
Information and Computation 179, 279–295 (2002)
doi:10.1006/inco.2001.2953

First-Order Logic with Two Variables and Unary Temporal Logic1

Kousha Etessami2

Bell Labs, Murray Hill, New Jersey
E-mail: kousha@research.bell-labs.com

Moshe Y. Vardi3

Department of Computer Science, Rice University, Houston, Texas
E-mail: vardi@cs.rice.edu

and

Thomas Wilke

RWTH Aachen, Lehrstuhl für Informatik VII 52056 Aachen, Germany
E-mail: wilke@informatik.rwth-aachen.de

Received February 23, 1998; published online July 10, 2002

We investigate the power of first-order logic with only two variables over ω-words and finite words,
a logic denoted by FO2. We prove that FO2 can express precisely the same properties as linear
temporal logic with only the unary temporal operators: “next,” “previously,” “sometime in the future,”
and “sometime in the past,” a logic we denote by unary-TL Moreover, our translation from FO2 to
unary-TL converts every FO2 formula to an equivalent unary-TL formula that is at most exponentially
larger and whose operator depth is at most twice the quantifier depth of the first-order formula. We show
that this translation is essentially optimal. While satisfiability for full linear temporal logic, as well as for
unary-TL, is known to be PSPACE-complete, we prove that satisfiability for FO2 is NEXP-complete,
in sharp contrast to the fact that satisfiability for FO3 has nonelementary computational complexity.
Our NEXP upper bound for FO2 satisfiability has the advantage of being in terms of the quantifier
depth of the input formula. It is obtained using a small model property for FO2 of independent interest,
namely, a satisfiable FO2 formula has a model whose size is at most exponential in the quantifier depth
of the formula. Using our translation from FO2 to unary-TL we derive this small model property
from a corresponding small model property for unary-TL. Our proof of the small model property for
unary-TL is based on an analysis of unary-TL types. C© 2002 Elsevier Science (USA)

1. INTRODUCTION

Over the past three decades a considerable amount of knowledge has accumulated regarding the
relationship between first-order and temporal logic over both finite words and ω-words: the first-order
expressible properties are exactly those expressible in temporal logic [Kam68, GPSS80, GHR94];
three variables suffice for expressing all the first-order expressible properties [Kam68, IK89]; while
satisfiability for first-order logic with three variables has nonelementary computational complexity
[Sto74], the satisfiability problem for temporal logic is PSPACE-complete [SC85]; moreover, there
are classes of first-order formulas with three variables whose smallest equivalent temporal formulas
require nonelementarily larger size (a consequence derivable from [Sto74]). In computer science the

1 Part of the research reported here was conducted while the authors were visiting DIMACS as part of the Special Year on
Logic and Algorithms. A preliminary version of this paper appeared in the Proceedings of the 12th IEEE Symposium on Logic
in Computer Science, 1997.

2 Part of this research conducted while this author was at Basic Research in Computer Science (BRICS), Centre of the Danish
National Research Foundation. The research was supported by the ESPRIT Long Term Research Programme of the EU under
Project 20244 (ALCOM-IT).

3 Work done as a visitor to DIMACS as part of the DIMACS Special Year on Logic and Algorithms and supported in part by
NSF Grants CCR-9628400 and CCR-9700061.

279

0890-5401/02 $35.00
C© 2002 Elsevier Science (USA)

All rights reserved.

280 ETESSAMI, VARDI, AND WILKE

importance of this work stems from the practical relevance of temporal logic, which is used extensively
today to specify and verify properties of reactive systems (see, e.g., [Pnu77] and [MP92]).

In this paper we provide a scaled down study of the relationship between first-order and temporal
logic. Looking at first-order logic with only two variables, we show that the tight correspondence to
temporal logic persists. We prove that first-order logic with two variables, denoted by FO2, has precisely
the same expressive power as temporal logic with the usual future and past unary temporal operators:
“next,” “previously,” “sometime in the future,” and “sometime in the past,” but without the binary
operators “until” and “since,” a logic we denote by unary-TL. In other words, FO2 coincides with the
lowest level of the combined until–since hierarchy (which is known to be infinite [EW96]).

By contrast to the quite difficult proofs available for the correspondence between full first-order logic
and temporal logic (cf., e.g., [Kam68, GPSS80, GHR94]), our proof that FO2 = unary-TL is an easily
understood inductive translation. In fact, our proof yields the following much stronger assertions: (1)
FO2 formulas can be translated to equivalent unary-TL formulas that are at most exponentially larger
and whose operator depth is at most twice the quantifier depth of the first-order formula, and (2) the
translation can be carried out in time polynomial in the size of the output formula.

We show that our translation is essentially optimal by exhibiting a sequence of FO2 formulas that
require exponentially larger unary-TL formulas. Thus, while with just three variables there is already a
nonelementary gap between the succinctness of first-order logic and full temporal logic, FO2 remains
more succinct than unary-TL but not nearly as much: an exponential blowup is exactly what is necessary
in the worst case.

