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Abstract- This paper describes how a network of interacting 
timed automata can be used to model, analyze, and verify motion 
planning problems in a scenario with multiple robotic vehicles. 
The method presupposes an infra-structure of robots with feed- 
back controllers obeying simple restriction on a planar grid. The 
automata formalism merely presents a high-level model of envi- 
ronment, robots and control, but allows composition and formal 
symbolic reasoning about coordinated solutions. Composition is 
achieved through synchronization, and the verification software 
UPPAAL is used for a symbolic verification against specification 
requirements formulated in computational tree logic (CTL). In 
this way, all feasible trajectories that satisfy specifications and 
which moves the robots from a set of initial positions to a set 
of desired goal positions may be algorithmically analyzed. The 
trajectories can then subsequently be used as a high-level motion 
plan for the robots. This paper reports on the timed automata 
framework, results of two verification experiments, promise of 
the approach, and gives a perspective for future research. 

I. INTRODUCTION 
The problem of controlling mobile multi-robot systems 

in a coordinated manner is becoming an important research 
issue. The vision being that multiple robotic vehicles may 
perform tasks faster and more efficient that a single robot. 
The application domains include container transshipment tasks 
in harbors, airports, and manufacturing areas, and formation- 
keeping and control in military applications [l], [2]. 

A number of different approaches have been taken in order 
to coordinate multi-robot system. A formalism for the compo- 
sition of concurrent robot behaviors, using threaded petri nets, . 

has been developed and used for the construction of simple 
automated factories, such as mobile robot bucket brigades [3]. 
In [4] multi-robot coordination is achieved by employing 
a plan-merging paradigm that guarantees coherent behavior 
of all the robots in all situations. A distributed negotiation 
mechanism for multi-robot coord@ation is considered in [5]. 
A hybrid control approach to action coordination and collision 
avoidance was taken in [6], [7]. A formal hybrid approach to 
the modeling and analysis of coordinated multi-robot systems 
was taken in [8]. 

In this work we provide a novel framework for the modeling 
of a mobile multi-robot system as a network of interacting 
timed automata [9] based on synchronization. The model 
is verified against specification requirements formulated in 

computational tree logic (CTL) using the verification tool UP- 
PAAL [ 101. For timed automata, problems such as reachability 
and CTL model checking are decidable [ 111, [ 121. 

The methods developed here presupposes an infra-structure 
of robots with feedback controllers that constrain the robot to 
move in a planar grid, i.e. motion from one cell in the grid 
to a neighboring cell is constrained to move within the two 
cells. The automata formalism merely presents an abstraction 
(or high-level model) of this, but allows composition and 
formal symbolic reasoning about coordinated solutions. The 
system is described as interacting models of the possible 
behaviours of robots, control and environment, under velocity 
constraints set by the assumed hardware. Posing the problem in 
UPPAAL, enables us to algorithmically verify safety questions 
such as: will they collide?; and liveliness questions such as: 
are all robots able to reach their goal positions? We may 
also algorithmically investigate all feasible trajectories (or 
corresponding control actions) that satisfy specifications and 
which moves the robots from a set of initial positions to a set 
of goal positions. The trajectories are subsequently use as the 
high-level motion plan for the robots. 

The paper is organized as follows: In Section II we in- 
troduce timed automata to model the mobile multi-robots. In 
Section III we describe the modeling of mobile multi-robots. 
In Section IV we verify (in UPPAAL) that the developed model 
satisfy the specification requirements. Finally, we discuss the 
developed approach. 

