
INFORMATION AND CONTROL 61, 159--173 (1984)

The Complexity of Promise Problems
with Applications to Public-Key Cryptography*

SHIMON EVEN

Computer Science Department, Technion, Haifa, Israel

ALAN L. SELMAN

Computer Science Department, Iowa State University,
Ames, Iowa 50011

AND

YACOV YACOBI

Electrical Engineering Department, Technion, Haifa, Israel

A "promise problem" is a formulation of a partial decision problem. Complexity
issues about promise problems arise from considerations about cracking problems
for public-key cryptosystems. Using a notion of Turing reducibility between
promise problems, this paper disproves a conjecture made by Even and Yacobi
(1980), that would imply nonexistence of public-key cryptosystems with NP-hard
cracking problems. In its place a new conjecture is raised having the same conse-
quence. In addition, the new conjecture implies that NP-complete sets cannot be
accepted by Turing machines that have at most one accepting computation for each
input word. © 1984 Academic Press, Inc.

1. INTRODUCTION

This paper is conce rned with several complex i ty issues abou t cer ta in kinds

o f par t ia l dec is ion problems. The na ture o f these par t ia l dec is ion p rob l ems

can be best expla ined by cont ras t ing them with o rd ina ry dec i s ion problems.

A dec is ion p r o b l e m is g iven as a p red ica te P(x). The quest ion, o f course, is

* This research was done while the second author visited the Computer Science
Department, Technion, Haifa, Israel, with funds provided by the United States-Israel
Educational Foundation (Fulbright Award), and while the third author visited the Electrical
Engineering and Computer Science Department, University of California at San Diego,
La Jolla, California. Some of the results of this paper were presented by the second and third
authors at the 8th International Colloquium on Automata, Languages, and Programming,
Aarhus, Denmark, July, 1982. This research was supported in part by the National Science
Foundation under Grants MCS77-23493 A02 and MCS81-20263.

159
0019-9958/84 $3.00

Copyright © 1984 by Academic Press, Inc.
All rights of reproduction in any form reserved.

160 EVEN~ SELMAN~ AND YACOBI

to determine whether there exists an algorithm d that solves the problem,
i.e., such that ~¢(x) converges for all input instances x and such that

Vx[d(x) = "yes" ~ P(x)].

In practice, one often encounters problems for which only a subclass of
the domain of all instances is of concern. Such problems are here called
promise problems. Informally, a promise problem has the structure

input x,
promise Q(x),
property R (x),

where Q and R are predicates. Formally, a promise problem is a pair of
predicates (Q,R). The predicate Q is called the promise. A deterministic
Turing machine M solves the promise problem (Q, R) if

Vx[Q(x)~ [M(x)~ A (M(x)= "yes" ~ R(x))]].

(The notation M(X) ~ means that M eventually halts on input x.). A promise
problem (Q, R) is solvable if there exists a Turing machine M that solves it.
If a Turing machine M solves (Q, R), then the language L(M) accepted by M
is a solution to (Q, R).

The study of problems with this format is certainly not new. For partial
recursive functions one wants a program that computes correctly on its
domain. And, techniques for establishing correctness of a program are
typically distinct from halting issues. Problems of this kind have also arisen
in context-free language theory (Ullian, 1967).

Complexity issues about promise problems arise from Even and Yacobi's
(1980) work in public-key cryptography. Since their work is the primary
motivation for the complexity results that follow, and since we wish to draw
conclusions about public-key cryptosystems, the model of a public-key cryp-
tosystem which they use is now given.

A public-key cryptosystem consists of three fixed and publicly known
deterministic algorithms E, D, and G that operate in polynomial time. The
diagram gives the basic layout; E is the encryption algorithm, D is the
decryption algorithm, and G is the key generator; M, C, K 1 , K2, and X will
be binary words, called the message, cryptogram, encryption key, decryption
key, and trap-door, respectively. Prior to transmission of messages M of
length n, the receiver generates X, say randomly, where]XI is a polynomial
in n, and then uses X to compute the pair (K1, K2)= G(X). K 1 is made
publicly known, but X and K 2 remain private. The encryption-decryption
key pair may be used for encoding and decoding purposes for a relatively
long time.

