
l

and

temporal
a
resent a

is more
plexity of
ith

n

roperty
ges
such as
h
e

Information Processing Letters 91 (2004) 201–210

www.elsevier.com/locate/ip

The power of first-order quantification over states in branching
linear time temporal logics

Krishnendu Chatterjeea, Pallab Dasguptab,∗, P.P. Chakrabartib

a Department of EECS, UC Berkeley, USA
b Department of Computer Science & Engineering, Indian Institute of Technology, Kharagpur 721302, India

Received 1 October 2003; received in revised form 5 May 2004

Available online 17 June 2004

Communicated by K. Iwama

Abstract

In this paper, we investigate the power of extending first-order quantification over states to branching and linear time
logics. We show that an unrestricted extension significantly enriches the expressive power ofµ-calculus, but also leads to
significant jump in model checking complexity. However, by restricting the scope of the extension, we are able to p
powerful extension ofµ-calculus that is richer thanµ-calculus, but is in the same complexity class asµ-calculus in terms of
model checking complexity. In the case of linear time temporal logic, we find that first-order quantification over states
computationally expensive. We show that even under the most restricted scope of quantification, the program com
model checking linear temporal logic (LTL) is NP-hard and coNP-hard. However, we also show that model checking LTL w
this generic extension remains PSPACE-complete.
 2004 Elsevier B.V. All rights reserved.

Keywords:Model checking; Verification; Linear temporal logic; Formal methods

1. Introduction

Model checking [1] has emerged as one of the most powerful techniques for formal property verificatio
in hardware and other reactive systems. The increasing acceptance of formal property verification within the
validation flow of protocol and chip design has catalyzed the formalization of several languages for formal p
specification, such as Forspec (of Intel), Sugar (ofIBM/Accelera) and OVA (of Synopsys). These langua
have been built around the syntactic structure of known branching time and linear time temporal logics
Computation Tree Logic(CTL) andLinear Temporal Logic(LTL) [1]. In recent times, the different fora at whic
these language standards are being crystallized have feltthe necessity to investigate whether the power of thes
known temporal logics can be further enriched at low overhead in terms of model checking complexity.

* Corresponding author.
E-mail address:pallab@cse.iitkgp.ernet.in (P. Dasgupta).

0020-0190/$ – see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2004.05.003

202 K. Chatterjee et al. / Information Processing Letters 91 (2004) 201–210

In this paper, we investigate the power of extending first-order quantification over states to the generic branching
time and linear time temporal logics. The research is motivated by our initial results on this subject [7], which show

power

cking

g time
mporal
ows how

.

tional
d

s

pose we

o find
s the

the
added

cation).

pressive
).

ss
l

more
program

states

mantics
that a well constrained use of first-order quantification over states in CTL vastly enriches its expressive
without any significant blow-up in model checking complexity. This result opens up interestingpossibilities, since
other forms of first-order quantification in temporal logics (such as [6,9]) exhibit a blow-up in model che
complexity.

While our early results are promising, they do not indicate the power of quantification over branchin
properties in general, nor do they provide any insights to the effect of similar extensions to linear time te
logics. This paper provides a series of results which attempts to answer most of these questions, and sh
we may effectively utilize the power of first-order quantification over states at low computational overhead

Specifically, we investigate the effect of extending first-order quantification over states toµ-calculus [3,5]
(branching-time) and LTL (linear time). Since most branching time temporal logics are subsumed by proposi
µ-calculus [2], investigating the effect of first-order quantification over states onµ-calculus gives us a goo
indication of its power over branching time temporal logics in general. The model-checking problem forµ-calculus
is in NP ∩ coNP, but there are several fragments ofµ-calculus for which efficient model checking algorithm
exist [4].

The notion of first-order quantification over states may be demonstrated by the following example. Sup
wish to determine whether there exists some statet such that (a) the propositionq is true att , (b) there exists a
path from a states to t through states labeled by propositionp, and (c) there exists a path froms to t through states
labeled by propositionr. This property cannot be expressed in propositionalµ-calculus. Theµ-calculus formula:
µy.(q ∨ (p ∧ EX(y))) ∧ µy.(q ∨ (r ∧ EX(y))) does not express the same intent, as it does not require us t
paths to a common statet whereq is true. By extending first-order quantification over states, we can expres
desired intent as:

∃x ∈ q.
[
µy.

(
x ∨ (

p ∧ EX(y)
)) ∧ µy.

(
x ∨ (

r ∧ EX(y)
))]

.

