
The Complexity of Probabilistic Verification

COSTAS COURCOUBETIS

Uniuers@y of Crete, and ICS, Farth, Heraklion, Greece

AND

MIHALIS YANNAKAKIS

AT& T Bell Laboratories, Murray Hill, New Jersey

Abstract. We determine the complexity of testing whether a finite state, sequential or concurrent

probabilistic program satisfies its specification expressed in linear-time temporal logic. For
sequential programs, we present an algorithm that runs in time linear in the program and

exponential in the specification, and also show that the problem is in PSPACE, matching the
known lower bound. For concurrent programs, we show that the problem can be solved in time

polynomial in the program and doubly exponential in the specification, and prove that it is

complete for double exponential time. We also address these questions for specifications de-
scribed by co-automata or formulas in extended temporal logic.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program Verification; F.2.2
[Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems-
cornplexity of proof procedures: F.3. 1 [Logics amd Meanings of Programs]: Specifying and Verifying
and Reasoning about Prograrns-rnechanical ~erification; G.3 [Discrete Mathematics]: Probability
and Statistics–probabilistic algorithms

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Automata, EXPTIME-complete, Markov chain, model
checking, probabilistic algorithm, PSPACE-complete, temporal logic

1. Introduction

It has been realized that randomization may lead to algorithms with better

complexity than deterministic ones, or even allow for the solution of problems

(especially in distributed computation) that cannot be solved deterministically.

Verifying properties of these algorithms is in general harder than for the

deterministic ones since the effects of randomization are sometimes nonintu-

itive and difficult to grasp. These observations provide the motivation for the

development of formal methods and tools for the verification of probabilistic

Authors’ addresses: C. Courcoubetis, University of Crete, Heraklion, Greece; M. Yannakakis,
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974-2070, e-mail:

mihalis@research. att.com

Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that copies ale not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is
given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, reqmres prior specific permission and/or a fee.

Q 1995 ACM 0004-541 1/95/0700-0857 $03.50

Journal of the Assockikm for Computing Mach~nery, Vol 42, No 4. July IYY5, pp X57–Q07

858 C. COURCOUBETIS AND M. YANNAKAKIS

programs, and explain the flurry of activity in the last several years in the area

of probabilistic verification.

In traditional program verification. one must first define the formal specijlca-

tion of the program. A simple language for specifying temporal requirements

on the computations of programs is temporal logic introduced by Pnueli [1981].

There are two types of temporal logic: linear and branching time. In this paper,

we will be concerned with linear-time temporal logic. To verify a program, one

specifies the desired properties of the program by a formula in this logic. The

program is correct if all its computations satisfy the formula.

In its generality, an algorithmic solution to the verification problem is

hopeless. Things become more manageable for finite-state programs, in which

the variables range over finite domains [Clarke et al. 1983; Queille and Sifakis

1982]. There is a number of communication and synchronization protocols that

are in this category. In this case, state properties can be described by atomic

propositions. and the specification can be written as a formula in propositional

temporal logic. Checking that the program is a model of its specification can be

done algorithmically.

A number of papers in recent years examine the extension of model

checking to probabilistic programs. In the context of probabilistic programs,

the notion of correctness needs also to become probabilistic: a program is

correct if almost all computations satisfy the specification, that is, the specifica-

tion is satisfied with probability one [Hart and Sharir 1984; Lehman and Shelah

1982]. Concurrency introduces a degree of nondeterminism, for example, due

to the asynchronous execution of processes. In this case, the program is correct

if it meets the specifications with probability 1 even under a worst-case

scenario [Vardi 1985: Pnueli and Zuck 1986] (we define formally the model in

the next section).

In this paper, we show the following results:

(1) Testing if a (finite-state) sequential probabilistic program satisfies its
linear temporal logic specification can be done in time exponential in the size

of the specification and linear in the size of the program; also in space

polynomial in the specification and polylogarithmic in the program. The exact

probability that the program satisfies the specification can be computed in time

exponential in the specification and polynomial in the program.

(2) Testing if a concurrent probabilistic program satisfies its specification is

hard for doubly exponential time, and can be solved in time doubly exponential

in the specification and quadratic in the size of the program.

We note that as a rule, programs tend to be large, and specifications tend to

be short. The previously known lower bound for Problem 1 (the sequential
case) was PSPACE-hardness [Vardi 1985], and for Problem 2 (the concurrent

case) was EXPTIME-hardness [Vardi and Wolper 1986]. Thus, Problem 1 is

PSPACE-complete as in the nonprobabilistic case [Clarke et al. 1983]. The

previous upper bound in the general case was triply exponential time for both

problems (double exponential space for Problem 1) [Vardi 1985]. (This refer-

ence contained also a “shortcut” that would lead to a double exponential
algorithm; however, the author found subsequently an error in this part

[M. Vardi, private communication].) For a restriction of the logic, Pnueli and

Zuck [1986] and Vardi and Wolper [1986] give different algorithms that run in

single exponential time (for both problems). The restricted logic has the same

The Complexity of Probabilistic Ver#i,cation 859

expressive power as the standard temporal logic; the problem is that the known

methods for translating from the full to the restricted logic are nonelementary.

There are two basic approaches to model checking: the tableau-based

[Clarke et al. 1983; Liechtenstein and Pnueli 1985] and the automata-theoretic

[Wolper et al. 1983]. For the sequential case, we use a different and very

intuitive technique: We modifj the probabilistic program in a step-by-step

manner and at the same time simplify the temporal formula, until it becomes a

simple propositional formula, at which point the verification problem becomes

trivial. This technique also allows us to perform a quantitative analysis of

sequential programs, that is, compute the exact probability of satisfaction.

For the concurrent case, we use the automata-theoretic approach. From a

formula, one can construct an exponentially larger 0-automaton on infinite

words (a so-called Buchi automaton [Buchi 1962]), which accepts the computa-

tions that satisfy the formula. SuchI automata are strictly more powerful than

linear-time temporal logic and earn also express significant extensions of it

[Wolper 1983], at a higher, but still single exponential cost. From a formula ~,

one can construct an automaton for either f (i.e., accepting the good computa-

tions) or for 1 f (accepting the bad computations) at the same cost. It is more

convenient to work with the latter automaton, and solve the probabilistic

emptiness problem: Decide whether the set of computations of the program

that are accepted by the automaton has probability O.

The difficulty of the problem for automata stems from their nondeterminism.

If the automaton is deterministic, or even “almost” deterministic (in a well-

defined sense, see Section 4.2), the probabilistic emptiness problem can be

solved in polynomial time [Vardi ancl Wolper 1986]. Determinizing w-automata

is highly nontrivial. There have been several constructions and proofs over the

last 20 years,l which tend to be very complex and increase the size by two or

three exponential. Furthermore, deterministic Buchi automata are strictly less

powerful than nondeterministic, so tlhat one has to go to a more general type of

co-automaton. We show that “almost” deterministic Buchi automata (in the

above sense) are equivalent to nondeterministic, and provide a simple con-

struction of complexity 20(”). Essentially the same construction has been

obtained independently by Safra [1 !)88], where he also presents a fU deter-

minization construction to a Rabin-type o-automaton with complexity 20(” ‘“~”)

[Safra 1988]. (The “almost” deterministic Buchi automaton suffices for our

purpose.)

Finally, we generalize our results 10 the extended temporal logics introduced

in Wolper [1983] and Wolper et ;al. [1983]. These logics use automata as

temporal connective. They combine the expressive power of automata with the

succinctness of the standard temporal logic.
The rest of this paper is organized as follows: In Section 2, we give the

necessary definitions (temporal logic, automata, and the model of probabilistic

programs). Section 3 examines the verification problem for (the standard)

temporal logic. We give an algorithm for the sequential case, and prove the

lower bound for the concurrent case. In Section 4, we study the problem for

o-automata. For sequential probabilistic problems, we show how to solve the
probabilistic emptiness problem, and also how to perform quantitative analysis

1For example, see McNaughton [1986], Buchi [1973], Choueka [1974], Rabin [1972], and Vardi
[1985].

86(I C. COCIRCOUBETIS AND M. YANNARAKIS

(compute the exact probability of satisfaction). For the concurrent case, we

describe the semi-determinization construction reducing the emptiness prob-

lem to the “almost” deterministic case. In Section 5, we combine and extend all

the techniques to generalize the results to the Extended Temporal Logic.

Finally, in Section 6, we summarize our results and reflect on the different

proof techniques that we used to obtain them.

2. Backgroluwl

~. 1. TEMpORAL Lotilc, We review the basic definitions of linear time propo-

sitional temporal logic (PTL) as defined in Gabby et al. [1980] and Pnueli [1981].

Formulas in PTL are built from a set Prop of atomic propositions using

Boolean connective, the unary temporal connective X (next), and the binary

temporal connective U (until). The formulas in PTL are interpreted over

computations. Informally, a computation is an infinite sequence of states, where

in each state every atomic proposition has a truth value, that is, is true or false.

(In this context, finite computations are viewed as staying in their final state
forever.) Formally, a computation is a function T: N ~ 2 “(’P from the set of

natural numbers (denoted by a boldface N) to the set of truth assignments for

the set Prop of propositions; at each time instant (natural number) i ● N a

proposition p = Prop is true in the computation m iff p ● m(i). For a

computation n and time instant i = N. we define the satisfaction of a formula

~ by T at instant i (denoted n, i 1= f) inductively on the structure of ~ as

follows:

—v, i I=p for p ● Prop iff p ● m(i).

—m-, ik[&$iffn, ik~ andn-, il=~.

—n, il=-@iff not7r, il=~.

—7r, i* X@iffn, i+ll=q5.

—n, it=~U~iffforsomej >i, mjl=j!t and forallk, i< k<jm, k+f.

We say that a computation n satisfies a formula ~, denoted n- % +, iff

Tr, ol=c#L

A computation T can be viewed as an infinite word over the alphabet
~ = ~1’111/1

. Each temporal logic formula ~ viewed as an acceptor of infinite

words, defines a language ~0,(~) over 2 = 2P’”P; namely, Lti(~) is the set of

all computations T that satisfy ~.

2.2. AUTOMATA ON INFINITE WORDS. Let Z be a (finite) alphabet. The set

of finite words over > is denoted as 2*, and the set of infinite words as Z‘.

A (transition) table is a tuple r = (Z, S, p), where Z is the alphabet, S is a
finite set of states, and p: ,S x Z + 2‘ is the transition function. A state is

deterministic if I p(s, a)l < 1 for all letters a = ~; the table T is deterministic if

all the states are. We can think of a table J as a directed graph, which has S as

its set of nodes and whose arcs are labeled by letters of the alphabet Z; the

graph has an arc from a node s to a node t labeled by the letter a = 2 iff

t ● p(s, u).

A run of the table ~ over a finite word w = a, “.” a. over Z is a sequence of

states s = Sfl, s,l such that s, ● p(s, ~, a,) for 1 s i < n. The transition

function p can be extended to Z* in the standard way: if w e Z* is a finite

word and s, t are two states, then t G p(s, w) iff there is a run over W’ that

The Complexity of Probabilistic Veti.cation 861

starts at state s and ends in state t.The transition function can be also

extended as usual to sets of states: if Q is a set of states and w = 2* a finite

word, then p(Q, w) = U,. ~ p(s, w), A run of a table ~ over an infinite word

w = a,al .”0 is an infinite sequence of states s = SO,SI, . . . such that s, e

P(S, _ 1, al) for i > 1. For an infinite run s, the set inf(s) is the set of states that
occur infinitely often in s, that is, inf(s) = { LII I{i: s, = u} I = ~}.

For a table ~ = (2, S, p), we denote by det(~) = (Z, 2s, p’) the deterministic

table that results from applying the usual subset construction to I-; table def(~)

has one state for every subset Q G S of states of ~, and its transition function

p’ maps a set Q and a letter a G Z to{ p(Q, a)} where P(Q, a) = U, ~ ~ P(S, a).

For a state s, we denote by det(~, s) the restriction of det(~) to the states that

are reachable from {s}; that is, det(~, s) includes only those subsets Q c S for

which there is a word w E 2* such that Q = p(s, w).

An w-automaton A consists of a table TA = (~, S, p), a set of starting states

SO G S, and an acceptance condition. The automaton is deterministic if r is

deterministic and ISOI = 1. In the usual automata on finite strings, acceptance

of a run is determined by the final state of the run; in the case of o-automata

and infinite runs s, acceptance is determined by its infinity set inf (s). There are

several ways in which one can specify which infinity sets are accepting and

which ones are not. The simplest one is the Buchi acceptance condition. A

Buchi automaton A = (r~, SO, F), F c S, is an co-automaton with the following

acceptance condition. Automaton A accepts an infinite word w if there is a

run s of ri over w such that s starts with a state in So and repeats some state

of F infinitely often, that is, irz~(s) 1~ F + @. We define as I,@(A) the set of

infinite words accepted by the w-automaton A. Nondeterministic Buchi au-

tomata accept exactly the ~-regular languages; deterministic Buchi automata

accept a proper subset.

There is an important result relating Buchi automata and temporal logic

formulas viewed as language acceptors. In Emerson and Sistla [1983] and

Wolper et al. [1983], it is proved that given a PTL formula ~ of length n over

the set of propositions Prop, one can build a Buchi automaton A+ on the
alphabet ~ = 2 ““P such that L (xlo) is precisely the set La(o), and A+ has6J
at most 2°(”) states.’

2.3. PROBABILISTIC PROGRAMS. Our model of a sequential probabil-

istic program is a finite state Markov chain as in Hart and Sharir [1984],

Lehman and Shelah [1982], and Vardi [1985]. A Markou chain M =

(X, A, {pUWl(~, w) ~ A}, {PO(ZJ)ILI c X}) consists of a set X of states; a set
A c X x X of transitions (arcs); an assignment of positive transition probabili-

ties p,,W to all transitions (u, w), so that for each state u, the sum Z,,, ~ Y p, ~ is
equal to 1 (the pairs (z’, w) that are not in A are considered to have their

corresponding transition probabilities puW equal to 0); an initial probability

distribution pO on the states such that Z,, ~ ~ po([) = 1. We will often view a

Markov chain M as a directed gralph (X, A) whose arcs are labeled by the

transition probabilities. An infinite sequence of states X = X(,, Xl, . . . is called

a trajectory of the Markov chain. Typically, we will use a boldface capital letter

such as X, Y to denote a trajectory, and use the corresponding subscripted

reman letter X,, ~ to denote the ith element of the trajecto~.

A Markov chain M induces a stochastic process {X., n = O, 1,... } taking

values from the set X of states of M, such that the distribution at time n = O

862 C. COURCOUBETIS AND M. YANNAKAKIS

(i.e., the distribution of the random variable X(l) is given by pr,. and the
distribution of X. for any n >0 conditioned on the entire previous history

xo,.,,, xn_, is equal to the distribution conditioned on the previous state

,,_, (this is the so-called Mai-kov property) and is given by the transitionx

probabilities; that is, for any ~, w E X, the probability that X. = w given that

x }1—1= [is p,, W. More formally, there is a probability space (X‘, F, 1’~~)

defined on the set XW of trajectories. The family of measurable sets F is the

Borel field generated by the basic cylinder sets C(x), x = X*, where C’(X) is the

set of trajectories X with prefix x. The measure Pkf is defined on the basic

cylinder sets (and can then be extended uniquely to the rest of F) as follows:

Pkf(c(xox, ““” x,,)) = po(x(])p.,,,.,, ““” P.t,j ,,,,. For more background on probabil-

ity theory and Markov chains, we refer the reader to Breiman [1968] and

~emeny et al. [1976].

Let Z be the alphabet of a specification. In the case of a temporal logic

specification (a PTL formula) ~ over a set Prop of atomic propositions, X is

the family 2 ““P of all subsets of Prop; in the case of a specification given by an

co-automaton, 2 is the alphabet of the automaton. Our model of a sequential

probabilistic program is a pair (M. V) consisting of a Markov chain M with a

finite state space X and a function K X ~ 2 that associates with every state

of the chain a letter from ~: if Z is 2 ‘“ “P, this function associates with every

state the set of propositions that are true in th~t state. We call V the l)aluution

function, If X = X(,, Xl,... is a trajectory of M, then its [aluation V(X) is the

sequence W X,l), V(X1), ..., an infinite word over 1. We will say that X

satisfies a specification given by a PTL formula ~ (or automaton A) if its

valuation V(X) is in the language LO(~) (respectively, L,ti(A)) of the specifica-

tion, as defined in Subsections 2.1 and 2.2. In Vardi [1985], it is shown that for

any PTL formula f’ and w-automaton A, the sets of trajectories {X ● XU IV(X)

E LW(~)} and {X E X“IV(X) G LW(A)} are measurable. We will use Pi~(Lw(f))

and P&, (LW(A)) to denote respectively the measures of these two sets. That is.

PJ, (Lo(f)) (respectively, P~(LW(,4))) denotes the probability that a trajectory

of the Markov chain M satisfies the specification ~ (respectively, A).

A concurrent program is modeled by a finite state concurrent Markov chain

as in Vardi [1985]. Informally, this is a Markov chain augmented with ncmde-

terministic states. When the chain is at a randomizing state, a transition is

chosen randomly according to a probability transition matrix; when the chain is

at a nondeterministic state, a transition is chosen by a scheduler, possibly

depending on the histo~ of the chain. Formally, a conczm-ent Markol’ chai~t

M = (IV, R, A,{p,,JLI G R,(z), w)) = .4}, {p~,(~))lc e X}) consists of a finite set

X of states, which is partitioned into a set N of izoizdeterz~zi~zi.~tic and a set R of

m~zdo~~zising states: a set A L X X X of transitions (arcs): an assignment of

positive probabilities to transitions coming out of randomizing states. so that

the probabilities on the transitions coming out of each randomizing state
L] ~ R sum to 1; an initial probability distribution p“ on the states, again

summing to 1. A scheduler is a function u: X ~ x N + X such that for all
o- = X* and L) G N, the image U(m, L}) = }V has the property that (L, III) G xl.

For each scheduler u, we can define a probability space (X’”, F, Phi,,<) on the

set of trajectories X ‘“ of the concurrent Markov chain M as follows: The set F

is again the Borel field generated by the basic cylinder sets C’(x), x E A’* (it

does not depend on the scheduler). The measure Pkf,,, is defined on the basic

cylinder sets (and can then be extended uniquely to the rest of F) as follows:

The Complexity of Probabilistic Verification 863

PM,,, (C(X” X1 ““” X,l)) =p(l(xo) “ql ““ q~> where q, =P.,,_,~, if xi-l E R, q, = 1

if xi_l E IV and LL(.XflXl ““” x,-z,xl. ,) =xl, and q, = 0; otherwise, (if .x_l =N
and LL(XOXI ““” x_Q,x_[) # x,). Clearly, if the set N of nondeterministic
states is empty, then a concurrent Markov chain reduces to an ordina~

Markov chain.

As above, let X be the alphabet of a specification. Our model of a concur-

rent probabilistic program is a pair (M, V) consisting of a concurrent Markov

chain M with a finite state space X and a valuation function V X ~ 2 that

associates with every state of M a letter from 2. For any scheduler Lf and any

PTL formula f or Buchi automaton A, the sets of trajectories {X ● X“IV(X)
● LO(f)} and {x = X@\ V(x) ~ LO(A)} are again measurable [Vardi 1985]. We

use PL~,,,(Lo(f)) (respectively, P~~,,, I(LO(A))) to denote the probability that a
trajectory of M under the scheduler 24 satisfies the specification f (respec-

tively, A).

We say that a sequential probabilistic program satisfies a formula f if

P~(LO(f)) = 1. A concurrent probabilistic program satisfies f if for all sched-

ulers u, P~f ~(Lw(f)) = 1.We have the analogous definitions for automata

specifications.

2.4. GRAPH-THEORETIC TERMINOLOGY. We will view automata and Markov

chains as directed graphs with labeled edges. We assume familiarity with basic

graph theoretic techniques and algorithms. We mention here some of the basic

terms that we will be using.

A directed graph consists of a set of nodes and a set of arcs (or edges). If
u + L) is an arc from u to [’, then we say that [~ is an immediate successor of 11,

and u is an immediate predecessor of L’. If there is a path from node u to node

l), then we say that u can reach u, that LL is an ancestor of v, and that 1’ is a

descendant of Lt. A graph is strongly connected if every node can reach every

other node.

A strongly connected component (or S.C.C. for short) of a graph is a maximal

subgraph that is strongly connected. The nodes of a graph can be partitioned

into strongly connected components. Depth-first-search is a classic algorithm

for finding the strongly connected components of a graph with time complexity

linear in the number of nodes and edges of the graph (see, e.g., Aho et al.

