the mapping to its cyclic part. Since it exactly determines
the images of ` elements, having this cyclic part happens with probability 1

n` . This is
an upper bound, as we do not prevent the formation of other cycles in our counting.
Moreover, by standard computations,

P (n, `) =
(

1− 1
n

)(
1− 2

n

)
· · ·
(

1− `− 1
n

)
≤ exp

(
−`(`− 1)

2n

)
.

Observe also that the product form above prove that P (n, `) is increasing in `. Hence,
the probability that the cyclic part has at least 2

√
n logn cyclic points is at most

n∑
`=d2
√
n logn e

P (n, `) ≤ n · P (n, d2
√
n logne) = O

(
1
n

)
. (2)

We now consider the height, still in the uniform case. Consider an element i ∈ [n].
For any integer ` such that 1 ≤ ` < n, the probability that a uniform random
mapping f on [n] is such that f(i), f2(i) = f(f(i)), . . . , f `(i) are all distinct is
classically(

1− 1
n

)(
1− 2

n

)
· · ·
(

1− `− 1
n

)
= P (n, `).

Therefore, we can reuse the previous computations. If f has height greater than or
equal to `, then there exists a i with at least ` distinct iterates. Hence, summing
the contribution of all i ∈ [n] with the union bound, we get that the probability
that f has height greater than d2

√
n logne is at most nP (n, d2

√
n logne). Thus, by

Equation (2), it is also O( 1
n ).

This concludes the proof for the uniform case. We now generalize the statement
to random p-mappings. For the number of cyclic points, we start as for the uniform
case. The only difference is that if the points involved in the cyclic part of length `
are x1, x2, . . . , x`, then the probability of having a given permutation of those points
is not `!n−` anymore, it is

Pn(x1, . . . , x`) = `! p(x1)p(x2) · · · p(x`).

If we sum this quantity for all possible `-subsets of [n], we obtain the upper bound

Pn(`) = `!
∑

1≤x1<x2<···<x`≤n

p(x1)p(x2) · · · p(x`).

At this point, we can apply Lemma 3 with f = p, E = [n] and s = 1 to obtain an
upper bound for Pn(`) that does not depend on the probability p:

Pn(`) ≤ `!
(
n

`

)
n−`.
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This is the same bound as for the uniform case, yielding the same result.
It remains to study the height of random p-mappings. Let x be some element of [n].

Let (x1, . . . , x`) be a `-tuple of distinct elements in [n] \ {x}. The probability that a
map f is such that xi = f i(x), for all 1 ≤ i ≤ `, is exactly p(x1)p(x2) · · · p(x`). Hence,
the probability that x has ` distinct iterates that are different from x when applying f
is p(x1)p(x2) · · · p(x`) where (x1, . . . , x`) ranges over all `-tuples of pairwise distinct
elements of [n] \ {x}. We obtain an upper bound by allowing one of the xi’s to be
equal to x, which simplifies the writing. This bound is

`!
∑

1≤x1<x2<···<x`≤n

p(x1)p(x2) · · · p(x`),

since there are `! ways to permute the xi’s. This is exactly Pn(`) obtained for the
number of cyclic points, yielding the same result and concluding the proof. �

4. Main Result

The main result of this article is the following theorem.

Theorem 5. Let A be an alphabet with at least two letters. For the uniform distribu-
tion, an n-state deterministic and complete automaton on A admits a synchronizing
word of length O(n log3 n) with high probability. More precisely, the probability that
no such word exists is O(n− 1

8 log4 n).

The statement does not hold for alphabets with only one letter, since there are
cycles of length greater than 1 in a random mapping with high probability [12]: two
distinct states in such a cycle cannot be synchronized.

