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Positional Strategies for Mean Payoff Games 

By A.Ehrenfeucht and J. Mycierski, Boulder 1 )2) 

Abstract: We study some games of perfect information in which two players move alternately 
along the edges of a finite directed graph with weights attached to its edges. One of them wants to 
maximize and the other to minimize some means of the encountered weights. 

Introduction 

We study two games of  perfect information, one infinite, 1-', and another f'mite, G. 
They are two person games but the first is not  O-sum. The players take turns moving a 
pawn from a designated starting position over the edges o f  a f'mite directed graph with 
real numbers attached to its edges. The payoffs are certain means of  the encountered 
numbers. V originally motivated this study, but G seems equally interesting. The re- 
suits assert the existence of  optimal positional strategies, i.e., strategies securing the 
optimal payoff, if used against a perfect opponent, and such that the choices depend 
only on the position o f  the pawn and do not depend on the previous choices. An 
amusing feature o f  our proofs is that we have to use both games to establish our claims 
about any one of  them. 

Some other facts about the existence o f  optimal positional strategies are known, see 
Mycielski[ 1966, section 0]. 

Results 

LetA be a finite set, a0 EA,  Po C A  X A, Qo C A  X A, P =  Po X {0) and 
Q = Qo x {1}. We think of  P and Q as of  two directed graphs over the finite set o f  ver- 
tices A ; i fx  = ((a, b), c) E P U Q then x is called an arrow, a is called the tail o f  x, b is 
called the head o f x  and c the color o f x .  We assume that ao is a tail o f  some arrow of  
P, the head of  every arrow of  P i s  the tail o f  some arrow of  Q and the head o f  every ar- 
row of  Q is the taft o f  some arrow of  P. Let 9: P O Q -* R, where R is the real line. 
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We define a two person game F = P (ao, P, Q, ~) with perfect information and with 
the following rules. Player I chooses any arrow Xo E P with tail ao, then player II 
chooses x 1 E Q with tail equal to the head o fxo  and again I chooses x2 E P with tail 
equal to the head o f x  1 etc. After the infinite sequence x = (Xo, x 1, �9 �9 .) is completed 
I looses the value 

1 n-1 
v I (x) = limn_~.sup --n i~O ~ (xi) 

and II wins the value 

vii (x) = lira inf 1 n-1 - ~ ~ (xi). 
n~*~ n i=0 

Le tDo  be the domain of Po, i.e.,Do ={a:  ~ b C A  [(a, b) E P o ] ) ,  andD1 be the 
domain of  Qo. A positional strategy for  player I is a function f :  Do -~ A such that  
(a, f (a)) E Po for all a E Do and a positional strategy for  player H is a function g: 
D1 --> A such that (a, g (a)) E Qo for all a E D 1. I f  I decides to use f and II decides to 
use g then the resulting play is 

((ao, f (ao) ) ,  0), ( ( f  (ao), g f  (ao)), 1), ((gf (ao), fg f (ao)) ,  O) . . . .  

Theorem 1 : There exists a value v (F) such that player I has a positional strategy which 
secures v I (x) ~ v (17) and player II has a positional strategy which secures 
vii  (x)  >t v (r ) .  

Now we define a finite game G -- G (ao, P, Q, ~) which is also a game of  perfect in- 
"formation and is played in the same way as F except that it ends as soon as one of the 
players chooses an arrow x n whose head equals the tail of  an arrow x m chosen earlier 
by the other player. (Notice that m + n is odd and the plays of  G have no more than 
2 I A I moves.) Then player I pays to II the value 

1 n 

_z m ~ (xi). n - - m +  l i= 

Since G is a finite 0-sum game of  perfect information hence it has a value v (G). 
Positional strategies for G are defined in the same way as for F. 

Theorem 2: v (G) = v (F) and there are positional strategies for each of  the players 
which secure v (G) both in G and in F. 

This result about the existence of good positional strategies in G is somewhat sur- 
prising, as one may think that  the knowledge of previous positions may be necessary 
for closing a loop securing v (G). Our tempo conditions are essential for the validity of  
Theorem 2, i.e., if  the definition of  G was modified so that the game ends when the 
first loop is formed, disregarding the requirement that it must be the arrival o f  the 
same player to the same position, then Theorem 2 may fail. Figure 1 is such an exam- 
ple. 
Here all the arrows are assumed to be bicolored and all the values ~ (x) are 0 except at 
the vertical arrow where it is 1. Clearly, in this game, player II has a strategy which se- 
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a 0 Fig. 1 

cures an outcome i> 1/3 but he has no positional strategy which secures an outcome 
> 0 .  

Our proofs are roundabout,  we use the  infinite game F to establish facts about  the 
f'mite game G and vice versa. Perhaps more direct proofs would be desirable. 

Our results were announced in Ehrenfeucht/Mycielski [ 1973]. 

Proofs 

Let s be any strategy for player X in G. Then s defines a strategy ~for  X in IL 
Namely 

"S(Xo . . . .  ,Xn_l) = S (Yo . . . .  'Ym-1) '  

where (Yo . . . . .  Ym-1) is obtained from ( X o , . . . ,  Xn_ 1) by the following process. 
Given any sequence (Zo . . . . .  zr_ 1) of  arrows suppose that there exist p < q < r such 
that p + q is odd and the head Of Zq equals the tail OfZp. Suppose that qo is the least 
q for which there exists such a p and let Po be the (unique) corresponding p.  Then we 
put 

(ZO . . . .  ,2r. 1)' -- (go . . . . .  Z P o ' l ' Z q 0 + l ' ' ' ' ' g r - 1  )" 

(qo = r -  1 can happen and in this case (zo . . . . .  Zr-1 ) '  = ( zo, �9 �9 �9 Zp o -1), also Po = 0 
can happen and then (Zo . . . . .  zr.1)' = (Zqo+ 1 . . . . .  Zr_l), and i f r  is even then both 

. . Z t Po = 0 and qo = r - -  1 can happen and then l.Zo , r - l )  is the empty  sequence.) 
Now the sequence (Yo . . . .  , Ym. l )  is obtained from ( X o , . . . ,  x n q )  by applying the 
operation ' as long as feasible. 

