
Information Processing Letters 82 (2002) 123–129

Quantified Computation Tree Logic

A.C. Patthak, I. Bhattacharya, A. Dasgupta∗, Pallab Dasgupta, P.P. Chakrabarti
Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur, India 721302

Received 4 January 2001; received in revised form 4 July 2001
Communicated by K. Iwama

Abstract

Computation Tree Logic (CTL) is one of the most syntactically elegant and computationally attractive temporal logics for
branching time model checking. In this paper, we observe that while CTL can be verified in time polynomial in the size of
the state space times the length of the formula, there is a large set of reachability properties which cannot be expressed in
CTL, but can still be verified in polynomial time. We present a powerful extension of CTL with first-order quantification over
sets of reachable states. The extended logic, QCTL, preserves the syntactic elegance of CTL while enhancing its expressive
power significantly. We show that QCTL model checking is PSPACE-complete in general, but has a rich fragment (containing
CTL) which can be checked in polynomial time. We show that this fragment is significantly more expressive than CTL while
preserving the syntactic beauty of CTL. 2002 Elsevier Science B.V. All rights reserved.

Keywords:Computation Tree Logic; Model checking; Verification

1. Introduction

Temporal logic model checking [4,6] has emerged
as one of the most powerful techniques for verifying
temporal properties of finite state programs [3,11,
14]. In this approach, the program is modeled as a
finite state non-deterministic transition system. The
correctness property that needs to be verified on the
transition system is specified in terms of a temporal
logic formula. Model checking has been extensively
studied for two broad categories of temporal logics,
namelylinear time temporal logicandbranching time
temporal logic[5].

The branching time temporal logic,Computation
Tree Logic (CTL) [4], is one of the most popular

* Corresponding author.
E-mail addresses:pallab@cse.iitkgp.ernet.in (A. Dasgupta),

ppchak@cse.iitkgp.ernet.in (P.P. Chakrabarti).

temporal logics in practice. CTL allows us to express
a wide variety of branching time properties which
can be verified in polynomial time (that is, the time
complexity of CTL model checking is polynomial in
the size of the state transition system times the length
of the CTL formula). This makes CTL model checking
computationally attractive as compared to the linear
time temporal logic, LTL, and the more expressive
branching time logic CTL∗. Model checking with LTL
and CTL∗ are known to be PSPACE-complete [4,6].

Intuitively, CTL model checking derives its compu-
tational superiority over temporal logics such as LTL
and CTL∗ from the fact that CTL formulas can be
recursively decomposed into subformulas which can
be checked independently on the states of the system.
Once this is done, the verification of the formula itself
reduces to a simple question of reachability through
the states marked by the subformulas. Since the reach-
ability question can be answered in polynomial time,

0020-0190/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(01)00260-5



124 A.C. Patthak et al. / Information Processing Letters 82 (2002) 123–129

we get a dynamic programming solution to the prob-
lem which works in polynomial time [6].

The work described in this paper is inspired by
the fact that there exists a wide variety of interesting
branching time temporal properties which can be
evaluated in polynomial time, but are not expressible
in CTL. For example, if we wish to determine whether
there exists a path from statesi to somestate where
the propertyf is true, we can express this in CTL
as E(trueUf ). On the other hand, if we wish to
determine whether there exists paths from statesi to
eachstate where the propertyf is true, we cannot
express this succinctly in CTL without explicitly
enumerating the states wheref is true. Similarly,
suppose we wish to determine whether there exists a
statet such thatq is true att , there exists a path from
si to t through states labeled byp, and there exists
a path fromsi to t through states labeled byr. This
query is not expressible in CTL (the CTL formula
E(pU q) ∧ E(r U q) does not force us to find paths
to a common statet whereq is true).

Formally, in a CTL formula of the formE(f U g)

(wheref and g are CTL subformulas), we always
look for a path tosomestate whereg is true through
states wheref is true, thereby implicitly imposing an
existential quantification over the set of states which
are labeled byg. In other words, ifG denotes the
set of states whereg is true, thenE(f U g) asks
whether∃x ∈ G,E(f U x). If we wished to determine
whether there aref -paths to each state inG, we could
have written this property asϕ = ∀x ∈ G,E(f U x).
This universal quantification over the setG cannot be
expressed succinctly in CTL, though it is not difficult
to establish that iff and g are polytime checkable,
then so isϕ.

