
Journal of Algorithms 45 (2002) 16–39

www.academicpress.com

Fast deterministic consensus in a noisy
environment

James Aspnes1

Yale University, Department of Computer Science, 51 Prospect Street, PO Box 208285,
New Haven, CT 06520-8285, USA

Received 13 June 2000

Abstract

It is well known that the consensus problem cannot be solved deterministically in an
asynchronous environment, but that randomized solutions are possible. We propose a new
model, callednoisy scheduling, in which an adversarial schedule is perturbed randomly,
and show that in this model randomness in the environment can substitute for randomness
in the algorithm. In particular, we show that a simplified,deterministicversion of Chandra’s
wait-free shared-memory consensus algorithm [Chandra, in: Proceedings of the Fifteenth
Annual ACM Symposium on Principles of Distributed Computing, Philadelphia, PA, USA,
23–26 May, 1996, pp. 166–175] solves consensus in time at most logarithmic in the number
of active processes. The proof of termination is based on showing that a race between
independent delayed renewal processes produces a winner quickly. In addition, we show
that the protocol finishes in constant time using quantum and priority-based scheduling on
a uniprocessor, suggesting that it is robust against the choice of model over a wide range.
 2002 Elsevier Science (USA). All rights reserved.

Keywords:Consensus; Agreement protocols; Randomized algorithms; Distributed computing;
Wait-free; Shared memory; Perturbation analysis; Noisy scheduling

E-mail address:aspnes@cs.yale.edu.
1 This work was supported in part by NSF grants CCR-9820888 and CCR-0098078.

0196-6774/02/$ – see front matter 2002 Elsevier Science (USA). All rights reserved.
PII: S0196-6774(02)00220-1

J. Aspnes / Journal of Algorithms 45 (2002) 16–39 17

1. Introduction

Perhaps the single most dramatic result in the theory of distributed computing
is Fischer, Lynch, and Paterson’s proof of the impossibility of deterministic
consensus in an asynchronous environment with failures [22]. This result and
its extensions [20,27] show that the consensus problem, in which a group of
processes must collectively agree on a bit, cannot be solved deterministically
in an asynchronous message-passing or shared-memory model if an unrestricted
adversary controls scheduling. Solutions to the shared-memory version of this
fundamental problem have thus taken the approach of restricting the adversary,
either by allowing randomization that limits the adversary’s knowledge [1,6,8,
10,12,13,15–17,30] or by imposing timing constraints that limit the adversary’s
control [3,20,21]. As a corollary to granting less power to the adversary, these
solutions often involve granting more power to the algorithm, in the form of the
ability to obtain random bits or explicitly delay steps. By using these additional
powers an algorithm can escape the FLP bound and reach agreement.

These additional powers come at a cost. Randomization alone is not powerful
enough to allow sublinear consensus protocols [7], so efficient randomized
solutions have required additional constraints on the ability of the adversary to
observe the arguments to operations and the contents of unread memory locations
[12,13,16]. These algorithms carefully manage common pools of unread random
bits for future use, a clever but odd-looking practice that is justified primarily
by the specific details of the model. The delay-based algorithm of [3] is less
convoluted, but still depends on using explicit delays that at the minimum require
that a process has the power to invoke them and at worst may add unnecessary
delay when few processes participate.

As an alternative to designing an algorithm specifically to exploit the
weaknesses of a particular adversary model, we consider the approach of
using a simple algorithm that guarantees agreement but relies on good luck to
terminate. OurLEAN-CONSENSUSalgorithm, described in Section 4, is obtained
by removing all of the randomized parts of a similar algorithm due to Chandra
[16]. The essential idea (which is the core of many consensus protocols in the
literature) is to stage a race between those processes that prefer 0 and those that
prefer 1, with the rule that if a slow process sees that faster processes are all
in agreement it adopts their common preference. The race is implemented using
two arrays of atomic read/write bits. The algorithm terminates when the fastest
processes are all in agreement and can decide on their preferred value safely,
knowing that other processes will adopt the same preference before they catch up.
As shown in Section 5, this mechanism is enough to ensure that if any one process
decides then all other processes soon decide on the same value, no matter how the
adversary arranges the schedule.

In effect, the race framework allows the processes to detect agreement once
it occurs. But unlike other consensus algorithms,LEAN-CONSENSUSmakes no

18 J. Aspnes / Journal of Algorithms 45 (2002) 16–39

attempt to cajole the processes into reaching agreement—it relies entirely on the
hope that some process eventually pulls ahead of the others. In order to dash
this hope, the adversary must exercise enough control to ensure that the fastest
processes run in lockstep. We believe that in many natural system models it will
be difficult for the adversary to exercise this much control.

One such model is what we call thenoisy schedulingmodel, described in
Section 3.1. In this model, the adversary proposes a schedule that specifies the
order in which read and write operations occur, but this schedule is perturbed by
random noise drawn from some arbitrary non-constant distribution. This noise
corresponds to random factors in a system that might not be strongly correlated
with the algorithm’s behavior, such as network delays, clock skew, or bus or
memory contention.

We show in Section 6 that, in the noisy scheduling model,LEAN-CONSENSUS

terminates with expectedΘ(logn) work per process, wheren is the number of
active processes. This result is distribution-independent, in the sense that the
algorithm’s asymptotic performance does not depend on the noise distribution
in the model (though the constant factor does), and it holds even if processes are
subject to random halting failures. Because the algorithm’s performance depends
only on the number of processes actually executing the protocol and not on the
total number of processes in the system, it isadaptivein the sense of [11], which
implies it is fast in the sense of [2,26]. Thus it is well-suited to situations where
only one or a few processes attempt to run the algorithm at the same time.

Our noisy scheduling model is similar to the model used by Gafni and Mitzen-
macher [23] in their analysis of mutual exclusion protocols with random timing,
but is extended to include constant delays inserted by the adversary in addition to
random delays. Another source of inspiration is Koutsoupias and Papadimitriou’s
diffuse adversary[25], which chooses a distribution over executions in which no
branch at any decision point can occur with probability more than some fixedε.
Our model is not the first in which an adversary chooses parameters for a stochas-
tic process that then controls scheduling; a sophisticated model of this type, based
on asynchronous PRAMs, has been proposed by Cole and Zajicek [19].

To give support to our intuition that many possible restrictions on the adversary
makeLEAN-CONSENSUSwork, we also consider what happens with a hybrid
quantum and priority-based scheduler on a uniprocessor, following the approach
of [5]. (The details of this model, which subsumes both quantum scheduling and
priority-based scheduling, are sketched in Section 3.2.) We show in Section 7
thatLEAN-CONSENSUSterminates inO(1) steps in the hybrid-scheduling model,
as long as the quantum is at least 8. The restriction to a uniprocessor is
necessary because [5] shows that no deterministic algorithm can solve consensus
with multiple processors, even with hybrid scheduling, without using stronger
primitives than atomic read/write registers.

Our basic consensus algorithm requires infinitely long arrays. Obviously this
is undesirable in a real system. In order to bound the required space, we adopt a

J. Aspnes / Journal of Algorithms 45 (2002) 16–39 19

technique from [16] and cut off the algorithm after consumingO(log2n) bits of
space, using the preference each undecided process has at that point as input to
a more expensive, bounded-memory consensus algorithm satisfying the validity
property.2 Since the more expensive algorithm is only run with low probability,
its higher costs do not increase the expected time for the algorithm as a whole by
more than a small constant factor. Details are given in Section 8.