[1974]). An S.C.C. is triuial if it consists of a single node and contains no edge;

otherwise, it is nontliL’ial. An S.C.C.C is a bottom S.C.C. if there is no arc coming

out of C, that is, the descendants of the nodes of C are themselves in C’.

3. Verifiing Temporal Logic Specifications

3.1. Smummw PROBABILISTIC PROGRAMS. We are given a PTL formula f

over a set of propositions Prop, and a finite state Markov chain M =

(X, A, {P,, W,I(L), w) = A}, {PO(L’)/ L’ = X}) with a valuation function Y X ~ 2p’Op
modeling a sequential probabilistic program. It is well known that for verifica-

tion purposes, the exact values of the probabilities are not important. Never-

theless, it is helpful to think in quantitative terms. The algorithm transforms

step-by-step the formula and the Markov chain, eliminating one by one the

temporal connective, while preserving the probability of satisfaction of the

formula. There are two transformations Cu and C’x corresponding to the two

temporal connective U and X. We start by describing first Cu.

864 C. COURCOUBETIS AND M. YANNAKAKIS

3,1,1. Construction CL,. Let @ U@ be an “innermost” temporal subexpres-

sion of ~; that is, a subexpression such that ~, @ are composed of atomic

propositions and Boolean connective, For each state of M and atomic

proposition in Prop, the valuation V specifies a truth value. Thus, we can

evaluate @ and + on each state of M. The construction C’c, produces a new

Markov chain M’ with valuation V’ and a new formula ~’ as follows.

We first partition the states of the Markov chain in the three disjoint subsets

X = X ‘~$ U Xho U X‘) according to the following rules:

(1) Assign to X~’~$ all states u satisfying ~ and to XNO all states satisfying

~ ~ and ---I$. Viewing the Markov chain as a graph, let H be the

subgraph induced on the remaining states satisfying ~ and -I +.

(2) Assign to X’vr) all states u of H such that H does not contain any path

from u to a state ~ that has a transition [’ ~ ~v in M to a state w satisfying

property +; in other words, it is impossible for Li to reach a state satisfying

* without passing first through a state that satisfies - @ and -4.

(3) Assign to X ‘Es all states u of H such that H does not contain any path

from u to a state LI that belongs to X’vo (by rule 2) or that has a transition
[~ }V in M to a state w satisfying 1 z# and 1 +.

(4) Assign to X‘ all the remaining states of H (i.e., that were not assigned by

the previous rules).

The interpretation of the above sets is that if a path starts from a state in

XYELY (respectively, X ‘o) then with probability one it will satisfy the formula

@U* (respectively, ~ (Z#ZUzj)), and if it starts from a state in X’ then both

events have nonzero probability. The following lemma proves these properties,

and also shows how one can compute the probability that ~ Uzj is satisfied

starting from each state u. Recall that pU,, denotes the probability of the

transition L{ + u.

LEMMA 3.1.1.1. Let qU denote the probability that ~ U+ is satisfied starting

from state lt. These pz-obabilities czzn be computedfiom the following linear system

of equations;

q,, = EPUL4L’> if u ~ x’:

q,, = o if u ●XNo.

This set of equations has a unique solution.

PROOF. We show first that q,, = O for all states u of X“”O and q,, = 1 for

all u c XYE$. Suppose that u was assigned to a set by rule 1. If u ● X ‘Es,
then z{ satisfies ~ and therefore all trajectories starting at u satis@ ~ U+. If
11 G XNO, then u satisfies m @ and m v and therefore all trajectories starting

at u satisfy -T (@ U+). Suppose that u was assigned to XNo by rule (2) and

consider a trajectory X starting at u. Either the trajectory stays forever in the

subgraph H, in which case it never visits a state satisfying t, or it exists H at

some point. in which case the first state that it visits outside H satisfies 1 @

and m ~, In both cases, the trajectory satisfies 7 (@ U@).

Suppose that u was assigned to X ‘Es by rule (3) and consider a trajectory X

starting at Lt. Almost surely the trajectory X reaches eventually a bottom

strongly connected component C of the Markov chain M and visits infinitely

The Complexip of Probabilistic Verification 865

often all the states of C. (This is a fundamental property of Markov chains that

we will often use; see, for example, Kemeny et al. [1976, Propositions 4.27 and

4.28].)Suppose that X never exits the subgraph H. Then C must be contained

in H. Since C is a bottom S.C.C. of M, no transition exits C and therefore the

states of C must have been assigned to X~O by rule (2), contradicting the fact

that u = XYES by rule (3). Thus, X must exit the subgraph H. Let u ~ w be

the first transition by which X exits H. From rule (3), it must be the case that w

satisfies ~ and therefore X satisfies @ U+.

Consider now a state u e X’. Since u satisfies @ and ~ *, a trajectory X

starting at u satisfies ~ U+ iff its suffix from the second state onward satisfies

@ U+. If the second state is 1, then the probability of this event is q,,.

Therefore, q,, = Z,. P,l,q,,, if u = X’.
Thus, we have shown that the probabilities q,,, LL G X satisfy the equations of

the lemma. It remains to show that they form the unique solution. Clearly, any

two solutions can only differ on X’. Consider two solutions a = (a,,)1,● r J and

b = (b,l)[, eY. Let T be the matrix of transition probabilities p,,,, restricted

to the rows and columns of X”. From the linear system, we have a – b =

T“(a– b).

Let us form a Markov chain M’ whose state space consists of X“ and an

additional absorbing state w. The additional state w has only a transition to

itself with probability 1. Every state u = X’ has the same transitions to other

states L’ c X’ with the same probability as in the original chain M: in addition,

if L1 has in M transitions to states outside X’?, then u has a transition in M? to

w with probability Z,, ~ ~ ~p,,,,. The state w by itself forms one bottom S.C.C. of

M?. We claim that this is the only bottom S.C.C. Assume that there is another

bottom S.C.C.C contained in X?. Then C is also a bottom S.C.C. in the chain M,

and its states should have been assigned to X~O by rule (2), a contradiction.

Thus, every trajecto~ of M’ starting at any state of X“ goes eventually to the

absorbing state w with probability 1. Let Tk be the kth power of the matrix T.

The ut entry of Tk is equal to the probability that a trajectory starting at state

u is after k steps in state L). Since the trajectory goes eventually to w (and stays

there) with probability 1, it follows that Iim ~ ~ ~ TA = 0 (for more details, see

Kemeny et al. [1976, Section 5.1, and in particular Proposition 5.3]). Since

a – b = T. (a – b), we have also a – b = Tk . (a – b), and taking the limit as

k tends to infinity we conclude that a = b. ❑

We describe the construction of the new chain M’ and a new formula ~’.

The new chain M’ has a larger state space X’ and is defined over the new set

of atomic propositions Prop’ = ProJo U {f} where $ is a new atomic proposi-

tion.

States of M’. For each u E X ‘h:s there is a state (LL, f) in M’. For each
u e x’v~ there is a state (u, ~ &). For each u = X7, there are two states

(u, g), (u, 1 $) in M’. A state (L1, $) satisfies all the atomic propositions that u
satisfies including the new atomic proposition $; (u, m $) has similar proper-

ties except that it does not satisfy f. The way we will define the transition

probabilities in M’ will give to a state (u, &) the following interpretation. The
distribution of the trajectories of M’ projected on the first state component

starting from (u, &) will be the same as the distribution of the trajectories of M

starting from u conditioned on the event that they satisfy @ U+.

866 C. COURCOUBETIS AND M. YANNAKAKIS

Tmnsitimls of M’. Every transition u + L’ in M implies one or two WUM-

tions in M’. The transition probability of (u, <1) ~ (t, fz), g, = ~, 1 ~, i = 1,2,

is defined as being equal to the probability that M starting from state u

transitions next to state t’ and from state L’ onward satisfies property $Z

conditioned on the event that in state u it satisfies property $1. (~ is the

property @ U ~ and ~ ~ is the property ~ (@ U+).) In more detail, we have the

following cases.

(1) Lf, L’ GxyEs ux~~ In this case, there is exactly one state (u, <l) with

first component u and exactly one state (L’, f?) with first component L’,

where ~, = t, 1 c, i = 1, 2 depending on whether u and c are in X“ELT or
XNo We include the transition (u, <I) - (L, <2) in M’ with probability

P,,,.
(2) 11 e x

YES u x~o, ~ G x’. Then there is exactly one state (u, <l) with

first component u (where $1 = $ or m ~), and two states with first

component L). We include the two transitions: (14, <1) + (Z, <) with proba-

bility p,,,, q,, and (u, <1) - (L’, 1 <) with probability pi, (.~, , where ijt, =

1 – q,,.

(3) 1[G x“. If L) G X“, we have two transitions: (u, ~) ~ (L’, $) with proba-

bility pl,,,q,/qZ, and (Lt, - <) + (L), m f) with probability p,,,, ijp/~U. If L) e

X “ES, we have only the transition (t{, f) - (L’, ~) with probability p,,u/qU,

and if u ● X~O we have only the transition (u. 1 ~) ~ (~, 1$) with

probability p,,,, /~L,.

Initial distribution of M’. Let po(u) be the probability of state u in the
‘Es u XNO, then in M’ we define po((u, $1))initial distribution of ill. If u c X

= PO(u), where (u, <l), ~, = ~ or 1 & is the unique state with first component
14. If 14 G X’, then po((u, &)) = pU(u)q,l and po((Lt, m <)) = ptl(u)~,t.

Let f‘ be the PTL formula with atomic propositions in Prop’ obtained from

f by substituting the new atomic proposition ~ in the place of @ U+. We shall

show that the probability that a trajectory of M satisfies the formula f is equal

to the probability that a trajectory of M’ satisfies the formula f‘.

Let g be the mapping of trajectories of M’ into trajectories of M by

projecting on the first component of the states of M’. Let X = X., Xl,... be a

trajectory of the Markov chain M, let X’ = X;, X;,. . . be a trajectory of M’,

and let Y = Y(), Yl, . . . be defined as the process I(= g(X~), i = O, 1, Note

that the processes X and Y both take values in X@. The following holds:

LEMMA 3.1.1.2. The processes X and Y kaLe the same distribution.

PROOF. It suffices to show that the two distributions agree on the basic

cylinder sets, that is,

Pkf(x” =x(,, ..., X,,l =Xm) =F’Af(Y,)= x”,.. .,Yn, =Xm)

for every m + l-sequence (.x O,..., x,.) = X’”+ 1 (see Breiman [1968]). We

prove this as follows: Let PL~(.xO,. . . . x,,,) denote P,Lf(XO = Xtl, X,. = x~)

and P~~,(x{l, ..., x~l) denote P~(X~ = x{), X~,l = XL), respectively. Observe
that if (L, <,), f, = f or 1.$, is a state of M’ and u is an immediate
predecessor of LI in M, then (t I, ~,) has exactly one immediate predecessor in

M’ with first component u: if 11 = Xy~s U XNO, then there is only one state

with first component u in M’; if u = X“, then the immediate predecessor of

(t’, $,) is (u, f,), that is, it agrees in the second component. Therefore, starting

The Complexity of Probabilistic Verification 867

from a state XL = (x,,,, .$,) of M’ and proceeding backward, we see that M’
has a unique path x{, . . . x~,, whicf~ ends in x~m and has projection XO co. Xtil.

From the definition of the initial distribution and the transition probabilities of

M’, it is easy to check that, if <I = ~ then F’~f(x~,. . . . xL) = P~(xO, Xnl)q. ,

and if g, = 1 &, then p~(x{l, x~,,) = P~(xo,. . . . x,~)~,n,.
,,1

The claim follows now easily from these observations. If x,. = X ‘Es u X~O,

then there is only one prefix xi . . . XL of trajectories of M’ that projects to

X() ““” X,m, and P~,(YtJ = x,), ..., yn ‘= x,,*) = PA1l(x:),..., x:n) = Pkf(xo,..., x,n).

If Xn ● X“, then there are two such prefixes, one ending at (x~, g) and the

other ending at (x,,,, 1 &), and again PM,(YO = x“, y,, = X,n) =

plf(xo,.. .,x,~). ❑

LEMMA 3.1.1.3. A trajectory X’ of the Markol chain M’ satisfies with proba-

bility one the following property: at each time k >0, ~ is a simple proposition

satisfied in state X; iff X;, X; ● ~,. . . satisfies the formula ~ U #. (In other words,

(~ U+ = ~) holds at all times in all trajectories of M’ with probability one.)

PROOF. It is enough to show that starting at any state of the form (u, $) a

trajectory X’ satisfies with probability one the formula @ U@, and starting at

any state of the form (u, n &) it will satisfy with probability one the negation of

the above formula.

Case (a). Initial state (u, ~ $), L{ G X~O. Consider the subgraph G ~ of

J/I’ induced on the states whose first component is in XNO. This subgraph is

identical with the subgraph of 114 induced on the states of XNO and has the

property that all transitions (in JZ’) out of G] occur on states of G, satisfying

-T @ and -T +. Furthermore, by construction all states in GI satisfy ~ +. If our

initial state satisfies 7 ~, 7 +, the formula 7 (@ U*) is satisfied trivially. If we

start at a state satisfying @ and 7 ~!, then with probability one any trajectory

X’ of M’ will either not exit G, and will remain in a bottom strongly connected

component of G, whose states sal isfy @ and 7 ~ or it will eventually hit a

state satisfying 7 @ and --I *. In eitlher case X’ satisfies 1(@ U+).

Case (b). Initial state (u, ~), u = Xy~s. Consider the subgraph Gz of M’

induced on the states whose first component is in Xy~s. This subgraph is

identical with the subgraph of M induced on the states of Xy~s and has the

property that all transitions (in the graph of M’) out of Gz occur on states of
Gz satisfying ~. Furthermore, by construction all states in Gz satisfy @ and

1 # or satisfy 4. An important observation is that there is no bottom strongly
connected component in G1 consisting of states satisfying ~ and 7 + since by

the construction C’u such a component would be part of G ~. If our initial state

satisfies ~, the formula @ U+ is satisfied trivially. If we start at a state

satisfying @ and T +, then with probability one any trajectory X’ of AZ’ will

eventually hit a state satisfying @ and will hence satisfy @ U+.

Case (c). Initial state (u, .f) or (u, ~ &), u = X’. Consider the subgraphs

G~ and G~ of M’ induced on the states (u, <) and (u, ~ ~) respectively, where

u = X9. By the construction C ~ these subgraphs are identical and they do not

contain any bottom strongly connected component of M’ since such compo-

nents would be already in Cl. Also all transitions out of GJ are into states in
G? and all transitions out of G1 are into states in GI. Consider a trajectory X’

starting in G3. This trajectory will with probability one eventually hit a state in

G2 with all previous states in G3. Since all states in G3 satisfy @ and ~ @ and

868 C. COURCOUBETIS AND M. YANNAKAKIS

starting at G2 almost all trajectories satisfy @ U ~, it follows that X’ also

satisfies @ U Y with probability one. For a similar reason any trajectory starting

at GJ will satisfy 1 (~ U@) with probability one. ❑

We can show now that the transformation Cl, preserves the probability of

satisfaction.

PROPOSITION 3.1.1.4. F’L,((~{,,(~)) = ~k,(~(ti(~’)).

PROOF. Since X and Y have the same distribution h follows that ~hf(~m(~))

= ~~f(~~(~)). Since (+ U* = ~) holds at all times in all trajectories of M’

with probability one, it follows that F’k((Lu(f)) = P~(LW(~’)), and the proof is

complete. ❑

We will describe now the transformation C ~ for the X connective. The

construction of M’ proceeds in similar steps as ‘in the case of CU. Let X4 be

an “innermost” temporal subexpression of ~; that is, a subexpression such that

@ is composed of atomic propositions and Boolean connective. We can

evaluate ~ on each state of M. The construction C’x- produces a new Markov

chain M’ and a new formula ~’ as follows:

3.1.2. Construction C.Y. We first partition the states of the Markov chain

into the three disjoint subsets X = XY~’$ U XNO U X’ defined as follows:
XY~s contains all states u for which all transitions are into states satisfying o,

and X~O contains all states for which all transitions are into states satisfying

T ~. A state in X’ has transitions to states satisfying @ and to states satisfying

~ ~. As in the case of the Until operator, the interpretation of the above sets

is that if a path starts from a state in X ‘Es (respectively, X‘0), then with

probability one it will satisfy the formula X+ (respectively, 1 X@), and if it

starts from a state in X’ then both events have nonzero probability.

Let pU, denote the probability of the transition u ~ L’, and let q{, denote the

probability that X+ is satisfied starting from state L1. These probabilities can

be computed from the equations qU = Z,, p,,,,, where the sum ranges over all

successor states u of u satisfying property I#J if u G X‘. Otherwise, q,, = 1 If
11 E xy~s, q,, = 0, if u = XNo.

The new chain M’ has a larger state space X’ and is defined over the new

set of atomic propositions Prop’ = Prop u { <}, where ~ is a new atomic

proposition, as follows:

States of M’. They are similarly defined as in the construction Cu.

The way we will define the transition probabilities in M‘ gives to a state

(u, $) the following interpretation. The distribution of the trajectories of M’
projected on the first state component starting from (u, $) will be the same as

the distribution of the trajectories of M starting from u conditioned on the

event that they satisfy X@.

Transitions of M’. Every transition u ~ L’ in ~ implies one or two transi-

tions in M’. The transition probability of (u, $1) + (L’, f~), $, = <, 7<, i = 1, Q.

is defined as being equal to the probability that M, being at state U, transitions

next to state L’ and from state L) onward satisfies property (T, conditioned on

the event that in state u it satisfies property <1. (~ is the property X4 and 1<

The Complexi~ of Probabilistic Verification 869

is the property 7 X4.) In more detail, we have the following cases:

(1) Ll, L’ ● XYES u x~o Then M’ contains a unique state (u, ~1) with first

component u and a unique state (u, ~2) with first component ~). We

include in M’ the transition (u, &l) + (u, g2) with probability p,,,,.

(2) Lf CXYES uxNO, L) f= x?. Let (u, ~1) be the unique state of M’ with first

component u. We include two transitions: (u, ~1) + (o, $) with probability

PULLIL and (u, cl) + (~1, n ~) with probability p[, [,~(,, where ~,, = 1 – q,,.
(3) u G X’. If L’ G X7 and u satisfies ~, we have two transitions: (u, ~) +

(~), g) with probability pUCqL,/ql, and (u, g) + (~, ~ g) with probability
pU,,QC,/qL,. If L1=X’ and LI satisfies ~ ~, we have two transitions: (u, ~ ~)

+ (z’, g) with probability p q /~ and (u, - g) + (~J, - g) with probabil-

ity P,,,q,/Z,,. If [1 G XyEi’fi >N~ and 1’ satisfies +, we have onlv the
transition (u, <) -+ (u, <2) with probability p,{ ,/q,,, where (~), ~2) N the

unique state of M’ with first component u, and if LI G X ‘Es U XNO and ~)

satisfies n ~ we have only the transition (u, ~ <) -+ (~), f2) with probabil-

ity PUL’/~U.

Initial distribution of M’. If u G ZX‘Es U XNO, then the unique state (u, Cl)
of M’ with first component u gets probability PO((U, f,)) = PO(U). If u G X’,

then po((u, <)) = po(u)q,, and po((u, A f)) = po(u)~U.

Let f‘ be the PTL formula with atomic propositions in Prop’ obtained from

f by substituting the new atomic proposition & in the place of X4. Then, the

claim of Proposition 3.1.1.4 holds in this case as well with the proof following

the same lines as in the case of Cu,

If f has k temporal operators, we can compute PL1(Lu(f)) as follows: We

apply k times the appropriate transformations C’u, C.Y in order to get the

sequence fl, M],..., fk, iWL, where ,fA is a simple propositional formula. Then

PM(Lw(f)) = PML(Lo(f k)),which is simply the sum of the initial probabilities

in &fk over all states satisfying fk.
In the remainder of this subsection, we will analyze the time and space

complexity of computing the probability that M satisfies f, and the complexity

of the simpler verification problem,, that is, testing if the probability is 1. We

measure the size If\ of a formula f by its number of Boolean and temporal

connective. For the verification problem we measure the size IM I of the

Markov chain M by its number of nodes and edges. For the problem of

computing the exact probability, we may either assume that the transition

probabilities of M are rationals and include in the size of M the space (in bits)

needed to specify the probabilities, or we may assume that the transition

probabilities are real numbers and use a model of exact real arithmetic.