In this paper, we extend CTL formulas to allow
both universal and existential quantification over the
sets of states where its subformulas are true. The
resulting logic, which we callQuantified CTL(QCTL)
borrows the quantifiers∃ and∀ from first-order logic.
In this context it should be noted that the relation
between first-order logic and temporal logics have
been extensively studied by researchers [8,13]. It has
also been shown that CTL and CTL∗ can be expressed
using well defined fragments of first-order logic [1,
9]. On the other hand, extending the expressibility of
CTL while preserving its elegant syntactic structure
is attractive from the specificational point of view.

The idea of extending the expressive power of CTL
by importing first-order quantifiers has been explored
in [10] as well, though with a different objective
and an altogether different semantics. In [10], the
quantification was done over atomic propositions. In
contrast we have seen that extending quantification
over sets of states which satisfy a sub-formula allows
us to express a wide range of queries which are not
succinctly expressible in CTL. The logic proposed in
this paper preserves the syntactic elegance of CTL
while enhancing its expressive power.

In this paper we present the logic QCTL which al-
lows both universal and existential quantification over
sets of states satisfying sub-properties. We establish
that in its general form, QCTL model checking is
PSPACE-complete. We then identify a rich fragment
of QCTL by restricting the scope of the quantifica-
tions. The restricted fragment of QCTL contains CTL
and preserves the syntactic elegance of CTL. We es-
tablish that the restriction of QCTL can be verified in
time polynomial in the size of the state space times the
length of the formula.

The paper is organized as follows. In Section 2
we illustrate the proposed logic through examples.
Section 3 presents the formal syntax and semantics
of QCTL. In Section 4 we establish that QCTL
model checking is PSPACE-complete in general. The
polytime checkable fragment of QCTL is presented in
Section 5.

2. Examples

In this section we illustrate the proposed logic
QCTL through a couple of motivating examples.
Consider the transition system shown in Fig. 1. States
labeled by the atomic proposition,t , are theterminal
states of the systems. Similarly states labeled byc are
control states and states labeled byo areobservable
states.

We now illustrate some interesting properties which
can be expressed in QCTL but not succinctly in CTL.
• Are all terminal states reachable froms0? We write

this in QCTL as:

ϕ1 = ∀x ∈ t
[
E(trueU x)

]
.

In Fig. 1, this formula is true ats0.



A.C. Patthak et al. / Information Processing Letters 82 (2002) 123–129 125

Fig. 1. Sample transition system.

• Is there a terminal state which can be reached from
s0 through only control states as well as through
only observable states? This is expressed in QCTL
as:

ϕ3 = ∃x ∈ t
[
E(cU x)∧E(oU x)

]
.

In Fig. 1, this formula is false ats0, though there is a
path through control states tot0, and a path through
observable states tot1.

• Is there a state in future which satisfies the previous
property, ϕ3, and can be reached only through
control states froms0? This composite property can
be expressed as:

∃x ∈ (ϕ3)
[
E(cU x)

]
which in its full form is as follows:

∃x ∈ (∃y ∈ t
[
E(cU y)∧E(oU y)

])[
E(cU x)

]
.

Note thatx is chosen from the set of states which
satisfyϕ3. This property is indeed true ats0, with
ϕ3 being true ats4.

• Is there a terminal state which is reached along all
paths? We write this as:

∃x ∈ t
[
A(trueU x)

]
.

This property is false ats0, but true ats5.
• Is it the case that every path to a terminal state

reaches the terminal state only through states which
are either control states or observables states? We
write this in QCTL as:

¬∃x ∈ t
[
E

(
trueU

(¬(c ∨ o)∧
E(trueU x)∧ ¬x

))]
.

This property is false ats0, but true ats2.

None of the above properties are expressible in CTL.
However, every CTL formula is a QCTL formula
without quantifiers. Therefore, QCTL is strictly more
expressive than CTL.

