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Many different methods have been devised for automatically verifying finite state 
systems by examining state-graph models of system behavior. These methods all 
depend on decision procedures that explicitly represent the state space using a list 
or a table that grows in proportion to the number of states. We describe a general 
method that represents the state space symbolical/y instead of explicitly. The 
generality of our method comes from using a dialect of the Mu-Calculus as the 
primary specification language. We describe a model checking algorithm for Mu- 
Calculus formulas that uses Bryant’s Binary Decision Diagrams (Bryant, R. E., 
1986, IEEE Trans. Comput. C-35) to represent relations and formulas. We then 
show how our new Mu-Calculus model checking algorithm can be used to derive 
efficient decision procedures for CTL model checking, satistiability of linear-time 
temporal logic formulas, strong and weak observational equivalence of finite 
transition systems, and language containment for finite w-automata. The fixed 
point computations for each decision procedure are sometimes complex. but can 
be concisely expressed in the Mu-Calculus. We illustrate the practicality of our 
approach to symbolic model checking by discussing how it can be used to verify a 
simple synchronous pipeline circuit. 1%’ 1992 Academic Press. Inc 

1. INTRODUCTION 

Over the last decade, it has become apparent that finite-state systems can 
often be verified automatically by examining state-graph models of system 
behavior. A number of different methods have been proposed: temporal 
logic model checking, language containment algorithms for automata, 
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“conformation checking” in trace theory, and testing for various equiva- 
lences and preorders between finite CCS-like models. Although each of 
these methods uses a different computational model and a different notion 
of verification, they all rely on algorithms that explicitly represent a state 
space, using a list or table that grows in proportion to the number of 
states. Because the number of states in the model may grow exponentially 
with the number concurrently executing components, the size of the state 
table is usually the limiting factor in applying these algorithms to realistic 
systems. 

Our technique for combatting this “state explosion problem” is to repre- 
sent the state space symbolically instead of explicitly. In many cases, the 
intuitive “complexity” of the state space is much less than the number of 
states would indicate. Often systems with a large number of components 
have a regular structure that would suggest a corresponding regularity 
in the state graph. Consequently, it may be possible to find more 
sophisticated representations of the state space that exploit this regularity 
in a way that a simple table of states cannot. One good candidate for such 
a symbolic representation is the binary decision diagram (BDD) (Bryant, 
1986), which is widely used in various tools for the design and analysis of 
digital circuits. BDDs do not prevent a state explosion in all cases, but they 
allow many practical systems with extremely large state spaces to be 
verified-systems that would be impossible to handle with explicit state 
enumeration methods. Indeed, we present empirical results in this paper 
that show that the method can be applied in practice to verify models with 
in excess of 10” states. Explicit state enumeration methods described in the 
literature are limited to systems with at most lo* reachable states. 

Several groups have applied this idea to different verification methods. 
Coudert, Berthet, and Madre (1989) describe a BDD-based system for 
showing equivalence between deterministic Moore machines. Their system 
performs a symbolic breadth-first execution of the state space determined by 
the product of the two machines. This model is not generalized to models 
other than deterministic Moore machines, or notions of verification other 
than strict equivalence. Bose and Fisher (1989) have described a BDD- 
based algorithm for CTL model checking that is applicable to synchronous 
circuits. However, their method is unable to handle asynchronous con- 
currency, or properties of infinite computations, such as liveness and 
fairness. 

All of these methods are based on iterative computation of fixed points. 
It seems clear that numerous additional papers could be generated by 
applying this technique to different verification methodologies. Our goal is 
to provide a unified framework for these results by showing that all can be 
seen as special cases of symbolic evaluation of Mu-Calculus formulas. 

Another technique for reducing the state explosion problem is to exploit 
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concurrency. Two actions x and y (e.g., program statements) are said to be 
concurrent if executing xy is equivalent to executing yx. By considering 
only one order of the concurrent actions, or considering the actions to be 
unordered, the state explosion can be reduced. Examples of such tech- 
niques are the stubborn sets method of Valmari (1989, 1990), the trace 
automaton method of Godefroid and Wolper (Godefroid, 1990; Godefroid 
and Wolper, 1991), the behavior machines method of Probst and Li 
(1990), and the Time Petri Nets method of Yoneda et. al. (1989). These 
methods are limited in that they only address one source of the state 
explosion problem-the interleaving of concurrent actions. They are not 
effective, for example, on synchronous finite state machines, which do not 
involve interleaving of actions. The symbolic model checking technique, on 
the other hand, can be effective in dealing with the state explosion in the 
synchronous case, as demonstrated in Section 10. Symbolic methods have 
also been shown to be effective for asynchronous finite state machines 
(Burch et al., 1990; Burch et al., 1991b). In practice, much of the state 
explosion that results from interleaving can be handled efficiently by 
symbolic methods. 

We describe the syntax and semantics of a dialect of the Mu-Calculus, 
and present a model checking algorithm for Mu-Calculus formulas that uses 
BDDs to represent relations and formulas. We then show how our new 
Mu-Calculus model checking algorithm can be used to derive efficient 
decision procedures for CTL model checking, satisfiability of linear-time 
temporal logic formulas, strong and weak observational equivalence of 
finite transition systems, and language containment for finite o-automata. 
In each case, a Mu-Calculus formula can be directly derived from an 
instance of the problem. This formula can be evaluated automatically, 
eliminating the need to describe complicated fixed point computations for 
each decision procedure. We illustrate the practicality of our approach to 
symbolic model checking by discussing how it can be used to verify a 
simple synchronous pipeline circuit. 

2. BINARY DECISION DIAGRAMS 

Binary decision diagrams (BDDs) are a canonical form representation 
for Boolean formulas (Bryant, 1986). They are often substantially more 
compact than traditional representations such as conjunctive normal form 
and disjunctive normal form. Hence, BDDs have found application in 
many computer aided design tasks, including symbolic verification of com- 
binational logic. A BDD is similar to a binary decision tree, except that its 
structure is a directed acyclic graph rather than a tree, and there is a total 
order placed on the occurrence of variables as one traverses the graph from 



SYMBOLIC MODEL CHECKING 145 

FIG. 1. A binary decision diagram 

root to a leaf. Consider, for example, the BDD of Fig. 1. It represents the 
formula (a A b) v (c A d), using the variable ordering a < b < c-c d. Given 
an assignment of Boolean values to the variables a, 6, c, and d, one can 
decide whether the assignment satisfies the formula by traversing the graph 
beginning at the root, branching at each node based on the assigned value 
of the variable which labels that node. For example, the assignment 
(at l,bcO,c+- 1,de 1) leads to a leaf node labeled 1, hence this 
assignment satisfies the formula. 

