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Abstract. We give a uniform treatment of the logical properties of al-
ternating weak automata on infinite strings, extending and refining work
of Muller, Saoudi, and Schupp (1984) and Kupferman and Vardi (1997).
Two ideas are essential in the present set-up: There is no acyclicity re-
quirement on the transition structure of weak alternating automata, and
acceptance is defined only in terms of reachability of states; moreover, the
run trees of the standard framework are replaced by run dags of boun-
ded width. As applications, one obtains a new normal form for monadic
second order logic, a simple complementation proof for weak alternating
automata, and elegant connections to temporal logic.

1 Introduction

Finite automata on infinite strings provide a useful framework for the logical
analysis of sequence properties. The connection to logic is based on (at least)
the following four aspects:

— Nondeterministic Biichi automata are expressively equivalent to monadic
second-order logic (MSO-logic) over infinite strings (|[Biic62]). This equiva-
lence involves a normal form of MSO-formulas in EMSO-logic (existential
monadic second-order logic).

— Connected with this fact is the closure of Biichi automata under complement.

— A hierarchy of acceptance conditions for deterministic w-automata induces
a natural classification of sequence properties (cf. [MP92]), including, for
example, safety properties and recurrence properties.

— Propositional temporal logic PLTL, a standard framework for the specifica-
tion of infinite computations, is characterized by counter-free deterministic
Muller automata, defined by a natural restriction on the loop structure of
transition graphs.

In the present paper, we study these logical aspects of w-languages in the frame-
work of alternating weak automata, a model introduced in the pioneering work
of Muller, Saoudi, and Schupp [MSS86]. We introduce a variant of alternating
weak automata which differs from the model of [MSS86| in the following way:
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There is no acyclicity requirement on the transition structure of weak alterna-
ting automata, and acceptance is defined only in terms of reachability of states;
moreover, the run trees of the standard framework are replaced by run dags
of bounded width. (For the equivalence to the model of [MSS86] see the next
section.) Starting from this, it turns out that all four aspects mentioned above
have counterparts in the framework of alternating automata:

1. The equivalence between alternating weak automata and monadic second-
order logic over infinite strings provides a new normal form of MSO-formulas,
giving an alternative to the classical EMSO-normal form (for the specifica-
tion of accepting runs).

2. The complementation of alternating weak automata is presented in a game
theoretic setting, based on a determinacy result on infinite games with win-
ning conditions in terms of reachability of states. (For a separate exposition
of this result see [Tho99].)

3. The basic classification of temporal properties (called Landweber hierar-
chy in the automaton theoretic setting) is captured in the framework of
alternating automata in two different ways: by restricting the alternating
computation mode (to universal, respectively existential branching) and by
restricting the acceptance component in alternating automata.

4. A structural property (on the loop structure) of weak alternating automata
is presented, which characterizes the properties definable in the temporal
logic PLTL.

As mentioned above, we define acceptance by alternating automata using run
dags instead of run trees. In [KV97], alternating automata are defined as in
[MSS86] (however with the co-Biichi acceptance condition), and then a reduc-
tion to acceptance via run dags is carried out. In both cases, the approach via
run dags does not weaken the expressive power due to the fact that in the asso-
ciated infinite games (see Section B]) memoryless winning strategies are sufficient.
The determinacy proof presented in this paper (of which a preliminary exposi-
tion was given by the second author in [Tho99|) is related to a construction of
Klarlund [Kla91]. The structural characterization of PLTL-definable properties
was obtained independently by Rohde [Roh97], however with a more involved
proof.

The paper is structured as follows: In Section 2] we introduce alternating
automata and their acceptance conditions. In Section Bl the dualization of al-
ternating automata and its connection to determinacy of infinite games and to
complementation is developed (see item 2 above). Section Hlshows that alterna-
ting weak automata are able to recognize precisely the regular w-languages, via
a transformation of parity automata into alternating weak automata. Finally,
Sections Bl B and [0 present the results mentioned above under item 1 (connec-
tion to MSO-logic), item 3 (classification of sequence properties) and item 4
(characterization of PLTL-definable properties).
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2 Alternating Automata

Alternating automata combine the possibility of existential and universal bran-
ching. The transition function of an alternating automaton is defined with posi-
tive boolean formulas over the state set.