This concludes the definition of  ~'. Notice that m < 2 [ A [ ,  since ' is applicable to 
any sequence of  arrows of  length ~ 2 I A I �9 I f  s is equivalent to a positional strategy 
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then so is ~'. 

Lemma 1: I f  s secures v for player X in G then ~" secures v for player X in P. 

Proof: Case 1. X = I. Let x = (xo, x t ,  �9 �9 .) be a play o f  F in which I has been using ~'. 
Since s secures v and by the definition of  ~'we infer the following: For every n the se- 
quence ~0 (xo) . . . . .  ~0 (Xn.1) can be partitioned into subsequences 

(~011 . . . . .  ~01r(1 )), �9 �9 �9 , (~0 t l , . - - ,  ~Otr(t)), 

each of  length ~ 2 t A [ and such that the mean of  each of  them, except at most one, is 
< v .  Let (~011 . . . .  , ~01r(1)) be the one whose mean may be > v .  
T h e n r ( 1 )  + . . . + r ( t ) =  n , r  (f)~<2 [A 1 f o r i =  1 . . . . .  t and 

1 n-1 1 t r(O 1 (  (1)+~(__Z~) c 
- z =- (z < z (0- < +- 
n i=0 n .= } n i=1 = n ' 

where c is a suitable constant independent of  n. Hence v I (x) ~< v. 
Case 2. X = II. The proof  is similar. 

Corollary 1: 1" has a value v (I ')  and v (P) = v (G). 

Proof: By I_emma 1. 

For any a ~ Do = domain (Po) we define an auxiliary game G a. G a is the same as G 
until II chooses an ar rowx n whose head is a. Then the sequence xo . . . . .  x n is "for- 
gotten" and the game continues until one of  the players chooses an arrow Xq whose 
head equals the tail of  some arrow Xp with p + q odd and n < p < q. Then I pays to II 
the mean 

1 q 
~o (x~). 

q - - p  + 1 i~=p 

In other words, if no arrow chosen by II has the head a then G a proceeds in the same 
way as G, but in the other case the game becomes G (a, P, Q, r 

Of course G a is a finite O-sum game with perfect information and hence it has a 
value v (Ga). 

Lemma 2: For every a E Do  we have v (Ca) = v (G). 

Proof: Let s be a strategy for player X which secures v (G) in G. If  no play in which X 
uses s has an arrow chosen by II whose head is a then of  course s secures v (G) in G a. 
In the other case we consider the strategy $ and notice that there is a play of  P consist- 
ent with ~'in which an arrow x n chosen by II has the head a. But since the payoffs in 1" 
are limits which do not depend on the choices prior tOXn+ 1 hence F (a, P, Q, r  is not  
worse for X than I'. Hence by Corollary 1 G (a, P, Q, ~) is not  worse for X than G. 
And v (Ca) = v (G) follows. 

Proofs o f  Theorems I and 2: By Lemma 1 and Corollary 1 it is enough to prove the 
existence of  positional strategies which secure v (G) in G. 
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Step 1 : The existence of  a positional strategy for I which secures v (G) in G. The 
proof  goes by induction with respect to I P I --  I Do I �9 I f  I P I = I Do I the assertion is 
obvious. Let n > 0 and assume that the positional strategy exists whenever 
I P I - I Do I < n. Let now [ P I --  I Do I = n. Then there is an a E Do such that the set 
Pa of  arrows in P whose tails equal a has more than one element. Consider the game 
G a . By Lemma 2 there is a strategy s for I which secures v (G) in G a. We may assume 
that s uses at most one arrow in Pa, say ((a, b), 0) (since any return by II to a would 
end the game and the positions prior to a do not count). Hence we may remove from 
P all the arrows o f P  a except ((a, b), 0) without destroying s. Let p(O) = p _ Pa U 

Off(a, b), 0)) and G(0) = G (ao, p(0),  Q, ~ restricted toP(0)  u Q). Thus s secures 
v (G) in Ga(~ By Lemma 2 the value of  Ga(0) equals the value of  G(0). Hence, since 
i p(0)  I --  I Do I < n and by the inductive assumption, there exists a positional strategy 
s* for I which secures v (G) in G(0). Clearly s* secures also v (G) in G. 

Step 2: The existence of  a positional strategy for II which secures v (G) in G. The 
proof  follows by symmetry,  i.e., one can define a game G '  = G (a~, P ' ,  Q',  ~0') such 
that the existence of  a positional strategy for I which secures v (G ' )  in G '  is equivalent 
to the existence of  a positional strategy for II which secures v (G) in G. 

Rema~ 

Let A and B be two disjoint compact  metric spaces, ao E A,  P = B • A ,  Q = A X B 

and ~: P O Q ~ R be a continuous function. Consider the game r (ao, P, Q, ~o) defined 
similarly as V. Then there is a value v such that for every e > 0 there exists a positional 
strategy for I which securesv + e and a positional strategy for II which secures v --  e. 
The proof  follows from Theorem 1 by an approximation of  A and B by finite spaces. 
Can one get rid of  e? Is the above true for all Borel-measurable functions ~? 
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