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The problem considered here is to obtain estimates of the length of the smallest 
experiment (on a machine) which is independent of the unknown initial state 
and which allows us, by observing the outputs, to distinguish the terminal state. 

The estimates obtained depend, of course, on the assumptions placed on the 
machine. In general, the bounds derived are slightly less than n ~, where n is the 
number of distinguishable states in the machine. For  no really general class of 
machines is a best bound known. 

1. P r e l i m i n a r y  Resul t s  

Many of the basic ideas (for example, the notion of machine) used here are 
the same as in [3]. A familiarity with [3], while desirable, is not  necessary for 
an understanding of this paper. 

By  a (deterministic) machine ~ is meant  a finite number of states q l ,  " '"  , q,~, 

a finite number of i n p u t s  I ~ ,  . . .  , I , ~ ,  and a finite number of outputs  U~,  . . .  , 

U~, with the machine satisfying the following conditions: 
(1) The machine is always in, i.e., assumes, exactly one of the states q~, at  a 

time. 
(2) If the machine is in state q~, then upon application of any input I i  the 

machine assumes a (new) state q~ (possible q,). qk depends only on q~ and I i .  
(3) Associated with each state q~ is an output  U,(,) with the proper ty  that ,  

if the machine is in state q, ,  then upon application of any input I j  the output  
g~(,) occurs. 

(4) A new state, also an output,  can occur only upon application of an input. 
A machine as described above shall be called an (n, m, p) machine. This 

terminology differs slightly with that  found in [3]. 
Some authors [1, 2] replace condition (3) above with (3'). 
(3') The present output  is determined by  both the present input and the 

present state. 
Most  of the following results hold in both eases. 
I t  is henceforth assumed that  whenever a machine is given its inputs, outputs, 

* Received August, 1957. 
t A more rigorous definition of (deterministic) machine is as follows. A machine S is a 

set {I1, . . .  , I~,ql ,  q~, q, ,Ul ,  . . .  , U p } , e a e h I ,  be ingca l l edan inpu t ,  eachq~astate ,  and 
each U, an output, together with two functions ~(I, q) and X(I, q), where I is an input, q 
a state, $(I, q) a state, and k(I, q) an output. It shall be assumed that X (I, q) is independent 
of I, i.e., k (I, q) -- X(q). $(1, q) is said to be the new state and X([, q) the output of the 
machine upon application of input I. 
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and internal states, i.e., each new grate in relation to each input and each present 
state as well as each output  in relation to each present state, are known. 

By an experiment (of length s) is meant  a sequence of inputs I1,  I2,  - . .  , Is. 
By experiment which distinguishes the terminal state of lhe machine is meant  an 

experiment, possibly depending on the unknown initial state, such that  the 
resulting output  allows us to determine the terminal state, i.e., the state of the 
machine after applying the last input of the experiment. If  the experiment E 
is independent of which unknown state from a set A of admissible states of the 
machine is the initial state, then E is said to be uniform (with respect to A). 

Two states q~ and q~ of a machine S are said to be distinguished if there exists 
an experiment E such tha t  the output  of q~ under E,  i.e., the output  with the 
machine initially in state q~, is not identical with the output  of qj under E.  
A machine is said to be distinguished if each pair of distinct states can be dis- 
tinguished. 

In [3, Th. 8], Moore showed that  for any distinguished machine in an un- 
known initial state, an experiment, depending on the initial state, can be found 
which distinguishes the terminal state. We shall be concerned here with con- 
structing uniform experiments and estimating the length of a minimum uniform 
experiment. 

Fundamental  to our work are the partitions Pk as defined in [3]. Following 
Moore, let S be a machine and for each pair of states q, and q~ of S write q,Rkq~ 
if there is no experiment of (at most) length b which distinguishes q, and qj .  
Then Rk is an abstract equivalence relation. Let  Pk be the partit ion associated 
with this equivalence relation. 

Moore [3, p. 145-146] has noted the following two" results which are used 
later. 

LEMMh. 1.1 For each positive integer k, Pk+J is a refinement of Pk , that is, each 
class in P~+i is a subclass of some class in P~ . 

LEMMX 1.2. Two states q~ and qj in the same class of the partition Pk are in 
different classes of Pk-~ if and only if there exists an input which transforms q, 
and q, into states that are in different classes of P~ . I f  Ci U C2 is a subset oy a class, 
say B~ , of P~ , and C1 and C2 are' subsets of distinct classes of P~+i , then there 
exists an input I and distinct classes B1 and B2 of P~ such that 2 I(C~) C B~ and 
I(C2) c B2.  I f  Bi  and B2 are two distinct classes of P , ,  i f  I is an input, and i f  
I(C1) ~ B1 and I(C2) ~ B2 , then C1 and C2 are subsets of different classes of P,+i . 

When I,  C1 U C2, C~, and C2 are related as in the second sentence of lemma 
1.2, we say tha t  I splits C~ U C2 into classes C~ and C~ (of P,+~). 

Lemma 1.2 will now be extended for later use. 
LEMMA 1.3. I f  C~ (J C2 is a subset of a class, say B,  , of P~ , where i ~ 2, and 

i f  an input I splits C~ (J C2 into the classes C~ and C2 of P,+~ , then there exists two 
distinct classes B1 and B2 of P~ - P,_~ such that I(C~) ~ B~ , I(C2) _~ B2 , and 
B~ U B2 is a subset of a class of P~_~ . 

PROOF. By  hypothesis, I(C~) C B~ and I(C2) ~ B~ for two distinct classes 

If I is an input and q is a state of ~, then by I(q) is meant the terminal state of q upon 
application of I. ~f A is a set of states of ~, then by I(A) is meant the set II(q)/q~A}. 
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B~ and B2 in P , .  To  see tha t  both B1 and B2 are not in P~_I, let us assume tha t  
one of them, say B~, is in P,_~. Two possibilities occur. 

(a) Suppose that  B2 is in P~-i • Then by lemma 1.2, I splits C1 (J C2 into classes 
C~ and C2 of P , .  