11. TIMED AUTOMATA 

A timed automaton is a finite-state automaton extended 
with a finite collection of real-valued clock variables [9]. The 
clocks are assumed to proceed at the same rate and measure 
the amount of time that have elapsed since they were reset. 
The clock values may be compared with natural numbers and 
reset to zero. Let C be a set of real-valued clock variables. 
Then B(C)  is the set of formulas that are conjunctions of 
atomic constraints of the form c w n and c - d w rn for all 
c,d E @,WE {I, <,=, >, >}, n E N and m E Z. Elements 
of B(C) are called guards over C and 2@ denotes the power set 
of C. We adopt the definition of a timed automaton from [13]. 
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Dejnition 1 (Timed Automaton): A timed automaton A 
over actions Act, atomic propositions P,  and clocks C is a 
tuple A = (L ,  lo,  E ,  I ,  V ) ,  where: 

L is a finite set of control locations; 
10 E L is the initial control location; 
E C L x B(C) x Act x 2' x L is a finite set of edges, 
where an edge contains a source control location, a set of 
guards, a set of actions to be performed, a set of clocks 
to be reset, and a target control location; 
I : L + B(C) is a function which for each control 
location 1 assigns a clock constraint, also called the 
invariant condition of the co~trol location; 
V : L -+ 2 p  is a proposition assignment function 
which for each control location gives a set of atomic 
propositions true in that control location. 2 p  denotes the 
power set of P. 

A timed automaton can be viewed as a hybrid system in 
which there is one or more continuous variables &,d, E C 
that satisfies the differential equation t, = 1, d, = 1. A state 
of a timed automaton A is a pair (I,.) where 1 is a control 
location of A and U holds the current values for the clock 
variables. The initial state of A is (lo,uo), where uo assigns 
zero to all clocks in C. 

Dejrtition 2 (Control location trajectory): A control loca- 
tion trajectory is a sequence of control locations l~ 11 12 . . . 
such that (1,,1,+1) E E ,  Vi  2 0. 

A. Formal Analysis 

Formal analysis is concerned with verifying whether a 
system satisfies a desired specification. Properties about the 
behavior of a system over time are naturally expressible in 
temporal logics, e.g. computation three logic (CTL) [14]. CTL 
is a temporal logic that contains existential quantifiers that 
range over trajectories and it allows to reason about how the 
states of the system evolve over time. 

Formulas of temporal logic are thus used to formally specify 
desired properties of systems, such as reachability (whether a 
certain region of the state-space can be reached) and invariance 
properties. CTL formulas consists of atomic propositional 
logic formulas and temporal operators. The propositional logic 
formulas are expressions about the state of the system and 
temporal operators are expressions about trajectories into the 
future that the state of the system can follow. CTL formulas 
are interpreted over the tree of control location trajectories 
generated from a given state of the automaton. 

In this approach we use CTL to specify and verify desired 
safety and liveness properties of a systems consisting of 
multiple mobile robots. 

111. MODELING MULTI-ROBOTS 

The following describes the modeling of multiple mobile 
robots as a network of timed automata that interact through 
synchronization channels. The system being modeled is di- 
vided into: environment (workspace and obstacles), robots, and 
control. 

To allow formal analysis and verification of the system just 
described, we first partition a subset of the planar environment 
R2, into a Cartesian grid of disjoint cells. The robots will be 
restricted to move horizontal and vertical in the grid of disjoint 
cells. Cells in the grid may be occupied by static obstacles. 
The obtained partition of the environment enables the analysis 
of desired safety (e.g. obstacle avoidance) and liveness (e.g. 
reachability) properties. 

The system is modeled and verified using UPPAAL [lo]; 
an integrated tool for modeling, analysis, and verification 
(model checking) of real-time 2;ystems that can be modeled 
as a network of timed automata interacting through synchro- 
nization channels. UPPAAL allows the construction of process 
templates for the system being modeled. A set of process 
parameters may be declared for each process template. Process 
assignments are then used to declare instances of the process 
templates with specific process parameters. This allows the 
construction of a system that consists of a set of robots with 
different process parameters, a set of static obstacles, and a 
set of controls for the robots. Moreover, the movement and 
coordination of the mobile robots is handled by the verifier of 
UPPAAL. 

