
INFORMATION AND COMPUTATION 98, 142-170 (1992)

Symbolic Model Checking: IO*’ States and Beyond*

J. R. BURCH, E. M. CLARKE, AND K. L. MCMILLAN

School of Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania I5213

AND

D. L. DILL AND L. J. HWANG

Stanford University. Stanford, California 94305

Many different methods have been devised for automatically verifying finite state
systems by examining state-graph models of system behavior. These methods all
depend on decision procedures that explicitly represent the state space using a list
or a table that grows in proportion to the number of states. We describe a general
method that represents the state space symbolical/y instead of explicitly. The
generality of our method comes from using a dialect of the Mu-Calculus as the
primary specification language. We describe a model checking algorithm for Mu-
Calculus formulas that uses Bryant’s Binary Decision Diagrams (Bryant, R. E.,
1986, IEEE Trans. Comput. C-35) to represent relations and formulas. We then
show how our new Mu-Calculus model checking algorithm can be used to derive
efficient decision procedures for CTL model checking, satistiability of linear-time
temporal logic formulas, strong and weak observational equivalence of finite
transition systems, and language containment for finite w-automata. The fixed
point computations for each decision procedure are sometimes complex. but can
be concisely expressed in the Mu-Calculus. We illustrate the practicality of our
approach to symbolic model checking by discussing how it can be used to verify a
simple synchronous pipeline circuit. 1%’ 1992 Academic Press. Inc

1. INTRODUCTION

Over the last decade, it has become apparent that finite-state systems can
often be verified automatically by examining state-graph models of system
behavior. A number of different methods have been proposed: temporal
logic model checking, language containment algorithms for automata,

* This research was sponsored in part by the Defense Advanced Research Projects Agency
(DOD), ARPA Order 4976. The National Science Foundation also sponsored this research
effort under Contracts CCR-8722633 and MIP-8858807. The third author is supported by an
AT & T Bell Laboratories Ph.D. Scholarship. The fourth and fifth authors are supported by
a CIS Seed Research Grant.

142
0890-5401/92 $5.00
Copyright 0 1992 by Academic Press, Inc.
All rights of reproduction m any form reserved.

SYMBOLIC MODEL CHECKING 143

“conformation checking” in trace theory, and testing for various equiva-
lences and preorders between finite CCS-like models. Although each of
these methods uses a different computational model and a different notion
of verification, they all rely on algorithms that explicitly represent a state
space, using a list or table that grows in proportion to the number of
states. Because the number of states in the model may grow exponentially
with the number concurrently executing components, the size of the state
table is usually the limiting factor in applying these algorithms to realistic
systems.

Our technique for combatting this “state explosion problem” is to repre-
sent the state space symbolically instead of explicitly. In many cases, the
intuitive “complexity” of the state space is much less than the number of
states would indicate. Often systems with a large number of components
have a regular structure that would suggest a corresponding regularity
in the state graph. Consequently, it may be possible to find more
sophisticated representations of the state space that exploit this regularity
in a way that a simple table of states cannot. One good candidate for such
a symbolic representation is the binary decision diagram (BDD) (Bryant,
1986), which is widely used in various tools for the design and analysis of
digital circuits. BDDs do not prevent a state explosion in all cases, but they
allow many practical systems with extremely large state spaces to be
verified-systems that would be impossible to handle with explicit state
enumeration methods. Indeed, we present empirical results in this paper
that show that the method can be applied in practice to verify models with
in excess of 10” states. Explicit state enumeration methods described in the
literature are limited to systems with at most lo* reachable states.

Several groups have applied this idea to different verification methods.
Coudert, Berthet, and Madre (1989) describe a BDD-based system for
showing equivalence between deterministic Moore machines. Their system
performs a symbolic breadth-first execution of the state space determined by
the product of the two machines. This model is not generalized to models
other than deterministic Moore machines, or notions of verification other
than strict equivalence. Bose and Fisher (1989) have described a BDD-
based algorithm for CTL model checking that is applicable to synchronous
circuits. However, their method is unable to handle asynchronous con-
currency, or properties of infinite computations, such as liveness and
fairness.

All of these methods are based on iterative computation of fixed points.
It seems clear that numerous additional papers could be generated by
applying this technique to different verification methodologies. Our goal is
to provide a unified framework for these results by showing that all can be
seen as special cases of symbolic evaluation of Mu-Calculus formulas.

Another technique for reducing the state explosion problem is to exploit

144 BURCH ET AL.

concurrency. Two actions x and y (e.g., program statements) are said to be
concurrent if executing xy is equivalent to executing yx. By considering
only one order of the concurrent actions, or considering the actions to be
unordered, the state explosion can be reduced. Examples of such tech-
niques are the stubborn sets method of Valmari (1989, 1990), the trace
automaton method of Godefroid and Wolper (Godefroid, 1990; Godefroid
and Wolper, 1991), the behavior machines method of Probst and Li
(1990), and the Time Petri Nets method of Yoneda et. al. (1989). These
methods are limited in that they only address one source of the state
explosion problem-the interleaving of concurrent actions. They are not
effective, for example, on synchronous finite state machines, which do not
involve interleaving of actions. The symbolic model checking technique, on
the other hand, can be effective in dealing with the state explosion in the
synchronous case, as demonstrated in Section 10. Symbolic methods have
also been shown to be effective for asynchronous finite state machines
(Burch et al., 1990; Burch et al., 1991b). In practice, much of the state
explosion that results from interleaving can be handled efficiently by
symbolic methods.

We describe the syntax and semantics of a dialect of the Mu-Calculus,
and present a model checking algorithm for Mu-Calculus formulas that uses
BDDs to represent relations and formulas. We then show how our new
Mu-Calculus model checking algorithm can be used to derive efficient
decision procedures for CTL model checking, satisfiability of linear-time
temporal logic formulas, strong and weak observational equivalence of
finite transition systems, and language containment for finite o-automata.
In each case, a Mu-Calculus formula can be directly derived from an
instance of the problem. This formula can be evaluated automatically,
eliminating the need to describe complicated fixed point computations for
each decision procedure. We illustrate the practicality of our approach to
symbolic model checking by discussing how it can be used to verify a
simple synchronous pipeline circuit.

2. BINARY DECISION DIAGRAMS

Binary decision diagrams (BDDs) are a canonical form representation
for Boolean formulas (Bryant, 1986). They are often substantially more
compact than traditional representations such as conjunctive normal form
and disjunctive normal form. Hence, BDDs have found application in
many computer aided design tasks, including symbolic verification of com-
binational logic. A BDD is similar to a binary decision tree, except that its
structure is a directed acyclic graph rather than a tree, and there is a total
order placed on the occurrence of variables as one traverses the graph from

SYMBOLIC MODEL CHECKING 145

FIG. 1. A binary decision diagram

root to a leaf. Consider, for example, the BDD of Fig. 1. It represents the
formula (a A b) v (c A d), using the variable ordering a < b < c-c d. Given
an assignment of Boolean values to the variables a, 6, c, and d, one can
decide whether the assignment satisfies the formula by traversing the graph
beginning at the root, branching at each node based on the assigned value
of the variable which labels that node. For example, the assignment
(at l,bcO,c+- 1,de 1) leads to a leaf node labeled 1, hence this
assignment satisfies the formula.