Section 9 describes some simulation results that show that the constant
factors in the noisy scheduling analysis are in fact quite small for plausible
noise distributions, suggesting that the good theoretical performance ofLEAN-
CONSENSUSmight actually translate into fast execution in a real system.

In Section 10, we suggest a number of directions in which the current work
could be extended, including extensions to the noisy scheduling model. One
interesting possibility is the inclusion of adaptive crash failures. We argue briefly
that becauseLEAN-CONSENSUSrecovers quickly from such failures, it terminates
in at mostO(f logn) work per process even if up tof processes fail. However,
there remains an interesting open question whether noisy scheduling is enough to
getO(logn) performance even withΘ(n) crash failures.

2. The consensus problem

In the binary consensus problem, a group ofn processes, possibly subject
to halting failures, must agree on a bit.3 A consensus protocolis a distributed
algorithm in which each non-faulty process starts with an input bit and eventually
terminates by deciding on an output bit. It must satisfy the following three
conditions with probability 1:

Agreement.All non-faulty processes decide on the same bit.
Termination. All non-faulty processes finish the protocol in a finite number of

steps.
Validity. If all processes start with the same input bit, all non-faulty processes

decide on that bit.4

2 An early example of this approach is found in the bounded-rounds randomized Byzantine
agreement protocol of Goldreich and Petrank [24], which switches from a randomized to a
deterministic protocol if the randomized protocol does not terminate quickly enough.

3 Some authors consider the stronger problem ofid consensus, in which the decision value is the id
of some active process. In many cases, id consensus can be solved in a natural way using a(lgn)-depth
tree of binary consensus protocols; examples of this approach can be found in [12,16].

4 Some definitions of consensus replace the validity condition with a weakernon-triviality
condition that says that there must exist executions in which different decision values occur.

20 J. Aspnes / Journal of Algorithms 45 (2002) 16–39

3. Model

We assume a shared-memory system consisting of an unbounded number of
processes that communicate only through shared atomic read/write registers. We
use the usual interleaving model, in which operations are assumed to occur in a
sequenceπ1,π2, . . . , and in which each read operation returns the value of the
last previous write to the same location. The order in which operations occur
is determined by a stochastic process that is partially under the control of an
adversary (Section 3.1), or directly by the adversary subject to certain regularity
constraints (Section 3.2).

3.1. Noisy scheduling

In the noisy schedulingmodel, we assume that the adversary specifies when
operations occur (subject to an upper bound on the time between successive op-
erations by the same process), but that this specification is perturbed by random
noise.

Formally, the adversary chooses:

(1) an arbitrary starting time∆i0 for each processpi ,
(2) a non-negative delay∆ij between processpi ’s (j − 1)th andj th operations,

bounded by some fixed constantM, and
(3) a fixed common distributionFπ of the random delay added to each type of

operationπ (e.g., read or write). If processpi ’s j th operation is of typeπ ,
it suffers an additional delayXij whose distribution isFπ . There is no
restriction on the choice of theFπ , except that they must not be concentrated
on a point and must produce only non-negative valuesXij .5

The time of processpi ’s j th operation is given by

Sij =∆i0 +
j∑

k=1

(∆ik +Xik).

Since we are using interleaving semantics, the effect of executing two opera-
tions at exactly the same time is not well-defined. To avoid ill-defined executions,
we impose the additional technical constraint on the adversary’s choices that the
probability that any two operations occur simultaneously must be zero. This is au-
tomatic if, for example, the noise distributionsFπ are continuous. Alternatively,
it can be arranged by dithering the starting times of each process by some small
epsilon. This technical constraint does not qualitatively change our results.

5 In fact, theFπ distributions can be quite bizarre; it is not required, for example, that theXij have
finite expectation.

J. Aspnes / Journal of Algorithms 45 (2002) 16–39 21

Below we discuss the unfairness of noisy scheduling and extensions to allow
random failures.

3.1.1. Unfairness
The upper bound on the∆ij and the common distribution on theXij might

suggest that the noisy scheduling model produces fair schedules. This is not
entirely true for sufficiently pathological distributions.

Theorem 1. There exists a choice ofFπ and ∆ij such that for any distinct
processespi and pi′ , and any operationj , the expected number of operations
pi′ completes betweenpi ’s j th and(j + 1)th operations is infinite.

Proof. Set eachFπ so thatXij takes on the value 2k
2

with probability 2−k for
k = 1,2, For simplicity, let us suppose that∆ij = 0 for j > 0. We will also
assume thatA andB execute no operations before time 0.

Let X be the number of operations completed bypi′ betweenSij andSi,j+1.
We will show that the expectation ofX is infinite conditioned on the value of
t = �Sij � (the ceiling is so that we have countably many cases).

The idea is this: for eachk we have probability 2−k thatSi,j+1 � Xi,j+1 = 2k
2
.

Condition on this event occurring for some particulark and consider how many
operationspi′ must execute to reach time 2k2

. Either

(a) one of these operations takes time 2k2
or more (with probability 2−k+1 per

operation); or
(b) a total of at least 22k−1 faster operations, each of which takes at most 2(k−1)2

time, must occur.

If we wait only for event (a), we expect to see 2k−1 operations; to get the actual
expected number, we must subtract off the expected number of operations until (a)
occurs after (b) occurs (2k−1 again) multiplied by the probability that (b) occurs.
This latter probability is at most(1 − 1/2k−1)2k−1, which goes to e−2 in the
limit as k grows; it follows thatpi′ executesΩ(2k) operations on average before
time 2k

2
. Of these, at mostt/2 can occur before timeSij , so if k � lg t , we have

Ω(2k) operations on average betweent and 2k
2
, and thus also betweenSij and

Si,j+1, sinceSij � t < 2k
2 � Si,j+1.

To get the full result, we must remove two layers of conditioning. First compute
the expectation conditioned only ont by summing 2−kΩ(2k) for each of the
infinitely many sufficiently largek. It is not difficult to see that this sum diverges
and the expectation is infinite. Summing over all values oft does not make it any
less infinite, and we are done.✷

22 J. Aspnes / Journal of Algorithms 45 (2002) 16–39

3.1.2. Failures
We can extend the noisy scheduling model to allow halting failures. For each

i and eachj > 0 let Hij = ∞ if processpi halts before itsj th operation and 0
otherwise. Define

S′
ij =∆i0 +

j∑
k=1

(∆ik +Xik +Hik),

with the usual convention for the extended real line thatx +∞ = ∞+ x = ∞ for
any finitex. If S′

ij = ∞, pi ’s j th operation does not occur.
We do not include failures in the noise distributionsFπ because these distrib-

utions do not depend onn, and a constant probability of failure would mean that
all processes die afterO(logn) steps. Instead, we assume that failures occur inde-
pendently with probabilityh(n) per operation, whereh is some function chosen
by the adversary. The effect of stronger failure models is discussed in Section 10.