A. Environment 

In the following we consider a team of R, robots, n = 
1,. . . , N ,  restricted to operate in a lanar environment, X C 
R2. We denote by xi = [ x , ~  .c,g] , xi E X, a position in 
.the planar environment. X is partitioned into a Cartesian grid 
of disjoint cells with resolution t' E R+. With a simple layout 
of X and a suitable E ,  the result is a finite partition, 

% 

T where zi = [zil zi2] , zi E Z2, and U is the number of cells 
needed to cover X .  Each cell in the partition Ce(zi)  c R2 is 
defined by, 

E E 
-- - < zj1 5 zil + - A 

2 2 c ' ( Z i )  = {zj E R2 : 

The partition defined by X divides the plane into a grid of 
U = (S + 1)(T -t 1) cells as illustrated in Fig. 1. 

A group of static obstacles may be present in the grid, each 
modeled as occupying cells in the partition. The workspace of 
the robots W ,  i.e. the obstacle free space in which the robots 
are restricted to move, is hence restricted to, 

(3) 

where A4 denote the number of static obstacles and O(z,) 
is an obstacle located at Z2. Thus, the defined workspace 
represents a shared space in which all the robots may move. 
With a proper selection of the grid size E ,  collision may be 
avoided by not allowing the robots to occupy the same cell of 
the partition at any time instant. 

w = x \ l J 0 ( z z )  
A4 
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t" B. Robots 
We restrict the robots to move horizontal and vertical in the 

Cartesian grid. The rationale behind this restriction is twofold. 
First, it reduces the state-space of the system and hence it 
reduces the complexity of model checking the system. Second, 
it reduces the number of cells that needs to be occupied when 
the robot moves. 

Since clocks variables can only have non-negative values 
the position of the robots cannot directly be represented in 
a timed automaton using a clock. Instead, a clock c E Cc is 
used to represent the time it takes the robot to move from one 
particular cell to a horizontal or vertical neighbour cell in the 
grid, i.e. $c = 1. 

Thus, the clock measures the amount of time spent in a 
particular control location, since it was reset. We restricts 
the time it takes the robot to move from one particular cell 
to a neighbour cell in the grid by imposing the constraint, 
cMin < c < cMax, which for cMin 2 1 ensures that a move- 
ment of the robot takes minimum one time unit. The result is 
d R  = (L ,  Iznzt, E ,  1, v), modeling a robot, 

L = {lznzt, lstop, lmT,  lm1,1m, , l m d }  is the set of control 
locations; 
lznzt E L is the initial control location; 
E L x B(C) x Act x 2@ x L is the set of edges, 

eo = ( L t ,  L t )  

el = (1znzt) I s top)  

e2 = (Istop, moveRight?, lmT) 
e3 = ( I m r ,  cMin < c < cMax, c = 0, Istop) 

etc. 

I : L + B(C)  is a function which for each control 
location 1 assigns an invariant, 

1 m T ,  hn1, lmu, lmd : C < CMax 
The corresponding robot process template is shown in 

Fig. 3. 
The local declarations of the robot process tem- 

plate art?: clock c; int[O,hSize] zl; int[O,vSize] 22; 
int [ o ,  501 step, ( 2 1 ~ ~ 2 )  is the position of the robot in the 
Cartesian grid, and step is the number of robot move- 
ments. Process instances of the robot process template can 
be declared with the template parameters: const robotID, 
zlInit, z2Init, cMin, cMax; chan moveRight, moveleft, 
moveup, moveDown, where robot ID is an unique identifier 
for the robot, (zlInit,z21nit) is the initial position of 
the robot, (cMin,cMax) is the clock constraint on the clock 
c,moveRight , moveLef t , moveup, moveDown are the Synchro- 
nization channels that allows control of the robot. 

The timed automaton modeling the robot process template 
starts in the control location lznzt .  In this control location 
the robot is placed at its initial position in the grid, as 
specified by the parameters zllnit and z21nit. By declaring 
this control location committed the robot is placed at its 
initial position, without allowing any time delay in this control 

I I I I I 

0 1 ... S 

Fig. 1. Partition of X into a grid of cells C'(zi) .  

ohsNo == ohsID, 

parO[[zlStat][z2Stat] := I, 
j := j+l 
ohsNo == ohsID, 
j == 1 
j .=O, 
ohsNo = ohsNw 1, 
z l  := zl Stat, 
22 := dStat 

I-stat 

Fig. 2. Obstacle process template. 