The same result that shows that satisfiability for temporal logic is PSPACE-complete, [SC85], also
shows that satisfiability remains PSPACE-complete for unary-TL. We prove on the other hand that sat-
isfiability for FO2 is NEXP-complete. This again contrasts sharply with the nonelementary complexity
of satisfiability for FO3. Moreover, this is surprising given that FO2 is exponentially more succinct than
unary-TL and that satisfiability for unary-TL is PSPACE-complete, leading one to expect that FO2

satisfiability will be EXPSPACE-complete. Indeed, as a consequence of our NEXP bound it follows
that FO2 formulas that require “large” (exponentially bigger) unary-TL expressions necessarily have
models that are “very small” (subexponential) with respect to the size of their unary-TL expression.
Such very small models do not exist in general for unary-TL, as we can easily express with an nO(1)

size unary-TL formula a “counter” whose smallest model has size 2n .
An interesting and related aspect of our NEXP upper bound is that the time bound is only in terms of

the quantifier depth of the FO2 formula. This is because we prove our upper bound using an unusually
strong small model property for FO2, one which states that every satisfiable FO2 formula has a model
whose size is at most exponential in the quantifier depth of the given formula, rather than the size of the
entire formula, which is how small model properties are usually formulated in the literature. For large
but shallow formulas the gap between these quantities can make a significant difference.

It should be noted here that in a recent result Grädel et al. [GKV97] have shown that satisfia-
bility for two-variable first-order formulas over arbitrary relational structures is computable in
NEXP time. Their results also rely on a small model property. They prove that every satisfiable
two-variable formula over arbitrary structures has a finite model of size at most exponential in the
size of the formula, improving on a previous doubly exponential bound obtained by Mortimer
[Mor74]. Despite the similarity between the statement of their result and ours, the two are essentially
incompatible and neither result implies the other. The reasons for this are two-fold. First, our results
hold over words, i.e., over a unary vocabulary with built-in ordering. In particular, unlike arbitrary
structures, over words we do not have a genuine finite model property: with two variables one can
say that for every position in the word there is a greater position. Second, our small model property
(Theorem 5) shows that every satisfiable formula has a model whose size is bounded exponentially
by the quantifier depth of the formula, whereas the small model property of [GKV97] depends on
the size of the entire formula. Moreover, the proof techniques used in the two results are completely
different.

Our proof of the small model property for FO2 is facilitated by our translation. It is enough to prove
the same small model property for unary-TL (in terms of operator depth instead of quantifier depth)
because our translation from FO2 to unary-TL at most doubles the quantifier–operator depth. The
existence of small models for unary-TL is established by an analysis of unary-TL types; these types
behave quite differently than types for temporal logic in general.

FO2 AND UNARY TEMPORAL LOGIC 281

FO2 provides built-in binary predicates for a total order and a successor relation (besides free unary
predicates). As further evidence of the robust correspondence between first-order and temporal logic
we show that even when FO2 is further restricted by removing the successor predicate, the relationship
to temporal logic still persists: the resulting logic has exactly the same power as temporal logic with
temporal operators “sometime in the future” and “sometime in the past” only (a logic which is tradi-
tionally referred to as “tense logic”). Moreover, we determine the complexity of satisfiability for this
further restricted first-order logic, and the corresponding temporal logic, as well as their difference in
succinctness.

All our results hold both for finite words and ω-words with only minor technical changes. We will
mainly focus on the more interesting case of ω-words.

The paper is organized as follows. Section 2 introduces our notation and terminology. Section 3
presents the translation from FO2 to unary-TL and shows it is optimal. Section 4 establishes NEXP-
completeness of satisfiability for FO2. In Section 5, we establish the small model property. Section 6 is
concerned with FO2 without “successor” and unary-TL without “next” and “previously.” We conclude
in Section 7.

2. TERMINOLOGY AND NOTATION

We assume p0, p1, . . . is an infinite sequence of distinct symbols. For m > 0, we write σm for the
set {p0, . . . , pm−1} and �m for the power set of σm .

We interpret first-order and temporal formulas in ω-words over alphabets �m as defined above.
The first-order signature we use contains unary predicates P0, P1, P2, . . . and in addition the built-

in predicates “suc” for “successor” and “<” for “less than”. Each ω-word u over an alphabet �m

is identified with a first-order structure ({0, 1, 2, . . .}, <, suc, Pu
0 , Pu

1 , Pu
2 , . . . Pu

m−1) where < and suc
stand for the successor and order relation on the natural numbers and Pu

i = { j | pi ∈ u j }; here, as well
as in the future, ui stands for the letter at position i , and the first position has index 0.

We write 	 and ⊥ to denote true and false, respectively.
We fix two distinct variables, x and y, and define an FO2 formula to be a first-order formula in the

above signature in which only x and y occur as variables. An FO2[<] formula is an FO2 formula in
which suc is not used.

Without loss of generality, we assume the atomic FO2 formulas are x = y, suc(x, y), suc(y, x),
x < y, y < x , Pi x , and Pi y for i ≥ 0. The atomic formulas involving =, suc, and < will be referred to
as atomic order formulas. We say that an FO2 formula ϕ is a formula over ρm when the unary predicates
in ϕ are among P0, P1, . . . , Pm−1.