As a consequence of Theorem 5, a random deterministic and complete automaton
is synchronizing with high probability; our proof therefore constitutes an alternative
proof of [3] for that property. Our statement is weaker for just synchronization, since
Berlinkov also obtained the upper bound O(n− 1

2 |A|) for the error term (the number of
automata that are not synchronizing), which is tight for two-letter alphabets. On the
other hand, it is arguably more elementary as we mostly rely on Lemma 4 and some
basic discrete probabilities; in any case, beside providing information on the typical
length of the shortest reset word, we hope that our proof sheds a new light on the
reasons why automata are often synchronizing.

If we consider the uniform distribution on synchronizing automata, we directly
obtain from Theorem 5 that there exists a small synchronizing word with high prob-
ability, yielding the following corollary.

Corollary 6. For the uniform distribution on synchronizing deterministic and com-
plete automata on an alphabet with at least two letters, the Černý conjecture holds
with high probability.
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We prove Theorem 5 in two main steps, which are informally as follows:

(I) We first construct a word wn ∈ {a, b}∗ such that the image of δwn
for a ran-

dom n-state automaton has size at most n1/8 log7/8 n with high probability.
This is done by building a set Gn of incomplete automata that have this prop-
erty, and by showing that a random n-state automaton extends an element
of Gn with high probability. Roughly speaking, Gn and wn are built by three
consecutive applications of Lemma 4, starting with incomplete automata with
only a-transitions, which we then augment by b-transitions in two rounds.

(II) It remains to synchronize those n1/8 log7/8 n states. This is done by showing
that for a random automaton that extends an element of Gn, with high proba-
bility any two of those states can be synchronized by a word of the form biwn,
with i ≤ n1/4. Lemma 2 is then used to combine these words, and also wn, into
a synchronizing word for the automaton.

The remainder of this section is devoted to a more detailed proof of Theorem 5.
For the presentation, we will follow an idea used by Karp in his article on random
direct graphs [18]: we start from an automaton with no transition, then add new
random transitions during at each step of the construction, progressively improving
the synchronization. This is the classical “Principle of Deferred Decisions” of the field
of randomized algorithms [22, p. 69].

Since it is clearly sufficient to establish the result for a two-letter alphabet, we
consider that A = {a, b} from now on, except for the informal discussion at the
beginning of Section 4.3.

4.1. Generating the a-Transitions

The first step consists in generating all the a-transitions. This forms a mapping
for δa that follows the uniformly distribution on size-n mappings. We can therefore
apply Lemma 4, and obtain that words of the form ai can already be used to reduce
significantly the number of states to be synchronized.

Let αn = b2
√
n lognc and let En denote the set of incomplete automata A with n

states such that:
(I) The defined transitions of A are exactly its a-transitions.
(II) The action δa of a has at most αn cyclic states.
(III) The height of δa is at most αn.

Example 7. LetA be an automaton with 18 states, which has only a-transitions and
such that δa is the mapping of Figure 1 (Page 346). Its set of δa-cyclic states Cyca(A)
is {2,3,7,11,13,17}. Since α18 = 14, the word u18 = a14 is used to start the
synchronization:

{6, 7, 9, 18} u18−−→ 2; {3, 5, 12} u18−−→ 3; {4, 16, 17} u18−−→ 7;
{11} u18−−→ 11; {1, 10, 13, 15} u18−−→ 13; {2, 8, 14} u18−−→ 17.
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As there are 6 ≤ α18 cyclic states and since this mapping’s height is 3 ≤ α18, the
automaton A is an element of E18.

As the action of the letter a in a uniform random complete automaton is exactly
a uniform random mapping, the following result is a direct consequence of Lemma 4.

Lemma 8. A random complete automaton with n states extends an element of En
with high probability. More precisely, the probability that such an automaton does not
extend an element of En is O( 1

n ).

For any automaton A whose a-transitions are all defined, let Cyca(A) denote
its set of δa-cyclic states. They also are the δa-cyclic states of any automaton that
extends A.

Let un = aαn . By Lemma 8, we can already start the synchronization using un, as
the image of the set of states [n] by δun is included in Cyca(A), which is much smaller
than n with high probability: if we find a word v that synchronizes Cyca(A), then unv
is a synchronizing word for A. In the sequel, we therefore work on synchronizing the
elements of Cyca(A).