In the UPPAAL model the partition of X is rep- 
resented as a two-dimensional integer array, int t o , 1 1  
partx [hSizel [v~ize] that is declared globally. hSize and 
vsize are constants that define the horizontal and vertical size 
of the array respectively. Thus, elements of the array represent 
cells in the partition of X .  By default all cells of the array are 
initialized to zero, marking them as free cells. A particular cell 
of the array is marked as occupied by assigning it the value 1. 
For example, the assignment partx ti] [21 ==I marks the cell 
with midpoint zi = [l 23 as occupied. 

The automaton do = (L,l init ,E),  models a static ob- 
stacle as shown in Fig. 2. This automaton is used as a 
process template for declaring static obstacles. Static ob- 
stacles are declared with parameters: const obsID, zlstat, 
zlstat, where o b s m  is an unique identifier for the rn- 
th obstacle, (zlStat,zZ~tat) is the static position of the 
obstacle. The local declarations of the obstacle process are: 
intt0,hSizel 21; int[o,vSize] 22, where (~1.22) is the 
position of the static obstacle in the Cartesian grid. 
do starts in the control location linit, which is declared 

committed. By declaring this control location committed, an 
element in the array partx can be marked as occupied by 
an obstacle, without allowing any time delay in this control 
location. When the guard (obsNo==obsId, j<l) is enabled, the 
assignment partx [zl~tat] [ z ~ ~ t a t ]  :=I is performed and the 
index integer j is incremented. The transition from Zinit to 
lstat  will then become enabled since the guard (obsNo==obsID, 
j==1) is satisfied, resulting in a reset of j, an increment 
of obmo, and the obstacle is given a static position by the 
assignments zi : =zlStat and 22 : =z2~tat in the Cartesian grid. 

T 
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moveup! l jn i t  roholNo = roholID. 
i < l  
partX[zllnitl[z2Initl := 1. 
i := i+l 

c := 0, 

21 :=21+1, 
partxIzll[z21 :=o. pai-lx[zlI[z21 := 0, 

? ? c @ i i ~ ~  cMax Y ~ ‘ ? C i % ~ ~ ?  cMax 

c := 0, 

21 :=21-1, 

rohotNo = robotID. 
i = l  
i := 0, 
robocNo := roborno + 1, 
21 := zlInit, 
zl := d l n i l  

partX[Zl][22-1] - 0 
22 < VSIze, 

I-mu V J b d  
c c cMax 

Fig. 3. Robot process template. 

location. Afterwards the control location lstop is entered and 
the robot may receive control signals from the control process 
in order to move in one of the four possible directions. In this 
control location the synchronization channels are moveRight, 
moveLef t, moveup, and moveDown. The synchronization labels 

Synchronization channels are used to synchronize the con- 
trol and robot processes as illustrated in Fig. 3 and Fig. 4, re- 
spectively. This is done by annotating edges in the models with 
synchronization labels evaluating to a synchronization channel. 
Complementary synchronization labels are of the form, e.g. 
moveup! and moveup?. The control and robot processes can 
synchronize on edges annotated with complementary synchro- 
nization labels if the guards of both edges are enabled. When 
the control and robot processes synchronize, both edges are 
fired at the same time and the current control location of both 
processes is changed. 

C. Control 
Robot control is achieved by the use of the synchronization 

labels, moveRight ! , moveLef t ! , moveup!, moveDown!, repre- 
senting the set of all possible control actions. This is encoded 
into a automaton, & = (L,  I loop) ,  as illustrated in Fig. 4. 

This automaton is used as a process template for 
declaring control process instances. A control can be de- 
clared with the template parameters: chan moveRight, 
moveleft. moveup, moveDown. The control starts in the con- 
trol location lloop. In this control location the control process 
may send control signals, through the synchronization labels 

are moveRight?, moveleft?, moveup?, moveDown?. 