(b) Suppose tha t  B2 is not in P,-1 • Then by lemma 1.1, B2 c B~ for some 
B ,  in P,-1 • Now B,  ~ B~ since B~ and B2 are in P , ,  B2 _c B~ , and B~ ~ B2 . 
Then  I(C1) .~ B1 and I(C2) _C B2 ~ B~, so tha t  I splits C~ U C2 into classes 
C~ and C~ of P~, again effecting a contradiction. 

Both cases lead to a contradiction. We therefore are forced to conclude that  
B~ being in P , - i  is false and B~ is in P ,  -- Pi-~ • 

An analogous argument shows tha t  B2 is in P~ - P,-1 • 
Finally, suppose that  BiU B2 is not  a subset of a class of P,-1 • Then by lemma 

1.1 there exist distinct classes Bc and Bd in P,-1 such that  B~ C Bc and Bz ~ Bd. 
Here again we see that  I splits C~ (3 C~ into classes C1 and C~ in P , ,  a contra- 
diction. 

As a special case we get 
COROLLARY. Far some integer i >= 2 let P°_~ contain exactly two classes, say B~ 

and B2. I f  an input I splits the subset C~ U C2 of the class Bo of P~ into the classes 
C1 and C2 of P,+ i ,  then either-I(C1) ~ B1 and I(C~) _c B2 , or I(C1) .~ B2 and 
I(C2) ~ B , .  

Another known result which we need is lemma 1.4 below. I t  is implicit in the 
proof of theorem 6~ of [3]; (b) is stated as theorem 3 of [1]. 

L ~  1.4. Let S be a distinguished (n, m, p) machine. (a) I f  P~ contains at 
least k classes, with k ~ n -- 1, then Pi+~ contains at least k ~ 1 classes. (b) 
I f  P1 car~ains r classes, then P j contains at least j W r -- .1, provided j ~ r -- 1 ~ n. 
In  particular, P,~_~+~ contains n classes. (c) Pi contains at least ~wo classes. 

REMARK. Let  S be a distinguished (n, m, p) machine and let P,-2 contain 
exactly n -- 1 classes. Then (a) of lemma 1.4 yields the fact tha t  for 2 ~ i =< 
n -- 1, P,+~ -- P,  contains exactly two elements. Thus the Corollary to lemma 
1.3 applies here for each i, 2 =< i _-< n -- 1. 

2. A First Approach 

We now turn to  the actual construction of uniform experiments. First  though, 
we prove 

LEMMA 2.1. Let S be a distinguished (n, m, p) machine and let A be a set of 
k _~ n distinct states of S. Then for each admissible (that is, in A)  initial state 

q~ , there exists an experiment E (depending on q,), of length at most ~ - ~  ( 2 n -  k) 

such -that 
(1) i f  S is initially in stale q, , then the output (under E) is called U* and the 

terminal state q,*; 
(2) regardless of the admissible initial state, .if the output under E is U*, then 

the terminal state is q,*. 
PROOF. The proof is a variation of theorem 8 of [3]. 
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By lemma 1.4 the partition P,-k+l divides the states of S into at  least n - k -q- 2 
classes. At  least one of the admissible initial states q~, q, ~ q~, is in a class differ- 
eat  from that  in which q, occurs. For suppose that  all the admissible q, are in 
the same class. Since there are only n -- k other states in S, there can be at most 
n -- k W 1 different classes altogether; this is a contradiction. Hence there 
exists an experiment E l ,  of length at most n -- k + 1, and an admissible initial 
state q, q ~ q, ,  such that  the output  U1 under E1 from q, is not the same as the 
output  from q. Let q2.1 be the terminal state of q, under E1. Let q2a, q2,2. • • " , 
q2,~(2), be the different terminal states of those admissible initial states which 
yield Ux upon application of E l .  Clearly r(2) ~ k -- 1. Now repeat this pro- 
cedure with q, replaced by q~a, k by r(2), and A by {q2a, q2,2, " "  , q2,,¢2)}. 
Continue this method by induction in the obvious way, obtaining experiments 
E2, E~, • • • , until the first stage, say the j th,  that  there is only one terminal 
state, say q~÷l,1 • Obviously j ~ k - 1. Let E = E~E2 . . .  E j .  The length of 
E is at most 

k 

( n - - i - 4 -  1) - ( k - -  1) (2n--k). 
2 

I t  is readily seen that  E satisfies the conclusion of the lemma. 
REMARKS. (1) Whether or not the bound given in lemma 2.1 is the best pos- 

sible is unknown. 
(2) If  the E constructed in lemma 2.1 is such that  j = k -- 1, then E is a 

uniform experiment which can distinguish the terminal state. For if k -- 1 
stages are required, then for each integer i > 1, r(i) = k -- i -4- 1, so that  at  
the i th stage precisely one state is ascertained. 

Using lemma 2.1 and theorem 2.1 below, we now show the existence of a 
uniform experiment for a distinguished machine. 

THEOREM 2.1. Let S be a distinguished (n, m, p) machine and for some t =< n 
and each k ~ t let a(lc) be a number with the following property: "For every set of k 
stales, i f  S initially is in one of these states, then there exists an experiment (usually 
depending on the initial state) of length at most a(k) which satisfies (1) and (2) 
of Lemma 2.1." Then for any set A of t states, say A = {q~/i ~_ t}, there exists a 
uniform experiment E of length at most ~ a(k) which distinguishes the terminal 
state of S. 

PaooF. By hypothesis there exists an experiment E~ of length at  most a(t) 
such that  

(i) if S is initially in state ql, then the output  is called U~* and the terminal 
state q~*; and 

(ii) regardless of the admissible initial state, if the output  under E1 is U~*, 
then the terminal state is ql*. 

Let  qa*, q2a, q~.2, • -. , q2,~¢2) be the different terminal states under E~ for all 
admissible initial states. Clearly r(2) ~ t -- 1. Continuing by induction let us 
assume that  the admissible initial states are the r(i), i ~ 2, states q~a, q,.2, • • • , 
q,.,(,) and that  r(i) ~ t -- i -Jr 1. By hypothesis there exists an experiment E, 
of length at most a(t -- i q- 1) such that  
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i 

(iii) if S is initiall~ in state q,.1, then the output  is called U,* and the ter- 
minal state q,*; and i 

(iv) regardless of the admissible initial state, if the output  under E ,  is U,*, 
then the terminal state is qi*. 