Let X be a finite set. The set of positive boolean formulas over X, denoted
by Bt (X), contains T (true), L (false), all elements from X, and all boolean
combinations over X built with A and V. A subset S of X is a modelof 0 € BT (X)
iff the truth assignment that assigns true to the elements of S and false to the
elements of X \ S satisfies §. We say S is a minimal model of 0 iff S is a model of
6 and no proper subset of S is a model of §. For § € BY(X) the set of minimal
models of 6 is denoted by My.

An alternating automaton A is of the form A = (Q, X, qo,d, AC), where
() is a finite state set, X is a finite alphabet, ¢o € @Q is the initial state,
§ : Q x XY — BT(Q) is the transition function and AC is the acceptance
component. There are several different types of acceptance conditions referring
to different types of acceptance components.

Since in an alternating automaton there is universal branching, a run of
an alternating automaton is not an infinite sequence of states, but an infinite
acyclic graph. This graph has a “root vertex” labelled with the initial state gq
and in distance [ from this vertex one finds the states which are assumed by the
automaton after [ input letters. Formally a run is defined as follows. Let o € X%
and let G = (V, E) be a directed acyclic graph with the following properties.

— V CQ x N with (¢go,0) € V.
- EC IL>JO(Q x{1}) x (@ x {l +1}).

— For every (¢,1) € V\{(q0,0)} exists a ¢’ € Q, such that ((¢’,1—1), (q,1)) € E.

G is called a run of A = (Q, X, qo,0,A) on «, if for every (q,1) € V the set
{d €Q|((qg,0),(d,1+1)) € E} is a minimal model of §(q, @(l)). An example is
given in Figure [

Note that there is no run G = (V, E) on a, such that (¢,l) € V for a ¢ with
0(g, (1)) = L, since L has no models.

Q= {q07q17q2aq3}7 = {a’} (g0,0)

\
3(qo,a) = q1 A g2 \(CIh 1) ——(q1,2) (q1,3)
8(q1,a) = (q1 N gs) V (g2 A g3)
5((]2,&) =q (Q271) (q273)
6 3,Q) = 1 2 3
(g3,0) = (1 Ng2) V ¢ (45.2) (45.3)

Fig.1. First segment of a run of an alternating automaton.
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With this definition of the transition function of alternating automata we
get deterministic, nondeterministic, and universal automata as special cases of
alternating automata. In deterministic automata the formulas used in the tran-
sition function consist of exactly one state. In nondeterministic automata the
formulas are disjunctions of states or L, and dual to that, in universal automata
the formulas are conjunctions of states or T.

For later use in Section [{, we note that it is possible to use alternating
automata with an initial positive boolean formula 6, instead of a single initial
state. Such an automaton can be converted into an equivalent automaton with
a single initial state just by adding one extra state.

An automaton accepts a word iff there exists a run of the automaton on
this word such that every infinite path through that run satisfies the acceptance
condition. The language accepted by the automaton consists of all the words
that are accepted by the automaton. Here we identify an infinite path = with
the sequence of states induced by this path. The infinity set In(m) consists of all
states that appear infinitely often in 7. The occurrence set Oc(m) consists of all
states that appear at least once in 7. The following different types of acceptance
conditions are considered in this paper.

In Biichi and co-Biichi automata the acceptance condition refers to a subset
F of the state set and in parity automata the acceptance condition refers to a
mapping (called coloring) ¢ : @ — {0,...,k}. The numbers 0,...,k are called
the colors. For an infinite path 7 the corresponding infinite sequence of colors is
then denoted as ¢(m). An infinite path 7 satisfies

— the Biichi condition w.r.t. F iff F'N In(r) # 0,
— the co-Biichi condition w.r.t. F iff FNIn(w) =0,
— the parity condition w.r.t. ¢ iff min(In(c(r))) is even.

For all of these acceptance types we can also consider the “weak versions”. We
call an acceptance condition weak if it is evaluated in the occurrence set instead
of the infinity set of a path. So an infinite path 7 satisfies

— the weak Biichi condition w.r.t. F iff F N Oc(r) # 0,
— the weak co-Biichi condition w.r.t. F iff F N Oc(w) =0,
— the weak parity condition w.r.t. ¢ iff min(Oc(c(m))) is even.