QCTL is also useful for specifying interesting graph
reachability queries. For example, let us consider the
problem of identifying thekings in a tournament
graph [15]. A tournament is an orientation1 of a
complete graph (clique). An edge from vertexxi to
vertexxj indicates that teamxi has won over teamxj .
A king of the tournament is a vertexxk such that for
every other vertexxi , either there is an edge fromxk to
xi (that is,xk defeatedxi ) or there is an edge fromxk to
some vertexxj such thatxj has an edge toxi (that is,
xk has defeated someone who defeatedxi ). It is easy
to see that the kings of a tournamentG = (V ,E) is
exactly the set of vertices that can be labeled by the
following QCTL formula:

ϕ = ∀i ∈ true
[
i ∨EX(i)∨EXEX(i)

]
.

If we wanted to determine whether there is any team
which has defeated all kings, we could specify that as:

∀k ∈ ϕ
[
EX(k)

]
,

whereϕ is as above.

3. Syntax and semantics of QCTL

In this section we present the formal syntax and
semantics of QCTL in its general form. In Section 4
we shall establish that QCTL model checking is
PSPACE-complete in general, and in Section 5 we
present a rich subset of QCTL which can be checked
in polynomial time.

The truth of QCTL formulas are interpreted over a
finite Kripke structure,J = 〈AP, S,R, s0,F〉, where:
• AP is a set of atomic propositions,
• S is a finite set of states,
• R ⊆ S × S is a transition relation, where(si , sj ) ∈
R implies thatsj is a successor state of the statesi ,

• s0 ∈ S is the initial state,
• F :S → 2AP is a labeling of states with atomic

propositions true in that state.
A path, π , in the Kripke structure is an infinite
sequence of states,s0, s1, . . . , such that for alli, si ∈ S

1 An orientation of an undirected graph is a directed graph
obtained by giving a direction to its edges.



126 A.C. Patthak et al. / Information Processing Letters 82 (2002) 123–129

andR(si , si+1). s0 is called the starting state ofπ .
Since the Kripke structure has a finite set of states, one
or more states will appear multiple number of times on
a path. In other words, a path (as defined here) is an
infinite walk over the state transition graph.

The formal grammar of QCTL is as follows:

C(L) = ¬C(L) | C(L)∧C(L) | C(L) ∨C(L)
| AX

(
C(L)

) | EX
(
C(L)

)
| A(

C(L)U C(L)
) | E(

C(L)U C(L)
) | p

wherep ∈AP ∪L,

Q(L) = ∃x ∈ Q(L)
[
Q(x ‖ L)

]
wherex /∈ L

| ∀x ∈ Q(L)
[
Q(x ‖L)] wherex /∈L

| Q(L) ∧Q(L) | Q(L) ∨Q(L)
| AX

(
Q(L)

) | EX
(
Q(L)

)
| A(

Q(L)U Q(L)
) | E(

Q(L)U Q(L)
)

| ¬Q(L) | C(L)

QCTL= Q
([]) where [] stands for an empty list.

The symbolL represents a list offreevariables.C(L)
andQ(L) respectively represent CTL and QCTL sub-
formulas with free variables inL. The stringx ‖ L
represents the appending of the variablex in the listL.
The non-terminalQCTLrepresents QCTL formulas. It
should be noted thatQCTL= Q([]), that is, a QCTL
formula cannot have a free variable (L is empty),
though its subformulas may have free variables.C([])
represents traditional CTL formulas (without free
variables).

The truth of a QCTL sub-formula,Q(L), at a state
of the Kripke structure is subject to aninstantiationof
the free variables in its listL. A free variablex ∈ L
can be instantiated to a stateν, in which case welabel
ν with x and treatx as an atomic proposition true
only in ν. Thus an instantiation ofL can be viewed
as a labeling functionI :L → S, where each label
x ∈ L can be used on at most one state. For QCTL
subformulas without free variables,I is always empty.
Given a QCTL subformulaϕ(L) and an instantiation
I, we use the notations |=I ϕ(L) to indicate thatϕ(L)
is true at states under the instantiationI. If L is empty,
then we use the notations |= ϕ to indicate thatϕ is true
at s. Likewise if a path formulaψ is true in a pathπ
under instantiationI, we denote this byπ |=I ψ . The
semantics of QCTL is as follows.

