
Information Processing Letters 99 (2006) 222–226

www.elsevier.com/locate/ipl

Folk theorems on the determinization and minimization
of timed automata ✩

Stavros Tripakis

CNRS, Verimag Laboratory, Centre Equation, 2, avenue de Vignate, 38610 Gières, France

Received 15 February 2005; received in revised form 20 April 2006; accepted 20 April 2006

Available online 26 May 2006

Communicated by J. Chomicki

Abstract

Timed automata are known not to be complementable or determinizable. Natural questions are, then, could we check whether
a given TA enjoys these properties? These problems are not algorithmically solvable. Minimizing the “resources” of a TA (num-
ber of clocks or size of constants) are also unsolvable problems. In this paper we provide simple undecidability proofs using a
“constructive” version of the problems where we require not just a yes/no answer, but also a “witness”. Proofs are then simple
reductions from the universality problem. Recent work of Finkel shows that the corresponding decision problems are also undecid-
able [O. Finkel, On decision problems for timed automata, Bulletin of the European Association for Theoretical Computer Science
87 (2005) 185–190].
© 2006 Elsevier B.V. All rights reserved.

Keywords: Formal methods; Specification languages; Timed automata; Determinization; Decidability
1. Introduction

Timed automata [3] (TA) have been established as a
convenient model for describing timed systems. This is
despite the fact that the model does not enjoy a num-
ber of important properties which hold, for instance, in
its untimed counter-part, finite-state automata. In par-
ticular, timed automata are not complementable in gen-

✩ A previous version of this paper first appeared in [S. Tripakis,
Folk theorems on the determinization and minimization of timed
automata, in: Formal Modeling and Analysis of Timed Systems
(FORMATS’03), in: Lecture Notes in Computer Science, vol. 2791,
Springer, Berlin, 2004]. Work partially supported by CNRS STIC
project “CORTOS” and by IST Network of Excellence “ARTIST2”.

E-mail address: tripakis@imag.fr (S. Tripakis).
URL: http://www-verimag.imag.fr/PEOPLE/Stavros.Tripakis/.
0020-0190/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2006.04.015
eral, meaning that, given a TA A, there does not always
exist a TA accepting the complement of the language
accepted by A. This holds even if we interpret timed
automata as accepting finite-length words, which is the
framework we follow in this paper. Timed automata are
also not determinizable in general, meaning that, given
a (non-deterministic) TA A, there does not always exist
a deterministic TA accepting the same language.

Complementation is important for capturing the
negation of logical specification by automata, in so-
called automata-theoretic verification. Determinization
is crucial for implementability and useful in problems
of observation and testing.

Given these facts, it is natural to ask: “can it be
checked whether a given TA A is complementable?” or
“can it be checked whether a given TA A is determiniz-



S. Tripakis / Information Processing Letters 99 (2006) 222–226 223
able?”. Unfortunately, this cannot be done algorithmi-
cally. In this paper we provide simple undecidability
proofs of “constructive” versions of the above problems,
where we require not just a “yes/no” answer but also a
witness, that is, a TA complementing/determinizing A.
Recent work of Finkel shows that the corresponding de-
cision problems are also undecidable [1]. Our proofs
rely on having a witness and are based on a reduction
of the universality problem, known to be undecidable.

Another set of questions concerns TA minimization,
in the sense of reduction of “resources” of timed au-
tomata.1 While the resources of untimed automata can
be seen to be states and transitions, in timed automata,
the clocks and the constants used in the guards are also
important resources. In fact, these are in some sense
more “expensive” resources than states and transitions,
since most decidable problems concerning timed au-
tomata have worst-case complexity polynomial in the
states and transitions and exponential in the clocks and
constants [3,7].

Given this, it is natural to ask: “can it be checked
whether the number of clocks or the size of the con-
stants of a given TA can be reduced?”. Unfortunately,
this cannot be done algorithmically. As with the pre-
vious problems, we provide simple reductions of the
universality problem. Again, we use the versions requir-
ing a witness.

