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Abstract. Methods are given for automatically verifying temporal properties of concurrent systems
containing an arbitrary number of finite-state processes that communicate using CCS actions. Two
models of systems are considered. Systems in the first model consist of a unique contro[ process and
an arbitrary number of user processes with identical det-lnitions, For this model, a decision procedure
to check whether all the executions of a process satisfy a given specification is presented. This

algorithm runs in time double exponential mthe sizes of the control andthe user process definitions. It
is also proven that it is decidable whether all the fair executions of a process satisfy a gwen

specification. The second model is a special case of the first. In this model, all the processes have

identical definitions. For this model, an efficient decision procedure is presented that checks if every

execution of a process satisfies a given temporal logic specification. This algorithm runs in time

polynomial inthesize of the process definition. Itisshown howtoverify certamglobal properties such

as mutual exchrslon and absence of deadlocks. Finally, it is shown how these decision procedures can
beusedto reason about certain systems with a communication network,

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management—concar-
rency: F.1.l [Computation by Abstract Devices]: Models of Computation-aukvnatu; F.1.2 [Com-
putation by Abstract Devices]: Modes of Computation—parallelis mandconcurrency; 1.2.2 [Artifi-

cial Intelligence]: Automatic Progmmming-progrnm [e@ication

General Terms Algorithms, Performance, Theory, Verification

1. Introduction

Automatic verification of finite-state concurrent systems has recently been an
active area of research. Many different algorithms for checking if a finite-state
concurrent system meets a specification given in a Temporal Logic have been
proposed in the literature [2, 5, 16, 29, 33]. Some of these algorithms have
been implemented and have been successfully used to automatically verify
systems such as concurrent programs and hardware designs. All the previously
mentioned algorithms assume that the global behavior of the concurrent system
can be modeled by a finite-state graph. They first construct the global-state
graph and verify that it satisfies the given specification. However, there are
many concurrent and distributed systems that are designed to operate with an
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arbitrary number of processes. Clearly, the previous techniques cannot be

applied to such systems. The problem of extending the previous techniques to

systems of many identical processes has been addressed in [4], where it is
shown that under certain conditions and for some properties, the correctness of
a system with many processes can be inferred from the correctness of the
system with two processes. This approach is only partly automatic. In this
paper, we present, for the first time, fully automatic methods for verifying
certain properties of concurrent systems with an arbitrary number of communi-
cating processes. Our methods are complete for verifying a well-defined class
of properties in certain natural models of computation.

Our specification language is PTL, which is the standard Propositional
Linear Temporal Logic. We assume that the concurrent system has an
arbitrary number of processes. The processes communicate through syn-
chronous actions in the style of Milner’s Calculus of Communicating Systems

(CCS) [201. A computation step of a system consists of either one process
taking an internal step or any two processes that have enabled transitions on
complementary actions synchronizing and taking a step together. (The seman-
tics of processes is defined formally in Section 2.) Given such a system, we
investigate the problem of checking if all the executions of a process satisfy a
specification given in PTL (or given by a finite-state automaton on infinite
strings). We consider two different models.

Systems in the first model consist of a unique control process and arbitrary
number of user processes with identical definitions. Some resource allocation
methods and network protocols can be defined in this model at a certain level of
abstraction. For this model, we present a decision procedure that checks if the
executions of the processes satisfy a given specification. The algorithm first
constructs a Vector Addition System with States (VASS) that captures the
behavior of the concurrent system and then checks if the VASS has an infinite
path that contains a final state occurring infinitely often. This algorithm runs in
time double exponential in the size of the definitions of the processes and the
size of the temporal specification.

In concurrent systems, many times we are interested in verifying that the
correctness specification is satisfied by all the fair computations. This is
especially the case for liveness properties. For this reason, we consider the
problem of checking if all the executions of a process in fair computations of a
system satisfy a given specification. We present a decision procedure for this
problem for systems in the above model of computation. The decision proce-
dure uses the decision procedure for the reachability problem of vector
addition systems. We also show that this problem is as hard as the reachability
problem for vector addition systems. This result indicates that any decision
procedure for this problem will probably have much higher complexity than the
algorithm mentioned above for the case when fairness is not considered.

In the second model, we assume that the system contains an arbitrary finite
number of processes with identical definitions. Clearly, we can consider this
model as a special case of the previous model and use the decision procedures
of the previous model. However, we present a more efficient decision proce-
dure for this model for checking if all the executions of a process satisfy a given
specification. This decision procedure is based on the idea that the set of
executions of a single process in a computation of the system is exactly the set
of strings accepted by a certain finite-state automaton on infinite strings. The
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size of this automaton is linear in the size of the process definition. We present
an algorithm to construct this automaton in time polynomial in the size of the
process. For the given PTL specification f, we construct the automaton A. ~
that accepts exactly the set of strings that satisfy 1 f, and we check that the
intersection of this and the automaton for the process is empty. The whole
algorithm runs in time 0( P( n) “ 2 If I ) where P(n) is a polynomial in n, the
size of a process. The same procedure can also be used for systems with a fixed
number of classes, where each class contains an arbitrary number of processes
that have identical definitions.

Although we consider systems of many processes, the logic we use, PTL,
only specifies the properties of the executions of single processes in a system.
However, some of the important properties, such as mutual exclusion and
absence of deadlock are global properties of the computations. We show that
there is a straightforward way to verify mutual exclusion by verifying a certain
property of a single process in a modified system. We also consider the
problem of checking for potential deadlocks, that is, checking whether there
exists a number of processes n such that there is a computation in the system of
size n that ends in a deadlock. We show that this problem is decidable, but is as
hard as the reachability problem for vector addition systems. We also show that
in our first model, we can handle systems of processes with communica-
tion ports. The communication ports allow the control process to communi-
cate with one of the users and then carry out a sequence of further
communications with that user.

Finally, we extend PTL by allowing quantifiers over processes. This is a very
natural extension of PTL and allows us to specify a wider class of properties of
concurrent systems with many processes. This logic is similar to indexed
CTL* (ICTL*) considered in [4] except that we use linear time logic instead of
branching time logic. We show that the the problem of verifying that a system
in the first model satisfies a given specification in the extended logic is
undecidable.

The rest of this paper is organized as follows: Section 2 gives definitions and
notation. Section 3 presents the algorithms for analyzing a system containing a
unique control processes and many user processes. Section 4 presents the
results for a system where all the processes have identical definitions. Section 5
shows how to reason about certain global properties and some systems with a
communication network. Section 6 discusses the extended logic indexed PTL
(IPTL). Finally, Section 7 discusses related work and contains our conclusions.

2. Background and Definitions

2.1. TEMPORAL LOGIC AND AUTOMATA. The specification language we use is
PTL, which is Propositional Linear Temporal Logic. The language of PTL uses
a finite set @ of atomic propositions, the constant True, the connective ~,
3, and the temporal modalities X (next time) and U (until). The set of PTL
formulas is the smallest set satisfying the following closure condition: the
constants and atomic propositions are formulas, and if f and g are formulas,
then -(f ), (f 3 g), X(f), and (f U g) are formulas. An interpretation is a
pair (t,i) where t = (tO, tl, . . . ) is an a-sequence of subsets of Y and i is a
nonnegative integer. Intuitively, tispecifies the set of atomic propositions that
are true at time i. We write (t, i) E f to denote that the interpretation (t, i)
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satisfies the formula f. We say that t satisfies f if (t, O) satisfies f. The
relation I= is defined by induction on the structure of formulas:

(t, i) E True;

(t, i) E P, where P is an atomic proposition, iff P E t,;

(t,i) E Vf iff it is not the case that (t,i)I=f;

(t, i) I= (f Og) iffeither (t, i) c g or (t, i) != -f;

(t, i)t=Xfiff (f, i+l)t=f.

(t, i) E (f Ug) iffthere exists k> isuch that (t, k) tig,

and forallj, i=j <k, (t, j) ~f.

We also use the unary temporal operators F, G, and the binary connective
A, V , defined by F(f) = (True U f), G(f) = TF(Tf), (fVg) = (=f n g),
(fAg) - T(f3 -g).

A finite-state Buchi automatonl A on infinite strings is 5-tuple (Q, A, 8, 1,
F’), where Q is a finite set of automaton states, A is a finite set of input
symbols, 6: Q x A -2 Q is the transition function that given a state and an
input symbol specifies the set of possible next states, 1 G Q is the set of initial
states, and -F G Q is the set of final states. We assume that for each q e Q and
te A, d(q, t) is nonempty.

For any finite sequence tJ, let length(o) denote the number of elements in
a, and for an infinite sequence o, let length(o) be co. Suppose A is an
automaton and ( tO, tl, . . . ) is a finite or infinite sequence of symbols from A.
Then a run of A on t is a sequence (rO, rl, . . . ) of automaton states satisfying
the following property: if length(t) is finite. then length(r) = length(t) + 1;
otherwise, length(r) is co; and vi O < i < length(t), r,+l E 8(r[, t,).A run is
said to be accepting if it has a final state occurring infinitely often. The
automaton A is said to accept t if there is an accepting run of A on t starting
with an initial state. (Note that under this definition, an automaton can accept
only infinite strings. )

For an automaton A, we let I A I denote the number of its states. We
assume that the definitions of automata are given using a fixed encoding, and
we let size(A) denote the length of this encoding for A. The connection
between automata and temporal logic has been investigated in [6], [28], and
[34]. Throughout the paper, we make use of the following fact that has been
established in these papers: Corresponding to every PTL formula f, there is an
automaton A ~ with input alphabet 2 ~’that accepts exactly the set of sequences
that satisfy f, and in addition I A ~ I = 0(21 f 1) and size( A ~) = O(4 I~ I ).

2.2. MODEL CHECKING USING AUTOMATA. The term, model checking, has
been used in the literature to refer to an algorithmic approach for showing that a
concurrent program satisfies a specification given in a formal system such as
temporal logic or automata. Many different model-checking algorithms have
been presented in the literature. Specifically, the papers [16, 29, 33] present
such algorithms when the specification is given in PTL. Of these algorithms,

1From here onwards, the term, automaton, refers to a Buchi automaton
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the automata theoretic approach advocated in [33] is of particular interest to us.
In this approach, the following method is used to check that all the executions
of a finite-state concurrent program satisfy a PTL specification f. First, the
automaton A .f corresponding to the specification 7 f is obtained. Next,
the program is modeled as an automaton P. If the program is given as a state

graph, then, roughly speaking, this state graph can be considered as the
automaton. Next, it is checked that there is no string that is accepted both by P
and A .f. To accomplish this, another automaton B is constructed; intuitively,
B is a cross product of P and A. ~. B accepts exactly those strings that are
accepted by both P and A ~y. The construction of B is such that I B I =

0( I P I “ / A. ~ I), and verification is accomplished by showing that B does
not accept any string. This whole procedure can be accomplished in time
O(size(P) “ Size( A t)).

We consider systems with an arbitrary number of processes. Since all the
possible behaviors of such systems cannot be modeled by a finite-state system,
we cannot use the above approach for verification. However, we do use some
of the ideas of this approach in certain parts of our algorithms.

2.3. PROCESSES AND COMPUTATIONS. We now introduce process definitions,
which define the operational behavior of our systems. A communication
alphabet Z is a set of symbols that is the union of mutually disjoint sets
Z‘, E-, { ~}, where Z+ is a set of symbols called actions, and 2- consists of
the complements of the actions, Z-= {E: c E ~+ }. For notational convenience,
for any e = E c Z-, we let 2 = c. Each member of > is called a communi-
cation symbol. We say that two communication symbols c, c’ are comp[e-
men~ary if it is the case that ? = c’. A process definition U is a
4-tuple (S, R, 1, ~) where S is a finite set of states called process states,
R G S x S x Z is a set of transitions, 1 g S is the set of initial states, and
~ : S ~ 2 * is a finction that associates with each state in S a set of atomic

propositions that are true in that state. Intuitively, a process definition speci-
fies the behavior of one or more processes in a system. Transitions of the
form (s, s’, e) e R are called internal transitions, and transitions of
the form (s, s’, c) e R where c # e indicate possible communication between
processes. For a process definition U, we let I U I denote the number of states
of the process, that is, I U I = I S 1. For the decision procedures, we assume
that process definitions are supplied using a fixed encoding. For a process
definition U, we let size(U) denote the length of the encoding of U.

A system of processes M is an n-tuple ( UI, . . . . U.) of process definitions.
In our development, the intuitive notion of an individual process in a system is
captured formally by its index in a system. Thus, we say that a process in M
is a natural number i such that 1 < i < n. Consider a system ( UI, . . . , U.) of
processes and let ~ = (Sl, R,, Ii, 0,) for 1 s i s n. A global state of the
above system is an element of SI x S2 x “ o “ x S., that is, a global state is an
n-tuple of process states. For a global state 8 and for 1 < i < n, we let 8[ i]
denote the ith component of 8. Intuitively, 8[ i] is the state of process i in the
global state 6. The global state 6 is an initiai global state if 8[ i] ● 1, for all i
such that 1 s i s n. We say that processes i and j can communicate (or
synchronize) in the global state 8 if there exist c c ~ where c # c, x c Si and
y=Sj such that (~[i], x, c) GRi and (~[j], y, 2) eRj. We say that process i is
enabled in the global state ti if either it can communicate with another process
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in 6, or for some x e S,, (d[i], x, ~) ● R,. A global state is called a deadlock
state if no process is enabled in it. Let 6 and T be two global states. We say
that T can be reached from 6 by an internal transition of process i if
(ti[i],~[i], E)c R, and for 1 sj s n, j # i, d[j] = T[.j]. We say that y
can be reached from 6 by communication between processes i and j
(for i #j) if for some ce~, (ti[i], ~[i], C) CRI, (ti[j],~[j], Z)eR~ and for
all k # i, j, 1 < k < n, ~[k] = y[k]. We say that y can be reached from 6
by a transition of process i if y can be reached from 6 by an internal transition
of process i or by communication between process i and some other process.
Note that for a pair of global states, there can be more than one way that the
second state can be reached from the first state. We say that -y can be reached
from 6 in one computation step if T can be reached from 6 by an internal
transition of a process or by communication between a pair of processes.

A labeled computation sequence C of a system of processes is a sequence

of pairs (4., so), (41, al), . . . such that for i > 0, o~ is a global state, ii+ ~ is
a set of processes containing one or two processes, and such that for all i such
that O < i < length( C2) – 1.

if ~1 = {j}, then U, can be reached from o,_ ~ by

an internal transition of process j,

if ~, = {j, k} (j # k), then O, can be reached from O1.1 by

communication between j and k.

A finite or infinite sequence of global states O., 01, . . . is called a
computation sequence iff there exists a sequence *O, ~,, . . . such that

(40, %), (+,, al), . . . is a labeled computation sequence. We define a compu-
tation to be a computation sequence that satisfies certain conditions on its
beginning and ending. A computation begins in an initial global state and either
ends in a deadlock state or is infinite. We call finite computations deadlocked
computations.

We say that a labeled computation sequence (+0, Uo), (~,, al), . . . is fair if
for each process i the following property holds: If i is enabled infinitely many
times in the sequence, then there are infinitely many values of k such that
i ~ ~~. A computation sequence O., ol, . . . is said to be fair if there exist

+0>4,3. . such that (~o, Uo), (tl, ol), . . . is a fair labeled computation
sequence. Note that all finite computation sequences are fair.

If o = O., crl, . . . is a sequence of global states, then we define the execu-
tion of orocess i in the sequence n to be the projection of o onto the ith
coordinate, that is, the sequence ao[ i]. al [ i], . We define the execution

sequences (resp., executions) of a single process in a system to be the
projections of the computation sequences (resp., computations) of the system
onto a single process. That is, a sequence t = to,tl,... of states of the ith
process definition is an execution sequence of process i if there exists a
computation sequence of the system U., 01, . . . where for j z O, tj= :J[i].
Moreover, if t is an execution of process i in the system then it begins m an
initial state and is infinite or is a projection of a deadlocked computation. We
say that t is a fair execution (sequence) of process i if it is a projection of a
fair computation (sequence). For a PTL formula f, we say that the execution
(sequence) t satisfies f iff the co-sequence Qi( to), 0,( t,).... satisfies f.
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Throughout the paper, we use certain notational conventions for sequences. A
single element, taken as a sequence, denotes a sequence of length 1. If
cl=o!o, ..., a. is a finite sequence and (3 = 130,61, . . . is a finite or infinite
sequence, then a ~ denotes the concatenation of a and ~, which is

a~, . . .. an. 60,61, . . . ; if the last element in a is the same as the first
element in ~, then a.@ denotes the dot concatenation of CYand /3, which is
the result of combining the sequences without repeating the middle element,
that isaO, . . ..a~. (jl, ~2, . . . . If u is a finite sequence, then an denotes the
result of concatenating u n times, and a” denotes the result of concatenating a
infinitely. Similarly, if a is a finite sequence whose first and last elements are
the same, then ~” n and ~”” denote the results of dot concatenating a n times
and infinitely.

For most of the paper, we consider model checking in which a property is
defined to hold for a system provided it holds for only the infinite computations.
We show how to handle deadlocked computations in Section 3.4. Henceforth,
unless otherwise stated the term, computation, always refers to an infinite
computation.

3. Model Checking for Systems with a Control Process and Many User
Processes

In this section, we consider the systems of processes that contain a unique
control process and many user processes with identical definitions. We believe
that many resource allocation algorithms, network protocols, and mutual exclu-
sion algorithms can be handled in this model at a certain level of abstraction. In
Section 5, we show that the algorithm for mutual exclusion on rings considered
in [4] can be handled in this model.

As in Section 2, let E be the communication alphabet containing actions,
complements of actions, and the special symbol e. Let C = (SC, R ~, Ic, *C),
and U = (Su, R ~, Iu, O ~) be the control and user process definitions.

For any n 20, let C x U“ denote the system of processes (C, U, . . . . U)
where the process definition U is repeated n times. In the system C x U“, we
call process 1 the control process and processes 2, 3, . . ., n + 1 user pro-
cesses. Let Control-Exec( C, U) = { t : for some n > 0, t is an execution of the
control process in an infinite computation of C x U“ }. Similarly, let User-
Exec( C, U) denote the set { t :for some n >0, t is an execution of a user
process in an infinite computation of C x Un}. The model-checking problem
for the control process consists of checking if every execution in Control-
Exec( C, U) satisfies a given PTL formula. Similarly, the model-checking
problem for the user process consists of checking if every execution in
User-Exec( C, U) satisfies a given PTL formula.

Let Fair-Control-Exec( C, U) = { t : for some n z O, t is an execution of the
control process in a fair infinite computation of the system C x U“}. Simi-
larly, let Fair-User-Exec( C, U) = { t : for some n >0, t is an execution of a
user process in a fair infinite computation of the system C x U“}. The
model-checking problem for fair computations of the control process consists
of checking if every execution in Fair-Control-Exec( C, U) satisfies the given
PTL formula. Similarly, we define the model-checking problem for fair
computations of a user process.

In Section 3.2, we present algorithms for the model-checking problem for the
control process and the user process. In Section 3.3, we give algorithms for
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these problems for fair computations. In Section 3.4, we consider model
checking for an extended set of computations that includes deadlocked computa-
tions.

Let f be the PTL specification. In order to check if all executions in
Control-Exec( C, U) satisfy f, we verify that no execution in Control-
Exec( C, U) satisfies _ f. For this purpose, we construct the automaton A .f,
which accepts exactly the set of strings that satisfy _ f. The input symbols for
A . ~ are subsets of ?} (the set of atomic propositions). Each input symbol of
A. ~ specifies which atomic propositions are true at the next instance.

