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A "promise problem" is a formulation of a partial decision problem. Complexity 
issues about promise problems arise from considerations about cracking problems 
for public-key cryptosystems. Using a notion of Turing reducibility between 
promise problems, this paper disproves a conjecture made by Even and Yacobi 
(1980), that would imply nonexistence of public-key cryptosystems with NP-hard 
cracking problems. In its place a new conjecture is raised having the same conse- 
quence. In addition, the new conjecture implies that NP-complete sets cannot be 
accepted by Turing machines that have at most one accepting computation for each 
input word. © 1984 Academic Press, Inc. 

1. INTRODUCTION 

This  paper  is conce rned  with  several  complex i ty  issues abou t  cer ta in  kinds 

o f  par t ia l  dec is ion  problems.  The  na ture  o f  these par t ia l  dec is ion  p rob l ems  

can be best  expla ined  by cont ras t ing  them with  o rd ina ry  dec i s ion  problems.  

A dec is ion  p r o b l e m  is g iven as a p red ica te  P(x).  The  quest ion,  o f  course,  is 
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to determine whether there exists an algorithm d that solves the problem, 
i.e., such that ~¢(x) converges for all input instances x and such that 

Vx[d(x)  = "yes" ~ P(x)]. 

In practice, one often encounters problems for which only a subclass of 
the domain of all instances is of concern. Such problems are here called 
promise problems. Informally, a promise problem has the structure 

input x, 
promise Q(x), 
property R (x), 

where Q and R are predicates. Formally, a promise problem is a pair of 
predicates (Q,R). The predicate Q is called the promise. A deterministic 
Turing machine M solves the promise problem (Q, R) if 

Vx[Q(x)~ [M(x)~ A (M(x)= "yes" ~ R(x))]]. 

(The notation M(X) ~ means that M eventually halts on input x.). A promise 
problem (Q, R) is solvable if there exists a Turing machine M that solves it. 
If a Turing machine M solves (Q, R), then the language L(M) accepted by M 
is a solution to (Q, R). 

The study of problems with this format is certainly not new. For partial 
recursive functions one wants a program that computes correctly on its 
domain. And, techniques for establishing correctness of a program are 
typically distinct from halting issues. Problems of this kind have also arisen 
in context-free language theory (Ullian, 1967). 

Complexity issues about promise problems arise from Even and Yacobi's 
(1980) work in public-key cryptography. Since their work is the primary 
motivation for the complexity results that follow, and since we wish to draw 
conclusions about public-key cryptosystems, the model of a public-key cryp- 
tosystem which they use is now given. 

A public-key cryptosystem consists of three fixed and publicly known 
deterministic algorithms E, D, and G that operate in polynomial time. The 
diagram gives the basic layout; E is the encryption algorithm, D is the 
decryption algorithm, and G is the key generator; M, C, K 1 , K2, and X will 
be binary words, called the message, cryptogram, encryption key, decryption 
key, and trap-door, respectively. Prior to transmission of messages M of 
length n, the receiver generates X, say randomly, where ]XI is a polynomial 
in n, and then uses X to compute the pair (K1, K2)=  G(X). K 1 is made 
publicly known, but X and K 2 remain private. The encryption-decryption 
key pair may be used for encoding and decoding purposes for a relatively 
long time. 
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When a transmitter wants to send a message M of length n to a receiver, 
he computes C = E(K 1, M) and sends C on an open channel. The receiver, 
knowing K2, reconstructs M by M =  D(K 2, C). It is assumed that, for every 
X, if (K1, g2) = G(X), then M = D(K2, E(K1, M)). To the extent that n is a 
parameter, this system is similar to Brassard's transient key cryptosystem 
(Brassard, 1983). 

The inverse condition guarantees that the function )~ME(K1,M ) is 
one-one, for each K~ that is the public-key generated by G for some X. 
)cME(K a , M) may very well not be onto. 