Bryant showed that there is a unique BDD for a given Boolean function 
together with a given variable ordering. The size of the BDD representing 
a given function depends critically on the variable ordering. Bryant also 
described eflicient algorithms for basic operations on BDDs, such as com- 
puting the BDD representations of 1 f and f v g given the BDDs for 
formulas f and g. The only other operations required for the algorithms 
that follow are quantification over Boolean variables and substitution of 
variable names. Bryant gives an algorithm for computing the BDD for a 
restricted formula of the form f JaZO or f ]1l = i. The restriction algorithm 
allows us to compute the BDD for the formula 3v[f], where u is a 
Boolean variable and f is a formula, as f 1~ = 0 v f 1 a =, . The substitution of 
a variable w  for a variable v in a formula f, denoted f( u +- w) can be 
accomplished using quantification, that is, 

More efficient algorithms are possible, however, for the case of quantilica- 
tion over multiple variables, or multiple renamings. In the latter case, 
efficiency depends on the ordering of variables in the BDDs being the same 
on both sides of the substitution. 

BDDs can also be viewed as a form of deterministic finite automata 
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(Kimura and Clarke, 1990). An n-argument Boolean function can be iden- 
tified with the set of strings in (0, 1 }” that represent valuations where the 
function is true. Since this is a finite language and all finite languages are 
regular, there is a minimal finite automaton that accepts this set. This 
automaton provides a canonical representation for the original Boolean 
function. Logical operations on Boolean functions can be implemented by 
set operations on the languages accepted by the finite automata. For 
example, conjunction corresponds to language intersection. Standard 
constructions from elementary automata theory can be used to compute 
these operations on languages. 

3. THE MU-CALCULUS 

A number of different versions of the Mu-Calculus have been proposed. 
In this paper we use the notation of Park (1974). It can be shown that this 
version of the Mu-Calculus can express any property expressible in other 
versions of the Mu-Calculus (Cleaveland, 1989; Emerson and Lei, 1986; 
Kozen, 1983; Stirling and Walker, 1989). 

The Mu-Calculus is similar to standard first-order logic, with the 
following changes. First, as a simplifying assumption, we do not include 
function symbols or constant symbols. Also, relational symbols are replaced 
by relational variables. In formulas of the form R(z,, z2, . . . . zn), the R can 
be a relational variable (analogous to a relational symbol in first-order 
logic), or it can be a relational term in one of two other forms. The first of 
these forms is 

where f is a formula and the yi are individual variables. Most often the yi 
are free inf, but this need not be the case. Also, the free variables off need 
not be contained in the set of yi. The other form for a relational term is 
pP[R], where R is a relational term with some arity n and P is a relational 
variable, also with arity n. The term pP[R] represents the least fixed 
point of R. To insure that the least fixed point exists, we require that 
R be formally monotone with respect to P, which means that all free 
occurrences of P in R fall under an even number of negations. 

As an example, let (V, E) be a directed graph, and let V,, and Q be 
subsets of V. The Mu-Calculus formula 

V,(Y) v MQ(x) * W-v Y)I 

is true if and only if the vertex y is in V,, or is reachable in one step from 
a vertex in Q. The Mu-Calculus relational term 

PQL-~YCVCLY) v W-Q(x) A E(x, ~1111 
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represents the smallest set Q such that 

Q = Mu, v WQ(x) A WG ,,)ll. 

This is the set V, of vertices reachable from VO. 
The above description of the syntax of the Mu-Calculus can be 

formalized as follows. We assume we are given a finite signature Y. Each 
symbol in 9’ is either an individual variable or a relational variable with 
some positive arity. We recursively define two syntactic categories: formulas 
and relational terms. Formulas have the following form: 

1. R(z, , z2, . ..) z, , ) where R is an n-ary relational term and 
zi, zz, . . . . zn are individual variables in Y not free in R. 

2. 1 f, f v g, 3z[f 1, where f and g are formulas and z is an 
individual variable in 9’. 

Also, relational terms of arity n have the following form: 

1. P, where P is an n-ary relational variable in Y. 

2. AZ,, -12, . ..) zn [f 1, where f is a formula and zl, z2, . . . . c,, are distinct 
individual variables in Y. 

3. pP[R], where P is an n-ary relational variable in Y and R is an 
n-ary relational term that is formally monotone with respect to P. 

The formal definition of when an individual variable or relational 
variable is bound or free in some formula or relational term is standard, 
and will not be given here. Note, however, that individual variables can be 
bound by both the existential quantifier 3 and by the abstraction operator 
i,, while relational variables can only be bound by the fixed point 
operator p. 

We will assume that V, A, a, and o are treated as abbreviations in the 
usual manner. If R and R’ are n-ary relational terms we write 1 R as an 
abbreviation for lz,, . . . . z,[l R(z,, . . . . z,)], and we write R v R’ as an 
abbreviation for 

AZ I, ‘.” znCR( zl, . . . . z,) v R’(zI, . . . . z,)]. 

The relational term vP[R] is introduced as an abbreviation for 

and denotes the greatest fixed point of an nary relational term R, where 
R( P + (1 P)) denotes the relational term formed from R by substituting 
1 P for the free instances of P. 

The truth or falsity of a formula is determined with respect to a model 
JY = (D, I,, ID), where D is a non-empty set called the domain of the 
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model, I, is the relational variable interpretation, and I, is the individual 
variable interpretation. More specifically, for each individual variable y, 
Z,(y) is a value in D, and for each n-ary relational variable P, ZR( P) is an 
n-ary relation on the set D. In this paper, the domain of a model will 
always be finite. For a given domain, let 9, and YR be the set of all 
possible individual variable interpretations and the set of all possible 
relational variable interpretations, respectively. 

The semantic function 9 maps formulas to elements of 

(4 + (& + ( true, fake) )), 

and n-ary relational terms to elements of 

(& -+ (,a, -+ 29), 

where 2’O’) denotes the set of n-ary relations on D. The semantic function 
9 is defined inductively on the structure of formulas and relational terms. 
First, we define 9 on formulas. If R is an n-ary relational term, then 

WR(z,, . . . . zn))(ZR)UD) 

is true if and only if 

(Z,b, ), . . . . Z,,(z,) > E ~(R)U,)U,,). 

Iffand g are formulas, then 

9(1 f)(ZR)(ZD) = l(w)uR)uD)) 
w- ” gwR)(zD) = w-)(ZR)(ZD) ” ~k)(ZRWD) 
WdSI )URNZD) = 3e E NWXZR)UD(,- + e> )I. 

Next, we define $3 on relational terms. The first two cases are given by 

NP)(ZR)UD) = ZAP), 

9(lz,, . ..) z,CflUR)UD) = 1 <e,, . . . . en> ED”: 

WXZR)UD(zl + el, . . . . 2, + en>)). 