The requirement of finding a common statet in the two qualified paths is enforced through the binding of
common variablex in the two subformulas. We present several other examples in the paper highlighting the
expressibility due to first-order quantification over states (showing both existential and universal quantifi
The contributions of this paper are as follows:

(1) We show that an unrestricted use of first-order quantification over states significantly enriches the ex
power ofµ-calculus, but also leads to a significant jump in model checking complexity (PSPACE-complete

(2) By restricting the scope of the extension, we are able to present a powerful extension ofµ-calculus (called
Scope Restricted Quantifiedµ Calculus) that is richer thanµ-calculus, but is in the same complexity cla
(NP ∩ coNP) asµ-calculus in terms of model checking complexity. We also show that ifµ-calculus mode
checking is in P then ScopeRestricted Quantifiedµ Calculus model checking is also in P.

(3) In the case of linear time temporal logic, we find that first-order quantification over states is
computationally expensive. We show that even under the most restricted scope of quantification, the
complexity of model checking linear temporal logic (LTL) is NP-hard and coNP-hard.

(4) We also show that model checking the generic extension of LTL with first-order quantification over
remains PSPACE-complete.

2. Examples of first-order quantification in µ-calculus

This section demonstrates the expressibility of the proposed extension, Scope Restricted Quantifiedµ Calculus
through two examples. We hope that these examples will informally explain the intent of the proposed se
before we present the logic in formal terms.

K. Chatterjee et al. / Information Processing Letters 91 (2004) 201–210 203

m

t

h?
ty is

i
he

he

e form
e
e

e
ible

ble
n Scope

he

la,
Fig. 1. A sample state transition system.

Example 2.1 (Few interesting properties not expressible inµ-calculus). Consider the labeled transition syste
shown in Fig. 1. States labeled by atomic propositionst , c and o respectively denoteterminal, control and
observablestates. The following illustrative properties are expressible in Scope Restricted Quantifiedµ Calculus
but not inµ-calculus.

• Are all terminal states reachable? This is expressed asψ1 = ∀x ∈ t .[µy.(x ∨ EX(y))]. The property is true a
s0 but false ats2 since the terminal states5 is not reachable froms2.

• For every terminal statet ′ is there a path such thatt ′ occurs infinitely often (Büchi property) along the pat
The formula,ψ2 = ∀x ∈ t .[νy1µy2.(EX(y1) ∧ (EX(y2) ∨ x))], expresses the desired property. The proper
true ats0 but false ats2.

• Is there a terminal statet ′ such that there exists a path along which eventuallyt ′ occurs forever (coBüch
property)? This formula,ψ3 = ∃x ∈ t .[µy1νy2.(EX(y1)∨ ((EX(y2)∧ x))], expresses the desired property. T
property is true ats0 ands2. The paths0s1(s5)

ω is a witness for the truth ofψ3 at s0, while the paths2s4(s7)
ω

is a witness for its truth ats2.
• Is there a state satisfyingψ1 that is reachable along a controllable path and also an observable path? T

formula,ψ4 = ∃x ∈ ψ1.[µy.(x ∨ (c ∧ EX(y))) ∧ µy.(x ∨ (o ∧ EX(y)))], expresses the desired property.

Example 2.2 (Gaming properties). The state space of the game may be modeled as game graphs of th
G = (V ,E). The vertex setV is partitioned into two setsVp andVad. At the verticesv ∈ Vp the player chooses th
successor, while the choice of the successor is with the adversary at the verticesv ∈ Vad. Some of the vertices ar
defined to begoal vertices. We model the game graph as a Kripke structureM with S = V,R = E. The atomic
propositions arevp, vad andg. Each vertexv ∈ Vp is labeled byvp, each vertex inVad is labeled byvad and the
vertices which are thegoal verticesare labeled byg. A strategy for the player (respectively adversary) is a choic
of successors from the vertices in the setVp (respectivelyVad). We present some interesting properties express
in Scope Restricted Quantifiedµ Calculus on such game graphs:

• For every goal vertexs′ is there a player strategy such that for any strategy of the adversarys′ occurs infinitely
often? To express the property, we first define〈〈p〉〉X(y) = (vp ∧ EX(y)) ∨ (vad ∧ AX(y)). Intuitively, given
a set of vertices denoted by the variabley, 〈〈p〉〉X(y) denotes the set of states from which the player is a
to reach the sety in one step regardless of the move of the adversary. The desired intent is expressed i
Restricted Quantifiedµ Calculus by the formulaψ5 = ∀x ∈ g.[νy1µy2.(〈〈p〉〉X(y1) ∧ (〈〈p〉〉X(y2) ∨ x))].