For verification purposes, we only need to check that the formula fk is

satisfied by all initial states of the final Markov chain Mk (states with nonzero

probability in the initial distribution). It is clear from the constructions Cu and

Cx that the underlying graph of the chain M’ (the states and the transitions of

M’) depends only on the graph of M, and that the initial states of M’ depend

on the initial states of M. The central part in the construction of (the graph of)

M’ is the partition of the nodes of .A4 into the three sets XYE$, XN[) and X“.
Once we have computed this partition, the rest of the construction is straight-

forward. We show below how to compute this partition in the case of the Until

operator; the case of the Next operator is simple and is omitted.

870 C. C’OURCOUBETIS AND M. YANNAKAKIS

(1) Evaluate d and i// in every state of M. Assign evc~ state that sati4ies ~ to X ‘f~, and
every state that sat]sflcs 1 @ and 1 j!J to X’vo.

(~) f_~t H be the subgraph Induced by the states that satisfy @ and 1 z~. COIIIpUte the
strongly connected components (s.c.c.) of H.

(3) Process the S,C.C.’S of H bottom-up. For cvcv bottom S.C.C. D of the current graph H,

assign the states of D to one of the sets X} ’~’s, xNc~ or x‘ as follows, and then remove

D from the graph H. (NOTE: when a S.C.C. of H is processed. the nodes of all its
successors m the original graph H have been already assigned and removed from H.)

Ca,w 1. If there is no arc of M coming out of D (i.e., D is a bottom S.C.C.of AI’). or if
all such arcs go to states in .Y’No, then assign all the staks of D toX ‘“.
C(LW2. If there arc some arcs of M coming out of D and all of these arcs go to

state$ in x Yfi-’, then ~is5ign the states [>f D to XY~s.

Cme 3. Otherwise, tis~ign the states of D to X‘.

Let t be the number of connective in the subexpression q5U+ that is

eliminated. Then the size of the new formula ~’ is 1~’1 = 1~1 – t.Clearly, we

can perform Step 1 in time O(tl Ml). As is well known, the strongly connected

components of a graph can be computed in time linear in the size (number of

nodes and edges) of the graph (see, e.g., Aho et al. [1974]). Thus, Step (2) takes

time 0(IMl), and Step (3) can be also performed easily in linear time.

Therefore, we can construct the graph of the new chain M’ in time O(t IMl).
Since the elimination of each temporal operator doubles (at most) the number

of nodes and edges, the time needed to construct the graph of the final chain

ilfk is 0(21Jllfifl).z

We analyze now the space complexity. First, we will argue that we can

eliminate a temporal subexpression and construct the graph of the new chain

M’ from that of M using work space of 0(1~1 + logzl Ml) bits. Recall that we

can test whether there is a path from one node to another node in a graph with

m nodes in space O(logzm). Consider the elimination of a subexpression rj U+

from f’ (the case of the Next operator is again similar and simpler). First, we

have to determine the states of the new Markov chain M’. A state u of M

gives rise to a state (LL, <) of M’, iff u @ X’vo. To test whether this is the case,

first we evaluate @ and K at Lt. If u satisfies ~ or does not satisfy o, then we

can deduce immediately whether u is in X’vo or not. If u satisfies 4 and m V,

then we cycle through all the states ~, and for each state r we check if L’

satisfies ~, and if so, test whether there is a path from u to z through states of

H (that is, going through nodes that satisfy @ and 1 i)) in space logz IMI. To

test whether u gives rise to a state (u, 1 .$), that is, whether u @ X}’E$, first we

evaluate again @ and # at u. If u satisfies @ and 1 ~, then we cycle through

all the states L) of M, and for each state ZI we evaluate @ and @ at LI, check if
~, ~ x~~ (as described above), and test whether there is a path through H
from u to z; this can be accomplished also using space O(log2 IM l). The arcs of

M’ can be generated easily in the same space as the nodes.

Using these observations, we can write a recursive algorithm that gen-

erates the states and transitions of the final chain ML from M. Since the

depth of recursion is I~ I and the size of the Markov chain doubles every time,

the work space needed is proportional to 1~1(1~1 + log2(21~ll Ml)), that is,

O(lfl’ + Ifllog’lfill).

‘This time bound 1s under the un]form cost critcrlon. which is traditionally used for graph
algorithms. Under the logarithmic cost criterion there IS an extra logarithmic factor.

The Complexity of Probabilistic Verification 871

If we wish to compute the probability PJ~(LO(f)) that a trajectory of the

Markov chain M satisfies the formula f, then every time we eliminate a

temporal connective from the formula, we have to compute the initial distribu-

tion and the transition probabilities of the new Markov chain. This amounts to

solving a linear system of equations with dimension equal to the number of

states. Thus, the final Markov chain kl~ (including the probabilities) can be

constructed in time exponential in If I and polynomial in M. Summarizing, we

have:

THEOREM 3.1.2.1. We can test if a finite state probabilistic program M satisfies

a formula f in time 0(IM 12If), or in space polynomial in f and polylogarithmic in

M. We can compute the probabili~ of satisfaction PM (LO(f)) in time exponential

in f and polynomial in M.

The algorithm can be easily extended to handle the extension of temporal

logic with past connectiLes [Liechtenstein and Pnueli 1985]. There are two past

connective: the unary connective PreL’ious which is analogous to Next, and the

binary connective Since which is analogous to Until. Using the same tech-

niques, we can define similar transformations for these connective and derive

the same complexity bounds as in Theorem 3.2.1 for the logic that includes

both past and future connective.

3.2. CONCURRENT PROBABILISTIC PROGRAMS. Given a formula f and a

concurrent Markov chain M, we wish to determine whether M satisfies f, that

~, ,,(Lo(f)) = 1 for all schedulers u. We can do this as follows:is, whether P

We first construct a Buchi automaton A for 7 f, and then test if there is a

scheduler Lt such that PM ,,(L@(A)) >0 using the algorithm that we shall

present in Section 4.2. Each of the two steps contributes one exponential. The

size (number of nodes and arcs) of the automaton A is 2°(If I), and the

probabilistic emptiness problem for an automaton A and a concurrent Markov

chain M can be solved in time IMI z -2 ‘(141). Therefore, the overall time

complexity of the algorithm is IM I” .2 ‘0’1’1), doubly exponential in the size of

the formula and quadratic in the size of the program. We shall prove that the

problem requires double exponential time, 2Z’””) in the total size n of the input

(the formula and the Markov chain).

THEOREM 3.2.1. Determining whether a concurrent probabilistic program satis-

fies a formukz is complete for double exponential time.

PROOF. The reduction is from the membership problem for exponential

space-bounded alternating Turing machines [Chandra et al. 1981]. As is well

known, ASPACE(S(n)) = UC, ~ DTIME(c S(’)).

Let T be an alternating Turing machine working in space S(n) = 2’. We

assume without loss of generality that T has only one tape, which contains

initially its input x. Recall that an alternating Turing machine has four types of

states: existential, uniLersal. accepting, and rejecting. We assume without 10SSof

generality that the machine has two possible next moves from each existential
and universal state, and it halts when it is in an accepting or rejecting state. We

refer to the accepting and rejecting states as the halting states. Let ~ be the

tape alphabet, Q the set of states, and let A be r U (Q X 17); we call A the

872 C. COURCOUBETIS AND M. YANNAKAKIS

extended tape alphabet. As usual, a configuration of the machine is described by

a string Wf)wl “”” Wz,,. , of length 2“ over A, where w, = y E r if tape cell i

has symbol y and the tape head is at another cell, and w, = (q, -y) c Q X r if

in addition the head is at cell i and the state is q. From now on, when we refer

to the content of a tape cell in a configuration, we will mean the corresponding

symbol of the extended tape alphabet A. The type of a configuration (universal,

existential, etc.) is determined by the type of its state. A computation is a

sequence of configurations, starting from the initial one, where each configura-

tion follows from the previous one according to the next move relation of the

machine T. We assume without loss of generality that no computation repeats

a configuration; that is, all computations terminate with an accepting or

rejecting configuration within time Cs(n‘ for some constant c.

Computation by an alternating Turing machine can be viewed as a two-

person game between an existential player E and a universal player U. A

position of the game is a configuration of the machine, and the game starts

with the initial configuration. Depending on the type of a configuration

(existential or universal), player E or U moves choosing the next configuration
according to the next move relation of T. Player E wins if the final configura-

tion is accepting, and U wins if it is rejecting. The input x is accepted

(respectively, rejected) by the machine T if player E (respectively, U) has a

winning strategy starting from the initial configuration corresponding to x.

Given an alternating Turing machine T as above and an input x of length n,

we shall construct a temporal formula ~ and a concurrent probabilistic pro-

gram M, both of size O(n), such that T accepts x if and only if there is a

scheduler S for which PM, ,$(Lo,(f)) > O; that is, T rejects x if and only if M

satisfies the formula 1 ~. Before going into the details, we give a brief,

high-level description of the construction. Consider the verification problem as

a game between an indifferent probabilistic player P who chooses the transi-

tions out of randomizing states of the program M and a purposeful player S

(the scheduler) who chooses the transitions out of the nondeterministic states.
The formula ~ serves as the referee who checks that S follows the rules and

does not cheat, and decides who wins the game. A simplified version of the

program M is given below. Assuming that the scheduler S does not cheat, it

constructs the indicated configurations in the nondeterministic moves. The

goal of the scheduler is to have the program run forever.

repeat until a rejecting state of T is reached
nondetermimstically construct the initial configuration of T
lt,hile the state is not a halting state do
Lf the state is universal then choose probabilistically the next move of T

else choose nondeterministically the next move
nondeterminlsticallv construct the next configuration of T

The scheduler constructs a configuration by specifying the contents of each

cell. Figure 1 shows how a cell is specified. The graph of the figure starts with

n levels with two nodes at each level; a traversal through this part corresponds

to an n-bit number, the index of a cell in binary. The last level has one node

for each element of the extended tape alphabet A. For each 8 e A, we have an

atomic proposition, which for simplicity we denote also by 8; this proposition is

false at all nodes except for the node at the last level that corresponds to 8.

Consider the graph of Figure 1 with a back edge added from node c to node u.

The Complexi~ of Probabilistic

I
II

Verification

FIGURE 1

873

The scheduler constructs a configuration by going around this loop 2“ times,

specifying in order the contents of cell O, cell 1, ..., up to cell 2“ – 1.

In Figure 2, we show in more detail the concurrent Markov chain M. In the

initial distribution, node a at the top has probability 1, and all other nodes

have probability O. Each oval in the figure is called a block, and is a copy of the

graph of Figure 1, except for block 1[whose last level is slightly different, as will
be explained later. We will describe now how the program works assuming that

the scheduler does not cheat. It will be clear from this description which nodes

are nondeterministic and which are randomizing. All transitions out of random-

izing nodes have probability 1/2.

An iteration of the outer loop (closed by the arc c ~ a) corresponds to a

complete computation of the Turing machine T from the initial to a halting

configuration. In block I, the scheduler constructs the initial configuration.

(Thus, all nodes of block I are nondeterministic.) An iteration of the inner loop

(closed by the arc c ~ b) corresponds to a move from one configuration to the
next. First, in block O, the scheduler reproduces the current configuration (in

the first iteration of the inner loop, this is the initial configuration). In block

Cl, the probabilistic player P gives a random test to the scheduler S to verify

that S has not changed the contents. In particular, P specifies randomly the

index of a cell, and the scheduler is supposed to reproduce (in the last level of

Cl) the contents of that cell in the current configuration. Thus, in block Cl,

the entry node (node u of Figure 1) and the nodes of the first n – 1 levels are

randomizing, while the two nodes of the nth level are nondeterministic. If the
current configuration is universal, then S goes to node m, which is randomiz-
ing; otherwise, it goes to node mq which is nondeterministic. There are two

possible next moves of the Turing machine out of the current configuration,

874 C. COURCOUBETIS AND M. YANNAKAKIS

FIGURE?

and these two possible moves correspond to the two possible transitions out of

each of the nodes m ~, m ~. If the configuration is universal, then the probabilis-

tic player P chooses the next move at node m ~, and if the configuration is

existential, then the scheduler S chooses the next move at node mz. In block N,

the scheduler constructs the next configuration. In block C2, the probabilistic
player P gives a random test to S to verify that the new configuration conforms

to the next move relation of the Turing machine. Namely, as in the case of

block Cl, player P specifies randomly the index of a cell, and the scheduler is

supposed to reproduce (in the last level of C2) the contents of that cell as

The Complexity of Probabilistic Ve~ijlcation 875

specified in block N. In blocks Dl, lD2, D3, the scheduler reproduces from the

old configuration (block O) the contents of the cell indexed in C2 and its two

adjacent cells. Finally, if the new configuration is rejecting, then the scheduler

goes to the dead state d; if it is accepting, it returns to a to start a new

computation; otherwise, it returns to b.

The temporal formula f consists of several parts that check the honesty of

the scheduler. (Recall that S wants to satisfy f.) There are parts of f which

check that S obeys the following rules.

(1) The scheduler S constructs in each of the blocks I, O, N a configuration
cell-by-cell in order starting from cell O up to 2n – 1.

(2) In every execution of block I, the scheduler constructs the initial configura-

tion.

(3) Wherever S is supposed to reproduce the contents of a cell (in blocks
Cl, C2, D1, D2, D3), it does so faithfully.

(4) If the current configuration is universal, then S lets P choose the next move

(i.e., S goes to ml).

(5) If the index of the cell specified in block C2 is k, then the indexes in blocks
Dl, D2, D3 are k – 1, k, k + 1, respectively.

(6) The contents of the cell in block: C2 follow correctly from those of the cells
in blocks Dl, D2, D3 and the next move chosen at node m * or m ~.

(7) If the new configuration is rejecting, then S breaks out of the outer loop

moving to the dead state d, and if it is universal or existential then S

returns to b.

(8) Node a is visited infinitely often.

In the description off, we will use for simplicity in the notation also the two

unary temporal operators G (“always”) and F (“eventually”). These operators

can be expressed using the “until” operator. The formula F@ abbreviates

trueU~, and G@ abbreviates 7 F 1 ~. For every node of M there is an atomic

proposition that is true only at that node; for simplicity, we use the label of the

node to denote also this proposition. Part (8) is easy: the formula GFa states

that node a is visited infinitely often. We shall describe one by one the other

parts of f now.

Part (1). We describe it for block I; there is an analogous subformula for

blocks O and N. For each of the n +- 1 levels of the block there is a proposition

1, which is true for the nodes at level i and is false for all other nodes. We have

a proposition t,which is true for exactly one of the two nodes in each of the

first n levels of the block and is false for the other node (as well as the other

nodes of M). Every block of M has its own disjoint set of such propositions 1,

and t.When traversing a block, the choice of the node at level i represents a

truth value (true or false) for t that corresponds to the ith bit (1 or O) of the

index of a cell. Let u be the entry node of block I and ~) the exit node (refer to

Figure 1).

Consider the formula ~1 = G{a ~ [7 Uu]}, where i stands for m t. This

formula states that every time the path passes through node a, then all nodes it

meets until it hits u for the first time must satisfy i; that is, the first time

the scheduler traverses I it must choose the index 00 ”.. 0. The formula & =

G{ll + [(t Ul,l + ~) = (i2 Ub)l} states that, whenever the path is at level 1, two
subformulas have the same truth value. The first subformula tU1. + ~ is true iff

all bits of the index in this iteration of I are 1, and the second subformula ii Ub

876 C. COURCOUBETIS AND M. YANNAKAKIS

k true iff the path meets node b before U, that is, the path exits block I after

this iteration.

Finally, we have a formula ~j, which says that if one iteration chooses index

k, then the next iteration (if there is one) must choose index k + 1. The

formula ~~ is a conjunction of subformulas, each of which concerns one bit of

the index. For each i = 1, ..., n consider the formula G{(1, &i) -+ ([(11 V

f) lJl,, +, 1- X[i, U (11c%t)1)}.This formula says that, if in an iteration of I the
ith bit of the index is O. then two subformulas have the same truth value. The

first subformula (1, V t) Ul,, +, is true iff all the subsequent bits (i + 1,....n)

of the index are 1. The second subformula is true iff in the next iteration of I

the ith bit is 1. (The use of the next operator X can be avoided altogether; that

is, we could carry out the reduction using only the Until operator. However,

the construction is complicated enough as it is, so we will not go into this.) In a

similar way, we can construct a formula that forces the scheduler to choose the

correct ith bit in the next iteration of I (if there is a next iteration) in case the

ith bit in the current iteration is 1.
The conjunction of 41, oz. and ~~ forces the scheduler to specify a

complete configuration in block I as desired. There is an analogous formula for

blocks O and N.

Part (2). As we indicated earlier, the last level of block I differs from Fig-

ure 1. This level of I has n + 1 nodes w,, ..., w,, +,. The first n nodes represent

the first n symbols of the initial configuration (recall n is the length of the

input x), and node w.+, represents the blank symbol. Recall that we have a

proposition 8 for every element of the extended alphabet A; the proposition is

true at a node w, iff w, represents the symbol 8. The formula for Part (2)

consists of 1) a subformula ~1 stating that the first iteration of I visits node w ~,

2) a subformula YZ which states that if an iteration of I visits w, with

i < n + 1, then the next iteration visits W,+,, and 3) a subformula ~~ which

states that if an iteration visits w,, +,, then the next iteration (if there’ is one)
visits also W,l+,. These subformulas are easy to construct, For example, +2 has

foreachi= l,..., n a conjunct of the form G{w, - X[l~+, Uw, +,]}.

Part (3). We construct a formula g(1, Cl) which states the following: If we

compare any iteration of block I with the next execution of block Cl, they

either differ in one of the first n levels (i.e., in some bit of the index) or else

they agree in the n + Ith level (i.e., in the content of the cell). Recall the

propositions 1, and t for block 1, and let k, and s be the analogous proposi-

tions for block Cl. Suppose that the path is at the top node LI of I, starting an

iteration of 1. For i = 1, n, the ith bit of the index in this iteration is 1 if
and only if the formula g,(I) = j, U (1, & t) is true (at the present node u). The

ith bit of the index chosen in the next execution of Cl is 1 iff the formula

g,(Cl) = ~[U(kl &s) is true _(again at the present node u). Similarly, for each
8 = A, the formula g~(l) = /,, +1 U(j,, +l & 8) is true iff the symbol ~ is chosen
in this iteration of I, and ga(C 1) = k,,+, U (k,, + ~ & 8) is true iff 8 is chosen in

Cl. Let @,(l, Cl) = V,=l ,,,[g,(l) # g,(Cl)l. and OJI,C1) = %~~[gs(~) =
g,(Cl)l. The formula <(l’, Cl) is G{u ~ [0,(1. Cl) V 02(1, cl)]}.

There are analogous formulas <(0, Cl), g(O, Dl), g(O, D2), <(0, D3),

<(N, C2) for the respective pairs of blocks. There is also a corresponding
formula for blocks N and Cl, which contains on the right hand side of the

implication an additional disjunct ~ Ua besides 61(N, Cl) and 19J(N, Cl).

The Complexity of Probabilistic Verification 877

(Nodes a and b are indicated in, Figure 2.) That is, when the scheduler

constructs a configuration in block N, this configuration must agree with the

next execution of Cl (in the relevant cell), unless the path breaks out of the

inner loop visiting node a before nc}de b, which means that the computation of

the Turing machine terminates, and a new computation starts.

Part (4). Let rl,..., v~+l be the propositions corresponding to the levels of

block O. For each universal state q and each 8 = {q} x r we have a conjunct

G[(r,l,, & 8) -+ (n (ml V m2) Urn ~)]. We do not need an analogous subfor-

mula for an existential state because the scheduler S does not gain anything by

going to state m, and letting the probabilistic player P choose the next move,

when S could have chosen the move itself according to the rules.

Part (5). We have formulas stating that the index chosen in C2 is the same

as the index chosen in the next execution of D2, the index of D1 is 1 less than

the index of D2, and the index of D2 is 1 less than the index of D3. All

arithmetic is mod 2’*; that is, the successor of 110.01 is 00.’.0. We saw in Part

(1) how we can express in temporal logic the fact that one index is the
successor of another.

Part (6). We have one formula for every rule in the next move relation of

the Turing Machine. Such a rule has the following form: When the machine T

is at an existential or universal state q, the tape head scans letter a and the

first of the two alternative moves is chosen, then T prints ~, moves to state p

and shifts the head to the right. Suppose that the path is at node b of M

starting a new iteration of the inner loop. For each block B = C2, Dl, D2, D3

and each 8 G A, we can construct as in Part (3) a formula g8(B) which states
that the next execution of block B chooses symbol 8. Similarly, we can

construct a formula 11 which states that the next time the path reaches node

m, or m~ it takes the left branch (corresponding to the first of the two possible

moves from the current configuration). The formula corresponding to this rule

of T is the conjunction of the following three formulas:

{
G [~&w(q,a) (Dl)] + v [g,(~z) %,.,)(C2)]}

y=r

(Case 1: The tape head in cell Dl),

G([~&h@<q. a)(D2)] +gJc2))

(Case 2: The head in cell D2),

{
G [~&~t@(q,a)(D3)] + v [gJD2) &g,(c2)])

yer

(Case 3: The head in cell D3).