We use traditional logical notation, adapted to our situation. When we introduce an FO2 formula
using the notation ϕ(x), we mean that at most x occurs free in ϕ. Similarly, we use the notation ϕ(y) and
ϕ(x, y). When a formula has been introduced as ϕ(x) and we later on write ϕ(y); then this expression
stands for the formula which is obtained from ϕ by exchanging x and y. Symmetrically, when a formula
has been introduced as ϕ(y) and we later on write ϕ(x), we mean the formula which is obtained from
ϕ by exchanging x and y.

Given an FO2 formula ϕ with at most one free variable, an ω-word u over �m , and a position i , we
write u |= ϕ[i] if ϕ holds in the structure associated with u with respect to the variable assignment that
maps the free variable to i (if there is one). When we consider an FO2 formula ϕ with two free variables,
then x and y are these variables, and we write u |= ϕ[i, j] if ϕ holds in the structure associated with u
with respect to the variable assignment that maps x to i and y to j .

A unary-TL formula is built from p0, p1, p2, . . . , using the boolean connectives and the unary
temporal operators ❢(“next”), ❢(“previously”), (“eventually” or “sometime in the future”), and
(“sometime in the past”). A unary-TL[] formula is a unary-TL formula in which neither ❢nor ❢is
used. A unary-TL formula is said to be a formula over σm if the atomic propositions used are in σm .

The semantics of unary-TL is defined via a translation to FO2. For every unary-TL formula ϕ, we
define an FO2 formula ϕ̂(x) according to the following rules.

• When ϕ = pi for some i , then ϕ̂(x) = Pi x .

• When ϕ is of the form ¬ψ or ψ1 ∧ ψ2, then ϕ̂(x) = ¬ψ̂ or ϕ̂(x) = ψ̂1 ∧ ψ̂2, respectively.

282 ETESSAMI, VARDI, AND WILKE

• When ϕ is of the form ❢ψ or ❢ψ , then ϕ̂(x) = ∃y(suc(x, y)∧ ψ̂(y)) or ϕ̂(x) = ∃y(suc(y, x)∧
ψ̂(y)), respectively.

• When ϕ is of the form ψ or ψ , then ϕ̂(x) = ∃y(x < y∧ψ̂(y)) or ϕ̂(x) = ∃y(y < x ∧ψ̂(y)),
respectively.

For convenience in notation we write (u, i) |= ϕ for an FO2 formula ϕ to denote the fact that u |= ϕ̂[i].
We will say that FO2 formulas ϕ(x) and ψ(x) are equivalent if {i | u |= ϕ[i]} = {i | u |= ψ[i]} for

all α ∈ �ω
m , m > 0. A unary-TL formula ϕ is then said to be equivalent to an FO2 formula ψ(x) if

ϕ̂(x) is equivalent to ψ(x).
An FO2 formula ϕ(x, y) is said to be satisfiable if there is an ω-word u over �m for some m and

natural numbers i and j , such that u |= ϕ[i, j]. A unary-TL formula ϕ is then said to be satisfiable if
ϕ̂ is satisfiable.

When we prove lower bounds on the size of formulas or smallest models (see, for instance, Theorems 3
and 7), we will interpret formulas over finite words. This makes our constructions easier and the
statements somewhat stronger. The proofs carry over easily to the setting of ω-words.

The length of a formula ϕ is denoted by |ϕ|. The quantifier depth of an FO2 formula is denoted by
qdp(ϕ), while the operator depth of a unary-TL formula is denoted by odp(ϕ).

3. UNARY-TL = FO2

By definition, every unary-TL formula is equivalent to an FO2 formula (linear in both size and
operator–quantifier depth). That every FO2 formula ϕ(x) is equivalent to a unary-TL formula follows
from the following much stronger statement.

THEOREM 1. Every FO2 formula ϕ(x) can be converted to an equivalent unary-TL formula ϕ′

with |ϕ′| ∈ 2O(|ϕ|(qdp(ϕ)+1)) and odp(ϕ′) ≤ 2 qdp(ϕ). Moreover, the translation is computable in time
polynomial in |ϕ′|.

Before proving the theorem, we note here the contrast between this theorem and what follows from
the work in [Sto74]. Namely, there is a nonelementary lower bound in terms of blow-up in size for any
translation of first-order formulas with three variables into temporal formulas.

This is because Stockmeyer showed that there are star-free regular expressions γn , of size polynomial
in n, such that the smallest finite word satisfying γn has size tower(�(log n), n) where tower(k, l) is 22··l

with a stack of 2’s of height k.
Observe that given a star-free expression γ , one can easily write an FO3 sentence γ̂ which is equivalent

(over finite words) to γ and has size linear in γ . Inductively, one builds formulas γ ′(x, y) that hold
when x ≤ y and the substring between positions x and y belongs to the language defined by γ , and one
then sets

γ̂ = ∃x∃y∀z(¬suc(z, x) ∧ ¬suc(y, z) ∧ γ ′(x, y). (1)

The only interesting case is when the outermost operation in γ is concatenation, i.e., when γ is of the
form γ1 · γ2. In this case, one can set:

γ ′(x, y) = ∃z(γ̂ (x, z) ∧ ∃x(suc(z, x) ∧ γ̂ ′(x, y))). (2)

We can thus conclude, from the fact that every satisfiable temporal formula has a model whose size is
exponential in the size of the formula [SC85], that, by contrast to Theorem 1, any translation from FO3

to temporal logic must incur nonelementary blow-up in size.

