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The problem considered here is to obtain estimates of the length of the smallest
experiment. (on a machine) which is independent of the unknown initial state
and which allows us, by observing the outputs, to distinguish the terminal state.

The estimates obtained depend, of course, on the assumptions placed on the
machine. In general, the bounds derived are slightly less than n*, where n is the
number of distinguishable states in the machine. For no really general class of
machines is a best bound known.

1. Preliminary Results

Many of the basic ideas (for example, the notion of machine) used here are
the same as in [3]. A familiarity with [3], while desirable, is not necessary for
an understanding of this paper.

By a (deterministic) machine' is meant a finite number of stafes q;, -+ , ¢a,
a finite number of inputs I+, -+, I'm, and a finite number of outputs Uy, - -,
U, , with the machine satisfying the following conditions:

(1) The machine is always in, i.e., assumes, exactly one of the states q;, at a
time.

(2) If the machine is in state g;, then upon application of any input I; the
machine assumes a (new) state ¢ (possible q,). q: depends only on ¢; and I;.

(3) Assaciated with each state ¢, is an ountput U, with the property that,
if the machine is in state ¢, , then upon application of any input [, the output
Uso 0ccurs.

(4) A new state, also an output, can occur only upon application of an input.

A machine as deseribed above shall be called an (n, m, p) machine. This
terminology differs slightly with that found in (3].

Some authors [1, 2] replace condition (3) above with (3').

(3') The present output is determined by both the present input and the
present, state.

Most of the following results hold in both cases.

It is henceforth assumed that whenever a maechine is given its inputs, outputs,

* Received August, 1957,

1 A more rigorous definition of (deterministic) machine is as follows. A machine § is a
set {1y, ..., Im, a1, Q2 qn, U, ..., Upl, each I, being ealled an input, each g; a state, and
each U/, an output, together with two functions a(Z, g) and X (I, g), where I is an input, ¢
a state, 3(1, ¢) a state, and A({Z, q) an outpust. It shall be assumed that A {Z, q) is independent
of I,i.e., A (I, 9 =2A(g). 8(I, q) is said to be the new state and A(I, ) the output of the
machine upon application of input 1.
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and internal states, i.e., each new state in relation to each input and each present
state as well as each output in relation to each present state, are known.

By an experiment (of length s) is meant a sequence of inputs I, , I, -+~ , I,.

By experiment which distinguishes the terminal state of the machine is meant an
experiment, possibly depending on the unknown initial state, such that the
resulting output allows us to determine the terminal state, i.e., the state of the
machine after applying the last input of the experiment. If the experiment ¥
is independent of which unknown state from a sei A of admissible states of the
machine is the initial state, then E is said to be uniform (with respect to 4).

Two states ¢: and ¢, of a machine 8 are said to be disfinguished if there exists
an experiment K such that the output of g; under E, i.e., the output with the
machine initially in state ¢, is not identical with the output of ¢, under E.
A machine is said to be distinguished if each pair of distinct states can be dis-
tinguished.

In [3, Th. 8], Moore showed that for any distinguished machine in an un-
known initial state, an experiment, depending on the initial state, can be found
which distinguishes the terminal state. We shall be concerned here with con-
structing uniform experiments and estimating the length of & minimum uniform
experiment.

Fundamental to our work are the partitions P, as defined in [3]. Following
Moore, let S be a machine and for each pair of states ¢, and ¢, of S write g.Rug;
if there is no experiment of (at most) length & which distinguishes ¢, and g, .
Then R, is an abstract equivalence relation. Let Py be the partition associated
with this equivalence relation.

Moore [3, p. 145-146] has noted the following two results which are used
later.

Levma 1.1 For each positive inieger k, P. 3 s a refinement of Py, thal ©s, each
class in Py, is a subclass of some class in Py, .

Lemma 1.2, Two states q; and q, in the same class of the partition Py are in
different classes of Piyy if and only if there exists an input which transforms q.
and g, into states that are in different classes of Py . If C,UC: 15 a subset of a class,
say B,, of P;, and C, and C: are subsets of distinct classes of P;y,, then there
exisls an input I and distinct classes By and Bs of P; such that® I(C) € B, and
I(Cy) € Bs. If By and B, are two distinct classes of P, , if T s an input, and f
I(C)) € By end I{C2) © B., then Cy and C» are subsets of different classes of P,y .

When I, ¢, U C,, C,, and C. are related as in the second sentence of lemma
1.2, we say that I splits C; U C; inio classes C, and Cy (of P,..).

Lemma 1.2 will now be extended for later use.

Lemma 1.3. If C4U C: is a subsel of a class, say B, , of P;, where 1 = 2, and
if an inpul I splits C1 U C, into the classes Cy and C of P.yy , then there exists fwo
distinet classes Bl and By Of P; s P,.-—l such that I(C]) < B1 y I(Cz) < Bz, and
B U B, is a subsel of a class of Piy .

Proor. By hypothesis, I(C,) € B, and I{C;) & B, for two distinct classes

* If 7 is an input and g is a state of S, then by I{(g) is meant the terminal state of g upon
application of I. If A is & set of states of §, then by I{A) is meant the set {I{¢)/qEA].
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By and B; in P, . Tg see that both B, and B; are not in P;_,, let us assume that
one of them, say B, , is in P,, . Two possibilities oceur.