Let  q,*, qi+2.1, " -  , q,+l.r(,+~) be the different terminal states under E~ for 
all admissible initial states. Clearly r(i -~ 1) _~ t - (i -F 1) --{- 1. In this way 
the procedure is continued until the first stage, say the j th ,  tha t  the terminal 
etates are either q,* and q,+~.l, or q,* alone. Obviously j _~ t - 1. 

We now show tha t  the experiment E = EiE~ • . .  E i  satisfies the conclusion of 
the theorem. Summing we see tha t  E is of the length at  most ~ a(k). Suppose 
tha t  the unknown admissible state of S is q , .  Let  U, be the output  from each 
stage of the experiment, so tha t  the total  output  is U -~ U~U2 . . .  U j .  Let  q, 
be the terminal state of q, under E.  Starting in the initial state ql,  let wl be 
the terminal state under E~E3 . . .  E j .  For each 2 _~ i ~ j - 1, let w, be the 
terminal state of q,* under Ei+~ . . .  E , .  In  view of (ii) and (iv) it is obvious 
that  either 

(a) there is a smallest integer, call it  i, such tha t  U~ = U,*, in which case 
q, = w ~ i f i = < j - -  l a n d q ,  = q j * i f i = j ; o r  

(b) for no integer i is U, = U,*, in which case q, -- qJ+la. Q.E.D. 

Lemma 2.1 states tha t  one possible value for a(k) is (k -- 1____) (2n -- k). Then 
2 

t 

, (k )  -- ~ (k -- 1) (2n -- ]:) 
k--2 k--2 2 

= 1_ ~ [k(2~ + 1) - 2n -- k:l 
2 

= _1 (2n  + 1) ~ k - 2n ( t  - 1) - k ~ 
2 2 2 

= ~ [ ( 2 n - k l ) ( ~ 2 1 ) ( t - k 2 ) - 2 n ( t - 1 ) - { ~ - ( t - k l ) ( 2 t ~ l ) - l } l  

1E ~ ]  = ~ n ( t  2 - t) + 

Hence we have 
THEORE~I 2.2. Let S be a distinguished (n, m, p) machine. Then for any set A 

of k ~ n states, there exists a uniform experiment E of length at most 

2 k - -  

which distinguishes the terminal state of S. 
Letting k = n, we get 
THEOREM 2.3. Let S be a distinguished (n, m, p) machine. Then there exists a 

uniform experiment E of length at most n(2n -- 1)(n -- 1) which distinguishes the 
6 

terminal state of S. 
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3. Knowledge of P1 

In  sections 3 and 4 we lower the bounds given in theorems 2.1 and 2.2. Our 
est imates will be based on knowledge of the number  of classes in P1.  We shall 

1 2 see tha t  whereas theorem 2.2 yields an est imate of approximately ~nk ,  the re- 
sults of this and the next section yield an est imate of less ~han nk, n being the 
number  of distinguishable states in the machine and k the number  of admissible 
initial states. 

LEMMA 3.1. Let S be any distinguished (n, m, p) machine and let Pi  contain at 
least r classes. Then for any set A = {q~/i ~ k } of k =< n states 

(a) i f  n - r -b 1 =< 2, then there exists a uniform experiment of length at most 
(k -- 1)(n - r + 1) which distinguishes the terminal state of S; 

(b) i f  n - r -~ 1 ~ 3, then there exists a uniform experiment of length at most 
(k - 1)(n - r -b 1) + 2 -- k which distinguishes the terminal state of S. 

PROOF. The  proof of (a) is found in lemma 4.1. We therefore shall consider 
only the proof of (b) here. 

For k = 1 and k -- 2, (b) is obviously true. Suppose tha t  (b) is true for all 
i -<_ k - 1 ~ n -  r + 2. T h e n n -  k - r - t -  3 >_- 1, so tha t  P~_~_r+~ exists. 
Now the part i t ion P~-k-,+3 divides the states of S into a t  least n - k -- r ~ 3 -[- 
r - 1 = n - k -{- 2 disjoint non-empty classes. By  the argument  as in lemma 2.1, 
we see tha t  all the q, in A cannot be in the same class. Thus there exists an ex- 
periment  E1 of length a t  most  n - k -- r + 3 which divides the q~, 1 =< i ~ k, 
into (at least two non-empty)  classes A1, A2, . . .  , A , .  Le t  Bi consist of the 
terminal states, under E~, of those states initially in A~, and B, the terminal 
states of those states initially in U ,_>_2 A , .  

Suppose tha t  B~ contains v states and B2 at  most  k - v states. I f  both  B~ 
and B2 contain just  one state, then these states are known and we are finished. 
I f  just one of them, say B~, contains only one element, say q~, then the terminal 
s tate  of q~ under any  experiment will be known. By  our induction hypothesis, 
there exists a uniform experiment E2 of length a t  most  [(k - 1) - 1](n -- r + 1) 
+ 2 --  (k -- 1) which distinguishes the terminal  s tate  of B~. The  length of 
E = E~E2 is a t  most  

( n - -  k - -  r +  3) + ( k - -  2 ) ( n - -  r +  1) + 3 - -  k 

= ( k - -  1)(n--  r +  1) + 5 - -  2k 

5 ( k - -  1 ) ( n - -  r - b  1) + 2 - -  k sincelc ~ 3. 

Clearly E satisfies the conclusion of the lemma. An analogous result holds if B,  
contains just  one and B~ more than  one element. Suppose t ha t  both  B, and B2 
contain a t  least two elements. By  our induction hypothesis there exists a uni- 
form experiment E2 of length a t  most  (v - 1)(n - r + 1) "-b 2 -- v which dis- 
tinguishes the terminal  state of each initial s tate in B1. Let  B~ be the terminal 
states, under E2,  of the states initially in B2. By our induction hypothesis 
there exists a uniform experiment E3 of length a t  most  (k -- v -- 1)(n -- r "b 1) T 
2 -- (k -- v) which distinguishes the terminal s tate of each initial s ta te  in Ba.  
Let  E -- E~E:E3. The length of E is at  most  



272 s. ¢~zrCSSVRa 

( n - -  k - -  r + 3) + [ ( v - -  1 ) ( n - -  r +  1) + 2 - -  v] 

+ [ ( k - -  v - -  1 )~n- -  r +  1 ) +  2 - -  ( k - -  v)] 

_-<(n-- k -  r +  3) + ( v - -  1 ) ( n - r +  1) + (/c-- v - -  1) n -  r + 1), 

s incev >__ 2 a n d k -  v ~  2, 

- - ( k - -  1 ) ( n - -  r-4- 1)-4- 2 - -  k. 