Proof of Theorem 1. Given an FO2 formula ϕ(x) the translation procedure works as follows. When
ϕ(x) is atomic, i.e., of the form Pi x , it outputs pi . When ϕ(x) is of the form ψ1 ∨ ψ2 or ¬ψ—we say
that ϕ(x) is composite—it recursively computes ψ ′

1 and ψ ′
2, or ψ ′ and outputs ψ ′

1 ∨ψ ′
2 or ¬ψ ′. The two

cases that remain are when ϕ(x) is of the form ∃xϕ∗(x) or ∃yϕ∗(x, y). In both cases, we say that ϕ(x)

FO2 AND UNARY TEMPORAL LOGIC 283

is existential. In the first case, ϕ(x) is equivalent to ∃yϕ∗(y) and, viewing x as a dummy free variable
in ϕ∗(y), this reduces to the second case.

In the second case, we can rewrite ϕ∗(x, y) in the form

ϕ∗(x, y) = β(χ0(x, y),. ., χr−1(x, y), ξ0(x),. ., ξs−1(x), ζ0(y),. ., ζt−1(y)), (3)

where β is a propositional formula, each formula χi is an atomic order formula, each formula ξi is an
atomic or existential FO2 formula with qdp(ξi) < qdp(ϕ), and each formula ζi is an atomic or existential
FO2 formula with qdp(ζi) < qdp(ϕ).

In order to be able to recurse on subformulas of ϕ we have to separate the ξi ’s from the ζi ’s. We
first introduce a case distinction on which of the subformulas ξi hold or not. We obtain the following
equivalent formulation for ϕ:

∨
γ̄∈{	,⊥}s

(∧
i<s

(ξi ↔ γi) ∧ ∃y β(χ0, . . . , χr−1, γ0, . . . , γs−1, ζ0, . . . , ζt−1)

)
.

We proceed by a case distinction on which order relation holds between x and y. We consider five
mutually exclusive cases, determined by the following formulas, which we call order types: x = y,
suc(x, y), suc(y, x), x < y ∧ ¬suc(x, y), y < x ∧ ¬suc(y, x). When we assume that one of these
order types is true, each atomic order formula evaluates to either 	 or ⊥, in particular, each of the χi ’s
evaluates to either 	 or ⊥; we will denote this truth value by χτ

i . We can finally rewrite ϕ as follows,
where ϒ stands for the set of all order types:

∨
γ̄∈{	,⊥}s

(∧
i<s

(ξi ↔ γi) ∧
∨
τ∈ϒ

∃y
(
τ ∧ β

(
χτ

0 , . . . , χτ
r−1, γ̄ , ζ̄

)))
.

If τ is an order type, ψ(x) an FO2 formula, and ψ ′ an equivalent unary-TL formula, there is an obvious
way to obtain a unary-TL formula τ 〈ψ〉 equivalent to ∃y(τ ∧ ψ(y)), as displayed in the following
table.

τ x = y suc(x, y) suc(y, x) x < y ∧ ¬suc(x, y) y < x ∧ ¬suc(y, x)

τ 〈ψ ′〉 ψ ❢ψ ❢ψ ❢ ψ ❢ ψ

Our procedure will therefore recursively compute ξ ′
i for i < s and ζi (x)′ for i < t and output

∨
γ̄∈{	,⊥}s

(∧
i<s

(ξ ′
i ↔ γi) ∧

∨
τ∈ϒ

τ
〈
β
(
χτ

0 ,. ., χτ
r−1, γ̄ , ζ0(x)′, . . . , ζt−1(x)′

)〉)
. (4)

Now we verify that |ϕ′| and odp(ϕ′) are bounded as stated in the theorem. That odp(ϕ′) ≤ 2 qdp(ϕ) is
easily seen. The proof that |ϕ′| ≤ 2c|ϕ|(qdp(ϕ)+1) for some constant c is inductive on the quantifier depth
of ϕ. The base case is trivial, and the only interesting case in the inductive step is when ϕ is of the form
∃yϕ∗(x, y) as above. In this case, we have to estimate the length of (4). There are 2s ≤ 2|ϕ| possibilities
for γ̄ in (4), and each disjunct in (4) has length at most d |ϕ| maxi<s, j<t (|ξ ′

i |, |ζ ′
j |) for some constant d.

By induction hypothesis, the latter is bounded by d |ϕ| 2c|ϕ|qdp(ϕ), which implies the claim, provided c
is chosen large enough.

It is straightforward to verify that our translation to ϕ′ can be computed in time polynomial in
|ϕ′|.

Obviously, unary-TL[] can easily be translated into FO2[<]. A slight modification of the translation
from FO2 to unary-TL described in the above proof yields the reverse translation, i.e., unary-TL[] =
FO2[<]. In fact, the translation becomes simpler, because we only need to distinguish three order types
(x = y, x < y, and y < x). In particular, the operator depth of the translated formula is bounded by
the quantifier depth of the given formula.