In the present paper, we focus on weak automata with the weak parity acceptance
condition. This differs from the model of weak automata as introduced by Muller
and Schupp in [MSS86] where the Biichi acceptance condition is used. Moreover
the transition structure of a weak automaton A = (Q, X, qo, 6, F') must fulfill the
following requirement: There is a partition Q1,...,Q,, of @ such that for every
g € Q; and ¢’ € Q; with a transition leading from ¢ to ¢’ one has j < ¢, and
Q;CForQ;NF=0foreveryie{l,...,m}.

Let us verify that the two models are equivalent in expressive power. Given
a weak automaton A as above (in the sense of [MSS86]), acceptance means
that for every path 7 through a run of A there is an ¢ € {1,...,m} such that
In(w) C Q; C F. This can also be expressed as a weak parity condition because
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a path through the run satisfies the acceptance condition if it enters one of the
accepting @;’s and never leaves it again. For all ¢ € {1,...,m} and for all ¢ € Q;
we define the coloring c as

C(‘I)_{2z’+1imeF:®.

It is easy to see that the weak parity automaton A" = (Q, X, qo, J, ¢) is equivalent
to A.

Conversely, given a weak parity automaton A = (Q, X, qo, d, ¢) with ¢: Q —
C, let C, be the set of even numbers in C and let @' = Q x C, ¢}, = (g0, ¢(qo0)),
F’" = Q x C,. To define the transition function we need an auxiliary mapping
¢ BT(Q) x C — BT(Q'). The formula ¢(0,i) is obtained by replacing every
g € Q in 0 with (¢, min{i,c(q)}). Then we define the transition function by
8 ((g,%),a) = ¢(6(q,a),4). In the second component of the new states the auto-
maton remembers the minimal color that was seen so far. Along a path through
a run this color may not increase. Therefore, if we define the sets @; according to
the color in the second component, we get an automaton in the form of [MSS86]
equivalent to A.

3 Complementation

In [MS87] Muller and Schupp show that complementation of alternating auto-
mata can be done by dualization. In this section we give a self-contained proof
of this complementation theorem for the case of alternating weak parity au-
tomata. This is done in a game theoretic framework, and making use of the
simple winning conditions which are derived from weak alternating automata.
So we do not rely on difficult determinacy results, e.g. for Borel games, as done
in [MS87]. Before we turn to games we define the dual of an alternating weak
parity automaton. _

For a finite set X and § € BT (X) the formula 0, the dual of 6, is obtained by
exchanging V and A, and L and T. We can state the following relation between
the minimal models of # and the models of 6.

Remark 1. Let § € BT(X). A set S C X is a model of § iff SN R # () for all
minimal models R of 6.

Proof. The formula 0 is equivalent to A pc vy, Ve g @, which is the conjunctive

normal form of §. S is a model of @ iff it contains at least one element from each
of the disjunctive terms.

Let A = (Q, X, qo,0,c¢) be an alternating ‘weak parity automaton. The dual
automaton A of Ais defined as A = (Q, X, qo, 0, ¢), where ¢ is defined by §(g,a) =

5(fq\,Ja) for all ¢ € Q and @ € X, and ¢ is defined by ¢(q) = ¢(q) + 1.
Since in A a state has an even color iff it has an odd color in A, we get the
following remark.
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Remark 2. A path 7 satisfies the acceptance condition of A iff it does not satisfy
the acceptance condition of A.

Let A = (Q,X,qo0,9,¢) be an alternating weak parity automaton and let
a € X With A and o we associate a graph G4, = (Va,Vp, E,w) which
serves as a game arena for the two players Automaton (A) and Pathfinder (P).
The graph is defined as follows.

—Va=Q xNand Vp =Q x (29 \ {0}) x N; let V always denote V4 U Vp.
— The edge relation E is defined by

((g,1),(q,S,1+1)) e E iff Se Ma(q,a(l))»
((p,S:1),(q,1)) € E iff ge S,

for p,ge @, SCQandl e NN.
— The coloring w : V- — ¢(Q) is given by w((g,1)) = c(q) for (q,1) € V4 and
w((q,5,1)) = c(q) for (¢, 5,1) € Vp.

A play of G 4, is an infinite sequence v € (V4Vp)* such that v(0) = (go,0) and
(v(i),7(i + 1)) € E for all i € IN. Automaton wins the play v iff min(Oc(w(7)))
is even.