Finally, 

WJJ’CRI)(Z,)(Z,) = Z 

where Z is the subset of D” that is the least fixed point (under the inclusion 
ordering) of the equation 

Z= WR)(Z,<P~ Z))(Z,). 
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It is clear from elementary fixed point theory that the least fixed point 
exists, since R is formally monotone with respect to P. 

If .A? is a model andf is a formula, then we will write A + f to indicate 
that f is true in A! according to the above semantics. 

4. MODEL CHECKING ALC~RITHM 

Model checking is the process of determining whether a given formulaf 
is true in a given model M. In this section, we present a model checking 
algorithm for the Mu-Calculus that uses BDDs as its internal representa- 
tion. First, we describe the algorithm for the Boolean domain D = (0, 1 j. 
Later we show that a model with any finite domain can be encoded as a 
model with the Boolean domain, hence our model checking algorithm is 
fully general. 

The algorithm is divided into two functions, BDD~ and BDD,, which 
recurse over the structure of formulas and relational terms, respectively 
(Fig. 2). We assume here that the syntactic correctness of the formula has 
already been checked, including the formal monotonicity requirement. 

The value of each relational variable in a relational interpretation I, is 
represented by a BDD, using a set of place-holder (dummy) variables not 
in the signature Y. We refer to these variables as d, , d2, . . . . where di is used 
to stand for the ith argument of a relation. Thus, as n-ary relation 
represented by a BDD is said to hold for some arguments x,, . . . . x, if and 
only if the interpretation (d, +- x1, . . . . d, c x,) satisfies the BDD. In many 
practical instances, this representation of a relation is much more compact 
than an enumeration of its elements. 

The function BDD~ takes two arguments: a formula f and a relational 
variable interpretation I,, which assigns values to the free relational 
variables in f. It returns a BDD which has the following property: 
BDD,-(f, ZR) is satisfied by a given interpretation I, for the individual 
variables if and only if f is satisfied by the model M = (D, I,, IO). The first 
case in the definition treats individual variables as formulas, which is 
possible because the domain D is Boolean. The function BDDATOM(U) 

returns a BDD that is true if and only if u = 1. The next three cases in the 
definition derive directly from the respective semantic definitions for BDDs 
and Mu-Calculus formulas and should require no explanation. The algo- 
rithms for BDDAND and BDDNEGATE were described by Bryant (1986). The 
implementation of BDDEXISTS in terms of disjunction and restriction was 
discussed in Section 2. The last case, application of a relational term R, 
uses the function BDD, to find a representation of the relational term R 
(under the interpretation ZR), then substitutes the argument variables 
x1, . . . . x, for the place-holder variables d,, . . . . d,,. 
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function BDDJ(~ : formula, IR : rel-interp) : BDD; 
case 

f is an individual variable: 
return BDDATOM(f); 

f is of the form fr A fi: 

return BDDAND(BDD~(~I,IR), BDD,(~z,~R)); 

f is of the form ~fr: 
return BDDNEGATE(BDD~(~~,IR)); 

f is of the form 3z[fr]: 
return BDDEXISTS(Z, BDD~(~,~R)); 

fisoftheform R(zr,...,s,): 
return BDDR(R, I~)(dl +- 11,. , d, + z,); 

end case: 

function BDDR(R : rel-term, IR : rel-interp) : BDD; 
case 

R is a relational variable: 
return IR( R); 

R is of the form Xsr,. , z,,[f: 
return BDD~(~,~~)(z~ +- dlr...rz,, +- d,); 

R is of the form pP[R’]: 
return FIXEDPOINT(P,R’,IR,FALSEBDD); 

end case; 

function FIXEDPOINT(P : rel-var, R : rel-term, In : rel-interp, 
2 : BDD) : BDD; 

let 2’ = BDDR(R,ZR(P + Z)); 

if 2’ = Z then return 2 
else return FIXEDPOINT(P, R, ZR, 2’); 

FIG. 2. Mu-calculus model checking algorithm. 

The function BDD, takes as arguments a relational term R and a rela- 
tional interpretation I,. It returns a BDD which represents the relational 
term in the manner described above. Since the relational term may have 
free individual variables, the BDD may contain both the place-holder 
variables and the individual variables of the logic. Thus, given an inter- 
pretation I, for the individual variables, and an interpretation 1, for the 
place-holder variables, BDD,(R, ZR) is satisfied if and only if the relation 
g(R)(Z,)(I,) contains the n-tuple (IA( . . . . I,(&,)), where n is the arity 
of R. 

The first case in the definition of BDD,, a relational variable, simply 
returns the BDD representation of the variable in the interpretation Z,. 
The second case, lambda abstraction, produces a BDD with place-holder 
variables d,, . . . . d, substituted for the variables x1, . . . . x,. The most 
interesting case involves the fixed point operator p. To find the fixed 
point of a relational term with respect to a relational variable P, we use 
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the standard technique for finding the least fixed point of a monotonic 
function with a finite domain. This computes the fixed point by a series of 
approximations Z,, Z,, . . . . beginning with the empty relation (which is 
represented by the BDD constant FALSEBDD). To compute Zi+ , , we let the 
interpretation of P be Zi, while evaluating the relational term R using 
BDD.. Since the domain is finite and R is formally monotone with respect 
to P, the series must converge to the least fixed point. Convergence is 
detected when Zj+ , = Z;. Note that testing for convergence is easy, since 
testing BDDs for equivalence is a constant time operation. 

A performance improvement can be realized in the above fixed point 
algorithm by observing that any subterms or subformulas of R which do 
not have P as a free variable will not change in their evaluation from one 
iteration to the next. Thus, the evaluations of these terms do not need to 
be recomputed. For this reason, it is useful when possible to rewrite 
formulas so that fixed point subterms contain fewer free relational 
variables. 

In order to do model checking over a non-Boolean (but finite) domain 
D, we use an encoding function 4: { 0, 1 }” --t D which maps each Boolean 
vector of length m to an element of D. This function must be surjective, but 
it need not be injective. The minimum possible value of m is [log, IDI 1, 
but encodings with a larger number of bits are also possible. Using such an 
encoding, we construct a corresponding model M’ over the Boolean 
domain. If R is an n-ary relation symbol in the model M, then R’ is a 
relation of arity mn in M’, constructed by the rule 

R’(x,, . . . . 2,) - R(#,), . . . . 4(X,)), 

where Xi is a shorthand for m Boolean variables encoding xi. In order to 
check the truth of a given formulaf, we replace each individual variable in 
the formula with a vector of m Boolean valued variables, and check the 
resulting formulaf’ in the model M’. The homomorphism between M and 
M’ guarantees that M k f if and only if M’ k f’. 

The choice of an encoding function 4 and an ordering for the BDD 
variables has a substantial impact on the efficiency of the model checking 
algorithm. For digital circuits, the choice of encoding is generally trivial, 
since all components of the state are Boolean valued to begin with. 

