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Given two boolean matrices 4 and B, we define the boolean product A /\ B
as that matrix whose (7, 7)th entry is vi(au /\ bi;).

We define the boolean sum A \/ B as that matrix whose (¢, 7)th entry is
ai; \/ i

The use of boolean matrices to represent program topology (Prosser [1], and
Marimont [2], for example) has led to interest in algorithms for transforming
the d X d boolean matrix M to the d X d boolean matrix M’ given by:

d

M = \ M where we define M* = M and M*™ = M* N\ M.
The convenience of describing the transformation as a boolean sum of boolean
products has apparently’ suggested the corresponding algorithms, the running
times of which increase—other things being equal—as the cube of d. While
refraining from comment on the area of utility of such matrices, we prove the
validity of an algorithm whose running time goes up slightly faster than the
square of d.

TueoreEM. Given a square (d X d) matriz M each of whose elements m;; 15 0
or 1. Defme M’ by mi; = 1 if and only if either m; = 1 or there exist zntegers
fyy e kn such that muy, = My, = - = mk,, = Mgy = 1; mi; = 0,
otherwzse Define M* by the following construction:®

0. Set M* = M.

1. Set: = 1.
2. (V;2m}i = 1)(YEk) set i = ma \/ M -
3. TIncrement ¢ by 1

4. If{ < d, go to step 2; otherwise, stop.

We assert M* = M.

Proor. Trivially, mi; = 1 = m;; = 1. For, 01ther mi; was unity initially
(my; = 1)—in which case m’; is surely unity—or m{; was set to umty in step
two. That is, there were, at the Loth application of step two, min, = Mpy; = L.

* Received September, 1960; revised February, 1961.

f This work was performed by the author at Technical Operations, Inc., under Depart-
ment of the Air Force Contract AF 33(600)-35190.

1 Prosser, op. cit. In his definition of Boolean sum and product, Prosser uses “\/’ for
product and A’ for sum. This is apparently a typographical error, for his subsequent
usage is consistent with ours.

2 This definition of M’ is trivially equivalent to the prevmus one,
3 This definition by construction is equivalent to the 1ecux<;1ve definition: 6. (mi;)e =

mi; 1. (m”)mm = (Msj)n o ((ma, n+1) A (mﬂHJ) ) 2. 'mu == (mu>d
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Each of these, similarly, either came directly from M or from a previous applica-
tion of step two. Since there are exactly d applications of step two this proce-
dure is ﬁmte andleads to miz, = My o, , = *** = Miyr, = Min, = Migr, =

- = mpy = 1, where all the corresponding entries in M were unity. This is
exactly the sequence required in the definition of M’ (to within redundant
elements which may simply be struck out) to imply that m;; = 1.

We have yet to prove that m;; = 1 = mj; = 1. Assume this is false. Then
there is a sequence of integers ¢ = by = ke £ -+ - # k, # j such that my, =
Migpy = "+ =my; =1L, butmi; =0.Let L =3z| (1 £z =<n)andmh, =1}
Let \ be the largest element of L. Surely mj, must have been changed from
zero to unity by an application of step two (for if ma, = 1, since myy, ,, = 1,
Mitn,, = 1 by the kxth step 2, which would contradict the deﬁmtlon of A), the
vth, say. This ¥ must be less than &, ; for immediately after the kith iteration
of step two, (Vp)mp, = 1= Myin,: = 1. Any po such that m} z, is set to one
after this will result from the pith iteration of step two whenmj ., = my,,, =1
leads to my ., = 1. But if m} 1, = 1 at this time, then either m}, = 1 at the
time of the kyth iteration (in which case mjp,,, = 1 also), or mj, is set to
one at the pgth iteration where b < P2 < p1. We thus generate a finite ordered
set p1 > pz > oo > p, > ky, where m,,qu = 1 at the time of the k\th iteration,
whence Jne1 = 1 immediately after that iteration. Then the sequence of
iterations designated by the p’s will surely result in mj, 1 = 1 after the pith
iteration. Since py was an arbitrary element, this is true if, in particular, p, = 1.
Thus, if v = kx, mi,,, = 1, a contradiction.

But if v < kx, then m;x, = miu,,, = 1 before the kyth iteration, whence
7n:§kk>\+1 = 1 after that iteration of step two, a contradiction. Therefore, the as-
sertion is true. Q.E.D.
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