A basic issue is whether there exist public-key cryptosystems with hard 
cracking problems. The cracking problem is the problem of computing M 
such that E(Ka, M)= C if such M exists. Therefore, the cracking problem 
for a fixed public-key cryptosystem is describable as a promise problem in 
the following way. 

input n, K 1 , C and M '  (where IM'] = n), 

promise there exists X such that K~ is the public-key 

generated by G on input X and there exists a 

message M, IMI = n, such that E(Ka, M) = C, 

property M '  >/M, where M is the message which 

satisfies E(K1, M) = C. 

Since ).ME(K 1 , M) is one-one, there is at most one M which satisfies 
E(K1,M) = C. Thus, if the promise is true, the question of whether the 
numerical value of M '  is greater or equal to the numerical value of M is 
always meaningful, and has a positive or negative answer. Furthermore, the 
computational version of the cracking problem (find M) is polynomial-time 
equivalent to the version given here. Given M such that E(KI ,M)= C, 
simply check whether M ' / >  M. Conversely, if the promise holds for n, K~, 
and C, an algorithm d that solves the above formulation of the cracking 
problem can be used in a binary search to find M, and this computation runs 
in polynomial time relative to za{. 

A public-key cryptosystem can be deemed secure only if every algorithm 
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that solves the promise problem formulation of its cracking problem is inef- 
ficient. Attempts to formulate the cracking problem as an ordinary decision 
problem would lead to faulty considerations. To see this, let Q and R denote 
the promise and property predicates, respectively, of the cracking promise 
problem and, tentatively, define the conjunction Q ~ R to be the cracking 
decision problem. Now, one might have a public-key cryptosystem, say Y ,  
such that the cracking decision problem Q (3R is difficult to solve. But if 
there is an efficient algorithm that solves the cracking promise problem, i.e., 
that efficiently finds M when the promise predicate Q is true and that gives 
"garbage" output when Q is false, then J is not a usable system. On the 
other hand, if the cracking promise problem (Q, R) has no efficient solution, 
then the cracking decision problem Q ~ R is difficult to solve also, because 
any algorithm that solves Q N R also solves (Q, R). 

This paper is organized so that Sections 2 and 3 provide basic complexity 
notions and results about promise prolems. Section 4 shows that a conjecture 
raised by Even and Yacobi (1980) is false. That conjecture would, if it were 
true, imply that public-key cryptosystems with NP-hard cracking problems 
do not exist. In Section 5 a new conjecture is raised that has the same conse- 
quence. In addition, the new conjecture implies that NP-complete sets cannot 
be accepted by Turing machines that have at most one accepting 
computation for each input word. 

NP-hardness is a worst case notion, and, of course, one needs to know 
that the cracking problem of a given public-key cryptosystem is hard for 
almost all cases. If a cryptosystem for which the cracking problem is hard 
does not exist when the worst case approach is taken, then certainly it does 
not exist when an average or most-cases approach is used. 

2. COMPLEXITY CONCEPTS FOR PROMISE PROBLEMS 

Recall that if M is a deterministic Turing machine that solves a promise 
problem (Q, R), then the language L(M) accepted by M is called a solution 
to (Q, R). By means of this technical device every promise problem specifies 
a class of languages and solutions to promise problems can be described and 
manipulated set theoretically. We require notation for promise problems that 
have solutions in NP. One possibility is to extend the definition of NP to 
include promise problems. However, in order to keep NP sacrosanct for 
decision problems (encoded as languages), the following notation is 
introduced instead. 

DEFINITION 1. NPP is the class of all promise problems (Q, R) such that 
(Q,R) has a solution in NP. Co-NPP is the class of all promise problems 
(Q, R) such that (Q, MR) is in NPP. 
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A promise problem (Q, R) belongs to co-NPP if and only if (Q, R) has a 
solution in co-NP. Also note that a recursive language L is a solution to 
(Q, R) if and only if ~ L  is a solution to (Q, ~R). Thus, L is a solution in 
NP to (Q, R) if and only if ~L  is a solution in co-NP to (Q, ~R). 

Every set S in NP may be considered to be a promise problem (2;*, S) 
with the trivial promise 2~*, where S is a language over the finite alphabet 2?. 
(Occasionally we use sets instead of predicates when we name a promise 
problem.) If S is in NP (co-NP, NP ~ co-NP), then (S*, S) is in NPP (co- 
NPP, NPP ~ co-NPP, respectively). In this way, NPP is a proper extension 
of NP, co-NPP is a proper~"exteris'ior/ of co:NP~,-arid NPP A co-NPP is a 
proper extension of NP ~ co-NP. 