The next step in developing the decision procedures is to model the execu-
tions of the control process and the runs of A.~ on these executions by a
Vector Addition System with States (VASS). A VASS is a slightly different
formalism from Vector Addition Systems [11] and Petri nets [23]; however, all
the three formalisms are equally powerful. A VASS of dimension m is a finite
labeled directed graph in which the label of each edge is a vector of m integers.
Let Z and N be the set of integers and the set of nonnegative integers
respectively. Formally, a VASS G of dimension m is a pair ( V, Ii?) where V is
a finite set of states and E G V x V x Z ‘z is a finite set of transitions. We can
consider G to be a labeled directed graph in which there is an edge from s to S’
with label ; iff (s, s’, d) c E. A configuration of G is a pair c = (s, ~) where
s e V and Z e N “z. We call ii the configuration vector of c. Note that all the
components of a configuration vector are nonnegative. For configurations
d = (s, Z), d’ = (s’, Z) of G. let Tr(d. d’) denote the triple (s, s’, ~ – ~. If
Tr( d, d’) is a transition of G, then we say that the configuration d’ can be
reached from d by the transition Tr( d, d’). A path of G is a sequence of
configurations CO,c1, . . . , such that for all i >0, Tr(c,, c,+, ) is a transition
of G. A configuration d is said to be reachable from c in G if there is a
path of G starting from c and ending in d. A path of finite length is said
to be a cycle if its first and last configurations are the same and it is of length at
least two. For any m-vector ii, we let ii[ i] denote the ith component of the
vector. For any configuration c = (s, ii), we let state(c) denote the state s and
vec( c) denote the vector d. Similarly, for any transition t = (s, s’, d), we let
source( t).target(t), and vec( t) respectively, denote the states s, s’, and the
vector d. For any configuration c = (s, ii), let weight(c) denote the sum of all
coordinates of ;.

We define a family to be a set of systems. We write { C x U“} to denote
the family consisting of all systems of the form C’ x Un, for n >0. In order to
avoid confusion, at some places, we refer to the members of R ~, R ~ as
process transitions.

Consider a single system C ~ U“ for n s O in a family. As far as the
control process is concerned, at any step of a computation of the system,
the information regarding the user processes can be represented by a vector of
integers ii, where i?[ i] is the number of user processes in the ith user state. The
reason we can use this representation is that the behavior of a user process
depends only on its state and not on its index. From this, it follows that the
behavior of the control process can be modeled by a VASS of dimension m,
where m is the number of states in U. In fact, we construct a VASS that
simultaneously models the executions of the control process and the runs of the
automaton A. ~ on these executions.
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3.1. CONSTRUCTION OF THE VASS. Appendix A gives a detailed construction
of the VASS VS( %’, %, ~ ) = ( V, E) for generic process definitions ‘7 =

(S,, Rti, ~ti,~~), ‘V= (Sv, R~, ,IY, ~ .V), and the automaton .ti = (Q,
A, 6, J, F) where A = 2 Y is the input alphabet of the automaton. Let S+, =

{~,,~z,..., u,.}. In this section, we prove some properties of VS( %“, 01, c~ )
which will be used later. Consider the family of systems Y = { %’x W n : n ~
O}. Let gstates( Y ) be the set of all global states of systems in Y. In
the remainder of Section 3.1, the term, gzobal state, refers to any element in
gstates( ~). The set V is partitioned in to three disjoint sets (S, x Q), VI,
{ SO} where the states in S,, x Q, VI are called proper states and inter-
mediate states, respectively, and the state so is called the initial state. A
configuration (s,;) is called a proper configuration, (resp., an intermediate
configuration) if ~s is a proper state (resp., an intermediate state). The
configuration (so, O) is called the initial configuration. A path containing a
proper configuration is called a proper path.

We define a relation represents between the proper configurations of
VS( %’, ‘Z, & ) and gstates( Y’) as follows. Recall that for a global state a, a[ i]
is the ith component of a, that is, the state of process i. For a proper
configuration c = (s, ~) where s = (b, q), and a global state o of a system
f?x ‘1’1, c represents a iff b = 0[1] and for all i = 1,2, ., ., m,;[i] is the
number of distinct values of j such that 2 s j < n -t 1 and o [ j] = u,. That is.
b is the state of the control process in o and for i = 1, . . . . m, J[i] is the
number of processes in the user state Ui in the global state a. Note that for each
proper configuration c, there can be more than one global state o such that c
represents o; similarly, for each global state o, there can be more than one
configuration c that represents o, corresponding to different values of q.

We say that a sequence of proper configurations CO,c1, . . . represents a
sequence of global states O., al, . . . if Ci represents Oi for each i > 0. For any
path T of VS( ‘if’, ‘1, d), let reduced-patfi( z) be the sequence of proper
configurations appearing in m. Recall that a global state o is an initial global
state if the state of each process in o is an initial state. The operation of
VS( ‘/, Jl, d ) can be described intuitively, as follows: The VASS will start in
the initial state from which it nondeterministically chooses a configuration that
represents an initial global state of a system % x ‘7 n for some n > 0. The
VASS chooses an initial state of a system by looping around in its initial state.
From this point onwards, further transitions of the VASS take it along a path m
such that reduced-path(~) represents a computation of the system S.

For any proper path m, let first-proper(T) denote the first proper configura-
tion to appear in T. For any two proper configurations d = (s,;). d’ = (s’, Z)
where s = (a, q), s’ = (a’, q’), we say that d’ is an .&-successor of d if
q’ 6 6( q, @Y( a’)). The following lemma gives some properties of
VS( ‘h’, “k, .ti ), whose construction is given in Appendix A.

LEMMA 3.1. Let r be a proper path of VS( Y, 4?, d).

(a] Every configuration appearing after first-proper(r) is either a proper
configuration or an in tewnediote configuration. Proper configura-
tions and intermediate configurations alternate in T after first-
proper(~).

( bl) If x starts with the initial configuration, then all the global states
represented by first-proper-(w) are initial global states.
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( b2) For every initial global state ~, there exists a finite path x‘ starting
with the initial configuration and ending with a proper configuration
that represents o, which is also the first proper configuration in x‘.

(c) If T starts with the initial configuration and reduced-path(T) =

%, cl>..,..> where for all i > 0, c, = (s,, iii) and Si = (ai, q,), then for
some initial state r. of d, ro, qo, ql, . . . , ql, . . . is a run of .cd on

~W(ao), %(al), . . . .

PROOF

Part (a) follows from the following facts: For any transition (s, s’, z) of
VS( ‘%, 01, .ti ), if s is a proper state, then s’ is an intermediate state; if s is an
intermediate state, then s’ is a proper state.

Parts (b 1), (b2), and (c) follow from the following facts: For any transition
from state so, that is, for any transition of the form ( sO, ~, ~), either S = SOor
s is a proper state. If s = so, then such a transition increments the ith
coordinate of the component vector corresponding to some initial state u, e I?,.
For every initial state u, e Iv, thereisa transitionof this kind in ~. If in the
transition (so, s, 7), state s is a proper state and s = (a, q), then for some
initial state r. of ,~, q e 6( r., ~,fi( a)), and 3 is the zero vector. If d, C. d’ is a

path of VS( ‘t?, W, .’1 ) where d, d are proper configurations and c is an
intermediate configuration, then d’ is an d-successor of d. ❑

In Appendix A, we have classified certain transitions of VS( ‘~, ‘~, .“f ) as
transitions from a pair of states and certain transitions as internal transitions
from a single state. The following lemma, which is immediate from the
definition of VS( %’, ‘1, .ti ), gives some technical properties that will be used
later.

LEMMA 3.2. Let c, d be proper configurations of G = VS( %, Z7, d“ )
such that c’ is an d-successor of c, and let o be any global state that c
represents.

Then some global state o‘ represented by c’ can be reached from o in one
computational step iff there is an intermediate configuration d such that
c, d, c’ is a path of G. In addition, o‘ can be reached from v by
communication bet ween processes i. j (respectively, by an internal transi-
tion of process i) iff for some intermediate configuration d, c, d, c’ is a
path of G and Tr( c. d) is a communication transition of G from the pair
of states (u [ i], o [ j]) (respectively, Tr( c, d) is an internal transition of G
from the state o[i]).

3.2. MODEL CHECKING WITHOUT FAIRNESS. Now we present the model-
checking algorithms for the control and user processes. First, we give the
algorithm for the control process and later show that the model-checking
problem for the user process can be reduced to that of the control process.

Now we describe the various steps of our algorithm. We are given process
definitions C and U, and a PTL formula f. Let G = (V, E) be the VASS
VS( C, U, A .f). We say that a proper configuration c = (s, ~) of G, where
s = (a, q), is a final configuration if q is a final state of the automaton ~-f.

The following lemma relates the executions in Control-Exec( C, U) that
satisfy ~f to certain infinite paths of G.
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LEMMA 3.3. The following are equivalent:

(a) There is an execution in Control-Exec(C, U) that satisfies ~ f.
(b) G has a an infinite path starting from the initial configuration

containing infinitely many final configurations.

PROOF
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and

(a + b). Assume (a). Let e = eo, el, . . . be an execution in Control-
Exec(C, U) such that *C(e) satisfies 7 f.2 Let q = qO, ql, . . . be an accept-
ing run of A.f on @c(e). Also, let o = 00, 01, . . . be a computation of the

system C’ x Un, for some n > 0, such that the execution of the control process
in a is e. For all i > 0, let c, = ( Si, ;,) be the proper configuration of G such
that s, = (e,, qi+ ~) and Ci represents a,. From Lemma 3.2, we see that, for all
i > 0, there exists an intermediate configuration dZ such that ci, di, Cl+ I is a
path of G. From this, we see that there exists an infinite path T of G starting
with co such that reduced-path(T) = co, c1, . . . . Since for infinitely many
values of i, qi is a final state of A . ~, it follows that m contains infinitely
many final configurations. Using (b2) of Lemma 3.1, we see that there is a path
ax starting from an initial configuration and containing infinitely many final
configurations.

(b = a). Assume (b). Let n- be an infinite path of G that starts with the
initial configuration and that contains infinitely many final configurations. Let
Co, c,,... be the sequence of proper configurations appearing in m; clearly, all
the final configurations appearing in m also appear in the above sequence. For
all i > 0, let Ci = (si, ;i), where Si = (ei, qi). Using (bl) of Lemma 3.1, we
see that there exists an initial global state aO such that COrepresents a.. Using
(a) of Lemma 3.1, we see that, for each i >0, Ci and Ci+, are separated in z
by an occurrence of an intermediate configuration di. Now using Lemma 3.2
inductively, it can be shown that there exists a computation o = a., al, . . .
where for all i > 0, Ci represents ai. Now using (c) of Lemma 3.1, we see that
for some initial state r. of ATf, rO, qo, ql, . . . . q,, . . . is a run of ATf on
~C( e) where e is the execution of the control process in o. Clearly, this is an
accepting run as it contains a final state of A
follows from this. ❑

. ~ infinitely often. Now (a)

LMNIA 3.4. G has an infinite path starting from the initial configuration
and containing infinitely many final configurations iff G has a finite path
of the form a B with the follo wing properties:

(a) a starts in the initial configuration;
(b) ~ is a cycle;
(c) a final configuration appears in ~.

PROOF. Assume that G has an infinite path starting from the initial configu-
ration and containing infinitely many final configurations. Let c = CO,c1, . . .
be such a path. By the construction of G, this path must contain a proper
configuration. For j > 0, let Cj = ( Sj, dj). Recall that weight( Cj) = sum of the
components of dj. Let CP be the earliest proper configuration in the path. From
the construction of G, for any pair of configurations c, c’ where c is a proper
configuration and such that c’ can be reached from c, the following property

L Recall that @C(e) = @C(eo), @c(eI), .
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holds: weight( c’) < weight(c) and in addition, if c’ is a proper configuration,
then weight(c) = weight(c?. Hence, for all k = p, weight( Ck) 5 Weight( CP).
Clearly, the total number of distinct configurations appearing in c is finite.
Thus, there exists an instance j with the property that the only configurations
that appear beyond CJ are those that appear infinitely often in c. From this
observation it is easily seen that there are finite paths a, (3 such that properties
(a), (b), and (c) are satisfied.

Now assume that there is a finite path et~ that satisfies the conditions (a), (b),
and (c). By repeating the path 13infinitely many times, we get the infinite path
a~”w with the required property. ❑

Let I V I = p; that is, p is the number of states of G. Recall that for
any process definition W, I W I is the number of states of W and size(W)
is the length of the encoding of W. Let I U I = m. The following lemma is
proved on the same lines as the corresponding proofs given in [24] and [26].
Details of the proof are given in Appendix B.

LEMMA 3.5. There exists a finite path of G of the form CY13where a, 13
satisfy the conditions (a), (b), and (c) of Lemma 3.4 iff there exists such a

path of length 0(2” “p’10g(‘)2” m‘o’(m))where kl is a constant.

Note that the number of transitions of C is independent of the number of
states of C. and as a consequence size(C’) can be arbitrarily larger than I C 1.

THEOREM 3.6. The model-checking problem for the control process with
input a temporal Iogic specification f, and process definitions C and U can
be solved in time h(size(C), size(U),21~l) + O(2g(l~l cl I“l)), where
h(xl, X2, X3) is a polynomial function in xl, X2, X3, and g( I f 1, I c 1,
lul)=o( lclk’”2k’”’lf + ~u I ‘]o~(Iu ~‘), where k, and kl are constants.

PROOF SKETCH. In the first step, the algorithm obtains the automaton A .f
and then constructs the VASS G = ( V, E) = VS( C, U, A. ~). The automaton

A’f can be constructed in time bounded by 2 ~ If I for some constant k. From

this, it is not difficult to see that the VASS G can be constructed in time
h(size(C), size(U), 2 I~ I ) for some polynomial h. Let p = I V I and m =
I U \ . In the second step, the algorithm checks that there is no finite path r
of G which is of length 0(2 k” p” I“g(’)” 2’ ‘“ “’’(’”’) where k is the constant of
Lemma 3.5, such that m is of the form a~ where a, ~ satisfy conditions (a),
(b), (c) of Lemma 3.4. We can give a nondeterministic procedure for the
second step that uses space 0( p “ log( p)2 ~“ ‘~’ ‘Og(’M)).Using Savitch’s result

[271. We can obtain a deterministic procedure for the second step of the
algorithm that uses space 0(( p “ log( p)) 2 “ 2 k” ‘“”l”g(n)) where k is a constant.
In Appendix A, it has been shown that p s ( I C I “ I A-. ~ I mz + m + 2) + 1)
and hence p = 0( I C I s 21 ~ I “ m2). Substituting this value for p and simpli-
fying it, it is easily seen that we can obtain a deterministic algorithm for the
second step that uses space g(l f 1, ICl, IU[) and time 0(2~(lf1’1cllu l)).
From this, it should be easy to see that we can get a model-checking algorithm
that runs in the stated time and uses space h(size(C), size) U), 2 I~ I ) + g( I f 1,
Icl, lu\). ❑

The following corollary is a direct consequence of Theorem 3.6. It suggests a
different approach to the model-checking problem, which consists of verifying
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that the executions of the control process satisfy the given specification in all
systems containing up to a certain bounded number of user processes.

cOROLLARY. The following are equivalent:

(a) All the executions in Control-Exec(C, U) satisfy f.
(b) Fora11n<2g(l~llcl.lul), all executions of the control process in the

system CxUn satisfy f where g(lfl,lCl,lUl)=O(lCl~[”
2kz”(lf l+lul’1Og(lu l)) and /cl, kz are constants.

Proof Sketch. From Lemma 3.5, we see that if there exists an execution in
Control-Exec(C, U) that does not satisfy f then there exists a path of length
2~w1. ICI,1~1)in G that is of the form a~ where a, ~ satisfy conditions (a), (b),

(c) of Lemma 3.5. Clearly, for every configuration c in this path, all the
components of vet(c) are bounded by 2 g(lfl’ ICI’[ul). From this it follows that
there exists an execution in Control-Exec(C, U) that satisfies ~ f iff there
exists n s 2~( If 1’ICI’Ic’l) such that some execution of the control process
in the system C x U“ satisfies ~ f. The lemma follows from this observa-
tion. ❑

So far, we have considered the problem of checking whether all the execu-
tions of the control process satisfy a given specification. Now we investigate
the problem of checking whether all the executions of a user process satisfy a
given specification. We show that this problem can be reduced to the previous
problem, and thus, the model-checking algorithm for the control process can
also be used for the user process. We again assume that C = ( Sc, R ~, Ic, XC),

U = ( Su, R ~, IU, IIc) are respectively the definitions of the control and user
processes, and f is the given PTL specification.

Now we present the reduction procedure. First, we construct a process
definition C’, which roughly speaking simulates C and U. The states of C’ are
pairs of the form (s, t)where s is a state of C and t is a state of U. Now we
consider the system consisting of the control process whose definition is given
by C’ and an arbitrary number of user processes whose definition is given by
U. The executions of a user process in the original system are obtained
by considering the executions of the control process in the new system
and projecting them onto the user state component. The process definition
C’ = (S’, R’, 1’, ~‘) is defined as follows: The set of states
S’ = {(s, t) : s e Sc and t e Su}. The set of transitions R’ contains exactly the
following elements. For every transition (S, s’, c) e R ~ and every state t e Su,
the transition ((s, t), (s’, t), c) is in R’, and similarly, for every transition
(t, t’, e)= Ru and state s e Sc, the transition ((s, t), (s, t’), e) is in R’. In
addition, for every pair of transitions (s, s’, c) GR c, (t, t‘, c’) c R”, where c
and c’ are complementary communication symbols, the transition ((s, t),
(s’, t’), ~) is also in R’. This transition corresponds to synchronization between
the original control process and the single-user process that we are considering.
The set of initial states I’ = {(s, t) : s, t, respectively, are initial states of C
and U]. For each state (s, t) e S’, 4iC((s, t)) = *U(t), that is, the set of
atomic propositions defined to be true in the state (S, t) is exactly the set of
atomic propositions that are true in the user state t.

Define user(e), where e is a sequence of states of C’, to be the sequence of
states of U that is the projection of e onto the user-state component. Let
Ex( C, U) = {user(e) : e e Control-Exec( C’, U)}. The following lemma states
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that Ex( C, U) is exactly the set of executions of a user process in a system
consisting of a control process whose definition is given by C and arbitrary
number of user processes whose definition is given by U.

LEMMA 3.7. User-Exec(C, U) = Ex(C, U).

PROOF. First we prove that User-Exec( C, U) G EX( C, U). Let u ~ User-
Exec( C, U). For some n >0, u is the execution of a user process in the
system C x U~. Without loss of generality, assume that u is the execution of
the first user process in the computation 00, 01, . . . of the system C x U“. For
all i z O, let o,’ be the global state of the system C’ x U“ - * obtained by
combining the states of the control process and the first user process in al to
form a state of C’. It should be clear that a;, a(, . . . is a computation of the
system C’ x U“-l. If e is the execution of C’ in this computation, then
user(e) = u. Hence, we see that User-Exec( C, U) G Ex(C, U).

Using similar arguments, it is easy to show that Ex( C, U) G
User-Exec( C, U). ❑

The following theorem easily follows from Lemma 3.7 and from the way +‘
is defined.

THEOREM 3.8. For C, U, and C’ as specified above and for a given PTL
formula f the following are equivalent:

(a) Every execution in User-Exec( C, U) satisfies f.
(b) Every execution in Control-Exec(C’, U) satisfies f,

To check for condition (a) of the above theorem, we construct C’ and check
for condition (b) of the above theorem. This can be done using the previously
described model-checking algorithm for the control process.

3.3. MODEL CHECRING UNDER FAIRNESS. In concurrent systems, many times
we are interested in verifying that a correctness property holds on all fair
computations. This is especially the case for Iiveness properties. In this section,
we consider the model-checking problem for fair computations of a system with
a control process and many user processes. Let C = (SC, R ~, Ic, ~c) and

U = ( Su, R ~, Iu, XC) be the control and user process definitions respectively
where SC and Su are disjoint. Let A .f = (Q, A, 8, 1, F) where Q is the set
of the automaton states. Let u ~, . . . , u ~ be the user states. We consider the
problem of verifying that every execution in Fair-Control-Exec( C, U) satisfies
a given PTL specification f. As in the previous section, from C, U, and A. ~
we construct the VASS G = ( V, E) = VS( C, U, A .~). Recall that V is a
disjoint union of the sets ( Sc x Q), VI, { SO} where the members of Sc x Q
are called proper states, those of VI are called intermediate states and SO is
called the initial state of G. Also, a configuration (s,;) of G is called a proper
configuration if s is a proper state. For a proper configuration c = (s, ~) where
s = (b, q), if a is any global state such that c represents o, then b is the state
of the control process in o and for each user state u, there are ~[ i] user
processes in state u, in o.