We include analogous formulas for every rule in the next move relation of the

Turing machine. In addition, there is a formula stating that if the head is not in

any of the cells Dl, D2, D3. then the content of the cell C2 is the same as that
of D2.

Although we could have treated the boundary cells (O and 2’* – 1) differ-

ently, note that this is not really necessary: Using arithmetic mod 2“ amounts

878 C. COURCOUBETIS AND M. YANNAKAKIS

to considering the tape of the machine as being circular rather than linear,

Since the machine does not use space more than 2“, it never attempts during a

computation to move the head right of the rightmost cell 2“ – 1, nor of course,

left of the leftmost cell; that is, the machine behaves the same way regardless

of whether the tape is linear or circular.

Part (7). Let y, be the propositions corresponding to the levels of block N.

For every 8 = Q x r, if the f@t component of 8 is a rejecting state we include

a formula G{[y~+ ~ & 8] ~ [(b &d) ud]}, and if it is a universal or existential

state we include a formula G{[y,, +, & 6] s [ii t-lb]}.

This concludes our construction of ~. Clearly, the formula ~ has size 0(n),

and also the program M has 0(n) nodes and arcs.

We shall show that T accepts the input x (i.e., the existential player E has a

winning strategy) if and only if there is a scheduler S such that Phl S(-LO,(f)) >
O.s The one direction is obvious: If T accepts x, then the scheduler plays

honestly simulating the Turing machine using the winning strategy of the

existential player. With this scheduler, every possible computation path of M

satisfies ~.

Suppose that T rejects x, that is, the universal player U has a winning

strategy. We shall show that for every scheduler S, the probability of satisfac-

tion is Pfif, S(I. U(f)) = O. Recall that every computation of T terminates within

t = c 2“ steps, for some constant c. Suppose that the trajectory X is at node a of

M (a new computation is starting). We claim that no matter what the scheduler

does, and independent of the past, with probability 2-z f the path will either not

return ever again to a or will have violated one of parts (l)–(7) of the formula

~ by the time it returns to a. That is, if E, is the event that X returns (at least)

once to node a and satisfies parts (l)–(7) of ~, then for every scheduler S the

~r,S(El) is at most 1 – 2-Z’. Consequently, for anyprobability of this event P
scheduler S, the probability of the event Ek that X returns at least k times to a

and satisfies parts (1)–(7) of ~ is PL1, S(EZ) s (1 – 2-2’)k, which ten& to O as k

tends to infinity. Since the trajectory has to pass through a infinitely often to

satisfy ~ (by part (8)), it follows that any scheduler S has zero probability of

satisfying ~.
So it suffices to show that P~l,~(E1) <1 – 2-Z’ for every scheduler S. Let D

be the set of trajectories X = XO, Xl,... starting from node a such that X

returns to a at some instant 1 and this initial portion a = XO, Xl of X

satisfies rules (1)–(7). By the construction of the formula ~, if a trajectory

violates one of these rules, then it does not satisfy the corresponding subfor-

mula of ~, Thus, El c D. Partition D into two sets: the set D ~ of those

trajectories X which simulate a computation of the Turing machine during the
initial portion a as we explained in the description of the concurrent Markov

chain M, and the set D2 = D – D, of the remaining trajectories of D, that is,

those in which the scheduler “cheats” in some way.

Consider a trajectory X = D ~. Its prefix a until the first return to a

simulates a computation of the Turing machine T. Since T rejects the input x,

the universal player U has a winning strategy, In every iteration of the inner

7In fact, in this construction there N a scheduler S for which the probability of satisfaction
P,t,, ~(LW(f)) is nonzero [f and only if there is a scheduler for which the probability is equal to
one, but this fact is not necessary for the theorem.

The Complexity of Probabilistic Verification 879

loop (move from one configuration to the next), if the current configuration is

universal and thus it is the turn of the universal player U to choose the next

move in the Turing machine game, then the probabilistic player P gets to

choose the next move in the game of the concurrent Markov chain (by rule 4)

and it has probability 1/2 of choosing the right move according to the winning

strategy of the universal player U. l[f P chooses the winning moves of U in all

the steps, then the final configuration will be rejecting and the trajecto~ will

not return to a by rule (7). Therefore, in every trajectory X = D,, there is a

step in which the probabilistic player P deviates from the winning strategy.

Since there are at most t moves, P has probability 2-’ of playing optimally in

each step. Therefore, the probability of DI is PM S(D ~) s 1 – 2 ‘~.

Suppose that a trajectory X ● D has the following two properties: (i) the first

execution of block O produces the initial configuration, and every execution of

block O thereafter until the first return to node a produces the same configu-

ration as the previous execution of block N, and (ii) every execution of block N

produces the correct next configuration that follows from the configuration of

the previous execution of block O and the move chosen at node ml or mz

according to the rules of the Turing machine. Then the prefix a of X until the

first return to a simulates a computation of the Turing machine and X = D,.

This follows from the construction of M and the fact that a obeys rules

(l)-(7). Thus, every trajectory X = Dz violates property (i) or (ii).

Suppose that X = Dz violates prc)perty (i). Assume that in some execution of

block O during the prefix a, some cell k is given different contents than in the

previous execution of block N; the argument is similar if the first execution of

O does not produce the initial configuration (and thus disagrees with block I).

Suppose that the probabilistic player P chooses this index k in the next

execution of block Cl, an event that occurs with probability 2-n > 2 ‘f. In the

last level of block Cl, the scheduler chooses a symbol that disagrees either with

the symbol in cell k of the previous execution of block O or with that of block

N. In the first case, the subformula <(0, Cl) of Part (3) off is violated, and in

the second case, the subformula <(N, C 1) is violated. In either case, X does not

satisfy f.

Suppose that X = DI violates property (ii). That is, in some execution of

block N, some cell k of the constructed configuration is assigned the wrong

contents. Again, if the probabilistic player P chooses this index k in the next

execution of C2 (an event that occurs with probability 2-’1), it can be seen by a

similar argument as in the case of property (i) that the formula f is violated.

Thus, from cases (i) and (ii), we have that the probability of E, conditioned on

Dz is PM s(E,lDz) 5 1 – 2-”.

Since El QD1 U Dz, itfollows that P~,~(E1) s Pfi[JD1) + P~,~(E1 &Dz)

= p~l S(~ I) + PM, ,7(El \ D2)PL1, .$(D;l). The second term is bounded from above
,W,~(D1)) < (1 -- P&l, ~(D1)) – 2-’’2-’. Therefore, PM s(E1)by (l’– 2-”)(1 – P

< 1 – 2-”2-! < 1 – 2-Z’. As we argued earlier, it follows that P~, s(Lo(f)) =

o. n

COROLLARY 3.?.2. There is a constant c such that the problem of determining

whether a concurrent Markol~ chain M satisfies a formula f cannot be solved in
time 0(2’’m), where m = Ifl +]M1.

PROOF. From the classical time hierarchy theorem (see e.g., Aho et al.

[1974]), for any constant b <1, there are languages L in DTIME(22°) but not

880 C. COURCOUBETIS AND M. YANNAKAKIS

DTIME(2 “’”). For such a language L, there is an alternating Turing machine T
that recognizes L and uses space

u
2“ (recall that ASPACE(S(n)) =

DTIME(Cs(”))). By the proof of Theorem 3.2.1 given an input string .x

of l;~~th n., we can construct a formula ~ and a concurrent Markov chain M

such that M satisfies f if and only if x = L. Both f and M have size O(FZ),

that is, ~,n= If I + IMIs a!.n for some constant d. Since L is not in

DTIME(2A), it follows that we cannot determine whether M satisfies f in

time 0(2””) for c = b/d. Note that this applies to RAM’s as well as Turing

machines, since they can simulate each other with polynomial overhead. ❑

4. Verijjing Automata Specifications

4.1. SEQUENTIAL PROBABILISTIC PROGRAMS. We have a specification given

by a Buchi automaton A = (1-4,SO,F) over the alphabet 2, and a (sequential)

Markov chain M with state space X and valuation function V X - Z. We

wish to determine whether M satisfies the specification, and more generally,

we wish to compute the probability of satisfaction PM(L.(A)). A first observa-

tion is that we can simplify the problem by allowing with no loss of generality

that from now on Z = X. This holds since we can always replace A with the

automaton A‘ with transition function p~(s, x) = p~(s, V(x)) where p~ is the

transition function of xl. For any trajectory X of M, the infinite word V(X) is

accepted by the automaton A with alphabet Z iff X is accepted by the

automaton A’ with alphabet X. Thus, P,w(Lo(A)) = PJf (L@(A’)). We will also

assume with no loss of generality that A has a transition from every state on

each letter of X (by adding transitions to a new dead state, if necessary), and

that A has a unique initial state so.

We outline the basic ideas of our approach before we go into the technical

details. We shall construct from M another Markov chain MA that is “coupled”

with M, in the sense that there is a one-to-one correspondence between their

trajectories and we can view both chains as being defined over the same

probability space. The chain MA is a refinement of M which at every point in

time keeps tracks of both the state of M and all possible states that the

automaton A can be in, given the past history up to that point. A trajecto~ of

A4A hits with probability one a bottom strongly connected component of M,~.

We classify the bottom S.C.C. of M,! into accepting and rejecting, and show that

the following property holds: A trajectory that hits an accepting bottom S.C.C. is

accepted by the automaton A with probability one; a trajectory that hits a

rejecting bottom S.C.C. is rejected by A with probability one. Therefore,

P&,(LW(A)) = 1 iff all bottom S.C.C. are accepting, and P~(Lu(A)) = O iff they

are all rejecting. More generally, Ptf (Lu(A)) is equal to the probability that a

trajectory of MJ hits an accepting bottom s.c.c., a quantity that can be easily
computed using standard techniques from the theory of Markov chains. The

main technical difficulty is in classifying the bottom S.C.C. of MA and proving

the above property. This involves a combinatorial analysis of the interaction

between Markov chains and Buchi automata. We proceed now with the

technical development.

We view the Markov chain M also as an automaton over the alphabet X

which generates a language Lw(M) of infinite words. A transition of M from

state L’ to a state x is labeled with the letter x (the head of the transition); that

is, the transition function pkf of M from state L’ on letter x = X is as follows:

The Complexi~ of Probabilistic Verification 881

PM (L’, x) = {.x} if M has a transition from L’ to x, and is 0, otherwise. Note

that M is a deterministic automaton. Each trajectory of M generates an

infinite word over the alphabet X which is identical to the trajectory, except

that the first state of the trajecto~ is missing. For this reason, we first add a

new initial state X. to the Markov chain, and add a transition from X. to every

state u with the probability of the transition equal to the probability of LI in

the (old) initial distribution (of course, if this probability is O, then the

transition X. ~ LI is not included), Thus, from now on, we assume that the

Markov chain M has a unique initial state X(). We denote by LO(M) the set of

(infinite) words generated by M, and we use Pkl(L@(A)) to denote the
probability that a word generated by M is accepted by A.

We can take now the product of M and A as two automata over the same

alphabet X. If S is the set of states of A, then the set of states of the product

transition table r~x ~ is X x ~. On letter x G X, a state (U, s) of the product

has transitions to all states (x, s‘) such that s‘ E p~(s, x) if M has a transition

from L’ to x, and has not transitions otherwise. Note that all transitions of

I-~X~ coming into a state with first component x are transitions on letter x.

Therefore, if we apply the subset construction on r~x ,A, in the resulting table

every state that has an incoming transition, say on letter x, must consist of

pairs with the same first component, namely x. In particular, this property
holds for every state of det(TJfX~, (x, s)) for any state (x, S) of 7JIX~. In the
following, we will omit from the subset construction all states that do not have

this property (i.e., contain pairs with different first components), since they

have no incoming transitions and play no role, and we will use det(~~x~) to

denote this reduced table. It is easy to see that this is isomorphic to the table

obtained by first applying the subset construction to A and then forming its

product with M. If x 6 X is a state of M and Q Q S a subset of states of A,

we will use the shorthand (x, Q) to denote the set of pairs {(x, s)Is = Q}.
We can establish a corresponder~ce between the runs of ~~ ~.4 or det(~~f X,4)

and the paths of M as follows: Every (fi~ite or infinite) run of r~x ~ or

det(~~x ~) corresponds to a (unique) path in M obtained by projecting every

state of the run on its first cornponcnt. Conversely, for every path of M starting

at any state x and for any state (x,s) of ~~x ,A or state (x, Q) of det(~~f ~~) with

first component x, there is at least one corresponding run of 7fi1X.4 starting

from (x, s), and there is exactly one corresponding run of det(~k[x~) starting

from (x, Q); this follows from the definitions and the fact that the automaton

A has a transition from every state on every letter of X.

Given a pair X,,l,f = X, S,,,,t = S of states, we can construct a Markov chain

M’ over the graph det(~~~~, (x,,,,,> st,,,,)); that is, the states and transitions of
M’ are those of the transition table det(~ ~x4, (x,,*L,, s,,,,,)), and the initial state
of M’ is (Xz,l,r, s,~,,). The transition probabilities of M’ are defined as follows:

As we noted, every state (x, Q) of M’ is a set of pairs that have the same first

component x. Furthermore, for every transition x ~ x‘ of M and every state

(x, 42) of M’ with first component x, the chain M’ has exactly one transition
from (x, Q) to another state (x’, Q’) with first component x‘. We associate

with this transition of M’ the same probability as that of the transition x -+ x‘

of M. Let Y= YO, Yl, . . . be the process of trajectories of M’. If we consider M
and M’ starting from initial states xl~,r and {(x ,,,,,, ,s,,,,,)} respectively, we can

regard them as being constructed on the same probability space so that for

each trajectory X = x,~,f, Xl, X?, . . . of M there is a unique corresponding

882 C. COURCOUBETIS AND M. YANNAKAKIS

trajectory Y of M‘; Y is simply the run of M’ over the word XI Xz .”” starting

from {(.x ,,,,(, S,n,l)}. Note also that for each Y the corresponding X is the
projection of Y; Xk is the first component of the pairs of states in Y~ (they all

have the same first component). By this construction a point in our probability

space corresponds to a pair (X, Y) of coupled trajectories of M and M’ and the

construction depends on the initial states XZ,,zt, S,.,t. The Markov chain M,4

that we mentioned earlier in the outline of our approach is the chain M’ with

x lnlt= X. and St,l[r = SO.

We consider ~k(,<,4 as a Buchi automaton with initial state (XO, s(,) and with

set of accepting states X X F, where F is the set of accepting states of A.

Observe that a trajecto~ X = x~lxlx2 ..” of M starting from the initial state XO

corresponds to (is the projection of) some accepting run of ~~f ~,4 starting from

state (xo, S(,) if and only if the automaton A accepts the infinite word xl X2 . . .

generated by the trajectory X. Thus, the automaton Tkf..4 accepts the intersec-

tion L = L@(M) n Lti(.4). Clearly, the probability Pfif(LW(A)) that we want to

compute is equal to the probability P,i~(L).

With every accepting state (x, ~) of r,~fx,l we can associate a subset L(x, ~)

of L: The set of words for which ~,tfY,4 has a run that repeats (x, ~) infinitely

often, For some accepting states, the associated set L(x, f) has probability O in

M, while for some other accepting states it may have nonzero probability.

Clearly, it is only the latter accepting states that “contribute” to Pfi[(L). We

shall give a syntactic characterization of the latter states; as we shall show, they

are those SUikS of T&f;<.4 that satisfy the following definition. Later in this

subsection, we will give other equivalent characterizations.

Definition 4.1.1. A state (x, s), x G X, s G S is recument if the graph of

det(~v,,,4. (x, s)) has a bottom strongly connected component C containing a
state y for which (x,s) c y. We associate with a recurrent state (x,s) a word

-y E -Y* that takes det(~itf<i, (.x. s)) from {(x, s)} to a state of the S.C.C. C.

For a recurrent state (x, s) there are in general an infinite number of words

-y that satisfy the above condition: we just pick one of them arbitrarily.

For a pair of states x,CP E X, S,C, E S, we define the event A as the event

that a trajectory of the Markov chain M starting at x, ,1, has a corresponding

run of 7Lf.<,1 that starts in (x,,,P, s, ,P) and repeats (x, .P, s, ,,P) infinitely often.

LEMMA 4.1.2. Assume that (x, s) is recurrent and the Markoll chain M starts

in state x. Let y be the input word associated widl the recurrent state (x,s) as in

Definition 4.1.1. Then the probability of the elent A with XTCP= x, s,eP = s,

conditioned on the elent that M pe?forms first the transitions in y, is equal to one.

PROOF. We will provide a procedure that constructs with probability one

for each trajecto~ X of the chain that has as a prefix x . y a corresponding run
of ~,~1,~ that starts in (x,s) and repeats (x,s) infinitely often. The procedure

will partition X into an infinite number of segments, X = Xalxaz .”” so that

each a, has y as a prefix and there is a run of ~,if ~ ~ corresponding to X that

starts from (x, s) and visits (x, s) at the end of each segment; that is, there is a

run of TL,~~ over each word a,x for all i that starts and ends in (x, s).

Consider the Markov chains M and M’ constructed on the same probability

space with initial states Xltil, = x, Sl,,[t = s. Let X = X1l, Xl, . . . be a trajectory

of the Markov chain M such that X,, = x, Xl .”0 X,. = y and let Y = Yo, YI

be the corresponding trajectory of M’ starting from ~, = (x, s). Our procedure

The Complexity of Probabilistic Verification 883

follows Y until the first time n ~ at which both of the following conditions are

met: (a) (x,s) = Y~, and (b) X,,, + ~ ““” X,l, +,. = y. We claim that rzl is almost

surely finite. Since (x,s) is recurrent, the table det(r~x .A, (x, s)) has a bottom

strongly connected component C that contains a state y such that (x,s) E y.

By the definition of M’, C is also a bottom S.C.C.of M’. By the choice of y, the

run of det(~~x ~, (x, s)) (and of ill’) starting from (x,s) over the word y ends

in a state of C. Thus, ~~ = C. Since C is a bottom S.C.C. of M’ it follows by

ergodicity that Y will visit infinitely often all states in C with probability one,

and hence the particular state y of C will also appear infinitely often with

probability one in Y.

Let y=xl ““” x., and let p(y) be the probability that M starting from state

x performs the transitions of -y; that is, p(y) is the product of the probabilities

of the transitions x - xl, ..., x~ _ ~ s x,,,. Assume that yk = y for some k > 0.

Then X~ =x, and by the Markov property

p~(x~+~= x,,....xk+.n= X,,l[xk==x) =PM(X, =X1, ...> X,n =X,,,[xo =x)

=p(y) >0.

Since Y visits y infinitely often with probability one, it follows that the

complement of the event {Yk = y, Xk+ ~ = xl, ..., X~+,~ = x,.} has zero proba-

bility and hence n, is finite with probability one.

We can construct now the first segment of X: we let a ~ = Xl,..., X,,, _,.

Since ~11 = y and (x,s) = y, there is a run of Tfif,~ with projection Xal x that

starts and ends in state (x, s). The remainder of the trajectory X from X,,,

onward has again prefix xy.

Since we have a Markov process, we can repeat the same step on the

remainder of the trajectory X and use the same arguments to show that

the procedure will construct allmost surely the second segment az =

x x ,,, _ ~ of the trajectory with the same properties; there is a run of

~~x+~’ “wi~h projection x az x that starts and ends in state (x,s) and the

remainder of the trajectory from X,l, onward has again prefix xy. In general, if

E~ denotes the event that the procedure succeeds in constructing k segments

with the above properties, then the probability of Ek +, conditioned on Ek is 1,

by the same arguments. It follows by induction that for all k the probability of

Ek is 1. Hence, the probability of fl~ E~ is also 1, which means that the

procedure will almost surely be able to partition a trajectory X with prefix xy

into an infinite number of segments, and thus construct a corresponding run of

r~x~ that repeats (x,s) infinitely often. ❑

For a pair of initial states X1,,,L c; X, Si,ll, G S, and a pair of repetition states

Xvep = x, S,,p ● S, we define the event B as the event that an infinite

trajectory of the Markov chain M starting at x,.,, has a corresponding run of

~~x ~ that starts in (Xim,t, si~lf) and repeats (X,,P, S,CP) infinitely often.

LEMMA 4.1.3. Assume that (x,s) is not recurent. Then, for any pair of initial

states xi~it e X, s,~lt = S, the probability of B with x, ,P = .x, S,CP = s, is equal to

zero.