If a promise problem (Q, R) is in NPP ~ co-NPP, then by definition there 
is a solution in NP and there is a solution in co-NP. However, there is no 
reason to believe that (Q, R) has a solution in NP ~ co-NP. This simple 
observation suggests significant structural differences between the classes 
NPP ~ co-NPP and NP ~ eo-NP, and later results will bear this out. 

Let ~<Pm and ~<P denote polynomial-time many-one and Turing 
reducibilities, respectively. (This notation was established in Ladner, Lynch, 
and Selman (1975).) In accordance with generally accepted usage, recall that 
a language L is NP-complete if L is in NP and every set in NP is ~<Pm- 
reducible to L and recall that a language L is NP-hard if every set in NP is 
~<~-reducible to L. (Garey and Johnson (1979) contains a useful discussion 
and terminological history which explains why NP-complete and NP-hard 
are defined by different reducibilities. ) 

DEFINITION 2. A promise problem (Q,R) is NP-hard if it is solvable 
and every solution L of (Q, R) is NP-hard. 

It follows from the definition that if an NP-hard promise problem has a 
tractable solution (i.e., in P), then P - - N P .  In particular, if a public-key 
cryptosystem has an NP-hard cracking problem, then the system can be 
cracked (in worst case) in polynomial time only if P = NP. 

For an oracle Turing machine M with oracle set A, let L(M, A) denote the 
language accepted by M with oracle A. According to Definition 2, (Q, R) is 
NP-hard if and only if, for every set S in NP and for every solution A of 
(Q, R), there is an oracle Turing machine M that operates in polynomial 
time so that S = L (M, A). 

DEFINITION 3. A promise problem (Q, R) is uniformly NP-hard if it is 
solvable and for every set S in NP, there is an oracle Turing machine M that 
operates in polynomial time such that, for all solutions A of (Q,R), 
S = L(M, A). 

Uniformly NP-hard obviously implies NP-hard. The converse can be 
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expected to be false but no proof is yet known. In any case, the main results 
of the next section will hold for both notions. 

The concepts thus far defined can now be used for definitions of 
reductions and uniform reductions between promise problems. 

DEFINITION 4. A promise problem (Q,R) is Turing reducible in 
polynomial time to a promise problem (S, T), in symbols, (Q, R) ~<~e (S, T), 
if, for every solution A of (S, T), there is an oracle Turing machine M that 
operates in polynomial time such that M with oracle A solves (Q, R). 

DEFINITION 5. A promise problem (Q,R) is uniformly Turing reducible 
in polynomial time to a promise problem (S, T), (Q, R) ~<eu~ r (S, T), if there is 
an oracle Turing machine M that operates in polynomial time such that, for 
every solution A of (S, T), M with oracle A solves (Q, R). 

LEMMA l. (i) ~<~e and <~. are transitive relations. 

(ii) (O, R) ~<~. (S, T) implies (a, R) ~<~o (S, T). 

(iii) A solvable promise problem (Q,R) is NP-hard if and only if  for 
every set S in NP, (S* ,  S) ~<~e (Q,R). 

(iv) A solvable promise problem (Q,R) is uniformly NP-hard if  and 
only if, for every set S in NP, (Y~*, S) eP < e r  (Q,R)- 

Whether ~<~P implies ~<~ is an open question. 

3. ELEMENTARY RESULTS 

Since we are focusing on polynomial time complexity issues, let us assume 
henceforth that, for all promise problems (Q, R) mentioned, both Q and R 
are recursive predicates. Furthermore, we assume that if M is a Turing 
machine that solves (Q, R) then M halts on every input. Therefore, every 
solution to a promise problem is a recursive set. The solution criterion 
becomes 

Q(x) ~ (M(x) ----- "yes" ~ R(x)). 