284 ETESSAMI, VARDI, AND WILKE

We have:

THEOREM 2. Every FO2[<] formula ϕ(x) can be converted to an equivalent unary-TL[] formula
ϕ′ with |ϕ′| ∈ 2O(|ϕ| (qdp(ϕ)+1) and odp(ϕ′) ≤ qdp(ϕ).

An exponential blow-up, as incurred in the translation of Theorems 1 and 2, is necessary:

THEOREM 3.

1. There is a sequence (ϕn)n≥1 of FO2[<] sentences of size O(n) such that the shortest temporal
formulas equivalent to ϕn have size 2�(n).

2. There is a sequence (ϕ′
n)n≥1 of FO2 sentences in one propositional variable of size O(n2) such

that the shortest temporal formulas equivalent to ϕ′
n have size 2�(n).

Observe that as usual the successor predicate suc can compensate for a bounded vocabulary.

Proof. The formula ϕn is a formula that defines the following property: any two positions that agree
on p0, . . . , pn−1 also agree on pn . This is easily defined in FO2 within size linear in n:

ϕn = ∀x∀y

((∧
i<n

(Pi x ↔ Pi y)

)
→ (Pn x ↔ Pn y)

)
.

To prove that the shortest temporal formulas equivalent to ϕn have size 2�(n), we make use of the tight
connection between formulas and automata. Given a temporal formula ϕ and an alphabet �m , the set
{u ∈ �ω

m | u |= ϕ[0]} is an ω-language over �m . From [VW86], we know that every such language is
recognized by a nondeterministic generalized Büchi automaton4 with 2O(|ϕ|) states, so that it is enough to
show that every generalized Büchi automaton for Ln = {u ∈ �ω

n+1 | u |= ϕn} requires at least 22n
states.

Suppose A is a generalized Büchi automaton recognizing Ln . Let a0, . . . , a2n−1 be any sequence of
the 2n symbols of the alphabet �n . For every subset K of {0, . . . , 2n −1} let wK be the word b0 · · · b2n−1

with bi = ai if i ∈ K and else bi = ai ∪ {pn}. Notice that there are 22n
such words. Also, wω

K |= ϕn

and wK wω
K ′ �|= ϕn for K �= K ′. Therefore, if K �= K ′ and qK and qK ′ are the states assumed by A in

accepting runs for wω
K and wω

K ′ after 2n steps, then qK and qK ′ have to be distinct, i.e., A needs at least
22n

states.
For the proof of part 2, let n be an arbitrary natural number and consider the property that contains

an ω-word u when the following holds for all positions i and j : if ui = ui+1 = u j = u j+1 = ∅
and ui+2(k+1) = u j+2(k+1) for all k < n, then ui+2(n+1) = u j+2(n+1). By a similar argument as before,
one shows that every temporal formula expressing this property has size �(2n). On the other hand, the
property is easily expressed by an FO2 formula in one propositional variable. The successor predicate
is used to access the positions in the neighborhood of a given position; note that p0 ∈ ui+k iff u |= ψk[i]
where ψ0(x) = P0x and ψl+1 = ∃y(suc(x, y) ∧ ψ(y)).

4. SMALL MODEL PROPERTIES

In this section, we derive several small model properties that we will later use to upper bound the
complexity of the satisfiability problem for FO2, unary-TL, and unary-TL[]. For FO2, we will obtain
two orthogonal small model properties, one in terms of quantifier depth and one in terms of formula
length: for long but shallow formulas the former gives the better bound whereas for formulas with a
large quantifier depth compared to their lengths the latter gives the better bound.

4.1. Quantifier Depth

Theorem 1 tells us that every FO2 formula of depth k can be translated into an equivalent unary-TL
formula of depth 2k. Thus a small model property for unary-TL in terms of quantifier depth will
immediately give a corresponding small model property for FO2.

4 A generalized Büchi automaton uses a family of final state sets instead of a single final state set. A run of such an automaton
is accepting if every final state set is visited infinitely often.

FO2 AND UNARY TEMPORAL LOGIC 285

We prove:

THEOREM 4. Every satisfiable unary-TL formula ϕ in m propositional variables has a model of the
form uvω where the sizes of u and v are bounded by 2O((odp(ϕ)+1)2m).

And thus, by Theorem 1:

THEOREM 5. Every satisfiable FO2 formula ϕ(x) in m unary predicates has a model uvω where the
sizes of u and v are bounded by 2O((qdp(ϕ)+1)2m).

We first introduce some terminology and sketch a proof of Theorem 4 before going into details.
We fix m > 0 and consider only formulas over p0, . . . , pm−1 and ω-words over �m . Let k, k ′ ≥ 0.

We say that a unary-TL formula ϕ is of depth (at most) (k, k ′) if it is of depth (at most) k in and
and of depth (at most) k ′ in ❢and ❢. Given an ω-word w and a position i ≥ 0, the (k, k ′)-type of i in
w, denoted τw

k,k ′ (i), is the set of all unary-TL formulas of depth at most (k, k ′) that hold in w at i . This
means that w |= ϕ if and only if ϕ ∈ τw

k,k ′ (0) for every formula ϕ of operator depth at most (k, k ′). It
is thus enough to show that for every ω-word w there exist u and v of size bounded by 2O((k+k ′+1)2m)

such that τw
k,k ′ (0) = τw′

k,k ′ (0) for w′ = uvω. In order to establish this, we first show that for every ω-word
w one can find u and v such that w and uvω agree on the types of position 0 and such that u and v are
bounded polynomially in the number of types that occur in w. We then show that the number of types
occurring in a given ω-word is bounded by 2O((k+k ′+1)2m).