By  induction (b) is true for all k =< n --  r "4- 2. 
Now suppose tha t  (b) is true f o r j  ~ k - 1, where k ~ n -- r -4- 3. I t  is readily 

seen tha t  all q, in A cannot  be in the same class of P1 • Repea t  the procedure 
given above, replacing n - k --  r "4- 3 by  1. The  experiment E = EiE~,Es ob- 
tained is of length a t  most  

l + [ ( v - -  1 ) ( n - r - - F 1 ) - k 2 - - v ] + + [ ( k - , -  1 ) (n -  r++ 1) + 2 -  ( k -  v)] 

= 5  - k + (k  - -  2 ) ( n  - -  r + 1) 

=<2--  k +  ( k - -  1 ) ( n - -  r + 1) s i n c e n - -  r + 1 >= 3. 

In  this way the induction is continued to/k = n. Q.E.D. 
Using lemma 3.1 we now obtain a sequence of bounds on the length of a 

minimal uniform experiment for the ease when k _< n -- r + 2. 
'IMEOI~M 3.1. Let S be any distinguished (n, m, p) machine and let P1 contain 

at leastr  classeswithn - r + 1 >- 3. Then foranyse t  A = {q,/i -< k} of le ~ n 
stales, where k _-< n -- r + 2, and for each positive integer u, there exists a uniform 
experiraentE, of length a t m o s t f ,  (k, n) = (k - 1)(n -- r + 1) + 2 "+~ -- 2 - uk 
which distinguishes the terminal state of S. 

PROOF. For u = 1 the conclusion is given by  lemma 3.1. Now assume the 
theorem is true for all u __< w. By the usual argument ,  there exists an experiment 
E~* of length a t  most  n -- k -- r + 3 which part i t ions the admissible initial 
states into (at  least two non-empty)  classes Ax,  A2, . - .  , A, . Le t  B~ and B~ 
be as in lemma 3,1. By  our induction hypothesis there exists a uniform experi- 
men t  E2* of length a t  most  (v -- 1)(n -- r -4- 1) A- 2 ~+1 -- 2 -- wv which dis- 
tingnishes the terminal states of B1. Let  B3 be the terminal  states of B2 under  
E2*. Another  application of our induction hypothesis yields a uniform experiment 
E~* of length a t  most  (k - v - 1)(n - r + 1) + 2 ~+1 - 2 - w(/c - v) which 
distinguishes the terminal  states of Ba.  Then Ew+l = Ei*E~*E3* is a uniform 
experiment which distinguishes the terminal  states of A. The  length of Ew+t 
is a t  most  

( n - -  / c - -  r - F  3 ) - F  ( v -  1 ) ( n - -  r - F  1) q- 2 ~ + ' -  2wv 

+ ( k - v -  1 ) ( n - r + l ) + 2  ~ + ~ - 2 - w ( k - v )  
= ( k - -  2 ) ( n - -  r - l -  1) ++ 2.2  ~ + ' -  4 - -  w k W n - -  Ic--  r + 3 

= ( k - -  1 ) ( n - -  r +  1) + 2 w + 2 -  2 - -  ( w +  1)k, 

which shows tha t  the theorem is true for w + 1. Q.E.D. 
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REMARK. Le t  k, r, and n be fixed. To  find the appropr ia te  u which yields a 

d f  = 0. Solving, we find t h a t  min imum value among  all fu (k, n), we set 

~ m l n  
log k --  log log 4 

log 2 

Let t ing  [Urn1,] be the greatest  integer =< u . . . . .  the desired min imum of the  f~ (k, n) 
occurs at  either u = [Um,n] or u = [Um~.] + 1. 

Below we list the appropr ia te  formula  for 2 =< /c _-< 9. 

k bound h bound 

2 (n  - -  r )  + 1 6 5 ( n  - -  r )  - -  1 

3 2 ( n - -  r )  5- 1 7 6 ( n - -  r )  - -  2 

4 3 ( n  - -  r )  + 1 8 7 ( n - -  r )  - -  3 

5 4 ( n - -  r )  9 8 ( n  - -  r )  - -  5 

I f  r = 2, t h e n k  ~ n - -  r + 2  = n .  

THEOREM 3.2. Let S be a distinguished (n, m, p) machine and let A = {q, / i  =< k} 
be any set of tc =< n states. Then for each positive integer u, there exists a uni form 
expemment of length at most gu(h, n) = (k -- 1)(n -- 1) -l- 2 ~+1 -- 2 -- uk  which 
distinguishes the terminal state of S. I n  particular, when k = n the experiment is 
of length n 2 + n(u  + 2) -¥ 2 ~+1 -- 1. 

PROOF. Le t t ing  r = 2, the theorem follows f rom theorem 3.1 if n -- r -t- 1 >= 3, 
i.e., n => 4. For  n = 1, 2, and 3, the theorem is easily verified by  case analysis  
and the fact  t ha t  for k = n = 3 a desired uniform experiment  of length 3 can 
be found. 

A simple consequence of theorem 3.2 is 
THEOREM 3.3. Let S be a distinguished ( n, m, p) machine and let A = { q J i ~ k} 

be any set of k =< n states. Let the number of different terminal states of the ad- 
missible initial states under an experiment E of length el be k -- j .  Then for each 
posttive integer u there exists a uni form experiment E~, of  length at most a + g~,(k - j ,  n) 
which distinguishes the terminal state of S. I n  particular, i f  there exists an input  
which changes two distinct admissible initial states to the same state, then Eu is 
of length at most 1 + gu(k -- 1, n). 