(a) Suppose that B;isin P; . Then by lemma 1.2, I splits C,U C; into classes
Cj&ﬂdCzOfP;.

(b) Suppose that B: is not in P,_, . Then by lemma 1.1, B, C B, for some
B,in P, ;. Now B, B, since B, and B; arein P,, B: € B, ,and B, # B, .
Then I((,) € B, and I(Cy) S B, € B,, so that I splits C; U . into classes
€, and C, of P;, apain effecting a contradiction.

Both cases lead to a contradiction. We therefore are forced to conclude that
B, being in P, , is false and B, isin P, — P, ,.

An analogous argument shows that By isin P; — P,

Finally, suppose that B,U B; is not a subset of a class of P,_, . Then by lemma
1.1 there exist distinet classes B, and By in P,_; such that B, € B.and B: € B; .
Here again we see that I splits €, U (), into classes ; and (% in P, , a contra-
diction.

As a special case we get

CoRroLLARY. For some indeger © = 2 let P,y condain exactly two classes, say By
and B; . If an inpui I splits the subset C1U C; of the class B, of P; inio the classes
Cy ond Cy of Poya, then etther-1{(C,) © By and I{C:) < Ba, or I{C)} € B, and
HC) C B,

Another known result which we need is lemma 1.4 below. It is implicit in the
proof of theorem & of [3}; (b) is stated as theorem 3 of [1].

Lemms 1.4, Let S be a distinguished (n, m, p) machine. (a) If P, conlains at
least k classes, with k S n — 1, thern Py contains at least & + 1 classes. (b)
If P, condains r classes, then Pjconlains of leastj +r — 1, providedj +r — 1 < n.
In particular, P, ., contains n classes. (¢) Py conlains af least rwo classes.

ReMark. Let S be a distinguished (n, m, p) machine and let P, , contain
exactly n — 1 classes. Then {a) of lemma 1.4 yields the fact that for 2 5 ¢ £
n — 1, P,,, — P, contains exactly two elements. Thus the Corollary to lemma
1.3 applies here foreach 4,2 £ 71 2 n — 1.

2. A First Approach

We now turn to the actual construction of uniform experiments, First though,
we prove

LeMMa 2.1. Let 8 be a distinguished (n, m, p) machine and let A be a set of
k = n distinct states of S. Then for each admissible (that is, in A) initial slale

Gs , there exists an experiment E (depending on g.), of length af most (lc—;-—lz @n—k)

such-that

(1) if S is initially in state q. , then the output (under E) 48 called U™ and the
terminal state q,%;

(2) regardless of the admissible initial state, if the oulpul under E is U*, then
the terminal state s q.*.

Proor. The proof is a variation of theorem 8 of [3].
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By lemma 1.4 the partition P, _ 4 divides the states of S into at leastn — & -+ 2
classes. At least one of the admissible initial states ¢; , q. > ¢, , 15 in a class differ-
ent from that in which g, occurs. For suppose that all the admissible ¢, are in
the same class. Since there are only #» — k other states in S, there can be at most
n — k 4+ 1 different classes altogether; this is a coniradiction. Hence there
exists an experiment E, , of length at most » — & + 1, and an admissible initial
state g, ¢ # ¢. , such that the output U; under E, from g. is not the same as the
output from g, Let ¢u1 be the terminal state of g, under By, Let ga1, g2, - -,
Q2.+ , be the different terminal states of those admissible initial states which
yield U7, upon application of E; . Clearly »(2) £ & — 1. Now repeat this pro-
cedure with g, replaced by ¢, & by #(2), and 4 by {01, @22, -, Gr)}-
Continue this method by induction in the obvious way, ebtaining experiments
E,, E;, ---, until the first stage, say the jth, that there is only one terminal
state, say q;.1,1. Obviously j £ & — 1. Let E = E,Ey --- E;. The length of
E is at most

3 (k — 1)

};(n—i+1>= 5

2n — k).

It is readily seen that F satisfies the conclusion of the lemma.

Remarks. (1) Whether or not the bound given in lemma 2.1 is the best pos-
sible is unknown.

(2) If the £ constructed in lemma 2.1 is such that j = ¥ — 1, then E is a
uniform experiment which can distinguish the terminal state. For if & — 1
stages are required, then for each integer 7 > 1, #(7) = k& — 7 4+ 1, so that at
the ¢th stage precisely one state is ascertained.

Using lemma 2.1 and theorem 2.1 below, we now show the existence of a
uniform experiment for a distinguished machine,

TeroneM 2.1. Let 8 be a distinguished (n, m, p) machine and for some ¢t < n
and each k& < £ let (k) be @ number with the following property. “For every set of k
stales, if S initially is in one of these staies, then there exists an experiment (usually
depending on the initial state) of length af most a(k) which satisfies (1) and (2)
of Lemma 2.1.” Then for any set A of ¢ slates, say A = {[gi/1 = t}, there exists @
uniform experiment E of length al most Z; a(k) which distinguishes the terminal
stale of S.