The solutions to a promise problem (Q,R) can be completely charac- 
terized set theoretically: A recursive set A is a solution to (Q, R) if and only 
if A = ( Q N R ) U B ,  where Q A B - - O  and B is recursive. In particular, 
every promise problem is solvable; Q A R ,  R, and R U ~Q are solutions; 
Q n R is the smallest solution, and R U ~ Q  is the largest solution. If (Q, R) 
is an NP-hard promise problem, then Q A R ,  R, and R U ~Q are NP-hard 
sets. 
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Promise problems with tractable promise can be analyzed rather 
completely. First of all, R is NP-hard, and Q is in P does not imply that 
(Q, R) is NP-hard. (Take Q to be empty or finite and observe that Q n R is 
either empty or finite and so, assuming P 4: NP, (Q, R) is not NP-hard.) To 
obtain a nontrivial example, use Ladner's result (Ladner, 1975) to obtain an 
NP-complete set R and a set Q in P such that Q N R  is not NP-hard 
(although Q A R  is in NP-P assuming P4:NP) .  Thus, (Q,R) is not NP- 
hard. 

THEOREM 1. I f  R is NP-hard, Q is in P, and (Q,R ) has a solution in P, 
then (~Q,R ) is NP-hard. 

Proof Let R be NP-hard, Q in P, and let A in P be a solution to (Q, R). 
Let B be an arbitrary solution to (~Q, R). To show that (~Q, R) is NP-hard, 
it suffices to show R ~<~ B. This is accomplished by the following algorithm 
with oracle set B. 

input x; 
if O(x) 

thenifx  EA {Q(x)~ ( x E A  ~ R(x))} 
then accept 
else reject 

elselfx ~ B {~Q(x)~ ( x C B ~ R ( x ) ) }  
then accept 
else reject. 

<~rA.  LEMMA 2. I f  Q is in P and A is a solution to (Q, R), then Q n R PP 

Proof Let Q belong to P and let A be any solution to (Q,R). The 
reduction follows from the obsevation that Q n R = Q n A. 

As an immediate consequence we have 

THEOREM 2. I f  Q is in P, then (Q, R) is an NP-hard promise problem if 
and only if Q n R is an NP-hard set. 

Theorem 2 can be used to generate many interesting examples of NP-hard 
promise problems in NPP. The technique is this: Let R be any known NP- 
complete problem and let Q n R be a refinement that is still NP-complete, 
where Q belongs to P. Then, (Q, R) is NP-hard. For example, let SAT be an 
encoding of the satisfactory formulas of propositional logic, and let 3 be an 
encoding of all formulas with three literals per clause. 3 n SAT is the well- 
known NP-complete set 3SAT. Since 3 is in P, Theorem 2 applies. Hence, 
(3, SAT) is an NP-hard promise problem in NPP. 

THEOREM 3. I f  Q belongs to P and (Q, R) is an NP-hard problem, then 
(Q, R) is uniformly NP-hard. 

643/61/2-7 
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Proof Since (Q,R) is NP-hard, QC3R is an NP-hard solution. L e t M b e  
an oracle Turing machine that operates in polynomial time and that, by use 
of Lemma 2, uniformly reduces QC3R to solutions of (Q,R). Let S be any 
set in NP. Then, the machine which ~er-reduces S to Q ~ R followed by M 
uniformly reduces S to each solution of (Q, R). II 

For promises in NP, we have 

LEMMA 3. I f  Q is in NP, then (Q,R) is in NPP if and only if Q ~ R  is 
in NP. 

Proof The proof from right to left follows directly from the definition of 
NPP. For the proof in the other direction, let A be a solution in NP to 
(Q,R). Thus, Q ~ A  is in NP, but Q(-3A = QC3R. | 

4. ON THE CLASS NPP A eo-NPP 

Let us consider the cracking problem for public-key cryptosystems once 
again, and let us note that cracking problems are in NPP ~ co-NPP. To see 
that the cracking problem has a solution in NP, the procedure on input n, 
K 1, C, and M'  is to guess X and 34, test whether X and M satisfy the 
promise and if so, then accept if M'  ) M. Similarly, it is easy to see that the 
cracking problem is in co-NPP. (In this case, accept if M'  < M.) 