4. Knowledge of the Last  P ,  

I n  this section our est imates will be based on knowledge of the last  P , ,  i.e., 
the first P ,  such tha t  P ,  = P,+i • 

LEMMA 4.1. Let S be a distinguished (n, m, p) machine and let P,~-8 contain n 
classes. Then for any set A = {q, / i  =< k} of k _-< n states 

(a) for 1 ~ k =< s + 1 there exists a uni form experiment E of length at most 
(k -- 1)(n - s) which distinguishes the terminal state of S;  

(b) for s + 1 < k ~_ n there exists a uni form experiment E of length at most 
(k - 1)(n - s) + (s + 1 - k) which distinguishes the terminal state of S. 

Furthermore, both (k -- 1 ) ( n - -  s) and (k -- 1 ) ( n - -  s) + (s + 1 -- k) may 
serve as bounds for all k _-< n, i.e., for either (a) or (b). 
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PROOF. The  last Statement  is obvious since we then replace the  bounds  in 
(a) and  (b) by  larger bounds.  

(a) For  k = 1 no exper iment  is needed. Hence  (a) is tr ivially true. For  k = 2, 
the  conclusion is t rue since, in view of the  hypothesis ,  any  two states  can be 
dist inguished by an  exper iment  of length a t  mos t  n - s. Suppose t h a t  (a) is 
t rue for a l l k ~ j  < s T  1. L e t k  = j +  1. S i n c e n - k  + 1 => n -  ( s +  1) + 1 
= n - s, by  the  hypothes is  of the theorem there exists an  exper iment  E1 of 
length a t  mos t  n --  s which divides the admissible q, into (at least two non- 
empty )  classes A1,  A2,  • • • , A r .  The  rest of the  proof of (a) parallels the argu- 
men t  given in l emma 3.1. 

(b) Le t  k > s + 1. Our  a rgumen t  is by  induction.  Proceeding as in l emma 3.1 
we obta in  an  experiment  E l  of length a t  mos t  n --  k ~ 1 and sets B1 and  B2. 
Le t  B1 contain v elements. B y  induct ion there exists a uniform exper iment  Ez 
of length a t  mos t  (v - 1)(n - s) which distinguishes the  terminal  s tates  of B1. 
Let t ing  Ba be as in l emma 3.1, there exists a uni form exper iment  Ea of length a t  
mos t  (k - v - 1)(n - s) which distinguishes the  terminal  s tates  of Ba.  Then  
E = EiE2E3 is a uni form exper iment  of length a t  mos t  

( n - -  k + 1) + ( v -  1)(n - s) + ( k -  v - -  1 ) ( n -  s) 

= ( k -  1 ) ( n -  s) + ( 8 +  1 - k) 

which distinguishes the terminal  s tate  of S. Q.E.D.  
Using lemma 4.1 and an a rgumen t  similar to  t h a t  given in theorem 3.1, the 

following result  (whose proof  we omit)  m a y  readily be shown. 
THEOREM 4.1. Let S be a distinguished (n, m, p) machine and let P,~_, contain n 

classes. Then for any set A = {q~/~ ~ k} of k ~ n states and each positive integer u, 
(a) for 1 ~ k ~ s Jr 1 there exists a uni form experiment E~ of length at most 

(k - 1)(n - 8) which d~stinguzshes the terminal state of S; 
(b) for s -~- 1 < k ~_ n there exists a uni form experiment E ,  of length at most 

h~(k, n) = (2" -- 1)(s + 1) -- uk + (k -- 1)(n -- s) which distinguishes the 
terminal state of S. 

Furthermore, both (k -- 1)(n ~ s) and h~(k, n) may  serve as bounds for all 
k =< n, ~.e., for either (a) or (b). 

REMARKS. Le t  k, n, and s be fixed. T o  find the appropr ia te  u which yields a 
dh 

min imum value among  all h~(k, n), we s e t ~  = O. Solving, we find t h a t  the  

min imum occurs when u = max {1, a}, or u = max {1, a + 1}, where 

r l o g k  -- log l o g 2  -- log (s + I )  

(2) Le t  S be a dist inguished (n, m, p) machine  and  suppose t h a t  P~ contains  
exact ly  r classes. Then  for n - r + 1 ~ 3 and k ~ n - r + 2 theorem 3.1 gives 
an  es t imate  of (k - 1 ) ( n - -  r + 1) + 2 ~+1 - 2 - uk. L e t t i n g n  -- s = n -- r + 1, 
so t h a t  s = r -- 1, theorem 4.1 gives an  est imate  of (2" --  1)r -- uk  + (k "-- 1) X 
(n -- r + 1). For  r ~ 3, the  first es t imate  is smaller. 
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5. Composition of Machines  

I n  th is  sec t ion we cons ider  machines  which are  cons t ruc ted  f rom " s i m p l e r "  
machines .  T h e  e s t ima tes  ob ta ined  for  these  new machines  are  s imple  conse- 
quences  of p rev ious  results .  

W e  now note  the  fol lowing resul t ,  whose proof  is a t r iv ia l  va r i a t i on  of the  
proof  of t heo rem 7 of [3]. 

LEMMA 5.1. Let S be a distinguished (n, m, p) machine which is a (direct) sum 3 
~.j~=i T , ,  each T,  being an ( n , ,  m, p) machine. I f  na and nb, where na _>- nb, 
are the two largest n, (possibly equal) in the sequence of integers In, }, then P~a+nb--1 
consists of n classes. 

PROOF. I t  is sufficient to  show t h a t  a n y  two  s ta tes  can be d i s t ingu ished  b y  an  
expe r imen t  of l ength  a t  mos t  na W nb - 1. To  this  end let  qx and  qy be any  two 
s ta tes  in S. Suppose  t h a t  bo th  q~ and  qy are  in the  same machine  T~, say  T~. 
Since T, has  a t  mos t  na s ta tes ,  q~ and  q~ can be d i s t inguished  b y  an  expe r imen t  
of l ength  a t  mos t  na - 1 ~ n~ W nb - 1. Suppose  t h a t  q~ is in To and  qy m t~, 
wi th  T,  ~ T~.  T h e n  the  mach ine  T(a,  r) ,  whmh is defined as  the  (direct)  sum 
of T~ and  T , ,  is a d i s t inguished  (n,  ~ nb,  m, p) machine ,  due  to  t he  m a x i m a l i t y  
p roper t i e s  of n~ and  nb.  Hence  q~ and  q~, considered in T(a,  r ) ,  can  be dis-  
t inguished  b y  an  expe r imen t  E of length  a t  mos t  no -~ nb - 1. T h e n  q~ and  q~, 
considered in S,  a re  d i s t inguished  by  E.  