• Is there a specific goal vertexs′ such that the player can reachs′ regardless of the moves of the opponent? T
formula to express the property isψ6 = ∃x ∈ g.[µy1.(x ∨ 〈〈p〉〉X(y1))].

• For every goal vertexs′, does there exist a strategy to reachs′ regardless of the opponent? The formu
ψ7 = ∀x ∈ g.[µy1.(x ∨ 〈〈p〉〉X(y1))], expresses the desired property.

204 K. Chatterjee et al. / Information Processing Letters 91 (2004) 201–210

3. Scope restricted quantified µ-calculus

rue

ntified

f
es.
t
ll
as free
aningful
f

the

the

e form

long as
e

The semantics of the proposed logic is interpreted over a Kripke structure defined as follows:

Definition 3.1 (Kripke structure). A Kripke structure is a tupleM = 〈AP,S,R, s0,F〉 whereAP is the set of
atomic propositions,S is the finite set of states,R⊆ S ×S is the transition relation such that(si , sj) ∈R if sj is a
successor ofsi , s0 ∈ S is the initial state,F :S → 2AP is a function labeling states with atomic propositions t
in them.

A Quantifiedµ Calculus formula may have two types of variables, namely first-order variables that are qua
by the∃ or ∀ quantifiers, and (second order)µ-calculus variables whose fixpoints are computed usingµ or ν.
A generic Quantifiedµ Calculus formula may have a subformula of the formφ(Z,L), whereZ denotes the set o
freeµ-calculus variables (quantified byµ / ν from the outside), andL denotes the set of free first-order variabl
In the scope restricted version we prevent the scopes of first order variables to overlap, thereforeL has at mos
one member for each subformula. This choice is natural, since alternation between first-order variables is a we
established source of complexity. We also disallow the first-order quantification of a subformula that h
µ-calculus variables, otherwise the semantics of the fixpoint computation becomes too complex for me
usage in practice. The syntax of the logic is as follows.φ (which is equivalent toφ([],_)) represents the set o
Scope Restricted Quantifiedµ Calculus formulas (in negation normal form).

φ ::= p wherep ∈AP | ¬p | φ opφ | EX[φ] | AX[φ]
| νy.φ([y], []) | µy.φ([y], []) | ∃x ∈ φ.[φ([], x)] | ∀x ∈ φ.[φ([], x)],

φ(Z, []) ::= φ, if Z = [] | y, if Z = [y] | φ(Z1, []) opφ(Z2, []) whereZ1,Z2 ⊆ Z

| EX[φ(Z, [])] | AX[φ(Z, [])] | νy.φ([y||Z], []) | µy.φ([y||Z], []),
φ(Z,x) ::= x, if Z = [] | φ(Z1, x) opφ(Z2, x) whereZ1,Z2 ⊆ Z

| EX[φ(Z,x)] | AX[φ(Z,x)] | νy.φ([y||Z], x) | µy.φ([y||Z], x),
op ::= ∨|∧.

The || operator is used to denote the concatenation of lists.[] denotes the empty list. The main restrictions to
generalized use of quantification over states are summarized as follows:

(1) We do not allow first-order quantification over a subformula having a free first-order variable (to contain
complexity).

(2) We do not allow first-order quantification over a subformula having a freeµ-calculus variable (to simplify the
semantics).

(3) The first-order variables are instantiated by formulas that have no free variables. In formulas of th
∃x ∈ φ . . . and∀x ∈ φ . . . the subformulaφ does not have a free variable.

It may be noted that these restrictions do not completely prevent us from using nesting of quantifiers (as
there is no overlap between scopes of free variables). For example the formula,ψ4 in Example 2.1, exhibits th
nesting of quantifiers. Also in the formula:

∃x ∈ ψ1.
[
µy.

(
x ∨ (

ψ2 ∧ EX[y]))]

the subformulasψ1 andψ2 can have other quantifiers, since they are free of the first-order variablex and the
µ-calculus variabley. On the other hand, the formula:

∃x1 ∈ t .∀x2 ∈ c.
[
µy.

(
x1 ∨ (

x2 ∧ EX[y]))]

is not a valid Scope Restricted Quantifiedµ Calculus formula.

K. Chatterjee et al. / Information Processing Letters 91 (2004) 201–210 205

A formula φ with free variablesy1, y2, . . . , yn is interpreted as a mapping from(2S)n → 2S . We write
φ(y1, y2, . . . , yn) to denote that all the free variables ofφ are amongy1, y2, . . . , yn. A valuation E =

e
t of
e.