5. ITERATIVE SQUARING 

It is often possible to rewrite a Mu-Calculus formula or relational term 
so that it can be analyzed more efficiently by the model checking algorithm. 
In this section we describe a systematic method for rewriting relational 
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terms, called the iterative squaring transformation, that can result in an 
exponential reduction in the number of iterations necessary to compute 
fixed points. We begin by showing how the iterative squaring transforma- 
tion can be applied to a particular relational term. Later we describe more 
general conditions under which the transformation can be applied. 

5.1. Transitive Closure 

Let W be the relational term 

which describes the set V, of vertices reachable in the directed graph 
(V, E) from the set of vertices V,, (see Section 3). When the model checking 
algorithm is applied to W, it requires n iterations to compute the set V, of 
vertices reachable via a path of length n or shorter. Thus, the number of 
iterations is linear in the diameter of the subgraph (V,, E’), where E’ is the 
set of edges in E connecting only vertices in V,. However, a standard 
technique can be used to rewrite W so that the model checking algorithm 
converges faster. The first step is to compute the transitive closure of E, 

E, = @[lx, yCE(x, Y) ” MfYx, w) A fYw> Y)III. 

Let E, be the binary relation computed by the model checker after n itera- 
tions in the computation of E,. The following theorem can be proved by 
induction on n. 

THEOREM 1. For all vertices y and non-negative integers n, 

V,(Y) v 3xCvdx) A E,(x, ~11 * VP(Y). 

The number of iterations necessary to compute E, is logarithmic in the 
diameter of (V, E). If the diameters of (V, E) and (I’,, E’) are roughly the 
same (the usual case in practice), this leads to a significant reduction in the 
number of iterations needed to compute I’,. However, iterative squaring 
can be impractical if the BDDs needed to represent the intermediate 
computations become too large. 

5.2. General Transformation 

We consider r-ary relational terms of the form pQ[R] or vQ[R], where 
R is some r-ary relational term. We further restrict R to be of the form 
(using j as a shorthand for y,, . . . . yr), 
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where S and N are relational terms that do not have Q as a free variable. 
It may seem overly restrictive to require that terms be of this form. 
However, nearly all the Mu-Calculus terms that we have used as specilica- 
tions in practice can be written in this form. 

The relational term pQ[R] is analogous to the relational term W 
described above. Recall that W represented the set I/,, which is the set of 
vertices reachable from V, in the graph (V, E). The analogy is clear if we 
let I/ be the set of r-tuples over the domain D, let E be N, and let VO be 
S. Under this analogy, pQ[R] represents V,, the set of vertices reachable 
from S via N. 

We can re-express pQ[R] in terms of the transitive closure of N. This 
allows us to use iterative squaring to compute the least fixed point. Define 
the relational term T such that 

which is the transitive closure of N. The set of vertices reachable from S via 
N can be expressed as 

l.j[S(j) v 3X[S(.U) A T(X, j)]]. 

This observation provides the intuition behind the proof of the following 
theorem. 

THEOREM 2. pQ[R] = Aj[S(j) v 3X[S(X) A T(?c, y)]]. 

There is a straightforward relationship between the least and greatest 
fixed points. We claim that j is in vQ [R] if and only if j is in pQ[R] or 
j can be reached from some X that is on a cycle in the graph of N. The 
formula T(x, X) is true if and only if X is on a cycle. Assuming that the 
domain D is finite, we have the following theorem: 

THEOREM 3. vQ[R] = pQ[R] v lj[3Z[T(X, X) A T(X, j)]]. 

Proof: Let 

Z=pQ[R] v Aj[lf[T(X, X) A T(X, j)]] 

= ij[s(j) v %[s(X) A i’-(2, v)] v 3X[ T(X, i) A T(X, j)]] 

It is straightforward (but tedious) to show that Z is a fixed point of R(Q), 
so we omit this argument. It remains to show that Z is the greatest fixed 
point, that is, if Q = R(Q), then Q E Z. Suppose that X0 is an element of Q. 
It follows that X, is an element of R(Q), hence S(X,) v G[Q(X) A N(iY, X0)] 

holds. Thus, X,, is in S, or X, has a predecessor in Q. Under the first condi- 
tion, it follows immediately that 2, is in Z. Under the second condition, 
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there exists an Xi such that N(x,, X0) and Q(?i) both hold. Since Xi is in 
Q, we can continue the above process, generating a sequence X,, Xi, . . . 
where N(xi+ i, Xi) holds for all i. Either this sequence terminates at some 
Xi in S, or it is infinite. In the terminating case, T(Xi, X0) holds, since there 

- - 
is a path from Xi to X,. Hence ?ci is a witness for %[S(X) A T(x, x,)], so 
.f,, is in Z. In the infinite case, there must exist 0 < m < it such that X, = X,, 
since we have assumed the domain is finite. In this case T(X, X) holds, 
where X is the common value of X, and .U,. Thus 3X[ T(X, X) A T(.?, X0)] 
holds, implying that X0 is in Z. We have shown that in all cases, if 
Q=R(Q) d -0 an Y 1s in Q, then z0 is in Z. Thus, Z is the greatest fixed point 
of R(Q). I 

The iterative squaring theorems can often be applied more than once to 
terms that have several fixed point operators. For example, consider the 
directed graph (V, E) described earlier. The relational term 

R = vPCVO A PQC~.JOXC(JYX) v Q(x), A NY, -~)I111 

represents the set of vertices y in V0 such that there is a path starting at 
y that passes through a vertex in V, infinitely often. Theorems 2 and 3 can 
be used twice to show that R is equal to 

Unless otherwise noted, all the Mu-Calculus relational terms used in the 
remainder of this paper can be computed using the iterative squaring 
technique. As a result, the number of fixed point iterations can be made 
logarithmic in the cardinality of the domain. 

6. COMPUTATION TREE LOGIC 

Computation Tree Logic (CTL) is a propositional, branching-time, tem- 
poral logic (Clarke et al., 1986). Each of the usual forward-time operators 
of linear temporal logic (G globally or inuariantly, F sometime in thefuture, 
X nexttime, and U until) must be directly preceded by a path quuntzjier. 
The path quantifier can either be an A (for all computation paths) or an 
E (for some computation path). Thus, some typical CTL operators are 
AGf, which holds in a state provided that f holds at all points along all 
possible computation paths starting from that state, and EFf, which holds 
in a state provided that there is a computation path such that f holds at 
some point on the path. 

In our description of the syntax and semantics of CTL, we specify the 
existential path quantifiers directly and treat the universal path quantifiers 
as syntactic abbreviations. Let A be the set of atomic propositions, then: 
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1. Every atomic proposition p in A is a formula in CTL. 