Related work

These results are probably folk theorems in the
timed automata community. However, to the best of our
knowledge, they had not been published before [2]. An
exception is the result of Wilke [8] which shows that
computing the clock degree of a given timed language
(represented as a timed automaton) cannot be done al-
gorithmically. The clock degree is the minimum number
of clocks necessary to recognize the language. Also, re-
cent work of Finkel shows that the decision problems
corresponding to the problems we study in this paper
are also undecidable [1]. His proofs also reduce the uni-
versality problem, however, the constructions are more
elaborate.

Reduction of clocks by removing inactive clocks has
been considered in [9]. A clock is inactive in a given dis-
crete state when the clock will be reset before it is tested.
The static analysis technique used in [9] to find inactive
clocks is not powerful enough to answer the question we

1 We use the term minimization in the sense of reduction of “re-
sources”, and not in the sense of computing the quotient with respect
to a bisimulation relation, as in [4–6].
are asking. Indeed, active clocks may still be redundant
with respect to language equivalence (see Section 4.1
for an example).

Minimizable timed automata (MTA) are introduced
in [10]. In an MTA, clocks have bounded time domains.
The MTA is also equipped with a set of relevance for-
mulas permitting to identify equivalent states modulo
inactive clocks. The authors show how a minimal MTA
can be algorithmically obtained from a given MTA,
where minimality is with respect to states and bisim-
ulation equivalence.

Preliminaries

We assume the reader is familiar with timed au-
tomata. We consider a basic TA model, namely, au-
tomata with a finite set of discrete states and transitions,
where each transition is labeled with a letter in a finite
alphabet Σ , a clock guard of one of the forms x < k,
x � k, x − y < k, x − y � k or boolean combinations
of these, and a set of clocks to reset to zero. We use
the following notation. R is the set of positive reals.
U = (Σ ×R)∗ is the set of all finite-length timed words
over Σ . Given L ⊆ U , L is the complement of L, that
is, L = U − L. Given a timed automaton A over Σ ,
L(A) ⊆ U is the set of all finite-length timed words ac-
cepted by A. The universality problem is to check, given
a TA A, whether L(A) = U . The problem is known to
be undecidable [3]. The untimed language of A, denoted
Lu(A), is equal to the projection of L(A) onto Σ , that
is, the set of all finite-length words in Σ∗ obtained by
removing from a timed word of A all timestamps and
leaving only the discrete letters in Σ . For example, the
projection of the timed word (a,1)(b,2) is the word ab.

2. Complementability

Problem 1. Given a TA A, does there exist a TA B such
that L(B) = L(A)? If so, construct such a B .

Theorem 1. Problem 1 is undecidable.2

Proof. We can reduce the universality problem to Prob-
lem 1, as follows. Given A, solve Problem 1. If B ex-
ists, L(A) = U iff L(B) = ∅. If B does not exist, then

2 Problem 1 is not a decision problem thus, strictly speaking, the
term “undecidable” is not appropriate. We use this term throughout
the paper, however, for the sake of brevity. What we mean is that
the implicitly-defined function solving the problem is not Turing-
computable. In the case of Problem 1, this function takes a TA A and
returns, either a TA B such that L(B) = L(A), or ⊥, when such a B

does not exist.



224 S. Tripakis / Information Processing Letters 99 (2006) 222–226
L(A) �= U , because the empty language can be accepted
by a timed automaton with no accepting states. �

The above proof relies on the fact that we have a wit-
ness and can check emptiness on it. Using a more elab-
orate reduction of universality, Finkel recently showed
that the decision problem corresponding to Problem 1
(which only asks whether B exists) is also undecid-
able [1]. Notice that knowing the existence of a witness
does not help in finding one. Enumerating all possible
witnesses does not help, since checking for a given B

whether L(B) = L(A) is undecidable.

3. Determinizability

Problem 2. Given a TA A, does there exist a determin-
istic TA B such that L(B) = L(A)? If so, construct such
a B .