In order to develop the decision procedure for fair computations, we extend
some of the definitions of Section 2 to paths of a VASS. We define a notion of
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fairness for a VASS, and relate it to fair computation sequences of a system

of processes. The notion of fairness in a VASS that we consider is different
from other notions of liveness and fairness for Petri nets considered in literature

(see [22] for definitions and references).
In Section 2, we defined what it means for a process i to be enabled in a

global state a. We now define a process state x to be enabled in a global state
u if there is an enabled process in state x in a. For any proper configuration
c = (s,7) of G and for any state xeSC U S ~, we say that there is a process
in state x in c if the following condition is satisfied: If x c Sc, then s = (x, q)
for some qe Q; if XGSU and x = Ui, then ~[i] >0. Now, note that for a
proper configuration c and x e (SC U Su), there is a process in state x in c iff
there is a process in state x in all the global states represented by c.

Let t = (y, Z, ~) be a transition in ~, and let c = (s, ~) be a configuration
of G. We say that t is enabled in c if y = s and J + 7 z O. In Appendix A,
we have classified certain transitions of ~ as communication transitions from
(or to) a pair of states and certain transitions as internal transitions from (or to)
a single state. We say that t is a transition from (or to) state x if t is a
communication transition from (or to) a pair of states (x, y) or t is an internal
transition from (or to) state x. For x E (SC U Su), we say that x is enabled in
c if there exists a transition tc E from state x such that t is enabled in c. Note
that if te E is a transition from state x and t is enabled in c, then c has to be a
proper configuration. As a consequence, for all x c S= U Su and all intermedi-
ate configurations c, state x is not enabled in c. From the construction of G, it
follows that, for every x = SC U S~, and every proper configuration c of G,
state x is enabled in a proper configuration c iff state x is enabled in all the
global states represented by c.

Recall that if c, d is a path of G, then Tr( c, d) denotes the transition by
which d can be reached from c. Now, consider a path m of G and let c, d be
any two consecutive configurations in m. If c is a proper configuration, then d
is an intermediate configuration and for some x e SC U Su, Tr( c, d) is a
transition from x. We say that there is a transition from state x (respectively,
to state x) in n- if there exist consecutive configurations Ci, Ci+ ~ in T such that
Tr( Ci, c,+ ~) is a transition from state x (respectively, is a transition to state x).

Using these definitions, we can give a definition of fairness for paths of a
VASS of the form VS(C, U, A .f). We say that an infinite path CO,c1, . . . of
G = VS(C, U, A. ~) is fair iff it is proper path and for each x ~ Sc U Su, if
x is enabled infinitely often in the path, then for infinitely many values of i,
Tr( Ci, Ci+ ~) is a transition of G from state x. The following lemma relates the
fair paths to fair computation sequences. Note that there can exist infinite paths
u and 6 of G such that reduced-path(a) = reduced-path(~), and a is fair but
/3 is not,

LEMMA 3.9. Let C and U be process definitions, and a be an infinite
sequence of proper configurations of G = VS( C, U, A .j). Then,

(i] there exists a fair path a’ of G such that reduced-path( CY’)= CY~f
(ii) there is a fair computation sequence o of a system C x U“, for some

n, such that a represents o.

PROOF. Letci=aO, al,... bean infinite sequence of proper configurations
of G.
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(i) - (ii). Assume that a’ is a fair path of G such that reduced-path(d) = a.
Let n = weight( CYO). Now, we give a fair-labeled computation sequence

(to! ~o)> (+12 al)> . . . of the system C x U“. We denote the processes in
the system C x Un with integers 1,2, . . . . n, n + 1 with process 1 denot-
ing the control process. In order to define the above-labeled computation
sequence, we also define a sequence of queues of processes go, ql, . . . where
each q, is a permutation of the sequence 1, 2, . . . . n + 1. Intuitively, each q,
denotes the relative priorities of the processes. We define the above sequences
inductively.

Let 00 be any global state represented by aO, go be any permutation of
1,2, ..., rz + 1, and ~0 be any set containing one or two process indices.
Now, for some j 20, assume that for all i such that O s i < j, ~,, al, qi are
defined. Now we show how to obtain +J+,, OJ+,, and qj+ ~. For any x ~ Sc U

Su, let lX, ~ be the set of processes in state x in the global state Oy. From (a) of
Lemma 3.1, we see that there is an intermediate configuration d~ such that
a~, d~, a,+, appear consecutively in a’. Now let t,t‘denote the transitions
Tr( CYJ,dj), Tr( dj, aj+ ~), respectively. From the construction of G, it is seen
that either case (a) or case (b), given below, holds: (a) t is a communication
transition from some pair of states (x, y), and t’ is a communication transition
to some pair of states (x’, y’); (b) t is an internal transition from some state x,
and t‘ is an internal transition to some state x’. Assume that case (a) holds.
Now let *J+ ~ = {r, r’} where r is the earliest process on qj among all
processes in lX,,, and r’ is the earliest process on q, among the process in
v, ~ - { r}. Now using Lemma 3.2, we get a global state ~J+, represented byr

CYJ+~ such that OJ+ ~ can be reached from OJ by commumcation between the
processes r, r’. Assume case (b). Let ~,+ ~ = {r} where r is the earliest
process on q~ among all those in lX, ~. Using Lemma 3.2, we get a global state
?J+, represented by u,+ ~ and such that Oj+ ~ can be reached from IJj by an
internal transition of process r. In both cases (a) and (b), let qj+ ~ be the queue

obtained from q~ by moving the processes in *J+ ~ from their current positions
in qj to the end of the queue. Since a’ is a fair path it should be easy to see that

(irJ> ~o)> (41, ~1), . . . is a fair-labeled computation sequence, and hence
(7. ,01,. . . is a fair computation; and a represents this computation.

(ii) = (i). Assume that a = Oo, al, . . . is a fair-labeled computation sequence,
and a represents o. Clearly, there exists IJO, IL,, . . . such that a‘ = (40, CJo).

(*l, O,),. . . is a fair-labeled computation sequence. Now, using Lemma 3.2, it
is easy to see that, for each i > 0, there exists an intermediate configuration d,
such that u,, d,, aj+l is a path of G such that for every r E ~,+,, Tr( a,, d,) is
a transition of G from the state o,[r]. Clearly, u’ = ao, dO,
al, dl, . . .. al. d,, al+l, . . . is an infinite path of G. Now, we neect to show
that cl is a fair path. Let x be any state in SC U Su such that x
is enabled infinitely often in a’, that is, for infinitely many values of i,
x is enabled in a,. From this, we see that there exists a process r such that for

infinitely many values of i, O,[ r] = x and r is enabled in o,. Since o‘ is fair, it
is the case that for infinitely many values of i, r ● ~,. Hence, for infinitely
many values of i, Tr( al, d,) is a transition from state x. Thus, a’ is a fair path
of G. ❑

We now give a complete decision procedure for model checking under
fairness. The following lemma gives a necessary and sufficient condition for the
existence of a fair execution of the control process that satisfies Z j.



Reasoning about Systems with Many Processes 691

LEMMA 3.10. The following are equivalent:

(i) For some n, in the system C x U“, there is an infinite fair execution e
of the control process such that Oc( e) satisfies 7 f.

(ii) The VASS G = VS(C, U, A. ~) has a fair path starting from the
initial configuration and containing infinitely many final
configurations.

PROOF

(i) = (ii). Assume (i). Let o be a fair computation such that the execution of
the control process in o is e and *C(e) satisfies ~ f where e = eO, e,, . . . Let

qo>ql, -.. be an accepting run of A -f on Qc(e) and a = aO, al, . . . be the
sequence of proper configurations such that a represents a, and for all i >0,

~i = ( Si, ii) where Si = ( ei, qi+, ). Clearly, a contains infinitely many final
configurations. By Lemma 3.9, there exists a fair path a’ starting from a. such
that reduced-path( a’) = a. Now, using (b2) of Lemma 3.1, it is easy to see that
there exists an infinite path ~u starting from the initial configuration. Clearly,
this path is fair and contains infinitely many final configurations.

(ii) - (i). Assume (ii). Let a’ be an infinite fair path containing infinitely
many final configurations. Let a = reduced-path(d). By Lemma 3.9, there
exists a fair computation sequence a such that a represents a. Let a =
ao, o!l, . . . where for all i z O, Uj = (s,, ;,) and s, = (e,, q,). Let e denote
the execution (e., e{, . . . ) of the control process in the above computation. By
(c) of Lemma 3.1, for some initial state r. of A-f, ro, qO, ql, . . . . q,: . . .
is a run of ~ mf on @c(e). Clearly, this is an accepting run as it contains a
final state of A -f appearing infinitely often. Hence, Oc( e) satisfies ~ f. Us-
ing (b 1) of Lemma 3.1, it is easy to see that o starts with an initial global
state. ❑

THEOREM 3.11. The problem of model checking under fairness is decid-
able.

PROOF. The basic idea is to use the decidability of the reachability problem

for a VASS3 [12, 19] to determine whether the VASS G = VS(c, U, A -~) has
a fair path starting from the initial configuration and containing infinitely many
final configurations. Given a VASS and two configurations, the reachability
problem is to decide whether there is a path from the first configuration to the
second.

In order to use the reachability problem, we show that the question of
whether the VASS G has a fair path containing infinitely many final configura-
tions can be reduced to the problem of checking whether G has a finite path
with certain properties. We do this in two steps. In the first step, we find a
characterization of a finite path that G has iff it has the required infinite path. In
the second step, we find another characterization of the finite path that is
equivalent to the first one, but that can be expressed as a reachability problem.

Consider a VASS defined by VS(C, U, A -~), where C and U are process
definitions. We will say that a finite path T of VS( C, U, A .j) is j-fair, where
j is a state of C or U, if either there is a transition in T from state j, or state j
is never enabled in r. Recall that a cycle is a path of length at least two and that

3 We can apply these results because of the equivalence of Petri nets and Vector Addition Systems to
VASSes.
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begins and ends in the same configuration. The first step of the proof is given
by the following lemma.

LEMMA 3.12. The VASS G = VS( C, U, A. ~) has a fair path starting
from the initial configuration and containing infinitely many final configu-
rations iff G has a finite path of the form a of? satisfying the following
properties:

(a] a starts in the initial configuration and ends in the first configuration
of (3.

(b) ~ is a cycle starting with a proper configuration.
(c) A final configuration appears in 13.
(d) For all states j c S= U Su, O is j-fair.

PROOF. Assume that G has a fair path starting from an initial configuration
and containing infinite] y many final configurations. Let c = Co, Cl, . . . be such
a path. Using the same argument as in the proof of Lemma 3.4, we can show
that there exists a number i, with the following properties: The only configura-
tions that appear beyond c, are those that appear infinitely often in c; for all
j ~ S’c U Su, if j is enabled only a finite number of times, then it is never
enabled beyond Ci. From the above observation, it should be clear that there
exist finite paths CY,13such that properties (a) – (d) are satisfied.

Now assume that there is a finite path a. 13 that satisfies the conditions (a)
thru (d) of the lemma. By repeating the path (3 infinitely many times we get the
infinite path a Q~” ‘“, which has the required property. ❑

Next, we reformulate the conditions of Lemma 3.12 in such a way that we
can use the reachability problem. It is straightforward to express conditions (a),
(b), and (c) using the reachability problem for VASS. The difficulty comes with
condition (d), which involves fairness. Intuitively, we cannot “force” a VASS
to make a transition when a state is enabled and thus the fairness conditions
cannot be checked directly.

To overcome this difficulty, we find a different characterization of the path ~

which implies that D can be repeated infinitely to give an infinite fair path. The
new characterization is based on a condition that is called separate fairness.
Intuitively, this condition is a property of the separate executions of the
processes in a system, and can be tested more easily by a VASS. We define
separate fairness for paths of VS( C, U, A. ~).

Previously, we defined a notion of a process state being enabled in a global
state or a process state being enabled in a proper configuration. In order to
define separate fairness, we need the notion of one process state enabling
another process state. Let C = (SC, R ~, lC, QC), U= (Su, RU, IU, OU) be
process definitions where SC, Su are disjoint. Let s, s’ e S= U Su. We
say that s enab/es s’ iff there exist transitions (s, t, c), (s’, t‘, Z) = R ~ U R ~.
Note that for any global state of the system C x U“ such that processes i, j,
respectively, are in states s, s’ in a, another global state u‘ can be reached from
o by communication between i, j iff s enables s’.

We can now state the definition of separate fairness. For a state j e SC U Su,
let us say that a finite path K of VS(C, U, A. ~) that begins and ends with
proper configurations is separately fair with respect to j, in short j-sep fair,
if at least one of the following three conditions holds:

(1) There is a transition from state j in m.
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(2) At both the beginning and end of T, there is no process in state j.

(3) The following two conditions hold:
(3a) There is no internal process transition defined from state j;
(3b) For each state ~ that enables state j, at both the beginning and end of

x there is no process in state k, and there is no transition from state k
in z.

The following lemma relates the notions j-fair and j-sepfair.

LEMMA 3.13. Let G = VS(C, U, A. ~). A cycle of the VASS G starting
with a proper configuration is j-sepfair iff it is j-fair.

PROOF. We use the following claim in the proof. The claim is obvious from

the construction of G.

Claim. Let T be a cycle of G starting with proper configuration, and let
j e SC U SC. Then there is no process in state j in each proper configuration
appearing in T iff at the beginning and end of x there is no process in state j
and there is no transition from state j in n-. ❑

We now prove the lemma. Assume that m is a cycle of G starting with
a proper configuration. Suppose that T is j-fair. If Condition (1) holds,
then there is a transition from state j in m, so m must be j-fair. If Condition (2)
holds, then from the above claim, we see that either there is no process in state
j in each of the proper configurations appearing in r, and hence state j is never
enabled in ~; or there is a transition from state j in ~; clearly, both of the
above cases imply that x is j-fair. Condition (3) and the above claim also
imply that state j is never enabled in m, and so T must be j-fair.

Now suppose that m is a j-fair cycle of G. If there is a transition from state j
in T, then T is .j-sepfair by (1). Otherwise, if (1) does not hold, state j must
never be enabled. This can happen if there k no process in state j in each of the
proper configurations appearing in T (Condition (2)). Finally assume (1) does
not hold and that there is a process in state j somewhere in m. Since m is a
cycle, from the construction of G, it is easy to see that there must be a process
in state j in every proper configuration appearing in m. Hence, state j is not
enabled any where in z. As a consequence, it has to be the case that there is no
internal process transition from state j and for each proper configuration c
appearing in T, and for each state k e S’c U SU such that k enables j, there is
no a process in state k in the configuration c. Hence, using the claim, we see
that Condition (3) must hold and T is j-sepfair. ❑

We can now reformulate the conditions of Lemma 3.12, using the notion of
separate fairness.

COROLLARY 3.14. The VASS G = VS(C, U, A .~) has a path starting
from the initial configuration and containing infinitely many final configu-
rations iff G has a finite path of the form a-p satisfying the following
conditions:

(a) a slarls in lhe inita[ configuration and ends in the first configuration
of o;

(b) b is a cycle starting with a proper configuration;
(c) a final configuration appears in fi;
(d) for all states j E SC U Su, @ is j-sepfair.
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We now turn attention to showing how the conditions of the corollary can be
expressed as a reachability problem, in order to complete the proof of Theorem
3.11. The basic idea is that separate fairness can be tested by counting various
kinds of transitions along the path.

Let G = VS(C, U, A .f). Let c = (s,;) be a proper configuration of G.
For a state u, = Su, the number of processes in state u, is 1[ i]. For a state
b e Sc, the number of processes in state b is one if there is a process in state b
in c, that is, s = (b, q) for some state q of A. ~, and is zero. otherwise. For
any jeSc U Su and for a finite path z of G, where m = CO,cl. . . . , c., we
define the number of transitions leaving state j to be the number of values of
i such that O < i < n and Tr( c,, c,+ ~) is a transition from state j.

Let us define the following functions from finite paths m of G = (V, E) =

(VS(C, U, A .f) to natural numbers. To define these functions, we assume that
the states in V are mapped to consecutive natural numbers starting from zero.
For any .s~ V, we let nbr( U) denote this number.

init-state-nbr( n-) = nbr ( S) where s = state( C)i and c is the first

configuration in z.

end-state-nbr( z ) = nbr( s’) where S’ = state ( c’) and c’ is the last

configuration of T.

final-count (T) = number of final configurations in m.

transition-count (m) = (number of configurations in m) – 1.

For each state j e Sc U Su, we define the following four functions for a path
~ beginning and ending with proper configurations:

init ~( ~ ) = number of processes in state j in the first configuration of T,

endj ( n-) = number of processes in state j in the last configuration of m.

exit~ ( m) = number of transitions leaving state j in m.

We can reexpress the conditions of the corollary in terms of these functions,
as (a’) – (d’) below. The condition (a? is the same as condition (a).

Condition (b’), given below, needs a bit of explanation. By definition, a path
/3 is a cycle if it begins and ends in the same configuration and is of length at
least two. We will check whether the initial and final configurations of ~ are
the same by checking that init-state-nbr( m) = end-state-nbr( m) and for all states

~ e Su, init~( P) = endj( 6). This check is sufficient because it requires both the
number of processes in each user state to be the same at the beginning and end
of the path and the state component of the configurations at the beginning
and end of 13to be the same. We check that the length of B is at least two by
checking that transition-count(~) >0.

J Recall that if c = (x, ~), then state(c) = x,
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(b’) ~ is a cycle starting with a proper configuration

- (init-state-nbr( ~) = end-state-nbr( /3))

A (init-state-nbr( ~) denotes a proper state)

A ~ (initJ(P) = end~( /3)) A transition-count( 13) >0.
j, j4u

(c’) a final configuration appears in (3 ~ final-count(~) >0.

In the following condition, for each state j, define internal~ to be true if there is
an internal process transition defined from state j, and false, otherwise.

(d’) for all states j e SC U Su, f? is j-sepfair

[
++ A exitj(~) >0

j, jdcU Su

v(initj(~) = O A endj(6) = 0)

v (7 internal j A (A
k, k enables j

(initk((?) = OAexitk(p) = 0))]]

In order to express the above conditions as a reachability problem,
we construct a new VASS G’ from the VASS G = VS( C, U, A. ~). For each
state s of G, let sa, Sp, denote new states, distinct from each other. We call
a state of the form sa an a-state, and a state of the form S6 a &state. The
states of G’ will be { Sa, SDI s is a state of G}. The vectors in the config-
urations of G’ will have all the components of G, plus the following new
components which we refer to by name. For each ~ c Sc U Su, we have the
new components init~, endj, enter~, and exitj. We also add components called
transition-count and final-count.

Intuitively, the transitions of G’ are defined so that G’ simulates a path of G
while also keeping track of the values of the functions in conditions (b’)- (d’).
G’ also nondeterministically guesses where to divide the path into segments u
and (3. Suppose co, . . . , Cl, . . . , c~ is a path in G, where c, = (s,, ~,) for
i=() k. Then there 1s a path of G’ of the form (sS, ~0), . . . . (S~y,~~),,. ...