2. Iffand g are CTL formulas, then so are 1 f,f A g, EXf, E[fUg] 
and EGJ 

The semantics of a CTL formula is defined with respect to a labeled state 
transition graph or Kripke structure M = (A, S, L, N, S,), where A is a set 
of atomic propositions, S is a finite set of states, L: S -+ 2A is a function 
labeling each state with a set of atomic propositions, N G S x S is a total 
transition relation, and S, is the set of initial states. A path is an infinite 
sequence of states sO, s,, s2, . . . such that N(si, si+ I) is true for every i. 

The propositional connectives 1 and A have their usual meanings of 
negation and conjunction. The other propositional operators can be 
defined in terms of these. X is the nexttime operator. EXfis true in a state 
s of M if and only if s has a successor t such that f is true at t. U is the 
until operator. E[fUg] is true in a state s of M if and only if there exists 
a path starting at s and an initial prefix of the path such that g holds at 
the last state of the prefix and f holds at all other states along the prefix. 
The operator G is used to express the invariance of some property over 
time. EGfis true at a state s if there is a path starting at s such thatfholds 
at each state on the path. 

We also use the following syntactic abbreviations for CTL formulas: 

l AXf = 1 EX 1 f which means that f holds at all successor states of 
the current state (fmust hold at the nest state). 

l EFf - E[trueUf] which means that for some path, there exists a 
state on the path at which f holds (f is possible in the future). 

l AFf = 1 EG 1 f which means that for every path, there exists a 
state on the path at which f holds (f is inevitable in the future). 

l AGf = 1 EF 1 f which means that for every path, at every node 
on the path f holds (f holds invariant/y along all paths). 

l A[~g]=~E[~gU~f~~g]r\~EG~gwhichmeansthat 
for every path, there exists an initial prefix of the path such that g holds 
at the last state of the prefix and f holds at all other states along the prefix 
(f holds until g holds, along all paths). 

6.1. CTL Model Checking 

Checking whether a CTL formula f is true of a Kripke structure 
M= (A, S, L, N, SO) can be reduced to checking whether a Mu-Calculus 
formula f' is true of a structure M’ = (S, I,, 1,). In the reduction, I, 
provides the obvious interpretations for N and S,; it also interprets each 
atomic proposition p in A to be a unary relation such that Z,(p)(s) is true 
if and only if p E L(s). The individual variable interpretation ID is not 
relevant since f' is defined to have no free individual variables. 

643,982.2 
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The reduction of a CTL formula f to a Mu-Calculus formula f’ is best 
understood by viewing CTL formulas as abbreviations for Mu-Calculus 
relational terms. In this view, if the CTL formula f is an abbreviation for 
the Mu-Calculus relational term R, then f is true at state s if and only if 
R(s) is true. Iffhas no temporal operators, then it represents the relational 
term R that has exactly the same syntax as f. It remains only to consider 
CTL formulas of the form EXf, EGf, or E[jUg]. For the remainder, we 
identify a CTL formula f with the Mu-Calculus relational term that it 
represents. 

The CTL formula EXfis true of a state s if and only if there exists a state 
t such that f is true of t and N(s, t) is true. We therefore define EXf to be 
a syntactic abbreviation for the Mu-Calculus relational term 

l”spt[f(t) A N(s, t)]]. 

The Mu-Calculus expansions for EG and EU are based on a charac- 
terization of the CTL operators as fixed points of predicate transformers. 
The fixed points can be computed using either direct iteration or iterative 
squaring. 

The fixed point characterization for EG is derived from the identity 

EGf=f A EX EGf. 

It is straightforward to show that not only does EGfsatisfy this equation, 
it is the greatest fixed point of the equation. Thus, 

EGf= vQ[f A EXQ] 

= vQCNf@) A MQ(t) A MS, t)lll. 

The operator EU has a fixed point characterization that is similar to the 
one for EG. However, this time the characterization is the least fixed point 
of the corresponding predicate transformer rather than the greatest: 

ECfUgl = g v (f * EX ECfUgl) 

= PQL-g v (f A EXQII 

=IrQCN&) v (f(s) * NQ(t) A Ns> t)l)ll. 

Once a CTL formula f has been transformed into a Mu-Calculus rela- 
tional term R, it is still necessary to construct a Mu-Calculus formula f' 
that is true if and only if f is true of all the states in So. One such f’ is 

f’ = VSC&(~) *fb)l. 

As described in Section 4, the Mu-Calculus model checking algorithm 
requires encoding the domain in terms of a Boolean domain. For Mu- 
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Calculus formulas derived from CTL formulas, it is convenient to encode 
each state in the domain with the set of atomic propositions that are true 
for that state. This requires that no two distinct states have the same 
labeling of atomic propositions. 

6.2. Fairness Constraints 

Next, we consider the issue of fairness. In many cases, we are only 
interested in correctness along fair computation paths. For example, we 
may wish to consider only those computations in which some resource that 
is continuously requested by a process will eventually be granted to the 
process. This type of property cannot be expressed directly in CTL. In 
order to handle such properties we must modify the semantics of the logic 
slightly. A fairness constraint can be an arbitrary CTL formula. A path is 
said to be fair with respect to a set of fairness constraints if each constraint 
holds infinitely often along the path. The path quantifiers in CTL formulas 
are now restricted to fair paths. In the remainder of this section we describe 
how to translate CTL formulas to Mu-Calculus relational terms that reflect 
the modified semantics. We assume the fairness constraints are given by a 
set of CTL formulas C= ci, . . . . c,. We write EcXf and E.[fLTg], for 
example, to denote temporal operators with fairness constraints C. 

Consider the formula E,Gf, which is true of a state s when there exists 
a path beginning at s in which f holds globally (invariantly) and each 
formula in C holds infinitely often. The set of such states Z is the largest 
set satisfying the following two conditions: 

1. All of the states in Z satisfy f, and 

2. for all ck E C, for all s E Z, there is a path of length one or greater 
from s to a state satisfying cli such that all states on the path satisfyf. 

It is easy to show that if these conditions hold, each state in the set is the 
beginning of an infinite path on which f is always true, and every formula 
in C holds infinitely often. This gives us the characterization 

E,Gf=vZ f A ji EXE[j-U(Z 
[ 

A Ck)l . 
k=l 1 

The unfair CTL operators on the right side of the equations can be trans- 
lated into Mu-Calculus relational terms as described above. Note that in 
this case, there is a nested fixed point since EU is an abbreviation for a 
least fixed point. 