.

of
ity

g

ns
f

its
(V1,V2, . . . , Vn) is an assignment of the subsets ofS,V1,V2, . . . , Vn to free propositional variablesy1, y2, . . . , yn

respectively.
�φ�E denotes the evaluation ofφ on the actual argumentsV1,V2, . . . , Vn. The free state variablex can be

instantiated to a states, in which case we labels with x treatingx as an atomic proposition true only ats.
Hence instantiationI is an labeling functionI :x → S which labelsx to exactly one state.�φ′(x)�EI denotes
the evaluation ofφ′(x) under the valuationE and instantiationI.

The semantics of Scope Restricted Quantifiedµ Calculus is as follows:

• �p�E = {s: s ∈ S andp ∈F(s)} wherep ∈AP , • �yi�E = Vi ,
• �EX(φ(Z, []))�E = {s: ∃t ∈ �φ(Z, [])�E and(s, t) ∈R}, • �φ1 ∧ φ2�E = �φ1�E ∩ �φ2�E ,
• �AX(φ(,Z, []))�E = {s: ∀t (s, t) ∈ R→ t ∈ �φ(Z, [])�E },
• �µyi.φ(yi ||Z, [])�E = ⋂{S′ ⊆ S: �φ(yi ||Z, [])�E[yi←S ′] ⊇ S′},
• �νyi.φ(yi ||Z, [])�E = ⋃{S′ ⊆ S: �φ(yi ||Z, [])�E[yi←S ′] ⊇ S′},
• �∃x ∈ φ.[φ′([], x)]�E = ⋃{�φ′([], x)�EI : I(x) ∈ �φ�E }, • �x�EI = {I(x)},
• �∀x ∈ φ.[φ′([], x)]�E = ⋂{�φ′([], x)�EI : I(x) ∈ �φ�E }, • �φ′(Z,x) ∧ φ�EI = �φ′(Z,x)�EI ∩ �φ�E ,
• �φ′

1(Z1, x) ∧ φ′
2(Z2, x)�EI = �φ′

1(Z1, x)�EI∩ �φ′
2(Z2, x)�EI ,

• �EX(φ′(Z,x))�EI = {s: ∃t ∈ �φ′(Z,x)�EI and(s, t) ∈R},
• �AX(φ′(Z,x))�EI = {s: ∀t (s, t) ∈ R→ t ∈ �φ′(Z,x)�EI},
• �µyi.φ

′(yi ||Z,x)�EI = ⋂{S′ ⊆ S: �φ′(yi ||Z,x)�E[yi←S ′]I ⊇ S′},
• �νyi.φ

′(yi ||Z,x)�EI = ⋃{S′ ⊆ S: �φ′(yi ||Z,x)�E[yi←S ′]I ⊇ S′}.

The semantic rules for the∨ operator is similar to that of∧ with ∪ replacing∩ in the RHS. We now show that th
model checking problem of Scope Restricted Quantifiedµ Calculus lies in the same complexity class as tha
µ-calculus model checking. In the following proofs we denote|M| = |S| + |R| as the size of the Kripke structur

Lemma 3.1. If µ-calculus model checking is inPthen so is Scope Restricted Quantifiedµ Calculus model checking

Proof. Suppose there is a polytime algorithm forµ-calculus model checking that has a complexity
O((|M|.|f |)k) where|f | is the length of theµ-calculus formula andk is some constant (without loss of general
k � 1). We prove that Scope Restricted Quantifiedµ Calculus model checking can work in O(|S|.(|M|.|f |)k) time.

Given an instantiation,I, of the state variablex, the problem of evaluatingφ′(x) is equivalent to evaluatin
the µ-calculus formula obtained by treatingx as an atomic proposition inφ′(x) which is true only atI(x).
Using the given algorithm forµ-calculus model checking, we can evaluateφ′(x) in O((|M|.|f |)k) time. We
now use induction on the length of the formula to complete the proof. Consider a formulaψ = ∃x ∈ ϕ.[ϕ′(x)].
Since each subformula ofϕ is independent ofx we can evaluateϕ in O(|S|.(|M|.|f1|)k) time, where|f1| is
the length ofϕ. Once this labeling is done for all the subformulas ofφ, we treat these as atomic propositio
labeling the states of the system. The remaining formulas are of the formφ′(x). Thus once the labeling o
the formulas of the formφ is done, for each instantiation ofx we can evaluateϕ′(x) in O((|M|.|f2|)k) time,
where |f2| is the length ofϕ′(x). Since there can be at most|S| instantiations ofx we can evaluateψ in
O(|S|.(|M|.|f1|)k)+O(|S|.(|M|.|f2|)k) time (also ask � 1 we have|f1|k +|f2|k � (|f1|+ |f2|)k). Hence we have
O(|S|.(|M|.|f1|)k) + O(|S|.(|M|.|f2|)k) � O(|S|.(|M|.|f |)k). A similar argument applies when the quantifier is∀
instead of∃. �

Given aµ-calculus formulaφ, the alternation depth of a propositional variabley refers to the “significant”
nesting of alternatingµ’s andν ’s bindingy. Alternation depth ofφ is the maximum alternation depth among
propositional variables [3].