(s: ~~), where the projection of ~ onto the components of
g~j~~~ ‘in” G 1s ;. for i = O

.+
z~ ,. ... k. Intuitively, in this path, G’ guesses that

the path a is (so, ~o), . . . . (Sj, ~j), and the path 6 is (Sj, ~j)> ---, (S~,~~)-
For each state s of G, there are transitions of G’ in state Sa or Sp that update

the original vector components of G in the same way that G updates them in
state s. That is, if (s, t, ~) is a transition of G, then (sa, ta,;a) and
(s6, to, 36) are transitions of G’, where ~a, ~~ update the original components
of G in the same way ~ does. In addition, for each state s of G, G’ has a
transition from state sa to state 58, which does not change any of the vector

a so, O)). Intuitively, when G’ chooses suchcomponents (i. e., the transition (s ,
a transition, this marks the beginning of the segment /3.
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The VASS G’ treats the new vector components as counters to compute the
necessary functions. The coqnters are initially set to O by starting G’ in a
configuration with the vector O. Reviewing conditions (b’)- (d?, the values to be
computed are init,( (3), end ~( @, init-state-nbr( (3), end-state-nbr( 13), enterj( (3),
exit~( (3), transition-count(~), and final-count(~). These values are equivalent,
respectively, to values that can be directly counted, as follows:

initl( @ = endj( a). Compute endy( a) by counting number of processes in
process state j as long as G’ is in an a-state. That is, each transition of G’
increments or decrements initj by the same amount that it changes the number
of processes in state j. Stop counting when G’ enters a @state.

init-state-nbr( 13) = end-state-nbr( a). This is also computed by making each
component of G’ increment or decrement this component appropriately.

end-state-nbr( 13) = end-state-nbr( a~). Same as before, but is done by
incrementing or decrementing this component over the entire path a ~.

end~(f?) = endl(a. ~). Count number of processes in state j over the entire
path.

enterj( (3). Compute by counting number of transitions entering process state
j, starting when G’ enters a ~-state.

The functions exit j( /3), transition-count(~), and final-count( @ are computed
in similar ways.

Thus, G’ computes all of the functions of conditions (b’)- (d’) in its new
vector components while it simulates a path of G. Let us say that a vector ; of
a configuration of G’ satisfies (b?- (d? if the conditions are satisfied by the
values of the new coordinates in the vector ;. We can now see that the ~riginal
VASS G has a fair path starting from the initial configuration (SO, O) and
containing infinitely many fin~l configurations iff G’ has a finite path starting
from the configuration (s;, O) and reaching a configuration whose vector
satisfies conditions (b’) – (d’). Appendix C describes a general decidability result
for VASS which shows that it is decidable whether G’ has such a path. This
completes the proof of Theorem 3.11. ❑

NOTE, In this proof of the decidabdity of the model-checking problem under fairness, the VASS that M

constructed has many more coordinates than are strictly necessary It can be shown that the model-

checkmg problem under fan’ness can be reduced to the reachability problem for a VASS of dimension

only 4 m + 5, where m is the number of states of a user process [31]

THEOREM 3.15. The model-checking problem for fair computations of
the user process is decidable.

PROOF. We prove the theorem by reducing this problem to the model-
checking problem for fair computations of the control process. From the
process definitions C and U, we construct process definitions C’ and U’, as
shown in Figure 1. The basic idea is that U’ can behave like either C or U,
depending on the first action it takes. The symbols c, F, u, and ii are new
communication symbols that are used by the control process to cause exactly
one user process to act like the original control process, and cause all other
users to act like the original user process. The process definition C’ acts like the
original user process after it starts some or all of the U’ processes. The first two
states reached by process C’ are labelled with a new proposition ~,~,t, which is
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false in all other states. The following lemma shows how this construction can
be used to solve the model-checking problem for the user process.

LEMMA 3.16. The following are equivalent:

(1) For all n, all fair executions of a user process U in a system C x U“
satisfy f.

(2) For all n, all fair executions of C’ in a system C’ x U’” satisfy Piflir U

(7pi.if Af).

PROOF. As shown in Figure 1, a fair execution of the control process in a

system C’ x U’ n starts in the initial state so, enters ancl repeats state S1 some

finite number of times, and then continues with a computation that is equivalent

to a fair execution of a user process in a system c x ~m, for some m < n.
Moreover, computations that are equivalent to each of the fair computations of
the user processes in C x Un, prefixed by some states labeled with Pinit, are
included in the fair computations of the control process in C’ x U’ n. From this
it is easily seen that (1) is equivalent to (2). ❑

Theorem 3.11 shows that the model-checking problem for fair computations
of the control process is decidable. The following theorem indicates that
the model-checking problem for fair computations is at least as hard as the
reachability problem for VASSes. It has been shown in [17] that the reachabil-
ity problem is EXSPACE-hard. It is generally believed that the reach-
ability problem has much higher complexity. Indeed, the existing decision
procedures [12, 19] have much higher complexity.

THEOREM 3.17. If there is a deterministic algorithm for the model-check-
ing problem for fair computations that is of time complexity f(n) (space
complexity (f ( n))), then there exists a deterministic decision procedure for
the reachability problem for VASSes that is of time complexity f ( P( n))

(space complexity f ( P( n))) where P( n) in some polynomial in n.
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PROOF. We prove this theorem by presenting a polynomial time reduction
from the reachability problem for VASSes to the problem of checking if there
exists a fair execution of the control process in a system C x U“, for some
n > (), that satisfies a given PTL specification.

An algorithm for the reachability problem takes as input a VASS G and
two configurations c and d, and decides if there is a path of G from c to d.
There is a polynomial time-bounded transformation that takes G, c, and+ d
as ~nputs and outputs another VASS, G*, and two configurations (S, 0),
(t, O) of G*, where G* has the following properties:

(a) If (q, q’, ii) is a transition of G*, then there exists at most one component
of ~ that is nonzero, and th$ component is + 1 or – 1.

(b) (t, O) is reachable from (S, O) in G* iff d is reachable from c in G.

This transformation is straightforward.
Let G*, s and t be as specified above. Now, we give the process definitions

C, U, and a temporal specification f such that the following property is
satisfied: There is an execution of the control qrocess in the family { C x U“}

that satisfies j_ iff (t, O) is reachable from (S, O) in G*.
Let the dimension of G* be m, that is, each vector in the transitions of G* is

an m-vector of integers. The states of the control process include all the states
of G* together with two additional states t‘and t”.The states of the user
process are init, ul, . . . . u,~, and u. The state init is the initial state of a
user process. Intuitively, if the configuration (q, ~) is reachable in G*, then
there exists a finite computation at the end of which the control process is in
state q, and there are 2[ i] user processes in the user state u,, for 1 < i s m.
We accomplish this as follows: Corresponding to every transition in G*, say
from state q to q’ that increments the ith component of the configuration
vector, we have the following pair of transitions labeled with complementary
communication symbols. There is a transition in C from q to q‘, and there is
one in U from the initial state to the state u,. These two transitions allow the
control process to change state from q to q’ while at the same time increment-
ing the number of user processes in state u,. Similarly, for every transition in
G* from state q to q’ that decrements the ith component, we have the
following pair of transitions labeled with complementary communication sym-
bols. There is a transition in C from state q to q’, and there is one in the user
process from state u, to the initial state.

The additional control states t’ and t” and the user state u are used to check
for fairness. The idea is that in a fair computation the control process can reach
state t‘and remain there forever iff it can reach state t with no user process
being in any of the states u, thru u~. The former property can be asserted by a
PTL formula. The detailed description of the processes is given below.

The action names used are v, a,, and Y,, for 1 s i s m. The initial state of
U is init, and the initial state of C is S. The control and user process are shown
in Figure 2.

For each i, 1 s i s m, U has a transition from the initial state to state u,,
which is labeled with CYl,a transition from U, to the initial state labeled with -y,,
and a transition from u, to u labeled with v. The control process definition C
has the following transitions: If (q, q’, ~) is a transition of G* where for some
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i, d[ i] # O and for j # i, 2[ j] = O, then there is a transition in C from q to
q’. If ii[i] = 1, then this transition is labeled with @i; otherwise, it is labeled
with ~i. There is an internal transition from t to t‘.There is a self loop state t‘

that is an internal transition. There is a transition from t‘to t” that is labeled
with ~. These are the only transitions in+C. It is easy to prove that the
configuration (q, ~) is reachable from (s, O) in G* iff there exists a finite
computation sequence in C X U“, for some n, that ends in a global state with
ii’[ i] processes in the user state Ui, for 1 < i s m. Let P be an atomic
proposition which is true only in the state t‘of the control process. Let f be the
PTL formula FG( P).

CLAIM. (t, 6) is reachable from (s, 6) in G* iff there exists a fair
computation such that the execution of C in this computation satisfies f.

PROOF OF CLAIM. Assume that (t, d) is reachable from (s, d) in G*. From
our previous observation, it is easily seen that there is a finite computation
sequence that starts in the initial state and reaches a global state where the
control process is in state t and where all the user processes are in their initial
state. Now, we can easily extend this computation sequence to an infinite fair
computation in which all the user processes remain in the initial state, and the
control process makes a transition to state t’ and remains in this state forever.
Clearly, the execution of the control process in this computation satisfies f.
Assume that there is a fair computation such that the execution of the control
process in this computation satisfies f. Clearly, in this computation, the control
process reaches t‘ and remains in that state forever. Since this is a fair
computation, it has to be the case that there is no user process in a state u i, for
i >0, when the control process made a transition to t‘,otherwise due to the
fairness condition the control process would have bee~ forced to make a
tra~sition from t‘ to t”. From this, it follows that (t, O) is reachable from
(s, O). This completes the proof of the claim.

It is straightforward to see that C, U, and f can be obtained by a polynomial
time transformation. The lemma follows from the claim. U
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3.4. DEADLOCKEDCOMPUTATIONS. So far. we have only considered infinite
computations of a system. We have not included in the set of computations for
model checking those computations that end in a deadlock state. Now, we
extend the deadlocked computations to infinite sequences by repeating the final
global state forever. If o is a finite computation, we define the extension of
o to be the infinite sequence formed by repeating the last state of o infinitely.
If u is an infinite computation, then we define its extension to be the same
sequence a. We say that an extension is deadlocked if it is the extension of a
deadlocked (finite) computation. If % is a family of systems, then we define
Extensions Y– ) to be the set of extensions of all computations of systems in M-.
Similarly, we define F-Extensions( Y– ), the set of fair extensions, to be the set
of extensions of all fair computations of systems in Y–. Recall that we defined
all finite computations to be fair.

Now we consider the model-checking problem for Extensions Y ) and FEx-
tensions( Y–), for families Y– of the form { C x U“}. In addition to these
problems, we also consider the deadlock detection problem, which is closely
related. The deadlock detection problem is to determine if there is a finite
computation of a system in a family { C x U’z }. We show that all these
problems are decidable, but are as hard as the reachability problem for a VASS.

As in Section 3.2, let C = (SC, Rc, Ic, +c), U= (Su, Ru. Iu, l’u) be the
definitions of the control process and a user process respectively. Let Control-
Exten(C, U) and Control-FExten(C, U) be the projections of Extensions ~)
and FExtensions( % ), respectively, onto the control process. The model-check-
ing problem for extensions for the control process consists of checking if every
member of Control-Exten( C, U) satisfies a given PTL specification. The
model-checking problem for extensions of fair computations and for projections
onto a user process are defined similarly.

Let G be any VASS. We say that a configuration (s, ~) of G is a deadlock
configura~ion iff there is no transition of G of the form (s, s’, ~) such that
~ + ~ 20. Roughly speaking, a configuration is a deadlock configuration if no
transition of G is enabled in the configuration.

Theorem 3.18 given below has the following consequences. If there exists a
deterministic algorithm for the deadlock detection problem or for the model-
checking problem for extensions for the control process that is of time complex-
ity ~(n) (space complexity ~(n)), then there exists a deterministic algorithm for
the reachability problem that is of time complexity ~( P( n)) (space complexity

~( P(n))) where p(n) is a polynomial in n.

THEOREM 3.18. There is a polynomial time reduction from the reachabil-
ity problem for a VASS to the deadlock detection problem and to the
problem of checking if there exists an execution e in Control-Exten( C, U)
such that *C(e) satisfies a given PTL specification.

PROOF SKETCH. We use the same reduction as given in the proof of Theorem
3.17 with certain modifications. Let G*, s, t, C, and U be as given in the
proof of Theorem 3.17. We make the following modifications to C and U. The
basic idea of the modifications is that in a fair extension the control process can
reach and stay forever in state t‘iff at the time it reaches t‘the global state is
a deadlock state. In the user process definition U, we delete the node u.
The following modifications are made to the control process. The self loop in
state t’ is deleted, and self loops are introduced in all other states of the
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control process. All these self loops are internal transitions of the control

process. The internal transition from t‘to t” is replaced by the following
transitions. For each i, such that 1 s i s m, a transition labeled with ~i is
introduced from state t‘to t”.The resulting process definitions C and U are
shown in Figure 3. Let P be an atomic proposition that is true only in the state
t’ and ~ be the formula FG( P).

CLAIM. The following are equivalent:

(a) (t, 6) is reachable from (s, 6) in G*.
(b) There is an execution in Control-Exten(C, U) that satisfies f.
(c) There is a deadlocked computation in the family {C x U“}.

PROOF. We show that (~) implies (b), (b) implies (c), and (c) implies

(a). Assume (a), that is, (t, O) is reachable from (s, O) in G*. From the argu-
ments used in the proof of Theorem 3.17, it follows that there is a finite
computation at the end of which the control process is in state t and all the user
processes are in the initial state. In this global state, the control process can
make a transition to t‘and cause a deadlock. In the extension of this computa-
tion, the control process remains forever in state t‘,and thus,itsexecution

satisfies f. Hence, (a) implies (b). Now we show that (b) implies (c). Assume
(b); that is, there exists an execution in Control-Exten(C, U) that satisfies f.
Clearly, in this execution, the control process reaches t‘and remains in that
state forever. It has to be that when the control process reaches state t‘,there is
no user process in any of the user states u ~ through u~; otherwise, the control
process will be forced to make a transition to state t”.Hence, (c) holds. Now
we show that (c) implies (a). Assume (c); that is, there is a deadlocked
computation. Since all states of C except t‘have self loops that are internal
transitions, it has to be that in the deadlock state, the control process is in state
t‘,and none of the user processes is any of the states UI through u~. From this,
it follows that the global state in which the control process is in state t, is
reachable, and none of the user processes is any of the states UI through u=.
From this and our preyious observations, it follows that the configuration (t, O)
is reachable from (s, O) in G*. Hence, (a) holds. This completes the proof of
the claim, and the theorem follows. ❑

THEOREM 3.19. The deadlock detection problem is decidable,

PROOF. Let Count( o, s), where o is a global state of a system and s is a

state of a user or control process, be the number of processes in state s in the

global state o. Notice that if s is a state of a control process then count( u, s) is

either O or 1. Let us say that a pair of process states, (s,, SJ), is an enabling
pair if two processes in states Si, Sj can make a transition by synchronizing
with each other. A global state a has an enabled transition iff it has a process
that can make an internal move or a pair of processes in an enabling pair of
states. Thus, a state a is deadlocked iff conditions (1), (2), and (3) hold, where
the conditions are

(1) A (count( fJ, s,) = 0)
,s,:.$,has an internal transition

(2) A (count(o, sj) = O V count(u, sj) = O)
(s,, s,) an e abling pair

(3) A (count(a, si) = O V count(a, s,) = 1).
(.s,,.s,)an enabling pam
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FIG. 3. (a) Control process. (b) User process.

Now we can reduce the deadlock detection problem to the reachability
problem for VASSes. From the control and user processes C and U, we
construct a VASS G = VS( C, U, ~) where ~ is an automaton defined as
follows: the automaton ~ has a single state which is its initial as well as final
state; it remains in the same state on all inputs and accepts all inputs. Then, we
extend G by adding a new coordinate for each control state. These new
coordinates have the value O or 1, depending on which state the control process
is in. Let G’ be the resulting VASS.

We can describe the result of this construction as follows: First, for a global
state o, let vec( o ) be a vector of natural numbers such that for all states s of C
or U, there is a coordinate of vec( a) corresponding to s, and this coordinate
has the value count( o, S). Then for all global states o, the following holds: o is
a state that can be reached in a computation of the family { C x U“} iff the
VASS G’ can reach a configuration with the vector vec( o ).

Now we can use the result of Appendix C to show that the deadlock detection
problem is decidable. The system of processes can reach a deadlocked state iff
G’ can reach a configuration satisfying a positive condition (in the terminology
of Appendix C) on its coordinates. This shows that it is decidable whether a
deadlocked state can be reached. ❑

THEOREM 3.20. The model-checking problems for extensions and fair
extensions for the control process are decidable.

PROOF SKETCH. First, we consider the model-checking problem for exten-
sions for the control process. Let f be the given PTL specification. We check
if there exists an execution in Control-Exten( C, U) that satisfies _ f. We split
this problem into the followin~ two cases: (i) there exists a nondeadlocked
extension in which the execution of the control process satisfies _ f; (ii) there
exists a deadlocked extension in which the execution of the control process
satisfies ~ f. We check for case (i) using the approach of Section 3.2.

We reduce case (ii) to the deadlock detection problem as follows. From
C, A.~, we obtain a new process definition C“ which roughly speaking is a
cross product of C, A .f. Let

A.~= (Q, A,8,1, F) and C= (Se, Rc, ~c, EIc).

Now,

c“ = (s”, R“, r’, w’)
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where

S“ = SC x Q,

R“ = {((s, q), (s’, q’), c): q’ =d(q, @c(s’)) and (s, s’, c) GRC},

I“ = {(s, q): s~~candforsorne q,~l, q~ti(q,, ~c(s))},
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and for any (s, q) s S“, *“((s, q)) = ~c(s). Recall that, for any e =
(eO, el, . . . ) where ei ~ Sc for all i z O, *C(e) denotes the sequence

(@c(eO), @c(eI),. . . ). We say that the state (s, q) of C“ is compatible if the
automaton A. ~ when started in the state q, accepts the string ( *C( s)) u, that is,
the automaton has an accepting run on this string starting from the state q.

CLAIM. The following are equivalent:

(a) There is a deadlocked extension of the system C x U“, such that the
execution of the control process in this extension satisfies ~ f.

(b) There is a deadlocked computation of the system C“ x U“, such that
the last state of C“ in this computation is a compatible state.

PROOF OF CLAIM. Assume (a). Thus there is a deadlocked extension of the

system C x U n such that the execution of the control process in this extension
satisfies 7 f. Consider the finite computation that produces this extension, and
lete=(eo, ..., e~) be the execution of the control process in this deadlocked
computation. The sequence e( e~) a is the execution of the control process in the
deadlocked extension, and this sequence satisfies ~ f. Now, consider
the sequence OC( e)(~c(eh))’. This string is accepted by A -~. Let ( rO, . . . .

rA+ l,... ) be the accepting run of ~ -f on this sequence, where r~ + ~ is the
state of #l .f after reading the first h + 1 symbols in the above input string.
Clearly, the state ( e~, r~+ ~) is a compatible state of C“. For all i, O ~ i ~ h,
let b, = ( ei, r,+ ~). From the definition of C“, it follows that b, is a state of
C“. In addition, from the way C“ is defined, it can easily be shown
that there is a deadlocked computation in the system C“ x U“, such that
(bO, ..., b~) is the execution of C“ in this computation. Thus, (b) is true.

Now assume (b). That is, there exists a deadlocked computation in the system
C“ X U“ such that the last state of the control process in this computation is a
compatible state. Let ( bO, . . . . bfi) be the execution of the control process in
this computation, where for all i, O s i < h, bi = ( ei, ri), ej is a state of C
and ri is a state of ~ . ~. From the way we defined C“, the following can easily
be seen. The sequence (q, rO, rl, . . . . rk) is a run of ~. ~ on the input string

(@c(eO), @c(e!), . . . . @C(efi)), where q is an initial state of the automaton
~. ~; there exists a deadlocked computation of the system C x U“ such that
(eO,. ... e~) 1s the execution of the control process in this computation. Since
( eh, rfi) is a compatible state of C“, it follows that ~. ~ accepts the string
@(e’) where e’ = (eO, . . . . e~)(e~)”. Putting all the above observations
together, we get (a). ❑

From the above claim, there exists an n >0 such that (a) holds iff there
exists an n > 0 such that (b) holds. The problem of checking if there exists an
n > 0 such that (b) holds can be reduced to the deadlock detection problem as
follows. For each state of C“ which is not a compatible state, we introduce a
self loop which is an internal transition. Let C * be the resulting process
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definition. Now it should be obvious that there exists an n 20 such that (b)
holds iff there exists an n 20 such that there exists a deadlocked computation
in the system C* x U“. Now using Theorem 3.19, we see that the model-
checking problem for the extensions is decidable.