It is well known that NP ~ eo-NP contains an NP-hard set if and only if 
NP is closed under complements (cf. Brassard, 1979 or Selman, 1974). 
Hence, the former property is unlikely to be true. It is hypothesized in Even 
and Yacobi (1980) that there exist no NP-hard promise problems in 
NPP (3 co-NPP. By the remarks in the preceding paragraph, a consequence 
of this hypothesis is nonexistence of public-key cryptosystems with NP-hard 
cracking problems. By the following lemma it is certainly reasonable to 
conjecture that NPP 4= eo-NPP. 

LEMMA 4. NPP = eo-NPP if  and only if NP = co-NP. 

Proof Since NPP and co-NPP are extensions of NP and eo-NP, respec- 
tively, the proof from left to right is trivial. The converse implication follows 
from the observation that ifA is a solution to (Q,R), then A is a solution to 
(Q,~R). | 

However, we now provide an example of an NP-hard promise problem in 
NPP C3 co-NPP. Let • denote the logical operator "exclusive or." Let SAT 
denote the NP-complete satisfiability problem. We will take the liberty also 
of writing SAT as a predicate, so that SAT(x) asserts that x is satisfiable. 
Let EX denote the predicate defined by EX(x,y)~SAT(x)@SAT(y).  
Define SAT 1 = 2x2ySAT(x), so that S A T l ( x , y ) ~  SAT(x). 
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THEOREM 4. (i) (EX, SA T1) ~ NPP A co-NPP. 

(ii) (EX, SA T1) is NP-hard. 

Proof (i) Let x and y be input words and suppose the promise EX(x, y) 
is true. Then, ~SAT(x) is equivalent to the predicate SAT(y). Thus, it is 
evident that both (EX, SAT1) and (EX, ~SAT1) belong to NPP. 

(ii) Let A be any solution to (EX, SAT1). (Technically, A is a 
language consisting of encoded ordered pairs; we will write (x ,y )CA to 
denote membership in A.) If SAT(x) @ SAT(y), then (x, y) ~ A ~ SAT(x). 
To show that A is NP-hard, it suffices to~-slaiJw that SAT ~<TA, by the 
following iterative algorithm with oracle A. 

Let ~, be a program variable that ranges over propositional formulas. Let 
0(ol ..... an) be an input formula with Boolean variables e 1 ,..., a n. 

: =  G.); 
f o r / : =  1 t o n d o  

t~/has free variables a i ..... an} 
i f  ( ~ ' ( 0 ,  0"i+ 1,... , O'n) , I/./(l, G i + I , . . .  , O'n) ) ~ h 

t h e n  ~' : = ~,(0, ai+ 1 ..... an) 
else ~ : = ~(1, tTi+ 1 ..... crn); 

{~ is a variable-free Boolean expression} 
if ~ has value 1 

then accept {~ is satisfiable / 
else reject {¢ is not satisfiable/. 

The algorithm clearly operates in polynomial time. If the accept state is 
reached, then a satisfying assignment for ¢ has been found. Conversely, 
suppose ~i is satisfiable. We claim that the loop preserves satisfiability of ~,. 
At each execution of the loop body, if ~,(ol,..., an) is satisfiable, then 
~(0,~ri+ 1 ..... trn) is satisfiable or ~,(1, ai+l,...,an) is satisfiable. If exactly one 
of these is satisfiable, then the promise is true and the oracle query provides 
correct information. If both of these are true, then ~, remains true 
independent of the value of the oracle query. Hence, the algorithm correctly 
reduces SAT to the solution A of (EX, SAT1) in polynomial time. I 

Since the algorithm just given does not depend on choice of solution, we 
have the following corollary. 

COROLLARY 1. (EX, SAT1) is uniformly NP-hard. 

COROLLARY 2. For each promise problem (Q, R) in NPP, (Q, R) ~ 
(EX, SAT 1). 