4.2. Adding a First Round of Random b-Transitions

Let A be a fixed element of En. We are now working on Ext(A) and we consider the
process of adding a random b-transition starting from every state of Cyca(A).

Let B ∈ Ext(A) be an automaton obtained this way and let fB denote the re-
striction of δbun to Cyca(A). It is a total map, since all the needed b-transitions are
defined. Moreover, the image of fB is included in Cyca(A), as

fB(x) = δbun
(x) = δun

(δb(x)),

for every x ∈ Cyca(A). Hence, fB is a total map from Cyca(A) to itself.

Example 9. This is the automaton of Example 7, where the b-transitions originating
from the elements of Cyca(A) have been added (in bold):

1

2

34

5

6

7

8

9

10

11

12

13

14

15

16

17

18
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The map fB, which is the restriction of δbun
to Cyca(A), is depicted below. An

edge p = x =⇒ q means that δb(p) = x and δun
(x) = q, so that fB(p) = q:

2

7

11

13

3

17

1

8

13

14

1

18

From a probabilistic point of view, if we fix A and build B by adding uniformly at
random and independently the b-transitions that start from the states of Cyca(A),
the induced distribution for the mapping fB is usually not the uniform distribution
on the mappings of Cyca(A). More precisely, for any q ∈ Cyca(A) the probability
that the image by fB of an element of Cyca(A) is q is proportional to the number of
preimages of q by δun

. It is exactly 1
n |δ
−1
un

({q})|, the probability that a random state
is mapped to q when reading un. For any word ω ∈ A∗, let PA,ω be the function
from [n] to [0, 1] defined by

PA,ω(q) = |δ
−1
ω ({q})|
n

, for all q ∈ [n]. (3)

From the observations above, we get that once A is fixed, fB is a random p-
mapping, where the distribution on Cyca(A) is given by the restriction of PA,un

to Cyca(A) (PA,un
only charges Cyca(A) since A ∈ En).

Let βn = b3n1/4 log3/4 nc. Applying Lemma 4 to fB yields the following result.

Lemma 10. Let A be a fixed automaton of En. Consider the random process of
building B by adding a b-transition to every element of Cyca(A), choosing the target
uniformly and independently in [n]. For n sufficiently large, the probability that fB has
more than βn cyclic states or that it has height greater than βn is smaller than M

n1/4 ,
for some positive constant M that does not depends on A.

Proof. Let c denote the number of δa-cyclic states in A. Recall that fB is the map
from Cyca(A) to itself defined by fB(x) = δbun

(x), for every x ∈ Cyca(A). First
observe that if c ≤ βn, then there is nothing to prove as Cyca(A) already has at
most βn states. The probability under consideration is therefore 0 in this case. In
the case c > βn, we can apply Lemma 4 when n is sufficiently large, since fB is a p-
random mapping on a set with c elements. Hence, the probability that there are more
than 2

√
c log c cyclic points or that the height is greater than 2

√
c log c is at most M

c ,
for some positive constant M . Moreover, observe that since A ∈ En, we have, for n
sufficiently large,

2
√
c log c ≤ 2

√
αn logαn = 2n1/4 log3/4 n

(
1 + o(1)

)
≤ βn.

Since c > βn ≥ n
1
4 , this yields the announced upper bound of Mn−

1
4 . �
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For any automaton B whose a-transitions are all defined and whose b-transitions
starting from an element of Cyca(B) are also all defined, let Cycf (B) denote the set
of fB-cyclic states of B.

Let vn = un(bun)βn . At this point, the number of states to be synchronized has
been reduced to less than βn with high probability, since the image of δvn is usually
included in Cycf (B). It has been achieved by generating all the a-transitions, but
using only the b-transitions that start from the δa-cyclic states: there still remain at
least n−αn undefined b-transitions that can be used to continue the synchronization.
Nonetheless, before going on, we first refine the construction of B introduced in this
section by forbidding some cases, for technical reasons explained in the next section.