3.2. Quantum and priority-based scheduling

Our intuition is thatLEAN-CONSENSUSshould perform well in any setting
that prevents lockstep executions. One such setting is the hybrid-scheduled
uniprocessor model of [5], which combines the priority-based scheduling model
of [29] with the quantum-based scheduling model of [4]. In this model, processes
are assumed to be time-sharing a uniprocessor under the control of a pre-emptive
scheduler. Each process has a priority, and a process may be pre-empted at any
time by a process of higher priority. A process may only be pre-empted by a
process of the same priority if it has exhausted itsquantum, a minimum number
of operations it must complete between the time it wakes up and the time at which
it becomes vulnerable to pre-emption. There is no requirement that a process start
the protocol at the beginning of a quantum; it may have used up some or all of its
quantum performing other work before starting the protocol. We do not consider
failures in the hybrid-scheduling model; instead, a process may be arbitrarily
delayed subject to the constraints on the scheduler.

4. The LEAN-CONSENSUS algorithm

In this section, we describe theLEAN-CONSENSUSalgorithm. The algorithm
is very simple, because we are relying on randomness in the environment
to guarantee termination and thus the algorithm itself must only guarantee
correctness and provide the opportunity for the underlying system to quickly
jostle it into a decision state. Structurally, it is essentially identical to the multi-
writer register consensus protocol of Chandra [16] with the shared coins removed,
leaving only the implementation from multi-writer bits of the “racing counters”
technique that has been used in many shared-memory consensus protocols. It

J. Aspnes / Journal of Algorithms 45 (2002) 16–39 23

also bears some similarities to the Time-Adaptive Consensus algorithm of Alur
et al. [3] with the delays removed.

At each step of the algorithm, each processpreferseither 0 or 1 as its decision
value. The conflict between the 0-preferring processes and the 1-preferring
processes is settled by a race implemented using two arraysa0 anda1 of atomic
read/write bits, each initialized to zero. Each process carries out a sequence
of rounds, each consisting of a fixed sequence of operations. During roundr,
a process that prefersb marks locationab[r] with a one and looks to see if either

(a) it has fallen behind its rivals who prefer(1− b), in which case it abandons its
former preference and joins the winning team, or

(b) it and its fellows have sped far enough ahead of any rival processes that they
can safely decideb knowing that those rivals will give up and join theb team
before they catch up.

The algorithm finishes fastest when the pack of processes disperses quickly, so
that a clear winner emerges as early as possible.

Let us look more closely at the details of the algorithm. A process with inputb

sets its preferencep to b and its round numberr to 1. (We say that a process is
at roundr if its round number is set tor; processes thus start at round 1.) It then
repeatedly executes the following sequence of steps. To simplify the description
of the algorithm, we assume that whilea0 anda1 are initialized to zeroes, they
are prefixed with (effectively read-only) locationsa0[0] anda1[0], both set to 1.

(1) Reada0[r] anda1[r]. If for someb, ab[r] is 1 anda1−b[r] is 0, setp to b.
(2) Write 1 toap[r].
(3) Reada1−p[r − 1]. If this value is 0, decidep and exit.
(4) Otherwise, setr to r + 1 and repeat.

Note that in each round the process carries out exactly four operations in the
same sequence: two reads, a write, and another read. It is tempting to optimize the
algorithm by eliminating the write when it is already evident from the previous
step thatap[r] is set or eliminating the last read when it can be deduced from the
value ofa1−p[r] thata1−p[r − 1] is set. However, this optimization reduces the
work done by slow processes (whom we’d like to have fall still further behind)
while maintaining the same per-round cost for fast processes (whom we’d like to
have pull ahead). So we must paradoxically carry out operations that might appear
to be superfluous in order to minimize the actual total cost.

5. Agreement and validity

If we ignore the termination requirement, the correctness of the algorithm does
not depend on the behavior of the scheduler. The following two lemmas show that

24 J. Aspnes / Journal of Algorithms 45 (2002) 16–39

the validity and agreement properties hold whenever the algorithm terminates.
The proofs are very similar in spirit to those of Lemmas 1–4 in [16].

Lemma 2. No process setsab[r] unless

(a) r = 1 andb is an input value, or
(b) r > 1 andab[r − 1] has already been set.

Proof. Consider the first processP that setsab[r]. ThenP does not read 1 from
ab[r] at roundr and does not change its preference during roundr. If r = 1,
P ’s preference equals its input, establishing case (a); ifr > 1, P must have set
ab[r − 1] at roundr − 1, establishing case (b).✷
Lemma 3. If every process starts with the same input bitb, every process
decidesb after executing8 operations.

Proof. From Lemma 2, if no process has input 1−b, no process ever setsa1−b[1].
It follows that every process sees a zero ina1−b[1] at round 2 and decidesb. ✷
Lemma 4. If some process decidesb at roundr, then

(a) no process ever writesa1−b[r], and
(b) every process decidesb at or before roundr + 1.

Proof. Let P decideb at roundr. We will show that this implies that no process
ever setsa1−b[r].

Suppose some process setsa1−b[r]; let Q be the first such process. Because
Q is the first process to seta1−b[r], it must read a 0 froma1−b[r] at the start of
roundr. ThusQ can only seta1−b[r] if it already prefers 1− b at the start of
roundr, implying that it seta1−b[r − 1] during roundr − 1; and if it reads a 0
from ab[r] at the start of roundr, preventing it from changing its preference after
seeing a 0 ina1−b[r]. ButQ’s read ofab[r] occurs afterQ’s write toa1−b[r − 1],
which occurs afterP ’s read ofa1−b[r − 1] at roundr (becauseP reads 0), which
in turn occurs afterP ’s write to ab[r]. ThusQ reads 1 fromab[r], and changes
its preference tob at roundr. This contradicts our assumption thatQ is the first
to seta1−b[r]. It follows that if any process decidesb in roundr, no process sets
a1−b[r].

Since no process setsa1−b[r], any process that reaches roundr + 1 must set
ab[r + 1] (by Lemma 2), and will decideb after reading 0 froma1−b[r]. Thus no
process runs past roundr + 1 without decidingb.

To show agreement in earlier rounds, letP ′ decideb′ at roundr ′ � r. By the
preceding argument, ifP ′ decidesb′ at roundr ′, then no process setsa1−b′ [r ′]

J. Aspnes / Journal of Algorithms 45 (2002) 16–39 25

and thus (by Lemma 2 again) no process setsa1−b′ [r]. But sinceP setsab[r], we
must haveb′ = b. ✷

6. Termination with noisy scheduling

In this section, we show thatLEAN-CONSENSUSterminates inΘ(logn) rounds
with noisy scheduling and random failures. (This analysis includes the core model
without random failures as well, since the adversary can always chooseh(n)= 0.)
We show that either all processes die (in which case we treat the algorithm as
terminating in the last round in which some process takes a step), or some group
of processes with a common preference eventually gets two rounds ahead of the
other processes. To avoid analyzing the details of how processes shift preferences,
we will show the even stronger result that unless all processes die, asingleprocess
eventually gets two rounds ahead of the other processes.

To simplify the argument, we abstract away from the individual sequence
of operations in each round and look only at the times at which rounds are
completed. We can thus assume that the adversary provides a single noise
distributionF (corresponding to the distribution of the sum of the delays on three
reads and one write) and that the values∆ij , Xij , andHij provide the delay not
on thej th operationbut on thej th round. Since this abstraction merely involves
summing together the underlying variables on operations, it does not reduce the
adversary’s control over the protocol. We will scaleM appropriately so that it is
still the case that 0� ∆ij �M whenj > 0.