Bryant showed that there is a unique BDD for a given Boolean function
together with a given variable ordering. The size of the BDD representing
a given function depends critically on the variable ordering. Bryant also
described eflicient algorithms for basic operations on BDDs, such as com-
puting the BDD representations of 1 f and f v g given the BDDs for
formulas f and g. The only other operations required for the algorithms
that follow are quantification over Boolean variables and substitution of
variable names. Bryant gives an algorithm for computing the BDD for a
restricted formula of the form f JaZO or f]1l = i. The restriction algorithm
allows us to compute the BDD for the formula 3v[f], where u is a
Boolean variable and f is a formula, as f 1~ = 0 v f 1 a =, . The substitution of
a variable w for a variable v in a formula f, denoted f(u +- w) can be
accomplished using quantification, that is,

More efficient algorithms are possible, however, for the case of quantilica-
tion over multiple variables, or multiple renamings. In the latter case,
efficiency depends on the ordering of variables in the BDDs being the same
on both sides of the substitution.

BDDs can also be viewed as a form of deterministic finite automata

146 BURCH ET AL.

(Kimura and Clarke, 1990). An n-argument Boolean function can be iden-
tified with the set of strings in (0, 1 }” that represent valuations where the
function is true. Since this is a finite language and all finite languages are
regular, there is a minimal finite automaton that accepts this set. This
automaton provides a canonical representation for the original Boolean
function. Logical operations on Boolean functions can be implemented by
set operations on the languages accepted by the finite automata. For
example, conjunction corresponds to language intersection. Standard
constructions from elementary automata theory can be used to compute
these operations on languages.

3. THE MU-CALCULUS

A number of different versions of the Mu-Calculus have been proposed.
In this paper we use the notation of Park (1974). It can be shown that this
version of the Mu-Calculus can express any property expressible in other
versions of the Mu-Calculus (Cleaveland, 1989; Emerson and Lei, 1986;
Kozen, 1983; Stirling and Walker, 1989).

The Mu-Calculus is similar to standard first-order logic, with the
following changes. First, as a simplifying assumption, we do not include
function symbols or constant symbols. Also, relational symbols are replaced
by relational variables. In formulas of the form R(z,, z2, zn), the R can
be a relational variable (analogous to a relational symbol in first-order
logic), or it can be a relational term in one of two other forms. The first of
these forms is

where f is a formula and the yi are individual variables. Most often the yi
are free inf, but this need not be the case. Also, the free variables off need
not be contained in the set of yi. The other form for a relational term is
pP[R], where R is a relational term with some arity n and P is a relational
variable, also with arity n. The term pP[R] represents the least fixed
point of R. To insure that the least fixed point exists, we require that
R be formally monotone with respect to P, which means that all free
occurrences of P in R fall under an even number of negations.

As an example, let (V, E) be a directed graph, and let V,, and Q be
subsets of V. The Mu-Calculus formula

V,(Y) v MQ(x) * W-v Y)I

is true if and only if the vertex y is in V,, or is reachable in one step from
a vertex in Q. The Mu-Calculus relational term

PQL-~YCVCLY) v W-Q(x) A E(x, ~1111

SYMBOLIC MODEL CHECKING 147

represents the smallest set Q such that

Q = Mu, v WQ(x) A WG ,,)ll.

This is the set V, of vertices reachable from VO.
The above description of the syntax of the Mu-Calculus can be

formalized as follows. We assume we are given a finite signature Y. Each
symbol in 9’ is either an individual variable or a relational variable with
some positive arity. We recursively define two syntactic categories: formulas
and relational terms. Formulas have the following form:

1. R(z, , z2, . ..) z, ,) where R is an n-ary relational term and
zi, zz, zn are individual variables in Y not free in R.

2. 1 f, f v g, 3z[f 1, where f and g are formulas and z is an
individual variable in 9’.

Also, relational terms of arity n have the following form:

1. P, where P is an n-ary relational variable in Y.

2. AZ,, -12, . ..) zn [f 1, where f is a formula and zl, z2, c,, are distinct
individual variables in Y.

3. pP[R], where P is an n-ary relational variable in Y and R is an
n-ary relational term that is formally monotone with respect to P.

The formal definition of when an individual variable or relational
variable is bound or free in some formula or relational term is standard,
and will not be given here. Note, however, that individual variables can be
bound by both the existential quantifier 3 and by the abstraction operator
i,, while relational variables can only be bound by the fixed point
operator p.

We will assume that V, A, a, and o are treated as abbreviations in the
usual manner. If R and R’ are n-ary relational terms we write 1 R as an
abbreviation for lz,, z,[l R(z,, z,)], and we write R v R’ as an
abbreviation for

AZ I, ‘.” znCR(zl, z,) v R’(zI, z,)].

The relational term vP[R] is introduced as an abbreviation for

and denotes the greatest fixed point of an nary relational term R, where
R(P + (1 P)) denotes the relational term formed from R by substituting
1 P for the free instances of P.

The truth or falsity of a formula is determined with respect to a model
JY = (D, I,, ID), where D is a non-empty set called the domain of the

148 BURCH ET AL.

model, I, is the relational variable interpretation, and I, is the individual
variable interpretation. More specifically, for each individual variable y,
Z,(y) is a value in D, and for each n-ary relational variable P, ZR(P) is an
n-ary relation on the set D. In this paper, the domain of a model will
always be finite. For a given domain, let 9, and YR be the set of all
possible individual variable interpretations and the set of all possible
relational variable interpretations, respectively.

The semantic function 9 maps formulas to elements of

(4 + (& + (true, fake))),

and n-ary relational terms to elements of

(& -+ (,a, -+ 29),

where 2’O’) denotes the set of n-ary relations on D. The semantic function
9 is defined inductively on the structure of formulas and relational terms.
First, we define 9 on formulas. If R is an n-ary relational term, then

WR(z,, zn))(ZR)UD)

is true if and only if

(Z,b,), Z,,(z,) > E ~(R)U,)U,,).

Iffand g are formulas, then

9(1 f)(ZR)(ZD) = l(w)uR)uD))
w- ” gwR)(zD) = w-)(ZR)(ZD) ” ~k)(ZRWD)
WdSI)URNZD) = 3e E NWXZR)UD(,- + e>)I.

Next, we define $3 on relational terms. The first two cases are given by

NP)(ZR)UD) = ZAP),

9(lz,, . ..) z,CflUR)UD) = 1 <e,, en> ED”:

WXZR)UD(zl + el, 2, + en>)).

Finally,

WJJ’CRI)(Z,)(Z,) = Z

where Z is the subset of D” that is the least fixed point (under the inclusion
ordering) of the equation

Z= WR)(Z,<P~ Z))(Z,).

SYMBOLIC MODEL CHECKING 149

It is clear from elementary fixed point theory that the least fixed point
exists, since R is formally monotone with respect to P.

If .A? is a model andf is a formula, then we will write A + f to indicate
that f is true in A! according to the above semantics.

4. MODEL CHECKING ALC~RITHM

Model checking is the process of determining whether a given formulaf
is true in a given model M. In this section, we present a model checking
algorithm for the Mu-Calculus that uses BDDs as its internal representa-
tion. First, we describe the algorithm for the Boolean domain D = (0, 1 j.
Later we show that a model with any finite domain can be encoded as a
model with the Boolean domain, hence our model checking algorithm is
fully general.

The algorithm is divided into two functions, BDD~ and BDD,, which
recurse over the structure of formulas and relational terms, respectively
(Fig. 2). We assume here that the syntactic correctness of the formula has
already been checked, including the formal monotonicity requirement.