Proor. By hypothesis there exists an experiment F, of length at most ef(f)
such that

(i) if S is initially in state ¢, , then the output is called I7,* and the terminal
state ¢*; and

(ii} regardless of the admissible initial state, if the output under E, is U;*,
then the terminal state is g*.

Let ¢i*, i, @22, **+ , qur be the different terminal states under E,; for all
admissible initial states. Clearly »(2) £ ¢ — 1. Continuing by induction let us
assume that the admissible initial states are the r(z), ¢ = 2, states q:n, ¢ 2, *** ,
¢urw and that r(7) = £ — 7 + 1. By hypothesis there exists an experiment E,
of length at most a(f — 7 + 1) such that
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(iii) if S is initially in state g,1, then the output is called U.* and the ter-
minal state ¢.*; and |

{(iv) regardless of the admissible initial state, if the output under E, is U.*,
then the terminal state is ¢;*.

Let ¢,*, gis2a, -+, Quirensn be the different terminal states under E; for
all admissible initial states. Clearly r(z + 1) £ ¢ — (i + 1) -+ 1. In this way
the procedure is continued until the first stage, say the jth, that the terminal
states are either ¢,* and ¢,41,1, or ¢,* alone. Obviously j S ¢ — 1,

We now show that the experiment K = E\E; - - - I satisfies the conclusion of
the theorem, Summing we see that E is of the length at most ¥ _3 a(k). Suppose
that the vnknown admissible state of 8 is g, . Let U, be the cutput from each
stage of the experiment, so that the total output is /' = U U, .- U;. Let ¢,
be the terminal state of g, under E. Starting in the initial state ¢;, let w; be
the terminal state under E,E; --- F;. Foreach 2 £ 1 £ 5 — 1, let w, be the
terminal state of ¢,* under E;,, --- E,. In view of (ii) and (iv) it is obvious
that either

(a) there is o smallest integer, call it 7, such that U; = U,*, in which case
¢ =wiifit £j— land g, = g*if ¢ = 7; or

(b) for no integer 7 is U, == U.*, in which case ¢, = ¢sq11. Q.E.D.

& 5 1) (21 — k). Then

Lemma, 2.1 states that one possible value for «(k) is

Saty = T E=D o, _p

Jue 2 Jm 2 2

[k(2n + 1) — 2n — %

i
g

[T ot ST TR

[(Zn-l-l)gk—Zn(t—l) —ikz]

[(2n 4+ 1) (9-1;—1-) G+ 2) — 200 — 1) —{% (4 1)(2% + 1) — 1}]

2 2% — ¢
[’n(t ~ 0+ 22 ]

Hence we have
TororeM 2.2. Lef S be a distinguished (n, m, p) machine. Then for any sef A
of k £ n states, there exists a uniform experiment E of length at most

i

which distinguishes the terminal state of S,
Tetting & = n, we get
TraroreM 2.3. Let 8 be a distinguished (n, m, p) machine. Then there exisis a
n2n — 1)(n — 1)
6

uniform experiment E of length at most which distinguishes the

terminal state of S.
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3. Knowledge of P,

In sections 3 and 4 we lower the bounds given in thecorems 2.1 and 2.2. Our
estimates will be based on knowledge of the number of classes in P, . We shall
see that whereas theorem 2.2 yields an estimate of approximately 1nk®, the re-
sults of this and the next section yield an estimate of less than nk, n being the
number of distinguishable states in the machine and & the number of admissible
initial states.

LeMmva 3.1. Let S be any distinguished (n, m, p) mackine and let Py contain al
lenst  classes. Then for any set A = [g./1 < k} of k £ n stales

(a) if = — r + 1 = 2, then there exists a uniform experiment of length at most
(k — 1)(n — v + 1) which distinguishes the terminal slate of S;

(b) ¢f n — r + 1 = 3, then there exists a uniform experiment of length at most
(k — {n —r+ 1) + 2 — & which distinguishes the terminal state of S.

Proor. The proof of (2) is found in lemma 4.1. We therefore shall consider
only the proof of (b) here.

Tor # = 1 and &k = 2, (b) is obviously true. Suppose that (b) is true for all
12k—1<n—7r4+2 Thenn — k — -4 3 = 1, go that P,_;_,3 exists.
Now the partition P, .3 divides the statesof Sintoatleast n — k —r 4+ 3 +
r — 1= n — k4 2disjoint non-empty classes. By the argument as in lemma 2.1,
we see that all the ¢, in 4 cannot be in the same class. Thus there exists an ex-
periment &y of length at most n — & — » 4+ 3 which divides the ¢; , 1 £ 7 = k,
into {at least two non-empty) classes Ay, 4., ---, A.. Let B, consist of the
terminal states, under &, , of those states initially in A4,, and By the terminal
states of those states initially inU 22 4, .

Suppose that B, contains v states and B, at most & — v states. If both B;
and B; contain just one state, then these states are known and we are finished.
If just one of them, say B, , contains only cne element, say q. , then the terminal
state of ¢, under any experiment will be known. By our induction hypothesis,
there exists a uniform experiment £, of length at most [(k — 1) — 1]{n — r + 1)
4+ 2 — (k — 1) which distinguishes the terminal state of B.. The length of
E = E\E; is at most

m—bk—r+3+E—-2n—-r+1)+3—-k%
=tk —Dn—r+1+5—2k
Sth—1Dmn—r+1)+2—%k sincek = 3.