Using this approach, the increment∆ij + Xij + Hij is the time taken for
processi to move from the end of roundj − 1 to the end roundj . The constant
∆i0 represents the process’s starting time, and

S′
ir =∆i0 +

r∑
j=1

(∆ij +Xij +Hij)

gives the time at which the process finishes roundr. A processi wins the race
with a lead ofc rounds at roundr + c if it finishes roundr + c before any other
process finishes roundr, i.e., if S′

i,r+c � S′
i′,r for all i ′ �= i.

We would like to show a bound on how the expected round at which some
process wins byc scales as a function of the number of processesn, keepingc,
M, andF fixed. This bound is given in Corollary 11 below. We will assume that
h(n) = o(1), as otherwise all processes die afterO(logn) rounds on average. The
proof proceeds in two steps: first we show that forany r which some process
finishes with at least constant probability, there exists a critical timet that gives at
least a constant probability thatS′

ir � t for exactly onei. We then show that ifr is
large enough, Pr[S′

i,r+c � t | S′
ir � t] is also at least a constant. It then follows that

the probability thatS′
i,r+c � t while S′

i′r > t for any i ′ �= i is at least the product

26 J. Aspnes / Journal of Algorithms 45 (2002) 16–39

of these two constants and the constant probability thatpi is not killed between
roundsr and r + c. Thus after a constant number of phases each consisting of
r + c rounds we expect some process to win.

6.1. Existence of a winner

In this section, we build up the tools needed to show that for each round there
exists a fixed time at which there is likely to be a unique winner.

Lemma 5. Let A1, . . . ,An be independent events. If the probability that noAi

occurs isx, wherex is not zero, then the probability that exactly oneAi occurs is
at least−x lnx.

Proof. Let qi be the probability thatAi does not occur. The probabilityx that
no Ai occurs is the product of theqi . Sincex is nonzero, eachqi must also be
nonzero. The probability that exactly oneAi occurs is given by(

n∏
i=1

qi

)
n∑

i=1

1− qi

qi
= x

n∑
i=1

(
1

qi
− 1

)
= x

(
−n+

n∑
i=1

1

qi

)
. (1)

Let G be the geometric mean of theqi and letH be their harmonic mean. By
the theorem of the means,G>H . Observe thatG= x1/n and

n∑
i=1

1

qi
= n

H
>

n

G
= nx−1/n = nexp

(
− lnx

n

)
� n

(
1− lnx

n

)

= n− lnx.

Plugging this inequality into (1) gives the result.✷
SupposeX1, . . . ,Xn are random times. The following lemma shows that

under certain conditions there exists a constant timet0, such that, with constant
probability, at most one of theXi is less thant0:

Lemma 6. Let X1, . . . ,Xn be independent random variables such that for all
finite valuest and all distinct i, j , the probability thatXi = Xj = t is zero.
Then eitherPr[∀i Xi = ∞] is greater thane−1 or there existst0 such that the
probability that exactly one of theXi is less than or equal tot0 is at least1/5.

Proof. For eacht , let qi(t) be the probability thatXi is not less than or equal tot .
Let q(t) =∏n

i=1qi(t) be the probability that none of theXi are less than or equal
to t . Note that eachqi(t) is a decreasing right-continuous left-limited function
with

lim
t→−∞qi(t)= 1 and lim

t→∞qi(t) = Pr[Xi = ∞].

J. Aspnes / Journal of Algorithms 45 (2002) 16–39 27

Similarly, q(t)=∏
i qi(t) is right-continuous, left-limited, and has

lim
t→−∞q(t)= 1 and lim

t→∞q(t)= Pr[∀i Xi = ∞].

Suppose that this latter quantity is less than or equal to e−1. (If not, the first
case of the lemma holds.) Then for some finitet , q(t) � e−1. Let t0 be the least
sucht .

Now supposeq(t0) � e−2. Then, by Lemma 5, the probability that exactly one
Xi is less than or equal tot0 is at least 2e−2 ≈ 0.27. . . .

Otherwise, we have

q(t0) < e−2 but q(t0−)= lim
t→t0−

q(t) > e−1.

(We are using the usual convention thatf (x−) denotes the left limit off at x.)
This discontinuity must correspond to a discontinuity inqi for somei. At most
oneqi has a discontinuity att0, by the assumption that the probability that distinct
Xi , Xj both equalt0 is zero. Hence, for allj �= i we haveqj (t0−) = qj (t0) and
thus

qi(t0−)

qi(t0)
= q(t0−)

q(t0)
� e−1.

Since qi(t0−) � 1, it follows immediately thatqi(t0) � e−1 and thus the
probability thatXi is less than or equal tot0 is at least 1−e−1. Now the probability
that no otherXj is less than or equal tot0 is at leastq(t0)/qi(t0)� q(t0−) > e−1.
Since the variables are independent, the probability that onlyXi is less than or
equal tot0 is thus at least(1− e−1)e−1 ≈ 0.23. . . . ✷
6.2. Size of the lead

In this section, we show that if enough rounds have passed, a process that is
likely to be ahead of the others is in fact likely to be several rounds ahead. The
proof is somewhat complicated by the lack of restrictions on the noise distribution,
but the following lemma shows how the Strong Law of Large Numbers can be
used to smooth the noise terms out a bit.

Lemma 7. LetX1,X2, . . . be finite non-negative independent identically distrib-
uted random variables whose common distribution is not concentrated on a point.
DefineSn =∑n

i=1Xi . For anyc, there existn, t such thatPr[Sn < t] < 1/2 but
Pr[Sn < t − c]> 0.

Proof. Let us first consider the case whereXi has a finite expectationm. Then
the Strong Law of Large Numbers says thatSn/n converges tom in the limit with
probability 1. So for anyε > 0, the probability thatSn is less thanm− ε goes to
zero and thus drops below 1/2 for all n greater than somen0.

28 J. Aspnes / Journal of Algorithms 45 (2002) 16–39

Let tn = n(m− ε). As long asn > n0, we have Pr[Sn < t] < 1/2. Now suppose
that Pr[Sn < tn−c] = 0 whenevern > n0. Since theXi are independent, this event
can only occur if for eachXi , Xi < (tn − c)/n=m− ε − c/n with probability 0.
Taking the union of countably many such bad events for each rationalε and
eachn > n0 shows that the eventXi < m, also has probability 0. It follows
that Xi � E[Xi] almost surely and thus the distribution ofXi is concentrated
onE[Xi], a contradiction.

If Xi does not have a finite expectation, thenSn/n grows without bound with
probability 1 (see the corollary to Theorem 22.1 in [14]). So for anyx, there
existsn0, such that Pr[Sn/n < x] < 1/2 for n > n0. We repeat the above analysis
for t = nx; if Pr[Sn < t − c] = 0 for all sucht , we getXi � x− c/n almost surely,
implyingXi exceeds any finite boundx. Again, a contradiction. ✷

Once the noise terms have been smoothed, it is not hard to show that they
eventually accumulate enough to push a winner ahead:

Lemma 8. Fix c > 0. LetX1,X2, . . . be finite independent identically distributed
random variables such that there exists a thresholdt0 for whichPr[X < t0] < 1/2
but Pr[X< t0 − c] = δ0 > 0. DefineSn =∑n

i=1Xi .
Then for anyε > 0, there exists ann = O(log(1/ε)), such that for anyt ,

Pr[Sn < t] > ε impliesPr[Sn < t − c | Sn < t] > 1
7δ0.