Now, consider the problem of model checking for the fair extensions. We
check if there exists a fair extension such that the execution of C in this
extension satisfies ~~. Since every deadlocked extension is fair, we can split
this problem into two cases: (i) there is an infinite fair extension such that the
execution of C in this extension satisfies ~f; (ii) there exists a deadlocked
extension such that the execution of C in this extension satisfies ~ f. Checking
for (i) is decidable by Theorem 3.11. Checking for (ii) can be done as explained
above. ❑

Using the reductions of Sections 3.2 and 3.3, it is straightforward to show
that both the model-checking problems for the extensions and fair extensions for
the user process can be reduced to the corresponding problems for the control
process. Thus, the problems for the user process are also decidable.

4. Model Checking for Systems of Identical Processes

In this section, we consider a restricted version of the model of processes
considered in Section 3. Here, we consider systems consisting of an arbitrary
number of processes with identical definitions. We present a polynomial time
algorithm for the model-checking problem without fairness for this model of
processes. Thus, the algorithm presented in this section is better than the one
given in Section 3.2. The results of this section can be easily extended to
systems consisting of families of processes where each family contains an
arbitrary number of processes with identical definitions.

Let U = (S, R, 1, ~) be a process definition, and U“ denote a system of n
processes having identical definitions given by U. Since in the system U“ all
the processes have identical definitions, the sets of possible executions of these
processes are identical. We define Exec( U) to be { t :for some n >0 t is the
execution of a process in an infinite computation of the system U*}. For any
tc S*, where t = (to,tl,...) let ~(t) = (@(to),@(tI),...).Recall that, for
any t c S“, we say that t satisfies f iff *(t) satisfies f. For any T G S“, let
+(T) denote the set {X( t) : te T}. Given U and a formula f, the model-
checking problem is to determine if every member of Exec( V) satisfies f.

Let PTL - be the fragment of PTL that does not use the temporal modality X.
In this section, we present an efficient model-checking algorithm that uses
correctness specifications in PTL –. First, we need the following definitions.

Let t=(totl, ...) be a finite or infinite sequence of elements drawn from a
set of symbols A. A segment in t is a finite sequence (t,, t,+~,....tJ)of
identical elements such that tJ is distinct from tj+~,and if i > 0, then ti_ ~ is
distinct from t,.Let h(t) be the sequence obtained by replacing each segment
in t by a single occurrence of the element in the segment. Note that if t is an
infinite sequence and has a suffix that is a repetition of a single element, then
this suffix will be retained in h(t) because it is not a segment. We say that two
sequences t and t’are equivalent under stuttering if h(t) = h( t’). Since we
do not use the nexttime operator in PTL’, sequences that are equivalent under
stuttering satisfy the same PTL – formulas.

LEMMA 4.1. For any t, t‘ G (2 y ) u such that t and t‘ are equivalent under
stuttering and for any PTL - formula f, t satisfies f iff t‘ satisfies f.
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PROOF. By induction on the structure of the formula f. ❑

For technical convenience, we make the following two assumptions about U

(i) There are no self loops in R, that is, there are no transitions of the form
(s,s, c) in R;

(ii) For any pair of states (s, s? there is at most one transition of the form
(s, s’, c) in R.

If U does not meet the above assumptions, we can easily form a new process
definition U’ = (S’, R’, 1’, ~’) that meets the assumptions, and such that for
any formula f, all the executions in Exec( U) satisfy f iff all the executions in
Exec( U’) satisfy f, The states of U’ consist of the states of U together with
some new states. The transitions of U’ and the additional states of U’ are as
specified below. For each transition t = (s, s’, b) of U, U’ has a new state qt,

and the transition (s, qt, b) and an internal transition from q~ to s’. @‘ is the
same as @ on states in S; for the new states qt, where t = (s, s’, b), O‘( qf) is
defined to be the same set of atomic propositions as @(s’). Clearly, the number
of states in U’ is n + rn; the number of transitions in U’ is 2 m where n, m
respectively are the number of states and number of transitions of U. U’ can be
obtained in time polynomial in size(U), and U’ satisfies conditions (i) and (ii).
Using Lemma 4.1, it is fairly straightforward to prove the following lemma.

LEMMA 4.2. For any PTL - formula f, every element of Exec( U)
satisfies f iff every member of Exec( U? satisfies f.

In light of the above lemma, we assume henceforth that U = (S, R, 1, Q)
satisfies conditions (i) and (ii). From here onwards, we fix the process
definition U and fix the set EX = { t :for some t‘e Exec( U), t and t‘are
equivalent under stuttering}. We call EX the expanded set of executions. The
following lemma is a trivial consequence of Lemma 4.1.

LEMMA 4.3. For a PTL - formula f, every member of Exec( U) satisfies
f iff every member of EX satisfies f.

Now, it is sufficient to check that every member of EX satisfies f. Our
strategy is to reason about EX, the expanded set of executions of a process,
without constructing a global-state graph. We construct a Buchi automaton
~ that accepts @(EX). Then we check that there is no string that satisfies
~ f and that is also accepted by ~. The major steps of the model-checking
algorithm are as follows:

(1) Determine the set of reachable states of a process, that is the set of all
states s such that, for some n > 0, s appears in the execution of some
process of the system U“. Let this set of states be denoted by S’.

(2) Construct a directed graph K = (S’, R?. EX, the expanded set of execu-
tions of a process is contained in the set of infinite paths of K starting from
the initial states. However, every such path need not be an execution of a
process.

(3) We show that there exists a set E of edges of ~ such that EX is exactly the
set of infinite paths of K that start from an initial state and in which every
edge not in E appears only a finite number of times. In this step, the edge
set E is determined.

(4) Using K and ~, construct the Buchi automaton A that accepts the set
@(EX).
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(5) Build the automaton J4. ~ which accepts the set of strings that satisfy ~ j.
(6) In the final step, check that there is no string accepted both by A and A =~.

We now describe the steps of the algorithm in more detail. In the first step,
the following algorithm is used to compute S’, the set of reachable states of a
process: Initially S’ is set to 1, the set of initial states of U. Add a new state t
to S’ if the following condition is satisfied: Either there is a state .sE S’ such
that (s, t,c)G R, or there exist S, S’ c S’ such that for some t’ c S and some
c e 2, (s, t, c), (s’, t’, E) E R. The above step is repeated until no more new
states can be added to S’. Clearly, at most I S I iterations of this step are
needed, and the above procedure can be implemented in time bounded by a
polynomial in size(U). In the remainder of the section, let S’ denote the value
of the set S’ after the termination of the above procedure. Recall that for any
global state 6 of the system U“ and for any p such that 1< p < n, let 8[ p]
denote the pth component of 6.

LEMMA 4.4. Suppose S’ = {ql, qz, . . . ,q~}.

(a) A states is in S’ iff for some n >0, s appears in the execution of some
process of the system Un;

(b) For any positive integers n,, . . . . n ~, there is some k >0 such that
there is a finite computation sequence of Uk starting with an initial
global state and reaching a state such that for each i, 1 < i < m, there
are at least n, processes in the user state q, in the last global state of
the computation sequence.

PROOF. We use the following observation in the proof If a, o’ are computa-
tion sequences of systems U“, U“’ respectively that start with initial global
states and that end with global states /i, 8’. respectively, then there exists a
computation sequence a” of the system U“ + ‘r that starts with an initial global
state and ends with the global state d“ where for 1 s p s n, 6“[ p] = 8[ p] and
for n < p s n + n’, 8“[P] = 6’[p – n]. Now, we can prove (a) as follows:

( = ) This direction is easily proved by induction on the number of iterations of
the main step of the procedure that computes S’ and by using the above
observation.

( -) To prove this direction of (a), we can easily show that in any computation
O., al, . . . of the system U“ the state of any process in the global state u,
is in S’; this is accomplished by induction on i. Part (b) follows directly
from the above observation. ❑

Now, we describe the second step of the algorithm, where we construct the
graph ~ = (S’, R‘). The set R’ G S’ x S’ contains exactly the following
edges: For each state s in S’, the self loop (,s, S) e R’; for s, t e S’, if
(s, t,e)G R then the edge (s, t) is in R’; for the states s, s’, t,and t’in S’,
if (s, s’, c), (t,t’,Z)eR for some c= Z. then the edges (s, s’), (t,t’)are in
R‘. Since we are not considering fairness, it is possible for a process to remain
in a state forever. The self loops in R‘ model this possibility. They also model
the possibility of stuttering in each state. A path in ~ is a sequence of states

(s~,s’1>. . . ) such that for all i z O, (s,, S,+l) cR’.
The following lemma relates the prefixes of executions of a process to the

finite paths in K.
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LEMMA 4.5. The set of finite paths in K starting from an initial state is
exactly the set of prefixes of elements of EX.

PROOF. Consider a finite prefix u of an element of EX. It can be viewed as
a prefix of an execution of a process with some states possibly repeated, that is,
with stuttering. From our construction of ~, it is easy to see that every state
occurring in a is in S’ and in addition, if s, s’ appear consecutively in a then
(s, s’) is an edge in ii?’. From this it follows that u is a path in ~. Again from
the construction of K, it is straightforward to prove that every finite path in K
is a prefix of an element in Ex. ❑

For an infinite sequence a c S’”, where a = ( CIO,al, . . . ), let inf(a) be
the set of pairs of states (s, s’) such that for infinitely many values of i,
al = s, a!i+l = s’. Let ti-paths( K ) be the set of infinite paths in K starting
from an initial state. The following lemma states that the expanded set
of executions EX is a subset of ti-paths( K). It can easily be proved using
Lemma 4.5.

LEMMA 4.6. Ex s u-paths(K).

There can be sequences in ~-paths(K) that are not in EX. Consider the
process definition shown in Figure 4. States SI and S5 are the start states. In this
example, it is easily seen that there is a computation with n + 2 processes in
which (S] Sz)”(s~ S4)U is an execution of a process starting in the initial state s,.
The state graph corresponding to K is shown in Figure 5. Note that the path
(s, S2)ti is not an execution of a process, and is not in EX because it is not
equivalent under stuttering to any execution.

In step (3) of the algorithm, we show that there exists an edge set E G R’
such that EX = { a : a e co-paths( K) and inf( u) G E}.

Now we present the algorithm that determines E. This algorithm
uses Linear Programming to determine if an edge e is in E. Roughly speak-
ing, we use Linear Programming to determine if there is a finite computation
sequence that starts and ends in the same global state, and uses the transition
corresponding to the edge e at least once. If there is such a computation
sequence, then it can be repeated infinitely to get a computation sequence that
contains the transition corresponding to e infinitely many times.

For each e = (u, u’) e R’, where e is not a self loop, we define label(e) to
be the unique c e X such that ( u, u’, c) e R; note that the uniqueness of label( e)
is guaranteed by the assumptions (i), (ii) that we made about U. If label(e) is E,
then we say that e corresponds to an internal transition.

For any state s e S’, let in(s) be the set of edges (s’, s) such that (s’, s) e
R’; let out(s) be the set of edges (s, s’) such that (s, s’) e R’. For any c e Z,
let edges(c) be the set of edges e e R’ such that label(e) = c. For each
edge e e R‘, let n, be an integer. Intuitively, n, will be the number of times the
transition corresponding to e is used. We now set up a set of linear constraints
that ensure the existence of a computation with the required property.

(A) For each state s,

~ n.= ~ n,.
e= in(s) ee out(s)

These equations ensure that the total number of transitions entering a state is
equal to the total number of transitions leaving the state.
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(B) For each action c e ~‘,

~ n,= ~ n,.
e=edges(c) ee edges(~)

These equations ensure that the total number of transitions along edges
labeled with c is equal to the total number of transitions along edges labeled
with 2.

(C) For each edge e, n, z O.

For each edge e, we also make use of the single constraint

(De) ne >0.

Let E be the set of edges e such that the constraints (A)(B)(C) (De) have
a (rational) solution. Since this is a homogeneous system of inequalities, it has
an integer solution iff it has a rational solution. Using the polynomial
time algorithm for Linear Programming [10], we can determine the set E
in time polynomial in the size of K and hence in the size of U.

Next, we show in Theorem 4.8 that EX, the expanded set of executions of a
process is exactly the set of infinite paths in K that start from an initial state
and such that every edge that appears infinitely often is in E. We need the
following technical lemma in the proof of Theorem 4.8.
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LEMMA 4.7. For any s e S’, the self loop (s, s) is in E,

PROOF. Let s be a state in S’ and f be the edge (s, s). Let n~ = 1 and

n. = O for e #f. Clearly, these values satisfy the equations given by (A), (C).
Since there are no self loops in the original process U, the above values also
satisfy the equations given by (B). Thus, every self loop is in E. ❑

We use the following definitions in the proof of Theorem 4.8. Let o =

(~oj~l,. . . . o,) be a computation sequence of the system U n, for some n > 0.
Let p be an integer such that 1 <p s n, and s = (s., Sl, . . . . s,) be
an execution of process p in a. For any edge e = (u, u’) e R’, let f(a, e, p)
be the number of values of i, such that O s i < r, Si = u and Si+ ~ = u’.
Intuitively, if e is not a self loop, then f ( a, e, p) is the number of transitions
taken by process p along e in the computation sequence a. Now, define

Again, intuitively, if e is not a self loop then g( a, e) is the number of times a
transition is taken along the edge e in o by any process.

THEOREM 4.8. EX = { u : a c ti-paths(K) and inf(a) G E}.

PROOF. First, we prove that if te EX then tc co-paths(~) and inf( t)G E.
Let t = (to,tl,...)e EX. By Lemma 4.6, te u-paths(~). Now, we prove
that inf( t) G E. By Lemma 4.7, if e e inf( t ) is a self loop, then e c E. From
the definition of EX, there is an execution s c Exec( U) of a process that is
equivalent to t under stuttering. Since s, t are equivalent under stuttering it
is the case that, for any edge e E inf( t),if e is not a self loop, then e e inf(s).
As a consequence, it is enough if we show that inf(s) G E. Now consider a
computation o = 00, 01, . . . with n processes such that s is the execution of
some process in o. Let E = {(q, q’): for some i, 1 s i s n, (q, q’) einf(tii)
where 6i is the execution of process i in the computation u}. Intuitively, for
each e = (q, q’) e E’ which is not a self loop, a transition along e is taken
infinitely often in the computation a. For any i, j such that j > i a O, let
o ( i, ~“) denote the computation sequence ( ai, ~i+ ~, . . . , Oj). Clearly, certain
global states appear infinitely often in the computation. Let i and j be integers
such that j > i, Oi = Oj, for each ecE’, g(a(i, j), e) > 0, and for each
e e R’ – E, g(a(i, j), e) = O. Roughly speaking, i, j are integers such that a
transition along every edge in E’ is taken at least once between the instances
i, j in o and these are the only transitions taken between the instances i, j in o.
Clearly such i and j exist. Let n, = g(o(i, j), e). Clearly, for eeE, n, >0,
and for e ~ E, ne = O. Since, for each state q in S’ the number of processes
in state q in the global state ai is same as the number of processes in state
q in the global state rrj, it is easily seen that equation (A) is satisfied for each
state q in S’. It is also easy to see that the integers n ~ satisfy the equations
given by (B). Roughly speaking, this is due to the fact that every transition
along an edge labeled with a communication symbol is synchronized with
another transition taken along an edge labeled with a complementary communi-
cation symbol. From the above argument, it is clearly seen that E ~ E.
Hence, inf(s) G E.

Now consider a sequence of states CY= a., a ~, . . . such that a = o-paths( K)
and inf( a) ~ E. Now we prove that 0-6 EX. We do this by constructing an
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infinite computation in which one process has an execution that is equivalent
under stuttering to CY.Since the system of (A), (B), (C) is homogeneous, and
since E is the set of edges e such that there is a solution for (A), (B), (C)
with the constraint n, > 0, we see that there is an integer solution for the sys-
tem of inequalities given by (A), (B), (C) that simultaneously satisfies the
constraints n ~ > 0 for all e e E. Let n,, for each e ~ R‘, denote such a
solution; clearly, for each e ~ E, n, = O. For each state s ~ S’, let

For any global state 6 and any state s, let &f~,, be the number of processes in
state s in the global state 6. Also, for any global state 8 of the system U“, and
integer i such that 1 s i s n, let 8[ i: = s] denote the global state in which the
ith component has value s and all other components have same value as in 8.
Now, we need the following claim. It states that starting from any global state 6
in which there are at least N~ processes in state s and in which process 1 is in
state q, and for any edge (q, r) ~ E, we can have a computation sequence
starting with 6 and ending in a global state 8‘ such that for each user S, the
number of processes in state ,s in 8’ is same as that in 8 and such that the only
transition process 1 takes is along the edge (q, r).

CLAIM. Let e = (q, r) e E where q # r and 6 be any global state such
that 8[ 1] = q, and for each user state s, Ma, ~ > N.. Then. there exists a
finite computation sequence B starting with 6, ending with some global
state 8‘ and satisfying the following properties: for each state s ~ S,
Mh, = M8, ~; the execution sequence of process 1 in D is qr” for some
m>O. ‘

PROOF. We define the computation sequence by means of a procedure that

generates it. The procedure uses a variable seq that after termination contains

the desired computation sequence. First, let

n=~N,.
SES’

The required procedure is given below. Initially, seq is set to 8.

While 3e’ GR’ such that e’ 1s not a self loop and g(seq, e’) < ne, Do
(a) Choosean edge e’ = (q’, r? and a process i as follows:

Let 9 be the last global state in seq.

If this is the first iteration then choose e’ to be e and i to be 1

else Choose e’ so that e’ IS not a self loop and g(seq, e’) < n,. and

choose i so that i > 1 and f)[i] = q’.

Extend seq as follows:

(b 1) If label( e’) = e then

extend seq by appending the global state6’ [ i: = r~ at the end.

(b2) If label(e’) = c # e then

choose and edge e“ = ( q“, r“) such that label( e“) = Z and g(seq, e“) < n ~,,:

Choose a process j > 1 and j # i such that O[j] = q“;

Extend seq by adding the global state O[ i: = r’] [j:= r“] at the end.

End while



Reasoning about Systems with Many Processes 711

The following are invariants of the while loop in the above procedure: (11)
For each e e R’ that is not a self loop. g(seq, e) s n,; (12) For each s = S’,

(13) For each c # c,

X (nf - g(seq,f)) = X (~f - .g(wjf)).
label(f) = c label(~) = F

From 11 and 12, it should be easy to see that we can choose some process i in
step (a). From 13 and 12, it should be easy to see that we can choose an edge e“
and a process j in step (b2). Clearly, 11 is true initially. 12 holds initially,
because, for any state s,

13 holds initially because the values n~ for ~E R‘ satisfy the equations given by

(B). It is fairly straightforward to show that 11, 12, 13 are invariants of the while
loop.

Let D be the value of seq after the termination of the while loop and 8’ be
the last global state in D. Clearly, ~ is a computation sequence. Since in the
first iteration, we choose e’ to be e and P’ to be 1, and, since process 1 is
never chosen again, it is obvious that the execution sequence of process
1 in ~ is q’ for some x >0. For any feR’, let mf = g(b, f). For f#~,
rnf = o. Now, consider any f c E such that f is not a self loop; we need to
show that my = ny. Since B is the value of seq after the termination of the
while loop, it follows that mj > n~. Let ~’ be the value of seq when the edge f
was last chosen in the while loop, that is, in step (a) or step (b2). Clearly

g( B’, f) < n~ and W is a prefix of 6. Hence, it has to be that m~ = nj-. From
this, we see that the values m~ for f e l?’ satisfy the equations given by (A)
when we substitute m ~ for n~. From this, it follows that, for each s,
ik16 , = A48t s. ❑

In the path a, let i be the earliest instance with the property that every edge
that is taken beyond the instance i in a is taken infinitely often, that is, v j > i
( ~j, ~J+, ) e inf( ~). We can have a finite computation sequence y that starts

with an initial global state, ends with the global state r and that satisfies the
following properties: for each state s, &fm,,S > NS and the execution sequence
of process 1 in T is equivalent under stuttering to (a., . . . , ~ ~). NOW, applying
the previous claim repeatedly, it is easily seen that there exists an infinite
computation sequence T“ starting with z such that the execution sequence of
process 1 in T’ is equivalent under stuttering to ( ai, Ui+ ~, . . . ). NOW, consider
the computation -yo~’; the execution of process 1 in this computation is
equivalent under stuttering to a. Hence, u c EX. ❑

Step 4 of the algorithm uses K and E to construct a finite state Buchi
automaton A that accepts exactly the set of strings given by O(EX) and such
that size( xl) is linear in size(U). Construction of A is straightforward and is
left to the reader.