• ∀s ∈ S, s |= Trueands �|= False,
• s |= p iff p ∈F(s),
• s |=I x iff I(x) = s,
• s |=I ¬ϕ(L) iff s �|=I ϕ(L),
• s |=I ϕ1(L1)∧ ϕ2(L2) iff s |=I1 ϕ1(L1) ands |=I2

ϕ2(L2), whereI1 (respectivelyI2) is I with do-
main restricted toL1 (respectivelyL2),

• s |=I ϕ1(L1) ∨ ϕ2(L2) iff s |=I1 ϕ1(L1) or s |=I2

ϕ2(L2), whereI1 (respectivelyI2) is I with do-
main restricted toL1 (respectivelyL2),

• s |=I EXϕ(L) iff ∃s′, R(s, s′) such thats′ |=I
ϕ(L),

• s |=I AXϕ(L) iff ∀s′, R(s, s′) we have s′ |=I
ϕ(L),

• π |=I ϕ1(L1)U ϕ2(L2) iff there exists a statet ∈
π such that t |=I2 ϕ2(L2), and for each state
si preceding t in π , si |=I1 ϕ1(L1), where I1
(respectivelyI2) is I with domain restricted toL1

(respectivelyL2),
• s |=I E(ϕ1(L1)U ϕ2(L2)) iff there exists a pathπ

starting ats such thatπ |=I ϕ1(L1)U ϕ2(L2),
• s |=I A(ϕ1(L1)U ϕ2(L2)) iff for each pathπ start-

ing ats we haveπ |=I ϕ1(L1)U ϕ2(L2),
• s |=I ∃x ∈ ϕ1(L1) [ϕ2(x ‖ L2)] iff there exists an

instantiationIx : {x} → S of x such thatIx(x) |=I1

ϕ1(L1) ands |=I2∪Ix
ϕ2(x ‖ L2), whereI1 (respec-

tively I2) is I with domain restricted toL1 (respec-
tively L2),

• s |=I ∀x ∈ ϕ1(L1)[ϕ2(x ‖ L2)] iff for every in-
stantiationIx : {x} → S of x such thatIx(x) |=I1

ϕ1(L1) we haves |=I2∪Ix
ϕ2(x ‖ L2), whereI1 (re-

spectivelyI2) is I with domain restricted toL1 (re-
spectivelyL2).

4. Complexity of QCTL model checking

The following theorem establishes that QCTL model
checking is PSPACE-complete.

Theorem 4.1. QCTL model checking isPSPACE-
complete.

Proof. We reduceQBF-SAT, that is, the satisfiability
of Quantified Boolean Formulas(QBFs) to QCTL
model checking.QBF-SAT is known to be PSPACE-
complete [12].



A.C. Patthak et al. / Information Processing Letters 82 (2002) 123–129 127

Fig. 2. Model for∃x1∀x2∃x3∀x4(x1 ∨ ¬x2 ∨ x3)∧ (x2 ∨ x3 ∨ x4)∧ (¬x3 ∨ x1 ∨ x4).

Given a QBF of the form:∃x1∀x2∃x3 . . .∀xnQ(x1,

x2, . . . , xn) we illustrate the construction of a Kripke
structure,J , and a QCTL formula,ψ , to be verified
on the start state ofJ . Without loss of generality [12],
we assume that the Boolean formulaQ(x1, x2, . . . , xn)

is in conjunctive normal form(CNF) havingk clauses
c1, . . . , ck, where each clause is a disjunction of liter-
als. We construct a Kripke structure:J = 〈AP, S,R,

s0,F〉, where:
• AP = {V1, . . . , Vn} ∪ {C};
• S = {s0, . . . , sn} ∪ {x1, . . . , xn} ∪ {x ′