PROOF. We show first that if (x,.,,, s,.,,) = (x,s) then P(B) = P(A) = O.
Let M and M’ be defined as before with initial states x and (x, s), respec-

tively. Then, with probability one, all trajectories Y of M’ will be eventually

884 C. COURCOUBETIS AND M. YANNAKAKIS

absorbed in some bottom strongly connected component of det(~J~X.4, (x> s))

and since (x, .s) is not recurrent, no state of this component contains (x, s).

From this it follows that, with probability one, any run of ~~tx~ hits (x,s) only

a finite number of times.

We prove now that F’(B) = O for arbitra~ (x,,,,,, s,,,,,). Consider M and M’

with initial states xl~,r and (X,,l,f, .s,,,1,), respectively. We define the stopping

times t,,, n = 1,2, . . . such that t,,(Y) denotes the time at which (x, s) appeared

for the nth time in an element of the sequence Y. Consider the sequence of

events Hn, n = 1,2, ..., defined as follows: Hn = {Yltn(Y) < cz and Xt Xt +,

. . . has an accepting run in the automaton (TM,< ~, {(x, s)}, {(x, s)})}. Then, by
,! n

using the Markov property P(Hn) = P({fn(Y) < CD})P(A), where A corresponds

to X,c = x, S,cp = s, and since we already proved that F’(xl) = O, it follows that

P(Hnf is equal to zero. Since B c IJ. ~H,l, itfollows that F’(B) = O. ❑

We can solve now the probabilistic emptiness problem.

PROPOSITION 4.1.4. Tilere is nonz,ero probability Phl (La(A)) that the Manloc

chain M generates a word accepted by the automaton A if and only if the initial

state (XO, SO) of the automaton ~~ ~~ can reach an accepting recurrent state (i. e.,

state (x, f) with f = F).

PROOF. If the initial state (X., so) of rAf ~~ cannot reach an accepting

recurrent state, then the probability PJf (Lw(A)) is zero by Lemma 4.1.3.

Conversely, suppose that the initial state (XO, SO) can reach an accepting

recurrent state (x, f). Let ~ be a word that takes the automaton T~f~,1 from

the initial state to (x, f) and let y be a word associated with the recurrent state

(x. f) as in Definition 4.1.1, that is, y is a word that takes det(TMX~, (x, f))

from state (.x, f) to a state of a bottom strongly connected component that

contains some state y such that (x, f) = v. There is nonzero probability that

the Markov chain starts by performing first the transitions of the word By.

Conditioned on this event, by Lemma 4.1.2, the trajectory of M has almost

surely a corresponding run in 7fi1X~ that repeats (x, f) infinitely often, and

thus A accepts the word that is generated by the trajectory. The proposition

follows. ❑

We can also compute the exact probability PM(Lw(A)). Let M~ be the chain

M’ with x,.,, = Xfl, s,.,, = so; that is, M.q is the Markov chain defined by the

transition table det(~}lx ~, (xO, so)) by associating the corresponding transition

probabilities of M and having initial state (.xO, Sfl). We call a bottom strongly

connected component of Lfq accepting if it has a state that contains some

accepting recurrent state (x, f), f E F; otherwise, we say the component is

rejecting.

PROPOSITION 4.1.5. Phf(Lw(A)) is equal to the probability that a trajectory of

MA hits an accepting bottom strongly connected component.

PROOF. Consider M and M,i constructed on the same probability space as

before. Any trajectory Y of M,l will almost surely be eventually absorbed in

some bottom strongly connected component D of M4. We shall show the

following two statements which together imply the proposition:

(1) If the bottom S.C.C. D is accepting, then almost surely the automaton A
accepts the word generated by the trajectory X of M that is coupled with Y.

The Complexi@ of Probabilistic Verification 885

(2) If the bottom S.C.C. D is rejecting, then almost surely the automaton A
rejects the word generated by the trajectory X of M that is coupled with Y.

We prove statement (1). Considler a pair X, Y such that Y hits a bottom

strongly connected component D containing a state y such that y contains

some accepting recurrent state (x, f), f = F. For this (x, f), let y be the word

defined as in Definition 4.1.1. Then P(X,,+ ~ “.. X~+lyl = ylY~ = y) >0 and by

ergodicity Y. = y infinitely often with probability one. Let u be the first time

that Ym = y and Xm+l . . . Xm+lYl = y. By the above observation it follows that

given that Y hits D, a is almost surely finite. Consider the word XO,..., Xu.

Clearly, for this word, there is a run of A that starts in so and ends in f. Now

since Xm = x, Xm+l o“. Xm+lYl = y, and (x, f) is recurrent, by Lemma 4.1.2 it

follows that almost surely Xm, Xcr+ ~, Xm+ ~,... has a corresponding run of

~~x~ that starts from (x, f) and repeats (x, f) infinitely often. The above run

of ~~x ~ can be mapped into a run of A that starts from f and repeats f

infinitely often by projecting on the second component of the states of r~x ~.

This completes the first part of the proof.

We show statement (2). Consider a pair X, Y such that Y hits a rejecting

bottom strongly connected component D. We argue that the probability that X

corresponds to an accepting run of r~x ~ is O. Suppose that I-M ~~ has a

corresponding run starting from (x., SO) that repeats some state (x, f), x G X,

f G F, infinitely often. By the definition of the subset construction, at every

point in time the state of the run of ~~x~ is contained in the state of Y at that

point. Since Y is absorbed in the bottom S.C.C. D, there must exist a state y of

D that contains (x, f). Since D is rejecting, the state (x, f) is not recurrent. By

Lemma 4.1.3, the probability that X has a corresponding run in r~x~ starting

from (xo, ,s.) that repeats (x, f) infinitely often is O. This completes the second

part of the proof, and the proposition follows. ❑

Proposition 4.1.5 suggests the following algorithm for computing the proba-

bility P~(LO(A)):

(1) Construct the product table ~LIX~.

(2) Compute the set of recurrent states (x, f) of r~x~ that are accepting (i.e.,

f = F).

(3) Construct the Markov chain M.A.
(4) Compute the probability PJf(LW(A)) as in

4.1.5.

If we only want to solve the probabilistic

the statement of Proposition

emptiness problem (i.e., test

whether PM (LO(A)) = O), we do nbt need steps (3j and (4j, but only have to

test whether (xo, SO) can reach an accepting recurrent state in ~~ ~~. If we want

to test whether PM(Lu(A)) = 1, then we do not need to compute the exact

transition probabilities for MA or to perform step (4). We only have to compute

the underlying graph of Mq (i.e., the table det(~~ .,A, (XO, SO))), and check

whether all bottom strongly connected components of MA contain an accepting

recurrent state.

We analyze now the time and space complexity of this algorithm. We

measure the sizes IAI and 1M I of the automaton A and the Markov chain M
by their numbers of nodes and edges. If we want to compute the exact

probability, then we include in the size of M the lengths in binary of the

transition probabilities as in Section 3.1. Except for Step (2), all the other steps

886 C. COURCOUBETIS AND M. YANNAKAKIS

are straightforward. The product transition table rJf,,4 has size at most IMl/A 1,

and can be constructed in time proportional to its size. If we let n be the

number of states of A, and nZ and e be the number of states and arcs of M,
then the deterministic table det(~,lf ~ .A) has at most m 2” states and e2n arcs,

and can be constructed by standard methods. Step (4) involves solving a linear

system of equations of dimension equal to the number of states of MA.
Step (2) can be simplified by the following facts, which we prove below: (a) In

every strongly connected component (s.c.c.) D of ~wIX ~, either all states are

recurrent or none are, and (b) to determine whether the states of D are

recurrent, we may ignore the rest of TM ~,4 and determinize only D. Consider a

state (x,s) of D and the deterministic transition table det(D, (x, s)). Every

state of this table is a set of pairs which have the same state of M as their first

component, We say that such a state y with first component u is fLd[y specified

if it has a transition on each letter z = X for which M has a transition u + c’.

Note that although every state of det(~fi,x ,J, (x, s)) is fully specified, this may

not be the case for some states of det(D. (x, s)): a state y of the latter table

will not be fully specified if no member of J has a transition on letter L’ to any

state of D (i. e., all its transitions m T&[, ~ on letter u go to states outside D).

LEMMA 4.1.6. Let D be a strongly connected component of TA(X,4 anti let

(x,s) be a state of D. Tile followitlg are eqllilwlent:

(1) State (.x, s) is reeuwent.

(2) The deterministic transition table det(D, (x,s)) has a bottom strongly con-

nected component all of whose states are fully specified.

(3) M contains a finite path y startingfiom state x such that any path y6 of M that
extends y has a corresponding rulz within D starting from state (x. s),

(4) All states of D are recurrent.

PROOF

(1) implies (2). Applying the subset construction on D starting from (x, s)

is the same as applying it on ~*f ~~, except that we ignore states that do not

belong to D. It follows that the table det(ll, (x, s)) can be obtained from the

table det(~,of~~, (x, s)) by first removing all states that do not contain any
element of D and then restricting the rest of the states to elements of D. From

Definition 4.1.1, the table det(~ ~fx,4, (x, s)) has a bottom S.C.C. C containing a
state y such that (x,s) E y. Observe that if a state z can reach state y in the

table det(~lf ,,q), then every member of y, and in particular (x, s), can be
reached by some member of z in ~*~. .. . Since every member of det(rfi,.,. (.x. s))
can be reached from (x, s), we conclude that all members of the S.C.C. C of

(“)) (as well as all their ancestors) have a nonempty intersectiondet(r~k,~, a,s

with D, and therefore have corresponding states in the table det(D, (x,s)).

These states that correspond to the members of C’ form a bottom strongly

connected component of det(D, (x, s)); all states of this bottom S.C.C. are fully
specified, since the states of C are fully specified in det(~i(x~, (t, s)).

(2) implies (3). Consider a run of det(D, (x, s)) from {(x, s)} to a state of

the bottom S.C.C. that satisfies condition (2), and let y be the corresponding

path of M. It is not hard to see that y satisfies condition (3), since all states of

the bottom S.C.C. are fully specified.

The Complexity of Probabilistic Verification 887

(3) implies (1). Consider the run of det(rk[xq, (.x, s)) corresponding to y

and starting from {(x, s)}, and extend the run until it reaches a bottom s.c.c.: let

Y8 be the path corresponding to the extended run, let z be the last state of the
run, and C the bottom S.C.C. that contains it. From condition (3), z contains
some state, say (x‘, s’) from D. Let i be a string that takes ~,~fX.,1 from state

(x’,s’) to state (x, s), and let y be the state of det(~~f~~, (x, s)) reached from z
on input ~. Clearly, y contains (x,s) and belongs to the same bottom S.C.C. C

of det(~JfXzf, (x, s)’).

(4) is equivalent to (l). Clearly, (4) implies (1). To show the converse,

suppose that y is such that condition (3) is satisfied for the state (x, s). Let

(x’,s’) be any other state of D, and let ~ be a path of M that corresponds to a

run of ~~x~ from (x’, s‘) to (x, s). ‘Then any path of M that extends the path

/3y has a corresponding run in TMX4 which starts at (x’,s’) and stays within D.
That is, (x‘, s‘) satisfies also condition (3), and thus is also recurrent. ❑

Thus, we can perform Step (2) of the algorithm as follows: First, we partition

TMx .,1 into strongly connected components. Then, we take every S.C.C. D that

contains an accepting state, pick an arbitrary state (.x,s) of D (only one state),

compute the table det(ll, (x,s)) and test whether it satisfies condition (~) of

Lemma 4.1.6. An easy calculation shows that the sum of the sizes of the tables

det(D, (x, s)) (over all S.C.C.’S D of ~Lfxl) is at most e2’2, where e is ,the

number of arcs of M and n is the number of nodes of A. To see this, consider

the following function which maps every transition of a table that we compute

to a pair consisting of an arc of M amd a subset of states of A. If det(D, (x, s))

is one of the computed tables, and (L’, Q) a state of the table that has a

transition on letter w G X, then map this transition to the pair consisting of

the arc Z) ~ w of M and the subset Q of states of A. If two transitions were

mapped to the same pair (Z’ 4 w,, Q), then the transitions must belong to

different tables det(D, (x, s)) and det(D‘, (x’, s ‘)) because the tables are deter-

ministic, and furthermore the components D and D‘ must be distinct because

we only compute (at most) one table for a component. This implies that the

states (z!, q), q = Q, belong to two different strongly connected components of

~Jf ~,q, which is contradiction. Therefore, the function we defined is one-to-one,

and hence the sum of the sizes of the computed tables det(D, (x, s)) is at most
e’2’Z.

It is not too hard to see also that we can determine whether a state (x,s) is

recurrent using work space of 0((IAII + logl Ml)2) bits. To do this, cycle over all

possible states y of det(~kf,,,1) that contain (x, s). and for each one of them: (1)

test whether there is a path from {(.x, s)} to y, and if SO, (~~ test whether Y is in

a bottom S.C.C.of det(rhr.< ,A, (x, s)). To check (2), cycle over all possible states z

of det(~kf ~ ~), and for each one of them, test whether there is a path from y to
z and from z to y; state y is not in a bottom S.C.C.iff for some z there is a path

from y to z but not from z to v. Similarly, we can solve using the same

amount of work space the probabilistic emptiness and universality problems,

that is, determine whether P~f (LW(A)) = O or 1.

Summarizing, we have shown:

THEOREM 4.1.7. We can compute the probabili~ P,, (L.(A)) that tjle Ma~kol’
chairl M generates a word accepted by the automaton A in time exponential in IA/

and polynorniul in IM/. Furthermore, we can determine if this probabilip is 1 (or

O, or in between) in time O(1M 12’g(lll)), or in space polynomial in IA I and

poijiogarithmic in IM 1.

888 C. COURCOUBETIS AND M. YANNAKAKIS

Vardi [1985] has shown that the probabilistic emptiness problem is

PSPACE-hard, and the same is true of the probabilistic universality problem.

Thus, the problems are PSPACE-complete.

~.~. CONCURRENT PROBABILISTIC pRoG~Ms. For this subsection, we as-

sume that the specification is given in terms of a Buchi automaton A that

accepts the undesirable computations. Thus, we are given a concurrent Markov

chain M, and we want to solve the probabilistic emptiness problem: decide if

P,tf, ,,(LU(.4)) = O for all schedulers u.

This problem is considerably easier computationally, if the automaton is

deterministic or even “almost” deterministic in the following sense. A Buchi

automaton is deterministic in the limit if all the accepting states and their

descendants are deterministic states. Thus, once a run goes through an accept-

ing state, it continues deterministically. As shown in Vardi [1985] and Vardi

and Wolper [1986], the probabilistic emptiness problem for such automata with

respect to concurrent Markov chains can be solved in polynomial time. We will

solve in this subsection the probabilistic emptiness problem by reducing it to

this special case, that is, we will construct from a given Buchi automaton A

with n states an equivalent Buchi automaton B with 20(”) states that is

deterministic in the limit. Using this construction, the probabilistic emptiness

problem for a concurrent Markov chain M and a Buchi automaton with n

states can be solved in time O(lMlz . 20(” ‘). As mentioned in the Introduction,

essentially the same construction was obtained independently by Safra [1988].

Safra gave furthermore a full determinization construction which from a Buchi

automaton with n states constructs a deterministic Rabin-type o-automaton

with 2‘(” 10g”) states [Safra 1988]. This construction (combined with results of

Vardi [1985]) yields an algorithm for the probabilistic emptiness problem with

somewhat worse complexity, proportional to 2 c)(,, log FI) instead of ~[]f’z). The

“almost” deterministic construction suffices for our purpose.

First, we will prove an important structural property of Buchi automata. Let

~~ = (X. S, p.l) be a transition table. Recall that given a set of states y = 2Y

and a word w = X*, the notation pJ y, w) is used to denote the set

u{P.,(S3W)ls f=y}.

LEMMA 4.2.1. Let A = (rq, {sU}, F) be a Buchi automaton. An infinite word w

is accepted bv A if and on~ if w can be written as w = wow ,Wz . . . , where w,,,

n=o,17 -,-, ..., m-e finite words with the following prope~: there exists a state
f = F and a set Q E 2s containing f such that

(a) ~ G p~({s,l}, w~l) and

(b) p4({f}, w,) = P(Q, Wi) = Q for all i = 1,2,

PROOF. Clearly if u’ satisfies the above conditions. it is accepted by A. We
prove now that if w is accepted by A, then (a) and (b) must hold.

Since w is accepted there is a corresponding run of .4 repeating some state
f = F infinitely often. Let tl,t2,.... be the times that the run repeats state ~

and let WI(i) denote the ith letter in the word w. At each t,,i = 1, 2, we

start a new copy of det(~q, f) to produce a run over w(t, + l)w(t, + 2) “..

starting in state {f}. Let d,~t) be the state of such a run at time t z r, (if

i7 = w(t, + 1) “.. }v(t), then d~(t) = p,4({f}, Z)). It is easy to observe that if

i <j, then for all t > t,, t,, we get that dt}t) c d,$t). Also, if dtjk) = d,(k) for

some k, i, j, then dlft)= d,(t) for all t > k.

The Complexity of Probabilistic Verification 889

We define now the sequence of strictly ordered sets d~$t), di~t),.. .A, where ~,,

i=l,2 ,. ... is a subsequence of t,,i = 1,2, ..., as tollows~ Let tl = tl and

defin~ ~,+, = min{:l It, > f,, d,~t) CAdi(t) Vt >atj} if the above set is nonempty,

else t,+~ is not defined. Since O < tl< 0.0< tk< t implies that d;i(t) c “”” c

dift), it follows that there can be most IS I strictly ordered sets and hence there

are finitely many ;, ‘s. Let ;., be the largest element in this set. This in, has the

property that ?,,, e {tl,t?,...} and for all t,> ?n,there is some sufficiently large

k > t, for which d,(t) = dfjt), Vt > k.

Consider the infinite sequence d: (t,), t, > ?,,,. Since its elements are from a

finite set it follows that there is a state Q G 2s that appears infinitely often

in the sequence d; (t,). Also since by definition ~ appears in the run of A at,?1
the times t,,i = 1,2, ””., it follows that ~ G CZinjt,), Vtl > i,n, and hence ~ G Q.

Define the sequence TO = min{t, Itl > ~.z, d;r\t,) = Q}, 7,+, = min{t, It, >

~1, d; (t,) = d,$t[) = Q}, i = 0,1, Since Q appears infinitely often in d;n(tl),
i = 1:2 ,. ... and all runs d~~t), t, > ;,,l, will eventually coincide with d;,n(t), it

follows that ~,, i = O, 1,..., are all finite. By defining W. = W(1) “”” w(~(}), and

W,+l =W(T, + l)””” ~(~t+l), i = 0,1., ..., the proof of the lemma follows. ❑

From a Buchi automaton A = (7,4, so, F) we construct a new Buchi automa-

ton B that is deterministic in the limit and accepts the same language. The

automaton B consists of two parts C and D. The first part C is just A itself

with all the states nonaccepting andl the same initial state SO, which is also the

initial state of B. (We could take also C to be the result of applying the subset

construction on A.) The second part D has states corresponding to pairs

(P, Q) of sets of states of xl. For each ~ G F, there is an s transition from
state ~ (in C) to state ({~}, {~}) of D,, (If desired, e transitions to a state can be

replaced in the usual way by transitions to the appropriate successors.) The

accepting states of automaton B are the states of the form (P, P), that is, with

equal first and second components. (We could also take as accepting only those

states (P, P) where P n F + 0.) The transitions from a state (P, Q) are as

follows. The second component of a pair follows the usual subset construction;

that is, on letter a the state (P, Q) goes to a state (p’, Q’) where Q’ =
PA(Q,a) = U { PJS, a)ls G Q}. Thereare two cases for the first COmPOnent: if
the state is not accepting (i.e., P # Q), then P’ = p~(P, a) U PA(Q nF, a); if
the state is accepting (i.e., P = Q) then P’ = PI(Q n F, a) (we define P.4(@, a)

= 0 for all a).

PROPOSITION 4.2.2. The Buchi automata A a~zd B accept the same language.

PROOF. We prove first that if a word is accepted by B itis also accepted by

A. Consider such an infinite word w = w(0)w(l) ”... We will show that A has a

run over w which is accepting.