Clearly E satisfies the conclusion of the lemma. An analogous result holds if B,
contains just one and B; more than one element. Suppose that both B; and B,
contain at least two elements. By our induction hypothesis there exists a uni-
form experiment Es of length at most (v — 1D{n — r + 1) + 2 — v which dis-
tinguishes the terminal state of each initial state in B, . Let B; be the terminal
states, under ., of the states initially in B,. By our induction hypothesis
there exists a uniform experiment E; of length at most (k — v — D(n —r + 1) +
2 — (& — v») which distinguishes the terminal state of each initial state in By .
Tet B = K E:F; . The length of ¥ is at most
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(n—k—'r+3)+;[(v—1)(n—r+1)+2—~0]
Hlk == D —r+ D+ 2= (k= v)]
S—k—r++oe-Do—-r+)+E-—v—Da—r+1),
gincey = 2andk — v = 2,
=k —-Dn—r+1)+2—k

By induction (b) is true forallk £ n — r + 2.

Now suppose that (b) istrueforj £ k — 1, wherek = n — r 4+ 3. It is readily
seen that all ¢, in 4 cannot be in the same class of P; . Repeat the procedure
given above, replacing n — & — r 4+ 3 by 1. The experiment E = F\E¥; ob-
tained is of length at most
1+{w~—Dr—r+D+2—0)+[k—-r—Dn~r+ 1)+ 2— (k— )]

=5—k+Zk—-2n—r+1)

22—-k4+Gk—-—1Dnr—r+1) sincen —r+ 12 3.

In this way the induction is continued to k& = =. QED.
Using lemma 3.1 we now obtain a sequence of bounds on the length of a
minimal uniform experiment for the case when k < n — r 4 2.

TaroreM 3.1. Lef 8 be any distinguished (r, m, p) mackine and let P, contain
at least r classes withn — r + 1 = 3. Then foranyset A = {g/t E kjof k = n
stoles, where k = n — r + 2, and for each positive integer u, there exists a uniform
experiment B, of length at most f, (k,n) = (b — 1})(n — r 4+ 1) + 2°" — 2 — uk
which distinguishes the terminal state of S.

Proor. For u = 1 the conclusion is given by lemma 3.1. Now assume the
theorem is true for all # £ w. By the usual argument, there exists an experiment
E* of length at most n — k& — r + 3 which partitions the admissible initial
states into (at least two non-empty) classes A;, 4z, -+, 4, . Let B, and B
be as in lemma 3.1. By our induction hypothesis there exists a uniform experi-
ment, By* of length at most (v — 1)(n — 7 + 1) + 27 — 2 — ww which dis-
tinguishes the terminal states of By . Let B; be the terminal states of B; under
E*. Another application of our induction hypothesis yields a uniform experiment
E;* of length at most (k — ¢ — 1)(n — » + 1) + 2" — 2 — w(k — v) which
distinguishes the terminal states of By. Then E,4, = E*E*E;* is a uniform
experiment which distinguishes the terminal states of A. The length of K,
is at most

m—k—r+3+@®—Dn—7r+1)+2°" — 2u
4k =—v—Dn—r+ 1) F+2°" =2 —wk—v)
=k —Dm—r+1D+22" ~4—wk+n—k—r+3
=k — D —7+1)+2"" — 2 — (w4 Dk,
which shows that the theorem is true for w 4 1. Q.E.D.
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ReMark. Let &, #, and 2 be fixed. To find the appropriate » which yields a
df

minimum value among all f, (k, n), we set dn 0. Solving, we find that

_ log & — log log 4
i log 2 ’

Letting [wmn] be the greatest integer £ ., the desired minimum of the f, (k, n)
occurs at either ¥ = [tmn] oF 4 = [Yoan] + 1.
Below we list the appropriate formula for 2 = k& £ 9.

k bound k hound

2 n—r)+1 6 bn—-171) — 1
3 2n—r)+ 1 7 6(n —r)— 2
4 3n — )+ 1 8 n—1)—3
5 4(n — 1) 9 8n —1r)— b

ifr=2thenk<n—r-+2=n

TueEoreM 3.2. Letf S be a disitnguished (n, m, p) machine and let A = {q./7 = k)
be any sel of & < n stales. Then for each positive inleger u, there exists a uniform
expervment of length at most gu(k, n) = (& — n — 1) + 2™ — 2 — wuk which
distinguishes the lerminal state of S. In particular, when & = n the experiment is
of length n* + nfu + 2) + 27 — 1.

Proor. Letting r = 2, the theorem follows from theorem 3.1ifn —r -1 = 3,
ie,n = 4. For n = 1, 2, and 3, the theorem is easily verified by case analysis
and the fact that for # = n = 3 a desired uniform experiment of length 3 can
be found.