Theorem 2. Problem 2 is undecidable.

Proof. We can reduce the universality problem to Prob-
lem 2, as follows. Given A, solve Problem 2. If B ex-
ists, compute C such that L(C) = L(B): since B is
deterministic, this can be done simply by turning ac-
cepting states into non-accepting states and vice versa.
Then, L(A) = U iff L(C) = ∅. If B does not exist, then
L(A) �= U , because the language U can be accepted by
a deterministic timed automaton with a single accepting
state, no clocks, and a self-loop for each letter in Σ . �
4. Minimization

4.1. Reducing the number of clocks

Problem 3. Given a TA A with n clocks, does there exist
a TA B with n − 1 clocks, such that L(B) = L(A)? If
so, construct such a B .

The above problem is related to the problem of com-
puting the clock degree of a TA A, considered in [8].
The clock degree is the minimum number of clocks
necessary to recognize L(A), that is, the minimum m

for which there exists a TA B with m clocks such that
L(B) = L(A). Wilke shows that computing the clock
degree is undecidable. Let us recall his result here.

Theorem 3. ([8]) Computing the clock degree of a TA is
undecidable.

Proof. Suppose we can compute the clock degree i of
a given TA A. If i > 0 then L(A) �= U , since there is
obviously a timed automaton without clocks accepting
U . If i = 0 then L(A) = U iff Lu(A) = Σ∗, that is,
the untimed language of A contains all finite untimed
words. Indeed, if L(A) = U then obviously Lu(A) =
Σ∗. Conversely, if L(A) �= U then let ρ ∈ U − L(A).
Also, let B be the automaton without clocks such that
L(B) = L(A) (we will only use B in the proof, thus we
do not need the witness B). We claim that no ρ′ that
has the same untimed projection as ρ can be in L(B)

(thus, neither in L(A)). This is because B has no clocks
therefore it cannot distinguish between ρ and ρ′. Con-
sequently, the untimed projection of ρ is not in Lu(A),
thus, Lu(A) �= Σ∗. �

The undecidability of Problem 3 follows from the
above result.

Theorem 4. Problem 3 is undecidable.

Proof. We can reduce the problem of computing the
clock degree of a TA A to Problem 3 as follows. We
keep trying to remove clocks from A one by one until no
clocks are left or until no more clocks can be removed.
We do this by repeatedly solving Problem 3: if a wit-
ness B with one clock less is found then A is replaced
by B and we continue; otherwise we stop. The clock de-
gree of A is the number of clocks remaining when we
stop. �

We should note that the technique of clock reduction
by removing inactive clocks, proposed in [9], does not
solve Problem 3. Indeed, consider the timed automaton
that performs a and resets x := 0, then has two tran-
sitions with b, one with guard x > 1 and another with
guard x � 1. In this automaton, clock x is redundant: the
two transitions labeled with b can be replaced by a sin-
gle transition without any guard. However, the method
of [9] finds that clock x is active, because it is tested
after it is reset.

4.2. Reducing the size of constants

Problem 4. Given a TA A where constants are not
greater than c, does there exist a TA B where constants
are not greater than c − 1, such that L(B) = L(A)? If
so, construct such a B .

Solving Problem 4 is enough for minimizing the size
of constants of A: just keep trying to reduce the size of
constants by one until it becomes zero or until it can be
reduced no more. In particular, the problem, given A,
to find, if it exists, an automaton B with constants at



S. Tripakis / Information Processing Letters 99 (2006) 222–226 225
most zero, such that L(B) = L(A), can be reduced to
Problem 4.

Lemma 1. Let A be a TA over Σ with constants at
most 0. There exists a finite-state automaton Au over
Γ = Σ ∪ {τ }, where τ /∈ Σ , such that L(A) = U iff
L(Au) = Γ ∗.