Proof. Setn = 8(ln(1/ε)+ 1). EachXi has probability at most 1/2 of being less
thant0, so a simple application of Chernoff bounds shows that the probability that
3/4 or more of theXi are less thant0 is at most e−n/8 = ε/e.

We will use this fact to argue that even when conditioning onSn < t , there
is nearly one chance in four thatXn in particular is greater thant0. In this case,
Sn−1 is less thant − t0 and we can use independence to replaceXn with a new
value less thant0 − c, giving a sumSn less thant − c, all without reducing the
probability by much.

Formally, we have the following sequence of inequalities, each of which is
implied by the previous one. Let Pr[Sn < t] = p and supposep > ε. Then we
have:

Pr[Sn < t] = p,

Pr
[
Sn < t ∧ at least14 of Xi are greater thant0

]
>p − ε/e,

Pr[Sn < t ∧Xn > t0] > 1

4
(p − ε/e),

Pr[Sn−1 < t − t0] > 1

4
(p − ε/e),

Pr[Sn−1 < t − t0 ∧Xn < t0 − c] > 1

4
(p − ε/e)δ0,

J. Aspnes / Journal of Algorithms 45 (2002) 16–39 29

Pr[Sn < t − c]> 1

4
(p − ε/e)δ0,

Pr[Sn < t − c | Sn < t] > 1

4
(p − ε/e)δ0/p.

Sincep > ε, this last quantity is at least14(1− 1/e)δ0, which is in turn greater
than 1

7δ0. ✷
We can now combine Lemmas 7 and 8 into the following:

Lemma 9. LetX1,X2, . . . be finite non-negative independent identically distrib-
uted random variables whose common distribution is not concentrated on a point.
DefineSn = ∑n

i=1Xi . Fix c > 0. Then there is a constantδ, such that for any
ε > 0, there existsn = O(log(1/ε)), such thatPr[Sn < t − c | Sn < t] > δ when-
everPr[Sn < t] > ε.

Proof. Use Lemma 7 to group theXi together into partial sums

Yi =
in0+n0∑
j=in0+1

Xj

with the property that for somet Pr[Yi < t] < 1/2 but Pr[Yi < t − c] = δ0 > 0.
(Note thatn0 does not depend onε, so it disappears into the constant factor.) Then
apply Lemma 8 to sums of theseYi variables to get the full result.✷
6.3. When the race ends

In this section, we show that a race betweenn independent delayed renewal
processes with bounded added delays ends inO(logn) rounds with at least
constant probability. In the following section, we translate this result, which
appears as Corollary 11, back into terms of theLEAN-CONSENSUSalgorithm to
get Theorem 12.

Theorem 10. Let {Xij }, wherei, j � 1, be a two-dimensional array of finite non-
negative independent identically distributed random variables with a common
distribution functionF that is not concentrated on a point. Let{∆ij }, where
i � 1, j � 0, be a two-dimensional array of constants with0 � ∆ij � M when
j � 1. Let {Hij }, where i, j � 1, be a two-dimensional array of independent
random variables, each of which is equal to∞ with probability h(n) and 0
otherwise. Define

S′
ir =∆i0 +

r∑
j=1

(∆ij +Xij +Hij).

Assume that for any finitet , integerr, andi �= j , Pr[S′
ir = S′

jr = t] = 0. Let c be
any integer constant greater than0.

30 J. Aspnes / Journal of Algorithms 45 (2002) 16–39

Then there exists a constantδ > 0, such that for anyn, there existsr =
O(logn) andt , such that

Pr
[∀i S′

ir = ∞ ∨ (∃i � n: S′
i,r+c < t ∧ ∀i ′ �= i, i ′ � n: S′

i′r > t
)]

> δ.

The constant factor inr = O(logn) and the constantδ may depend onc, F ,
M, andh; but neither constant depends onn.

Proof. Since eachXij is finite with probability 1, there exists some constant
c1 such that Pr[∑r+c

j=r+1Xij < c1] > 1
2. Let Tir = ∑r

j=1Xij and let Sir =
Tir + ∑r

j=0∆ir . Apply Lemma 9 to the sequenceXij with c = cM + c1 and

ε = n−2 to obtainr =O(logn) and a constantδ0 for which Pr[Tir < t−cM−c1 |
Tir < t] > δ0 whenever Pr[Tir < t] > n−2. Adding the missing constant terms∑r

j=0∆ij to Tir to getSir is equivalent to subtracting these same terms from
each occurrence oft , so we in fact have Pr[Sir < t − cM − c1 | Sir < t] > δ0
whenever Pr[Sir < t] > n−2. This gives us our target roundr.

Now apply Lemma 6 toS′
ir , for all i � n, to show that with probability at least

1/5 either∀i S′
ir = ∞ or there exists a timet0, such that there is a unique winner

i � n for which S′
ir is less thant0. Let us assume without loss of generality that

n is at least 6. Throw out all cases wherei has Pr[S′
ir < t0] � n−2; this leaves a

probability of at least 1/5 − 1/n � 1/30 that (a) there is a unique winneri, and
(b) i satisfies the condition Pr[S′

ir < t0] > n−2, implying Pr[Sir = S′
ir < t0]> n−2

and thus

Pr[Sir < t0 − cM − c1 | Sir < t0] > δ0.

So with probability at least130δ0, we haveSir < t0 − cM − c1, and thus with
probability at least160δ0 we have

Si,r+c < Sir + cM + c1 = S′
ir + cM + c1 < t0.

Suppose that this event holds. It is still possible forS′
i,r+c to be infinite if∑r+c

j=r+1Hij = ∞. Call this eventI ; if

Pr[I] = 1− (
1− h(n)

)c
>

1

120
δ0,

thenh(n) is bounded below by a constant and there existsr ′ =O(logn) such that
Pr[∀i S′

ir ′ = ∞] is at least a constant. Alternatively, we have

Pr
[
S′
i,r+c = Si,r+c < S′

ir + cM + c1
]
> δ = 1

120
δ0.

In either case, the theorem holds.✷
Corollary 11. LetR be the first round for which either

• there existsi, such thatS′
i,R+c < S′

i′R for all i ′ �= i, or
• for all i, S′

i,R+c = ∞.

J. Aspnes / Journal of Algorithms 45 (2002) 16–39 31

Under the conditions of the preceding theorem,E[R] = O(logn), and, for any
k � 0, Pr[R > k] � e−�k/O(logn)�.

Proof. Theorem 10 says that the desired event occurs with constant probabilityδ

after a phase consisting ofr =O(logn) rounds. If it does not occur, we can apply
the theorem again to the subset of thei ’s for which S′

i,r+c is finite, starting with
roundr + c + 1 and setting the initial delay∆i0 to the value ofS′

i,r+c from the
previous phase.

On average, at most 1/δ = O(1) such phases are needed, givingE[R] �
(1/δ)r = O(logn). For the exponential tail bound, observe that the probability
that the algorithm runs for more thanc phases ofr rounds each is at most

(1− δ)c = (
(1− δ)1/δ

)cδ �
(
e−1)cδ = e−cδ.