A positional strategy for A is a mapping f4 : V4 — Vp such that for all
v € V4 we have (v, f4(v)) € E. The play v is played according to f4 iff for every
i € IN with (i) € V4 one has v(i + 1) = fa(y(4)). The strategy fa is called a
positional winning strategy for A iff A wins every play v played according to fa.

Strategies for P are defined analogously.

The connections between alternating weak parity automata and the corre-
sponding games are stated in the following three lemmas.

Lemma 1. Let A= (Q, X, qo, 9, ¢) be an alternating weak parity automaton and
let a € X¥. Automaton has a positional winning strategy in Ga o iff o« € L(A).

The very simple proof is omitted.

Lemma 2. (Determinacy of weak parity games) Let A = (Q, X, qo,d,¢) be an
alternating weak parity automaton and let « € X¥. In G 4, either Automaton
or Pathfinder has a positional winning strategy.

Proof. We first define the notion of an attractor. Let T' C V4 U Vp. The A-
attractor of T', denoted Attr4(T), is the set of vertices from which Automaton
can force the play to eventually visit T

Attro(T) = |J Attri,(T), where Attr(T) =T and
4 iEN '
v € Attr' ' N(T) « v € Attr'y(T) or
v € Vyand I(v,u) € E : we Attry(T) or
vEVpand V(v,u) € E : w € Attr'y (T).

The P-attractor of T', denoted Attrp(T), is defined in the analogous way.
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By induction on m = |¢(Q)], i.e., the number of colors in the weak automaton,
we show that either of the players has a positional winning strategy. For m =1
every play in G 4, is won by Automaton or every play is won by Pathfinder.
Therefore Automaton or Pathfinder has a positional winning strategy.

Let m > 2, k = min(w(V)), and V;, = {v € V | w(v) = k}. We assume that
k is even. The proof for the other case is analogous.

If (qo,0) belongs to Attra(Vy), then obviously Automaton has a positional
winning strategy in G4 . If (g0, 0) does not belong to Attr4(Vy), then we define
the game G;"a by removing the vertices of Attr4(V;) from G4 .. By induction
we know that in G’4 , either Automaton or Pathfinder has a positional winning
strategy. If Pathfinder has a winning strategy in G./A7a7 then playing according to
this strategy also forces the game to stay outside of Attr (V%) in the game G 4 .
Otherwise there would be a vertex belonging to Attr4 (V) in G/ . Therefore
Pathfinder also has a positional winning strategy in G 4 4.

Now suppose Automaton has a positional winning strategy in G/ . If Au-
tomaton plays according to this strategy in G 4., then the only possibility for
Pathfinder to give the play another progression as in G/A,m is to move into
Attr 4 (Vi) if possible. But then Automaton wins by forcing the game to move
into Vj. Therefore Automaton has a positional winning strategy in G 4 .

Lemma 3. Let A= (Q, X, qo,9,c) be an alternating weak parity automaton and
let o € X¥. Automaton has a positional winning strategy in G4 o iff Pathfinder
has a positional winning strategy in GZa'

Proof. Let fs be a positional winning strategy for Automaton in G 4, and let

(g, 5,1) be a vertex of Pathfinder in G.;((x' If there exists a play such that (g, S, )
appears in this play, then S € ./\/lfg(q a(l-1))" For vertices that may not appear
in a play we do not have to define the strategy. From Remark [lit follows that

SN fa(g,l1—1)#0. Let p € SN fa(g,l—1). We define fp(q,S,1) = p. For a play
vof G e played according to fp there exists a play 7' of G 4 o played according
to fa such that w(y) = w(y’). Since Automaton wins 7’ in G 4,4, Pathfinder
wins 7y in G;‘va.

Let fp be a positional winning strategy for Pathfinder in G 7 ~and let (g,0)

be a vertex of Automaton in G4 . The set S = {fp(q, R,1) | R € M:{(q,a(l))} is
a model of §(q, a(l)) by Remark [ Let S’ C S be a minimal model of 6(g, a(l)).
We define fa(q,l) = (¢,5,14+1). Again, for a play v in G 4, played according to
fa there exists a play v/ played according to fp in G Aa such that w(v) = w(v").

Since Pathfinder wins v/ in G,Za’ Automaton wins v in G 4,4.