L e t t i n g  n - s = n~ -t- nb - l ,  so t h a t  s = n ~ 1 - -  (na ~- rib), in t he o re m 
4.1 we ge t  

THEOREM 5.1. Under the hypothesis of lemma 5.1, for  any set A = {q~/i _-< k} 
of k =< n states, and each positive integer u 

(a) for 1 _~ k ~_ n ~ 2 -- (n~ ~ nb) there exists a uni form experiment E~ of 
length (k -- 1)(n~ T nb --  1) which distinguishes the terminal state of S; 

(b) for  s ~ 1 < k =< n there exists a uni form experiment E~ of length 
h~ ( k , n )  = (2 ~ --  1)[n + 2 --  (n~ -t- nb)] - -  uk -t- (/c - -  1)(n~ + n b  --  1) which 
distinguishes the terminal state of S. 

Furthermore, both (k - 1)(n,  + n b  - 1) and hu (k, n) may  serve as bounds for 
all ]c -< n in either (a) or (b). 

REMARKS. (1) F r o m  r e m a r k  1 fo l lowing theo rem 4.1, the  m i n i m u m  h,, (k, n) 
occurs when  u = m a x  {1, a} or u = max  {1, a + 11, where  

[ ' log k - - l o g  l o g 2  - - l o g  {n -t- 2 - - ( n ,  + rib)/7 

a ---- [_ log 2 .J " 

(2) T h e  t e rmina l  s t a t e  is in the  same submach ine  as the  in i t i a l - s ta te .  Hence  
the  expe r imen t  in t heo rem 5.1 d is t inguishes  the  submach ine  con ta in ing  the  
in i t ia l  s ta te .  

Let W = {S,/~ ~ s} be a family of (n~, m, p) machines. By a relettering if necessary we 
may assume that  all the machines have the same inputs and outputs. Label the states of 
each S, as q~(,)+l, - "  , q~(,)+,,, where r(1) = 0 and r(i) = ~ < ,  nk for i ~ 2. Then the (direct) 
sum ~s,~w S, is the machine whose states consist of all q, , 1 =< ~ =< r(s) -~ n, , the input 
affecting the states in each S, considered a submachine of S as if S, were by itself, i e. 
independent of the other machines. 



276  ' S. GINSBURG 

i 
Theorem 5.1 (a) ~nd remark (2) above yield 
COROLLARY 1. Suppose that W is a set consisting of d(n, m, p) machines T, 

and that each state in any T, can be distinguished from any other state of any T~ . 
Then there exists a uniform experiment E of length at most (nd - 1)(2n - 1) 
which, when applied to an unknown initial state of an unknown machine T~, 
distinguishes both the terminal state of that machine and the machine itself. 

In  theorem 9 of [3], Moore has defined a certain class of distinguished machines 
which he calls R . . . .  p.  As int imated there the machines in R . . . .  p have the prop- 
e r ty  described in the first sentence of corollary 1. Moore has shown tha t  the 
number  of machines in R . . . .  p is no more than  nnmp~/n!. [It is not difficult to 
lower tha t  bound, but  this is another  matter.]  Hence we have 

COROLLARY 2. There exists a uniform experiment E of length at most 

( n~+~p~ ) 2n~m+2P~ 
- ~  1 ( 2 n -  1) < ~.t 

which, when applied to an unknown state of an unknown machine in R . . . .  p, dis- 
tinguishes both the terminal state of that machine and the machine itself. 

Another way of combining several machines to form a new machine is by  
means of the "product" .  

DEFINITION. For  1 =< i =< t let S, be an (n , ,  m , ,  p,) machine, the typical  
state, input , .and output  being qj~, Ik ~, and U, ~ respectively. Then the product 
S = II~ffil s ,  or s -~ s~ x $2 x $3 x - - -  x s t  is the ( I In , ,  I I m , ,  IIp,) machine 
defined as follows. The states of S consist of all t-tuples (q,~, qT, - - -  , qkt); the 
inputs consist of all t-tuples (I,~, I~ 2, . . .  , i t ) ;  and the outputs  consist of all 
t-tuples (U, 1, U~ 2, . . .  , Ukt). 
(q~, q 2 , . . . ,  qt) to the state 
state (q~, - - .  , q', . . .  , qt) is 
f rom state q~. 

The  input I = (11, 12, . . .  , I t) changes the state 
(i1(ql), i2(q:), . . .  , i,(q~)); and the output  from 
(U 1, - - -  , U ~, . - -  , U~), where U ~ is the output  

We next note the following result: 
"Le t  i be fixed and let E ,  = {I,.1, . . .  , I,.~, . . .  , I,.~} be an experiment 

of S, which distinguishes the two states qa' and qb ~ of S , .  Le t  qa and qb be any  
two states of S = I IS,  whose i th coordinates are qa' and qb' respectively. Then 
any  experiment I 1 ,  • • • , I~ ,  . .  • , I , ,  having the proper ty  tha t  the i th  coordi- 
nate of each I~ is I~.~, distinguishes q~ and qb in S ."  

From this observation we immediately infer the ensuing two facts. 
(1) I f  each S, is distinguished, then so is S = I I S , .  
(2) Let  A consist of any  k =< n = Hn, states of S = H S , ,  and for each i let 

T, consist of the i th  coordinates of the states in A, i.e., 

T, = {q~'/for some q~ in A, the i th  coordinate of q~ is qj'}. 

For  each i let E ,  be a uniform experiment of length ~, which distinguishes the 
terminal state of T , .  Then there exists a uniform experiment E of length 

= max,  {~,} which distinguishes the terminal  s tate of S. 
In  conjunction with theorems 3.1 and 4.1, (2) above yields bounds on the 

length of a uniform experiment for k states in H S , .  We leave the details to the 
reader. 
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In  passing, we note tha t  product  is distributive over sum, i.e., A X (B X C) = 
(A × B ) +  (A X C ) .  