So the probability that the algorithm runs for more thank rounds is at most
e−�k/r�δ � e−�k/O(logn)�. ✷
6.4. WhenLEAN-CONSENSUSends

Translating Corollary 11 back into terms of theLEAN-CONSENSUSalgorithm
gives:

Theorem 12. Under the noisy scheduling model with random failures, starting
from any reachable state in theLEAN-CONSENSUSalgorithm in which the largest
round number of any process isr, the algorithm running withn active processes
terminates by roundr+r ′, wherer ′ has expected valueO(logn) andPr[r ′ > k] �
e−�k/O(logn)� for anyk � 0.

Proof. Apply Corollary 11 withc = 2 and the initial delays∆i0 set to the times at
which each process completes roundr. This shows that afterR additional rounds,
whereE[R] = O(logn) and Pr[R > k] � e−�k/O(logn)�, either some processP
finishes some rounds before any other process finishes rounds − 2, or all
processes fail. In the first case, ifP prefersb, it is the only process to have written
to ab[s − 1] or a1−b[s − 1] by the time it readsa1−b[s − 1] as part of rounds.
Thus it reads a zero froma1−b[s − 1] and decides. All other processes decide at
most one round later by Lemma 4. We thus getr ′ � R + 1, and the single extra
round disappears into the constant factors.✷

It is not hard to see that anO(logn) bound is the best possible, up to constant
factors.

Theorem 13. There exists a noise distributionF and a set of delays∆ such that
theLEAN-CONSENSUSalgorithm requires expectedΩ(logn) rounds in the noisy
scheduling model, even without failures.

32 J. Aspnes / Journal of Algorithms 45 (2002) 16–39

Proof. Let all ∆ij = 0 for j > 0, and letF have each operation take either 1 or
2 time units with equal probability. Then any single processor completes its first
logn operations in 1 time unit each with probability 1/n. To avoid simultaneous
operations, let∆i0 be some small distinct epsilon value for eachi.

Startn/2 processes with input 0 andn/2 with input 1. The probability that
there exists at least one 0-input process and at least one 1-input process that both
complete their first logn operations in 1 time unit each is given by(

1−
(

1− 1

n

)n/2)2

which goes to(1− e−1/2)2 =Θ(1) in the limit asn grows. So there is a constant
probability that at least one process with each input runs for logn operations
without ever changing its preference to that of a faster process with the opposite
preference, and we get expectedΩ(logn) rounds of disagreement.✷

7. Termination with quantum and priority-based scheduling

In this section, we consider the question of termination subject to hybrid
quantum and priority-based scheduling on a uniprocessor. The required quantum
size is 8 operations; curiously, this is the same size required for the specialized
algorithm given in [5]. We see this coincidence as hinting at the possibility that all
shared-memory consensus algorithms may ultimately converge to a single ideal
algorithm (though such an ideal algorithm, if it exists, is probably not identical to
LEAN-CONSENSUS).

Theorem 14. When runningLEAN-CONSENSUSin a hybrid-scheduled system
with a quantum of at least8 operations, every process decides after executing at
most12 operations.

Proof. We will show that at most one ofa0[1] and a1[1] is set before some
process finishes round 2 and decides. Consider an execution in whicha0[1] and
a1[1] are each set at some point. LetP0 andP1 be the first processes to seta0[1]
anda1[1], respectively. NeitherP0 norP1 can have observed the round-1 write of
the other, or it would have changed its preference. Thus both processes’ round-1
reads ofa0[1] anda1[1] must have occurred before either performed its round-1
write. Since we are on a uniprocessor, this can only occur if one of the processes
was pre-empted before its write occurred.

Assume without loss of generality thatP0 is this unlucky process. SinceP0 is
the first process to write toa0[1], if we can show thatP0 is not rescheduled before
some process completes round 2, then that process decides 1 (and by Lemma 4,
all processes eventually decide 1) as soon as it observes a zero ina0[1]. So we

J. Aspnes / Journal of Algorithms 45 (2002) 16–39 33

need only show thatP0 is not rescheduled until some other process completes
eight operations.

Let Q1 be the process that pre-emptsP0. At the time of pre-emption,Q1 is
at the start of a quantum; it either finishes eight operations without being pre-
empted or is pre-empted by a higher-priority processQ2. ButQ2 in turn can only
be pre-empted before completing its quantum by some higher-priority process
Q3. After at mostn such pre-emptions, we run out of higher-priority processes,
and the last process runs to the end of its quantum and decides. Note that all of the
processes in this chain (except possiblyQ1) have a higher priority thanP0 and
thus cannot be equal toP0. It follows that some process finishes round 2 before
P0 is rescheduled, and thus every process decides 1 by the end of round 3.✷

8. Bounded space LEAN-CONSENSUS

The LEAN-CONSENSUSalgorithm as described in Section 4 requires infinite
space. In this section, we describe how to modify the algorithm to use bounded
space. We assume that we have available abackup protocol, which is a bounded-
space consensus protocol that requires polynomial work per process (for example,
theO(n4) protocol in [6] works). We will build a protocol that combinesLEAN-
CONSENSUSwith the backup protocol in a way that only uses the backup protocol
rarely, so that its high cost adds only a constant to theO(logn) cost of the
combined protocol.

Note that such a combined protocol is not necessary in the model of Section 7,
as in that model we only need space for 3 rounds ofLEAN-CONSENSUS.

The combined protocol operates as follows:

(1) RunLEAN-CONSENSUSthrough roundrmax.
(2) At roundrmax+ 1, switch to the backup protocol, using the preference at the

end of roundrmax of LEAN-CONSENSUSas input to the backup protocol.

If rmax is large enough, most of the time we will expect thatLEAN-CONSENSUS

terminates before reachingrmax and the backup algorithm will not be used. But in
the case wherermax is reached (say, because the scheduler is nastier than we have
assumed), the backup algorithm guarantees termination using bounded space and
bounded (but possibly very large) expected time.

Theorem 15. For any polynomial-work consensus protocol chosen as a backup
algorithm and any noise distribution, there is a choice ofrmax = O(log2n) such
that the combined algorithm described above is a consensus protocol that requires
O(logn) expected operations per process andO(log2n) bits in thea0 and a1

arrays.

34 J. Aspnes / Journal of Algorithms 45 (2002) 16–39

Proof. First let us show that the combined algorithm solves consensus. Validity
is immediate from Lemma 3; when all inputs are equal, we never get past round
2 and the combined algorithm behaves identically toLEAN-CONSENSUS. For
agreement, the only tricky case is when some processes decide duringLEAN-
CONSENSUSand others decide during the backup protocol. But if some process
P decidesb at or before roundr, then by Lemmas 2 and 4 no process writes
a1−b[r] and every process that executes the backup protocol hasb as input. Thus
the validity condition for the backup protocol implies that all processes decideb.

Now let us show that there is a choice ofrmax that gives the desired
performance bound. Suppose each process finishes the backup protocol inO(nc)

expected operations. By Theorem 12, there is a valueT = O(logn) such that
the probability thatLEAN-CONSENSUSdoes not finish by roundk is at most
e−�k/T �. Settingrmax = T · c · logn =O(log2n), the backup protocol is run with
probability at most e−c logn = n−c , and thus it contributes at mostn−cO(nc) =
O(1) to the expected cost.