COMPLEXITY OF PROMISE PROBLEMS 161

M [,, c .I D E
l

K1
G

Transmitter Reeeiver

L X

1-

When a transmitter wants to send a message M of length n to a receiver,
he computes C = E(K 1, M) and sends C on an open channel. The receiver,
knowing K2, reconstructs M by M = D(K 2, C). It is assumed that, for every
X, if (K1, g2) = G(X), then M = D(K2, E(K1, M)). To the extent that n is a
parameter, this system is similar to Brassard's transient key cryptosystem
(Brassard, 1983).

The inverse condition guarantees that the function)~ME(K1,M) is
one-one, for each K~ that is the public-key generated by G for some X.
)cME(K a , M) may very well not be onto.

A basic issue is whether there exist public-key cryptosystems with hard
cracking problems. The cracking problem is the problem of computing M
such that E(Ka, M)= C if such M exists. Therefore, the cracking problem
for a fixed public-key cryptosystem is describable as a promise problem in
the following way.

input n, K 1 , C and M ' (where IM'] = n),

promise there exists X such that K~ is the public-key

generated by G on input X and there exists a

message M, IMI = n, such that E(Ka, M) = C,

property M ' >/M, where M is the message which

satisfies E(K1, M) = C.

Since).ME(K 1 , M) is one-one, there is at most one M which satisfies
E(K1,M) = C. Thus, if the promise is true, the question of whether the
numerical value of M ' is greater or equal to the numerical value of M is
always meaningful, and has a positive or negative answer. Furthermore, the
computational version of the cracking problem (find M) is polynomial-time
equivalent to the version given here. Given M such that E(KI ,M)= C,
simply check whether M ' / > M. Conversely, if the promise holds for n, K~,
and C, an algorithm d that solves the above formulation of the cracking
problem can be used in a binary search to find M, and this computation runs
in polynomial time relative to za{.

A public-key cryptosystem can be deemed secure only if every algorithm

162 EVEN, SELMAN, AND YACOBI

that solves the promise problem formulation of its cracking problem is inef-
ficient. Attempts to formulate the cracking problem as an ordinary decision
problem would lead to faulty considerations. To see this, let Q and R denote
the promise and property predicates, respectively, of the cracking promise
problem and, tentatively, define the conjunction Q ~ R to be the cracking
decision problem. Now, one might have a public-key cryptosystem, say Y ,
such that the cracking decision problem Q (3R is difficult to solve. But if
there is an efficient algorithm that solves the cracking promise problem, i.e.,
that efficiently finds M when the promise predicate Q is true and that gives
"garbage" output when Q is false, then J is not a usable system. On the
other hand, if the cracking promise problem (Q, R) has no efficient solution,
then the cracking decision problem Q ~ R is difficult to solve also, because
any algorithm that solves Q N R also solves (Q, R).

This paper is organized so that Sections 2 and 3 provide basic complexity
notions and results about promise prolems. Section 4 shows that a conjecture
raised by Even and Yacobi (1980) is false. That conjecture would, if it were
true, imply that public-key cryptosystems with NP-hard cracking problems
do not exist. In Section 5 a new conjecture is raised that has the same conse-
quence. In addition, the new conjecture implies that NP-complete sets cannot
be accepted by Turing machines that have at most one accepting
computation for each input word.

NP-hardness is a worst case notion, and, of course, one needs to know
that the cracking problem of a given public-key cryptosystem is hard for
almost all cases. If a cryptosystem for which the cracking problem is hard
does not exist when the worst case approach is taken, then certainly it does
not exist when an average or most-cases approach is used.

2. COMPLEXITY CONCEPTS FOR PROMISE PROBLEMS

Recall that if M is a deterministic Turing machine that solves a promise
problem (Q, R), then the language L(M) accepted by M is called a solution
to (Q, R). By means of this technical device every promise problem specifies
a class of languages and solutions to promise problems can be described and
manipulated set theoretically. We require notation for promise problems that
have solutions in NP. One possibility is to extend the definition of NP to
include promise problems. However, in order to keep NP sacrosanct for
decision problems (encoded as languages), the following notation is
introduced instead.

DEFINITION 1. NPP is the class of all promise problems (Q, R) such that
(Q,R) has a solution in NP. Co-NPP is the class of all promise problems
(Q, R) such that (Q, MR) is in NPP.

COMPLEXITY OF PROMISE PROBLEMS 163

A promise problem (Q, R) belongs to co-NPP if and only if (Q, R) has a
solution in co-NP. Also note that a recursive language L is a solution to
(Q, R) if and only if ~ L is a solution to (Q, ~R). Thus, L is a solution in
NP to (Q, R) if and only if ~L is a solution in co-NP to (Q, ~R).