The value of each relational variable in a relational interpretation I, is
represented by a BDD, using a set of place-holder (dummy) variables not
in the signature Y. We refer to these variables as d, , d2, where di is used
to stand for the ith argument of a relation. Thus, as n-ary relation
represented by a BDD is said to hold for some arguments x,, x, if and
only if the interpretation (d, +- x1, d, c x,) satisfies the BDD. In many
practical instances, this representation of a relation is much more compact
than an enumeration of its elements.

The function BDD~ takes two arguments: a formula f and a relational
variable interpretation I,, which assigns values to the free relational
variables in f. It returns a BDD which has the following property:
BDD,-(f, ZR) is satisfied by a given interpretation I, for the individual
variables if and only if f is satisfied by the model M = (D, I,, IO). The first
case in the definition treats individual variables as formulas, which is
possible because the domain D is Boolean. The function BDDATOM(U)

returns a BDD that is true if and only if u = 1. The next three cases in the
definition derive directly from the respective semantic definitions for BDDs
and Mu-Calculus formulas and should require no explanation. The algo-
rithms for BDDAND and BDDNEGATE were described by Bryant (1986). The
implementation of BDDEXISTS in terms of disjunction and restriction was
discussed in Section 2. The last case, application of a relational term R,
uses the function BDD, to find a representation of the relational term R
(under the interpretation ZR), then substitutes the argument variables
x1, x, for the place-holder variables d,, d,,.

150 BURCH ET AL.

function BDDJ(~ : formula, IR : rel-interp) : BDD;
case

f is an individual variable:
return BDDATOM(f);

f is of the form fr A fi:

return BDDAND(BDD~(~I,IR), BDD,(~z,~R));

f is of the form ~fr:
return BDDNEGATE(BDD~(~~,IR));

f is of the form 3z[fr]:
return BDDEXISTS(Z, BDD~(~,~R));

fisoftheform R(zr,...,s,):
return BDDR(R, I~)(dl +- 11,. , d, + z,);

end case:

function BDDR(R : rel-term, IR : rel-interp) : BDD;
case

R is a relational variable:
return IR(R);

R is of the form Xsr,. , z,,[f:
return BDD~(~,~~)(z~ +- dlr...rz,, +- d,);

R is of the form pP[R’]:
return FIXEDPOINT(P,R’,IR,FALSEBDD);

end case;

function FIXEDPOINT(P : rel-var, R : rel-term, In : rel-interp,
2 : BDD) : BDD;

let 2’ = BDDR(R,ZR(P + Z));

if 2’ = Z then return 2
else return FIXEDPOINT(P, R, ZR, 2’);

FIG. 2. Mu-calculus model checking algorithm.

The function BDD, takes as arguments a relational term R and a rela-
tional interpretation I,. It returns a BDD which represents the relational
term in the manner described above. Since the relational term may have
free individual variables, the BDD may contain both the place-holder
variables and the individual variables of the logic. Thus, given an inter-
pretation I, for the individual variables, and an interpretation 1, for the
place-holder variables, BDD,(R, ZR) is satisfied if and only if the relation
g(R)(Z,)(I,) contains the n-tuple (IA(. . . . I,(&,)), where n is the arity
of R.

The first case in the definition of BDD,, a relational variable, simply
returns the BDD representation of the variable in the interpretation Z,.
The second case, lambda abstraction, produces a BDD with place-holder
variables d,, d, substituted for the variables x1, x,. The most
interesting case involves the fixed point operator p. To find the fixed
point of a relational term with respect to a relational variable P, we use

SYMBOLIC MODEL CHECKING 151

the standard technique for finding the least fixed point of a monotonic
function with a finite domain. This computes the fixed point by a series of
approximations Z,, Z,, beginning with the empty relation (which is
represented by the BDD constant FALSEBDD). To compute Zi+ , , we let the
interpretation of P be Zi, while evaluating the relational term R using
BDD.. Since the domain is finite and R is formally monotone with respect
to P, the series must converge to the least fixed point. Convergence is
detected when Zj+ , = Z;. Note that testing for convergence is easy, since
testing BDDs for equivalence is a constant time operation.

A performance improvement can be realized in the above fixed point
algorithm by observing that any subterms or subformulas of R which do
not have P as a free variable will not change in their evaluation from one
iteration to the next. Thus, the evaluations of these terms do not need to
be recomputed. For this reason, it is useful when possible to rewrite
formulas so that fixed point subterms contain fewer free relational
variables.

In order to do model checking over a non-Boolean (but finite) domain
D, we use an encoding function 4: { 0, 1 }” --t D which maps each Boolean
vector of length m to an element of D. This function must be surjective, but
it need not be injective. The minimum possible value of m is [log, IDI 1,
but encodings with a larger number of bits are also possible. Using such an
encoding, we construct a corresponding model M’ over the Boolean
domain. If R is an n-ary relation symbol in the model M, then R’ is a
relation of arity mn in M’, constructed by the rule

R’(x,, 2,) - R(#,), 4(X,)),

where Xi is a shorthand for m Boolean variables encoding xi. In order to
check the truth of a given formulaf, we replace each individual variable in
the formula with a vector of m Boolean valued variables, and check the
resulting formulaf’ in the model M’. The homomorphism between M and
M’ guarantees that M k f if and only if M’ k f’.

The choice of an encoding function 4 and an ordering for the BDD
variables has a substantial impact on the efficiency of the model checking
algorithm. For digital circuits, the choice of encoding is generally trivial,
since all components of the state are Boolean valued to begin with.

5. ITERATIVE SQUARING

It is often possible to rewrite a Mu-Calculus formula or relational term
so that it can be analyzed more efficiently by the model checking algorithm.
In this section we describe a systematic method for rewriting relational

152 BURCHETAL.

terms, called the iterative squaring transformation, that can result in an
exponential reduction in the number of iterations necessary to compute
fixed points. We begin by showing how the iterative squaring transforma-
tion can be applied to a particular relational term. Later we describe more
general conditions under which the transformation can be applied.

5.1. Transitive Closure

Let W be the relational term

which describes the set V, of vertices reachable in the directed graph
(V, E) from the set of vertices V,, (see Section 3). When the model checking
algorithm is applied to W, it requires n iterations to compute the set V, of
vertices reachable via a path of length n or shorter. Thus, the number of
iterations is linear in the diameter of the subgraph (V,, E’), where E’ is the
set of edges in E connecting only vertices in V,. However, a standard
technique can be used to rewrite W so that the model checking algorithm
converges faster. The first step is to compute the transitive closure of E,

E, = @[lx, yCE(x, Y) ” MfYx, w) A fYw> Y)III.

Let E, be the binary relation computed by the model checker after n itera-
tions in the computation of E,. The following theorem can be proved by
induction on n.

THEOREM 1. For all vertices y and non-negative integers n,

V,(Y) v 3xCvdx) A E,(x, ~11 * VP(Y).

The number of iterations necessary to compute E, is logarithmic in the
diameter of (V, E). If the diameters of (V, E) and (I’,, E’) are roughly the
same (the usual case in practice), this leads to a significant reduction in the
number of iterations needed to compute I’,. However, iterative squaring
can be impractical if the BDDs needed to represent the intermediate
computations become too large.