Let f be the PTL - formula that is the correctness specification. In Step 5,
the Buchi automaton A. ~ that accepts exactly the set of strings that satisfy 1 f
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is constructed. Now to verify that every execution of a process satisfies f, it is
enough to check that there is no string that is accepted by both A and A .f. In
Step 6, the techniques of [33] are used to check for this condition. This
algorithm runs in time O(Size( A ) “ Size( A -~)). This completes the entire
verification algorithm.

Let n = size(U). Steps (1) and (2) can be implemented by a procedure that
takes time bounded by a polynomial in n. In Step (3), we have to solve certain
Linear Programming Problems. For this we use the polynomial time algorithm
for Linear Programming [10]. From this it follows that steps (1), (2), and (3)
can be implemented by a procedure that takes time 0( P( n)) for certain
polynomial P(n). Steps (4) through (6) take time o(size( A) - Size( A .7)).

Since Size(A) is proportional to n, and Size( A. ~) is proportional to 4 If 1, it
can be shown that the algorithm takes time 0( P( n) + n “ 41 f 1) where p is a
polynomial in n.

Example 4.9. Consider the process definition with five states, given by
Figure 6, in which states S1, SA are the initial states. Any process that starts in
state S1 acts as a consumer of messages generated by processes that start in the
initial state SA. Assume that we have atomic propositions S1, for 1 < i s 5,
such that the only atomic proposition that is satisfied in state S, is S,. Also
assume that whenever a process enters state S3, it generates an output to the
external world (not shown in the figure). Now, we would like to check that a
process that starts in state SI generates only a finite number of external outputs.
This property is asserted by the formula S1 3 (FG( S~) V FG( ~ Sq)). This
formula asserts that a process after some time either remains in state s~ forever
or remains outside Sq forever; which is equivalent to the property that state Sa
is entered only a finite number of times. Using our algorithm we can automati-
cally verify that the above property is satisfied by all executions of a process in
a system of arbitrary number of processes with identical definitions given by
Figure 6.

It is to be noted that the above property is a liveness property. Thus, although
we do not consider fairness in our algorithm, some interesting liveness proper-
ties can also be verified by our algorithm, in addition to safety properties.

5. Global Properties and Systems with Communication Networks

In this section, we introduce some special rules of inference that allow us to use
our decision procedures for certain problems that are not in the form considered
thus far. Section 5.1 shows how the decision procedures can be used to verify
that a system of processes maintains mutual exclusion. This is a global property
of a system, not a property of the individual executions. Section 5.2 shows
how to model certain systems having a form of process name variables or
communication ports that can be dynamically assigned to different processes. In
Section 5.3, we show how it is possible in some cases to use our decision
procedures to reason about systems of processes having a communication
network. We illustrate the methods with an example.

5.1. MODEL CHECKING FOR MUTUAL EXCLUSION. Consider a family Y–=
{C x U“}, and let the critical region be a subset of the process states of C
and U. We would like to show that no computation of a system in Y– can reach
a global state with more than one process in the critical region. We say that
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(a) (b)

FIG. 6

computations with this property obey mutual exclusion, and similarly
that systems (families) obey mutual exclusion if all their computations do.

By modifying the process definitions C and U, we can reduce this problem to
reasoning about executions of single processes. First, we choose a pair of new
communication symbols, c and Z, which do not appear in C or U. Taking the
process definition C’, for each state s in critical region, we add a new state e,.
From each state s in the critical region, we add transitions to state e, labeled
with the communication symbols c and E. For each transition (s, s’, u) of the
process C from state s to a state s’, we add a transition (es, s’, u) from state
es to s’, with the same label. Let C’ be the resulting process, as shown in
Figure 7. If mutual exclusion is violated by a process in state s, the process can
then enter state e,. From this state, the process can continue its computation in
the same way as the original process does in state s. A new process definition
U’ is formed similarly. Finally, we add a new atomic proposition E which is
true in the added states es. The family {C’ x U”} has the following useful
property:

LEMMA 5.1. The following are equivalent:

(a) All infinite (respectively, all infinite and deadlocked) computations of
systems in { C x U“) obey mutual exclusion.

(b) The formula G(&E) is satisfied by all the executions of the control
and user processes in all infinite computations (respectively, in all
extended computations) of the family {C’ x U”].

We can check for condition (b) by using the methods of Section 3.2. We can
check for condition (b) for the case of extended computations by using the
methods of Section 3.3.

COROLLARY 5.2. It is decidab[e whether a family of the form { C x U“}
obeys mutual exclusion.

The approach of Lemma 5.1 easily generalizes to verify the property that at
any time, there are at most k processes in the critical region.
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‘s

FIG. 7
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5.2. SYSTEMSWITH COMMUNICATIONPORTS. In our models of systems, when
a process offers a certain communication symbol, it can communicate with any
process that offers a complementary symbol. Certain applications require more
structured patterns of communication. For example, one may want to model
systems in which the control process communicates with one of the user
processes, and then carries out a sequence of further communications with that
particular user. We show that such a pattern of communication can be modeled
in our first model of systems by introducing systems with communication
ports that can be dynamically bound to different processes. Conceptually, in
such systems, the control process has some fixed finite number of ports. At any
time a port can be bound to a single user process and used to direct communica-
tion exclusively to that process. A port can then be switched to a different
process.

The ports that we describe can also be thought of as a form of process name
variables. A process name variable allows a process to store the iden-
tity of another process and to direct communications to the process
named by the variable. The variable can later be set to name a different pro-
cess. In effect, the construction in this section shows that we can model
processes in an extended language having process name variables, where
each process can have a fixed number of such variables.

Formally, we define the class of process definitions with p ports, where
p is a fixed natural number, to be a subset of the process definitions given in
Section 2, with certain restrictions that give the process more structure. The
communication alphabet again consists of the special symbol ~ and mutually
disjoint sets of actions and complements of actions. The set of actions is divided
into disjoint sets of simple actions and port actions. A simple action is a
symbol with no further structure. A port action has one of the forms connect i “
c, porti “ c, or disconnect o c, where i is in { 1, . . . . p} and c is a simple
action. The complements of actions are simple complement actions such as 2,
and port complement actions, which have the forms connect i . E, port ~. F, or
disconnect i . Z, where F is a simple complement action, We say that simple
actions and their complements are simple communication symbols; similarly,
port actions and their complements are port communication symbols.

Intuitively, communication between the control process and a user with
the symbols connect i “ c, connect i “ Z, respectively, binds the ith port
of the control process to the particular user process. While this binding is
in effect, the control process can communicate with the user by using sym-
bols of the form port ~ “ c, port i . Z. Finally, the port can be disconnected
from the user by communication with symbols of the form disconnect i “ c,
disconnect i e F.
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To define the states of a process with p ports, we first choose a finite set S~
of basic states. The set of states of a process then has the form S = { Sy, s 6
Sb, dg{ l,...> p}}. Intuitively, a state s ‘i” is used to represent a process in a
basic state s when it is connected to other processes on the ports in a?. The set
d is called the active port set of the state s‘2. The set of initial states of a
process with ports is a subset of {s 0, s c S’b}.

The transitions of a process with ports are structured to preserve the meaning
of the port symbols. Five kinds of transitions are allowed. In the following,
S,tesb, cdg {l,..., p}, and c is a simple communication symbol

(1) (sf~, t-z,e),

(2) (s’~, t*, c),
(3) (SW, tti u {i), Connecti “ c), provided i ~ .d,

(4) (s’~, t““,port ~o c), provided i e &,

(5) (s’, t ti-”}, disconnect, “ c), provided i c xl.

We define the classes of user and control process definitions with ports to be
subclasses of process definitions with ports. In a control process definition with
ports, all transitions involving port communication symbols have port actions,
that is, no part action complements appear. Similarly, in the transitions of a
user process definition with ports, no port actions appear.

A family of systems with p ports has the form { C x IV”}, where C (resp.,
U) is a control (resp., user) process definition with p ports. Intuitively, in the
initial global states of any system in such a family, no ports are active.
Transitions of types 1 and 2 can occur independently of the state of the ports.
By using a pair of type-3 transitions, the control process can synchronize with a
user on the symbols connect ~“ c, connect i c F. After this, both processes enter
states of the form tCywhere i c .o?. In such states, type-4 and type-5 transitions
are permitted. Observe that for each i < { 1, . . . . p}, at any time, no more
than one user process can be in a state s~ with i cd. Also, in any reachable
global state, the union of active port sets in the states of all user processes is
equal to the active port set of the control process. Thus, the port i s c symbols
provide exclusive communication between the control process and a single user.
The disconnect i “ c symbols reset the ith port to its initial state. This completes
the description of processes with ports.

5.3. MODEL CHECKING FOR SYSTEMS WITH A COMMUNICATION NETWORK. The
decision procedures we have presented in Sections 3 and 4 can also be used in
some cases for verifying properties of distributed systems of almost identical
finite-state CSP processes with a communication network, where the number of
processes on the network is arbitrary. It is well known that most correctness
problems for such systems are undecidable, because the systems have the power
to simulate a Turing machine [1]. Thus, in this section, we present a method of
reasoning that is sound but not complete.

To define such systems in our model of computation, we use an infinite set of
communication symbols, with actions of the from (i, j) : c, where i and j are
processes and c is a symbol in a message alphabet. We define the complement
of (i, j) : c to be (j, i) : Z. The rules for computation are unchanged; as before,
any two processes that are in states having transitions on complementary
communication symbols can synchronize. However, we now have enough
symbols to describe a network. Typically, process i will use the symbol
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(i, j) : c to offer an action to process j, and process j will use the complemen-
tary symbol (j, i) : F to synchronize with Pi. If all the transitions in a system
are of this form, then we call the system a network system.

As an example, consider the system for maintaining mutual exclusion on a
ring network discussed in [4]. Initially, one process has a token that permits it
to enter its critical region. The processes circulate the token around a ring
network. In our model of computation, we can define the system of n
processes, S. = (AO, . . . , A ~_ ~), where the transitions of A, are shown in
Figure 8. Here, a, is the index of the process definition A, in the system. The
subscripts i + 1 and i – 1 are taken mod n. (Note that to be consistent with
our definition of a process, the actual values of a., . . . , an_ ~ range from 1
to n.)

The critical region consists of the state C. The initial state of A ~ is C, while
all other processes are defined to start out in state N, the noncritical region. A
process in state N can enter its waiting state W by an e-transition, Then, it
waits to receive the token from the next lower process before it can enter its
critical region. The state T is used by a process that has the token, but is not in
its critical region. It permits the token to be circulated by processes without
entering critical regions.

If S is a network system, so that all its transitions are labeled with process
pairs, (i, j): c, then we define S* to be the system formed by erasing the
process pairs from all the transitions. That is, each communication symbol of
the form (i, j) : c is replaced by the symbol c. Now, it is clear that all
computations of S are computations of S*, but not vice versa. Thus, if we can
prove that a property holds for all computations of S*, then it holds for
computations of S.

LEMMA 5.3. Let 3- be a family of network systems and .F * be {S* I S c
Y– ). If a property holds for all computations of Y– *, then it holds for all
computations of 3–.

Returning to the example, consider the family { S.}, which consists of the
ring network system of size n for all n > 0, and the family { S:}, which is
the set of all S; for n >0. It easy to see that when we erase process pairs
from S., we are left with a system of the form C x U“. That is, the system
S; has the form C X U“, where C is the definition of the unique process that
starts in the critical state, and U is the definition of the other processes.

Using the method of Section 5.1, we can use our decision procedures to
verify that all systems in the family { S:} obey mutual exclusion. Hence, the
family of network systems { S.} obeys mutual exclusion.

Although we believe the method of reasoning about S* will be useful in some
other cases for proving safety properties, it is not directly useful for reasoning
about liveness properties, because for these properties, one usually considers
only fair computations. It is not difficult to see that there can be a fair
computation of a network system S that is not a fair computation of S*. For
instance, this can happen if a process is only enabled a finite number of times in
the computation in S, but is enabled infinitely often in S*. We are investigating
other ways of using the model-checking algorithms to verify properties of
network systems, but further development of this subject is beyond the scope
of the present paper.
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FIG. 8

6. An Extended Logic

So far, we have used the logic PTL to specify the properties of the executions

of a single process. Now we introduce a new logic IPTL, which is an exten-

sion of PTL. This logic allows us to specify a wider class of properties. It uses

the additional modality m , which is a universal quantifier over processes.

We add the following rule for forming well-formed formulas. If f is an
IPTL formula then m (~) is also a formula in IPTL. We use the following
abbreviation: U - 7 m ~.

A model of IPTL is a 4-tuple (1, S, Y, 0) where 1 is a finite set of processes
or indices, S is a set of states, V : I + S“ associates with each process
an u-sequence of states, @: S+ 2@. For p~I, we denote Y(p) by

5P = (Sp, o> Sp, l, . . .). An interpretation is a triple (M, p, i) where M is

a model as given above, p e 1, and i ~ O is an integer. Intuitively, a model
is a set of executions indexed by process names, and an interpretation specifies
a model, a process name, and an instance on the execution of the process. We

inductively define the relation I= , which specifies when an interpretation

satisfies a formula:

(M, p, i) t= P, where P is an atomic formula iff P e ~ (sP, i);

(M, p,i) t= rl(f) iff vqe I, (M, q,i) ~f;

(M, p,i) i= (JUg) iff ~j > i such that (M, p, j)

t=gandvk such that isk<~, (M, P,k) =f;

(M, p,i)~Xf iff (M, p, i-t- 1) by.

It is to be noted that, while n is a universal quantification on processes, H
acts as an existential quantifier on processes. A formula is said to be satisfi-
able if there exists an interpretation that satisfies it, and a formula is said to

be valid if all interpretations satisfy the formula. Using IPTL, we can express
many interesting global properties of concurrent systems. The following for-
mula expresses the property that, if a process requests a resource, eventually
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some process is granted the resource

(U request 3 F U granted).

In the above formula request, granted are atomic propositions.
IPTL is a special case of the multiprocess network logic of [25]; it is also a

special case of the one-person logic of knowledge and time of [7] and [15]. In
particular, IPTL is the same as the logic KL(I) of [7] interpretated over
synchronous systems in which the processors do not forget and do not learn.
The following theorem is independently observed by the authors and also in [7].
The reader is referred to [7] for the proof. The theorem shows that the validity
problem for IPTL can be decided by an algorithm that is exponential space
bounded and double exponential time bounded in the length of the formula.

THEOREM 6.1. The set of valid formulas in IPTL is EXSPA CE-complete.

Now. we investigate the problem of checking if all the computations of a
system consisting of a unique control process and an arbitrary number of user
processes with identical definitions satisfy a given IPTL formula. Theorem 6.3
shows that this problem is undecidable. In this theorem, X ~ denotes the class
of recursively enumerable sets, H; denotes the class of complements of
recursively enumerable sets.

First, we define what it means for a computation of a system of processes to
satisfy an IPTL formula. To do this, consider a system of processes
(u,, ..., U’) where Ul, . . . . U. are process definitions. For 1 s i s n, let
U, = ( Si, R,, 1,, *,). We assume that the functions 0, are consistent, that is,
for all i,j, 1 s i,j < n and for all s, if SCS, fl SJ, then ~,(s) = QJ(s).
Corresponding to an infinite sequence of global states a = 00, al, . . . of the
above system, we define a model Mm of IPTL as follows: M. = (J, S, W, ~)
where J={l, . . ..rz}. S= UO~i<,l Siandfor anystatese S,, l<i srz,
~(s) = *i(s). Since, Xl, . . ., Q. are all consistent, it is the case that @ is well
defined. For any i ~ J, T(i) is the projection of o onto the ith coordinate. We
say that the sequence a satisfies an IPTL formula f iff for all p e J,
(M., p, O) = f. It is easy to see that a satisfies f iff o satisfies m j.

LEMMA 6.2. For a system of processes ( UI, . . . . U.) and an IPTL
formula, the problem of determining if all computations of the system
satisfy f is decidable.

PROOF SKETCH. Let lV denote the system of processes ( U1, . . . . U,l) where
U, = (S,, R,, IZ, X,), for 1 s i< n. We prove the lemma by reducing the
problem to that of checking if every path in a Kripke structure starting from
some initial state satisfies a PTL formula. This problem is the standard
model-checking problem for PTL and is decidable [16, 29]. First, we define a
new set of atomic propositions @ = {Pi : P e Y and 1 < i < n}. Essentially,
for each atomic proposition P in @, V/ has n atomic propositions indexed by
the process indices. Now, let K = (T, R, ~, 1) be a Kripke structure where
T. 1?, ~, I are given as follows: T = S1 x o“ . x S~, that is, T is the set of all
global states of the system W; R = { (o, 09 e T x T : o‘ can be reached from
o in one computational step of the system W} : ~ : T ~ 2 ~ such that
for o = (01, . . . , on), G(a) = {PZ:PCOZ(O,) and l<isn}; 1=
II XII X””” x I. is called the set of initial states. A path of K is a sequence
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6.,6,,. . . such that for all i 20, ( tii, &i+, ) e R. It is clearly the case that
every infinite path of K starting from an initial state is a computation of the
system W.

Now, for any IPTL formula g that only uses atomic propositions from Y,

we define a PTL formula P(g), that uses atomic propositions from .% so that
for any infinite sequence 6 of global states of the system W, 6 satisfies g iff
El(~) satisfies P(g). First, for any IPTL formula g, we define a natural number

I-4g), which is the depth of nesting of m in g, inductively as follows: if g is
an atomic proposition, that is, g e Y, then K(g) = O; if g = g ~~ gz, then

P(g) = max{~(gl), i4gJ}; if g = -gl, then v(g) = Mgl); if g = mgl
then p(g) = 1 + p( gl). Now, we define P(g) by induction on K( g). If

P(g) = 0, then p(g) = A ~ ~, ~ ~ gi where g, is obtained by replacing the
occurrence of every atomic proposition P ~ 9 by P,. Now, assume that P(g)
is defined for all g such that p(g) s k, and let h be such that V(h) = k + 1.
Then p(h) = Al<i<nh, where h, is obtained from h by the following
operations: replace every atomic propositions P not in the scope of any n by
Pi; replace every subformula h’ of the form m h“ that does not occur in the
scope of any n by p( h“). The following claim is easily proved by straightfor-
ward induction on the depth of nesting of the modality n and is left to the
reader.

CLAIM. Let 6 = 8.,8,, . . . be any infinite sequence of global states of
the system W. Then, for any IPTL formula f, 6 satisfies f iff (3(8)
satisfies p(f).

Now, it follows that every computation of the system W satisfies f iff for
every infinite path p of K starting from an initial state, ~(p) satisfies P(f).
Now, the lemma follows from the results of [16] and [29]. ❑

As in Section 3, let C x Un denote the system of processes consisting of a
control process whose definition is given by C and n user processes having
identical definitions given by U.

THEOREM 6.3. The set of triples (C, U, f ) that satisfy the follow-
ing property is II ~-complete: C and U are process definitions; f is an
IPTL formula; for all n >0, all the computations of the system C x U“
satisfy f.

PROOF SKETCH. First, let Sat denote the set of all triples (C, U, f ) such that
for some n >0, there exists a computation of the system C x U“ which
satisfies f. We show that Sat is X ~-complete. From this result, it is easy to see
that the set of triples (C, U, f) that satisfy the condition given in the statement
of the theorem, is II ~-complete.