Given positions i and j , we write τw
k,k ′ (i, j) for the set of types that occur between i and j ; that is,

we set

τw
k,k ′ (i, j) = {

τw
k,k ′ (i ′)

∣∣ i ≤ i ′ ≤ j
}
. (5)

We also allow j = ∞ in (5); in this case, τw
k,k ′ (i, ∞) = {τw

k,k ′ (i ′) | i ≤ i ′}. Furthermore, we write
τw

k,k ′ (∞) for the set of types that occur infinitely often; that is, we set

τw
k,k ′ (∞) = {

τw
k,k ′ (l)

∣∣ ∃∞l ′
(
τw

k,k ′ (l) = τw
k,k ′ (l ′)

)}
. (6)

For fixed parameters k and k ′, there are only finitely many different types. Since the set of formulas
of depth (k, k ′) is closed under boolean combinations, we thus get:

Remark 1. Let k, k ′ ≥ 0, w ∈ �ω
m , and i ≥ 0.

Then there exists a unary-TL formula ϕ of depth (k, k ′) such that for all ω-words w′ ∈ �ω
m and all

j ≥ 0 we have:

τw
k,k ′ (i) = τw′

k,k ′ (j) iff (w′, j) |= ϕ. (7)

It is easy to see that ❢and ❢can always be moved in without increasing the operator-depth:

Remark 2. Every unary-TL formula of depth (k, k ′) is equivalent to a unary-TL formula of the
same depth where each occurrence of ❢or ❢is followed by another occurrence of ❢or ❢or by a
propositional variable pi .

The following lemma establishes that the (k+1, k ′)-type of a position i in a given word w is determined
uniquely by i’s local neighborhood, the (k, k ′)-types that occur to its right, and the (k, k ′)-types that
occur to its left.

LEMMA 1. Let w and w′ be ω-words over �m and i, i ′ ≥ 0.
Then

τw
0,k ′ (i) = τw′

0,k ′ (i ′) iff wi−k ′ · · · wi · · · wi+k ′ = w′
i ′−k ′ · · · w′

i ′ · · · w′
i ′+k ′ , (8)

286 ETESSAMI, VARDI, AND WILKE

where, by convention, w j = $ and w′
j = $ for j < 0 ($ being a special symbol), and

τw
k+1,k ′ (i) = τw′

k+1,k ′ (i ′) iff




τw
0,k ′ (i) = τw′

0,k ′ (i ′),

τw
k,k ′ (0, i − 1) = τw′

k,k ′ (0, i ′ − 1),

τw
k,k ′ (i + 1, ∞) = τw′

k,k ′ (i ′ + 1, ∞).

(9)

Proof. (8) is clear: A depth k ′ formula that uses no operator can describe completely the content
of the k ′-neighborhood of the current position and nothing more.

To prove (9) we proceed by induction on k. The base case, k = 0, is immediate. Assume true for k;
we prove the claim for k + 1.

(⇒) If τw
k+1,k ′ (i) = τw′

k+1,k ′ (i ′), then, in particular, (w, i) and (w′, i ′) agree on all depth (0, k ′) formulas,
and thus τw

0,k ′ (i) = τw′
0,k ′ (i ′).

To show τw
k,k ′ (i + 1, ∞) ⊆ τw′

k,k ′ (i ′ + 1, ∞), let τ ′ = τw
k,k ′ (j) for some j > i and assume ϕ is the

formula from Remark 1 that describes τ ′. Then ϕ is a depth (k + 1, k ′) formula that holds at i in w;
hence, by assumption, it holds at i ′ in w′. Therefore, there exists j ′ > i ′ at which ϕ holds in w′, which
means τ ′ ∈ τw′

k,k ′ (i ′ + 1, ∞). A symmetric proof shows that τw
k,k ′ (i + 1, ∞) ⊇ τw′

k,k ′ (i ′ + 1, ∞) and thus
τw

k,k ′ (i + 1, ∞) = τw′
k,k ′ (i ′ + 1, ∞). A similar proof shows that τw

k,k ′ (0, i − 1) = τw′
k,k ′ (0, i ′ − 1).

(⇐) Assume that the three equalities on the right hand side of (9) hold. We want to show that

(w, i) |= ϕ iff (w′, i ′) |= ϕ, (10)

for every formula ϕ of depth (k +1, k ′). Recall Remark 2. This states, in particular, that every unary-TL
formula of depth (k + 1, k ′) is equivalent to a boolean combination of formulas of depth (k + 1, k ′)
starting with or and formulas of depth (0, k ′). We can thus restrict our attention to such formulas.
Moreover, it is enough to consider formulas where the outermost connective is a temporal operator, as
(10) is preserved under boolean connectives.