Proof. Let (Q, R) ~ NPP. Let L be a solution in NP to (Q, R). Let A be 
an arbitrary solution to (EX, SAT1). Let M be an oracle Turing machine 
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that operates in polynomial time such that L =L(M,A).  By definition, M 
with oracleA solves (Q,R). II 

Whereas NP N co-NP probably does not contain a set that is complete for 
NP ~ co-NP (Sipser, 1982), we see here that NPP ~ eo-NPP does contain 
the complete promise problem (EX, SAT1). The results of this secton 
indicate that complexity classes of promise problems have different structural 
properties than do complexity classes of ordinary decision problems. 

In anticipation of the issues to be raised in the next section, it is worth 
noting the complexity of the promise predicate EX. Following Papadimitriou 
and Yannakakis (1982), define D p = {L 1 AL21L 1 @ NP and L 2 C co-NP}. 
Trivially, N P _  D e, co-NP_ D e, and D e ~ A f  (where A P is defined to be 
pN~). It is expected that each of these inclusions is proper. 

PROPOSITION 1. EX /s complete for D e. 

Proof Let x and y be propositional formulas and assume without loss of 
generality that x and y have no propositional variables in common. Then 
EX(x ,y)~  SAT(x V y) and ,-~SAT(x A y), and so EX belongs to D e. Let 
SAT-UNSAT be the decision problem defined by 

(x, y) E SAT-UNSAT ~ SAT(x) and ,-,SAT(y). 

It is shown in Papadimitriou and Yannakakis (1982) that SAT-UNSAT is 
complete for D P. Finally, a straightforward reduction of SAT-UNSAT to EX 
is given by 

(X, y) E SAT-UNSAT ~ EX(x, 0) and EX(1, y). I 

5. A NEW CONJECTURE 

We have just seen that there does exist an NP-hard promise problem 
(Q, R), in NPP ~ co-NPP, but with Q E D P and probably not in NP. We 
conjecture that promise problems with the first two properties cannot have Q 
in NP. More precisely, 

Conjecture. There exists no promise problem (Q, R) such that 

(i) (Q,R) E NPP~co-NPP, 

(ii) (Q, R) is NP-hard, and 

(iii) Q is in NP. 

PROPOSITION 2. The conjecture implies that public-key cryptosystems 
with NP-hard cracking problems do not exist. 
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To see the correctness of this proposition, simply observe (cf. the 
Introduction) that the promise predicate for cracking problems is in NP. 
This conjecture has even larger interest. We consider the set ~g of problems 
in NP that have unique solution (Valiant, 1976). That is, ~' is the set of all 
languages L for which there is a nondeterministic Turing machine M that 
witnesses L ~ NP such that for every input x to M, M has at most one 
accepting computation. Whether ~ = NP is a well-known open problem. 
(Aspects of this problem are discussed in Book, Long and Selman (1982), 
Geske and Grollmann (1983), and Rackoff (1982).) 

THEOREM 5. The conjecture implies NP ¢ ~'. 

Proof. We will prove the contrapositive. Assume NP = ~/ and let L be 
any NP-complete set contained in ~/. A promise problem (Q,R) is to be 
constructed that satisfies the conditions of the conjecture. Let M be a 
nondeterministic Turing machine that is a witness to L C ff  and that 
operates in polynomial time p. Assume without loss of generality that M can 
make at most two distinct next moves in any configuration. Then, every 
computation of M on an input word x corresponds in a natural way to a 
binary choice sequence y of length at most p(Ixl). Let ~< be any standard 
polynomial time computable ordering of the binary strings. Define the 
predicates Q and R by 

Q(x,z)~ xC L 

and 

R(x , z )~  x C L  andz<~y,  

where y is the unique binary choice sequence that causes M to accept x. 
By definition, Q E NP. It is easy to see that (Q,R)~ NPP. Namely, a 

solution to (Q, R) that belongs to NP is given by the following nondeter- 
ministic procedure: Given x and z, guess a choice sequence y whose length is 
within the bound p(] x ]) and check to determine whether y causes M to accept 
x. If so, and if z <~ y, then accept. Otherwise, do not accept. 

Similarly, it is easy to see that (Q, ~R)  belongs to NPP. Therefore, (Q, R) 
belongs to NPP n eo-NPP. 