5.2. General Transformation

We consider r-ary relational terms of the form pQ[R] or vQ[R], where
R is some r-ary relational term. We further restrict R to be of the form
(using j as a shorthand for y,, yr),

SYMBOLIC MODEL CHECKING 153

where S and N are relational terms that do not have Q as a free variable.
It may seem overly restrictive to require that terms be of this form.
However, nearly all the Mu-Calculus terms that we have used as specilica-
tions in practice can be written in this form.

The relational term pQ[R] is analogous to the relational term W
described above. Recall that W represented the set I/,, which is the set of
vertices reachable from V, in the graph (V, E). The analogy is clear if we
let I/ be the set of r-tuples over the domain D, let E be N, and let VO be
S. Under this analogy, pQ[R] represents V,, the set of vertices reachable
from S via N.

We can re-express pQ[R] in terms of the transitive closure of N. This
allows us to use iterative squaring to compute the least fixed point. Define
the relational term T such that

which is the transitive closure of N. The set of vertices reachable from S via
N can be expressed as

l.j[S(j) v 3X[S(.U) A T(X, j)]].

This observation provides the intuition behind the proof of the following
theorem.

THEOREM 2. pQ[R] = Aj[S(j) v 3X[S(X) A T(?c, y)]].

There is a straightforward relationship between the least and greatest
fixed points. We claim that j is in vQ [R] if and only if j is in pQ[R] or
j can be reached from some X that is on a cycle in the graph of N. The
formula T(x, X) is true if and only if X is on a cycle. Assuming that the
domain D is finite, we have the following theorem:

THEOREM 3. vQ[R] = pQ[R] v lj[3Z[T(X, X) A T(X, j)]].

Proof: Let

Z=pQ[R] v Aj[lf[T(X, X) A T(X, j)]]

= ij[s(j) v %[s(X) A i’-(2, v)] v 3X[T(X, i) A T(X, j)]]

It is straightforward (but tedious) to show that Z is a fixed point of R(Q),
so we omit this argument. It remains to show that Z is the greatest fixed
point, that is, if Q = R(Q), then Q E Z. Suppose that X0 is an element of Q.
It follows that X, is an element of R(Q), hence S(X,) v G[Q(X) A N(iY, X0)]

holds. Thus, X,, is in S, or X, has a predecessor in Q. Under the first condi-
tion, it follows immediately that 2, is in Z. Under the second condition,

154 BURCHETAL.

there exists an Xi such that N(x,, X0) and Q(?i) both hold. Since Xi is in
Q, we can continue the above process, generating a sequence X,, Xi, . . .
where N(xi+ i, Xi) holds for all i. Either this sequence terminates at some
Xi in S, or it is infinite. In the terminating case, T(Xi, X0) holds, since there

- -
is a path from Xi to X,. Hence ?ci is a witness for %[S(X) A T(x, x,)], so
.f,, is in Z. In the infinite case, there must exist 0 < m < it such that X, = X,,
since we have assumed the domain is finite. In this case T(X, X) holds,
where X is the common value of X, and .U,. Thus 3X[T(X, X) A T(.?, X0)]
holds, implying that X0 is in Z. We have shown that in all cases, if
Q=R(Q) d -0 an Y 1s in Q, then z0 is in Z. Thus, Z is the greatest fixed point
of R(Q). I

The iterative squaring theorems can often be applied more than once to
terms that have several fixed point operators. For example, consider the
directed graph (V, E) described earlier. The relational term

R = vPCVO A PQC~.JOXC(JYX) v Q(x), A NY, -~)I111

represents the set of vertices y in V0 such that there is a path starting at
y that passes through a vertex in V, infinitely often. Theorems 2 and 3 can
be used twice to show that R is equal to

Unless otherwise noted, all the Mu-Calculus relational terms used in the
remainder of this paper can be computed using the iterative squaring
technique. As a result, the number of fixed point iterations can be made
logarithmic in the cardinality of the domain.

6. COMPUTATION TREE LOGIC

Computation Tree Logic (CTL) is a propositional, branching-time, tem-
poral logic (Clarke et al., 1986). Each of the usual forward-time operators
of linear temporal logic (G globally or inuariantly, F sometime in thefuture,
X nexttime, and U until) must be directly preceded by a path quuntzjier.
The path quantifier can either be an A (for all computation paths) or an
E (for some computation path). Thus, some typical CTL operators are
AGf, which holds in a state provided that f holds at all points along all
possible computation paths starting from that state, and EFf, which holds
in a state provided that there is a computation path such that f holds at
some point on the path.

In our description of the syntax and semantics of CTL, we specify the
existential path quantifiers directly and treat the universal path quantifiers
as syntactic abbreviations. Let A be the set of atomic propositions, then:

SYMBOLIC MODEL CHECKING 155

1. Every atomic proposition p in A is a formula in CTL.

2. Iffand g are CTL formulas, then so are 1 f,f A g, EXf, E[fUg]
and EGJ

The semantics of a CTL formula is defined with respect to a labeled state
transition graph or Kripke structure M = (A, S, L, N, S,), where A is a set
of atomic propositions, S is a finite set of states, L: S -+ 2A is a function
labeling each state with a set of atomic propositions, N G S x S is a total
transition relation, and S, is the set of initial states. A path is an infinite
sequence of states sO, s,, s2, . . . such that N(si, si+ I) is true for every i.

The propositional connectives 1 and A have their usual meanings of
negation and conjunction. The other propositional operators can be
defined in terms of these. X is the nexttime operator. EXfis true in a state
s of M if and only if s has a successor t such that f is true at t. U is the
until operator. E[fUg] is true in a state s of M if and only if there exists
a path starting at s and an initial prefix of the path such that g holds at
the last state of the prefix and f holds at all other states along the prefix.
The operator G is used to express the invariance of some property over
time. EGfis true at a state s if there is a path starting at s such thatfholds
at each state on the path.

We also use the following syntactic abbreviations for CTL formulas:

l AXf = 1 EX 1 f which means that f holds at all successor states of
the current state (fmust hold at the nest state).

l EFf - E[trueUf] which means that for some path, there exists a
state on the path at which f holds (f is possible in the future).

l AFf = 1 EG 1 f which means that for every path, there exists a
state on the path at which f holds (f is inevitable in the future).

l AGf = 1 EF 1 f which means that for every path, at every node
on the path f holds (f holds invariant/y along all paths).

l A[~g]=~E[~gU~f~~g]r\~EG~gwhichmeansthat
for every path, there exists an initial prefix of the path such that g holds
at the last state of the prefix and f holds at all other states along the prefix
(f holds until g holds, along all paths).

6.1. CTL Model Checking

Checking whether a CTL formula f is true of a Kripke structure
M= (A, S, L, N, SO) can be reduced to checking whether a Mu-Calculus
formula f' is true of a structure M’ = (S, I,, 1,). In the reduction, I,
provides the obvious interpretations for N and S,; it also interprets each
atomic proposition p in A to be a unary relation such that Z,(p)(s) is true
if and only if p E L(s). The individual variable interpretation ID is not
relevant since f' is defined to have no free individual variables.

643,982.2

156 BURCH ET AL.

The reduction of a CTL formula f to a Mu-Calculus formula f’ is best
understood by viewing CTL formulas as abbreviations for Mu-Calculus
relational terms. In this view, if the CTL formula f is an abbreviation for
the Mu-Calculus relational term R, then f is true at state s if and only if
R(s) is true. Iffhas no temporal operators, then it represents the relational
term R that has exactly the same syntax as f. It remains only to consider
CTL formulas of the form EXf, EGf, or E[jUg]. For the remainder, we
identify a CTL formula f with the Mu-Calculus relational term that it
represents.