Theorem 1. Let A be a alternating weak parity automaton over the alphabet

X. Then L(A) = £\ L(A).



528 C. Loding and W. Thomas

Proof. Let a € XY*. The automaton A accepts « iff Automaton has a positional
winning strategy in G 4,4, by Lemma [l By Lemma [3 this is equivalent to Pa-
thfinder having a winning strategy in G Ao With Lemma 2] we know that this
is the same as Automaton having no positional winning strategy in G e and

again using Lemma [I] this is equivalent to a ¢ L(.A).

4 Expressive Completeness

In this section we show that every regular w-language can be recognized by
an alternating weak parity automaton. We give a transformation of determini-
stic parity automata into alternating weak parity automata; it seems to be the
simplest way to establish expressive completeness of alternating weak parity au-
tomata. (It is well known that deterministic parity automata recognize precisely
the regular w-languages, see [Tho97]). In contrast to deterministic parity auto-
mata, where it is not possible to bound the number of colors, for alternating
weak parity automata it suffices to consider automata with only three colors.

Theorem 2. For every deterministic parity automaton A = (Q, X, qo, 0, ¢) with
Q| =n and ¢ : Q@ — {1,...,m} one can construct an equivalent alternating
weak parity automaton A" = (Q', X, q, ¢, ') with |Q'| = (m+1)n and ¢ : Q' —
{1,2,3}.

Proof. We can assume that m = 2k for some k. Define A’ as follows.

—Let @ =QU(Q x{1,...,k} x{0,1}) and ¢} = qo.
—ForqeQ,ie{l,....k},a € X, and p = §(q,a) define

k
8 (q,a) =pV _Vl(p>j7 0),
=
Lo [ Life(q) < 24,
7((:4:00:0) = { (5.5.0) A (p, . 1) otherwise,

L [ Tife(q) = 21,
"((a:5:1),@) =\ ()i, 1) otherwise.

— ForgeQandic{l,...,k}let d(¢q) =3, d((¢,%,0)) =2, /((¢,4,1)) = 1.

The idea is to guess the accepting color and the point from where on no smaller
color occurs, and then to verify that the guessed color occurs infinitely often and
no smaller color occurs anymore. The correctness proof is omitted.

Note that along each path through a run of A’ the colors are decreasing, which
corresponds to the usual definition of weak automata. In fact our model without
this restriction is equivalent to the usual model.

It is also possible to start from nondeterministic Biichi automata instead of
deterministic parity automata, using a similar construction as in [KV97].
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5 Alternating Automata and MSO

In this section we give a characterization of alternating weak parity automata in
MSO logic. We obtain a normal form of MSO formulas different from the EMSO
formulas obtained by Biichi [Biic62].

The MSO formulas we consider are S1S (second-order theory of one succes-

sor) formulas, built up in the usual way from z,y, 2, z1,2z2,... as (first-order)
variables for natural numbers, XY, Z, X;, Xo, ... as (second-order) variables for
sets of natural numbers, the symbols 0, +1, =, <, € with their usual meanings,

the connectives —, A, V, —, <>, and the quantifiers 3, V.

We can interpret the sets of natural numbers as predicates, and abbreviate
x € X with Xz. We also use natural abbreviations as <,>,> +2,4+3,... and
3¢ (“there exist infinitely many”), v (“for almost all”).

The formulas are interpreted in the structure (IN, <,41,0). As models we
take tuples of subsets of IN. Such a tuple a = (@1, ... Qn), with Q1,...,Q, C NN,
is a model of a formula ¢(X1, ... X,,), denoted by a = ¢(X1,...X,,), if and only
if ¢ evaluates to true when we substitute each X; by @Q;.

To characterize automata in S1S, we use a correspondence between infinite
words a over an alphabet and the models a of S1S. Then we will construct
a formula ¢4 such that the automaton A accepts a word « if and only if the
corresponding tuple o is a model of ¢4. In addition we construct a second
formula ¢4 equivalent to ¢4, such that ~¢4 = ¢ e The connection between
these two formulas corresponds to the connection between an automaton and its
dual.