The cases of EcXf and Ec[fUg] are a bit simpler. Define the set of all 
states which are on some fair computation as h=E,G true. Then, 

E&f I= Wf A h), 

Ec Cfugl = KI-Ug A h)l. 
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7. PROPOSITIONAL LINEAR TEMPORAL LOGIC 

The tableau method for testing the satisfiability of propositional linear 
temporal logic (PTL) formulas (Manna and Wolper, 1981) can be 
implemented by translating a PTL formula into a Mu-Calculus formula 
which is true if and only if the PTL formula is satisfiable. This gives a 
symbolic procedure with the advantage that, in some cases, a large tableau 
can be represented by a relatively small BDD. 

Fujita and Fujisawa (1989) describe a verification procedure based on 
linear temporal logic that uses binary decision diagrams to represent the 
transition conditions in automata derived from temporal logic formulas. 
However, they represent the states of the automaton explicitly, so their 
technique still suffers from the state explosion problem. 

There are many dialects of PTL depending on the modal connectives 
that are defined. We choose a small, standard dialect: 

1. atomic propositions A (written p, q, etc.), 

2. 1 f, f v g, Xf, and .fug when f and g are PTL formulas. 

Our technique can be extended easily to additional or alternative modal 
connectives. 

As in CTL, Xf means that f holds in the next state and fug means that 
fis true in every state until g holds. To formalize this, let G E [A + (0, 1 >I”’ 
be a sequence of truth assignments to the atomic propositions, and let gi 
be the ith suffix of c (i.e., a,(j) = a(j + i) for all j E w). The semantics of 
PTL formulas can be defined as follows: 

OkP iff o(O)(p) = 1 when PEA, 

ok1f iff oFf, 

akfvs iff (T t= for fs + g, 

0 t= Xf iff ~,l=f, 

c I= fug iff 3: (ai b g and Vj< i: cj + f). 

The tableau associated with a PTL formula f is a Kripke structure whose 
atomic propositions represent the truth values of the particular formulas 
constructed from f. By representing the tableau symbolically, we can use 
the symbolic CTL model checking procedure to determine whether the for- 
mula f is satisfiable. A state of the tableau is a Boolean vector X. With each 
formula f, we associate a component x,- of the state vector. A function a(f) 
associates a relational term in the Mu-Calculus with each PTL formula f. 
This term represents the set of states of the tableau labeled with the 
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formulaf. This function M is defined recursively over the structure of PTL 
formulas as follows: 

a(p) = kqx,] if PEA, 

41 f) = ldf)? 

df ” 8) = a(f) ” a!Y)? 

ct(Xf) = I,u[X,f], 

4fUg) = dg) ” (a(f) * ~-fC-%,/Ll,,l). 

Note that for a given formula f, the only components of the state vector 
used in a(f) are the atomic propositions and the formulas Xg, where Xg 
is a subformula off, and X( gUh), where gUh is a subformula off. We call 
these subformulas the elementary subformulas off, or cl(f). Using only the 
elementary formulas in the tableau reduces the number of Boolean state 
variables. The elementary subformulas can be defined recursively as follows 
(where f and g are any PTL formulas): 

e4p) = {P> if PEA, 

dlf)=e&f), 

e4f v g) = cl(f) u e4gL 

e4Xf) = { Xf > u e4fh 

eWJg) = {WfUg)) u e4f) u e4g). 

The transition relation R of the tableau is defined such that the elementary 
formula Xf is true in the current state if and only if f is true in the next 
state. Thus, 

The set SO of initial states of the tableau is the set satisfying f. Thus, 
SO = a( f ). The formula f is satisfiable if and only if there is an infinite path 
in the tableau such that 

l f is true in the initial state, and 

l for all subformulas gUh, if gUh is true in some state, then even- 
tually h is true in some later state. 

This is equivalent to the CTL formula 

E,G true 
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with the set of fairness constraints 

C= (1 cc(gUh) v cc(h) / gUh occurs inf}. 

If there is an infinite path satisfying all of the formulas in C infinitely often, 
then for all subformulas gUh, it is not the case that gUh holds forever after 
some point while h remains false. Hence, there is a path satisfying f. 

The test for satisliability of a formula f proceeds in the following steps. 
The set of elementary formulas off is computed using its recursive defini- 
tion. The symbolic (BDD) representations of R and So are computed, using 
the recursive definition of R. The set C of fairness constraint formulas is 
constructed. Finally, the CTL formula E,G true is translated into the Mu- 
Calculus using the procedure of Section 6.2. This formula is evaluated using 
the symbolic Mu-Calculus model checking procedure of Section 4 to 
determine whether the formula f is satisfiable. 

8. OBSERVATIONAL EQUIVALENCE 

In this section, we describe how to use the Mu-Calculus for expressing 
strong equivalence and weak equivalence of finite transition systems. This 
makes it possible to use the BDD-based Mu-Calculus model checking algo- 
rithm described earlier for deciding these equivalences. A finite transition 
system is a 4-tuple (S, sO, C, A), where S is a finite set of states, sO is the 
initial state, Z is a finite set of actions, and A E S x C x S is the transition 
relation (Milner, 1980; Milner, 1983). 

8.1. Strong Equivalence 

Let M, and M, be two finite transition systems on the same set of 
actions C. That is, let M, = (S, sO, C, A,) and M,= (7’, t,, C, A.). The 
strong equivalence relation (written “-I’) is a subset of Sx T. The two 
finite transition systems M, and M, are said to be strongly equivalent if 
and only if s0 - t,. The strong equivalence relation is the greatest fixed 
point of the function 

such that F(R) is the set of all pairs (s, t) for which 

l VoVs’, if A,(s, cr, s’) then 3t’ such that AT(f, G, t’) and R(s’, t’), and 
l VaVt’, if AT(f, 0, t’) then 3s’ such that A.(s, c, s’) and R(s’, t’). 

In order to compute this equivalence using the BDD-based Mu-Calculus 
checking algorithm, it remains only to assemble the appropriate domain 
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and interpretations, and to express the above condition in the Mu- 
Calculus. Let the domain D be the union of S, T, and 2 (which are 
assumed to be disjoint). The relational interpretation I, consists of the 
relations A, and A., and the individual interpretation I, consists of sO and 
t,. Let F’ be the Mu-Calculus relational term 

As, t[V’a, s’[A,(s, C, s’) + 3t’[AJt, C, t’) A R(s’, t’)]] 

A Va, t’[A.(t, 0, t’)* 3s’[A,(s, ci, s’) A R(s’, t’)]]]. 

Then F’(s, t) is true if and only if (s, t) is an element of F(R). Thus, M, and 
M, are strongly equivalent if and only if vR[F’](s,, t,,) holds. This can be 
evaluated with the BDD-based model checking algorithm, although the 
iterative squaring transformation cannot be used. 