First, we show that Sat is x ~-hard, by reducing the set of all encodings of
two-counter machines [8] that accept an empty tape to Sat. A two-counter
machine has a read-only input tape, a finite control, and two counters. Initially,
both the counters are set to zero value. The finite control can increment or
decrement each of the counters, It can also test for zero value for any of the
counters.

Let A4 be a given two-counter machine. Now, we give a control process
definition C, a user process definition U, and an IPTL formula f such that, for
some n > 0, there is a computation of the system C x U“ that satisfies f iff
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A4 accepts an empty input tape. We describe C and U informally. The process
definition U is given in Figure 9. It has 3 states, UO, UI, and Uz, of which UO
is the initial state. Roughly speaking, at any instance, the number of user
processes in state u, (for i = 1, 2) represents the value of counter i. The
communication actions used are a, and ~i for i = 1, 2. The process definition
C has the same states as the finite control of ill. The initial state of C is the
same as that of the finite control of &f. Corresponding to each state of C or U
there is an atomic proposition, with the same name as the state, which is true
only in that state. The control process can increment or decrement the number
of user processes in state u ~ or Uz by offering appropriate communications. We
represent the transitions of the finite control of &f by a 4-tuple of the form
(s, s’, *, *) or (s, s’, i, +) or (s, s’, i, – ) or (s, s’, i,O) or (s, s’, i, > O) for
i = 1, 2. All these transitions indicate a state change of the finite control of M

from s to s’. The first transition does not refer to any counter, the next two
transitions increment or decrement counter i, and the last two transitions
indicate that the state change can occur only when counter i has zero value or
has value greater than zero, respectively. We simulate the above transitions of
M by the transitions (s, s’, e), (s, s’, El), (s, s’, ~,), (s, s’, e) of C in that
order. Notice that corresponding to the transition (s, s’ i, O) of M we only have
an internal transition of C. We simulate the zero testing in the correctness
specification, by asserting that the above transition of C should only be taken
when there is no user process in the state u i. First, we make the following
assumptions about M: for each of the above type of transitions of M, s # s’;
for every pair of states s and ,s’ there is at most one transition of M that is in
the above form (it is left to the reader to prove that for any given counter
machine, by introducing new states, we can obtain another counter machine
such that this machine accepts any empty tape iff the original machine accepts
an empty tape; thus, there is no loss of generality due to these assumptions).

In order to give the correctness specification f, we define the following
formulas. For every transition of A4 which is of the form (S, s’, i, 0), let g~~,
be the formula G n ((s A X s’) 3 (n= u,)). Note that (s A X s’) can be satis-
fied only by an execution of the control process. The formula g~., asserts that
there is no user process in state u, when the transition from s to s’ is taken by
the control process. Similarly, for a transition of the form (s, s’, i, > O) we can
obtain a formula g~~, stating that the transition from s to s’ occur only when
there is at least one process in state u,. Now, g is the conjunction of all g~~,
such that there is a transition of A4 which is of the form (s, s’, i, O) or of the
form (s, s’, i, > O). Let f = U (sO A g A Fsf) where SO and Sf are, respec-
tively, the initial and final states of the finite control of M and where g is as
specified above. It is straightforward to show that there is a computation of a
system in the family { C x U“} that satisfies f iff Al accepts the empty input
tape. From this, it follows that Sat is X ~-hard.

Now we prove that Sat is in x ~. Let C and U be the definitions of the
control process and user process, respectively. Let f be an IPTL formula.
Using the same approach as in [25], the following can easily be shown: For any
n > 0, there is a computation of the system C x Un that satisfies f iff there
exists a computation of the system C x U“ that satisfies f and that is of the
form a ~“. Now, we give a nondeterministic algorithm that checks whether a
triple (C, U, f) is in Sat. The algorithm guesses n, u, and (3, and then checks
that a ~ u is a valid computation of the system C x Un and verifies that this
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FIG. 9.

computation satisfies f using a procedure similar to that given in Theorem 2
of [25]. ❑

7. Conclusion and Related Work

In this paper, for the first time, we have considered the model-checking
problem for two models of concurrent systems with an arbitrary number of
finite-state processes. For these models, we have presented algorithms to check
if the executions of a process satisfy a given PTL specification. We have also
shown how process definitions with ports can be handled in the first model of
processes. This allows us to handle the case where the control process can
remember a bounded number of names of user processes. We have also shown
how the algorithms can also be used to verify certain global properties such as
mutual exclusion. We have illustrated the use of the algorithms by considering
an example. We believe that other token-passing algorithms on rings and other
networks, and some resource allocation problems, can be handled in this model
at some level of abstraction.

The proof of the decidability result for the model-checking problem for fair
computations for systems in the first model of processes reduces this problem to
the problem of checking for absence of certain infinite paths in a Vector
Addition System with States (VASS) and then shows that the later problem is
reducible to the reachability problem for a VASS. The literature on Vector
Addition Systems and Petri nets (see [22] for references) considers different
notions of liveness and fairness. These notions are not related to the notion of
fairness that we consider in this paper.

There has been much previous research on checking various properties of
finite-state CCS/CSP processes. The complexities of checking for lockouts,
absence of deadlocks and related properties in systems of finite-state processes
have been analyzed in [9] and [14]. In these works, it is assumed that the
number of processes is fixed.

The works that are closely related to ours are those in [3], [35], and [13]; the
first of these was published more or less at the same time as the conference
version of this paper [30]. In [3] the authors use a restricted version of an
extended branching time temporal logic called ICTL * for specifying correctness
properties. They present an approach for checking certain properties of the
model of the processes consisting of a control process and an arbitrary number
of user processes with identical definitions; their approach consists of obtaining
another process U*, called the closure of U, and showing that, for some
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r > (), the systems c x u’ x U* and c x Ur+l x U* are equivalent under a

suitable notion of equivalence.
More recent works, such as [35] and [13], also consider families of systems

of the form { C x U“} and networks of processes of arbitrary size and use
induction for proving correctness of these systems. In their approaches,
the required correctness property is also specified as another process +. The
main feature of these works is to obtain another process 1, called the
invariant process, and prove the basis and induction steps by showing

that C s 1, 1 x U <1, respectively; the correctness is proved by show-
ing that 1< d; here < is a suitable partial order on processes. Once the
invariant is obtained, then the other steps are accomplished using automated
tools.

The main difficulty of the approaches mentioned above is that it requires a
good deal of ingenuity to obtain the closure process or the invariant process.
These methods are only partially automatic. None of these works prove any
completeness results even for families of systems of the form { C x U“ }. Using
the results of [1], it can be shown that for the general case, that is, for networks
of processes of arbitrary size, the invariant process 1 does not always exist.

We can extend the results of the paper for the following cases. Instead
of PTL, we can also use finite-state Buchi automata on infinite strings to spe-
cify the properties of the executions of a single process. For the algorithm of
Section 4, the specification automaton B should satisfy the following property:
If B accepts a string t,then it should accept all the strings that are equivalent to
t under stuttering. Since all our algorithms check for the absence of an
execution that does not satisfy the given specification, we have to construct the
complement B’ of B, that is, we have to construct an automaton that accepts
the set of strings that are not accepted by B. We modify the present algorithms
by using B’ in place of the autpmaton A .f. Using the algorithm of [32], we

can obtain B’ in time 0(16 I~1-), and such that I B’ I s 16 l~l-. In this case,
the algorithm given in Section 3 for the first model of processes without fair-
ness will have time complexity double exponential in I B I z, and the algorithm
given ,in Section 4 for the second model will have time complexity 0( n o
161~1- +p(n)).

We can extend the algorithms to the case when there is a lower bound k on
the number of processes. For the first model of processes, it is straightforward
to modify the VASS G to generate at least k user processes. It is also very
straightforward to reason about families of the form { C x U~i x “ “ “ x U,:’”},
with an arbitrary number of processes of type U, for i = 1, . . . , m, by
combining the process definitions UI, . . . , Un into one process definition that
makes a nondeterministic choice at its initial state, and then acts like one of the
~.. Since we are not considering fairness in the second model of processes, we
do not have to modify the algorithm given in Section 4.

The algorithms we have given for the first model have high complexity. For
this reason, the practical applicability of these results has to be further investi-
gated. It may be possible to place sufficient realistic restrictions on systems and
obtain more efficient model-checking algorithms for these problems.

Section 4 considers a model in which all processes have identical definitions
and presents a polynomial time-bounded algorithm for checking the properties
of executions of a process. This result also indicates that having a unique
control process as in the first model makes verification a more difficult
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problem. Although we have given a simple example, the result of the section
seems to be mostly of theoretical interest at this point. Also, the algorithm of

this section does not consider fairness. It is to be noted that the decidability
of the model-checking problem for fair computations for this model follows
by considering it as, a special case of the first model. It will be inter-
esting to investigate if we can do better than this. In particular, it will be
interesting to investigate if there are algorithms for this problem whose time
complexity is polynomial in the size of the process.

It will be interesting to consider other examples that can be verified using
these algorithms. A more general question, for future research, is how to use
the model-checking algorithms to reason about network systems, especially the
liveness properties. It maybe difficult to find completely automated algorithms.
This suggests the approach of combining model checking with an axiom system
to form an automatic proof checker for network systems.

Appendix A

In this appendix, we give a construction of a VASS denoted by the function
VS( %, “i, d), which takes as arguments two process definitions f?=
(Sw, R., IW, ~ti), q[= (S,v, R,l, IV, X.l) and an automaton d= (Q, A,
8, .J, F) where A = 2‘. Roughly speaking, certain infinite paths of

VS( %’, V, d ) simultaneously model the executions of the control process in
systems of processes of the form % x 4’ n and the runs of the automaton .&
on these executions. Let S,ti = { Ul, . . . . u~}. VS( f?, J1, wl ) = (V, E) where
V is the set of nodes and 1? is the set of transitions. V = (S,, x Q) U VI U { SO}
where S ~-x Q, VI, { SO} are mutually disjoint; the elements in S ~ x Q are
called proper states, those in VI are called intermediate states, and so is
called the initial state. Each proper state consists of two components — a state of
the control process and a state of the automaton .ti. The second component is
used to simulate the automaton d on the executions of the control process. The
set of intermediate states is

VI= {(s, i,j), (s, i), (s,0): sisaproper state andl s i, j= m}.

We use the following notation in the remainder of the appendix. For any

proper states s, t where s = (e, q) and t = (f, r), we say that t is a
successor of s if re 6(q, Qt(f)). For any ~, ~’ 6R,fi U R,r where ~ =
(x, y, c) and # = (x’, y’, c’), we say that ~, T’ are complementary process
transitions if c’ = Z. For any m-vector ~, we let ;[ i: = x] denote the vector
whose ith coordinate has value ~ and whose jth coordinate, for any j # i, has
same value as that in ;. We let O denote the m-vector all of whose coordinates
~ave value zero. For any i such that 1 < ~< rn, let DEC 1( i) denote the vector
0[ i: = – 1] and INC1( i) denote the vector O[i: = 1]. Similarly, for any i, j such
that lsi, j~m, let DEC2( i, j), IN~2( i, j) denote m-vectors d~fined
as follows: If i = j, then D~C2(i, j) = O[i:= – 2] and INC2(i, j) ~ O[i:=
2]; otherwise DEC2(i, j) = O[i: = – 1] [j:= – 1] and INC2(i, j) = O[i= 1]
[j:= 1].

A configuration (s, ~) of VS( f?, %, d ) is called a proper configuration or
an intermediate configuration if s is+a proper state or is an intermediate state

respectively. The configuration (SO, O) is called the initial configuration.
Intuitively, each proper configuration of VS( %, %, .ti ) represents some global
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states of a system %’x ‘2” for some n 20 and a state of the automaton @.
The proper configuration c = ( S,;) where s = (e. q) represents a global state
o if the state of the control process in a is e and there are ~[ i] processes in the
user state u, in a.

We now discuss how the transitions of VS( %, 42, d ) are defined. Each
possible communication between processes and each internal transition of
processes is modeled by some of transitions of VS( %’, ‘1, JT1). First, we
consider the transitions that are used to model communication between the
control process and a user process; the other cases are similar. Suppose
(e, f, c) eR,7 and (u,, u,, 2) c R ~ are two process transitions. This pair
of process transitions gives a possible communication between the control pro-
cess in state e and a user process in state u,. For every such pair of
process transitions, we define a set of transitions of VS( %, ‘i?, M?). Corre-
sponding to the transitions (e, f, c) e R ~ and (u,, u], Z) e R 1, and for every
pair of proper states S, s’ such that s = (e, q), s’ = (f, r) for some q, r, and
s’ is a successor of s, VS( 6, W, .’d ) has a pair of transitions tl = (s, (s’, j),
DECl(i)) and t2 = ((s’, j), s’, INCl(j)). Intuitively, the transitions tl and t2

work as follows: Suppose that the VASS is at a configuration c = (s, ~) where
s = (e, q). This configuration models the control process as being in state e
and the automaton as being in state q. If ~[ i] > 0, then c also models having a
user process in state u,. In this case, the VASS can use the transition t1 to
reach the intermediate state (s’, j). Note that the vector DEC( i) acts as a guard
to test the condition ~[ i] >0 and to decrement the ith coordinate of the
configuration vector. In state (s’, j), the VASS can use the transition t 2
to reach the proper state s’ which is a successor of ,s. Note that the effect of
the two vectors DEC 1( i) and INC 1( j) is to model the change in the state of a
user process from state Ui to the state u,. Communications between
the user processes are modeled in a similar way.

The overall effect of the construction of VS( %’, 01, .Q?) provides the follow-
ing correspondence: every computational step from a global state o to a global
state o‘ is modeled by a path of VS( ‘i?, ~1, .& ) of the form c, d, c’ where c
and c’ are proper configurations that represent o and o‘, respectively, and d is
an intermediate configuration. This path also models the change in state of the
automaton corresponding to the change in state of the control process. Con-
versely, if c, d, c’ is a path of VS( f?, %, & ) where c is a proper configura-
tion, and u is a any global state that c represents, then there exists a global
state o‘ represented by c’ such that o‘ can be reached from o in one
computational step. From this it can be shown that paths of VS( ‘{, ?/, .w’ )
satisfy the following property. If c = CO,c1, . . . is in infinite sequence of
proper configurations where, for all i z O, c, = (s,, ~i), and S, = ( e,, q,), then
(1) holds iff (2) holds where (1) and (2) are given below. (1) There is a path m
of VS( ‘if, %, .cl ) starting from the initial configuration such that c is the
sequence of all the proper configurations appearing in m. (2) The sequence
e=(eO, el, . . . ) is an execution of the control process, and for some initial
state r. of .ti ro, qo,ql,. . . is a run of & on X,i ( e). This property
of VS( %’, W, .E#) can be proved using the same arguments as in the proof of
Lemma 3.3.

It is to be noted that the transitions t1, t 2, given in the previous para-
graphs, can be replaced by the single transition t = (s,s’,ii),where d =
DECl(i) + INCl(j), when i # j. However, when i = j, this causes
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the following problem. Assume that i = j. In this case, ~ = 6. Now if c =

(s, ~) is a proper configuration, where s = (e, q) and ~[i] = O, then it is
possible to reach the configuration c’ = (s’, ~) from c using the transition t.

However, if a is any global state that c represents, then the communication
corresponding to the process transitions ~, r’ is not possible in o as there is no
process in state Ui in a. As a result, we cannot use the single transition t in
place of t1, t 2 when i = j. For the sake of uniformity and ease of presentation,
in all cases, we use pairs of transitions and intermediate states to model the
computational steps. This does not cause any increase in the asymptotic
complexity of the decision procedures.

In addition to the transitions that model the computational steps,
VS( f?, ‘i, ./) also has other transitions so that a proper configuration that
represents an initial global state can be reached starting from the initial
configuration. In order to define the set of transitions E, we need a subset. ST,
of proper states defined as follows: ST = {(e, q) e 1,, x Q : q e ti(r, 0,,, (e))
for some r e ,1}. Essentially, ST is the set of all pairs (e, q) such that e is an
initial state of & and there is a transition of .& from one of its initial states to
state q on the input ~%( e). Members of ST are the first proper states to occur
on any path of VS( W, &, & ) starting from the initial configuration.

The set of transitions E = U ~~,~~~i where the sets Ei, for 1 s i s 6, are
defined below. The transitions in El, Ez are used to choose a proper configura-
tion that represents an initial global state. The transitions in Eq, El model
communications between processes. The transitions in Es, Ec model internal
moves of processes.

(i) El = {(s., SO,~[i:= 1]) : Uj =11}. Intuitively, for each state U, ~ 1,~,
there is a transition in El to generate an arbitrary number of user
processes starqng in the user state Ui.

(ii) Ez = {(SO, s, O) : s c ST}. These transitions model the move from SOto a
state in ST.

(iii) The transitions in E, model the communication between the control
process and a user process. Let ~ = (e, f, c) e R , and ~’ ~ (u,, Uj, Z) e
R ~ be complementary process transitions. The transitions ~, ~’ represent a
possible communication between the control process and a user process.
Let s = (e, q) and t = (f, r) be any proper states such that t is a
successor of s. Corresponding to s, t,T,T’ as given above, -EA has two
transitions denoted by T 1(s, t,T,T’),T 1’(s, t,T, T’) that are defined below:
Tl(s, t, T, T’) = (s, (t, j), DECl(i)) and T1’(s, t,T, I-’)= ((t,j),

t,INCl(j)). It is to be noted that Tl(s, t,7-,T’),T1’(s, t,T,T’)correctly
reflect the change in the state of the control process and they also change
the number of user processes in a user state appropriately. The transition
Tl(s, t,T,T’) is called a communication transition from the pair of
states (e, Ui), and T1’(s, t,T,T’)is called a communication transition to
the pair of states (f, UJ). Formally, E~ = {Tl(s, t, T, I-’),

T1’(s, t, T, d) : s = (e, q), t = (f, r) are proper states such that t

is a successor of s, and for some c, T == (e, f, c) s R ,&, r’ GR ,,r, are
complementary process transitions}.

(iv) The transitions in 13q model synchronization between the user proces-
ses. For any proper states s, t ~ SK x Q such that t is a successor of s
and the control state component of s and t are identical and for any
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complementary process transitions ~, ~’ c R ~ where 7 = (U,, Uj, c), ~’
= (UP, Ug, 2), E~ has two transitions denoted by T2(,s, t,T, T’),

T2’(s, t,T,T’) that are defined below: T2(s, t,T,T’)= (,s,(t,j, q),
DEC2(i, P)) and T2’(s, t,T,TO = ((t,j,q),t,INC2(j, q)). The transi-
tion T2(s, t, I-, ~’) is called a communication transition from the pair of
states (u,, UP), and the transition T2’( ,s, t, ~, ~’) is called a communica-
tion transition to the pair of states ( Uj, u ~). Formally, E~ = { T2(s,
t,T,T’),T2’(s, t, ~, 79: s, t are proper states, and t is a successor of s,

and the control state component of s and t are identical and ~, I-’ are
complementary process transitions in R ~}.

(v) The transitions in Es model the internal moves of the control process. For
any s, t ● Se. x Q such that t = (f, r) is a successor of s = (e, q)
and (e, ~, e) ~ R&, Es has two transitions denoted by T3(s, t) and

T3’(s. t) where T3(s, t) = (s, (t, O), 6) and T3’(s, t) = ((~, O), t.6).
The transition T3(s, t) is called an internal transition from state e,

and T3’(s, t) is called an internal transition to the state f. Now, Es =

{T3(s, t), T3’(s, t ): s, t are proper states such that t is a successor
of s, and if s = (e, q) and t = (f, r), then (e, f, E) G R8].

(vi) The transitions in Ec model the internal moves of the user processes. For
any proper states s = (e, q) and t = (e, r) where t is a successor of s
and for any ~ = (u,, UJ, e) e R ~, EG has two transitions denoted
by T4(s, t,T), T4’(s, t,T’) that are defined below: T4(s, t,T) =

(s,(t,j),DECl(i)) and T4’(s, t,T) = ((t,j),t,INCl(j)). Formally,
EG = { T4(s, t,T), T4’(s, t,T) :,s,t are proper states having same
control-state component, and where t is a successor of s, and ~ is an
internal process transition in R .Z}.