The CTL formula EXfis true of a state s if and only if there exists a state
t such that f is true of t and N(s, t) is true. We therefore define EXf to be
a syntactic abbreviation for the Mu-Calculus relational term

l”spt[f(t) A N(s, t)]].

The Mu-Calculus expansions for EG and EU are based on a charac-
terization of the CTL operators as fixed points of predicate transformers.
The fixed points can be computed using either direct iteration or iterative
squaring.

The fixed point characterization for EG is derived from the identity

EGf=f A EX EGf.

It is straightforward to show that not only does EGfsatisfy this equation,
it is the greatest fixed point of the equation. Thus,

EGf= vQ[f A EXQ]

= vQCNf@) A MQ(t) A MS, t)lll.

The operator EU has a fixed point characterization that is similar to the
one for EG. However, this time the characterization is the least fixed point
of the corresponding predicate transformer rather than the greatest:

ECfUgl = g v (f * EX ECfUgl)

= PQL-g v (f A EXQII

=IrQCN&) v (f(s) * NQ(t) A Ns> t)l)ll.

Once a CTL formula f has been transformed into a Mu-Calculus rela-
tional term R, it is still necessary to construct a Mu-Calculus formula f'
that is true if and only if f is true of all the states in So. One such f’ is

f’ = VSC&(~) *fb)l.

As described in Section 4, the Mu-Calculus model checking algorithm
requires encoding the domain in terms of a Boolean domain. For Mu-

SYMBOLIC MODEL CHECKING 157

Calculus formulas derived from CTL formulas, it is convenient to encode
each state in the domain with the set of atomic propositions that are true
for that state. This requires that no two distinct states have the same
labeling of atomic propositions.

6.2. Fairness Constraints

Next, we consider the issue of fairness. In many cases, we are only
interested in correctness along fair computation paths. For example, we
may wish to consider only those computations in which some resource that
is continuously requested by a process will eventually be granted to the
process. This type of property cannot be expressed directly in CTL. In
order to handle such properties we must modify the semantics of the logic
slightly. A fairness constraint can be an arbitrary CTL formula. A path is
said to be fair with respect to a set of fairness constraints if each constraint
holds infinitely often along the path. The path quantifiers in CTL formulas
are now restricted to fair paths. In the remainder of this section we describe
how to translate CTL formulas to Mu-Calculus relational terms that reflect
the modified semantics. We assume the fairness constraints are given by a
set of CTL formulas C= ci, c,. We write EcXf and E.[fLTg], for
example, to denote temporal operators with fairness constraints C.

Consider the formula E,Gf, which is true of a state s when there exists
a path beginning at s in which f holds globally (invariantly) and each
formula in C holds infinitely often. The set of such states Z is the largest
set satisfying the following two conditions:

1. All of the states in Z satisfy f, and

2. for all ck E C, for all s E Z, there is a path of length one or greater
from s to a state satisfying cli such that all states on the path satisfyf.

It is easy to show that if these conditions hold, each state in the set is the
beginning of an infinite path on which f is always true, and every formula
in C holds infinitely often. This gives us the characterization

E,Gf=vZ f A ji EXE[j-U(Z
[

A Ck)l .
k=l 1

The unfair CTL operators on the right side of the equations can be trans-
lated into Mu-Calculus relational terms as described above. Note that in
this case, there is a nested fixed point since EU is an abbreviation for a
least fixed point.

The cases of EcXf and Ec[fUg] are a bit simpler. Define the set of all
states which are on some fair computation as h=E,G true. Then,

E&f I= Wf A h),

Ec Cfugl = KI-Ug A h)l.

158 BURCHETAL.

7. PROPOSITIONAL LINEAR TEMPORAL LOGIC

The tableau method for testing the satisfiability of propositional linear
temporal logic (PTL) formulas (Manna and Wolper, 1981) can be
implemented by translating a PTL formula into a Mu-Calculus formula
which is true if and only if the PTL formula is satisfiable. This gives a
symbolic procedure with the advantage that, in some cases, a large tableau
can be represented by a relatively small BDD.

Fujita and Fujisawa (1989) describe a verification procedure based on
linear temporal logic that uses binary decision diagrams to represent the
transition conditions in automata derived from temporal logic formulas.
However, they represent the states of the automaton explicitly, so their
technique still suffers from the state explosion problem.

There are many dialects of PTL depending on the modal connectives
that are defined. We choose a small, standard dialect:

1. atomic propositions A (written p, q, etc.),

2. 1 f, f v g, Xf, and .fug when f and g are PTL formulas.

Our technique can be extended easily to additional or alternative modal
connectives.

As in CTL, Xf means that f holds in the next state and fug means that
fis true in every state until g holds. To formalize this, let G E [A + (0, 1 >I”’
be a sequence of truth assignments to the atomic propositions, and let gi
be the ith suffix of c (i.e., a,(j) = a(j + i) for all j E w). The semantics of
PTL formulas can be defined as follows:

OkP iff o(O)(p) = 1 when PEA,

ok1f iff oFf,

akfvs iff (T t= for fs + g,

0 t= Xf iff ~,l=f,

c I= fug iff 3: (ai b g and Vj< i: cj + f).

The tableau associated with a PTL formula f is a Kripke structure whose
atomic propositions represent the truth values of the particular formulas
constructed from f. By representing the tableau symbolically, we can use
the symbolic CTL model checking procedure to determine whether the for-
mula f is satisfiable. A state of the tableau is a Boolean vector X. With each
formula f, we associate a component x,- of the state vector. A function a(f)
associates a relational term in the Mu-Calculus with each PTL formula f.
This term represents the set of states of the tableau labeled with the

SYMBOLIC MODEL CHECKING 159

formulaf. This function M is defined recursively over the structure of PTL
formulas as follows:

a(p) = kqx,] if PEA,

41 f) = ldf)?

df ” 8) = a(f) ” a!Y)?

ct(Xf) = I,u[X,f],

4fUg) = dg) ” (a(f) * ~-fC-%,/Ll,,l).

Note that for a given formula f, the only components of the state vector
used in a(f) are the atomic propositions and the formulas Xg, where Xg
is a subformula off, and X(gUh), where gUh is a subformula off. We call
these subformulas the elementary subformulas off, or cl(f). Using only the
elementary formulas in the tableau reduces the number of Boolean state
variables. The elementary subformulas can be defined recursively as follows
(where f and g are any PTL formulas):

e4p) = {P> if PEA,

dlf)=e&f),

e4f v g) = cl(f) u e4gL

e4Xf) = { Xf > u e4fh

eWJg) = {WfUg)) u e4f) u e4g).

The transition relation R of the tableau is defined such that the elementary
formula Xf is true in the current state if and only if f is true in the next
state. Thus,

The set SO of initial states of the tableau is the set satisfying f. Thus,
SO = a(f). The formula f is satisfiable if and only if there is an infinite path
in the tableau such that

l f is true in the initial state, and

l for all subformulas gUh, if gUh is true in some state, then even-
tually h is true in some later state.

This is equivalent to the CTL formula

E,G true

160 BURCHETAL.

with the set of fairness constraints

C= (1 cc(gUh) v cc(h) / gUh occurs inf}.

If there is an infinite path satisfying all of the formulas in C infinitely often,
then for all subformulas gUh, it is not the case that gUh holds forever after
some point while h remains false. Hence, there is a path satisfying f.