Since w is accepted by B, there is an accepting run of B over w repeating

states of the form (P, Q), P = Q, infinitely often. Assume that this occurs at

the times tl,t2,..., where tl corresponds to the first time the run starts

visiting states of the automaton D. We denote by (P(t), Q(t)) the state of the
run at time t z t,.Consider the time interval between tk and t~ + I for some

k >1. It is easy to show that the construction of D implies the following

property for all t = tk+ 1,...,tk+,:for any state s E p(~), there exists a run of

A over the word w(t~) ““” W(t – 1) starting from some state in Q(tk) and

890 C. COURCOUBETIS AND M. YANNAKAKIS

ending in state s. such that the run visits some state in F. This property can be

shown by an induction on t (starting from tk+ 1) using the definition of the

transition function Pq. For t ==tk+ 1, since P(tk) = Q(tk), w have P(t) =

~,J(Qffk) f’ F, w(tk)) and the property holds. For the inductive step, a state s of
P(t) either belongs to p,4(P(t– 1),At – 1))or to p,4(Q(t– 1) n F, w(t – 1)).

In the first case, the claim follows from the induction hypothesis. In the second

case, there is a run of A over the word W(tk)“-”w(t – 2) from some state of

Q(tk) to a state ~ G Q(t – 1) n F and ~ has a transition to s on letter
W(r – 1), proving the claim. Consequently, for any state s in Q(t~ + ~), k > 1,

there exists a run of A over w(t J .“” W(tk+ ~ – 1) starting from some state in

Q(tA) and ending in state s, which contains some state in F.

We define an infinite tree T as follows: At level O, the tree has a single node

(root) labeled s{,. At level k, the tree has lQ(tk)1 nodes; each node being

labeled with a distinct state in Q(tk).With each node at level k + 1, k 20, we

associate a parent node from level k as follows: Level 1 has a single node

whose parent is the root node. For k > 0, let s be the label of the child node at

level k + 1. We define its parent to be any node in level k whose label s‘ has

the property that there exists a run of A over w(tk).0”W(tk+~ – 1) starting

from state s‘ in Q(tk) and ending in state s in Q(t~ + ~), which goes through

some state of F (if more than one such nodes exist at level k, we pick one

among them). By the previous remark, a node has always a parent; hence, the

tree T is well defined. One can observe that any path of the tree T starting

from the root defines a run of the automaton A over w with the property that

if the path has length greater than k, then the run visits at least k – 1 times

states in F (if the path is finite and has length k it defines a run of A over
~,(()) . . . w(t,<– 1)).Since T is infinite and has finite branching (bounded by

]S l), it follows by IGnig’s lemma that it has an infinite path. By the previous
observation, the run corresponding to this path visits states in F an infinite

number of times and hence is an infinite run of A over w which is accepting.

It remains to prove that if a word is accepted by A it is also accepted by B.

Consider such an infinite word w accepted by A and use Lemma 4.2.1 to write

w as W’Owl “”” and to define the ~,,, c F and Q,, G 2s associated with the above

w. Let t,,t2,... be the times corresponding to the beginning of the words

wl, w2, . . . in w. We will construct now an accepting run of B over w. The first

piece of the run corresponds to the word Mu and ends in the state ({~W}, {~W}) of

D. Such a run clearly exists since by virtue of Lemma 4.2.1, ~W,G p~(s~l, WO).

Since D is deterministic, it remains to show that the run of D over Wlwo “.-

will visit states of the form (P, Q), P = Q, infinitely often. Assume that this is

not the case. Then there exists a time k after which no such state is visited by

the run. Let trnbe the smallest element of the sequence tl,t2,... as defined
above for which k < t,,,. We will show that the run will visit an accepting state

at some time r such that t,n< t s t,,,+,,and hence get a contradiction.

Assume that for all times t,t,,,s t < tn,+~,the state (P(t), Q(t)) of the run is

such that P(t) # Q(t). We show that this implies P(t,n+,) = Q(t,. + ~) as

follows. We observe that Q(t~) = Q(t,~, ~) = Q,,, fW G Q(tnl), and QW =

p~({~,, }, w,,,) by virtue of Lemma 4.2.1. The above observation together with the

definition of the automaton D and the assumption that P(r) # Q(r), t,. s t <

t Vl+l? imply that QW G P(t ,,,+,). But as we noted before Q(t~ +,) = Q,,,, and by
the construction of D we have P(t,~,,) G Q(tH +,). This implies P(ttil +,) = QW

= Q(t,,,,,) and the proof is completed. ❑

The Complexity of Probabilistic Verification 891

We will describe briefly now for completeness how one can solve the

probabilistic emptiness problem for a Buchi automaton B that is deterministic

in the limit and a concurrent Markov chain M [Vardi 1985; Vardi and Wolper

1986]; see also Pnueli and Zuck [1986]. As in the previous subsection, we will

assume, without loss of generality, that the alphabet of the automaton B is X

(the state space of M), that the automaton has a transition from every state on

every letter of X, that it has initial state SO and set of accepting states F, and

that the Markov chain has a unique initial state Xo. We view again M as an

automaton that generates words clf X and use PJ1,.(L.(B)) to denote the

probability that the concurrent Markov chain M with scheduler u generates a

word accepted by B. Form the product transition table 7~X ~, which we view

again as a Buchi automaton with initial state (XO, SO) and set of accepting states
X x F. Note that ~bl~ B is also deterministic in the limit. We consider the
states of ~~x B as being partitioned into nondeterministic and randomizing

states according to their first compcment (a state of M). The algorithm is based

on the following characterization:

PROFJOSITION 4.2.3. Let B be a .Buchi automaton that is deterministic in the

limit and let M be a concwrent Markoll chain as abole. There is a scheduler u

such that PA,, ~,(Lti(B)) > 0 if and only if the initial state (XO, so) of 7A*. ~ can
reach an accepting state (.x, f) (i. e., with f ● F) and Tl(x ~ has a subset D of states

containing (x, f) which satisjies the ~following three conditions;

(1) the subgraph of TMX B induced by D (denoted TM, JD]) is strongly connected,

(2] the subgraph rMx JD] is no~lfrivial, that is, does ~lof consist of a single node
without any edge,

(3) the table Thfx B does not hal!e any transition oat of D corresponding to a

probabilistic transition of M, that is, if (y, t) is a state of D and y is a

randomizing state of ~, then al) the immediate sLlccessors of (y, t) in ~A1~ B

are also in D.

PROOF. Assume that there is an accepting state (x, f) of ~MX B and a subset

D containing (x, f) that satisfies the above three conditions. We will describe a

scheduler u such that PM, ~1(L@(B,)) > 0. Let ~ be a word that takes rM ~ B

from the initial state (xO, so) to (x, f), and let T be a directed spanning tree of

the subgraph ~,VrXB[D] rooted at (x, f) with all arcs directed toward the root.

Since ~Jf, B[D] is strongly connected there exists such a tree. The scheduler u
operates as follows: At the beginning it tries to form the word B; that is, if the

trajectory is at a nondeterministic state and the prefix so far agrees with the

prefix of ~, then u chooses the transition according to the next letter of /3.

With nonzero probability the scheduler u will succeed in this initial part to

form ~, which means that there is a corresponding run of ~fil ~ B that arrives at

(x, f). Assume from now on that this is the case andelet us concentrate on~he
r~m~inder of the trajectory, which we denote by x = X(], Xl, Let Y =

Y“, Y,,... be the corresponding run of T*,. B starting from (x, f); the run is

unique because rlf ~ ~ is de~erminis,tic in the limit.

The scheduler 14 follows Y and acts in the following way, which ensures that
the run stays always within the subset D. Suppose that Y is at a nondeterminis-

tic state (Y, q) of D. If (y, q) # (x, f), then the scheduler u chooses the

transition from (y, q) to its parent in T, and if (y, q) = (x, ~), then u chooses a

transition to some arbitra~ state of D. By condition (3), the run stays in D.

892 C. COURCOUBETIS AND M. YANNAKAKIS

Let us say that step i = 0, 1,... of the run is successful if the arc (~, ~+,) is in

the tree T, or if ~ is the root (x, ~) and ~+, is any node of D. Clearly, if at

some point there are n consecutive successful steps, then the run goes at least

once through state (x, ~) during this time. At every point in time, there is

nonzero probability that the step will be successful, and indeed that the next n

steps will be successful. It is not hard to show then by standard arguments that

with probability one, there will be n consecutive successful steps, and in fact

this will happen infinitely often. (If E~, k z 1, denotes the event that there are

k segments, each consisting of n or more consecutive successful steps, then for

every k the conditional probability of E~ +, given E~ is 1; therefore, P~~,,[(Ek)

= 1 for 211 k, and hence PLf, ,,(n~ E~) = 1.) Consequently, with probability 1,

the run Y goes infinitely often through (x, ~). It follows that PJ~,,,(LO(B)) >0.

Suppose now that PM, ,,(LW(B)) >0 for some scheduler u. If (.x, ~) is an

accepting state of rkfy ~, D is a subset of states containing (x, ~), and /3 e X*
is a string that takes ~kl ~,~ from (XO, so) to (x, ~), we let H((x, ~), D, /3) be the

event that a trajectory X of M has prefix ~ and corresponds to a run of r~x ~

that is at state (x, ~’) after ~ and has infinity set equal to D. Clearly, the union

of these events contains all the accepted trajectories. If all these events had

probability O, then the same would be true of their (countable) union. Since

P~,,,,(L@(B~) >0, there exist (.x, ~), D and ~ such that ~W, U(H((x, ~), D, ~))

> 0. Let M be the concurrent Markov chain that is identical to M except that

it starts at state x, and let i be the scheduler that maps every string o = X*

and nondeterministic state y to ti(m, y) = u(Po, y). Let K be the set of

trajectories X of V whose corresponding run ~ in I-L(X~ starting from (x, ~)

has infinity set D. Then PL1,,,(H((x, f), D, P)) = PJ~,.(~ is a prefix of X) “

PJi, JK), and thus, Pi;, JK) >0. By definition, D contains (x, j’), and since D

is the infinity set of a run, the subgraph ~Jf. ~[D] is strongly connected and

nontrivial (thus satisfies conditions 1 and 2). Suppose that ~lf.< ~ has an arc

from a randomizing state (y, t) of D-to a state (z, q) o-utside D. This arc

corresponds to a transition y - z of M. Every trajectory X of h’ corresponds

to a run ~ of 7-~~X~ that visits infinitely ofte: (y, t).Every time that Y is in state

(Y, t) there is nonzero probability that M-will follow the transition y ~ z,

thereby forcing the run to exit D. Since Y visits (y, t) infinitely often, the

probability that this will occur at some point is 1, which implies Pti, J K) = O,

contradicting our assumption. It follows that D satisfies also condition 3. ❑

We can test for the conditions of this characterization by the following

algorithm.

(1) Construct the table ~,$f. ~ and let G be the subgraph that is reachable
from the initial state (X(), SO).

(2) Repeat the following steps until either the current graph G becomes
empty or the algorithm halts with success.

(2a) Find the strongly connected components of the current graph G.

Remove from G all the arcs that connect different s.c.c.’s, and

remove all the S.C.C.’S that are trivial or do not contain any accepting

state.

(2b) Let Q be the set of nodes (y, t)of G such that v is a randomizing
state of M and an arc out of (y, t) was removed in step 2a. If Q does

not intersect some (remaining) S.C.C. of G, then halt with success;

otherwise, remove from G the nodes of Q.

The Complexity of Probabilistic Verification 893

It is easy to see that the algorithm halts with success if and only if there is an

accepting state (.x, f) and a set D that contains it and satisfies conditions

(l)-(3). Every execution of the loop can be implemented to run in linear time
in the size of ~~x ~, and the number of iterations is certainly no greater than

the number of nodes of r~x ~. If we start with an arbitrary Buchi automaton A

with n states, then we can construct the automaton B that is deterministic in

the limit and has size 2°(’2). If the Markov chain M has m nodes and e arcs,

then r~x ~ has no more than rn2°(”~ nodes and e2°(”) arcs. Thus, the

complexity of the algorithm is at most 0(me2°(”)).

The results of Section 3.2 imply that solving the probabilistic emptiness

problem for a (general) Buchi automaton and a concurrent Markov chain
requires exponential time. We know that we can construct from a PTL formula

f an exponentially larger Buchi automaton A for ~ f. By Corolla~ 3.2.2

determining whether a concurrent Markov chain satisfies f requires double

exponential time in \f / + IM 1.Thus, the probabilistic emptiness problem for M

and the automaton A requires single exponential time, more precisely it

requires time 2 ~c(l~l + 1~1)~}for some constant d that depends on the constant c

of Corolla~ 3.2.2 and the translation from a PTL formula to an automaton. It

is possible to give also a direct reduction from ASPACE(TZ) = UC DTIME(c’Z)

showing that the lower bounds holds for d = 1, that is, the problem requires in

fact time 2a(l”l+ 1~l). Specifically, given an alternating Turing machine T that

uses linear space and an input x of length n, we can construct a Buchi

automaton A and a concurrent Markov chain M such that T accepts x if and

only if there is a scheduler u such that PM, ,,(L@(A)) >0, and both A and M

have size O(n). This fact implies as in Corollary 3.2.2 that there is a constant c

such that the probabilistic emptiness problem cannot be solved in time
0(2 W+lJW W d). e o not include the reduction, to keep the length of the paper

within reasonable bounds. The construction is similar to that of Theorem 3.2.1;

it is somewhat simpler, though it requires some care to ensure that A and M

have linear size. Summarizing, we have:

THEOREM 4.2.4. The probabilistic emptiness problem for a Buchi automaton A

and a concurrent Markol’ chain M can be sok’ed in time 0(1 M 12“ 2°(1”1 l)).

Furthermore, theproblem requires exponential time in the total input size IA I i- IMl.

Remark. It is possible to perform a more refined analysis of concurrent

Markov chains, similar to that of the simpler case of sequential chains. This

analysis leads to an alternative algorithm of roughly the same complexity, and

it can be further used for quantitative analysis; this direction is pursued in

Courcoubetis and Yannakakis [1990] in the context of designing optimization

strategies for Markov decision processes.

We could have used the transformation of this subsection to a Buchi

automaton that is deterministic in the limit in order to solve the probabilistic

emptiness problem also in the case of sequential programs (ordinary Markov

chains). The probabilistic emptiness problem for a (ordinary) Markov chain M

and a Buchi automaton B that is deterministic in the limit can be solved in

time 0(IM I “ IB 1) or in polylogarithmic space [Vardi 1985]. (Observe, that in
this case the part of the automaton rfir ~ ~ that is reachable from an accepting

state is deterministic, and therefore, the condition of Proposition 4.1.4 simpli-

fies to the following condition: PM(L@(B)) >0 if and only if the initial state

(x”, so) of ~Jf.B can reach a bottom strongly connected component that

894 C. COURCOUBETIS AND M. YANNAKAKIS

contains an accepting state.) This approach would give an alternative algorithm

for the probabilistic emptiness problem of Section 4.1, also of complexity

0(IM12)0(l ‘]) (with somewhat larger constant in the exponent).

The analysis of the previous subsection will play a central role in the next

section where we examine the Extended Temporal Logic. We note that the

transformation of Proposition 4.2.2 does not help with the problem of comput-

ing the probability P~, (LO(A)) or of just testing whether this probability is 1

(the probabilistic universality problem): It can be shown that the probabilistic
universality problem for a (ordinary) Markov chain and a Buchi automaton

that is deterministic in the limit is PSPACE-hard. Further, in the case of

concurrent Markov chains, the probabilistic universality problem for a Buchi

automaton that is deterministic in the limit (i.e., testing whether P,~~,,1(A) = 1

for all schedulers u) requires exponential time.

5. Extended Temporal Logics

In Wolper [1983], it was shown that standard temporal logic cannot express

certain properties that can be expressed by automata. For this reason, it was

extended using automata as temporal connective. Three such logics were

defined in Wolper et al. [1983]. Formulas in these logics are built from a finite

set Prop of atomic propositions using Boolean connective and temporal

connective corresponding to automata. The most general and powerful of the

logics uses Buchi automata. Let A = (~i, s,, F) be a Buchi automaton over the

alphabet X = {al, al}. If ~1, ..., ~1 are formulas of the extended temporal
logic (ETL), then A(fl,. . . , ~1) is also a formula of ETL. Satisfaction of this
formula by a computation z- at time instant i is defined as follows. t-r, i >

A(~l, ~1) iff there is an infinite word w = a,,, a,, ~.” accepted by A, such that

~,i+kl= ~kforallk>O.

It was shown in Sistla et al. [1987] that from a formula ~ of the extended

temporal logic, one can build a Buchi automaton of size 2 OIf12) that accepts the

same language. where I~ I includes the sizes of the automata appearing in the

formula. (In the case of the two other simpler extensions, the size of ~ appears

linearly in the exponent [Wolper et al. 1983].) Thus, by Theorem 4.2.4, we can

test if a concurrent probabilistic program satisfies an ETL formula in time

quadratic in the size of the program and doubly exponential in the square of

the formula. In the case of sequential probabilistic programs, we could follow a

similar approach and use Theorem 4.1.7. However, the algorithm we would

thus obtain would be doubly exponential. As we shall see, we can do much

better. In the rest of this section, we will combine the techniques of Sections

3.1 and 4.1, and with some more work show the following result.

THEOREM 5.1. We can test if a jinite state seqz!entiol prohabilistlc program M

satisfies a fonmlla f of the extended tenlporal logic irz time (XIM 12°[~f ~‘), or in

space po(vnomia[i~l f and polylogarithmic in M. We can compute the probability

P~l (Lti(f)) of satisfactio?l in tinze e.xponclztial in f and po~nornial in M.

Let f be a formula of ETL over a set Prop of propositions. M a (sequential)

Markov chain with a finite set of states X and V: X -2 ‘““]’ a valuation. We
wish to compute the probability Pll~(I,u(f)) that a trajectory of M satisfies the

formula f. We use a technique similar to that of Section 3.1 for PTL. We take

an innermost subexpression A(f,, fl) of f, replace it with a new atomic

The Complexity of Probabilistic Verification 895

proposition .& to obtain a new formula f’ with one less temporal operator, and

construct a new Markov chain M’ such that PM(LO(f)) = PM (LO(f ‘)). For

verification purposes, that is, to tell whether this probability is O, 1, or inbe-

tween, the transition probabilities of M and M’ are not important; only the

underlying graphs are important. However, we will use the transition probabili-

ties to prove correctness of our method.

Since A(fl,..., fl) is an innermost temporal subexpression off, the ~’s are

composed of atomic propositions and Boolean connective, and can be evalu-

ated at all the nodes of M. As in Section 4.1, we will regard .4 in the following

as being an automaton over the alphabet X (the set of states of the Markov

chain M) rather than alphabet 2; for x ● X, there is a transition from state s

to state s‘ on letter x iff the automaton with alphabet 2 has a transition from

s to s‘ on some al G X such that a satisfies f,. By this definition, a trajectory

X = XOXI . . . of M satisfies the formula A(fl, fl) iff the automaton A

(with alphabet X) accepts the infinite word X. We assume without loss of
generality that A has a transition on every letter x = X for every state.

We will not add here a new initial state to the chain M. As in Section 4.1, we

define the product transition table T~X~ and the deterministic table det(~~,~).

Recall that every state of det(~*(,$ ~) is a set consisting of pairs all of which have

the same node of M as their fwst component. Also, every run of ~~x ~ (or

det(~~x~)) projected on the first cc}mponent of the states gives a trajectory of

M; we say that the run corresponds to this trajectory of M. A run of ~~x.4 is

accepting if it repeats infinitely often some state (x, f) with f G F. Note that, if

x = XOX1X2 ~o. is a trajectory of M and s is a state of A, the automaton A has

an accepting run over the infinite word xl Xz “”” starting from state s lff rJ1 ~~1

has an accepting run corresponding to X starting from state (xo, s).

LetsI,..., s~ be the states of xl, and let X = XOXIXZ ..” be a trajectory of M

starting at an arbitrary node XO. We define the Vpe t of X to be a Boolean

(O–1) vector t, .“”tn of length ~z, where for each i, t, = 1 iff TM ~~ has an

accepting run starting at (.x.,s,) which corresponds to X; equivalently, the

automaton A with sl as its initial state accepts the infinite word xl Xz “”” . It is
easy to see that, if we know the type, say i’ of the suff~ xl xz “”” , then we can
uniquely determine the type t of ~0 x 1x~ “”” , as follows: For each i, the

automaton A accepts x ~.Y2 “”” starting from state Si iff there is a SJ E P.4(s,, x,)

such that A accepts Xz X3 “.” starting from state s,. That is, for all i = 1, ..., n,

the following equation holds:

(*)

We construct a graph G, as follows: The nodes of G are all pairs (x, t) where

x is a node of M and t is a Boolean n-vector. We include an arc (x., t) -+ (xl, r)

between two nodes of G iff t and r satisfy the condition (*) above and M has

an arc X. ~ xl. Note that every node (xl, r) of G has exactly one immediate

predecessor in G with first component X. for every immediate predecessor X.

of xl in M; the reason is that t is determined uniquely in (*) from xl and r.