Proof. We can assume that A is diagonal-free, that
is, contains only two types of clock guards: x > 0 or
x = 0. This is because any TA can be transformed to
a diagonal-free TA accepting the same language [3,11].
This transformation only adds discrete states and does
not modify the constants used in the guards.

We next construct Au. For each clock x of A, Au

will have one variable bx ∈ {0,1}: bx = 0 corresponds
to x = 0 and bx = 1 corresponds to x > 0. Au will have
the same set of discrete states as A. For every discrete
transition of A, Au will have a transition labeled with
the same letter. For every reset x := 0 of the transition
of A, we add a reset bx := 0 to the transition of Au. For
every guard x = 0 (resp. x > 0) of the transition of A,
we add a guard bx = 0 (resp. bx = 1) to the transition
of Au. At every discrete state of Au we add a self-loop
transition labeled by τ , which sets each variable bx to 1.
Notice that the language of Au is closed under “stutter-
ing” of τ , for instance, if τa0τa1 · · · τan ∈ L(Au) then
τ+a0τ

+a1 · · · τ+an ⊆ L(Au) and vice versa. This is be-
cause taking a τ transition two or more times in a row
leaves the state of Au unchanged.

Define the following equivalence between states of A

and states of Au. Given a state (q, v) of A (q is a discrete
state and v is a vector of values for each clock x) and
a state (q ′, u) of Au (q ′ is a discrete state and u is a
vector of values for each variable bx ), the two states are
equivalent, denoted (q, v) ∼ (q ′, u), if q = q ′ and for all
i, v(i) = 0 ⇔ u(i) = 0. We claim that if s1 ∼ s2 then:

(1) for each a ∈ Σ and state s′
1 of A such that s1

a→ s′
1,

there exists state s′
2 of Au such that s2

a→ s′
2 and

s′
1 ∼ s′

2;

(2) for each a ∈ Σ and state s′
2 of Au such that s2

a→ s′
2,

there exists state s′
1 of A such that s1

a→ s′
1 and

s′
1 ∼ s′

2;

(3) for each t ∈ R and state s′
1 of A such that s1

t→ s′
1,

there exists state s′
2 of Au such that s2

τ→ s′
2 and

s′
1 ∼ s′

2;

(4) for each state s′
2 of Au such that s2

τ→ s′
2, for each

t ∈ R, there exists state s′
1 of A such that s1

t→ s′
1

and s′ ∼ s′ .
1 2
The above four properties allow us to prove that L(A) =
U iff L(Au) = Γ ∗. �
Theorem 5. Problem 4 is undecidable.

Proof. By Lemma 1, checking universality of a TA with
constants at most zero is decidable. Since checking uni-
versality of a general TA is undecidable, Problem 4 is
not computable. �
5. Similar problems with “bounded resources”

One might think that the above negative results could
be remedied if one bounds the resources of the wit-
ness automaton. A similar approach is taken in [12,13],
where it actually results in a decidable version of an oth-
erwise undecidable problem. Unfortunately, this is not
the case for the problems defined in this paper.

More precisely, given non-negative integers n and c,
let TA(n, c) be the class of timed automata having at
most n clocks and where constants are at most c. Then,
the bounded-resource versions of Problems 1–4 can be
stated as follows.

Problem 5. Given a TA A and non-negative integers
n, c, does there exist a TA B ∈ TA(n, c) such that
L(B) = L(A)? If so, construct such a B .

Problem 6. Given a TA A and non-negative integers
n, c, does there exist a deterministic TA B ∈ TA(n, c)

such that L(B) = L(A)? If so, construct such a B .

Problem 7. Given a TA A with n clocks and non-neg-
ative integer c, does there exist a TA B ∈ TA(n − 1, c),
such that L(B) = L(A)? If so, construct such a B .

Problem 8. Given a TA A with constants not greater
than c and non-negative integer n, does there exist a TA
B ∈ TA(n, c − 1), such that L(B) = L(A)? If so, con-
struct such a B .