Every set S in NP may be considered to be a promise problem (2;*, S)
with the trivial promise 2~*, where S is a language over the finite alphabet 2?.
(Occasionally we use sets instead of predicates when we name a promise
problem.) If S is in NP (co-NP, NP ~ co-NP), then (S*, S) is in NPP (co-
NPP, NPP ~ co-NPP, respectively). In this way, NPP is a proper extension
of NP, co-NPP is a proper~"exteris'ior/ of co:NP~,-arid NPP A co-NPP is a
proper extension of NP ~ co-NP.

If a promise problem (Q, R) is in NPP ~ co-NPP, then by definition there
is a solution in NP and there is a solution in co-NP. However, there is no
reason to believe that (Q, R) has a solution in NP ~ co-NP. This simple
observation suggests significant structural differences between the classes
NPP ~ co-NPP and NP ~ eo-NP, and later results will bear this out.

Let ~<Pm and ~<P denote polynomial-time many-one and Turing
reducibilities, respectively. (This notation was established in Ladner, Lynch,
and Selman (1975).) In accordance with generally accepted usage, recall that
a language L is NP-complete if L is in NP and every set in NP is ~<Pm-
reducible to L and recall that a language L is NP-hard if every set in NP is
~<~-reducible to L. (Garey and Johnson (1979) contains a useful discussion
and terminological history which explains why NP-complete and NP-hard
are defined by different reducibilities.)

DEFINITION 2. A promise problem (Q,R) is NP-hard if it is solvable
and every solution L of (Q, R) is NP-hard.

It follows from the definition that if an NP-hard promise problem has a
tractable solution (i.e., in P), then P - - N P . In particular, if a public-key
cryptosystem has an NP-hard cracking problem, then the system can be
cracked (in worst case) in polynomial time only if P = NP.

For an oracle Turing machine M with oracle set A, let L(M, A) denote the
language accepted by M with oracle A. According to Definition 2, (Q, R) is
NP-hard if and only if, for every set S in NP and for every solution A of
(Q, R), there is an oracle Turing machine M that operates in polynomial
time so that S = L (M, A).

DEFINITION 3. A promise problem (Q, R) is uniformly NP-hard if it is
solvable and for every set S in NP, there is an oracle Turing machine M that
operates in polynomial time such that, for all solutions A of (Q,R),
S = L(M, A).

Uniformly NP-hard obviously implies NP-hard. The converse can be

164 EVEN~ SELMAN, AND YACOBI

expected to be false but no proof is yet known. In any case, the main results
of the next section will hold for both notions.

The concepts thus far defined can now be used for definitions of
reductions and uniform reductions between promise problems.

DEFINITION 4. A promise problem (Q,R) is Turing reducible in
polynomial time to a promise problem (S, T), in symbols, (Q, R) ~<~e (S, T),
if, for every solution A of (S, T), there is an oracle Turing machine M that
operates in polynomial time such that M with oracle A solves (Q, R).

DEFINITION 5. A promise problem (Q,R) is uniformly Turing reducible
in polynomial time to a promise problem (S, T), (Q, R) ~<eu~ r (S, T), if there is
an oracle Turing machine M that operates in polynomial time such that, for
every solution A of (S, T), M with oracle A solves (Q, R).

LEMMA l. (i) ~<~e and <~. are transitive relations.

(ii) (O, R) ~<~. (S, T) implies (a, R) ~<~o (S, T).

(iii) A solvable promise problem (Q,R) is NP-hard if and only if for
every set S in NP, (S* , S) ~<~e (Q,R).

(iv) A solvable promise problem (Q,R) is uniformly NP-hard if and
only if, for every set S in NP, (Y~*, S) eP < e r (Q,R)-

Whether ~<~P implies ~<~ is an open question.

3. ELEMENTARY RESULTS

Since we are focusing on polynomial time complexity issues, let us assume
henceforth that, for all promise problems (Q, R) mentioned, both Q and R
are recursive predicates. Furthermore, we assume that if M is a Turing
machine that solves (Q, R) then M halts on every input. Therefore, every
solution to a promise problem is a recursive set. The solution criterion
becomes

Q(x) ~ (M(x) ----- "yes" ~ R(x)).