-1 
movehiwn! 

Fig. 4. Control process template. 

0 1 2 3 4  

X, * 

Fig. 5. 
and b. two mobile robots moving in a imaze. 

Multi-robot systems. a. Three mobile robots that transverse a door, 

moveRight ! , moveLef t ! , movelJp! , moveDown! , in order to 
change the control location of the robot process with the com- 
plementary synchronization labels moveRight?, moveLeft ?, 

moveup?, moveDown?. 
The update expression on the edge using the movertight! 

is executed before the update expression on the edge with 
the moveRight? (see Fig. 3). This is interpreted as the control 
process sends control signals to the robot process in order to 
change its control location. 

IV. MODEL CHECKING 

A. Multi-robot System 

In the following we consider IWO distinct concurrent mobile 
robot systems as illustrated in Fig. 5. The system in Fig. 5.a 
involves three mobile robots that have to transverse a door and 
the other system (see Fig. 5.b involves two robots that have to 
change positions in a maze. The system in Fig. 5.a consists of 
the following processes: Three robots (Rl-R3), three controls 
(Cl-C3), and four static obstacles (01-04). 

The cells denoted G1, G2, G3 marks the goal positions of 
robots RI, R2, R3, respectively. The robots have to move from 
their initial to their goal position:s while avoiding collision with 
each other and static obstacles. 

The global declarations for the system in-Fig. 5.a are, 

clock time; const hSize 5; const vSize 3;  const N 5; 

const M 5; int[O,l] partX[hSize] [vSizel; int[0,5] i 

, j; int [1,N] robotNo; int [1,Ml obsNo; chan mR1,mLl. 
mu1, m~l,mR2,rnL2,mU2,mD2,mR3,rnL3,mU3,mD3; 
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The clock time is used to measure the global time for the 
system. The system is constructed in UPPAAL where process 
assignments are used to declare instances of the robot, control, 
and obstacle process templates, respectively, 

R1:= Robot (1,3,4,l,4,mRl,mLl,mUl,mD1) ; 

C1:= Control(mRl,rnLl,mUl,rnDl) ; 

01:= Obstacle(l.2.0); 

For example, the instance ~i of the robot process template 
is declared with the parameters: robotID = 1, zlInit = 3, 
z2Init = 4, cMin = 1, cMax = 4; moveRight = mR1, 
moveLeft = m ~ 1 ,  moveup = mu1, moveDown = m ~ 1 .  The 
instance c i  of the control process template is declared 
with the parameters: moveRight = m ~ 1 ,  moveLeft = m ~ 1 ,  
moveup = mu1, moveDown = m i .  The instance 01 of the 
obstacle process template is declared with the parameters: 
o b s m  = 1, zlstat = 2, z2Stat = 0. The remaining robots, 
controls, and static obstacles of the first system are declared 
is a similar manner. 

System properties to be specified are often expressed in 
terms of temporal logic formulas that describe the desired 
behavior of the system. The system properties are of the form: 
process. controlLocation. In the following we will check 
conjunctions of system properties, e.g. RI. zi and RI. 22. 

The following properties of the multi-robot system (see 
Fig. 5.a will be checked using the verifier in UPPAAL. 

1 )  Safety Properties: Prop. 1 (Collision Avoidance): For 
all control trajectories the robots never collide, after they start 
to move? 

A [ ]  not ((Rl.zl==R2.21) and (Rl.z2==R2.22) and 
(Rl.zl==R3.21) and (Rl.z2==R3.22) and (R2.zl==R3.zl) 
and (R2.22==R3.22) and (time >O)) 

Prop. 2 (Bounded Movement): For all control trajectories 
the robots never move outside workspace? (only shown for  
RI) 

A[] Rl.zl>=O and Rl.zl<=hSize and Rl.z2>=0 and 
Rl.z2c=vSize 

2) Liveness Properties: Prop. 3 (Reachability 1): Does 
there exist a control trajectory where the robots eventually 
reach their goal positions? 