To code w-words by sets of natural numbers, we assume without loss of
generality that X = {0,1}*. With this convention a word a € X* consists of
k words aq,...,ar € {0,1}*. We code «; with the set X;, where z € X; iff
a;(z) = 1. Then the tuple a = (X1,..., X)) is a unique coding of o. We will
refer to natural numbers as “positions”. Now we can express the fact that a
word has a certain letter @ = (a1,...,ar) at the position z by the formula
POS.(z, X1,...,Xk) = /\iGO(a) X;x A /\ieZ(a) —X;x, where O(a) = {i|la; = 1}
and Z(a) = {i|a; = 0}.

Let A = (Q, X, qo,0,¢) be an alternating weak parity automaton with ¢ :
Q — {0,...,k} and without T and L in the transition function (this can be
obtained by adding at most one extra state). We have to code the runs of an
automaton on a word with subsets of IN. Let Q = {1,...,n} with ¢o = 1 and
let m = n 4+ n%. We code a level [ of a run and the edges to the previous level
with a vector v; € {0,1}™. The first n entries code the active states. This means
entry 4 is 1 iff (4,1) is a vertex of the run. For every ¢ € {1,...n} the entries from
i-n+1toi-n+n code the successors of the vertex (i,! — 1). This means entry
i-n+jis 1iff (4,1) is a successor of (i,1 — 1). This idea is illustrated in Figure
2 for the beginning of a run of an automaton with states {qo, g1, ¢2,q3}-

This coding yields an infinite sequence vg,vy,... of vectors from {0,1}™
which can also be represented by Yi,...,Y,;,, C IN in the same way as the words
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(¢o,0) ((1000), (0000), (0000), (0000), (0000))
N
(¢1,1) (g2,1) — ((0110), (0110), (0000), (0000), (0000))
AN
@.2) (01.2) (5.2)  ((1101),(0000), (1001), (0101), (0000))

Fig. 2. Coding of the beginning of a run

from X“. It is easy to verify that the first-order formula

RUNA(X1, ..., X3 Y1,..., V) = (Yi0A A —Y;0)

=2
Aval A@>0AYiz = (V Yingn) A A (Yiz = (A ~Yingsz+ 1)
i=1 j=1 i=1 j=1
AN N Yix APOS,(z, X1,...,Xk)
(i,a)EQ XX

- \/ (/\ij"i_l/\Y;-n+jx+1/\/\ﬁi-n+jx+1))
SEMs(i,a) JES j€ES j¢s
is satisfied iff Y1,...,Y,, code a run of A on the input coded by Xi,..., X;. In
the same way we can construct a formula DUALRUN 4(X1, ..., Xk, Y1,...,Y,)
that defines the runs of the dual automaton of A.

To express the acceptance of a word by an automaton we now have to code
the paths of a run. A path through a run G = (V, E) can be viewed as a
subgraph G’ = (V/,E’) of G (V' C V and E’ C E) such that every vertex has
exactly one successor and every vertex except the initial vertex has exactly one
predecessor. We can code a path by Z;,...Z, C IN. These Z; must have the
following properties (with ¢ and j ranging over {1,...,n}):

Z; CY; for every ¢ (V! C V),

— Z;NZj =0 for every i # j (in every level is at most one vertex),

Vadi(z € Z;) (in every level is at least one vertex),

for all z with Z;z and Z;xz + 1 one has Yj.,;jz + 1 (the vertex in level z + 1
is a successor of the vertex in level x),

and we indicate by PATH 4 (Y1, ..., Y, Z1, ..., Z,) a first-order formula expres-
sing this.

The last fact we have to express is that a path satisfies the acceptance con-
dition. We define for m € {0,...,k} the set @, of states with color m, i.e.,
Qm ={q€ Q| c(q) =m}. Let Z1,...,7Z, C N be the coding of a path through
a run. Then the first-order formula

k
WEAKACCA(Zy, ..., Zy) = \/ (Hw( \/ Zix)Ava( N ﬁZix))
m=0 1€EQm ic U Q

l<m
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is satisfied if and only if the path coded by Zi,...,Z, satisfies the acceptance
condition of A.
Now we can translate an automaton into two equivalent S1S formulas. Here

we write X for Xi,..., Xy (and similar Y and 7).

Theorem 3. The following two formulas are satisfied if and only if X is the
coding of a word o € L(A).

$A(X) =3IVVZ(RUN4(X,Y) A (PATH (Y, Z) - WEAKACC4(Z))).
¢A(X) =VY3IZ(DUALRUN 4(X,Y) — (PATH,(Y,Z) A WEAKACC4(Z))).