The solutions to a promise problem (Q,R) can be completely charac-
terized set theoretically: A recursive set A is a solution to (Q, R) if and only
if A = (Q N R) U B , where Q A B - - O and B is recursive. In particular,
every promise problem is solvable; Q A R , R, and R U ~Q are solutions;
Q n R is the smallest solution, and R U ~ Q is the largest solution. If (Q, R)
is an NP-hard promise problem, then Q A R , R, and R U ~Q are NP-hard
sets.

COMPLEXITY OF PROMISE PROBLEMS 165

Promise problems with tractable promise can be analyzed rather
completely. First of all, R is NP-hard, and Q is in P does not imply that
(Q, R) is NP-hard. (Take Q to be empty or finite and observe that Q n R is
either empty or finite and so, assuming P 4: NP, (Q, R) is not NP-hard.) To
obtain a nontrivial example, use Ladner's result (Ladner, 1975) to obtain an
NP-complete set R and a set Q in P such that Q N R is not NP-hard
(although Q A R is in NP-P assuming P4:NP) . Thus, (Q,R) is not NP-
hard.

THEOREM 1. I f R is NP-hard, Q is in P, and (Q,R) has a solution in P,
then (~Q,R) is NP-hard.

Proof Let R be NP-hard, Q in P, and let A in P be a solution to (Q, R).
Let B be an arbitrary solution to (~Q, R). To show that (~Q, R) is NP-hard,
it suffices to show R ~<~ B. This is accomplished by the following algorithm
with oracle set B.

input x;
if O(x)

thenifx EA {Q(x)~ (x E A ~ R(x))}
then accept
else reject

elselfx ~ B {~Q(x)~ (x C B ~ R (x)) }
then accept
else reject.

<~rA. LEMMA 2. I f Q is in P and A is a solution to (Q, R), then Q n R PP

Proof Let Q belong to P and let A be any solution to (Q,R). The
reduction follows from the obsevation that Q n R = Q n A.

As an immediate consequence we have

THEOREM 2. I f Q is in P, then (Q, R) is an NP-hard promise problem if
and only if Q n R is an NP-hard set.

Theorem 2 can be used to generate many interesting examples of NP-hard
promise problems in NPP. The technique is this: Let R be any known NP-
complete problem and let Q n R be a refinement that is still NP-complete,
where Q belongs to P. Then, (Q, R) is NP-hard. For example, let SAT be an
encoding of the satisfactory formulas of propositional logic, and let 3 be an
encoding of all formulas with three literals per clause. 3 n SAT is the well-
known NP-complete set 3SAT. Since 3 is in P, Theorem 2 applies. Hence,
(3, SAT) is an NP-hard promise problem in NPP.

THEOREM 3. I f Q belongs to P and (Q, R) is an NP-hard problem, then
(Q, R) is uniformly NP-hard.

643/61/2-7

166 EVEN~ SELMAN, AND YACOBI

Proof Since (Q,R) is NP-hard, QC3R is an NP-hard solution. L e t M b e
an oracle Turing machine that operates in polynomial time and that, by use
of Lemma 2, uniformly reduces QC3R to solutions of (Q,R). Let S be any
set in NP. Then, the machine which ~er-reduces S to Q ~ R followed by M
uniformly reduces S to each solution of (Q, R). II

For promises in NP, we have

LEMMA 3. I f Q is in NP, then (Q,R) is in NPP if and only if Q ~ R is
in NP.

Proof The proof from right to left follows directly from the definition of
NPP. For the proof in the other direction, let A be a solution in NP to
(Q,R). Thus, Q ~ A is in NP, but Q(-3A = QC3R. |

4. ON THE CLASS NPP A eo-NPP

Let us consider the cracking problem for public-key cryptosystems once
again, and let us note that cracking problems are in NPP ~ co-NPP. To see
that the cracking problem has a solution in NP, the procedure on input n,
K 1, C, and M' is to guess X and 34, test whether X and M satisfy the
promise and if so, then accept if M') M. Similarly, it is easy to see that the
cracking problem is in co-NPP. (In this case, accept if M' < M.)

It is well known that NP ~ eo-NP contains an NP-hard set if and only if
NP is closed under complements (cf. Brassard, 1979 or Selman, 1974).
Hence, the former property is unlikely to be true. It is hypothesized in Even
and Yacobi (1980) that there exist no NP-hard promise problems in
NPP (3 co-NPP. By the remarks in the preceding paragraph, a consequence
of this hypothesis is nonexistence of public-key cryptosystems with NP-hard
cracking problems. By the following lemma it is certainly reasonable to
conjecture that NPP 4= eo-NPP.