A simple consequence of theorem 3.2 is

Trarorem 3.3, Let S be a distinguished (n, m, p) machine and let A = {q./% < k)
be any sef of kK = n stales. Let the number of different ferminal states of the ad-
missible ingtial states under an experiment E of length o be & — j. Then for each
positive integer u there extsts a uniformexperiment E, of lengthat most « + g (k — j,n)
which distinguishes the terminal state of 8. In particular, if there exisis an tnput
which changes two disttnct admissible intfial stales to the same state, then E, s
of length at most 1 4+ gu(k — 1, n).

4. Knowledge of the Last P,

In this section our estimates will be based on knowledge of the last P, , i.e.,
the first P, such that P, = P, ,.

Lemma 4.1. Let 8 be a distinguished (n, m, p) machine and let P.—, conlain n
classes. Then for any set A = {q./¢ £ k) of k& £ n stales

(a) for 1 £ k £ s + 1 there exists a uniform experiment K of length at mosl
(k — 1}(n — &) which distinguishes the lerminal slale of S,

(b) for s + 1 < k =< n there exisis a uniform experiment E of length at most
k — D(n — 8) + (s + 1 ~ k) which distinguishes the terminal state of S.

Furthermore, both (k — 1)(n — and (E — Dn — ) + (s 4+ 1 — k) may
serve as bounds for all k £ n, i.e., for either (a) or (b).
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Proor. The last statement is obvicus since we then replace the bounds in
(a) and (b) by larger bounds.

(a) For k& = 1 no experiment is needed. Hence (a) is trivially true. For k = 2,
the conclusion is true since, in view of the hypothesis, any two states can be
distinguished by an experiment of length at most n — s. Suppose that (a) is
trueforallk £ j <s+ 1l Letk=45-+1.Bmeen—k+12n—(s+ 1)+ 1
= n — s, by the hypothesis of the theorem there exists an experiment &, of
Jength at most n — s which divides the admissible ¢, into (at least two non-
empty) classes 4, 42, --- , A, . The rest of the proof of (a) parallels the argu-
ment given in lemma 3.1.

(b) Let k > s + 1. Our argument is by induction. Proceeding as in lemma 3.1
we obtain an experiment, £, of length at most n — k 4+ 1 and sets B, and B,.
Let B; contain » elements. By induetion there exists a uniform experiment E;
of length at most (» — 1}{(n — s) which distinguishes the terminal states of By .
Letting B; be as in lemma 3.1, there exists a uniform experiment F; of length at
most (k — » — 1)(n — s) which distinguishes the terminal states of B; . Then
E = E\ILE; is a uniform experiment of length at most

m—k+ D+ —-—Dn—-—s5)+k —v—1)n—s)
=k —Dn—8) + (s+1—k)

which distinguishes the terminal state of S, Q.E.D.

Using lemma 4.1 and an argument similar to that given in theorem 3.1, the
following result (whose proof we omit) may readily be shown.

THEOREM 4.1. Let 8 be o distinguished (n, m, p) machine and lel P, confain n
classes. Then for any sei A = {g./2 = k} of &b £ n stales and each posifive inleger u,

(a) for 1 = &k = s - 1 there exists a uniform expertment E. of length at most
(k — D{n — s5) which duslinguashes the lerminal state of 8;

(b) for s + 1 < & = n there exists o uniform experiment E, of length at most
ho(k, n) = (2 — (s + 1) — uk + (k — 1)(n — §) which distinguishes the
terminal stale of S.

Furthermore, both (& — 1)(n - 8) and h.(k, n) may serve as bounds for all
k £ n, ve, for cither (2) or (b).

Revagrks. Let &, », and s be fixed. To find the appropriate 4 which yields a,
minimum value among all h.(k, n}, we setg—t}z = {}, Solving, we find that the
minimum oceurs when ¥ = max {1, ¢}, or v = max |1, ¢ + 1}, where

[log E - loglog 2 — log (s + l)]
a = .
log 2

{2) Let S be a distinguished (n, m, p) machine and suppose that P, containg
exactly 7 classes. Thenforn —r+ 1= 3and k £ n — r + 2 theorem 3.1 gives
an estimateof (k — V(n — 7+ 1) + 2" — 2 — wk. Lettingn — 8 = n — + + 1,
so that s = r — 1, theorem 4.1 givesan estimate of 2* — 1)r —uk 4+ (k— 1) X
{n —r 4+ 1). For r = 3, the first estimate is smaller.
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5. Composttion of Machines

In this section we consider machines which are constructed from *“simpler”
machines. The estimates obtained for these new machines are simple conse-
quences of previous results.

We now note the following result, whose proof is a trivial variation of the
proof of theorem 7 of [3].

LemMa 5.1, Let S be a distinguished (n, m, p) machine which is a (direct) sum®
S AT, each T, being an (n,, m, p) machine. If n, and n, , where ne = ny,
are the two largest n, (possibly equal) tn the sequence of tntegers {n,}, then Paysny—t
conststs of n classes.