Finally, the size of thea0 anda1 arrays is clearly equal tormax =O(log2n). ✷

9. Simulation results

Figure 1 gives the results of simulatingLEAN-CONSENSUS with various
interarrival distributions. These simulations are of the model as described in
Section 3.1; in particular it is assumed that all operations take zero time and that
there are no contention effects or synchronization issues.

The X axis is plotted on a logarithmic scale and represents the number of
processes. TheY axis is plotted on a linear scale and represents the round at which
the first process terminates (which may be one less than the round at which the

Fig. 1. Results of simulatingLEAN-CONSENSUSwith various interarrival distributions.

J. Aspnes / Journal of Algorithms 45 (2002) 16–39 35

last process terminates). Each point in the graph represents an average termination
round in 10,000 trials with the given distribution and number of processes. The
starting times for all processes are the same except for a small random epsilon,
generated uniformly in the range(0,10−8). In each case, half the processes are
started with input 0 and half with input 1. There are no failures.

The random number generator used wasdrand48. The distributions used
were:

(1) Normal distribution with mean 1 and standard deviation 0.2 (variance 0.04),
rejecting points outside(0,2).

(2) 2/3 or 4/3 with equal probability.
(3) 0.5 plus an exponential random variable with mean 0.5. This corresponds to

a delayed Poisson process.
(4) Geometric withp = 0.5.
(5) Uniform in (0,2).
(6) Exponential with mean 1. This corresponds to a Poisson process with no

initial delay; it is also equivalent to generating a schedule by choosing one
process uniformly at random for each time unit.

It is worth noting that while the expected number of rounds grows logarithmi-
cally for most distributions, both the rate of growth and the initial value are small.
These small constant factors may be the result of most processes adopting the
values of early leaders, so that termination can be reached by agreement among
leaders rather than the emergence of a single leader.

The inverted behavior with a normal distribution is intriguing; it suggests that
with large numbers of processes there are more chances for one particularly
speedy process to leap ahead of its competitors, and that for some distributions
this effect overshadows the effect of having more competitors to leap ahead of.
It is not clear from the data whether this curve eventually turns around and starts
rising again, or whether it converges to some constant asymptote.

10. Conclusions, extensions, and future work

We see this paper as making two main contributions. The first is the extraction
of the adaptiveΘ(logn) time LEAN-CONSENSUS protocol from its more
sophisticated predecessors and the demonstration that this simplified algorithm
can solve consensus in models that are less extreme than those predecessors
were designed to survive but that are perhaps closer to capturing the scheduling
behavior an algorithm is likely to experience in practice. AlthoughLEAN-
CONSENSUSdoes not really contain any new ideas, we believe that ripping out
features that practitioners might balk at implementing is a valuable task in its own
right.

36 J. Aspnes / Journal of Algorithms 45 (2002) 16–39

The second is the noisy scheduling model. This model limits the adversary
not by covering its eyes but by making its hands shake. It allows us to express
the understanding that in the real world failures and timing are usually not fully
under the control of intelligent demons, while still retaining a healthy respect for
the subtlety and unpredictability of the world. We believe that this “perturbed
worst-case analysis” approach is likely to have applications in many areas both in
and outside of distributed computing.

There are still many questions left unanswered and many ways in which the
noisy scheduling model could be extended. We discuss some of these issues
below.

10.1. Non-random failures

It would be nice to understand howLEAN-CONSENSUSfares with failures
that are not random. We can get an upper bound in this situation by restarting
Theorem 12 whenever a process dies. Since the adversary must kill at least one
process every expectedO(logn) rounds, the algorithm terminates in expected
O(f logn) rounds wheref is the number of failures. This bound compares
favorably with theO(n log2n) work per processor needed by the best known
randomized algorithm that solves consensus with a fully-adaptive adversary
and up ton − 1 failures [9], but the fully-adaptive adversary is much stronger
than one limited to noisy scheduling. It seems likely that a better upper bound
than O(f logn) could be obtained by a more careful analysis that includes
how processes change preferences. We conjecture that the real bound is in fact
O(logn).

10.2. Statistical adversaries

We would also like to do away with the fixed boundM on the delay between
operations under the control of the adversary. The technical reason for including
this bound in the model is that it provides a scale for the noise introduced by the
Xij variables; if the adversary can increase∆ij without limit, it can construct
a steadily slower and slower execution in which the noise, relative to the gap
between rounds, never accumulates enough to affect the schedule. But a weaker
statistical constraint, such as requiring

∑r
j=1∆ij � rM, might avoid such Zeno-

like pathologies while allowing more variation in the gaps between operations.6

The present proof does not work with just this statistical constraint (the particular
step that breaks down is the use of Lemma 9 to show that being ahead at round
r often means being ahead byc at roundr), but we conjecture that the statistical
constraint is in fact enough to get termination inO(logn) rounds.

6 This is a bit like using thestatistical adversaryof [18].

J. Aspnes / Journal of Algorithms 45 (2002) 16–39 37

10.3. Synchronization and contention

Though the present work was motivated by a desire to move away from
powerful theoretical adversaries toward a model more closely reflecting the
non-maliciousness of misbehavior in real systems, we cannot claim that the
model accurately describes the behavior of any real shared-memory system. One
difficulty is that real shared-memory systems generally do not guarantee full
serializability of memory operations in the absence of additional synchronization
operations (see [28, Section 8.6]). We can overcome this difficulty by adding
synchronization barriers to each round ofLEAN-CONSENSUS; in principle this
does not affect the analysis since the structure of each round is still the same
as all other rounds. A second problem is memory contention, which we have
not analyzed. The difficulty with both explicit synchronization and memory
contention is that their effects are unlikely to be consistent with the assumption
that the timing of different processes’ operations are independent. To the extent
that this lack of independence disperses processes (say, by slowing down laggards
fighting over congested early-round registers while allowing the speedy to sail
through relatively clear late-round registers), it helps the algorithm. Whether
such an effect would occur in practice cannot easily be predicted without
experimentation.

10.4. Lower bounds

The noisy scheduling model is friendly enough that anO(logn) running time
for consensus might not be the best possible. A counterexample like the one
given in the proof of Theorem 13 might be able to show that no deterministic
algorithm with certain strong symmetry properties (such as no dependence on
process identity and a mirror-image handling of the different inputs) can do better,
but it not obvious where to look for a more general lower bound. It is not out of
the question that a clever algorithm could solve consensus with noisy scheduling
in as little asO(1) time.

10.5. Message passing

All of our results are set in a shared-memory model. It would be interesting
to see whether a noisy scheduling assumption can be used to solve consensus
quickly in an asynchronous message-passing model.

10.6. Other problems

Finally, though we have concentrated on a particularly simplified protocol for
solving a single fundamental problem, it would be interesting to see how other
algorithms fare in the noisy scheduling model. It seems likely, for example, that

38 J. Aspnes / Journal of Algorithms 45 (2002) 16–39

algorithms designed for unknown-delay models such as Alur et al. [3] should
continue to work in the noisy scheduling model, perhaps with some constraint on
the noise distribution to exclude random delays with unbounded expectations.
Similarly the line of inquiry started by Gafni and Mitzenmacher [23], on
analyzing the behavior of timing-based algorithms for mutual exclusion and
related problems with random scheduling, could naturally extend to the more
general model of noisy scheduling.