LEMMA 4. NPP = eo-NPP if and only if NP = co-NP.

Proof Since NPP and co-NPP are extensions of NP and eo-NP, respec-
tively, the proof from left to right is trivial. The converse implication follows
from the observation that ifA is a solution to (Q,R), then A is a solution to
(Q,~R). |

However, we now provide an example of an NP-hard promise problem in
NPP C3 co-NPP. Let • denote the logical operator "exclusive or." Let SAT
denote the NP-complete satisfiability problem. We will take the liberty also
of writing SAT as a predicate, so that SAT(x) asserts that x is satisfiable.
Let EX denote the predicate defined by EX(x,y)~SAT(x)@SAT(y).
Define SAT 1 = 2x2ySAT(x), so that S A T l (x , y) ~ SAT(x).

COMPLEXITY OF PROMISE PROBLEMS 167

THEOREM 4. (i) (EX, SA T1) ~ NPP A co-NPP.

(ii) (EX, SA T1) is NP-hard.

Proof (i) Let x and y be input words and suppose the promise EX(x, y)
is true. Then, ~SAT(x) is equivalent to the predicate SAT(y). Thus, it is
evident that both (EX, SAT1) and (EX, ~SAT1) belong to NPP.

(ii) Let A be any solution to (EX, SAT1). (Technically, A is a
language consisting of encoded ordered pairs; we will write (x ,y)CA to
denote membership in A.) If SAT(x) @ SAT(y), then (x, y) ~ A ~ SAT(x).
To show that A is NP-hard, it suffices to~-slaiJw that SAT ~<TA, by the
following iterative algorithm with oracle A.

Let ~, be a program variable that ranges over propositional formulas. Let
0(ol an) be an input formula with Boolean variables e 1 ,..., a n.

: = G.);
f o r / : = 1 t o n d o

t~/has free variables a i an}
i f (~ ' (0 , 0"i+ 1,... , O'n) , I/./(l, G i + I , . . . , O'n)) ~ h

t h e n ~' : = ~,(0, ai+ 1 an)
else ~ : = ~(1, tTi+ 1 crn);

{~ is a variable-free Boolean expression}
if ~ has value 1

then accept {~ is satisfiable /
else reject {¢ is not satisfiable/.

The algorithm clearly operates in polynomial time. If the accept state is
reached, then a satisfying assignment for ¢ has been found. Conversely,
suppose ~i is satisfiable. We claim that the loop preserves satisfiability of ~,.
At each execution of the loop body, if ~,(ol,..., an) is satisfiable, then
~(0,~ri+ 1 trn) is satisfiable or ~,(1, ai+l,...,an) is satisfiable. If exactly one
of these is satisfiable, then the promise is true and the oracle query provides
correct information. If both of these are true, then ~, remains true
independent of the value of the oracle query. Hence, the algorithm correctly
reduces SAT to the solution A of (EX, SAT1) in polynomial time. I

Since the algorithm just given does not depend on choice of solution, we
have the following corollary.

COROLLARY 1. (EX, SAT1) is uniformly NP-hard.

COROLLARY 2. For each promise problem (Q, R) in NPP, (Q, R) ~
(EX, SAT 1).

Proof. Let (Q, R) ~ NPP. Let L be a solution in NP to (Q, R). Let A be
an arbitrary solution to (EX, SAT1). Let M be an oracle Turing machine

168 EVEN, SELMAN, AND YACOBI

that operates in polynomial time such that L =L(M,A). By definition, M
with oracleA solves (Q,R). II

Whereas NP N co-NP probably does not contain a set that is complete for
NP ~ co-NP (Sipser, 1982), we see here that NPP ~ eo-NPP does contain
the complete promise problem (EX, SAT1). The results of this secton
indicate that complexity classes of promise problems have different structural
properties than do complexity classes of ordinary decision problems.

In anticipation of the issues to be raised in the next section, it is worth
noting the complexity of the promise predicate EX. Following Papadimitriou
and Yannakakis (1982), define D p = {L 1 AL21L 1 @ NP and L 2 C co-NP}.
Trivially, N P _ D e, co-NP_ D e, and D e ~ A f (where A P is defined to be
pN~). It is expected that each of these inclusions is proper.

PROPOSITION 1. EX /s complete for D e.