We now use the premise that L is NP-complete in order to show that 
(Q, R) is NP-hard. Let A be any solution of (Q, R). To show that A is NP- 
hard, it suffices to show that L ~<rA, and this is accomplished by the 
following algorithm with oracle A: 

(1) input x; 

(2) apply a binary search to the set of strings of length <.~v(Ixl) to try 
to find the largest string z such that {x, y} E A; 
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(3) if step 2 does not output a string z 

(4) then reject 

(5) else | f z  is an accepting choice sequence of M for x 

(6) then accept 

(7) else reject. 

Since step (2) can be performed in time O(log(2P(m)))= O(p(Ixt)), the 
algorithm runs in polynomial time. We argue that the algorithm correctly 
reduces L to A. Suppose x C L. Then, the promise Q(x, z) is satisfied. Hence, 
(x, z) C A ~ R(x, z). The predicate R enjoys the property 

R(x, zl) A (z2 <~ zl)-~ R(x, z2). 

Therefore, step (2) does find a largest string z such that ( x , z ) C A .  By 
definition of R, this string z must be the unique accepting choice sequence of 
M on input x. Hence, the algorithm accepts x. 

Conversely, suppose the algorithm accepts input x. Then step (5) is 
reached. Hence, x C L(M). | 

It may be worth noting that f f  is closed under ~<em-reductions. Therefore, 
NP = g/ if and only if g/ contains an NP-complete set, and so we have 

COROLLARY 3. I f  the conjecture is true, then no NP-complete set can be 
accepted by any Turing machine that has at most one accepting computation 
for each input word. 

A variant of the conjecture is indeed true, assuming NP 4= co-NP. This is 
shown in the next and final theorem. Unfortunately, the variant does not 
seem to have the same nice consequences for public-key cryptosystems. 

THEOREM 6. NP = eo-NP if and only if there exists a promise problem 
(Q, R) such that 

(i) (Q, R) E NPP ~ eo-NPP, 

(ii) (Q, R) is uniformly NP-hard, 

(iii) Q is in eo-NP. 

The proof will require some facts about oracle Turing machines. First, an 
oracle Turing machine is a multitape Turing machine with a distinguished 
work tape, the query tape, and three distinguished states QUERY, YES, and 
NO. At some step of a computation on an input string x, M may transfer 
into the state QUERY. In state QUERY, M transfers into the state YES if 
the string currently appearing on the query tape is in some oracle setA; 
otherwise, M transfers into the state NO; in either case the tape is instantly 
erased. 
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Every oracle Turing machine M~ is equivalent to an oracle Turing 
machine M 2 such that for every input string x and every query string w, M 2 
on input x never enters state QUERY with w written on its query tape more 
than once. Moreover, if M 1 operates in polynomial time, then so does M 2. 
Now we will describe M 2. M 2 will simulate M 1, but as it does so will build 
two finite "tables" Ty and T~¢. At all times, T r (-3 T N = 0.  T r will contain 
each query string that receives a YES answer from its oracle and T u will 
contain each query string that receives a NO answer from its oracle. One of 
the work tapes of M 2 is used to store (an appropriate encoding of) T r,  
another of the work tapes M 2 is used to store (an appropriate encoding of) 
T N, and both these tapes are initially empty. On input x, M 2 begins a 
simulation of M 1. Whenever this simulated computation is to enter a query 
configuration with a word w written on the query tape, M 2 first determines 
whether the string w belongs to T r U T N already. If  w C Ty k) T~-, then M z 
erases its query tape and continues its simulation of M1 in state YES if 
w E T r and in state NO if w ~ T:¢. (In particular M 2 does not enter its query 
state.) If w ~ T v U  T N, then m 2 e n t e r s  state QUERY and writes the string w 
onto Ty if the transfer state is YES, and onto T N otherwise. Clearly, M 2 is 
equivalent to M~ and M 2 operates in polynomial time if M 1 does. Given an 
input word x and oracle set A, M 2 on input x never queries A more than once 
about any string w, and Tr and T u are maintained to insure consistency of 
oracle responses. 

Now the proof of Theorem 6 is given. 