4.3. Forbidding Correlated Shapes

The number of states to be synchronized has been reduced to no more than βn states
with high probability, but this quantity is still too large. For the technique used as
the last step of the proof (see the informal presentation at the beginning of Section 4),
we need to shrink this set once more. Should the alphabet contain one more letter c,
we could use the same kind of construction as in Section 4.2, and be left with at most,
roughly, n1/8 states to synchronize. This is because c-transitions can be generated
independently of what has been done during the previous steps. This quantity, n1/8,
is sufficiently small for our last step of the proof to work, but we do not have this
third letter c at hand.

Some care is required to adapt this idea for a two-letter alphabet. We aim at
using the word bb instead of the letter c in the informal description above. Let B be
an incomplete automaton that extends A ∈ En and whose defined transitions are all
the a-transitions and also the b-transitions that start from the δa-cyclic states. We
are interested in building an automaton C from B, by adding some new random b-
transitions, in a way such that δbbvn

is totally defined on Cycf (B). It means that for
every q ∈ Cycf (B), the state δb(q) must have an outgoing b-transition in C. For such
an extension C of B, let gC denote the restriction of δbbvn to Cycf (B).

The main point here is that for a fixed B, we want gC to be defined as a random p-
mapping, so that we can use Lemma 4 once more. There are, a priori, two kind of
issues that can prevent this from happening:
(I) When there exists a state q ∈ Cycf (B) such that the b-transition starting

from δb(q) is already defined in B, that is, when δb(q) ∈ Cyca(B).
(II) When two distinct states q and q′ in Cycf (B) are such that δb(q) = δb(q′).
Fortunately, the second case cannot occur: if δb(q) = δb(q′) then fB(q) = fB(q′),
which is not possible for two distinct fB-cyclic states.

The first case can occur, and then the image of δb(q) by b is already defined in B
and therefore gC does not follow a p-distribution when we build C by generating the
missing transitions uniformly at random.6

6Except in the very degenerate case where the restriction of δbb to Cycf (B) is already a totally
defined and constant map in B.
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Conversely, if for every q ∈ Cycf (B), δb(q) /∈ Cyca(B), then it is easy to ver-
ify that gC is a random p-mapping: the image of q ∈ Cycf (B) by gC is a given x
when δbbvn

(q) = x, which is equivalent to δb(δb(q)) ∈ δ−1
vn

({x}). Since δb(δb(q)) is
chosen uniformly at random in [n], it happens with probability PB,vn(x), using the
notation of Equation (3).

We therefore forbid the bad cases and define the set Fn of incomplete automata B
with n states such that (we add the last condition to what was done in the previous
section):
(I) B extends an element of En.
(II) The defined transitions of B are all the a-transitions and the b-transitions start-

ing from the states of Cyca(B).
(III) The map fB has height at most βn and has at most βn cyclic states.
(IV) For every q ∈ Cycf (B), δb(q) /∈ Cyca(B).

Example 11. The automaton of Example 9 is in Fn. For the fourth condition,
observe that the fB-cyclic states are 13 and 17. Their images by δb, which are 8
and 1 respectively, are not in Cyca(B). The fact that δb(3) is in Cyca(B) is not a
problem here, since 3 is not an fB-cyclic state.

If we forget the last condition in the definition of Fn, the other requirements
hold with high probability for every fixed A ∈ En, as a consequence of Lemma 10.
Lemma 12 below states that after our additional restriction, the set we obtain is still
sufficiently large.

Lemma 12. With high probability a random complete automaton with n states ex-
tends an element of Fn. More precisely, the probability that it does not extend an
element of Fn is at most n−1/4 log2 n, for n sufficiently large.

Proof. Fix A ∈ En, and consider the extensions B of A obtained by adding b-
transitions to the δa-cyclic states. A state x of Cycf (B) is a bad state when there
exists y ∈ Cycf (B) and z ∈ Cyca(A) such that

y
b−→ z and z

un−−→ x.