8.2. Weak Equivalence 

Let r be a distinguished action in the set .X7, and let the relation H be the 
reflexive transitive closure of 2x, y[A(x, r, y)]. That is, H(s, t) is true if and 
only if there is a path from s to t labeled by a sequence of zero or more 
r actions. Also, let A* be such that 

A*(s, CT, t) = 3x$[H(s, x) A A(x, (T, y) * H(J), t)] 

The weak observational equivalence relation is the greatest fixed point of 
the function 

such that G(R) is the set of all pairs (s, t) for which 

l Vs’Vo, if A:($, c, s’) then 3t’ such that AS(t, 0, t’) and R(s’, t’). and 

l Vt’V’a, if AF(t, CJ, t’) then 3s’ such that dz(s, (r, s’) and R(s’, t’). 

From this point, the translation of weak equivalence into the Mu-Calculus 
is completely analogous to the translation for strong equivalence. 

9. c&kJTOMATA 

Finally, we discuss symbolic Mu-Calculus based algorithms for deciding 
language containment between finite o-automata. We consider Biichi 
automata in detail, and also discuss a general method that is applicable to 
a large class of o-automata. 

A finite Biichi automaton is an ordered 5-tuple (S, sO, C, A, B), where S 
is a finite set of states, so E S is the initial state, C is a finite alphabet, 
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A E S x C x S is the transition relation, and B c S is the acceptance set. The 
automaton is deterministic if for all SE S and c E C, there exists exactly 
one t E S such that A(s, 0, t) holds. An infinite sequence of states 
to, t,, t,, ... ES” is a path of a Biichi automaton if there exists an infinite 
sequence cr,,, g,, 02, . EC” such that 

(ti, gi, t;, , > E A 

for all i B 0. A sequence eo, gl, c2, . . . is accepted by a Biichi automaton if 
the corresponding path to, t,, t,, . . . goes through one or more elements of 
B infinitely often. The set of sequences accepted by an automaton M is 
called the language of M and denoted Z’(M). 

To determine whether the language of a Bi.ichi automaton M is con- 
tained in the language of a Btichi automaton M’ (with the same alphabet), 
we define a Kripke structure M” representing the product of M and M’, 
and write a formula in CTL which is true of M” if and only if every 
sequence accepted by M is also accepted by M’. This formula can be 
translated into the Mu-Calculus and evaluated using the symbolic model 
checking algorithm. 

Let M” be a Kripke structure (A, S x S’, L, R, Si), where 

l A = {p, p’} is the set of atomic propositions, 

l Sb:={<qw&>), 

l (s, s’ ) /= p iff s E B, 

l (s, s’ ) k p’ iff s’ E B’, 

l (s, s’) R(t, t’) iff 3a~C such that (s, 0, t) E A and (s’, cr, t’) E A’. 

Recall that in Section 6 we showed how to encode Kripke structures 
symbolically. The transition relation of the Kripke structure M” is 

R = h, s’, t, t’[la[A(s, (T, t) A A’(s’, O, t’)]]. 

The atomic proposition p can be identified with the Mu-Calculus relational 
term Is, s’[B(s)] that represents that set of states that satisfy p. Similarly, 
p’ is identified with the relational term 1-s, s’[B’(s’)]. The set of initial 
states is 

S~=h,s’[(s=so) A (s’=sb)]. 

In (Clarke et al., 1990), it is shown that, if M’ is deterministic, then 
.3’(M) c 3’(W) if and only if 

M” k A(GFp * GFp’). 

Note that the formula above is not a CTL formula since there are path 
operators that are not immediately preceded by path quantifiers. However, 
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it is equivalent to AC AFp’ under the fairness constraint “infinitely often 
p.” Thus, Y(M) 2 Y(M’) holds if and only if the formula A,G A,Fp’ 
holds, where C = {p}. Using the results of Section 6.2, and the above 
definitions for R, Sg, p and p’, this formula can be translated into a Mu- 
Calculus formula that can be evaluated using the Mu-Calculus model 
checking algorithm of Section 4. 

Another possible approach to the language containment problem makes 
use of the iterative squaring technique for computing transitive closures. 
Let T* be the set of all pairs of states of the Kripke structure such that the 
second state can be reached from the first without passing through B’. This 
is the transitive closure of 

T= As, s’, t, t’[R(s, s’, t, t’) A 1 B’(d) A lB’(t’)]. 

Using iterative squaring, 

T* =pQ[is, s’, t, t’[T(s, s’, t, t’) v 3u, u’[Q(s, s’, u, u’) A Q(u, u’, t, t’)]]]. 

The language of M is contained in the language of M’ iff there is no path 
to a state (s, s’) in B such that (s, s’) is on a cycle not passing through 
B’. That is, Y(M) E 6p(M’) if and only if 1 EFh, s’[T*(s, s’, s, s’)]. The 
operator EF can also be evaluated using iterative squaring. This technique 
reduces the number of iterations to the log of the diameter of the transition 
relation R. Using the technique based on CTL model checking with fair- 
ness constraints, the number of iterations may be as high as the square of 
the diameter, because of the nested fixed point operators. However, in 
many cases the BDDs needed to construct the transitive closure are 
impractically large. As a result, if the diameter of the state space is small, 
the nested fixed point method may be preferable. 

While deterministic Biichi automata cannot express the complete class 
of o-regular languages, algorithms for language containment for more 
expressive types of deterministic w-automata (e.g., Muller automata) can 
be derived in a similar fashion from results in (Clarke et al., 1990). These 
algorithms require a more expressive class of fairness constraints than we 
have considered here. Mu-Calculus based algorithms for this class of fair- 
ness constraints exist, and can be derived either from the PTL satisfiability 
algorithm, or from results of Emerson and Lei (1986). 

10. EMPIRICAL RESULTS 

Using BDDs for testing Boolean satisfiability is only efficient in a 
heuristic sense. The satisfrability problem is, of course, NP-complete; the 
only claim that is made for BDDs is that they perform well for certain 
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useful classes of Boolean functions. Likewise, using BDDs for representing 
relations in Mu-Calculus model checking is only of heuristic value, and 
does not improve the asymptotic complexity of model checking. Therefore, 
in order to evaluate the method, we need empirical results showing the 
performance of the method on some problems of practical interest. 

Here we briefly present some performance results for CTL model 
checking on a class of simple synchronous pipelines, which include data 
path as well as control circuitry. The number of states in these systems is 
far too large to apply traditional model checking techniques, but we have 
obtained very encouraging results using the BDD method. 

The circuits we have used as examples are pipeline circuit that perform 
three-address logical and arithmetic operations on a register file. The com- 
plete state of the register file and pipe registers are modeled. The pipelines 
have three stages: the operands are read from the register file, then an ALU 
(Arithmetic Logic Unit) operation is performed, then the result is written 
back to the register file. The ALU has a register bypass path, which allows 
the result of an ALU operation to be used immediately as an operand on 
the next clock cycle, as is typical in RISC instruction pipelines. The inputs 
to the circuits are an instruction code, containing the register addresses of 
the source and destination operands, and a STALL signal, which indicates 
that no instruction is available. When this occurs, a “no-operation” is 
propagated through the pipe. A functional block diagram of a typical 
pipeline is given in Fig. 3. 

