A Theorem on Poolean Matrices*

Steperen Warshall†
Computer Associates, Inc., Woburn, Massachusettis

Given two boolean matrices A and B, we define the boolean product $A \wedge B$ as that matrix whose (i, j) th entry is $\mathbf{v}_{k}\left(a_{i k} \wedge b_{k j}\right)$.

We define the boolean sum $A \vee B$ as that matrix whose (i, j) th entry is $a_{i j} \vee b_{i j}$.

The use of boolean matrices to represent program topology (Prosser [1], and Marimont [2], for example) has led to interest in algorithms for transforming the $d \times d$ boolean matrix M to the $d \times d$ boolean matrix M^{\prime} given by:

$$
M^{\prime}={\underset{i=1}{d} M^{i} \quad \text { where we define } M^{1}=M \text { and } M^{i+1}=M^{i} \wedge M ~}_{\text {in }}
$$

The convenience of describing the transformation as a boolean sum of boolean products has apparently suggested the corresponding algorithms, the running times of which increase-other things being equal-as the cube of d. While refraining from comment on the area of utility of such matrices, we prove the validity of an algorithm whose running time goes up slightly faster than the square of d.

Theorem. Given a square ($d \times d$) matrix M each of whose elements $m_{i j}$ is 0 or 1. Define M^{\prime} by $m_{i j}^{\prime}=1$ if and only if either $m_{i j}=1$ or there exist integers k_{1}, \cdots, l_{n} such that $m_{i k_{1}}=m_{k_{1} k_{2}}=\cdots=m_{k_{n_{-}} k_{n}}=m_{k_{n} j}=1 ; \quad m_{i j}^{\prime}=0$, otherwise. ${ }^{2}$ Define M^{*} by the following construction: ${ }^{3}$

0 . $\operatorname{Set} M^{*}=M$.

1. \quad Set $i=1$.
2. $\left(\forall \forall_{j} \ni m_{j i}^{*}=1\right)(\forall k) \operatorname{set} m_{j k}^{*}=m_{j k}^{*} \vee m_{i k}^{*}$.
3. Increment i by 1 .
4. If $i \leqq d$, go to step 2 ; otherwise, stop.

We assert $M^{*}=M^{\prime}$.
Proof. Trivially, $m_{i j}^{*}=1 \Rightarrow m_{i j}^{\prime}=1$. For, either $m_{i j}^{*}$ was unity initially ($m_{i j}=1$)-in which case $m_{i j}^{\prime}$ is surely unity-or $m_{i j}^{*}$ was set to unity in step two. That is, there were, at the L_{0} th application of step two, $m_{i L_{0}}^{*}=m_{L_{0} j}^{*}=1$.

* Received September, 1960; revised February, 1961.
\dagger This work was performed by the author at Technical Operations, Inc., under Department of the Air Force Contract AF 33(600)-35190.
${ }^{1}$ Prosser, op. cit. In his definition of Boolean sum and product, Prosser uses " V " for product and " \wedge " for sum. This is apparently a typographical error, for his subsequent usage is consistent with ours.
${ }^{2}$ This definition of M^{\prime} is trivially equivalent to the previous one.
${ }^{3}$ This definition by construction is equivalent to the recursive definition: $0 .\left(m_{i j}\right)_{0}=$ $m_{i j} ; 1 .\left(m_{i j}\right)_{n+1}=\left(m_{i j}\right)_{n} \vee\left(\left(m_{i, n+1}\right)_{n} \wedge\left(m_{n+i, j}\right)_{n}\right) ;$ 2. $m_{i j}^{*}=\left(m_{i j}\right)_{d}$.

Each of these, similarly, either came directly from M or from a previous application of step two. Since there are exactly d applications of step two, this procedure is finite and leads to $m_{i L_{A}}^{*}=m_{L_{A} L_{A-1}}^{*}=\cdots=m_{L_{2} L_{1}}^{*}=m_{L_{1} L_{0}}^{*}=m_{L_{0} R_{1}}^{*}=$ $\cdots=m_{R_{B^{j}}}^{*}=1$, where all the corresponding entries in M were unity. This is exactly the sequence required in the definition of M^{\prime} (to within redundant elements which may simply be struck out) to imply that $m_{i j}^{\prime}=1$.

We have yet to prove that $m_{i j}^{\prime}=1 \Rightarrow m_{i j}^{*}=1$. Assume this is false. Then there is a sequence of integers $i \neq k_{1} \neq k_{2} \neq \cdots \neq k_{n} \neq j$ such that $m_{i k_{1}}=$ $m_{k_{1} k_{2}}=\cdots=m_{k_{n} j}=1$, but $m_{i j}^{*}=0$. Let $L=\xi x \mid \quad(1 \leqq x \leqq n)$ and $m_{i k_{x}}^{*}=1 \xi$. Let λ be the largest element of L. Surely $m_{i k_{\mathrm{X}}}^{*}$ must have been changed from zero to unity by an application of step two (for if $m_{i k_{\lambda}}=1$, since $m_{k_{\lambda^{k} k_{+1}}}=1$, $m_{i k_{\lambda+1}}^{*}=1$ by the k_{λ} th step 2 , which would contradict the definition of λ), the γ th, say. This γ must be less than k_{λ}; for immediately after the k_{λ} th iteration of step two, $(\forall p) m_{p k_{\lambda}}^{*}=1 \Rightarrow m_{p k_{\lambda+1}}^{*}=1$. Any p_{0} such that $m_{p_{0} k_{\lambda}}^{*}$ is set to one after this will result from the p_{1} th iteration of step two when $m_{p_{1} k_{\mathrm{\lambda}}}^{*}=m_{p_{0} p_{1}}^{*}=1$ leads to $m_{p_{0} k_{\lambda}}^{*}=1$. But if $m_{p_{1} k_{\lambda}}^{*}=1$ at this time, then either $m_{p_{1} k_{\lambda}}^{*}=1$ at the time of the k_{λ} th iteration (in which case $m_{p_{1} k_{\lambda+1}}^{*}=1$ also), or $m_{p_{1} k_{\lambda}}^{*}$ is set to one at the p_{2} th iteration where $k_{\mathrm{\lambda}}<p_{2}<p_{1}$. We thus generate a finite ordered set $p_{1}>p_{2}>\cdots>p_{q}>k_{\lambda}$, where $m_{p_{q} k_{\lambda}}^{*}=1$ at the time of the k_{λ} th iteration, whence $m_{p_{q} k_{\lambda+1}}^{*}=1$ immediately after that iteration. Then the sequence of iterations designated by the p 's will surely result in $m_{p_{0} k_{\lambda+1}}^{*}=1$ after the p_{1} th iteration. Since p_{0} was an arbitrary element, this is true if, in particular, $p_{0}=i$. Thus, if $\gamma \geqq k_{\lambda}, \quad m_{i k_{\lambda+1}}^{*}=1$, a contradiction.

But if $\gamma<k_{\lambda}$, then $m_{i k_{\lambda}}^{*}=m_{k_{\lambda} k_{\lambda+1}}^{*}=1$ before the k_{λ} th iteration, whence $m_{i k_{\lambda+1}}^{*}=1$ after that iteration of step two, a contradiction. Therefore, the assertion is true. Q.E.D.

REFERENCES

1. Prosser, Reese T. Applications of Boolean matrices to the analysis of flow diagrams. Proc. Eastern Joint Comput. Conf. No. 16 (1959), 133.
2. Marimont, Rosalind B. A new method of checking the consistency of precedence matrices. J. ACM 6, (1959) 164.