Acknowledgments

I would like to thank Faith Fich and Maurice Herlihy for insightful comments
on the plausibility of an early version of the noisy scheduling model; the
remaining implausibility is my fault and not theirs. I am also indebted to Robbert
van Renesse for pointing out the “narrowness” of the bad execution paths needed
to prevent consensus as a reason for the relative lack of concern for asynchronous
impossibility results among practitioners.

References

[1] K.R. Abrahamson, On achieving consensus using a shared memory, in: Proceedings of the
Seventh Annual ACM Symposium on Principles of Distributed Computing, Toronto, ON,
Canada, 15–17 August, 1988, pp. 291–302.

[2] Y. Afek, D. Dauber, D. Touitou, Wait-free made fast (extended abstract), in: Proceedings of the
Twenty-Seventh Annual ACM Symposium on the Theory of Computing, Las Vegas, NV, USA,
29 May–1 June, 1995, pp. 538–547.

[3] R. Alur, H. Attiya, G. Taubenfeld, Time-adaptive algorithms for syncronization, SIAM J.
Comput. 26 (2) (1997) 539–556.

[4] J.H. Anderson, R. Jain, D. Ott, Wait-free synchronization in quantum-based multiprogrammed
systems, in: Distributed Computing, 12th International Symposium, Proceedings, Andros,
Greece, in: Lecture Notes in Comput. Sci., Vol. 1499, Springer-Verlag, September, 1998, pp. 34–
45.

[5] J.H. Anderson, M. Moir, Wait-free syncronization in multiprogrammed systems: Integrating
priority-based and quantum-based scheduling, in: Proceedings of the Eighteenth Annual ACM
Symposium on Principles of Distributed Computing, Atlanta, GA, USA, 3–6 May, 1999,
pp. 123–132.

[6] J. Aspnes, Time- and space-efficient randomized consensus, J. Algorithms 14 (3) (1993) 414–
431.

[7] J. Aspnes, Lower bounds for distributed coin-flipping and randomized consensus, J. ACM 45 (3)
(1998) 415–450.

[8] J. Aspnes, M. Herlihy, Fast randomized consensus using shared memory, J. Algorithms 11 (3)
(1990) 441–461.

[9] J. Aspnes, O. Waarts, Randomized consensus in expectedO(N log2N) operations per processor,
SIAM J. Comput. 25 (5) (1996) 1024–1044.

[10] H. Attiya, D. Dolev, N. Shavit, Bounded polynomial randomized consensus, in: Proceedings of
the Eighth Annual ACM Symposium on Principles of Distributed Computing, Edmonton, AB,
Canada, 14–16 August, 1989, pp. 281–293.

J. Aspnes / Journal of Algorithms 45 (2002) 16–39 39

[11] H. Attiya, A. Fouren, Adaptive wait-free algorithms for lattice agreement and renaming
(extended abstract), in: Proceedings of the Seventeenth Annual ACM Symposium on Principles
of Distributed Computing, Puerto Vallarta, Mexico, 28 June–2 July, 1998, pp. 277–286.

[12] Y. Aumann, Efficient asynchronous consensus with the weak adversary scheduler, in: Proceed-
ings of the Sixteenth Annual ACM Symposium on Principles of Distributed Computing, Santa
Barbara, CA, USA, 21–24 August, 1997, pp. 209–218.

[13] Y. Aumann, M.A. Bender, Efficient asynchronous consensus with the value-oblivious adversary
scheduler, in: F. Meyer, B. Monien (Eds.), Automata, Languages and Programming, 23rd
International Colloquium, Paderborn, Germany, in: Lecture Notes in Comput. Sci., Vol. 1099,
Springer-Verlag, 8–12 July, 1996, pp. 622–633.

[14] P. Billingsley, Probability and Measure, 2nd edn., Wiley, 1986.
[15] G. Bracha, O. Rachman, Randomized consensus in expectedO(n2 logn) operations, in:

S. Toueg, P.G. Spirakis, L.M. Kirousis (Eds.), Distributed Algorithms, 5th International
Workshop, Delphi, Greece, in: Lecture Notes in Comput. Sci., Vol. 579, Springer-Verlag, 7–9
October, 1991, pp. 143–150.

[16] T.D. Chandra, Polylog randomized wait-free consensus, in: Proceedings of the Fifteenth Annual
ACM Symposium on Principles of Distributed Computing, Philadelphia, PA, USA, 23–26 May,
1996, pp. 166–175.

[17] B. Chor, A. Israeli, M. Li, Wait-free consensus using asynchronous hardware, SIAM J.
Comput. 23 (4) (August, 1994) 701–712.

[18] A. Chou, J. Cooperstock, R. El-Yaniv, M. Klugerman, T. Leighton, The statistical adversary
allows optimal money-making trading strategies, in: Proceedings of the Sixth Annual ACM–
SIAM Symposium on Discrete Algorithms, San Francisco, CA, USA, 22–24 January, 1995,
pp. 467–476.

[19] R. Cole, O. Zajicek, The expected advantage of asynchrony, J. Comput. System Sci. 51 (2) (1995)
286–300.

[20] D. Dolev, C. Dwork, L. Stockmeyer, On the minimal synchronism needed for distributed
consensus, J. ACM 34 (1) (1987) 77–97.

[21] C. Dwork, N. Lynch, L. Stockmeyer, Consensus in the presence of partial synchrony,
J. ACM 35 (2) (1988) 288–323.

[22] M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of distributed consensus with one faulty
process, J. ACM 32 (2) (1985) 374–382.

[23] E. Gafni, M. Mitzenmacher, Analysis of timing-based mutual exclusion with random times, in:
Proceedings of the Eighteenth Annual ACM Symposium on Principles of Distributed Computing,
Atlanta, GA, USA, 3–6 May, 1999, pp. 13–21.

[24] O. Goldreich, E. Petrank, The best of both worlds: Guaranteeing termination in fast randomized
byzantine agreement protocols, Inform. Process. Lett. 36 (1) (1990) 45–49.

[25] E. Koutsoupias, C.H. Papadimitriou, Beyond competitive analysis, in: 35th Annual Symposium
on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November, IEEE Press, New
York, 1994, pp. 394–400.

[26] L. Lamport, A fast mutual exclusion algorithm, ACM Trans. Comput. Systems 5 (1) (1987) 1–11.
[27] M.C. Loui, H.H. Abu-Amara, Memory requirements for agreement among unreliable asynchro-

nous processes, in: F.P. Preparata (Ed.), Adv. in Comput. Res., Vol. 4, JAI Press, 1987.
[28] D.A. Patterson, J.L. Hennessy, D. Goldberg, Computer Architecture: A Quantitative Approach,

2nd edn., Kaufmann, 1996.
[29] S. Ramamurthy, M. Moir, J.H. Anderson, Real-time object sharing with minimal system support

(extended abstract), in: Proceedings of the Fifteenth Annual ACM Symposium on Principles of
Distributed Computing, Philadelphia, PA, USA, 23–26 May, 1996, pp. 233–242.

[30] M. Saks, N. Shavit, H. Woll, Optimal time randomized consensus—making resilient algorithms
fast in practice, in: Proceedings of the Second Annual ACM–SIAM Symposium on Discrete
Algorithms, San Francisco, CA, USA, 28–30 January, 1991, pp. 351–362.