The test for satisliability of a formula f proceeds in the following steps.
The set of elementary formulas off is computed using its recursive defini-
tion. The symbolic (BDD) representations of R and So are computed, using
the recursive definition of R. The set C of fairness constraint formulas is
constructed. Finally, the CTL formula E,G true is translated into the Mu-
Calculus using the procedure of Section 6.2. This formula is evaluated using
the symbolic Mu-Calculus model checking procedure of Section 4 to
determine whether the formula f is satisfiable.

8. OBSERVATIONAL EQUIVALENCE

In this section, we describe how to use the Mu-Calculus for expressing
strong equivalence and weak equivalence of finite transition systems. This
makes it possible to use the BDD-based Mu-Calculus model checking algo-
rithm described earlier for deciding these equivalences. A finite transition
system is a 4-tuple (S, sO, C, A), where S is a finite set of states, sO is the
initial state, Z is a finite set of actions, and A E S x C x S is the transition
relation (Milner, 1980; Milner, 1983).

8.1. Strong Equivalence

Let M, and M, be two finite transition systems on the same set of
actions C. That is, let M, = (S, sO, C, A,) and M,= (7’, t,, C, A.). The
strong equivalence relation (written “-I’) is a subset of Sx T. The two
finite transition systems M, and M, are said to be strongly equivalent if
and only if s0 - t,. The strong equivalence relation is the greatest fixed
point of the function

such that F(R) is the set of all pairs (s, t) for which

l VoVs’, if A,(s, cr, s’) then 3t’ such that AT(f, G, t’) and R(s’, t’), and
l VaVt’, if AT(f, 0, t’) then 3s’ such that A.(s, c, s’) and R(s’, t’).

In order to compute this equivalence using the BDD-based Mu-Calculus
checking algorithm, it remains only to assemble the appropriate domain

SYMBOLIC MODEL CHECKING 161

and interpretations, and to express the above condition in the Mu-
Calculus. Let the domain D be the union of S, T, and 2 (which are
assumed to be disjoint). The relational interpretation I, consists of the
relations A, and A., and the individual interpretation I, consists of sO and
t,. Let F’ be the Mu-Calculus relational term

As, t[V’a, s’[A,(s, C, s’) + 3t’[AJt, C, t’) A R(s’, t’)]]

A Va, t’[A.(t, 0, t’)* 3s’[A,(s, ci, s’) A R(s’, t’)]]].

Then F’(s, t) is true if and only if (s, t) is an element of F(R). Thus, M, and
M, are strongly equivalent if and only if vR[F’](s,, t,,) holds. This can be
evaluated with the BDD-based model checking algorithm, although the
iterative squaring transformation cannot be used.

8.2. Weak Equivalence

Let r be a distinguished action in the set .X7, and let the relation H be the
reflexive transitive closure of 2x, y[A(x, r, y)]. That is, H(s, t) is true if and
only if there is a path from s to t labeled by a sequence of zero or more
r actions. Also, let A* be such that

A*(s, CT, t) = 3x$[H(s, x) A A(x, (T, y) * H(J), t)]

The weak observational equivalence relation is the greatest fixed point of
the function

such that G(R) is the set of all pairs (s, t) for which

l Vs’Vo, if A:($, c, s’) then 3t’ such that AS(t, 0, t’) and R(s’, t’). and

l Vt’V’a, if AF(t, CJ, t’) then 3s’ such that dz(s, (r, s’) and R(s’, t’).

From this point, the translation of weak equivalence into the Mu-Calculus
is completely analogous to the translation for strong equivalence.

9. c&kJTOMATA

Finally, we discuss symbolic Mu-Calculus based algorithms for deciding
language containment between finite o-automata. We consider Biichi
automata in detail, and also discuss a general method that is applicable to
a large class of o-automata.

A finite Biichi automaton is an ordered 5-tuple (S, sO, C, A, B), where S
is a finite set of states, so E S is the initial state, C is a finite alphabet,

162 BURCH ET AL.

A E S x C x S is the transition relation, and B c S is the acceptance set. The
automaton is deterministic if for all SE S and c E C, there exists exactly
one t E S such that A(s, 0, t) holds. An infinite sequence of states
to, t,, t,, ... ES” is a path of a Biichi automaton if there exists an infinite
sequence cr,,, g,, 02, . EC” such that

(ti, gi, t;, , > E A

for all i B 0. A sequence eo, gl, c2, . . . is accepted by a Biichi automaton if
the corresponding path to, t,, t,, . . . goes through one or more elements of
B infinitely often. The set of sequences accepted by an automaton M is
called the language of M and denoted Z’(M).

To determine whether the language of a Bi.ichi automaton M is con-
tained in the language of a Btichi automaton M’ (with the same alphabet),
we define a Kripke structure M” representing the product of M and M’,
and write a formula in CTL which is true of M” if and only if every
sequence accepted by M is also accepted by M’. This formula can be
translated into the Mu-Calculus and evaluated using the symbolic model
checking algorithm.

Let M” be a Kripke structure (A, S x S’, L, R, Si), where

l A = {p, p’} is the set of atomic propositions,

l Sb:={<qw&>),

l (s, s’) /= p iff s E B,

l (s, s’) k p’ iff s’ E B’,

l (s, s’) R(t, t’) iff 3a~C such that (s, 0, t) E A and (s’, cr, t’) E A’.

Recall that in Section 6 we showed how to encode Kripke structures
symbolically. The transition relation of the Kripke structure M” is

R = h, s’, t, t’[la[A(s, (T, t) A A’(s’, O, t’)]].

The atomic proposition p can be identified with the Mu-Calculus relational
term Is, s’[B(s)] that represents that set of states that satisfy p. Similarly,
p’ is identified with the relational term 1-s, s’[B’(s’)]. The set of initial
states is

S~=h,s’[(s=so) A (s’=sb)].

In (Clarke et al., 1990), it is shown that, if M’ is deterministic, then
.3’(M) c 3’(W) if and only if

M” k A(GFp * GFp’).

Note that the formula above is not a CTL formula since there are path
operators that are not immediately preceded by path quantifiers. However,

SYMBOLIC MODEL CHECKING 163

it is equivalent to AC AFp’ under the fairness constraint “infinitely often
p.” Thus, Y(M) 2 Y(M’) holds if and only if the formula A,G A,Fp’
holds, where C = {p}. Using the results of Section 6.2, and the above
definitions for R, Sg, p and p’, this formula can be translated into a Mu-
Calculus formula that can be evaluated using the Mu-Calculus model
checking algorithm of Section 4.

Another possible approach to the language containment problem makes
use of the iterative squaring technique for computing transitive closures.
Let T* be the set of all pairs of states of the Kripke structure such that the
second state can be reached from the first without passing through B’. This
is the transitive closure of

T= As, s’, t, t’[R(s, s’, t, t’) A 1 B’(d) A lB’(t’)].

Using iterative squaring,

T* =pQ[is, s’, t, t’[T(s, s’, t, t’) v 3u, u’[Q(s, s’, u, u’) A Q(u, u’, t, t’)]]].

The language of M is contained in the language of M’ iff there is no path
to a state (s, s’) in B such that (s, s’) is on a cycle not passing through
B’. That is, Y(M) E 6p(M’) if and only if 1 EFh, s’[T*(s, s’, s, s’)]. The
operator EF can also be evaluated using iterative squaring. This technique
reduces the number of iterations to the log of the diameter of the transition
relation R. Using the technique based on CTL model checking with fair-
ness constraints, the number of iterations may be as high as the square of
the diameter, because of the nested fixed point operators. However, in
many cases the BDDs needed to construct the transitive closure are
impractically large. As a result, if the diameter of the state space is small,
the nested fixed point method may be preferable.