It turns out that all four problems above are not com-
putable. The proofs are almost identical to the ones for
the unbounded-resource versions, with the addition that
we set n and/or c to zero when reducing the universal-
ity problem to the problem in question. For example, in
the case of Problem 5, if there exists no B in TA(0,0)

such that L(B) = L(A) then L(A) �= U , since there is
a TA with no clocks accepting the empty language. If
B ∈ TA(0,0) exists then L(A) �= U iff L(B) = ∅.



226 S. Tripakis / Information Processing Letters 99 (2006) 222–226
6. Conclusions and open questions

The folk theorems presented in this paper confirm
some inherent difficulties of the timed automata model
regarding complementation, determinization and min-
imization of clocks or constants. We presented some
simple undecidability proofs of “constructive” versions
of these problems, where a witness is required. Recent
work of Finkel shows that the corresponding decision
problems are also undecidable [1].

An interesting open problem is minimization of the
number of discrete states (while possibly increasing the
number of clocks or size of constants). The interesting
cases are when diagonal guards or resets to constants
other than zero are not allowed. Otherwise, a discrete
state can be encoded as the ordering x1 < x2 < · · · < xm

of a sufficient number of extra clocks x1, . . . , xm and
moving to this state can be encoded with an appropriate
reset, such as x1 := 0, x2 := 1, . . . , xm := m. Note that,
although these features do not add to the expressiveness
of the model, removing them can only be done at the
expense of adding discrete states [11].

References

[1] O. Finkel, On decision problems for timed automata, Bulletin of
the European Association for Theoretical Computer Science 87
(2005) 185–190.

[2] S. Tripakis, Folk theorems on the determinization and minimiza-
tion of timed automata, in: Formal Modeling and Analysis of
Timed Systems (FORMATS’03), in: Lecture Notes in Computer
Science, vol. 2791, Springer, Berlin, 2004.

[3] R. Alur, D. Dill, A theory of timed automata, Theoretical Com-
puter Science 126 (1994) 183–235.

[4] R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, H. Wong-Toi,
Minimization of timed transition systems, in: 3rd Conference on
Concurrency Theory CONCUR’92, in: Lecture Notes in Com-
puter Science, vol. 630, Springer-Verlag, Berlin, 1992, pp. 340–
354.

[5] M. Yannakakis, D. Lee, An efficient algorithm for minimizing
real-time transition systems, Formal Methods in System De-
sign 11 (2) (1997).

[6] S. Tripakis, S. Yovine, Analysis of timed systems using time-
abstracting bisimulations, Formal Methods in System De-
sign 18 (1) (2001) 25–68.

[7] C. Courcoubetis, M. Yannakakis, Minimum and maximum delay
problems in real-time systems, in: CAV’91, in: Lecture Notes in
Computer Science, vol. 575, Springer, Berlin, 1991.

[8] T. Wilke, Automaten und Logiken zur beschreibung zeitab-
hängiger Systeme, Ph.D. thesis, Institut Für Informatik und Prak-
tische Mathematik, Christian-Albrechts Universität, Kiel, 1994
(in German).

[9] C. Daws, S. Yovine, Reducing the number of clock variables of
timed automata, in: Proc. 17th IEEE Real-Time Systems Sym-
posium, RTSS’96, 1996.

[10] J. Springintveld, F. Vaandrager, Minimizable timed automata, in:
FTRTFT’96, in: Lecture Notes in Computer Science, vol. 1135,
Springer, Berlin, 1996, pp. 130–147.

[11] B. Berard, A. Petit, V. Diekert, P. Gastin, Characterization of the
expressive power of silent transitions in timed automata, Funda-
menta Informaticae 36 (2–3) (1998) 145–182.

[12] D. D’Souza, P. Madhusudan, Timed control synthesis for exter-
nal specifications, in: STACS’02, in: Lecture Notes in Computer
Science, vol. 2285, Springer, Berlin, 2002.

[13] P. Bouyer, D. D’Souza, P. Madhusudan, A. Petit, Timed control
with partial observability, in: CAV’03, 2003.