206 K. Chatterjee et al. / Information Processing Letters 91 (2004) 201–210

Lemma 3.2. Scope Restricted Quantifiedµ Calculus with alternation depth bounded byl can be checked in
O(|S|.(|M|.|f |)l+1) time.

tricted

n

ank”

the

ded
f value
d the

ate
ation we
s
r

wing

e
r

n
s

Proof. There is a known algorithm to checkµ-calculus formulas with alternation depth bounded byl in
O((|M|.|f |)l+1) time [3]. Using an argument similar to that in Lemma 3.1, it is easy to prove that Scope Res
Quantifiedµ Calculus formulas with alternation depth bounded byl can be checked in O(|S|.(|M|.|f |)l+1)

time. �
Theorem 3.1. Scope Restricted Quantifiedµ Calculus model checking is inNP∩ coNP.

Proof. We first consider properties with the∃ quantifier. The argument for properties with the∀ quantifier is
similar. LetM be a Kripke structure with|S| as the size of the state space and|R| as the size of the transitio
relation. GivenM and a formula of the formψ = ∃x ∈ φ.[µy.g(y, x)] we guess annotations ofM with the sub-
formulas ofψ true at each state corresponding to every possible instantiation ofx. There can be at most|S|
instantiations asφ can be true in at most|S| states. Each annotation for a given instantiation provides the “r
for eachµ variabley indicating how many times the associatedµ formula µy.g(y) is unwound for the given
instantiation. (These ranks corresponds to the indices in the Tarski–Knaster sequence of approximations for
least fixed point.) Thus given an instantiation ofx we might have rankedµ variabley5, which is equivalent to
g(y4) at a states depending ony4, equivalent tog(y3) at a statet depending ony3 at a stateu and so forth; the
depending on relation should be well founded asµy.g(y) is the least fixed point and can be unwound boun
(viz. |S|) number of times. In general for every instantiation the ranks will be tuples of natural numbers o
at most|S| and there can be at most|S| instantiations. The general idea is explained in [3], but here we nee
annotation to be guessed for every instantiation of the state variablex. Intuitively ∃x ∈ φ.[µ.g(y, x)] is equivalent
to

∨
si∈�φ� µ.g(y, xi) whereg(y, xi) is the formula withxi treated as an atomic proposition true only in st

si . The ranks are ordered lexicographically. After guessing ranked, threaded annotation for every instanti
simply verify that it is well founded. This shows that Scope Restricted Quantifiedµ Calculus model checking i
in NP. Membership in coNP follows from the fact that Scope Restricted Quantifiedµ Calculus is closed unde
complementation. �

4. Generalized quantified µ-calculus

We now study the effect of allowing an unrestricted use of first-order quantification. We call the follo
extensionGeneralized Quantifiedµ Calculus. L denotes a list of state variables.

φ(Z,L) ::= φ(Z,L) ∨ φ(Z,L) | φ(Z,L) ∧ φ(Z,L) | EX(φ(Z,L)) | AX(φ(Z,L)) |
µy.φ(y||Z,L) | νy.φ(y||Z,L) | p | ¬p | y wherep ∈ AP andy ∈ Y ,

Q(Z,L) ::= ∃x ∈ Q(Z,L).[Q(Z,x||L)] | ∀x ∈ Q(Z,L).[Q(Z,x||L)] wherex /∈L
| Q(Z,L) ∧ Q(Z,L) | Q(Z,L) ∨ Q(Z,L) | EX(Q(Z,L)) | AX(Q(Z,L)) | φ(Z,L)

| µy.Q(y||Z,L) | νy.Q(y||Z,L) | x wherex ∈X .

Generalized Quantifiedµ-calculus formulas are of the formQ([], []), where[] stands for the empty list. Th
evaluation ofQ(Z,L) is subject to an instantiation of the free state variables in its listL and an environment fo
the variables inZ. A free state variablex ∈ L can be instantiated to a states in which case we labels with x and
treatx as an atomic proposition true only ats. Thus an instantiation ofL can be viewed as a labeling functio
I :L → S, where each labelx ∈ L is used exactly in one state. For subformulas without free state variableI is
always empty.