It is to be noted that there is only one transition frome each of the
intermediate states. The transition from the intermediate state (s, i, j) (respec-
tively, from the intermediate state ( ,s, i)) leads to the proper state s and
increments the i, j components (respectively, increments the ith component) of
the configuration vector. The transition from the intermediate state (S, O) leads
to the proper state ,s and does not alter the configuration vector.

It is also to be noted that for any transition (s, ,s’, ~) of VS( %’, q/, d ), the
absolute value of any coordinate of ; is bounded by 2. It is straightforward to
seethat lVlsl Cl”l.dl”(m2 +m+2)+l.

Appendix B

In this appendix, we prove Lemma 3.5 using the results of [24] and [26]. We
cannot directly use the results of these papers, because what we need is slightly
different from what has been proved there. We reprove some of the results with
the modifications. Consider a VASS G. Let the number of states of G be
p, the number of transitions be n, and the dimension of G be m, that is,
each vector in a transition of G be an m-vector. We also assume that
for each transition (S, s’, 2) of G, the absolute value of each component of ii is
bounded by L. A u-configuration (unconstrained configuration) is a pair
(s, ~) where s is a state of G and ~ E Zm. Notice that in a u-configuration the
components of the vector ii can be negative. An unconstrained path or u-path
is a sequence of u-configurations co, . . . , Ct where for all j < i, Cj+ ~ can be
reached from Cj by a transition of G. Let F be a set of designated states of
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G called the final states. For any u-configuration c = (S, d), we let

state(c), vec( c) respectively denote the state s and the vector ~. As in
Section 3, for any transition t = (s, s’, d), we let source(t), target(t), and
vec( t) respectively denote the states s and s’ and the vector ~.

We use the following definitions more or less taken from [24] and [26].
For O < i < m, we say that a vector ~ is i-bounded if ii[j] >0 for all j
such that 1 < j < i, that is, all the first i components are nonnegative. Notice
that by definition every vector is O-bounded. If r is any positive integer, then ~
isi - r bounded if it is i-bounded and in addition 2[ j] < r for 1 < j s i,
that is, all the first i components are nonnegative and are bounded by r. Let
co, ..., Ck be a u-path of G where Cj = ( Sj, dj) for O s j < k. We say that
the above u-path is i-bounded if for all j such that O s j s k, ~j is i-bounded.
Itisi - r bounded if ~j is i - r bounded for all j such that O < j s k. Notice
that by definition, every u-path is O-bounded. For two m-vectors ~, ~,
we say that ; s ~ if for all i such that 1 < i s m Z![i] < ~[i]. We say that
~ < ~, if ~ < ~ and in addition for some i, i?[i] < ~[i]. Let c = (s, ~),
d = (s’, ~) be two u-configurations. We say that c s d if s = s’ and Z s ~.
We say that c < d if c < d and in addition ~ < ~. A u-path CO,. . . . C~ of

G is said to be a self-covering u-path if there exists an i < k such that
Ci 5 c~. It is said to be a self-covering u-path with a final state if there
exist i and j such that i s j s k, i < k, Ci < c~, and Cj is a final configura-
tion, that is, state( CY)c F. Let c be a u-configuration. For O s i s m, define
f ( i, c) as follows: If there exists an i-bounded self-covering u-path with a final
state starting from c, then f ( i, c) is the length of the shortest such u-path;
otherwise, f ( i, c) is O. Let g(i) = max{ f ( i, c) : c is a u-configuration of G}.
We prove that g(i) exists and is bounded. In [24] and [26], only self-covering
paths are considered, whereas we are interested in self-covering paths with a
final state. For this reason, we cannot directly use the results of [24] and [26],
and we have to reprove them for the case of a self-covering path with a final
state. The lemmas and proofs we present here are very similar to the lemmas
and proofs given in [26].

LEMMA B 1. g(0) = 0({2JZ “ (m + n + p)}~’~) for some constant d.

PROOF . We show that given any O-bounded self-covering u-path with a
final state starting from a u-configuration co, we can get another such u-path of
length 0({2L “ (m + n +p)}~”~). Let CO,. . . . Ci, . . . . ci+k be a O-bounded
self-covering u-path with a final state where ci s Ci+ ~. We can assume that
i s p for the following reason (remember that p is the number of states in G).
If i > p, then there have to be two integers u, w such that O < u < w and
state( CU) = state( CW), and in this case, we can take the u-path co, c1, . . . , Cu
and from CU onwards apply the sequence of transitions that were used in the
u-path from CW to Ci+ ~ and obtain a shorter O-bounded self-covering u-path.

By doing the above reduction repeatedly, we can get a O-bounded self-covering
u-path with a final state that satisfies the above property. Hence, we assume
without loss of generality that i s p. Now, it is enough if we show that there is
a u-path eo, . . . , ek of length 0({2L - (m + n +p)}~”~) Such that e. = ci,
e. s ek and some final configuration appears in this u-path. We prove this as
follows:

Let S be the set of states of G appearing in some u-configuration from c, to
C,+k, that is, S = { state(cj) : i < j < (i + k)}. Note that S contains at least
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one final state. For any transition t of G, let q~ be the number of times the
transition t is taken from c, to Ci+ ~ in the above u-path. The variables qt
satisfy the following inequalities.

These inequalities are a consequence of the fact that vec( Ci) s vec( Ci+ ~). For
each j such that 1 < j s m,

(sum of vet(t) [j] . q, over all transitions t of G) >0.

The following equations hold due to the fact the state(ci) = state( cl+~). They
assert that for any state ,sc S, the number of times state ,s is entered is equal to
the number of times state ,s is exited and that state s is entered at least once.
For each state s g S,

(sum of all q, such that source(t) = s)

- (sum of all q, such that target(t) = S) = O;

(sum of all q, such that target(t) = s) >1.

The following equations assert that every state not in S is never entered or
exited. For each state s #S,

(sum of all qf such that source(t) = s) = O;

(sum of all q, such that target(t) = s) = O.

Now consider any positive integer solution for the above set of inequalities,
and let eO = Ci. Clearly, state( eO) = S. It should be easy to construct a u-path
co, ..., e~ such that each transition t is taken exactly qr number of times and
such that e. < efi. It should be clear that for every state s = S, there exists

~ s h such that s = state( e~). Hence, a final u-configuration appears in the
above u-path. Since p, m, and n, respectively, are the number of states in G,
the dimension of G, and the number of transitions in G, it follows that the
number of inequalities in the above system is at most 2( p + n-z),

the number of variables is n, and the maximum absolute value of any constant
is L. Theorem 13.4 and the associated corollary in [21] states that if a system
consisting of u inequalities in u number of variables has a positive integer
solution, then it has positive integer solution in which the value of any variable
is bounded by (u + U) “ (1 + c~,X) “ (u o c~~Y)2U+3, where c~~X is the maxi-
mum absolute value of any constant appearing in the inequalities. Using this
result, we see that there exists a solution for our system of inequalities in which
the value of

q, = q~ “ (n + m +p) - {2L . (~ +P)}’”’’”’+J’’+’)

for some constant c. Clearly, g(0) < p + sum of all g,. Using this and
the fact that 2 c “ ( m + p) + 3 < d “ ( m + p) where d is an appropriate
constant, we see that

g(o) = O(n “L - (n +m +p) - {2L “ (m +p)}~”(~+P)).
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Now, it should be clear that

g(0) = 0({2L “ (m + n +p))~”(n’+p)),

where d is some other constant. 0

The following lemma can be proved exactly on the same lines of Lemma 2.2
of [26], and hence the proof is omitted.

LEMMA B2. If there exists an i - r bounded self-covering u-path with a
final state starting from the u-configuration c then there exists such
a u-path starting from c and is of length < (2 “ L . p “ r) ‘k for some
constant k.

The following lemma is also proved exactly on the same lines of Lemma 2.4
of [26].

LEMMA B3. g(i + 1) < (2 oLz “ p “ g(i))m’ for some constant d.

PROOF. Consider an (i + I)-bounded u-configuration co such that there is
an ( i + 1)-bounded self-covering u-path with a final state c = CO,. . . ,
c . . . . c,+ ~ such that ci s Ci+~. We want to show that we can get a shorter
s;ch path. The proof is split into the following two cases.

Case 1. The u-path c is (i + 1) - (L og(i)) bounded. In this case, using
Lemma B2 with r = L “ g(i), we can get an (i + 1)-bounded self-covering
u-path with a final state starting from co and which is of length 0((2 oL~ op “
g(i)) m’).

Case 2. Case 1 does not hold. Let j be the smallest integer such that for
some q < (i + 1), vec(c~)[q] > L “ g(i), that is, the qth coordinate of vec(cJ)
is greater than L “ g ( i). Without loss of generality, we can assume that
q = i + 1. Now consider the u-path CO,cl, . . . . cJ_ ~, CJ. For all x, y such
that O<x <j, 1< y < i + 1, vec(cx)[y] s L “ g(i). Now, if U, w are
integers such that O < u < w < j and state( CU) = state( CW)and vec( CU), vec( CW)
agree on the first i + 1 coordinates, then we take the u-path Co, C1, . . . , C“ and
extend it by applying the sequence of transitions used in the u-path
c Cw+l, ..., Cj and obtain a shorter path that maintains all the required
p~~perties. By repeatedly doing the above reduction, we can obtain a u-path
e=eo, el, ..., eU of length s p “ (L “ g(i))’+l such that e. = co, all the
u-configurations excepting eU are (i + 1) – (L “ g(i)) bounded, and such that
state( eU) = state( Cj), vec( eU) and vec( Cj) agree on the first i + 1 components.
Since vec(cj)[i + 1] > L “ g(i), it is also the case that vec(e.)[i + 1] > L -
g(i). Now, for all j such that O s j < (i + k), there exists an i-bounded
self-covering u-path with a final state starting from Cj. (This can be seen as
follows: For any j such that O s j < i, the suffix of c starting from CJ gives us
such a u-path. For any j such that i < j s ( i + k), we can obtain an
i-bounded self-covering u-path with a final state starting from Cj by taking the
suffix of c starting from Cj and extending it by using the sequence of transitions
taken from Ci to Ci+ ~.) From this, it follows that there exists an i-bounded
self-covering u-path with a final state starting from e“, and hence there exists
such a u-path e’ starting from eu which is of length < g ( i). Clearly, for every
u-configuration f in e’, the value of the ( i + 1)st coordinate in vec( ~) never
goes below – L c g(i). Now consider the u-path ee’ (i.e., the u-path e
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followed by the u-path e’). It should be clear that this is an (i + I)-bounded
self-covering u-path with a final state and is ~f length s p “ (L c g(i))’+ 1 +
g(i) and hence is less than (2 oLz “ p “ g(i)) ‘n for some constant d. ❑

Now applying Lemma B3 repeatedly, we can show that

g(m) = 0((2” L2”p)~’m”g(0)~Lm)

for some constant k. Using Lemma B 1 and substituting for g(0), we get

g(m) = 0((2 “L’ “p)n’m o {2L o (WZ + n +p)}c”(p+~)”ncm)

for some constant c. After some simplification, we can show that

g(m) = O({2L - (m +P + n)}c’(P+m)’nzcm]

where c is some other constant.

PROOF OF LEMMA 3.5. Now consider the VASS G as given in Section 3.
From the definition of G, it is easy to see that it satisfies the following
properties: If c, c’ are proper configurations appearing in a path of G then
weight(c) = weight( c’). If c, c’ are intermediate configurations appearing in a
path of G and state(c) = state( c’) then weight(c) = weight( c’). Now, let
~=co, c,, . . .. cl>...> c1+~ be a u-path of G such that CO is the initial
configuration, Ci s Ci+ ~ and a final configuration appears between c, and cl+ ~.
Since c1 s c1+~, it is the case that state( cl) = state( c, +~). Since a final
configuration of G is a proper configuration, it follows from (a) of Lemma 3.1
that c,+ ~ is a proper configuration or is an intermediate configuration. From
our previous observations, it can be seen that c1 = c,+ ~. From this we see that
if r is an m-bounded self-covering u-path of G that starts with an initial
configuration, then m = CY13 for some finite paths a and ~ that satisfy condi-
tions (a), (b), and (c) of Lemma 3.4. From this, we see that for a finite path m
of G, there exist CY,6 that satisfy conditions (a), (b), and (c) of Lemma 3.4 and
such that m = a (3 iff x is an m-bounded self-covering u-path with a final state
that starts from the initial configuration. Now for the VASS G, L is at most 2.
Substituting this value for L, the following is easily seen. There exists a finite
path a (? where CY,(3 satisfy the conditions (a), (b), and (c) of Lemma 3.4 iff
there exists such a path of length

g(m) = 0({2 “ (m +p + n)}c”(~+m)”nz’m),

where c is some constant.
The number n which is the number of transitions in G is 0( p2 o nz4). This

can be seen as follows: For any transition t in G, there are at most two
components in vec( t);that are nonzero and the absolute value of each of them
is bounded by 2, and the states source(t), target(t) can be any of the p states of
G. From this it follows that n is 0( p’ “ nz4) and hence is O((p “ nz)q). From
this, it is easy to see that (m + n + p) = 0(( Prn)q). Using this, we get

g(m) = o((2pm)c”fJ’+m’) ”’ncmj,

where c is some other constant. Writing the above expression in a different
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way, we get

g(m) = O(zc”(P+m)” 10g(p+m).2c m lg(n~) .

By simplifying and using a different constant c, it can be shown that

g(m) = 0(2c”p”10g(p)”2c m‘“’(m’).

Lemma 3.5 follows from this. ❑

Appendix C

For a VASS G and configurations c, c’ of G, we write G : c * c’ to indi-
cate that the configuration c’ is reachable from the configuration c in G. If
d is an m-vector of natural numbers, then let us define an atomic condition
on d to be a predicate of one of the forms ~i] = O, Z?[i] = 1, ~[i] >0, or
~[ i] = ;[ j]. We define a positive condition on d to be a formula formed
from atomic conditions and the propositional connective A, V . We say that a
configuration (s, Z) satisfies a positive condition iff ~ satisfies the condition.

LEMMA C 1. Given a VASS G, a configuration c, and a positive condi-
tion f, it is decidable whether there exists a configuration c’ such that
G : c * c’, and c’ satisfies f.

PROOF. The problem can be reduced to the reachability problem for a
VASS. That is, for each VASS G and positive condition F, we show how to
construct a VASS G’ with a fixed configuration cfi.~l such that G’: c = Cfi.,l iff
for some configuration c’ satisfying f, G : c = c’.

We begin by defining fo~ each atomic condition ac, a VASS GaC such that
Gac: (init ~C,~) + (final .C, O), iff d satisfies the condition ac. The states init ~C
(resp., finalaC) are the initial (resp., final) states of GaC.

In order to describe the VASSes, we use a simple programming notation,
which is most easily explained by example. We write

s1:6[i:= –1]+s2

to indicate that in state SI, there is one transition, which has a vector that
subtracts 1 from 2[ i], and then enters state Sz. We write

sl:~[i:= –l, j:= –1]-s2

to indicate that the transition from SI to Sz subtracts 1 from ;[ i] and ~[ j]
(i # j). We use the operator OR between descriptions of t~ansitions to indicate
that a state has more thag one transition, and we write O ~ SI to indicate a
transition with the vector O. For example,

sl:d[i:= –l]-+sz ORsl:d~sq

indicatqs that there are two transitions from s,, the second of which has the
vector O. Finally, we describe sets of transitions from a state by introducing a
quantified variable, for instance

Sl:koklyc= –1] ++
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means that for each value of k from 1 to the dimension of G, except for i,
there is a transition that subtracts 1 from iii[ k ] and enters SZ.

We can now describe the VASSes GaC. For instance, to check the condition
ii[ i] = O, the VASS G;,,1 =~ repeatedly subtracts 1 from all vector components
other t~an 2[ i]. The condition d[ i] = O is true if the VASS can reach the
vector O. The transitions for Ga,, where ac is the condition d[ i] = O are

init *C : Z + finalaC

final ~C: OR ~[k:= – 1] s finaldC.
k k#i

For the condition ac = ti[ i] = 1, the transitions of Gcc are

init UC: ~[i := – 1] ~ finalaC

final ~C: OR ~[k:= –1] ~ finalaC.
kk+z

For the condition ac - ii[ i] >0, the transitions of GaC are

init ~, :G[i:= –1] - finalaC

finalaC : ORd[k := –1] ~ finalaC.
k

For the condition ac = ~[ i] = ~[j], i #j, the transitions of G~c are

init ~C: 6[i:= –l, j:= –1] + inita, OR initaC:6 s finalaC

final ~, : OR ~[k:= –1] - finalac.
k:k+i, j

For the next step of the construction, we introduce a composition operation
for forming VASSes. If GI and Gz are any two VASSes, then let G’ =

(G,; G,) denote the “sequential composition” of G ~ and Gz. This is formed
by first renaming the states of GQ to new names, distinct from G,. Let Gz be a
VASS similar to Gz, except ~or this renaming. Then the set of states of G’
is the union of states of GI, Gz. The set of transitions of G’ is the union of
the transitions of G1, ~z, t~gether with new transitions from each final state
of G, to the initial state of Gz, labeled with the vector O. The initial st~te of G’
is the initial state of G ~; the final states of G’ are the final states of Gz.

Now, if f is an atomic condition, then the VAS> G’ = (G; Gf ) with final
state final ~ has the property that G’ : c + (final ~,, O) iff for some c’ satisfying
f, G:c *c’.

If f is a positive condition but not atomic, then we first put it into disjunctive
normal form fl V c c “ v fk, where each f, is a conjunction of atomic condi-
tions. Then, we check whether there exists an f, such that there is a path from
configuration c to some configuration c’ satisfying f j. This determines whether
there is path in G from c to some configuration satisfying f.

It remains to show how we check whether there is a path to a configuration
that satisfies a conjunction of atomic conditions. The basic idea is that if there
are n atomic conditions in the conjunction, then we modify G so that it makes
n copies of each vector component in its configurations. Then for each atomic
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condition, we use a VASS that sets one copy of the vector components to d if
the condition is satisfied. We now make this precise.

If ~ is an m-vector of natural numbers, then let us define n “ d to be an
n o m vector such that the first n elements are equal to ~[ 1], the second n
elements are equal to ti[2], etc. Similarly, if c = (s, ;) is a configuration, then
let n . c denote the configuration (s, n “ ii). It is clear that for any n > 1 and
VASSG, wecanforma VASSn “Gsuchthat G:cac’iffn. G :n.c-
n . c’.

Now, given a positive condition f which is a conjunction of atomic condi-
tions, we show how to construct a VASS G’ with the following properties:

(1) G’ has the form (n “ G; G~), where Gy is a VASS depending on f.
(2) There is a confi~uration c’ such that G : c + c’ and c’ satisfies f iff G’:

n Qc - (final~r, O).

We construct G’ by induction on the structure of f. For the base case, when
f is an atomic condition, we have already given a construction of G’ satisfying
properties (1) and (2).

For the induction step, assume f has the form f, A f2. By the inductive
hypothesis, there are VASSes of the form ( nl “ G; G~,) and ( nz “ G; Gy,),

which satisfy property (2) for f ~, f2, respectively. Then, we form the VASS
G’ = ((rzl + n2) “ Gl; (Gj,; G;,)). Here, Gjl is a VASS with the same states as
GJ, and which operates on vectors that have n ~ + nz copies of each vector
component of G. Note that Gf, operates on n ~ copies of the vector components
of G. The VASS G;, updates the first n ~ copies of each component of the
vectors of G in the same way that Gf, does, and leaves the other components
unchanged. Similarly, G;, updates the last nz copies of each component of the
vectors of G in the same-way that Gfl does, and leaves the others unchanged.
Thus, G’ has the property that G : c ~ c’ for some c’ satisfying f iff

G’: (nl + nz) o c = (final~,, 6), as required. ❑
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