6. Permutat ion Machines  

In  this, the final section, we deviate from the topic of lengths of uniform ex- 
periments. Here  we introduce a special machine and investigate the associated 
P , .  

DEFINITION: The  machine S is called a permutation machine if each input  -~. 
merely permutes  the states of the machine. 

'iT~EoREM 6.1• Let S be a distinguished (n, m, p) permutation machine such that 
Pn - ,  has exactly n - 1 classes• Then each parti t ion Pk has one of  the following 
form8: 

(a) P1 consists of  two classes B1 and B2  o f  power t and n --  t respectively, t and 
n --  t each being relatively pr ime with n. 

(b) P,,-1 consists of  n classes, each consisting of  j u s t  one state. 
(c) P ,  consists of  the k + 1 classes 

• k N 1  k, N ~  k, . .  Na(k )  , R1  k, . . .  , Rs(,)  

each N ,  k being of power 4 Vk and each R ,  k being of  power x , ,  with xk < vk . Then 

Pk+1 is obtained f rom Pk by splitting, one of the N~ k into two classes CA and Dk of  
power xk and vk -- xk respectively, of  Pk+l • 

(d) Pk consists of  the k + 1 classes 

N 1  k, k . . . k " ' "  , N a ( k )  , Q1 k, . .  , Q~(k) , R1 k, • , Rs( , )  , 

where each N ,  ~ is  of  power vk , each Q,* is of  power vk - Xk , and each R ~  is of  
power xk , with xk < vk . Then Pk+l is obtained f rom Pk by splitting one of  the N ,  k 
into two classes CA and D k ,  of  power Xk and vk --  x1¢ respectively, of  Pk+l • 

PROOF. Since P, -2  contains exactly n -- 1 classes, by  lemma 1.4 for each 
i =< n - 1, P ,  consists of exactly i + 1 classes. 

(a) Suppose tha t  t i~ not relatively prime to n. Then t = zx and n = zy,  
where x, y, and z are positive integers and z > 1. Thus  n --  t = z(y  --  x) ,  where 
y -- x is a positive integer. In  other words, the power of each class in PI  is an 
integral multiple of z. Using induction let us assume tha t  for each i _~/c < n - 1, 
P ,  consists of i + 1 classes, the power of each class being an integral multiple of  
z. We now extend this s ta tement  to PE+I • 

TO this end let the classes in Pk be Cx, C2, - . -  Ck+x. By lemma 1.2 and the 
fact  tha t  Pk+l has exactly k + 2 classes, there exists an input, s ay ' I ,  which de- 
composes just  one of the C, of P k ,  say Ca, into two classes D1 and D2 of Pk+x • 
Let  Cb and Cc be classes of Pk such tha t  I(D2) ~ Cb and I(D1) C C~. Suppose 
tha t  I(D2) = Cb. Let  zwt and zw2 be the powers of Ca and Cb respectively, w~ 
and w2 being positive integers• Since I is a permutat ion,  the power of D2 is 
zw2. Then the power of D1 is zwi --  zw2 = z(wx --  w2) . Thus the induction is 
continued to k + 1. Now suppose tha t  Cb -- I(D2) is non-empty.  Since I is a 

• B y  t h e  p o w e r  of a s e t  is m e a n t  t h e  n u m b e r  of  e l e m e n t s  in  t h e  se t .  
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permutation, irl[C~ -- I(D2)] is non-empty. 6 Let Cd be a class of Pk such tha t  
I-l[Cb -- I(D2)] ~ ~d.  Since I decomposes Co into Dl and D2,  Cb ~ Co. Since 
I (Di )  c Cc ~ Ca ,~ it  is clear tha t  Ca ~ Cd. As I cannot decompose both C, 
and Cd, it therefore:follows that  I-l[Cb -- I(D2)] = Cal. By our induction hypoth-  
esis, the power of C~, Ca, and Cd is ZWl, ZW2, and zw3 respectively, each w~ 
being a positive integer. From the fact tha t  I is a permutation,  thus a one-to-one 
onto function, the power of Ca - I(D~) is zw3. Hence the power of I (D~) ,  and 
thus D~, is zw2 -- zw3 = z(w2 - w3) . Since D1 = Ca -- D2, the power of Di 
is zwl -- (zw2 -- zw3) = z(wl -- w2 + w3) . Thus the power of each class of Pk+l 
is an integral multiple of z. By induction this s tatement  becomes true for all Pk ,  
in particular for P . _ i .  Since z > 1, the classes of P.-1 do not consist of just one 
element which is a contradiction. We conclude tha t  t and, thus, n -- t are rela- 
tively prime to n. 

(b) Statement  (b) is known [3]. 
(c) Let  Pk consist of the classes N,  k and R~ as given in (c) of the s tatement  

of the theorem. Two possibilities exist. 
(i) Suppose that  no input splits any of the N ~  into two classes of Pk+l.  

In view of (b) and the fact tha t  P,+~ - P,  consists of just  two elements for each 
s _~ n - 2, there exists a smallest integer, call it  j ,  j > b, such tha t  one of the 
N,  ~, say N~ k, in P i  is split by an input I into two classes F~ and F2 in P~+~. 
Let  H1 and H2 be the two distinct classes in Ps  such tha t  I(F1) ~ H1 and I(F2) _~ 
H2. Since P~ is obtained by decomposing classes of Pk ,  there exist two classes, 
say H3 and H4,  not necessarily distinct, in Pk such tha t  H1 ~ Ha and H~ ~ H4.  
Then I(F~) _C H3 and I(F2) _c H4. Since N~ k is not  split into two classes of 
Pk+~, it follows that  H3 = H4. Then  I (F~)U I(F2) = I(F~(J F~) = I(N~ k) c H4.  
Since N~ ~ is of power v~, r,  > x~, and v~ > v~ -- x~, H~ must  be of power v~. 
Thus H4 must be one of the N~, say Nx ~. Since H~ and H2 are subsets of Nx ~, 
then N~ ~ must  have split prior to P~ ; this is a contradiction. Hence this case 
cannot occur. 