P r o o f  Suppose NP = c o - N P  and let L be any NP-complete set. Then, 
(22", L)  satisfies all the conditions of the theorem. 

To prove the converse, let L belong to NP and let M be a deterministic 
oracle Turing machine that uniformly reduces L to solutions of (Q, R). Then, 
M with its accepting and rejecting states reversed (call this machine M ' )  
reduces ~ L  to solutions of (Q,R). In accordance with the argument just 
given, M '  on an input x builds tables Ty and T u and so does not query its 
oracle about any word w more than once. Let M;, i = 1, 2, be NP-acceptors 
that solve (Q, R) and (Q, ~R),  respectively, and let M s be an NP-acceptor 
for ~Q. We now describe an NP-acceptor N for ~L.  On input x, N begins a 
simulation of M '  on x but replaces each query w to the oracle by simulations 
of w on the NP-acceptors M i, i =  1, 2, 3, according to the following 
nondeterministic algorithm. Machine N builds tables T r and T N also and 
initially T r = T u = 0 .  

if w C T r 

then continue simulation of M' in the YES state; 
l fwC T N 

then continue simulation of M' in the NO state; 
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i f w ~  T r U  T N 
then ifM~ accepts w 

--, begin 
:= TyU [w]; 

continue simulation of M '  in the YES state 
end 

[3 (M 2 accepts w) or (M 3 accepts w) 
begin 
TN := [w]; 
continue simulation of M '  in the NO state 
end. 

If  the algorithm is executed on a word w and the guard that is chosen does 
not evaluate to true, then the simulation by N of M '  on input x is to 
terminate without accepting. For every input word x to N, the simulation by 
N of M '  on x can be completed, i.e., there is a computation of N on x that 
reaches one of the accepting or rejecting states of M' .  To see this, observe 
that w E Q implies M~ accepts w if and only if w ~ R and M 2 accepts w if 
and only if w ~ ~R, and w E ,-,Q implies M 3 accepts w. Thus, for each word 
w that is not already in T r LJ Tu, at least one of the guards can evaluate to 
true. 

It is obvious that the language accepted by N belongs to NP. We need to 
see that ~L  is this language. First we will show that if x is accepted by N, 
then x ~ ~L. Consider a fixed accepting computation of N on x and consider 
the final values of the tables T r and T N that N constructs. Since N simulates 
M' ,  M '  must accept x with any oracle A such that T r_~A and T N _ ~A. 
Since M '  uniformly reduces ,-,L to solutions of (Q, R), if a solution A of 
(Q,R) can be found such that Trc_A and T N ~ A ,  then x E ~ L  follows 
from the previous statement. We claim that the set A = L ( M  0 -  T u is a 
solution of (Q,R), that Tr%A and that TN~_~A. If w E  Q, then w ~ A  if 
and only if w E R ,  because L(M 0 is a solution of (Q,R), and so A is a 
solution of (Q, R) also. Obviously, T N c ,-,A. T r _  A because the algorithm 
places a word w into T r only if M 1 accepts w and because T r ~  T N-- 0. 
This completes the proof in one direction. 

Now let x E ~L  and let us see that N has an accepting computation on 
input x. Consider the final values of T r and T N that are constructed by M '  
when M '  is executed on input x with L(M1) as the oracle. Recall that this 
computation accepts x, since L(M1) is a solution of (Q, R). We claim there 
is a computation of N on input x for which the final values of its table are 
also T r and T N. It follows immediately that this computation accepts x. To 
establish our claim, first note that Ty ~ L(M 0 and T N c_ ~L(M O. If w ~ T r, 
it follows that the guard "M1 accepts w" is true and therefore this 
computation of the algorithm places w into its table of YES responses. If 
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w E T N, then w ~ L(M1) and so either w E Q c3 MR or w C ~Q. Thus, the 
guard "(M 2 accepts w) or (M 3 accepts w)" is true. This computation of the 
algorithm places w into its table of NO responses. This completes the proof 
of the claim. Hence, if x C ~L,  then N accepts x. 

We proved that ~L  is the language accepted by N; therefore, ~L  E NP. 
Since L is an arbitrary language in NP, NP = co-NP follows. II 
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