Proof Let x and y be propositional formulas and assume without loss of
generality that x and y have no propositional variables in common. Then
EX(x ,y)~ SAT(x V y) and ,-~SAT(x A y), and so EX belongs to D e. Let
SAT-UNSAT be the decision problem defined by

(x, y) E SAT-UNSAT ~ SAT(x) and ,-,SAT(y).

It is shown in Papadimitriou and Yannakakis (1982) that SAT-UNSAT is
complete for D P. Finally, a straightforward reduction of SAT-UNSAT to EX
is given by

(X, y) E SAT-UNSAT ~ EX(x, 0) and EX(1, y). I

5. A NEW CONJECTURE

We have just seen that there does exist an NP-hard promise problem
(Q, R), in NPP ~ co-NPP, but with Q E D P and probably not in NP. We
conjecture that promise problems with the first two properties cannot have Q
in NP. More precisely,

Conjecture. There exists no promise problem (Q, R) such that

(i) (Q,R) E NPP~co-NPP,

(ii) (Q, R) is NP-hard, and

(iii) Q is in NP.

PROPOSITION 2. The conjecture implies that public-key cryptosystems
with NP-hard cracking problems do not exist.

COMPLEXITY OF PROMISE PROBLEMS 169

To see the correctness of this proposition, simply observe (cf. the
Introduction) that the promise predicate for cracking problems is in NP.
This conjecture has even larger interest. We consider the set ~g of problems
in NP that have unique solution (Valiant, 1976). That is, ~' is the set of all
languages L for which there is a nondeterministic Turing machine M that
witnesses L ~ NP such that for every input x to M, M has at most one
accepting computation. Whether ~ = NP is a well-known open problem.
(Aspects of this problem are discussed in Book, Long and Selman (1982),
Geske and Grollmann (1983), and Rackoff (1982).)

THEOREM 5. The conjecture implies NP ¢ ~'.

Proof. We will prove the contrapositive. Assume NP = ~/ and let L be
any NP-complete set contained in ~/. A promise problem (Q,R) is to be
constructed that satisfies the conditions of the conjecture. Let M be a
nondeterministic Turing machine that is a witness to L C ff and that
operates in polynomial time p. Assume without loss of generality that M can
make at most two distinct next moves in any configuration. Then, every
computation of M on an input word x corresponds in a natural way to a
binary choice sequence y of length at most p(Ixl). Let ~< be any standard
polynomial time computable ordering of the binary strings. Define the
predicates Q and R by

Q(x,z)~ xC L

and

R(x , z)~ x C L andz<~y,

where y is the unique binary choice sequence that causes M to accept x.
By definition, Q E NP. It is easy to see that (Q,R)~ NPP. Namely, a

solution to (Q, R) that belongs to NP is given by the following nondeter-
ministic procedure: Given x and z, guess a choice sequence y whose length is
within the bound p(] x]) and check to determine whether y causes M to accept
x. If so, and if z <~ y, then accept. Otherwise, do not accept.

Similarly, it is easy to see that (Q, ~R) belongs to NPP. Therefore, (Q, R)
belongs to NPP n eo-NPP.

We now use the premise that L is NP-complete in order to show that
(Q, R) is NP-hard. Let A be any solution of (Q, R). To show that A is NP-
hard, it suffices to show that L ~<rA, and this is accomplished by the
following algorithm with oracle A:

(1) input x;

(2) apply a binary search to the set of strings of length <.~v(Ixl) to try
to find the largest string z such that {x, y} E A;

170 EVEN, SELMAN, AND YACOBI

(3) if step 2 does not output a string z

(4) then reject

(5) else | f z is an accepting choice sequence of M for x

(6) then accept

(7) else reject.

Since step (2) can be performed in time O(log(2P(m)))= O(p(Ixt)), the
algorithm runs in polynomial time. We argue that the algorithm correctly
reduces L to A. Suppose x C L. Then, the promise Q(x, z) is satisfied. Hence,
(x, z) C A ~ R(x, z). The predicate R enjoys the property

R(x, zl) A (z2 <~ zl)-~ R(x, z2).

Therefore, step (2) does find a largest string z such that (x , z) C A . By
definition of R, this string z must be the unique accepting choice sequence of
M on input x. Hence, the algorithm accepts x.

Conversely, suppose the algorithm accepts input x. Then step (5) is
reached. Hence, x C L(M). |

It may be worth noting that f f is closed under ~<em-reductions. Therefore,
NP = g/ if and only if g/ contains an NP-complete set, and so we have

COROLLARY 3. I f the conjecture is true, then no NP-complete set can be
accepted by any Turing machine that has at most one accepting computation
for each input word.