First, assume the outermost connective of ϕ is ❢or ❢. Then ϕ is a depth (0, k ′) formula. Thus, since
by assumption τw

0,k ′ (i) = τw′
0,k ′ (i ′), ϕ ∈ τw

k+1,k ′ (i) iff ϕ ∈ τw′
k+1,k ′ (i ′).

Second, assume the outermost connective of ϕ is ; that is, ϕ = ϕ∗ for some ϕ∗. Now (w, i) |= ϕ iff
there exists a j > i such that ϕ∗ ∈ τw

k,k ′ (j). Hence, since by assumption τw
k,k ′ (i +1, ∞) = τw′

k,k ′ (i ′+1, ∞),
we have ϕ∗ ∈ τw

k+1,k ′ (j ′) for some j ′ > i ′, which implies ϕ ∈ τw′
k+1,k ′ (i ′). The case when ϕ = ϕ∗ is

symmetric.

Using Lemma 1, we can now establish the following lemma which shows how to collapse ω-words
in order to get smaller ω-words without changing the type structure of the ω-word in an essential way.
In the following lemma k ′ will be fixed, and we adopt the shorthand notation τw

k for τw
(k,k ′).

LEMMA 2. Let w ∈ �ω
m and assume i and j are positions such that i < j and τw

k (i) = τw
k (j).

1. Let w′ = w0w1 · · · wiw j+1w j+2 · · · .
Then

τw′
k (l) = τw

k (l) for l ≤ i,

τw′
k (l) = τw

k (l + (j − i)) for l > i .

2. Further assume that τw
k (i, j − 1) = τw

k (j, ∞), and let w′ = w0 · · · wi (wi+1 · · · w j)ω.
Then

τw′
k (l) = τw

k (l) for l ≤ i,

τw′
k (i + r (j − i) + s) = τw

k (i + s) for r ≥ 0, 0 ≤ s < j − i .

Proof. We prove part 1 by induction on k. Base case, k = 0. When we cut out a piece of a word, we do
not change any of the characters we did not cut out, and moreover the characters in the k ′-neighborhoods
of a point remain the same; thus we do not change (0, k ′)-types of any point.

FO2 AND UNARY TEMPORAL LOGIC 287

Assume true for k. Suppose τw
k+1(i) = τw

k+1(j). From (9) it follows that

τw
k (i + 1, j − 1) ⊆ τw

k (0, i − 1), (11)

τw
k (i + 1, j − 1) ⊆ τw

k (j + 1, ∞). (12)

Let π (l) be the mapping defined by:

π (l) =
{

l if l ≤ i ,
l + (j − i) otherwise.

By the inductive hypothesis we know that for all l, τw′
k (l) = τw

k (π (l)). But then τw′
k (l + 1, ∞) =

{τw
k (π (m)) | m > l} = τw

k (π (l) + 1, ∞), the last equality following from containment (12). Similarly,
using containment (11), we have τw′

k (0, l − 1) = {τw
k (π (m)) | m < l} = τw

k (0, π (l) − 1). But then by
(9) we have τw′

k+1(l) = τw
k+1(π (l)), which is what we wanted to prove.

The proof of part 2 is again by induction on k. Base case, k = 0. For l ≤ i , given that i and j have
the same k ′-neighborhood, the k ′-neighborhood of position l in w′ is the same as the k ′-neighborhood
of l in w. Also, for l = i + r (j − i) + s, by the same fact, l has the same k ′-neighborhood as i + s. The
base case then follows from (8).

Suppose true for k, we prove the claim for k + 1. First note that (k + 1, k ′)-types constitute a refinement
of (k, k ′)-types, meaning that two positions with the same (k + 1, k ′)-type have the same (k, k ′)-type.
Thus, by the inductive hypothesis, we know that τw′

k (l) = τw
k (l) for l ≤ i and τw′

k (i + r (j − i) + s) =
τw

k (i + s) for r ≥ 0 and 0 ≤ s < j − i .
It follows that for every l ≤ i , we have τw′

k (l +1, ∞) = τw
k (l +1, ∞) by the induction hypothesis and

the general assumption that τw
k (i, j −1) = τw

k (j, ∞), Thus, for l ≤ i , τw′
k (l +1, ∞) = τw

k (l +1, ∞). In
a similar way it follows that τw′

k (0, l − 1) = τw
k (0, l − 1). Thus, by (9), it follows that τw

k+1(l) = τw′
k+1(l).

A similar proof shows that τw′
k+1(i + r (j − i) + s) = τw

k+1(i + s), for r ≥ 0 and 0 ≤ s < j − i .

The next lemma states that in ultimately periodic words—words of the form uvω—types occur
“ultimately periodically.” For later use, we primarily phrase this lemma for FO2; the unary-TL version
then follows immediately.

LEMMA 3. Let ϕ(x) be an FO2 formula, u and v words with |v| > 2, w = uvω, and d = qdp(ϕ).