Proor. It is sufficient to show that any two states can be distinguished by an
experiment of length at most n, + n, — 1. To this end let ¢. and g, be any two
states in 8. Suppose that both ¢, and ¢, are in the same machine 7', , suy 7. .
Since T, has at most n, states, ¢, and g, can be distinguished by an experiment
of length at most n, — 1 £ n, + n, — 1. Suppose that ¢, isin T, and ¢, in £, ,
with T, = T, . Then the machine T'(s, 7), which is defined as the (direct) sum
of T, and T, , is a distinguished (n, + 7, m, p) machine, due to the maximality
properties of n, and n; . Hence ¢, and ¢,, considered in T(e, 7}, can be dis-
tinguished by an experiment E of length at most n, + 7, — 1. Theun ¢. and g, ,
considered in 8, are distinguished by E.

Tettingn — s =n, + m — 1,s0that s = n + 1 — (n, + ny), in theorem
4.1 we get

TuEoREM 5.1. Under the hypothesis of lemma 5.1, for any set A = {gq./1 £ k)
of k = n states, and each positive integer u

(a) for 1 S k= n+ 2 — (na + ) there exisis a untform experimen! E,. of
length (k — 1)(ne + me — 1) which distinguishes the terminal stale of S;

(b) for s + 1 < k = n lhere evists a uniform evperiment E. of length
hall,n) =2 —Dn+ 2 — (na + 1)) — vk + & — 1{(na + no — 1) which
distinguishes the terminal stafe of S.

Furthermore, both (k — 1){n, + my — 1) and h. (k, n) may serve as bounds for
al k = nin either (a) or (b).

REMaRrks. (1) From remark 1 following theorem 4.1, the minimum k. (k, n)
occurs when # = max {1, a} or v = max {1, @ + 1}, where

.= [logk —loglog2 — log {n + 2 — (n. + m)}]
log 2 '

(2) The terminal state is in the same submachine as the initial state. Hence
the experiment in theorem 5.1 distinguishes the submachine containing the
initial state.

3Let W = {8,/s = 3} be a family of (n,, m, p) machines. By a relettering if necessary we
may assume that all the machines have the same inputs and cutputs. Label the states of
each 8, a5 Guaysd, ** = ;5 Grajen, , Wherer (1) = G andr(i) = Zrc.nefor i = 2. Then the (direct)
sum EH.EW 8, is the machine whose states consist of all ¢, , 1 < 2 < »(s) + ., the input
affecting the states in each 8, considered a submachine of S as if S, were by itself, ie.
independent of the other machines.



276 8. GINSBURG

\

Theorem 5.1 (2) and remark (2) above yield

CoroLLary 1. Suppose that W is a set consisting of d{n, m, p) machines T,
and that each state in any T, can be distinguished from any other state of any T, .
Then there exists a uniform experiment E of length af most (nd — 1)(3Zn — 1)
which, when applied to an unknown initial stote of an unknown machine T, ,
distinguishes both (he terminal state of that machine and the machine itself.

In theorem 9 of [3], Moore has defined a certain elass of distinguished machines
which he calls R, ., . As intimated there the machines in R, ., , have the prop-
erty described in the first sentence of corollary 1. Moore has shown that the
number of machines in R, ., is no more than #"™p"/n!. [It is not difficult to
lower that bound, but this is another matter.] Hence we have

CoroLraryY 2. There exisls a uniform experiment E of length al most

nm+l__n nm+2 n
(T ) - <2
n! n!

which, when applied to an unknown state of an unknown machine in R, m.p , dis-
tinguishes both the terminal state of that machine and fthe machine ilself.

Another way of combining several machines to form a new machine is by
means of the “product”.

Derimirion. For 1 £ 7 = ¢ let S, be an (n,, m,, p,) machine, the typical
state, input, and output being ¢,°, I.*, and U,’ respectively. Then the product
S=Jlia 8 008 =8 X 8 X8 X - X 8 is the (Iin, , Mm, , Op,) machine
defined as follows. The states of S consist of all &-tuples (g.', g,°, - -* , @'); the

inputs consist of all ttuples (I}, 1%, -+, I:*); and the outputs consist of all
t-tuples (U}, UZ --- , UxY). The imput I = (I, J AP & changes the state
(¢ &, -+, ¢") to the state (I'(¢"), I’(¢"), -+, I'(g")); and the output from
state (¢', -+, ¢", -+, ¢ is (UY, ---, U% ---, U’), where U" is the output

from state ¢ .

We next note the following result:

“Let ¢ be fixed and let £, = {4, , I.s, ++-, I.,} be an experiment
of S, which distinguishes the two states ¢.' and ¢’ of 8, . Let ¢, and g be any
two states of § = IS, whose 7th coordinates are ¢, and g;' respectively. Then
any experiment I3 , -+, I, ---, I, , having the property that the 7th coordi-
nate of each I; is I;; , distinguishes ¢, and ¢ in 5.”

From this observation we immediately infer the ensuing two facts.

(1) If each S, is distinguished, then sois S = 1.8, .

(2) Let A consist of any & = n = 1In, states of 8 = II8§,, and for each ¢ let
T. consist of the 4th coordinates of the states in 4, i.e.,

T, = {q,"/for some ¢: in A, the 7th coordinate of g¢; is ¢,"}.

For each ¢ let £, be a uniform experiment of length v, which distinguishes the
terminal state of 7',. Then there exists a uniform experiment £ of length
v = max, {v.}] which distinguishes the terminal state of S.