A variant of the conjecture is indeed true, assuming NP 4= co-NP. This is
shown in the next and final theorem. Unfortunately, the variant does not
seem to have the same nice consequences for public-key cryptosystems.

THEOREM 6. NP = eo-NP if and only if there exists a promise problem
(Q, R) such that

(i) (Q, R) E NPP ~ eo-NPP,

(ii) (Q, R) is uniformly NP-hard,

(iii) Q is in eo-NP.

The proof will require some facts about oracle Turing machines. First, an
oracle Turing machine is a multitape Turing machine with a distinguished
work tape, the query tape, and three distinguished states QUERY, YES, and
NO. At some step of a computation on an input string x, M may transfer
into the state QUERY. In state QUERY, M transfers into the state YES if
the string currently appearing on the query tape is in some oracle setA;
otherwise, M transfers into the state NO; in either case the tape is instantly
erased.

COMPLEXITY OF PROMISE PROBLEMS 171

Every oracle Turing machine M~ is equivalent to an oracle Turing
machine M 2 such that for every input string x and every query string w, M 2
on input x never enters state QUERY with w written on its query tape more
than once. Moreover, if M 1 operates in polynomial time, then so does M 2.
Now we will describe M 2. M 2 will simulate M 1, but as it does so will build
two finite "tables" Ty and T~¢. At all times, T r (-3 T N = 0. T r will contain
each query string that receives a YES answer from its oracle and T u will
contain each query string that receives a NO answer from its oracle. One of
the work tapes of M 2 is used to store (an appropriate encoding of) T r,
another of the work tapes M 2 is used to store (an appropriate encoding of)
T N, and both these tapes are initially empty. On input x, M 2 begins a
simulation of M 1. Whenever this simulated computation is to enter a query
configuration with a word w written on the query tape, M 2 first determines
whether the string w belongs to T r U T N already. If w C Ty k) T~-, then M z
erases its query tape and continues its simulation of M1 in state YES if
w E T r and in state NO if w ~ T:¢. (In particular M 2 does not enter its query
state.) If w ~ T v U T N, then m 2 e n t e r s state QUERY and writes the string w
onto Ty if the transfer state is YES, and onto T N otherwise. Clearly, M 2 is
equivalent to M~ and M 2 operates in polynomial time if M 1 does. Given an
input word x and oracle set A, M 2 on input x never queries A more than once
about any string w, and Tr and T u are maintained to insure consistency of
oracle responses.

Now the proof of Theorem 6 is given.

P r o o f Suppose NP = c o - N P and let L be any NP-complete set. Then,
(22", L) satisfies all the conditions of the theorem.

To prove the converse, let L belong to NP and let M be a deterministic
oracle Turing machine that uniformly reduces L to solutions of (Q, R). Then,
M with its accepting and rejecting states reversed (call this machine M ')
reduces ~ L to solutions of (Q,R). In accordance with the argument just
given, M ' on an input x builds tables Ty and T u and so does not query its
oracle about any word w more than once. Let M;, i = 1, 2, be NP-acceptors
that solve (Q, R) and (Q, ~R), respectively, and let M s be an NP-acceptor
for ~Q. We now describe an NP-acceptor N for ~L. On input x, N begins a
simulation of M ' on x but replaces each query w to the oracle by simulations
of w on the NP-acceptors M i, i = 1, 2, 3, according to the following
nondeterministic algorithm. Machine N builds tables T r and T N also and
initially T r = T u = 0 .

if w C T r

then continue simulation of M' in the YES state;
l fwC T N

then continue simulation of M' in the NO state;

172 EVEN, SELMAN, AND YACOBI

i f w ~ T r U T N
then ifM~ accepts w

--, begin
:= TyU [w];

continue simulation of M ' in the YES state
end

[3 (M 2 accepts w) or (M 3 accepts w)
begin
TN := [w];
continue simulation of M ' in the NO state
end.

If the algorithm is executed on a word w and the guard that is chosen does
not evaluate to true, then the simulation by N of M ' on input x is to
terminate without accepting. For every input word x to N, the simulation by
N of M ' on x can be completed, i.e., there is a computation of N on x that
reaches one of the accepting or rejecting states of M' . To see this, observe
that w E Q implies M~ accepts w if and only if w ~ R and M 2 accepts w if
and only if w ~ ~R, and w E ,-,Q implies M 3 accepts w. Thus, for each word
w that is not already in T r LJ Tu, at least one of the guards can evaluate to
true.