K. Chatterjee et al. / Information Processing Letters 91 (2004) 201–210 207

The semantics of Generalized Quantifiedµ-calculus properties are defined in terms of a valuationE , and an
instantiationI. I1 andI2 areI with domain restricted toL1 andL2 respectively.

rm is
zed

ach

n that
e, and

P
l

tified
mplete

mporal
very
ng
tial in

which

rogram
d

• �p�EI = {s: s ∈ S andp ∈F(s)}, • �yi�EI = E(yi), • �xi�EI = I(xi),
• �ψ1(Z1,L1) ∧ ψ2(Z2,L2)�EI = �ψ1(Z1,L1)�EI1 ∩ �ψ2(Z2,L2)�EI2,
• �EX(ψ(Z,L))�EI = {s: ∃s′ such that(s, s′) ∈ R ands′ ∈ �(ψ(Z,L)�EI },
• �AX(ψ(Z,L)�EI = {s: ∀s′ if (s, s′) ∈R thens′ ∈ �(ψ(Z,L)�EI },
• �µy.φ′(y||Z,L)�EI = ⋂{S′ ⊆ S: �φ′(y||Z,L)�E[y←S ′]I ⊇ S′},
• �νy.φ′(y||Z,L)�EI = ⋃{S′ ⊆ S: �φ′(y||Z,L)�E[y←S ′]I ⊇ S′},
• �∃x ∈ ψ1(Z1,L1).[ψ2(Z2,L2)]�EI = ⋃{�ψ2(Z2,L2)�EI2∪Ix

: Ix(x) ∈ �ψ1(Z1,L1)�EI1},• �∀x ∈ ψ1(Z1,L1).[ψ2(Z2,L2)]�EI = ⋂{�ψ2(Z2,L2)�EI2∪Ix
: Ix(x) ∈ �ψ1(Z1,L1)�EI1}.

Theorem 4.1. Model checking of Generalized Quantifiedµ Calculus isPSPACE-complete.

Proof. It has been shown in [7] that the model checking problem for Quantified CTL in its general fo
PSPACE-complete. Since Generalized Quantifiedµ Calculus subsumes Quantified CTL it follows that Generali
Quantifiedµ Calculus model checking is PSPACE-hard.

To prove that Generalized Quantifiedµ Calculus is in PSPACE, we see that given an instantiation of e
variable to a state of the Kripke structure the task of model checking reduces to the model checking of aµ-calculus
formula (including the task of verifying whether the instantiations are from correct domains). It is know
µ-calculus model checking is in NP. The instantiations can be successively generated in polynomial spac
for each instantiation theµ-calculus formula can be checked using the NP algorithm forµ-calculus. It follows
that Generalized Quantifiedµ Calculus model checking is in PSPACENP (a PSPACE Turing Machine with an N
Oracle). Since PSPACENP ⊆ PSPACEPSPACE= PSPACE, it follows that Generalized Quantifiedµ Calculus mode
checking is in PSPACE. �

Over and above the initial result presented in [7], Theorem 4.1 shows that even though Generalized Quan
µ Calculus is significantly richer than Quantified CTL, the model checking complexity remains PSPACE-co
in the general case.

5. Quantification in linear temporal logic

In this section, we present results on the effect of using first-order quantification over states in Linear Te
Logic (LTL). It is known that LTL model checking is PSPACE-complete. However, LTL model checking is
popular (and feasible) because theprogram complexityof LTL model checking (namely, the complexity of checki
LTL formulas of constant length) is linear in the size of the Kripke structure. In other words, the exponen
LTL model checking algorithms is in the length of the formula (and not in the size of the Kripke structure,
is typically much larger).

In this section, we show that even for a very restricted use of first-order quantification over states the p
complexity of LTL model checking becomes intractable. We call this simple extensionScope Restricted Quantifie
LTL. The syntax of this logic is as follows.

φ ::= p | φ ∧ φ | ¬φ | X(φ) | φUφ | ∃x ∈ p.[φ′(x)] | ∀x ∈ p.[φ′(x)] wherep ∈ AP ,
φ′(x) ::= x | φ′(x) ∧ φ′(x) | φ′(x) ∧ φ | ¬φ′(x) | X(φ′(x)) | φUφ′(x).