In conjunction with theorems 3.1 and 4.1, (2) above yields bounds on the
length of a uniform experiment for &k states in T1S, . We leave the details to the
reader.
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In passing, we note that product is distributive over sum,ie., 4 X (B X ) =
(AXB)+ (4 X0).

6. Permutation Machines

In this, the final section, we deviate from the topic of lengths of uniform ex-
periments. Here we introduce a special machine and investigate the associated
P,.

DerinimioN: The machine S is called a permutation machine if each input
merely permutes the states of the machine.

TaroreM 6.1. Let 8 be a distinguished (n, m, p) permutation machine such that
Py has exactly n — 1 classes. Then each partition Py has one of the following
Jorms:

{a) P\ consists of two classes By and B of power t and n — & respectively, t and
n — t each being relatively prime with n.

(b) Py consisis of n classes, each consisting of just one staie.

(c) P consisis of the & + 1 classes

& & k o
NlaNza"'NE(E):RI:"'>RT(1¢)

each N\ being of power® ve and each R} being of power zp , with zx < vy . Then
Py i3 obtained from Py, by splitting.one of the N.* indo two classes Cy and Dy, of
power T and v, — 1, respectively, of Py .

(d) P consisis of the & + 1 classes

[3 4 k ' k k
Nl:""Nﬂ(k):Ql)"';Qﬁ'(kJaRls"':R'r(k))

where each N.* s of power v , each QF is of power v — z, and each RF is of
power T , with &, < v . Then Pry ¥s oblained from Py by splitting one of the N x
mio fwo classes Cy and Dy, of power xw and vi — 1z respectively, of Prya .

Proor. Since P, ; contains exactly n — 1 classes, by lemma 1.4 for each
i £ n — 1, P, consists of exactly 7 4 1 classes.

(2) Suppose that ¢ is not relatively prime to n. Then ¢ = 2z and n = 2y,
where , ¥, and z are positive integers and 2 > 1. Thusn — ¢ = 2(y — z), where
y — x is a positive integer. In other words, the power of each class in P; is an
integral multiple of z. Using induction let us assume that foreachi =k <n — 1,
P, consists of z 4 1 classes, the power of each class being an integral multiple of
z. We now extend this statement to Piyy .

To this end let the classes in P; be €y, Cz, -+ Cryy . By lemma 1.2 and the
fact that Py, has exactly & -+ 2 classes, there exists an input, say I, which de-
composes just one of the C, of Py, say C,, into two classes Dy and D; of Py .
Let €, and (. be classes of P, such that I(D;) € Cs and I(Dy) T C.. Suppose
that 7(Dz) = C,. Let z2un and zw. be the powers of C, and C» respectively, w;
and . being positive integers. Since I is a permutation, the power of D, ig
zw, . Then the power of Dy is zeer — 2wy = z{iy — w,) . Thus the induction is
continued to £ -+ 1. Now suppose that €, — [(D;) is non-empty. Since 7 is a

1 By the power of a set is meant the number of elements in the set.
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permutation, I '[Cy — I(D;)] is non-empty.t Let Cz be a class of P such that
e, — (D)) € .b‘ . Since I decomposes C, into D, and D, , €, #= C.. Since
I(D) € C. = Gy, it is clear that C; = Ci. As I cannot decompose both C,
and C; , it thereforefollows that I '[C;, — I(D,)] = Cq. By our induction hypoth-
esis, the power of €y, (5, and C; is 2w, , 2w, , and zw; respectively, each w;
being a positive integer. From the fact that 7 is a permutation, thus a one-to-one
onto function, the power of C, — I(D,) is zw; . Hence the power of I(Ds) , and
thus D, , is 2wy — zin = 2(w: — w3) . Since Dy = €, — D», the power of Dy
is zuy — (zwz — zwa) = 2(wy — ws -+ wy) . Thus the power of each class of Pra
is an integral multiple of 2. By induction this statement becomes true for all Px ,
in particular for P, . Since z > 1, the classes of P,_, do not consist of just one
element which is a contradiction, We conclude that £ and, thus, » — ¢ are rela-
tively prime to n.

(b} Siatement (b) is known [3].

(¢} Let P consist of the classes NV Fand B as given in (¢} of the statement
of the theorem. Two possibilities exist.

(i) Suppose that no input splits any of the N;* into two classes of Piyi.
In view of (b) and the fact that P,;; — P, consists of just two elements for each
8 & n — 2, there exists a smallest integer, call it 7, 7 > &, such that one of the
N/, say N¢, in P; is split by an input I into two classes F, and Fy in Pjyy .
Let H, and H be the two distinet, classes in P; such that I(F,) C Hyand I(F;) C
H, . Since P, is obiained by decomposing classes of P, there exist two classes,
say Hz:and H,, not necessarily distinet, in P, such that H, C Hyand H, C H,,
Then I(F,) € H; and I(F;) C H,. Since N;* is not split into two classes of
Pk.H , it follows that Hs = H;.ThenI(F;)U I(Fz) = I(F]_U Fz) = I(Ngk) g Hg, .
Since N:* is of power vy , 9 > e, and v > v — a4 , Hy must be of power v .
Thus H, must be one of the N, say N»*. Since H, and H; are subsets of N.*,
then N»* must have split prior to P, ; this is a contradiction. Hence this case
cannot oecur.