In such a case, y is the cyclic predecessor of x for the mapping fB and it does not
satisfy the last condition of Fn’s definition. Clearly, if B is not in Fn then either
Condition 3 is not satisfied or there is at least one bad state in B.

For a given x ∈ Cyca(A) and ` ∈ {0, . . . , n − 1}, let us bound from above the
probability that x is a bad state and in a fB-cycle of length `+ 1 when adding the b-
transitions. In such a case, there must exist ` distinct states x1, . . . , x` of Cyca(A),
all distinct from x, such that

x
fB−→ x1, x1

fB−→ x2, . . . , x`
fB−→ x,

and the image of x` by b must be in Cyca(A). Hence, δb(x`) must belong
to Cyca(A) ∩ δ−1

un
({x}). Consequently, the probability that such a cycle exists when
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we randomly add the b-transitions is

PA,un
(x1)PA,un

(x2) · · ·PA,un
(x`) ·

|Cyca(A) ∩ δ−1
un

({x})|
n

.

We sum this quantity for every possible tuple (x1, . . . , x`) of distinct elements
of Ex = [n] \ {x}. Since there are `! ways to order each {x1, . . . , x`}, we get

`!
∑

x1<···<x`
xi∈Ex

PA,un
(x1)PA,un

(x2) · · ·PA,un
(x`) ·

|Cyca(A) ∩ δ−1
un

({x})|
n

≤
|Cyca(A) ∩ δ−1

un
({x})|

n
`!
(
n− 1
`

)(
1− PA,un

(x)
n− 1

)`
.

The upper bound is obtained by applying Lemma 3 with f = PA,un , E = Ex,
and s = 1 − PA,un

(x). As `!
(
n−1
`

)
≤ (n − 1)`, the probability that a given x is a

bad state in a fB-cycle of length `+ 1 is at most 1
n |Cyca(A) ∩ δ−1

un
({x})|.

We now use the union bound and sum the contribution of all x ∈ Cyca(A). Since
the δ−1

un
({x}) are pairwise disjoint, then

∑
x∈Cyca(A)

|Cyca(A)∩ δ−1
un

({x})| =

∣∣∣∣∣∣
⋃

x∈Cyca(A)

Cyca(A) ∩ δ−1
un

({x})

∣∣∣∣∣∣ ≤ |Cyca(A)|.

Hence, the probability that there is a bad state in a cycle of length ` + 1 is at
most 1

n |Cyca(A)|. As A ∈ En, this probability is at most αn

n .
By Lemma 10, the probability that Condition 3 of the definition of Fn is not

satisfied is smaller than M
n1/4 , for some positive constant M and for n sufficiently

large. Hence, for every fixed A ∈ En, the probability that there is a bad state or that
Condition 3 does not hold is at most, for n sufficiently large,

βn−1∑
`=0

αn
n︸ ︷︷ ︸

bad state
for `<βn

+ M

n1/4︸ ︷︷ ︸
Condition 3

does not hold

= αnβn
n

+ M

n1/4 ≤
log2 n

n1/4 .

Note that we do not need to consider the cases where ` ≥ βn in the first sum, since
they do not satisfy Condition 3 and are therefore counted in the second summand.

We therefore obtained a uniform upper bound for every A ∈ En. Since a complete
automaton can extend at most one element of En, the law of total probabilities applies:
the probability that a complete automaton with n states that extends an element of En
does not satisfy Condition 3 or Condition 4 is at most n−1/4 log2 n, for n sufficiently
large. This concludes the proof since the probability of not being in En is O( 1

n ). �



The Černý Conjecture Holds with High Probability 359

4.4. Adding More Random b-Transitions

Starting from an element of B ∈ Fn, we can now use the idea explained at the
beginning of Section 4.3, and add the random b-transitions that are needed for δbb
to be totally defined on Cycf (B). For such an extension C of B, recall that the
mapping gC is the restriction of δbbvn

to Cycf (B). Let Cycg(C) denote the set of gC-
cyclic states in C. Thanks to the last condition of the definition of Fn, we need to
randomly choose the b-transitions starting from the images by δb of Cycf (B), which
are all distinct since two distinct states of Cycf (B) cannot have the same image by δb.