The semantics of this logic is as follows. Given the structureM let π = s0, s1, s2, . . . be a path (an infinite
sequence of states) such that∀i, i � 0,R(si , si+1). For a given pathπ we useπi to denote thesuffix of π starting

208 K. Chatterjee et al. / Information Processing Letters 91 (2004) 201–210

at si . For a given pathπ in M and a path formulaφ we denoteM,π |= φ to denote whether the pathπ satisfies the
formulaφ.

free

e

,

antified
late

t

raph
fied LTL

n over
the

cation
The truth of a subformulaφ′(x) in a path of the Kripke structure is subject to an instantiation of the
variablex. A free variablex can be instantiated to a states, in which case we labels with x treatingx as an atomic
proposition true only ats. Therefore, instantiation is a labeling functionI : {x} → S which labels the free variabl
x exactly at one state. Given a formulaφ′(x) and an instantiationI we useM,π |= φ′(x)I to denote thatφ′(x) is
true inπ under instantiationI.

• M,π |= p iff p ∈F(s0), wheres0 is the starting state ofπ ,
• M,π |= ¬φ iff M,π �|= φ,
• M,π |= φ1 ∧ φ2 iff M,π |= φ1 andM,π |= φ2,
• M,π |= X(φ) iff M,π1 |= (φ),
• M,π |= φ1Uφ2 iff ∃k � 0 such thatM,πk |= φ2 and∀j,0� j < k M,πj |= φ1,
• M,π |= xI iff I(x) = s0 wheres0 is the starting state ofπ ,
• M,π |= ¬φ′(x)I iff M,π �|= φ′(x)I ,
• M,π |= (φ′

1(x) ∧ φ′
2(x))I iff M,π |= φ′

1(x)I andM,π |= φ′
2(x)I ,

• M,π |= (φ′
1(x) ∧ φ2)I iff M,π |= φ′

1(x)I andM,π |= φ2,
• M,π |= X(φ′(x))I iff M,π1 |= (φ′(x))I ,
• M,π |= (φ1Uφ′

2(x))I iff ∃k � 0 such thatM,πk |= φ′
2(x)I and∀j,0 � j < k M,πj |= φ1,

• M,π |= ∃x ∈ p.[φ′(x)] iff there exists an instantiationI : {x} → S such thatp ∈ F(I(x)) andM,π |= φ′(x)I
• M,π |= ∀x ∈ p.[φ′(x)] iff for all instantiationsI : {x} → S wherep ∈F(I(x)) we haveM,π |= φ′(x)I ,
• M,s |= φ iff for all pathsπ with starting states, we haveM,π |= φ.

We use the abbreviations:F(f) = trueU f (eventuallyf) andG(f) = ¬F(¬f) (alwaysf).

Theorem 5.1. The program complexity of model checking for Scope Restricted Quantified LTL isNP-hard and
coNP-hard.

Proof. We reduce the Hamiltonian path problem to the model checking problem of Scope Restricted Qu
LTL. Consider the graphG = 〈V,E〉 for which we are required to find a Hamiltonian path. We trans
this graph to a Kripke structureM = 〈S,R, s0,AP,F〉 as follows:S = V ∪ {u0, u1} such thatu0, u1 /∈ V ,
R = E ∪ {〈u0, v〉: v ∈ V } ∪ {〈v,u1〉: v ∈ V } ∪ {〈u1, u1〉}, s0 = u0, AP = {true,p}, andF(v) = {true,p}, ∀v ∈ V

andF(u0) =F(u1) = {true}.
Let us consider the formulaψ = ∀x ∈ p.[F(x) ∧ G(x ⇒ XG(¬x))]. The path formulaF(x) ∧ G(x ⇒

X(G(¬x))) is true on a path if there is a state labeledx on the path (expressed asF(x)) and it holds globally tha
wheneverx holds in a state of the path then from the next state onwardsx never occurs again (G(x ⇒ X(G(¬x))).
Hence it is easy to see thatM,u0 |= ¬ψ iff there is no such path. HenceM,u0 |= ¬ψ iff the graphG does not
have a Hamiltonian path. Thusψ is a formula of constant length which describes the Hamiltonian path of a g
using scope restricted quantification on path. Hence the program complexity of Scope Restricted Quanti
is NP-hard and coNP-hard.�

6. Generalized quantified LTL

Though the program complexity of LTL model checking becomes significantly harder under quantificatio
states, the overall complexity of LTL model checking remains PSPACE-complete even when we generalize
scope of quantification. We shall refer to the following extension of LTL with unrestricted use of quantifi
over states asGeneralized Quantified LTL.

K. Chatterjee et al. / Information Processing Letters 91 (2004) 201–210 209

φ(L) ::= ¬φ(L) | φ(L) ∧ φ(L) | X(φ(L)) | φ(L)Uφ(L) | p | y wherep ∈ AP andy ∈ Y ,
Q(L) ::= ∃x ∈ Q(L).[Q(x ‖ L)] | ∀x ∈ Q(L).[Q(x ‖L)] wherex /∈ L

s
antics

).

e

orrect
ach
king a

,

d linear
ity.
riching

similar
igh-

ogy,
| Q(L) ∧ Q(L) | X(Q(L)) | ¬Q(L) | φ(L) | Q(L)UQ(L) | x wherex ∈X .