1, . . . , x
′
n} ∪ {c1,

. . . , ck};
• s0 ∈ S is the initial state;
• the labeling relationF :S → 2AP is as follows:

– ∀i,1� i � n, F(xi) =F(x ′
i) = Vi , and

– ∀i,1� i � k, F(ci) = C;
• the transition relationR is as follows:

– ∀i,0� i < n, R(si , xi+1) andR(si , x
′
i+1),

– ∀i,0< i � n, R(xi, si ) andR(x ′
i , si),

– ∀i,0< i � n and∀j,0< j � k, R(xi, cj ) iff the
clausecj in the given QBF contains the literalxi ,

– ∀i,0< i � n and∀j,0< j � k, R(x ′
i , cj ) iff the

clausecj in the given QBF contains the literal
¬xi ,

– ∀j,0< j � k, R(cj , cj ),
– R(sn, sn).

Fig. 2 shows the Kripke structure corresponding to the
following QBF:

∃x1∀x2∃x3∀x4(x1 ∨ ¬x2 ∨ x3)∧
(x2 ∨ x3 ∨ x4) ∧ (¬x3 ∨ x1 ∨ x4).

The QCTL formula corresponding to this formula will
be as follows:

∃v1 ∈ V1
[∀v2 ∈ V2

[∃v3 ∈ V3
[∀v4 ∈ V4[∀c ∈ C

[
E(trueU(v1 ∧EX(c)))∨
E(trueU(v2 ∧EX(c)))∨
E(trueU(v3 ∧EX(c)))∨
E(trueU(v4 ∧EX(c)))

]]]]]
.

In general, the QCTL formula corresponding to the
given QBF is of the form:

ψ = ∃v1 ∈ V1

[
∀v2 ∈ V2

[
. . .

[
∀vn ∈ Vn

[
∀c ∈ C

[ ∨
j∈{1,n}

E
(
trueU(vj ∧EX(c))

)]]]
. . .

]]
.

There is a one-to-one correspondence between the
instantiations of the variables in the given formula
Q(x1, . . . , xn), and the instantiations of the variables
in the following QCTL subformula ofψ :

ϕ(v1, . . . , vn)

= ∀c ∈ C

[ ∨
j∈{1,n}

E
(
trueU(vj ∧ EX(c))

)]
.

Specifically, ifxi is instantiated to true inQ, then we
instantiatevi to the statexi , and if xi is instantiated
to false inQ, then we instantiatevi to the statex ′

i , and
vice versa. Therefore we require to show that those and
only those instantiations which satisfyQ are the ones
under whichs0 modelsϕ.

If xi (respectivelyx ′
i ) is chosen by the instantiation,

thenE(trueU(vi ∧EX(c))) is satisfied only for those
clauses,c, which containxi (respectively¬xi ) as a



128 A.C. Patthak et al. / Information Processing Letters 82 (2002) 123–129

literal (this follows from the definition of the transition
relation R). Since we use∀c ∈ C to quantify the
disjunction of E(trueU(vi ∧ EX(c))), we require
an instantiation whereeachclause is satisfied by at
least onevi . For the other direction, any instantiation
of the vis for which ϕ holds at s0, must satisfy
at least one ofE(trueU(vi ∧ EX(c))) at s0 for
everyc. The instantiations of thevis therefore yields
an instantiation ofxis inQ which satisfiesQ.

It is easy to see that QCTL is in PSPACE. Given
the instantiations of each variable to a state of the
Kripke structure, the verification task reduces to CTL
model checking (including the verification of whether
the instantiations are from the correct domains). This
can be done in polynomial space. The instantiations
can be generated recursively in polynomial space and
verified as above. ✷

5. An efficiently verifiable fragment of QCTL

Intuitively, the computational complexity of QCTL
model checking is dictated by the scope of the quanti-
fiers in the structure of the formula. This is no surprise
as it is common in first-order logic. In this section we
present a fragment of QCTL which restricts the scope
of the quantifiers and yet captures all properties ex-
pressible in CTL as well as a wide variety of reach-
ability properties which cannot be expressed in CTL.
We show that this fragment of QCTL can be verified
in polynomial time.