(ii) There exists an input I which splits one of the N,  ~, say Ns ~, into two 
classes, C~ and D~, of P~+~. In what  follows, we show tha t  either C~ or D~ is 
of power x~. A relabelling then makes C~ of power x~, and thus D~ of power 
V k  - -  X k .  

Now there exist two cla~ses H1 and H2 of P~ such tha t  I(C~) ~ H~ and I(D~) 
H2. Suppose that  H~ and H~ are both of power v~. Since P~+~ -- P~ has just  two 
elements, Ns ~ is the only class in P~ which is split into two classes of P~+~. 
Combining this with the fact tha t  x~ < v~ we see that  for i r~ ~, I (N~ ~) = N~(,) 
for some a(i), with ~ N~(,) different for different i. Clearly no N~(o can be either 
Hi and H2. Hence there are only a(k) - 2 classes N~(,) and a(k) -- 1 classes 
N,  ~, which is a contradiction. Therefore at  least one of the H~, say H~, is of 
power x~, i.e., is one of the R, ~. 

If  x~ = 1, then H~ is of power 1, thus I(C~) and C~ are both of power 1, so 
tha t  we are through. Suppose tha t  x~ > 1. Assume now tha t  H~ - I(C~) is 
non-empty. We shall show that  this assumption leads to a contradiction so 

By I-~ is meant the inverse function of I.  
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t ha t  H1 - -  I(Ck)  is empty ,  i.e., I (Ck)  = H1 whence I(Ck), thus Ck, is of power 
xk. Since H i  --  I (Ck)  is non-empty,  it is of power less than  xk. Hence F -- 
/-I[H1 -- I(Ck)] is of power less than  x~. Let  H3 be the class in Pk containing 
F and let G = H3 - F. Since Ha has a t  least xk elements, G is non-empty.  Since 
I ( F )  = H1 --  I (Ck)  whereas no par t  of Ns ~ maps  into H1 -- I ( C k ) ,  it follows tha t  
Ha ~ Nt  ~. As/ '-1[HI] = C~ U F, G is not mapped into H1 by  I .  Consequently I 
splits Ha as well as Ns k. This  is a contradiction. Hence I (Ck)  = H i .  

(d) Let  P~ consist of the classes N~,  Q k, and R, k, as given in (d) of the 
theorem. We proceed by  induction. In  going from Pk-1 to Pk our induction yields 
a set N ~  l in Pk-1 which is split into Q k and R,  k in Pk • 

(iii) Suppose tha t  no input splits any  of the N ,  k into two classes of Pk+~. 
An argument  parallel to tha t  given in (i) above yields a contradiction, so tha t  
(iii) does not  occur. 

(iv) Suppose tha t  there exists an input I which splits one of the N ,  k, say 
N~ k, into two sets Ck and Dk of Pk+l • By  the corollary to lemma 1.3 and a re- 

k labelling if necessary, I (Ck)  E Q, and I (Dk)  ~ R ,  k. Since Ck U Dk and Q k tJ R ,  k 
both  are of power v, and since I is a permutat ion,  I(Ck)  = Q k and I (Dk)  = R ,  k. 

Thus Ck is of power xk and Dk of power vk -- xk. Hence the induction is extended 
and the theorem is completely proved. 

REMARKS. (1) The  parti t i t ions P ,  of the machine in theorem 6.t occur se- 
quentiaUy in the following manner.  P1 consists of two sets, one of power t and 
one of power n - t, each relatively prime to n. By  a relabelling if necessary we 
m a y  assume tha t  t < n --  t. P2 is obtained by  decomposing the class with n -- t 
elements into two classes of powers t and n -- 2t respectively. This process is 
continued until classes of powers t and n --  ut  = r < t are obtained. The  classes 6 
of t elements then are decomposed (one a t  a time) into classes of powers r and 
t - r = s respectively. When this is completed the classes with max (r, s), say 
s, are decomposed (one a t  a t ime) into classes with r and s - r elements re- 
spectively. The procedure in the previous sentence is then  repeated, with s 
replaced by  s - r. This process is continued until a t  Pn--1 each class contains 
just  one element. 

-(2) Theorem 6.1 is no longer true if the condition on P , -2  is removed. For  
example, let S be as follows: 

Present State 

ql  
qz 
q* 
q4 
q5 
q6 

Inpu t  0 

q2 
qs 
q~ 
q5 
qe 
ql 

New State 

Input 1 

9 2 

q3 
q~ 

q6 
q6 
ql 

Present State 

e l  

q2 
q3 
q4 
qs 
q6 

Output  

P1 = { (ql, q2), (q~, q,, q6, qe)} ; 
P~ = {(q,), (q~), (a6), (q,), (q,, q,)}; 

P2 = { (q,), (q2), (q6), (q, ,  q4, q , )} ;  
P ,  = {(q,) ,  (q,~), (qz), ( q d ,  (q , ) ,  (qe)}. 
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As a corollary to  ~theorem 6.1 we have  
THEOREM 6.2. Let S be a distinguished (n, m, p) permutation machine such 

that P,-2 has exactly n - 1 classes. Furthermore, suppose that. there exists one and 
only one state, say qi,  whose output is U. Then for each positive integer ]c < n, 
the partition Pk consists of lc classes of exactly one element and one class of n -- k 
elements. 

The  proof is obvious since the  condit ion abou t  U means  t h a t  one of the  classes 
in P1 contains  precisely one element.  

REMARK: Theorem 6.2 is no longer t rue  if the hypothes is  on S being a permu-  
ta t ion  machine  is removed.  Fo r  example, let S be the following machine :  

Present State 

ql 

q2 

q3 
q4 
q5 

New State 

Input 0 Input 1 

ql q2 
qs qa 
q~ q~ 
q~ ql 
q2 ql 

Present State 

q! 

qs 
qa 
q4 
qs 

Output 

1 
0 
0 
0 
0 

Then 
P, = { (q,), (qs, q3, q,, qs)} ; 
P~ ffi {(q,), (qs), (qa), (q4, qs)}; 

P2 ffi { (ql), 
P4 = { (ql), 

(qs, q3), (q~, qs)}; 
(qs), (qa), (q~), (qs)}. 
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