The formulas ¢4 and 5 A thus represent a normal form for S1S-formulas of
second-order quantifier prefix types Yo, 115, respectively, in which the acceptance
component WEAKACC only involves reachability conditions.

6 The Landweber Hierarchy

The classical characterization of regular sequence properties in the Landweber
hierarchy [Lan69] uses deterministic automata with different acceptance condi-
tions. As we show, the hierarchy can also be characterized in two different ways:
first by alternating automata, equipped with weak acceptance conditions, and
second by fixing the acceptance condition as weak parity, and modifying the
mode of the transition function. The three different characterizations are shown
in Figure Bl For notational simplicity we abbreviate the type of an automaton
by the initial letters of its transition mode and its type of acceptance condi-
tion. So for example UWCB denotes universal weak co-Biichi automata and DP
denotes deterministic parity automata. If 7" is such an identifier, then £(T) de-
notes the class of languages characterized by automata of type T. As explained
in [MP92], the language classes £L(DB), £L(DCB), and £L(DB)NL(DCB) capture
the (regular) “recurrence properties”, “persistence properties”, and “obligation
properties”, respectively. So our results clarify their role in the framework of
alternating automata.

Deterministic Automata  Alternating Automata Weak Parity Automata
L(DP) L(AWP) L(AWP)
VAN N RN
L(DB) L(DCB) L(AWCB) L(AWB) L(UWP) L(NWP)
NS N S NS

L(DB) N L(DCB) L(AWCB) N L(AWB) L(DWP)

Fig. 3. Three different characterizations of the Landweber hierarchy

Before we give the theorem stating the correctness of the characterization
from Figure B] we need some preparations.
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Lemma 4. For every deterministic Biichi automaton one can construct an equi-
valent universal weak co-Bichi automaton.

Proof. For the transformation we use a simplified version of the construction
from Section ML

In [MHS84] Miyano and Hayashi give an exponential transformation of alternating
Biichi automata into nondeterministic Biichi automata. But the construction
also gives a more general theorem, which is stated below.

Theorem 4. Let A be an alternating Biichi (weak Biichi) automaton. One can
construct an equivalent nondeterministic Biichi (weak Biichi) automaton A’ and
furthermore, if A is universal, then A’ is deterministic.

To apply this theorem to weak parity automata, we give a transformation of
weak parity automata into Biichi automata. The idea is to remember the lowest
color seen so far. This suffices to decide with a Biichi condition, whether a path
is accepting or not.

Lemma 5. Let A= (Q, X, qo,9,¢) be a weak parity automaton with ¢ : Q — C.
One can construct an equivalent Bichi automaton A" = (Q', X, q}, 0", F') with
the same mode of transition function as A.

Theorem 5. (1) L(DP) = L(AWP).

(2) L(DB) = L(AWCB) = L(UWP).

(3) L(DCB) = L(AWB) = L(NWP).

(4) L(DB)N L(DCB) = L(AWB) N L(AWCB) = L(DWP).

Proof. (1): This follows from Theorem [2] and from the fact that every language
recognized by an alternating weak parity automaton is regular.

(2): From Lemma [ follows £(DB) C L(AWCB) and £(DB) C L(UWP).
Since one can transform every universal weak parity automaton into a universal
Biichi automaton by Lemma [B], and then into a deterministic Biichi automaton
by Theorem [l we get L(UWP) C £(DB).

If we are given an alternating weak co-Biichi automaton, we dualize it, yiel-
ding an alternating weak Biichi automaton. This can be transformed into a
nondeterministic weak Biichi automaton by Theorem [4. If we dualize again, we
get a universal weak co-Biichi automaton, equivalent to the given automaton.
Therefore we get L(AWCB) C L(UWP), since weak co-Biichi conditions are
special cases of weak parity conditions.

We omit the proof of (3) because its the dual statement to (2), and (4) can
be shown very easily, using (2) and (3), and some criteria on the loop structure
of deterministic w-automata [Lan69).