Let γn = b2n1/8 log7/8 nc and let XB denote the set of images of Cycf (B) by δb,
i. e., XB = { δb(x) | x ∈ Cycf (B) }. We define the set Gn of incomplete automata C
with n states that satisfy the following conditions:
(I) C extends an automaton B of Fn.
(II) The only b-transitions of C are those starting from Cyca(B) and from XB.
(III) The map gC has no more than γn cyclic states and has height at most γn.
(IV) For every q ∈ Cycg(C), the b-transition of δbb(q) is undefined.
The last condition in the definition of Gn is useful for the same kind of reasons than
the last condition of Fn is. It ensures some independency for the final step of the
synchronization, which is presented in Section 4.5.

Lemma 13. With high probability, a random complete automaton with n states ex-
tends an element of Gn. More precisely, the probability it does not extends an element
of Gn is O( 1

γn
).

Proof. We proceed as for Lemma 10 to establish that Condition 3 holds with high
probability. Let B be an element of Fn. When we add random b-transitions to
the elements of XB, we obtain an automaton C whose map gC is a random p-
mapping of Cycf (B). Indeed, for any x, y ∈ Cycf (B), gC(x) = y if and only
if δb(δb(x)) ∈ δ−1

vn
({y}), which happens with probability exactly 1

n |δ
−1
vn

({y})|. Let c be
the number of elements of Cycf (B). If c ≤ γn, then Condition 3 holds trivially. Oth-
erwise, by Lemma 4, the probability that gC has height greater then 2

√
c log c or that

it has more than 2
√
c log c cyclic points is at most M

c for some positive constant M .
Moreover, since B ∈ Fn, we know that c ≤ βn. Therefore, for n sufficiently large we
have

2
√
c log c ≤ 2

√
βn log βn =

√
3

2 n1/8 log7/8 n
(
1 + o(1)

)
≤ γn.

As for c > γn we have M
c ≤

M
γn

, we obtain that C does not satisfy Condition 3 with
probability at most M

γn
.

We now handle Condition 4: we prove that with high probability, for ev-
ery q ∈ Cycf (B), the b-transition of δbb(q) is undefined. Once C is built by
adding the b-transitions, the defined b-transitions start from Cyca(B) or from XB.
Since B ∈ Fn, the cardinality of Cyca(B) and XB are at most αn and βn, respectively.
To build C, we iteratively add a new random outgoing b-transitions for each element
of XB; when we add the i-th such transition, the probability it ends in a state that
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has a defined outgoing b-transition is therefore at most 1
n (αn + βn + i− 1), which is

smaller than pn = 3αn

n for n sufficiently large, as i ≤ |XB| ≤ βn ≤ αn. Hence, the
probability that Condition 4 holds is at least (1−pn)|XB|, and for n sufficiently large,
we have

(1− pn)|XB| ≥
(

1− 3αn
n

)βn

= 1− 18 log5/4 n

n1/4 +O
(

1
n1/4

)
≥ 1− log2 n

n1/4 .

This conclude the proof, since we get a uniform bound of log2 n
n1/4 + M

γn
for any base

automaton B ∈ Fn, and since the probability of not being in Fn is O(n−1/4 log2 n).
�

Let wn = vn(bbvn)γn . Lemma 13 ensures that for a random complete automaton A,
the image of δwn

is usually included in Cycg(A), which has size at most γn. This
concludes the first part of the synchronization: with high probability, the word wn
maps the set of states of A to the much smaller set of states Cycg(A).

4.5. Synchronizing the Remaining Cyclic States

Let λn = bn1/4c and let C be a fixed automaton of Gn. Starting from C ∈ Gn, we
now prove that the elements of Cycg(C) can be synchronized with high probability
when randomly setting the b-transitions that are still undefined. We follow the idea
given at the beginning of Section 4 and first prove that with high enough probability,
two states of Cycg(C) can be synchronized by a word of the form bjwn, for some
integer j ≥ 0.