The roles of the variables and their meanings are similar to that of Section 4. Generalized Quantified LTL formula
are of the formQ([]) where[] is the empty list. The semantics is also similar, however we present the sem
for the interesting ones:

• M,π |= (ψ1(L1)Uψ2(L2))I iff ∃k � 0,M,πk |= ψ2(L2)I2 and∀j , 0� j < k, M,πj |= ψ1(L1)I1

whereI1 (respectivelyI2) is I with domain restricted toL1 (respectivelyL2).
• M,s |= ψI iff for all pathsπ with starting states andM,π |= ψI .
• M,π |= ∃x ∈ ψ1(L1)[ψ2(L2)] iff ∃ instantiationIx : {x} → S of x such thatM,Ix(x) |= ψ1(L1)I1

andM,π |= ψ2(L2)I2∪Ix
, whereI1 (respectivelyI2) is I with domain restricted toL1 (respectivelyL2).

• M,π |= ∀x ∈ ψ1(L1)[ψ2(L2)] iff ∀ instantiationIx : {x} → S of x such thatM,Ix(x) |= ψ1(L1)I1

we haveM,π |= ψ2(L2)I2∪Ix
, whereI1 (respectivelyI2) is I with domain restricted toL1 (respectivelyL2

Theorem 6.1. Model checking Generalized Quantified LTL isPSPACE-complete.

Proof. Since Generalized Quantified LTL subsumes LTL andLTL model checking is PSPACE-complete [8], th
model-checking problem for Generalized Quantified LTL is PSPACE-hard.

It follows from the semantics of Generalized Quantified LTL that given aninstantiation ofeach variable the
task of model checking reduces to model checking of a LTL formula (including the verification of the c
domains of instantiations). The instantiations can be generated in polynomial space recursively and for e
instantiation the LTL formula can be verified in PSPACE using the PSPACE algorithm for model chec
LTL formula [8]. Hence we have that model checking of Generalized Quantified LTL∈ PSPACEPSPACE(that is, a
PSPACE Turing machine with a PSPACE oracle). Hence Generalized Quantified LTL can be checked in PSPACE
since PSPACEPSPACE= PSPACE. �

7. Conclusion

In this work, we have shown that the power of first-order quantification over states in branching time an
time temporal logics comes with an associated computational overhead in terms of model checking complex
In the case of branching time logics its scope-restricted use is computationally effective as well as en
in terms of expressibility. In the case of linear temporal logic, the model checking problem remains
(PSPACE-complete), but the increase in program complexity is likely to limit its applicability to verifying h
level abstractions of state-machines.

Acknowledgements

Pallab Dasgupta and P.P. Chakrabarti acknowledge the support of the Department of Science and Technol
Government of India, for this work.

References

[1] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, MIT Press, Cambridge, MA, 2000.

210 K. Chatterjee et al. / Information Processing Letters 91 (2004) 201–210

[2] M. Dam, CTL* and ECTL* as fragments of the modalµ-calculus, Theoret. Comput. Sci. 126 (1994) 77–96.
[3] E.A. Emerson, Model checking and the mu calculus, in: N. Immerman, P. Kolatis (Eds.), Proc. of DIMACS Symposium on Descriptive

nce

(2)

. 82

P,
Complexity and Finite Model, 1996, pp. 185–214.
[4] E.A. Emerson, C.L. Lei, Efficient model checking in fragmentsof the mu calculus, in: IEEE Symposium on Logic in Computer Scie

(LICS), Cambridge, MA, June 1986.
[5] D. Kozen, Results on the propositionalµ-calculus, Theory Comput. Sci. 27 (1983) 333–354.
[6] O. Kupferman, Augmenting branching temporal logics with existential quantification over atomic propositions, J. Logic Comput. 9

(1999) 135–147.
[7] A.C. Patthak, I. Bhattacharya, A. Dasgupta, P. Dasgupta, P.P. Chakrabarti, Quantified computation tree logic, Inform. Process. Lett

(2002) 123–129.
[8] A.P. Sistla, E.M. Clarke, The complexity of propositional linear temporal logics, J. ACM 32 (3) (1985) 733–749.
[9] A.P. Sistla, M.Y. Vardi, P. Wolper, The complementation problem for Buchi automata with applications to temporal logic, in: 10th ICAL

in: Lecture Notes in Comput. Sci., vol. 194, Springer, Berlin, 1985, pp. 465–474.