7 The PLTL Fragment

In the previous section we gave exact characterizations for the different fragments
from the Landweber hierarchy. Another fragment of the regular w-languages is
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the fragment of PLTL (propositional linear temporal logic, see [Eme90]) that
includes all languages that can be described by PLTL formulas, or, equivalently,
by first-order formulas. PLTL formulas are built up from a finite set P of atomic
propositions, the boolean operators, and the temporal operators () (Next), O
(Always), © (Eventually), U (Until). For this section we fix the alphabet ¥ = 27,
Let a € X¥,i € N, p € P, and @, ¢’ be PLTL formulas. The relation = is defined
as follows.

a,iEp if p € a(i),

aiEQe ifai+lEe,

ai = Qe ifVE>i(a,k =),

a,t =ECp i3k >i(ak E ),

a,i = U i3k >i (k@ and Vi <j <k (a,jF ).

For the boolean operators, = is defined in the straightforward way.

A PLTL formula ¢ defines the language L(y) = {a € X* | o,0 = ¢}. The
PLTL fragment of the regular w-languages is the class of all languages that can
be defined by a PLTL formula.

In this section we give an exact automata theoretic characterization of this
fragment in terms of a subclass of alternating weak parity automata, so called
alternating linear automata.

An alternating weak parity automaton A = (Q, X, qo, 6, ¢) is called a linear
automaton, if in the transition graph there are no cycles containing 2 or more
states, and if along each path through the transition graph the colors of the
states do not increase.

A simple induction shows that a PLTL-definable language can also be reco-
gnized by an alternating linear automaton (see e.g. [Var97)). Here we show the
other direction, which was independently shown by Rohde [Roh97].

Theorem 6. Let A= (Q,X,60p,0,c) be an alternating linear automaton. There
is a PLTL formula x such that L(A) = L(x).

Proof. For § € BT(Q) let A(f) = (Q,X,0,0,c) (an automaton with an initial
formula instead of an initial state). For R C P let Yg = A\ cg A N\, ¢r —P-

We construct for every § € BT (Q) a PLTL formula x(0) with L(x(0)) =
L(A(9)) and then set x = x(0o). Let 6 € BT(Q). If for all ¢ € Q that occur in ¢
the formula x(g) is already known, then we obtain x(#) by replacing each atom
q in 6 by the formula x(g). Furthermore we set x(T) =T and x(L) = L.

Let ¢ € Q and let Tr(q) denote the set of states ¢’ such that a transition
leads from ¢ to ¢’. Since A is a linear automaton, we can assume by induction
that for all ¢ € Tr(q) \ {¢} the formula x(¢') is already known, and therefore
also all x(0) with 6 € BT (Tr(q) \ {q}) are known.

For all R C P we can write the transition formula for ¢ and R in the form
6(¢; R) = (g NORrg) V 0%, with Og ,0% . € BT (Tr(q) \ {¢}). We define

(q) = Uy, if ¢(q) is even,
X\ = Ul V Op, if c(q) is odd,
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with

vg =\ (WrAOx(0r,)) and ¢}, = \/ (br A Ox(0,))-

RCP RCP

To show that for all § € BT(Q) the equality L(x(0)) = L(A(6)) holds, it
suffices to show L(x(q)) = L(A(q)) for all ¢ € Q.

Let ¢ € Q and let o € L(x(q)). If ¢(q) is odd, then there exists a k € IN
such that a,i [= ¢, for all i < k and o, k = ¢. Thus, for all i < k, the word
afi +1,00) is in L(x(0a(i),q)) and afk + 1,00) is in L(x(6,, ) ,))- By induction
we know that L(X(0a(i),q)) = L(A(0a(i),q) and L(x(0,, ) ,)) = LA, ) ,)- An
accepting run of A(g) has the following form:

a(0 a(l a(k—1 a(k
q\() q\() q q\( ) q © A(‘%(k),q)
Al0a0)g)  Alla)g) - A(0a(k-1),q)

The identifiers of the automata stand for accepting runs of these automata
on the corresponding suffix of «.

If ¢(q) is even then the proof is analogous accept for the case that the Oy,
part is satisfied. Then we get a run of A, with an infinite path labelled with g.
This run is also accepting, because ¢(q) is even.

For the other direction let o € L(A,). If ¢(q) is odd, then an accepting run of
Ay on « is of the form as given above. But then, using the induction hypothesis,
a = o Upy. In case ¢(q) is even, we can also get an accepting run with an infinite
path labelled with g, but then o = Dypg.
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