E<> Rl.21-1 and Rl.z2==0 and R2.21==0 and R2.22==2 
and R3.21-4 and R3.22==1 

Prop. 4 (Reachability with time requirement): Does there 
exist a control trajectory where the robots eventually reach 
their goal position within 10 tu? 

E<, Rl.zl==l and Rl.z2==0 and R2.21==0 and R2.22==2 
and R3.21==4 and R3 .z2==1 and time<=lO 

Prop. 5 (Reachability with step requirement): Does there 
exist a control trajectory where the robots eventually reach 
their goal positions within 10 step movements? 

E < >  Rl.zl==l and Rl.z2==0 and RZ.zl==O and R2.22==2 
and R3.21-4 and R3.z2==1 and Rl.step<=lO and 
R2. step<=lO and R3. step <=lo 

a. b 

5 t  -1 5 t  

4 

3 

1 

0 

X l  

Fig. 6 .  
system with two robots. 

Robot movements in the zlzz-plane. a. system with three robots. b. 

V. RESULTS 
In the following we provide the results from the verification 

of the properties of the multi-robot system as described in 
Section IV, Fig. 5.a. By construction the first safety property 
(Prop. 1) should be satisfied since the robots are able to occupy 
the cell they are moving to, enforced by the guards on the 
transitions to the move locations, e.g. partx [z1+11 [221 ==o, 
see Fig. 3. This property was satisfied when using the verifier 
in UPPAAL. Moreover, the robots are able to move within 
the defined workspace, also enforced by the guards on the 
transitions to the move locations, e.g. zl<hSize (see Fig. 3) 
and hence Prop. 2 is satisfied. The robot movements in the 
zlz2-plane is shown in Fig. 6.a. 

As shown the robots are able to reach their goal positions. 
Moreover, given the initial positions of the robots it was 
possible to verify that the goal positions were reachable within 
the specified time requirement (i.e. 10 tu). This is shown in 
Fig. 7. 

Thus, Prop. 3 and Prop. 4 are satisfied. Finally, Prop. 5 is 
satisfied since both robots are able to reach their goal positions 
within 10 step movements. 

Similar safety and liveness properties were verified for the 
multi-robot system involving only two robots as shown in 
Fig. 5.b. Given the initial positions of the robots and static 
positions of the obstacles, Prop. 1 to Prop. 4 were satisfied 
for this system. In Fig. 8 the robot movements in the ~1x2-  
plane vs. time are shown. 

The robot movements in Fig. 8 represents the fastest-time 
control trajectories of the robots. Moreover, the lower and 
upper bounds on the robot movements are both shown in 
Fig. 9. The upper bound represents the maximum time it may 
take a robot to reach its goal position. 

Fig. 6.b and Fig. 8 shows that RI and ~2 can only reach 
their goal positions (the cells marked ~1 and ~ 2 ,  respectively) 
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if they change position. 

VI. CONCLUSION 
High level motion planning fix multiple robots that perform 

various tasks in a common environment is regarded to be a 
major challenge and is subject to intense research. In this 
paper, we have used a timed-automata formalism to present 
robots’ and controller behaviour in an environment that was 
restricted to a planar grid. 

Subsequently, properties with direct impact on coordination 
solution, such as safety and liveness, where algorithmically 
verified and illustrated via two simple examples. 

The salient feature in timeld-automata formalism that is 
clocks enable us to refine the models and hence enhance our 
ability to address additional issues such as optimal solutions 
with respect to time or steps for a coordination problem 
involving different robots with different dynamic behaviours. 

Understandably, model refinement implies exponential en- 
hancement in the search space where the solution should be 
found. Finding locally optimal solutions in this respect would 
be a logical approach and is the subject of current research. 
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Fig. 7. Robot movements in the zlzz-plane vs. time. 

Fig. 8. Robot movements in the zlzz-plane vs. time. 

Fig. 9. Upper and lower bounds on time for robot movements. 
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