Lemma 14. Let C ∈ Gn and let q and r be two distinct states of Cycg(C). If we add
all the missing b-transitions to C by drawing them uniformly at random and indepen-
dently, then the probability that for all j ∈ {0, . . . , λn} we have δbj ·wn

(q) 6= δbj ·wn
(r)

is at most n−3/8 log2 n, for n sufficiently large.

Proof. We say that two states x and y are b-synchronizable if there exists an inte-
ger j ∈ {0, . . . , λn} such that δbj ·wn

(x) = δbj ·wn
(y). In the sequel, we give an upper

bound for the probability that q and r are not b-synchronizable.
By definition of Gn, the states q2 = δbb(q) and r2 = δbb(r) have no outgoing b-

transitions in C. If q2 = r2, then q and r are b-synchronizable and we are done. For
the remainer of the proof, we therefore assume that q2 6= r2. Let us consider the
sequence of pairs of states (qi, ri) generated iteratively using the following random
process, starting with i = 3:
(I) Generate (qi, ri) uniformly at random in [n] × [n], and set δb(qi−1) = qi

and δb(ri−1) = ri in the automaton.
(II) If δwn

(qi) = δwn
(ri) then stop the process and return a success (q and r are b-

synchronizable).
(III) Otherwise, if either qi or ri already have an outgoing b-transition, then stop the

process and return a failure.
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(IV) In other cases, iterate the process for the next value of i by going back to step 1,
until i = λn. When i = λn, the process halts and return a failure.

Hence, we iteratively and in parallel generate a sequence of missing b-transitions,
starting from q2 and r2. If the process returns a success, then clearly the states
are b-synchronizable. Thus the probability of returning a failure is an upper bound
for the probability that they are not b-synchronizable.

Given that the process did not halt after building up to (pi−1, qi−1) for 3 ≤ i < λn,
the probability that it halts at the next step and returns a success is the probability
that two randomly chosen elements of [n] have the same image by δwn

is exactly

s :=
∑

x∈Cycg(C)

PC,wn
(x)2. (4)

In particular, it does not depend on i, it is the same at each step.
Let YC denote the set of states of C that have a defined b-transition. Since C ∈ Gn,

the b-transitions of C start from the elements of Cyca(C) and from their images by b.
Hence, |YC | ≤ 2αn. Therefore, given that the process did not halt after building up
to (qi−1, ri−1) for 3 ≤ i < λn, the probability fi that it halts at the next step and
returns a failure satisfies

fi ≤ 1−
(

1− |YC |+ 2(i− 3)
n

)2
.

Indeed, it is not a failure when both qi and ri are not in YC and are not one of
the 2(i − 3) states that received a b-transition during the previous iterations of the
process. This is an upper bound, since some of theses cases yield a success (the
case (II)). As λn = o(αn), for n sufficiently large we have

fi ≤ 1−
(

1− |YC |+ 2(i− 3)
n

)2
= 2 |YC |+ 2(i− 3)

n
− (|YC |+ 2(i− 3))2

n2

≤ 2 |YC |+ 2i
n

≤ 2 |YC |+ 2λn
n

≤ 5αn
n

.

Observe that this upper bound does not depend on i. For j ∈ {2, . . . , λn − 1}, the
probability that the process did not halt at a step ≤ j is, for n sufficiently large,

P(did not halt at a step ≤ j) =
j∏
i=3

(
1− (s+ fi)

)
≥
(

1− s− 5αn
n

)j−2
.