By the construction of G, every finite or infinite path of G projected on the

first component of its nodes, is a path of M: we let g denote this projection
mapping from paths of G to paths of M. Conversely, every path in M is the

projection of at least one path in G. To see this, let X = Xoxlxz “”” be an

infinite path of M (any finite path can be extended to an infinite one). For

896 C. COURCOUBETIS AND M. YANNAKAKIS

each j, let tJ be the type of the suffix XJXJ+ ~ “”” . By the construction of G, for

tJ+’) Therefore, the path X of M iseach j it contains an arc (xl, t~) ~ (x,+ ~, .

the projection of the path (.x O,t“)(xl, fl) .”. ; we call this path of G, the

augmented path corresponding to X.

For a node (u, t)of G, let F’fi[(u, t)be the probability that a trajectory of M

starting at u has type t.We say that (u, t) is probable if PM(u, t) > O;

otherwise, it is improbable. Consider a trajectory X = XO, Xl, Xz, . . . with

XO = u, Xl = v. If X has type t then the suffix Xt, Xz,. . . has type r with the

property that G contains the arc (u, t)+ (z),r); conversely, if the suffix

X1, X2,... has type r and the graph G contains the arc (u, t) + (LI, r), then X

has type [. Therefore, Plf(u, t)= Z (,,,,~-(,.,)P,J’Ju> r)> where P,,, is the
probability of the transition u -11 in M and the sum extends over all arcs

(24. ~) -+ (~, r) out of node (u, t) in G. If G contains an arc (u, t) + (u, r) and

(c, r) is probable, then PLf(u, t)>pL,uP~(LI, r) >0 and thus (LL, t) is also
probable. Therefore, if a node of G is probable, then so are all its ancestors.

This implies in particular that for every strongly connected component C of G,

either all nodes of C are probable or none is.

The new Markov chain M’ is defined as follows: The underlying graph of M’

is the subgraph of G induced on the probable nodes. The probability of a

transition (u, t)+ (z’,r) in M’ is defined to be pU,, P~(Z’, r)/P~(z{, t). Note

that for every node (u, t) of M‘, the sum of the probabilities of all the

transitions out of (tf, t) is equal to 1 because

PJf(24, f) = z pL,,pJ,f(L’,r).

(u. L’)+(L’, r)

If po(u) is the probability of u in the initial distribution of M, then the

probability of (LL, f) in the initial distribution of M’ is pO(u, t) = pO(u)P~(u, t).

Finally, the set Prop’ of propositions for M’ consists of the old set Prop of

propositions for M and a new proposition f. A node (LL, f) of M‘ satisfies a

proposition in Prop iff u does, and satisfies the new proposition ~ iff there is a

j such that t, = 1 and s, = pq(sl, u). (Recall, SI is the initial state of A.)

Obviously, a trajectory X’ of M’ starting at (u, t) satisfies the formula

A(~l, ~1) iff its projection g(X’) satisfies it. Furthermore, it is easy to see

that by our definitions, if g(X’) has type t,then X’ satisfies A(~l,..., .fI) iff $

is true at node (u, t).As we will see later, the projection of almost all

trajectories of M’ starting at node (u. t)have type t.

Let X= XO, .Yl,. ... be a trajectory of M, let X’ = X(}, X;,..., be a trajec-

tory of M’, and let Y = YO, YI . . . be its projection g(X’) (if X; = (u, t),then

~ = Ll).

LEMMA 5.2. The processes X and Y hme tile same distribution.

The proof of the lemma is similar to that of Lemma 3.1.1.2 and is omitted.

We still have to show how we can determine which nodes of G are probable

(are in M’), and to prove the analogue of Lemma 3.1.1.3 for this setting.
As in Section 4.1, we say that a bottom S.C.C. of det(~filY ~) is accepting if it

has some state which contains an accepting recurrent state of r~x ~, and it is

rejecting otherwise. We know from Section 4.1 that for any node x @ X and

state s of A, a trajectory X of M starting at node x has the following

properties with probability one: (i) the corresponding run of det(~,vxi) starting

The Complexity of Probabilistic Verification 897

at {(x, s)} hits eventually a bottom strongly connected component, and (ii) this

bottom S.C.C. is accepting if and only if the table T*[v,4 has a corresponding

accepting run starting from (x, s). We say that a trajectory X of M is typical if

(1) X satisfies these properties, and (2) all pairs of the augmented path of G

corresponding to X are probable (and thus are in M’). It follows easily from

the Markov property that for any node x of M, almost all trajectories starting

at x are typical. Note that by condition (2), every typical trajectory of M is the

projection of some trajectory of M’, namely of the augmented path corre-

sponding to X.

The following lemma gives a necessary (but not sufficient) condition for a

pair (u, t)to be probable.

LEMMA 5.3. If a pair (u, t) is probable, then it satisjies the following condi-

tions:

(a) For each i such that t, = 1, the state (u, S1)of r~x.~ can reach some acceptiflg
recurrent state.

(b) For evey state y that is in an accepting bottom S.C.C. of det(rJf ~~) and has

first component u, there is an i such that (u, s,) G Y and t, = 1.

PROOF. Condition (a) follows immediately from Lemma 4.1.3. Suppose that

a state y in an accepting bottom s,,c.c. C of det(~~X,4) violates condition (b).

Let z be a state of C which contains some recurrent state (x, f) with f G F,

and let y = X* be the finite word as in Definition 4.1.1 for this recurrent state;

recall that by Lemma 4.1.2 almost all trajectories of M which start from state x

and have prefix y have a corresponding accepting run in rM ~,4 Starting from

(x, f). Consider a trajectory X = u, X1, X2,... of M starting from u and the
corresponding run of det(~~x~) starting from state y. As in the proof of

Proposition 4.1.5 with probability 1, there is a finite time u such that the run

of det(~~x ~) is in state z at time cr, and the remainder of X has prefix y. Thus,

for some (u, St) = y, there is a run of ~~x~ from (u, s,) to (x, f) corresponding

to the prefix u, Xl,.. ., Xa of X. Since the following substring of X is y, with

probability 1 this run can be extended to an accepting run of ~LrX~. Therefore,

for almost all trajectories X of M starting at u, the type t of X has t,= 1 for at

least some i such that (u, si) ~ y. ❑

LEMMA 5.4. Let a be a finite path of M which corresponds to a run of

det(r~x~) that starts at state (u, si) and ends in a bottom S.C.C. C. If M’ contains

a path that starts at (u, t) and has projection a, then t, = 1 if C is an accepting

s.c.c., and t, = O if C is rejecting.

PROOF. Let (L, q) be the last node of a path of M’ that starts at (L1, t) and

has projection a, and let y be the last node of the run of det(~~y,4)

corresponding to a which starts at state {(LL, s,)}. Suppose that C (the S.C.C. of

y) is a rejecting bottom S.C.C.Since C is rejecting, no element of y can reach in

~fil x ,4 an accepting recurrent state. Since (L’, q) is a node of M’, and thus is

probable, from Lemma 5.3(a) we know that qj = O for all J such that (L’,s,) E y.

From eq. (*) in the construction o-E G, it follows by an easy induction on the

length of a that

(**)ti= V{q,l(L’> s,) ‘~}.

Thus, t, = O.

898 C. COURCOUBETIS AND M. YANNAKAKIS

Suppose that C is an accepting bottom S.C.C. Since (L), q) is probable, we

know from Lemma 5.3(b) that q, = 1 for some j such that (LI, s,) ● y. It follows

from the eq. (* *) that t,= 1. ❑

We can prove now the analogue of Lemma 3.1.1.3 for automata connective.

LEMMA 5.5. A trajectory Xf = (Xo, t(’), (X1, t’),... of M’ is with probability

1 the augmenteal trajectory of its projection K = XO, Xl, . . . in M. That is, for

allk> O, thetypeof X~Xk~l ““” is t~, and A(fl, f,) = ~ holds at all limes

irz X’.

PROOF. It suffices to show that for any node (u. t)of M’, the type of the

projection g(X’) of almost all trajectories X’ starting at (u, t) is t.Let us say

that a trajecto~ of M’ is typical if its projection, a trajectory in M, is typical.

We know that for any node u of M, the probability (in M) that a trajectory

starting at u is typical is 1. It follows from Lemma 5.2 that the same is true of

M’: for any node (u, t) of M’, the probability (in M’ now) that a trajectory

starting at (u, t) is typical is 1. We shall show that for any typical trajectory of

M’ starting at (U. t), its projection has type t.

Consider such a typical trajecto~ X’, and let X = g(X’) be its projection and

r be the type of X. Since X’ is typical, for each i = 1,. , , , n, the run of

det(~fi[x,l) that corresponds to X starting from {(u,s,)} ends in a bottom S.C.C.C

which is rejecting or accepting according as r, = O or 1. Let a be a (finite)

prefix of X such that after a the run is in a state of C. Since a is the

projection of a path of M’ starting at (u, t), we know from Lemma 5.4

that t, = O or 1 according as C is rejecting or accepting. That is, t = r,the type

of x. ❑

PROPOSITION 5.6. P,,(Lo(f)) = P,f(Lu(f’)).

PROOF. A trajectory X’ of M’ satisfies the formula f if and only if its

projection g(X’) satisfies it. Thus, Lemma 5.2 implies F’,,(LU(f)) = Ph,(LW(f)).

From Lemma 5.5, with probability 1, a trajectory of M’ satisfies the formula f

if and only if it satisfies the formula f’, and thus P,}l(LU(f)) = PJ1(LW(f’)).

The proposition follows. ❑

It remains to show how we can determine which nodes of G are probable

and which are not. To test whether a pair (u, t) is probable, the obvious way

would be to construct an automaton Bt that accepts the infinite words of type t

and solve the probabilistic emptiness problem for the Markov chain M and the

automaton I?t as in Section 4.1. The automaton Bt can be constructed as the

product of n automata, where for each i = 1,...,n, if t,= 1, then the ith

component of the product is the automaton A, obtained from A by letting its
initial state be S(, and if tL = O, the ith component is an automaton accepting

the complement of the language of A,. This method involves complementation

and the final algorithm would be double exponential. A second method follows

from the following fact: the pair (ZL, t) is probable if and only if there is a finite

word w such that for each i, the run of det(7 ~f,(~) on w starting from state

{(u, S[)} ends in an accepting bottom S.C.C. if t,= 1,and in a rejecting bottom
S.C.C. if t, = O. This condition can be tested by constructing the product of the

automata det(~,tfxq, (u, Sl)), . . . , det(~~x~, (u, s,,)), and solving a reachability

problem in the product. This method avoids complementation but it would still

require forming an n-fold product. The resulting algorithm would be singly

The Complexity of Probabilistic Verification 899

exponential, but the size of A would appear quadratically rather than linearly

in the exponent. We shall describe now another method for determining the

probable pairs that meets the bounds of Theorem 5.1.

From our earlier discussion, we know that if a node of G is probable, then so

are all of its ancestors. First, we shall prove that the same property holds for

the nodes that satis@ the necessary condition of Lemma 5.3.

LEMMA 5.7. If a node of G satisfies the condition of Lemma 5.3, then so do all

of its ancestors.

PROOF. Let (u, t) s (u, r) be an arc of G and suppose that (z’, r) satisfies

the condition of Lemma 5.3. We will prove that (z{, t) satisfies it also. To show

part (a) of the condition, suppose that t,= 1. The existence of the arc

(u, t) ~ (~’, z’) in G implies that M has a transition Lt ~ L and that eq. (*)
holds with L’ in place of xl there. By eq. (*), there is an index j such that

rJ = 1 and s, E p~(si, L)). Therefore, ~~ ~~ has an arc from state (Lt. s,) to state

(L’, s,). Since (u, r) satisfies the condition of Lemma 5.3 and r, = 1, the state

(U, J of rMxA can reach some accepting recurrent state, and therefore, the

same is true of (u,s,).

To show that (u, t)satisfies part (b) of the condition, consider a state y in an

accepting bottom S.C.C.C of det(~~x ~) and suppose the first component of y is

u. Since M has a transition u -+ u, the state y has a transition in det(~~f ~ ~) to

a (unique) state z with first component L]. State z is the same bottom S.C.C. C,

and therefore z contains an element (u, s,) such that r, = 1. Because of the

~X~), the state y must contain an element (LL, s,) suchtransition y ~ z in det(r

that s, ● p~(s,, ~’). From eq. (*), we have t,= 1, and therefore (u, t) satisfies

part (b) of the condition of Lemma 5.3. ❑

Consider a strongly connected component C of G. From the construction of

G, all nodes of M that are first components of the nodes of C, belong to (form

a subset of) the same s.c.c., say ~ of M. (A path from one node (u, t) to

another node (L’, r) of C projects to a path from u to LI.) Thus, there is a

(many-to-one) correspondence between the S.C.C.’S of G and those of M, where
a S.C.C.of G corresponds to a unique S.C.C.of M, and a S.C.C.of M corresponds

to one or more S.C.C.’S of G. We know that either all nodes of C are probable

or none is. Thus, every S.C.C. of the chain M’ is also a S.C.C. of G. In order to

determine the chain M’, itsuffices to determine its bottom s.c.c.’s; then M’ is

a subgraph of G induced by these S.C.C.’S and their ancestors. The following

Proposition characterizes the bottom S.C.C.’S of M’.

PROPOSITION 5.8. For ellery bottom S.C.C. K of M there is a unique highest

s. C.C. of G, denoted as h(K), which corresponds to K and whose nodes satisjj the
conditions of Lemma 5.3; that is, any other S.C.C. of G that con-esponds to K and

satisfies the condition of Lemma 5.3 is a descendant of h(K). A S.C.C. of G is a

bottom S.C.C. of M’ if and only ifit is h(K) for some bottom S.C.C. K of M.

We will need two lemmas to prove the proposition,

LEMMA 5.9. If C is a bottom S.C.C. of M’, then it corresponds to a bottom

S.C.C. K of M.

PROOF. Suppose that C is a bottom S.C.C.of M’ but the corresponding S.C.C.

K is not a bottom S.C.C.of M. A trajectory of M starting at any node L[of K is

absorbed with probability 1 in a bottom S.C.C. of M. No such trajectory is the

900 C. COURCOUBETIS AND M. YANNAKAKIS

projection of a trajectory in M’ starting at a node (u, t) of C, contradicting

Lemma 5.2 and the fact that (u, t) is probable. ❑

L~MM,A 5.10. Let C be a S.C.C. of G ~’ith the corresponding S.C.C. K of ill.

Then the follo~ving are equi[‘alent.

(1) If LL + [) is CLrrarc of K, then el’e?~ tlode (l’, r) of C with first component 1)has
all immediate predecessor (u, t) m C with first component u.

(2) El)eq jillite path ill K is the projection of a path in C.
(3) NO other S.C.C. Of G conespo~lding to K is a~l ancestor of C.

PROOF. We will show first the equivalence of conditions (1) and (2).

Reverse all the arcs in K and C’, and let K’, C‘ be the reversed strong

components. Clearly, (2) is equivalent to the following condition: every finite

path in K’ is the projection of a path in C‘.

Assume that (1) holds to show (2). Condition (1) states that for every node

([), r) of C’ and every arc 1 ~ u of K’, the node (t’, r) has an arc in C’ to a

node with first component L[. It follows that for every node (~, r) of C’ and

every finite path p = Z’ + L’, . . + L,,, of K’, there is a path of C“ starting at

(L’, r) whose projection is p. This fact implies condition (2), unless there is a
node u’ of K‘ that does not have any corresponding node in C‘ with first

component w. To see that this is not the case, take any node (l’, r) of C’, and a

path p from ~ to w in K’ (itexists because K’ is strongly connected); there is

a corresponding path from (z’, r) in C’ ending at some node (~’, t).

Suppose now that condition (2) holds but C does not satisfy condition (1);

that is, some node (z, r) of C‘ has no immediate successor in C’ corresponding

to a successor tl of 1 in K’. If p is a path in K’, then let H(p) be the set of all

the paths in C‘ whose projection is p; the set of final nodes of these paths is

denoted h(p). We shall construct a path p such that h(p) = @ and hence

H(p) = (3; this will contradict (2). The path p has the form L)UpltILlpQULlp~ .”. ,

where each p, is the string of intermediate nodes in some path from node u to

node L’. Let 1 be the number of nodes of C‘ with first component L’. Since node

((, r) does not have an arc in C‘ to a node with first component u, and every
other node with first component u has at most one such arc, Ih(LIU’) s 1 – 1.

Define p, as follows: Let (t{, t) be any node of h(LILL), and let L~plLI be the

projection of any path from (u, t) to (t’, r) (it exists because C‘ is strongly

connected). We claim that I}z(LIUplCZL)1 s lh(~w)1 – 1.To show this, define the

following mapping ~ from h(CWp,ZILL) to /z(L/L). For every member (Lt, q) of

h(LVLp~LILL)pick a (arbitrary) path of C‘ with projection L)LLp~LIL and define

4(u, q) to be the second node of this path of C’. Clearly, 4(u, q) is in h(L’u).
By our definition, there is a path of C’ from ~(u, q) to (u, q) with projection

Upllw. Since there can be at most one path in C’ that starts at ~(u, q) and has

projection Upl L’LZ,itfollows that the mapping I/(is one-to-one. However. it is

not onto the path of C’ starting at (z{, t)with projection Up[Z’ ends in (L’, r),

which does not have an arc to a node with first component u. Thus, (u, t) is not

in the image set of ~. It follows that Ih(LIUplULZ)l < Ih(uu)l – 1 <1 – 2.

We can define inductively the strings Pz, Pj, . . . in an analogous way so that

I/Z(L’Llp~LW ““” pkLW)l <1 – k – 1. Assume that we have defined PI,. . . ,p~. If

the set A(LYLplLW . . . pk7’L4) k not empty, we let (u, t‘)be any node in it. we take

a path in C’ from (LL, t‘) to (L), r) and let Upk+ ~L1be its projection. As in the

basis case, we can define a mapping ~‘ from h(lvl . . . pk+ ,LYL) to h(LILl . . . pkCLt)

which is one-to-one but not onto. Therefore, lh(~w . . . p~+ ,~w)l s lh(LIL . .

The Complexip of Probabilistic Verification 901

p,~w)l – 1<1 – k – 2. Thus, in at most 1 steps, we have a path p such that

h(p) = @.

The equivalence of (1) and (3) follows from the fact that for every arc u - LI

of K, every node (LI, r) of C has exactly one immediate predecessor (L[, t) in G

with first component u. Suppose that the S.C.C.C violates condition (1). That is,

for some arc u ~ L of K, there is a node (L,), r) of C whose immediate

predecessor (u, t) is not in C; then it must be a higher S.C.C. D of G. Since
u G K, the S.C.C. D also corresponds to K and thus (3) does not hold for C.

Conversely, suppose that C violates condition (3); that is, G has a S.C.C. D that

corresponds to K and is an ancestor of C. Take a path from any node (w, q) of

D to C and let (Lt, t) + (u, r) be the arc of the path that enters C. Since w and

L) belong to the S.C.C. K of M, and M has a path from w to u and then to L’,

node LL also belongs to the same S.C.C. K. Since (u, r) has a unique immediate

predecessor in G with first component u, and that predecessor (u, t) is not in

C, it follows that condition (1) does not hold for C. ❑

We are ready now to prove Proposition 5.8.

Proof of Proposition 5.8. Let K be a bottom S.C.C.of M, and let 8(K) be the

set of S.C.C.’S of G that correspond to K and whose nodes satisfy the condition

of Lemma 5.3. Clearly, (3(K) is nonempty; in particular, all probable nodes

with first component from K belong to S.C.C.’S in 6(K). Let C be any member

of 6(K) that has no ancestor in 6(~). By Lemma 5.7, no ancestor of C in G

violates the condition of Lemma 5.3. Therefore, C has no proper ancestor

corresponding to K; that is, C satisfies condition (3) of Lemma 5.10, and

therefore also (2). We shall argue that C contains all the probable pairs (u, r)

whose first component u is in K.

Let (u, r) be a probable pair with u = K, and let X be a typical trajecto~ in

M of type r starting at u. Since X is typical, for each i = 1,..., H, the run of

det(~lfx.~) that starts at {(u, s,)} and corresponds to X enters after some finite
time a bottom S.C.C.which is accepting or rejecting depending on r,. Let a be a

prefix of X such all these runs for all i have entered bottom S.C.C.’S after a.

Since condition (2) holds, there is a path in C with projection a. Let (LI, t) be

the first node of this path and (L!, q) be the last node. By our assumptions, node

(L’, q) satisfies the condition of Lemma 5.3. Using the same arguments as in the
proof of Lemma 5.4, we can show that t = r.Therefore, the probable pair

(u, r) is in C.
Thus, the S.C.C. C contains all probable nodes with first component in ~.