Read Port A Read Port A - 
c Addr Addr 

- Data 
Register File 

+ Addr 
- Data 

Read Port B Read Port B 

Write Port C 

I M-1 Control 
I 
Inst. 
Reg. 

Register Bypass Path 

FIG. 3. Block diagram of simple pipeline design. 
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Since vectors of Boolean values are used to represent binary numbers in 
these designs, it is useful to introduce some notation for vectors of proposi- 
tions in logical formulas. First, we extend the standard logical and modal 
operators to vectors of propositions in a component-wise manner. For 
example, 

and 

Pl FP, 

F ~2 = FP, II [:I . - . 

in FP, 

The latency in the example pipelines is three clock cycles. For this 
reason, the specification of the pipeline cannot be given in a 
straightforward manner using simply pre-conditions and post-conditions 
on operations. We can, however, use temporal operators and the above 
notation to specify the behavior of the pipeline, taking into account the 
pipe latency. When we specify a register transfer level operation for 
the pipeline, it is understood that the results of the operation will not 
affect the register file until three clocks cycles in the future, and that the 
inputs to the operation correspond to the state of the register file two clock 
cycles in the future. The state of the register tile n clock cycles in the 
future can be expressed as X”R. A register transfer specification such as 
R, t R, 0 Rb means that register c receives the exclusive-or of registers 
a and b. Taking into account the pipe latency, this register transfer level 
specification can be expressed as a temporal formula, 

(X3U = (X2R),0 (X’R),, 

where a, b, and c are each bit-fields in the operation code. As similar 
formulas can be derived for other register transfer level expressions, we will 
write register transfer expressions in our specifications, with the under- 
standing that they are to be interpreted as abbreviations for temporal logic 
formulas in the above way. Since X”p is a path formula and not a state 
formula, it cannot be evaluated directly by the CTL model checker (which 
can only evaluate state formulas). We can show, however, that the state 
of the register file R two or three clock cycles in the future is uniquely 
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determined by the current state of the system. We can show this by 
automatically checking the CTL formulas 

and 

AG((EX)’ R = (AX)’ R) 

AG((EX)3 R = (AX)3 R). 

Thus, we can substitute the state formula (EX)’ R for the path formula 
X’R, since the two are equivalent. Likewise, we can substitute (EX)3 R for 
X3R. 

Using the above temporal interpretation for register transfer level 
specifications, we write the specification for our simplest pipeline (which 
has only an exclusive-or instruction) as follows: 

and 

AG( 1 STALL a (R, +- R, @ Rb)) (1) 

AGVc’(c #c’ v STALL - (R,. +- R,.)). 

Recall that the register assignments are abbreviations for CTL formulas. 
The latter formula specifies that non-destination registers do not change, 
and that if a stall occurs, no registers change. 

Figure 4 graphs the performance we obtained when checking formula 1 
on a variety of pipelines of this type. The graphs show the total execution 

1 e+03 ' 
# 

1 
Data path width (bitiJ2 

FIG. 4. Performance of BDD model checking algorithm on simple pipelines. 
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time and the size of the BDD needed to represent the transition relation. 
In all cases the register file had four registers. The number of bits per 
register varied from 1 to 12. We considered two ALU operations: exclusive- 
or and addition. In two cases the ALU performed just one of these opera- 
tions. In the third case, the ALU performed both operations. The verifier 
operated directly on CTL formulas, which reduces the overhead that would 
result from first translating CTL formulas to Mu-Calculus formulas. 

A pipeline with 12 bits has approximately 1.5 x 1O29 reachable states, 
which puts it far outside the range of model checkers like the one reported 
by Browne et al. (1986). An 8-bit exclusive-or pipeline required a BDD 
with 42,000 nodes to represent the transition relation, and approximately 
22 minutes to verify on a Sun 3/60. The execution times in the graph are 
for a single processor of an Encore Multimax, which is approximately half 
as fast as a Sun 3. The most interesting result is that the number of nodes 
in the transition relation BDD is asymptotically linear in the number of 
bits per register. As a result, the verification time is polynomial in the num- 
ber of bits. The BDD variables were ordered so that all variables in a given 
bit position were grouped together. A fixed number of signals, consisting of 
the control bits and the ALU carry bit pass from one group to the next. 
It is this property of the system that results in the linear growth of the 
transition relation as represented by a BDD. 

It is also interesting to note that adding an exclusive-or operation to the 
addition pipeline roughly doubles the number of nodes in the transition 
relation. In general, the transition relation increases in size linearly with the 
number of instructions (Burch et al., 1991a). In addition, if the ALU were 
able to perform a multiply operation, a barrel shift, or some other complex 
operation which has more than a constant amount of information passing 
from one bit position to the next, then the size of the BDD representation 
would quickly become unmanageable. 

11. CONCLUSIONS 

We have shown, that by choosing a suitable encoding of the model 
domain, and using a compact representation for relations, the complexity 
of various graph-based verification algorithms can be greatly reduced in 
practice (if not in the worst case). Along the way, we have shown how 
several of these algorithms can be concisely expressed in a form of the 
Mu-Calculus, and how these expressions can be used to derive efficient 
BDD-based verification algorithms. In the circuit examples we studied, the 
regular structure of the data path logic was captured by the BDD represen- 
tation, resulting in a space complexity which was linear in the number of 
circuit components rather than exponential. 
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The current state of this research, however, leaves open several impor- 
tant and interesting questions. First, more work is needed in order to 
characterize the models for which the BDD Mu-Calculus checker is 
efficient. It is known, for example, that combinational multiplier circuits do 
not have efficient BDD representations (Bryant, 1991). On the other hand, 
the model checking algorithm is easily adapted to use other representa- 
tions, if such are found to be compact for a useful class of relations. The 
problem of finding more efficient structures for representing Boolean 
formulas has attracted much attention of late; any results obtained in this 
area would be immediately applicable to Mu-Calculus model checking, and 
hence to the various verification methodologies treated in this paper. 

The second open question is whether the techniques described here could 
be profitably extended to other common graph algorithms whose results 
can be expressed as relations, such as minimum spanning trees, graph 
isomorphism, etc. For example, if E(u, V) is the edge relation of a directed 
graph, then the equivalence relation 

Au, u[E’(u, u) A E’(u, u)] 

is true of two vertices if and only if they are in the same strongly connected 
component, where E’ is a relational term representing the reflexive 
transitive closure of E. Practical algorithms that could handle very large 
graphs (compared to current computer storage limitations) would certainly 
be of interest. 
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