It is obvious that the language accepted by N belongs to NP. We need to
see that ~L is this language. First we will show that if x is accepted by N,
then x ~ ~L. Consider a fixed accepting computation of N on x and consider
the final values of the tables T r and T N that N constructs. Since N simulates
M' , M ' must accept x with any oracle A such that T r_~A and T N _ ~A.
Since M ' uniformly reduces ,-,L to solutions of (Q, R), if a solution A of
(Q,R) can be found such that Trc_A and T N ~ A , then x E ~ L follows
from the previous statement. We claim that the set A = L (M 0 - T u is a
solution of (Q,R), that Tr%A and that TN~_~A. If w E Q, then w ~ A if
and only if w E R , because L(M 0 is a solution of (Q,R), and so A is a
solution of (Q, R) also. Obviously, T N c ,-,A. T r _ A because the algorithm
places a word w into T r only if M 1 accepts w and because T r ~ T N-- 0.
This completes the proof in one direction.

Now let x E ~L and let us see that N has an accepting computation on
input x. Consider the final values of T r and T N that are constructed by M '
when M ' is executed on input x with L(M1) as the oracle. Recall that this
computation accepts x, since L(M1) is a solution of (Q, R). We claim there
is a computation of N on input x for which the final values of its table are
also T r and T N. It follows immediately that this computation accepts x. To
establish our claim, first note that Ty ~ L(M 0 and T N c_ ~L(M O. If w ~ T r,
it follows that the guard "M1 accepts w" is true and therefore this
computation of the algorithm places w into its table of YES responses. If

COMPLEXITY OF PROMISE PROBLEMS 173

w E T N, then w ~ L(M1) and so either w E Q c3 MR or w C ~Q. Thus, the
guard "(M 2 accepts w) or (M 3 accepts w)" is true. This computation of the
algorithm places w into its table of NO responses. This completes the proof
of the claim. Hence, if x C ~L, then N accepts x.

We proved that ~L is the language accepted by N; therefore, ~L E NP.
Since L is an arbitrary language in NP, NP = co-NP follows. II

RECEIVED: June 13, 1983; ACCEPTED: January 26, 1984

REFERENCES

BOOK, R., LONG, T., AND SELMAN, A. (1982) Qualitative controlled relativizations of
complexity classes, manuscript.

BRASSARD, G. (1979), A note on the complexity of cryptography, IEEE Trans. Inform.
Theory IT-25, No. 2, 232-233.

BRASSARD, G. (1983), Relativized cryptography, IEEE Trans. Inform. Theory, IT-29, No. 6,
877-894.

EVEN, S., AND YACOBI, Y. (1980), Cryptography and NP-completeness, "Proc. 7th Colloq.
Automata, Lang. Programming," Lecture Notes in Computer Science Vol. 85,
pp. 195-207, Springer Verlag, Berlin/New York.

GAREY, M., AND JOHNSON, D. (1979), "Computers and Intractability: A Guide to the Theory
of NP-Completeness," Freeman, San Francisco.

GESKE, J. AND GROLLMANN, J. (1983), Relativizations of unambiguous and random
polynomial time classes, manuscript.

LADNER, R. (1975), On the structure of polynomial time reducibility, J. Assoc. Comput.
Mach. 22, 155-171.

LADNER, R., LYNCH, N., AND SELMAN, A. (1975), A comparison of polynomial time
reducibilities, Theoret. Comput. Sci. l, 103-123.

PAPADIMITRIOU, C., AND YANNAKAKIS, M. (1982), The complexity of facets (and some facets
of complexity), in "Proc. 14th Ann. ACM Sympos. on Theory of Computing," 255-260.

RACKOEF, C. (1982), Relativized questions involving probabilistic algorithms, J. Assoc.
Comput. Mach. 29, 261-268.

SELMAN, A. (1974), On the structure of NP, Notices Amer. Math. Soc. 21, No. 6, 310.
SIPSER, M. (1982), On relativization and the existence of complete sets, in "Proc. 9th Colloq.

Automata, Lang. Programming," Lecture Notes in Computer Science Vol. 140,
pp. 523-531, Springer-Verlag.

ULLIAN, J. (1967), Partial algorithm problems for context-free languages, Inform. Contr. l l ,
80-101.

VALIANT, L. (1976), Relative complexity of checking and evaluating, Inform. Process. 5,
20-23.