While deterministic Biichi automata cannot express the complete class
of o-regular languages, algorithms for language containment for more
expressive types of deterministic w-automata (e.g., Muller automata) can
be derived in a similar fashion from results in (Clarke et al., 1990). These
algorithms require a more expressive class of fairness constraints than we
have considered here. Mu-Calculus based algorithms for this class of fair-
ness constraints exist, and can be derived either from the PTL satisfiability
algorithm, or from results of Emerson and Lei (1986).

10. EMPIRICAL RESULTS

Using BDDs for testing Boolean satisfiability is only efficient in a
heuristic sense. The satisfrability problem is, of course, NP-complete; the
only claim that is made for BDDs is that they perform well for certain

164 BURCH ET AL.

useful classes of Boolean functions. Likewise, using BDDs for representing
relations in Mu-Calculus model checking is only of heuristic value, and
does not improve the asymptotic complexity of model checking. Therefore,
in order to evaluate the method, we need empirical results showing the
performance of the method on some problems of practical interest.

Here we briefly present some performance results for CTL model
checking on a class of simple synchronous pipelines, which include data
path as well as control circuitry. The number of states in these systems is
far too large to apply traditional model checking techniques, but we have
obtained very encouraging results using the BDD method.

The circuits we have used as examples are pipeline circuit that perform
three-address logical and arithmetic operations on a register file. The com-
plete state of the register file and pipe registers are modeled. The pipelines
have three stages: the operands are read from the register file, then an ALU
(Arithmetic Logic Unit) operation is performed, then the result is written
back to the register file. The ALU has a register bypass path, which allows
the result of an ALU operation to be used immediately as an operand on
the next clock cycle, as is typical in RISC instruction pipelines. The inputs
to the circuits are an instruction code, containing the register addresses of
the source and destination operands, and a STALL signal, which indicates
that no instruction is available. When this occurs, a “no-operation” is
propagated through the pipe. A functional block diagram of a typical
pipeline is given in Fig. 3.

Read Port A Read Port A -
c Addr Addr

- Data
Register File

+ Addr
- Data

Read Port B Read Port B

Write Port C

I M-1 Control
I
Inst.
Reg.

Register Bypass Path

FIG. 3. Block diagram of simple pipeline design.

SYMBOLIC MODEL CHECKING 165

Since vectors of Boolean values are used to represent binary numbers in
these designs, it is useful to introduce some notation for vectors of proposi-
tions in logical formulas. First, we extend the standard logical and modal
operators to vectors of propositions in a component-wise manner. For
example,

and

Pl FP,

F ~2 = FP, II [:I . - .

in FP,

The latency in the example pipelines is three clock cycles. For this
reason, the specification of the pipeline cannot be given in a
straightforward manner using simply pre-conditions and post-conditions
on operations. We can, however, use temporal operators and the above
notation to specify the behavior of the pipeline, taking into account the
pipe latency. When we specify a register transfer level operation for
the pipeline, it is understood that the results of the operation will not
affect the register file until three clocks cycles in the future, and that the
inputs to the operation correspond to the state of the register file two clock
cycles in the future. The state of the register tile n clock cycles in the
future can be expressed as X”R. A register transfer specification such as
R, t R, 0 Rb means that register c receives the exclusive-or of registers
a and b. Taking into account the pipe latency, this register transfer level
specification can be expressed as a temporal formula,

(X3U = (X2R),0 (X’R),,

where a, b, and c are each bit-fields in the operation code. As similar
formulas can be derived for other register transfer level expressions, we will
write register transfer expressions in our specifications, with the under-
standing that they are to be interpreted as abbreviations for temporal logic
formulas in the above way. Since X”p is a path formula and not a state
formula, it cannot be evaluated directly by the CTL model checker (which
can only evaluate state formulas). We can show, however, that the state
of the register file R two or three clock cycles in the future is uniquely

166 BURCH ET AL.

determined by the current state of the system. We can show this by
automatically checking the CTL formulas

and

AG((EX)’ R = (AX)’ R)

AG((EX)3 R = (AX)3 R).

Thus, we can substitute the state formula (EX)’ R for the path formula
X’R, since the two are equivalent. Likewise, we can substitute (EX)3 R for
X3R.

Using the above temporal interpretation for register transfer level
specifications, we write the specification for our simplest pipeline (which
has only an exclusive-or instruction) as follows:

and

AG(1 STALL a (R, +- R, @ Rb)) (1)

AGVc’(c #c’ v STALL - (R,. +- R,.)).

Recall that the register assignments are abbreviations for CTL formulas.
The latter formula specifies that non-destination registers do not change,
and that if a stall occurs, no registers change.

Figure 4 graphs the performance we obtained when checking formula 1
on a variety of pipelines of this type. The graphs show the total execution

1 e+03 '

1
Data path width (bitiJ2

FIG. 4. Performance of BDD model checking algorithm on simple pipelines.

SYMBOLIC MODEL CHECKING 167

time and the size of the BDD needed to represent the transition relation.
In all cases the register file had four registers. The number of bits per
register varied from 1 to 12. We considered two ALU operations: exclusive-
or and addition. In two cases the ALU performed just one of these opera-
tions. In the third case, the ALU performed both operations. The verifier
operated directly on CTL formulas, which reduces the overhead that would
result from first translating CTL formulas to Mu-Calculus formulas.

A pipeline with 12 bits has approximately 1.5 x 1O29 reachable states,
which puts it far outside the range of model checkers like the one reported
by Browne et al. (1986). An 8-bit exclusive-or pipeline required a BDD
with 42,000 nodes to represent the transition relation, and approximately
22 minutes to verify on a Sun 3/60. The execution times in the graph are
for a single processor of an Encore Multimax, which is approximately half
as fast as a Sun 3. The most interesting result is that the number of nodes
in the transition relation BDD is asymptotically linear in the number of
bits per register. As a result, the verification time is polynomial in the num-
ber of bits. The BDD variables were ordered so that all variables in a given
bit position were grouped together. A fixed number of signals, consisting of
the control bits and the ALU carry bit pass from one group to the next.
It is this property of the system that results in the linear growth of the
transition relation as represented by a BDD.

It is also interesting to note that adding an exclusive-or operation to the
addition pipeline roughly doubles the number of nodes in the transition
relation. In general, the transition relation increases in size linearly with the
number of instructions (Burch et al., 1991a). In addition, if the ALU were
able to perform a multiply operation, a barrel shift, or some other complex
operation which has more than a constant amount of information passing
from one bit position to the next, then the size of the BDD representation
would quickly become unmanageable.

11. CONCLUSIONS

We have shown, that by choosing a suitable encoding of the model
domain, and using a compact representation for relations, the complexity
of various graph-based verification algorithms can be greatly reduced in
practice (if not in the worst case). Along the way, we have shown how
several of these algorithms can be concisely expressed in a form of the
Mu-Calculus, and how these expressions can be used to derive efficient
BDD-based verification algorithms. In the circuit examples we studied, the
regular structure of the data path logic was captured by the BDD represen-
tation, resulting in a space complexity which was linear in the number of
circuit components rather than exponential.