The probability that the process halts with a success at a given step i ∈ {3, . . . , λn}
is the probability that it did not halt before multiplied by s, the probability that two
random elements of [n] have the same image by wn. Thus, the following inequality
holds:

P(halts at step i with a success) ≥
(

1− s− 5αn
n

)i−3
s.
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Hence, the probability that the process halts with a success satisfies

P(success) =
λn∑
i=3

P(halts at step i with a success)

≥ s
λn−3∑
j=0

(
1− s− 5αn

n

)j
= s

s+ 5αn

n

(
1−

(
1− s− 5αn

n

)λn−2
)

By Cauchy-Schwarz inequality applied to Equation (4), we have s ≥ 1
|Cycg(C)| ≥

1
γn

.
Hence, as 1

1+x ≥ 1− x, for n sufficiently large, we have

s

s+ 5αn

n

= 1
1 + 5αn

ns

≥ 1− 5αn
ns
≥ 1− 5αnγn

n
≥ 1− log2 n

2n3/8 .

And also, for n sufficiently large we have(
1− s− 5αn

n

)λn−2
≤
(

1− 1
γn

)λn−2
= exp

(
(λn − 2) log

(
1− γ−1

n

))
≤ exp

(
−(λn − 2)γ−1

n

)
≤ exp

(
−n1/9

)
Therefore, for n sufficiently large,

P(failure) = 1− P(success) ≤ log2 n

2n3/8 +O
(

exp
(
−n1/9

))
≤ log2 n

n3/8 .

This concludes the proof. �

To conclude the proof of Theorem 5, we use the union bound: for any automaton A
that extends an element of Gn, which happens with high probability, there are less
than γ2

n pairs of states in Cycg(A); the probability that one of these pairs (q, r) cannot
be synchronized using a word of the form bj ·wn is therefore at most γ2

n ·n−3/8 log2 n,
which is O(n− 1

8 log4 n).
To obtain the length of the synchronizing word, we apply Lemma 2 to the

elements of Cycg(A): with high probability there are at most γn such states,
which can be pairwise synchronized using words of the form bjwn, of length at
most |wn| + λn. Hence, the set Cycg(A) can be synchronized using a word z of
length at most (γn − 1)(|wn|+ λn), which is O(n log3 n) as |wn| is O(n7/8 log17/8 n).
This concludes the proof, as wnz is synchronizing and has length in O(n log3 n).

5. Conclusion

In this article, we proved that most complete automata are synchronizing and admit a
synchronizing word of lengthO(n log3 n), for the uniform distribution on deterministic
and complete automata on an alphabet with at least two letters.

Our proof can be turned into an heuristic that try to find a short synchroniz-
ing word, which succeeds with high probability for uniform random automata: δwn
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and Cycg(A) can be computed by just verifying some conditions on the height and
cycle length of three mappings; once it is done, checking whether the property of
Lemma 14 holds for every pair of elements of the image of δwn

can be achieved in
sublinear expected time, as it is very small with high probability. Experiments seem
to indicate that this algorithm behaves better in practice than its theoretical analysis:
it looks like an important proportion of automata that fail to fulfill every step of our
construction are still detected as synchronizing by the combination of computing δwn

and synchronizing the states of its image with the bj ’s.
A natural continuation of this work is to prove that with high probability automata

are synchronized by words that are way shorter than n log3 n. Experiments have
been done in [19], and seem to indicate that the expected length of the smallest
synchronizing word is often sublinear, probably in Θ(

√
n). But one can see in our proof

that we obtained the synchronization in a very specific way: we have a fixed word wn
and synchronize pairwise the elements of δ(Q,wn) using words of the form biwn only.
There are probably plenty of other ways to synchronize random automata with high
probability, possibly leading to shorter reset words. It still might be quite difficult to
match the bounds predicted in [19].

Since our construction relies on the fact that a typical random mapping has a small
number of cyclic points, one can wonder if random automata with a large number of
cyclic states, for every letter, are still synchronizing with high probability. Together
with Berlinkov, we recently obtained a result in that direction [4]: most almost-group
automata are synchronizing, where in an almost-group automata every letter acts as a
permutation, except one of them which permutes only n− 1 states. These automata
are very different from uniform random automata, but they are still synchronizing
with high probability.
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