The grammar ofscope restrictedQCTL is as
follows:

C(x) = ¬C(x) | C(x)∧C(x) | C(x)∨C(x)

| AX
(
C(x)

) | EX
(
C(x)

)
| A(

C(x)U C(x)
) | E(

C(x)U C(x)
) | p

wherep ∈AP ∪ {x},
Q(x)= ∃y ∈ Q

([]) [
Q(y)

] | ∀y ∈ Q
([]) [

Q(y)
]

| Q(x)∧Q(x) | Q(x)∨ Q(x)

| AX
(
Q(x)

) | EX
(
Q(x)

) | A(
Q([])U Q(x)

)
| E(

Q([])U Q(x)
) | ¬Q(x) | C(x),

QCT L = Q
([]).

It may be noted that in this fragment of QCTL, we
restrict subformulas to have at most one free variable,
x. C([]) represents the set of pure CTL formulas.

All the properties illustrated in Section 2 are con-
tained in this fragment of QCTL. Moreover, the fol-
lowing four basic forms of reachability from a states,
to a set of statesZ can be expressed in this fragment.
• Is there a path froms to some state inZ? This can

be expressed as:

∃z ∈ Z
[
E(trueU z)

]
.

This is equivalent to the CTL formulaE(trueU Z).
• Are there paths froms to every state inZ? This can

be expressed as:

∀z ∈ Z
[
E(trueU z)

]
.

• Is there a statez in Z such that all paths froms
reachz? This can be expressed as:

∃z ∈ Z
[
A(trueU z)

]
.

• For each statez in Z, is it the case that all paths
from s reachz? This can be expressed as:

∀z ∈ Z
[
A(trueU z)

]
.

SinceZ in turn can denote the set of states labeled
by some other property, QCTL generalizes CTL while
preserving its decomposable nature. It should be noted
that only the first of the above four properties can be
expressed succinctly in CTL without enumerating the
states inZ. Thus, even the scope restricted fragment
of QCTL significantly enhances the expressive power
of CTL.

Theorem 5.1. The truth of a scope restricted QCTL
formulaf of length|f | can be verified in all states of a
Kripke structureJ = 〈AP, S,R, s0,F〉 in O(|f | · |S| ·
(|R| + |S|)) time.

Proof. Let us consider a CTL subformula of the form
f = C(x). For a given instantiation,I, of the variable
x, the problem of verifying the truth ofC(x) at a
state of the Kripke structure is equivalent to verifying
the CTL formula obtained by treatingx as an atomic
proposition inC(x), which labels only the stateI(x).
Using the algorithm presented in [4] we can verify
C(x) for any given instantiation ofx in O(|f | · (|R| +
|S|)) time.

We now use induction on the length of the scope re-
stricted QCTL formula to establish the result. For the
basis condition, we have already shown that for a given
instantiation ofx, a CTL formulaf = C(x), can be



A.C. Patthak et al. / Information Processing Letters 82 (2002) 123–129 129

verified in O(|f | · (|R| + |S|)) time. Let us now con-
sider a formula of the formϕ = ∃y ∈ Q1([]) [Q2(y)].
Since each subformula,ψ , of ϕ of the form Q([])
is independent of the instantiation ofy, by the in-
duction hypothesis, we can verifyψ at all states in
O(l · |S| · (|R|+ |S|)) time, wherel denotes the length
of ψ . If l1 denotes the length ofQ1([]), then verifying
Q1([]) at all states requires O(l1·|S| ·(|R|+|S|)) time.

Once this labeling is done for all subformulas of
the form Q([]), we can treat these subformulas as
atomic propositions labeling the states of the system.
The remaining subformulas are CTL subformulas of
the formC(x). Thus once the labeling of states with
subformulas of the formQ([]) is done,Q2(y) can
be looked upon as a CTL formula of the formC(y).
For each instantiation ofy, we can now verifyQ2(y)

at all states in O(l2 · (|R| + |S|)) time, wherel2 =
|ϕ| − l1 denotes the length ofQ2(y). Since there can
be at most|S| instantiations ofy, the total complexity
of verifying Q2(y) for all instantiations at all states
is O(l2 · |S| · (|R| + |S|)). Combining this with the
complexity of verifyingQ1([]) at all states, the total
complexity of verifyingϕ at all states is O(|ϕ| · |S| ·
(|R| + |S|)).