168 BURCH ET AL.

The current state of this research, however, leaves open several impor-
tant and interesting questions. First, more work is needed in order to
characterize the models for which the BDD Mu-Calculus checker is
efficient. It is known, for example, that combinational multiplier circuits do
not have efficient BDD representations (Bryant, 1991). On the other hand,
the model checking algorithm is easily adapted to use other representa-
tions, if such are found to be compact for a useful class of relations. The
problem of finding more efficient structures for representing Boolean
formulas has attracted much attention of late; any results obtained in this
area would be immediately applicable to Mu-Calculus model checking, and
hence to the various verification methodologies treated in this paper.

The second open question is whether the techniques described here could
be profitably extended to other common graph algorithms whose results
can be expressed as relations, such as minimum spanning trees, graph
isomorphism, etc. For example, if E(u, V) is the edge relation of a directed
graph, then the equivalence relation

Au, u[E’(u, u) A E’(u, u)]

is true of two vertices if and only if they are in the same strongly connected
component, where E’ is a relational term representing the reflexive
transitive closure of E. Practical algorithms that could handle very large
graphs (compared to current computer storage limitations) would certainly
be of interest.

RECEIVED September 24, 1990; FINAL MANUSCRIPT RECEIVED December 20, 1991

REFERENCES

BOSE, S., AND FISCHER, A. L. (1989), Automatic verification of synchronous circuits using
symbolic logic simulation and temporal logic, in “Proceedings of the IMEC-IFIP Inter-
national Workshop on Applied Formal Methods For Correct VLSI Design” (L. Claesen,
Ed.), pp. 759-764.

BROWNE, M. C., CLARKE, E. M., DILL, D. L., AND MISHRA, B. (1986), Automatic verification
of sequential circuits using temporal logic, IEEE Trans. Comput. C-35(12). 1035.

BRYANT, R. E. (1986), Graph-based algorithms for boolean function manipulation, IEEE
Trans. Comput. C-35(8).

BRYANT, R. E. (1991), On the complexity of VLSI implementations and graph representation
of boolean functions with application to integer multiplication, IEEE Trans. Compuf. 40(2),
205.

BURCH, J. R., CLARKE, E. M., AND LONG, D. E. (199la), Representing circuits more
efficiently in symbolic model checking, in “28th ACM/IEEE Design Automation Con-
ference.”

BURCH, J. R., CLARKE, E. M., AND LONG, D. E. (199lb), Symbolic model checking with
partitioned transition relations, in “Proceedings of the International Conference on Very
Large Scale Integration, Edinburgh, Scotland.”

SYMBOLIC MODEL CHECKING 169

BURCH, J. R.. CLARKE, E. M., MCMILLAN. K. L., AND DILL, D. L. (1990), Sequential circuit
verification using symbolic model checking, in “27th ACM/IEEE Design Automation
Conference.”

CLARKE, E. M., DRAGHICESXJ, I. A., AND KURSHAN, R. P. (1990), A unified approach for
showing language containment and equivalence between various types of w-automata, in
“15th Colloquium on Trees in Algebra and Programming, Copenhagen, Denmark”
(A. Arnold and N. D. Jones, Eds.), Lecture Notes in Computer Science, Vol. 431,
Springer-Verlag, Berlin/New York.

CLARKE, E. M.. E~~ERSON, E. A., AND SISTLA, A. P. (1986), Automatic verification of Iinite-
state concurrent systems using temporal logic specilications, ACM Trans. Programming
Languages Sysfems S(2), 244.

CLEAVELAND, R. (1989), “Tableau-Based Model Checking in the Propositional Mu-Calculus,”
Technical Report 2/89, University of Sussex.

COUDERT. O., BERTHET, C., AND MADRE, J. C. (1989), Verification of synchronous sequential
machines based on symbolic execution, in “Automatic Verilication Methods for Finite
State Systems, International Workshop, Grenoble, France” (J. Sifakis, Ed.), Lecture Notes
in Computer Science, Vol. 407, Springer-Verlag, Berlin/New York.

EMERSON, E. A., AND LEI, C.-L. (1986), Efficient model checking in fragments of the proposi-
tional mu-calculus, in “Proceedings of the First Annual Symposium on Logic in Computer
Science, Boston, Ma.”

FUJITA, M.. AND FUJISAWA, H. (1989) Specification, verification, and synthesis on control
circuits with propositional temporal logic, in “Proceedings of the Ninth International
Symposium on Computer Hardware Description Languages and their Applications,
Washington, DC” (J. A. Darringer and F. J. Rammig, Eds.), North-Holland, Amsterdam.

GODEFROID, P. (1990) Using partial orders to improve automatic verification methods, in
(Kurshan and Clarke, 1990); also in Lecture Notes in Computer Science, Vol. 531,
Springer-Verlag, Berlin/New York.

GODEFROID, P., AND WOLPER. P. (1991) A partial approach to model checking, in
“Proceedings of the Sixth Annual IEEE Symposium on Logic in Computer Science.”

KIMURA. S., AND CLARKE, E. M. (1990), A parallel algorithm for constructing binary decision
diagrams, in “Proceedings: IEEE International Conference on Computer Design.”

KOZEN, D. (1983) Results on the propositional p-calculus, Theoret. Cornput. Sci. 27(3), 333.
KURSHAN, R.. AND CLARKE, E. M. Eds. (1990). “Computer-Aided Verification, Proceedings

of the 1990 Workshop.” DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, Vol. 3; Amer. Math. Sot., Providence, RI; also in Lecture Notes in
Computer Science, Vol. 531, Springer-Verlag, Berlin/New York.

MANNA, Z., AND WOLPER, P. (1981). Synthesis of communicating processes from temporal
logic specifications, in “Logic of Programs: Workshop” (D. Kozen, Ed.), Lecture Notes in
Computer Science, Vol. 131, Springer-Verlag, Berlin/New York.

MILNER, R. (1980), “A Calculus of Communicating Systems,” Lecture Notes in Computer
Science, Vol. 92. Springer-Verlag, Berlin/New York.

MILNER, R. (!983), Calculi for synchrony and asynchrony, Theoret. Comput. Sci. 25, 267.
PARK, D. (1974), “Finiteness is Mu-Ineffable,” Theory of Computation Report No. 3, The

University of Warwick.
P~OBST, D. K.. AND LI, H. F. (1990), Using partial order semantics to avoid the state

explosion problem in asynchronous systems, in (Kurshan and Clarke, 1990); also in
Lecture Notes in Computer Science, Vol. 531, Springer-Verlag, Berlin/New York.

STIRLING, C., AND WALKER, D. J. (1989) Local model checking in the modal mu-calculus, in
“Proceedings of the International Joint Conference on Theory and Practice of Software
Development” (J. Diaz and F. Orejas, Eds.), Lecture Notes in Computer Science,
Vols. 351-352, Springer-Verlag, Berlin/New York.

170 BURCH ET AL.

VALMARI, A. (1989), Stubborn sets for reduced state space generation, in “Tenth International
Conference on Application and Theory of Petri Nets.”

VALMARI, A. (1990), A stubborn attack on the state explosion problem, in (Kurshan and
Clarke, 1990); also in Lecture Notes in Computer Science, Vol. 531, Springer-Verlag.
Berlin/New York.

YONEDA, T., NAKADE, K., AND TOHMA, Y. (1989), A fast timing verification method based on
the independence of units, in “Proceedings of the Nineteenth International Symposium on
Fault-Tolerant Computing.”