This has several implications. First, it implies that our chosen S.C.C.C is unique,

and thus every other member of 6(~) is a descendant of this s.c.c., which we

denote as h(K). Second, since this S.C.C. contains all the probable pairs with

first component in K, it is the only S.C.C. of the chain M’ that corresponds to

the S.C.C. K of M. If h(K) was not a bottom S.C.C. of M’, then any descendant

would have to correspond also to JY (because K is a bottom S.C.C. of M). It

follows that h(K) is a bottom S.C,C. of M’.

From Lemma 5.9, every bottom S.C.C. of M’ must correspond to a bottom

S.C.C. K of M, and from the above arguments it must actually be h(K). ❑

Summarizing our discussion, we can construct the graph of the new Markov
chain M‘ by the following algorithm:

(1) Build the tables T&IxA and det(TJ~X~), and find the recurrent states of TLf, ~.

(2) Construct the graph G.

902 C. COURCOUBETIS AND M. YANNAKAKIS

(3) Remcwe from G the noclcs that violate the condition of Lemma 5.3.
(4) For each bottom S.C.C. K of M’ find the highest corresponding S.C.C. II(K) in G; by

Proposition 5.8, there IS a umque such S.C.C.which contains all the probable nodes (u, t)

with u E K. The graph of the new Nlarkov chain lf’ is the subgraph of G induced on
these S.C.C.’S and them ancestors.

Step (1) can be performed as in Section 4.1 in time 0(IM12’1(14])). If M has

m nodes and e arcs. and A has n states, then the graph G has m2n nodes and

e2’1 arcs, and can be certainly constructed in time 0(e2°(’’)). It is not too hard

also to implement Steps (3) and (4) with the same time complexity. Thus, the

new Markov chain M’ has at most m?” nodes and e2” arcs, and its graph can

be constructed in time 0(e2°(’’)).

Suppose that the given ETL formula j’ has k temporal connective repre-

sented by k automata with n,, ..., n,, states and let n = z! n,. If we iterate our

transformation eliminating one by one all the temporal connective, we will

finally construct a simple propositional formula ~~ (with no temporal connec-

tive) and a Markov chain ML with at most m2° nodes and e2n arcs. For

pm-poses of qualitative verification (determining if the probability that M

satisfies f“ is O or 1), the exact values of the transition probabilities are not

important; ~ is satisfied with probability O (respectively, 1) iff no initial state

(respectively, all initial states) of Mh satisfies the formula f‘. We can construct

the graph of the final Markov chain Mh, and thus perform the qualitative

verification, in time 0(IM12°(l A!)).

By similar arguments as in the case of PTL (Section 3. 1), it can be seen that

we can construct the graph of the Markov chain M’ that results after

eliminating one temporal connective using a transducer that works in space

polynomial in IA I and polylogarithmic in IMl. It follows then that the same

holds for the final chain i’vf~.

If we wish to determine the exact probability of satisfaction P&l(LO,(~)), we

have to compute the transition probabilities of M‘, that is, we need to compute

the probabilities P,i,(u, t) for all nodes (u, t) of M’. These probabilities form a

solution to the following linear system of equations in variables q(u, t) (one

variable for each node of M’):

(1) For every node (u, t) of M’, q(u, t) = Z,,,,] p,,,,q(~, r), where the sum
ranges over all immediate successors ([, r) of (u, t) in M’;

(2) for every node u of M, Z, q(u, t) = 1. where the sum ranges over all t such

that (u, t) is in M’.

Clearly, the system contains more equations than variables, and thus some of

the equations are redundant. The probabilities PM (14, t) satisfy obviously this

linear system. It suffices to show that the system has a unique solution.

PROPOSITION .5.11. The linear system of the eqs. (1) und (2) has a unique

solLltion.

PROOF. Let us write eq. (1) as q = R . q. where q is the vector of variables,

and R is a matrix whose rows and columns are indexed by the nodes of M‘

(which correspond to the variables) with R[(zt, t), (c, r)] = P,(,, if M’ has an arc

from (zt, t) to (r, r), and R[(u, t), (v, r)] = O, otherwise. If a is a finite path of

M, we denote by p(a‘) the product of the probabilities of the transitions of the

path, and call this number the probabili~ of a. If a‘ is a finite path of M’

which corresponds to (i.e., has projection) path a of M, we let p(a‘) = p(a).

The Complexity of Probabilistic Veri&ation 903

and call it the probability of a‘. Consider now the jth power Rj of the

matrix R. From the definitions, RJ[(u, t), (u, r)] = Z{p(a ‘)la’ is a path in M’

of length j from (u, t) to (~1,r)}. As we have already noted, no two paths from

(u, t) to (~), r) have the same projection. Therefore, R’[(u, t), (ZJ, r)] = Z{p(a)l a
is a path in M of length j which is the projection of a path from (u, t)to (u, r)

in M’}.

Let a be a finite path of M starting at some node u. We say that a is

determined if for each i = 1,. ... n, the run of det(t-~x~) starting at {(u,s,)}

ends in a bottom s..c.c., say Ci. If a is a determined path, then we define its

type to be the vector t,where t, = O or 1 according as Cl is rejecting or

accepting. Let dl(u, t, u) = Z{p(a)l a is a path of length j in M from u to u

which is determined and has type t}. Let dj(u, t) = Z,, dJ(u, t, u), let d,(u) =

Z, dj(u, t), and e,(u) = 1 – d,(u). Note that Ej(u) is the probability that a path

of M of length j starting at u is not determined, that is, for some i, the

corresponding run of det(~~ ~~) from state {(u,s,)} has not reached a bottom

S.C.C.Thus, we know that as j -+ ~, we have ~J(u) -+ O.

Suppose that a path a of M of length j from some node u to some node u

is determined of type t; that is, a contributes to d,(u, t,LJ).From Lemma 5.4,

we know that for any type t‘# t,there is no path in M’ that starts at node

(u, t‘) and has projection a; thus a does not contribute to RJ[(u, t ‘), (u, r)] for
any r. Furthermore, we know that for every node (L1,r) of M’ there is a path

ending at (u, r) with projection a; therefore, this path must start at (u, t),and

thus a contributes to RJ[(u, t), (v, r)] for all r. We conclude that for any r, we

have d,(u, t, ~1) < RJ[(zf, t), (u, r)].

Furthermore, consider a path a of M that contributes to R][(u, t), (u, Y)],

that is, a has length j and is the projection of a path from (u, t) to (u, r) in

M’. If a is determined, then, by L,emma 5.4, its type must be t,and thus a

contributes to d$u, t, ~)). The set of paths of M of length j starting at u that

are not determined has probability e,(u). Therefore, RJ[(u, t), (ZJ,r)] s

d~(u, t, u) + ~J(u). Thus, the difference Rl[(u, t), (u, r)] – dJ(u, t, u) lies be-

tween O and q(u), and therefore it tends to O as j ~ ~.

Note that if a path a of M is determined of type t and thus contributes to

dl(u, t),then all its extensions also contribute to it. Therefore, dJ(u, t) is

monotonically increasing as a function of j. Since it is bounded from above, it

has a limit, and let d~(u, t) be this limit. If q is any solution to the system (1)

and (2), then for any j the soluticm satisfies the equation q = RJq, that is,

q(u, t) = Z(,,,,) R][(u, t), (u, r)] “ q(u, r) = ZL,,,,) {RJ[(u, t), (u, r)] –
dj(u, t, u)} “ q(u, r) + Z ~,,,,, clj(u, t, u) “ q(u, r). The second term on the right-

hand side is equal to Z,, dj(u, t, ,v)X, q(L~, r) that because of eq. (2) is equal to

Xc dj(u, t, u) = d,(u, t). Thus, as j tends to ~, the first term of the right-hand
side tends to O and the second term tends to dx(u, t). It follows that

q(u, t) = d>(u, t). ❑

Therefore, we can compute the transition probabilities of the Markov chain

M’ by solving the linear system of eqs. (1) and (2). The rest of the arguments to

finish the proof of Theorem 5.1 are similar to the case of PTL studied in

Section 3.1.

Remark 5.12. The conditions of Lemma 5.10 are closely related to the

recurrence condition of Section 4.1. As we showed there, in a strongly con-

nected component C of ~~x ~ either all nodes are recurrent or none is. It can

904 C. COURCOUBETIS AND M. YANNAKAKIS

be shown that the first case occurs if and only if C corresponds to a bottom

S.C.C. ~ of M, and every path in ~ is the projection of a path in C (condition

(2) of Lemma 5.10). If ~~x~ has the same property as our graph G here,

namely that every state (x, s) has one immediate predecessor with first compo-

nent u for every immediate predecessor u of x in M, then we can efficiently

determine what states are recurrent without having to apply the subset con-

struction (just use condition (1) of Lemma 5.10). If A is the Buchi automaton

constructed from a PTL formula, then ~~1~,4 has indeed this property. This

leads to a different algorithm for verifying if a sequential probabilistic program

M satisfies a PTL formula ~, which runs also in time linear in IMl and

exponential in I~ 1, though the exponent is somewhat larger. However, the

algorithm can be simplified to match the complexity of the one in Section 3.1.

We will not describe here this alternative algorithm for PTL.

6. Conclusions

We addressed the problem of verification of probabilistic finite state programs

with respect to specifications expressed in linear time temporal logic or by

o-automata. We studied two types of probabilistic programs: sequential pro-

grams, modeled by ordinary Markov chains, and concurrent programs, modeled

by concurrent Markov chains. We considered three types of specifications:

Propositional linear temporal logic (PTL), o-automata, and extended temporal

logic (ETL). We shall summarize our results and discuss the proof techniques.

In the case of sequential programs, we showed that the verification problem

can be solved with the same complexity for all three types of specification:

linear time in the size of the program and exponential in the size of the

specification. We showed also that the problem can be solved in PSPACE,

matching the known lower bound. Furthermore, we presented algorithms for

performing quantitative analysis, that is, computing the exact probability that a

sequential program satisfies the specification, instead of only determining

whether the probability is equal to 1. For all three types of specification, the

quantitative problem can be solved in time polynomial in the program and

exponential in the specification.

In the case of concurrent programs, the complexity depends on the type of

the specification. For o-automata the complexity of our algorithm is quadratic

in the program and exponential in the specification. For the other two types of

specification, PTL and ETL, the complexity is quadratic in the program and

doubly exponential in the specification. We proved also lower bound results

showing that double exponential time is required in the case of PTL (and

hence also ETL) specifications, and exponential time is required in the case of

co-automata specifications.

In order to achieve essentially optimal bounds in the different cases, we had

to use a variety of techniques. In the case of concurrent programs, we used the

automata-theoretic approach for all three types of specification. Converting

from a formula in linear or extended temporal logic to an o-automaton

increases the size by one exponential. However, since the lower bound for the

logics is one exponential higher than the bound for automata, we do not lose

our chances for optimality by doing this conversion and working only with

automata. It was known that if the automaton is deterministic in the limit then

the probabilistic emptiness problem can be solved in polynomial time. We

solved the problem for general automata in exponential time by reducing it to

The Complexi@ of Probabilistic Verification 905

this special case: we presented a semi-determinization construction which

converts a general Buchi automaton to an exponentially larger automaton that

is deterministic in the limit.

It would have been nice if we could reduce all three types of specification to

the automata case for sequential programs, as we did for the concurrent

programs. Unfortunately, this is not possible. The reason is that the time

complexity for specifications in PTL (or ETL) is the same as for co-automata:

single exponential. This means that we cannot achieve optimality for PTL by

simply reducing it to the automata case and invoking a general algorithm for

automata, because we would lose an extra exponential in the conversion from a

PTL formula to an automaton. One possibility would be to try to convert

directly from a PTL formula to an exponentially larger automaton that is

deterministic in the limit, and then use a polynomial algorithm for this

automaton. Most likely, converting from a PTL formula to an automaton that

is deterministic in the limit requires a double exponential blowup in size.

Proving this is outside the scope of this paper, but we note that by Corollary

3.2.2, the time required for such a direct conversion is provably double

exponential: If it was possible to do the direct conversion in less than double

exponential time, then we could use it also in the concurrent case to solve the

verification problem for PTL specifications in less than double exponential

time, which we proved is impossible.

In the case of sequential programs, we needed different techniques. Our

basic approach in all cases was to construct from the given Markov chain

(program) and the given specification a new Markov chain that combines the
two refining the original chain, such that the verification problem can be solved

easily on the new chain. The particular techniques of this construction and the

supporting analysis depend on the type of the specification. In the case of PTL

formulas, we transformed step by step the formula and the Markov chain

eliminating the temporal connective one by one, until at the end we had

a simple propositional formula for which the verification problem is trivial.

In the case of automata specifications, the construction of the new chain

was rather simple; it involved forming the product of the original chain and

the automaton and applying the subset construction. Our algorithm was based

on a combinatorial analysis of the interaction between Markov chains and O-

automata which led to a characterization of the states of the new chain that

guarantee (almost surely) acceptance. In the automata case, we could have also

used the semi-determinization transformation to solve the probabilistic empti-

ness problem. As we remarked in Section 4 however, the semi-determinization

does not help for the universality problem, which is critical for the extension to

ETL.

Extended temporal logic encompasses and extends in succinctness and

expressive power both PTL and w-automata. As in the case of PTL, our

algorithm transformed step by step the given Markov chain and ETL formula

eliminating one by one the temporal (automata) connective. Performing one

such elimination step involved a deeper combinatorial analysis of the interac-

tions between Markov chains and alUtOrnat&

ACKNOWLEDGMENT. We thank Moshe Vardi for helpful discussions, and for

pointing out a simplification in the construction of Section 4.2. We thank the

referees for suggestions that helped improve the presentation of this material.

906 C. COURCOUBETIS AND M. YANNAKAKIS

REFERENCES

AHO, A. V., HOPCROFT, J., AND ULLMAN, J. D. 1974. The Design LLnd Analysis of Computer
Algoritlzms. Addison-Wesley, Reading, Mass.

BRFXMAN, L. 1968. Probabilz,~, Addison-Wesley, Reading, Mass.

13ucHI, J. R. 1962. Onadecls]on method unrestricted second order arithmetic. In Proceedmgsof
the IntenzatLona lCongressonLogtc. h{ethod and Piulosophlc alScience.pp. 1–12.

BucI-11, J. R. 1973. The monadic second-order theory of w]. In Decidable Theorie~ II. Lecture
Notes in Mathematics, vol. 328. Springer-Verlag, New York, pp. 1-128.

CHANDRA, A. K., KOZEN, D. C., AND STOCKMEYER, L. J. 1981. Alternation. J. ACM 28, 1 (Jan.)
pp. 114-133.

CHOLTEW, Y. 1974. Theories of automata on ~-tapes: A simplified approach. J. Comput. Syst.
SCI, 8, 117-141.

CL.ARKE, E. M., EMERSON, E. A., AND SISTLA, A. P. 1983. Automatic verification of finite-state
concurrent systems using temporal logic specifications: A practical approach. In Proceedingsof
the 10th Annucd .4CM Symposium on Principles of Programming Languages (Austin, Tex., Jan.
24–26), ACM, New York, pp. 1] 7–126.

COURCOUBETIS, C., AND YANNAKAKIS, M. 1990. Markov decision processes and regular events.
In Proc. of the 17th Intl. Colloquum on Automata, Languages and Programmmg. pp. 336-349.

EMERSON, E. A., AND HALPERN, J. Y. 1983. “Sometimes” and “Not Never” revisited: on
branching vs. linear time. In Proceedings of 10th Annual ACM Symposium on Principles of
Programmmg Languages (Austin, Tex., Jan. 24-26). ACM, New York, pp. 127-140.

EMERSON, E. A., AND LEI, C. L. 1985. Modalities for model checking: Branching time strikes
back. In Proceedings of the lM .4rrnual ACM Symposium on Principles of Programming Law
guages(New Orleans, La., Jan. 14-16). ACM. New York, pp. 84-96.

EMERSON, E. A., .AND SISTLA. A. P. 1983. A triple exponential decision procedure for CTL*. In
CMU H’or,kshop on Logic of Prograrrzs, Carnegie-Mellon Univ., Pittsburgh, Pa.

FRANCEZ, N., AND RODEH, M, 1980. A distributed data type implemented by a probabilistic
communication scheme. In Proceedings of 21st IEEE Svmposzum on Foundations of Computer

Science. IEEE, New York, pp. 373-379.

GABBY, D., PNUELI, A., SHELAH, S., AND STAVI, J. 1980. On the temporal analysis of fairness. In
Proceedings of 7th ZftLnLILZl ACM $vmposufm on Prmcip[es of Programming Languages (Las Vegas,

Nev., Jan. 28-30). ACM, New York, pp. 163-173.

HART, S., AND SHARJR, M. 1984, Probabilistic temporal logic for finite and bounded models. In
Proceedings of the 16t[l Annna[ACM Symposuurz on Theory of Computing (Washington, D. C.,
Apr. 30-May 2). ACM, New York, pp. 1-13.

HART, S., SHARIR, M., .4ND PNUELI, A. 1983. Termination of probabilistic concurrent programs.
ACM Trans. Prog. Lang. $vst. 5, 3 (July), 356-380.

KEMENY, J. G., SNELL, J. L., AND KNAPP, A. W. 1976. Denz[merab~e Markou Chains. Springer-
Verlag, New York.

LEHMAN, D., AND RABIN, M. O. 1981. On the advantage of free choice: A symmetric and fully
distributed solution to the dining philosophers problem. In Proceedi)tgs of the 8th Annual ACM

Symposium on Principles of Programming Languages (Williamsburg, Vs., Jan. 26-28). ACM, New
York, pp. 133-138.

LEHMAN, D., AND SHELAH, S. 1982. Reasoning with time and chance. Irzf. Co~ztrol 53, 165-198.

LICHTENSTEIN, O., AND PNUELI, A. 1985. Checking that finite-state concurrent programs satisfy

their linear specification. In Proccedvzgs of the 12th Annual ACM Symposuim on Principles of

Programming Languages (New Orleans, La., Jan. 14-16). ACM, New York, pp. 97-107.

MCNAUGHTON, R. 1966. Testing and generating infinite sequences by a finite automaton. Znf.
cfJnrr. 9, 521–53U.

PNU~LI, A. 1981. The temporal loglc of concurrent programs. Theoret. Comput. Scz. 13, 45-60.

PNUELI, A. 1983. On the extremely fair treatment of probabilistic algorithms. In Proceedings of

tlze 15tlz An?lual ACM Symposium O)Z Theory of Compzltzng (Boston, Mass., Apr. 25–27). ACM,
New York, pp. 278–290.

PNUELI, A., AND ZUCK, L. 1986. Probabilistic verification by tableaux. In Proceedings of the 1st

Synzposa.mz OIZ Logzc in Computer Science. IEEE, New York.

QUEILLE, J. P., AND SIF~KIS, J. 1982. Fairness and related properties in transition systems.
Research Report #292. IMAG. Grenoble. Switzerland.

RABIN, M. O. 1972. Automata on infinite objects and Church’s problem. In Proceedings of tlze

Regzonal ,4MS Cotzfere?zce Series m Marhemutzcr, vol. 13. AMS, Providence, R. I., pp. 1–22.

The Complexity of Probabilistic Verification 907

SA~RA, S. 1988. On the complexity of o-automata. In Proceedings of the 29th IEEE Symposiam

on Foundations of Computer Science. IEEE, New York, pp. 319–327.
SISTLA, A. P., AND CLARKE, E. M. 1985. The complexity of propositional linear temporal logics.

~. ACM 32, 3 (July), 733-749.

SISTLA, A. P., VARDI. M. Y., AND WOLPER, P. 1987. The complimentation problem for Buchi
automata with application to temporal logic. Theoret. Comput. Sci. 49, 217–237.

VARDI, M. 1985. Automatic verification c~f probabilistic concurrent finite-state programs. In
Proceedings of 26th IEEE Symposium 00 Foundations of Compater Sccence. IEEE, New York.

pp. 327-338.
VARDi, M., AND WOLPER, P. 1986. An automata-theoretic approach to automatic program

verification. In Proceedings of the 1st Symposium on Logic in Computer Sccence. IEEE, New
York.

WOLPER, P., VARDI, M. Y., AND SISTLA, A. P. 1983. Reasoning about infinite computation paths.

In Proceedings of the 24th IEEE Symposium on Foundations of Computer Science. IEEE, New

York, pp. 185-194.

WOLPER, P. 1983. Temporal logic can be more expressive. Znf. Control 56, 72-99.

RECEIVED NOVEMBER 1989; REVISED DECEMBER 1994; ACCEPTED APRIL 1995

JOurxd] of the Association for Computmg Machinery, Vol. 42, No. 4, July 1995.