Since both existential and universal quantification
may instantiate each state inS, the worst case com-
plexity of verifying a formula of the formϕ = ∀y ∈
Q1([]) [Q2(y)] is identical. ✷

6. Conclusion

This paper proposes the logic QCTL and shows that
while QCTL model checking is PSPACE-complete in
general, there is a rich fragment of QCTL which can
be verified in polynomial time. We have shown that
the scope restricted fragment of QCTL is strictly more
expressive than CTL. We have also demonstrated (in
Section 2) several interesting properties that can be
expressed in scope restricted QCTL, but not in CTL.

In recent times, researchers have found the use tem-
poral logics attractive for specifying planning goals [2,
7]. We feel that the logic QCTL has some interest-
ing features which are applicable to planning prob-
lems. For example, simple queries such as finding out
whether there exists any city in stateA which can be
reached from a given city in stateB both by an air-
route as well as a rail-route, cannot be expressed in
CTL and LTL, but can be expressed in QCTL. Inves-

tigating the applicability of QCTL in planning as well
as other domains remains an interesting objective.

Acknowledgements

Pallab Dasgupta and P.P. Chakrabarti acknowledge
the support of Sun Microsystems, USA, for this work.
P.P. Chakrabarti further acknowledges the Department
of Science & Technology, Government of India for
partial support. Pallab Dasgupta further acknowledges
the Indian National Science Academy for partial sup-
port.

References

[1] N. Alechina, N. Immerman, Reachability Logic: An efficient
fragment of transitive closure logic, Logic J. IGPL 8 (3) (2000)
325–338.

[2] F. Bacchus, F. Kabanza, Planning for temporally extended
goals, Ann. of Math. Artificial Intelligence 22 (1998) 5–27.

[3] E.M. Clarke, E.A. Emerson, Design and synthesis of synchro-
nization skeletons using branching time temporal logic, in:
Proc. Workshop on Logic of Programs, Lecture Notes in Com-
put. Sci., Vol. 131, Springer, Berlin, 1981, pp. 52–71.

[4] E.M. Clarke, E.A. Emerson, A.P. Sistla, Automatic verification
of finite-state concurrent systems using temporal logic speci-
fications, ACM Trans. Prog. Lang. Systems 8 (2) (1986) 244–
263.

[5] E.M. Clarke, R.P. Kurshan, Computer aided verification, IEEE
Spectrum 33 (6) (1996) 61–67.

[6] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, MIT
Press, Cambridge, MA, 2000.

[7] G. De Giacomo, M.Y. Vardi, Automata-theoretic approach to
planning for temporally extended goals, in: Proc. 5th European
Conf. on Planning, 1999, pp. 228–240.

[8] N. Immerman, Relational queries computable in polynomial
time, Inform. and Control 68 (1986) 86–104.

[9] N. Immerman, M. Vardi, Model checking and transitive
closure logic, in: Proc. of CAV’97, 1997, pp. 291–302.

[10] O. Kupferman, Augmenting branching temporal logics with
existential quantification over atomic propositions, J. Logic
Comput. 9 (2) (1999) 135–147.

[11] O. Lichtenstein, A. Pnueli, Checking that finite state concur-
rent programs satisfy their linear specification, in: Proc. 12th
POPL, 1985, pp. 97–107.

[12] C.H. Papadimitriou, Computational Complexity, Addison-
Wesley, Reading, MA, 1994.

[13] M. Vardi, Complexity of relational query languages, in:
STOC’82, 1982, pp. 137–146.

[14] M. Vardi, Alternating automata and program verification, in:
Computer Science Today: Recent Trends and Developments,
Lecture Notes in Comput. Sci., Vol. 1000, Springer, Berlin,
1995.

[15] D.B. West, Introduction to Graph Theory, Prentice-Hall, En-
glewood Cliffs, NJ, 1996.