(i) There exists an input I which splits one of the N.*, say N, into two
classes, Cx and Dy, of Py . In what follows, we show that either Cy or Dy is
of power x; . A relabeiling then makes Ci of power 2, and thus D; of power
s — Tk .

Now there exist two classes Hy and H; of Py such that 1{Cy) © Hyand I(D;) ©
H: . Suppose that H; and H; are both of power », . Since Py 1 — P, has just two
elements, N,* is the only class in P, which is split into two classes of Py,
Combining this with the fact that z < v we see that for i = 5, I(N.*) = N ko
for some (1), with N, different for different 7. Clearly no Nt can be either
H: and H, . Hence there are only a(k) — 2 classes No,) and a(k) — 1 classes
N.*, which is a contradiction. Therefore at least one of the H,, say Hi, is of
power z; , i.e., is one of the R.%.

If z; = 1, then H, is of power 1, thus I{C;) and C; are both of power 1, so
that we are through. Suppose that x; > 1. Assume now that H, — I(C;) is
non-empty. We shall show that this assumption leads to a contradiction so

! By I~ is meant the inverse funetion of 1.
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that H, — I(C}) is empty, i.e., I(C;) = H, whence I{C)), thus C;, is of power
z: . Since H; — I(C:} is non-empty, it is of power less than z,. Hence F =
I''[H, — I(C:)] is of power less than z . Let H; be the class in P; containing
F and let G = H; — F. Since H; has at least z elements, G is non-empty. Since
I(F) = H, — I(C.) whereas no part of N5* maps into Hy; — I(Cz) , it follows that
H; = Ni*. As I''[Hq] = C.U F, G is not mapped into H, by I. Consequently I
splits H; as well as NJ*. This is a contradiction. Hence I{(Ci) = H, .

(d) Let P, consist of the classes N, @, and R/, as given in (d) of the
theorem. We proceed by induction. In going from P_; to Py, our induction yields
a set N3~ in P,_, which is split into Q,* and R." in P; .

(iii) Suppose that no input splits any of the N, into two classes of Prya.
An argument parallel to that given in (i) above yields a contradiction, so that
(iii) does not oceur.

(iv) Suppose that there exists an input I which splits one of the Nf, say
N, into two sets Cr and Dy of Piyq. By the corollary to lemma 1.3 and a re-
labelling if necessary, I(Ct) C Q.* and I(D;) € R.. Since C;U D; and QU R*
both are of power v, and since I is a permutation, I(C;) = Q. and I(D:) = R.".
Thus C; is of power x; and D;, of power v, — z; . Hence the induction is extended
and the theorem is completely proved.

Remarks. (1) The partititions P. of the machine in theorem 6.1 occur se-
quentially in the following manner. P, consists of two sets, one of power ¢ and
one of power n — ¢, each relatively prime to 2. By a relabelling if necessary we
may assume that # < n — £. P; is obtained by decomposing the class with n — ¢
elements into two classes of powers f and » — 2t respectively. This process is
continued until classes of powersfand n — wf = r < ! are obtained. The classes
of # elements then are decomposed (one at a time) into classes of powers 7 and
t — r = s respectively. When this is completed the classes with max (r, ), say
s, are decomposed (one at 2 time) into classes with » and s — r elements re-
spectively, The procedure in the previous sentence is then repeated, with s
replaced by s — r. This process is continued until at P, ; each class contains
just one element.

-(2) Theorem 6.1 is no longer true if the condition on P,_, is removed. For
example, let S be as follows:

New State
Present State Present State Qutput
Input ¢ Tnput 1
q gz g2 41 1
qz qs qa ga 1
] e gl qa 0
N gs qs Qa 0
] ds de 75 0
as aQ f qe 0

(g1, g2), {qs, @4, G5, q-)}; P, {(ql), (g2), (q8), (g1, Q4, {h)];

P:[ = { =
Py = {g), (@), (ga), (g0), (qu, @)} Pa = {(q0), (ga}, (@), (g0, (gv), (go}}.
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As a corollary to theorem 6.1 we have

8. GINSBURG

TuEoREM 6.2. Let S be a distinguished (n, m, p) permutation machine such
that P, has exactly n — 1 classes. Furthermore, suppose that. there exists one and
only one state, say q., whose outpul is U. Then for each positive inleger k < mn,
the partition Py consisls of k classes of exactly one element and one class of n — k

elements.

The proof is obvious since the condition about U7 means that one of the classes

in P; contains precisely one element,

Remark: Theorem 6.2 is no longer true if the hypothesis on 8 being a permu-
tation machine is removed. For exampie, let S be the following machine:

New State
Present State Present State Qutput
Input & | Input t
3} o g2 [/ 1
g qs s q2 0
% e o s 0
] 9z q1 g4 0
Qs gz 3] qs 0
Then
P = {{q0), (g2, @5, 25, 29 }; = {(aq), (g2, 3), {qs, 20} };
Py = {(g1), (g2, (9), (g0, a9)}; = {(a0), (gn), (95), (g0, (go)}.
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