1. For r ≥ 0 and 0 ≤ s < |v|,

w |= ϕ[|u| + 2d|v| + s] iff w |= ϕ[|u| + (2d + r)|v| + s]. (13)

2. In particular, if, in addition, k + k ′ ≤ d, then for r ≥ 0 and 0 ≤ s < |v|,

τw
k,k ′ (|u| + 2d|v| + s) = τw

k,k ′ (|u| + (2d + r)|v| + s). (14)

3. In particular, if ϕ(x) = ∃yϕ∗(x, y) and uvω |= ϕ[i] with i < |uv2d+1|, then there exists
j ≤ |uv2d+3| such that uvω |= ϕ∗[i, j].

Proof. Part 3 follows from the proof of part 1. Part 2 is an immediate consequence of the definition
of the semantics of unary-TL. The proof for part 1 is by induction on the quantifier depth d.

Base case. When ϕ(x) is quantifier free, the only thing we can say about the only variable x is which
predicates hold at x , and clearly the predicates that hold at a position j = |u| + r |v| + s are exactly
those that hold at |u| + s (simply because we are at the same position in the word v).

Inductive case. Assume true for d; we prove the assertion for d + 1. Our formula ϕ(x) of depth d + 1
is a boolean combination of formulas ϕ′(x) of the form

∃yβ(χ1, . . . , χl , ψ1(x), . . . , ψm(x), γ1(y), . . . , γc(y)),

where β denotes a boolean combination of the given formulas and each χi (x, y) is an atomic order
relation (i.e., one of x < y, suc(y, x), etc.). We will argue that part 1 holds for formulas of the form

288 ETESSAMI, VARDI, AND WILKE

ϕ′ and it will follow that it holds for ϕ as well because the “iff” in part 1 is preserved under boolean
combination.

(⇐) Supposeϕ[j] holds for j =|u|+ (2(d +1) + r)|v| + s, where r ≥ 0 and 0≤ s < |v|. Then there is a
witness for y, namely a position k at whichβ(χ1[j, k], . . . , χl[j, k], ψ1[j], . . . , ψm[j], γ1[k], . . . , γc[k])
holds. We consider several cases based on the location of k in uvω. Let j ′

d+1 = |u| + 2(d + 1)|v| + s.
We want to show that ϕ[j ′

d+1] also holds.

1. j ≤ k: In this case we know by the inductive hypothesis that j ′
d+1 satisfies the same ψi ’s as

j and that j ′
d+1 + (k − j) satisfies the same γi ’s as k and thus is a witness for j ′

d+1 just as k is for j ,
because their juxtaposition is exactly the same.

2. |u| + (2d + 1)|v| ≤ k < j : In this case, since |v| > 2 it can be seen that since k is a witness
for j , then so is j − ((j − k)mod|v|), because this point satisfies the same γi ’s as k. Thus, we also find
our withness for j ′

d+1 as j ′
d+1 − ((j − k)mod|v|). We can do this because there is an extra copy of v

preceeding the point k which, by the inductive hypothesis, satisfies the same γi ’s at each position as the
copies of v that succeed it, including the copies preceeding the point j .

3. k < |u| + (2d + 1)|v|: In this case, we can fix k as a witness for both j and j ′
d+1 because,

given that |v| > 2, the order type of (k, j ′
d+1) and (k, j) is the same.

(⇒) Suppose that ϕ[j] holds for j where |uv2d+2| ≤ j < |uv2d+3|. Then the claim is that ϕ[j ′] holds
for j ′ = j + r |v| and for all r . This is again split into cases based on the location of the witness k.

1. j ≤ k: But then j + r |v| has a witness at k + r |v|.
2. |u| + (2d + 1)|v| ≤ k < j : In this case again j + r |v| has k + r |v| as a witness.

3. k < |u| + (2d + 1)|v|: Now again as in the third case above k is a witness for both j and
j + r |v| because, given that |v| > 2, the order types of (k, j) and (k, j + r |v|) are the same.

From the previous lemmas, we conclude:

LEMMA 4. Let w be an ω-word over �m and t the number of (k, k ′)-types occurring in w.
Then there exists w′ of the form uvω such that the length of u and v is less than (t + 1)2 and such

that τw
k,k ′ (0) = τw′

k,k ′ (0).

Proof. Part 2 of Lemma 2 immediately implies there are u and v such that w and uvω have the same
type in positions 0. By Lemma 3, we can also assume that u and v are chosen such that τw

k,k ′ (|u| + s) =
τw

k,k ′ (|u| + r |v| + s) for r ≥ 0 and 0 ≤ s < |v|. Assume |v| ≥ (t + 1)2. For every (k, k ′)-type τ of a
position s with |u| ≤ s < |uv| pick a position iτ such that |u| ≤ iτ < |uv| and τw

k,k ′ (iτ) = τ . Since
|v| ≥ (t + 1)2, we can find two positions l and l ′ carrying the same type such that |u| ≤ l < l ′ < |uv|
and either iτ < l or l ′ < iτ for each of the iτ ’s. The previous lemma thus applies, so that, by part 2 of
Lemma 2, we can replace u by uv0v1 · · · vl ′−|u|−1 and v by vl ′−|u|vl ′−|u|+1 · · · vl−|u|. Iterating this process
leads to u and v such that uvω and w have the same type in position 0 and |v| < (t + 1)2. By a similar
argument, using part 1 of Lemma 2 instead of part 2, we can reduce the length of u to a value less than
t + 1 (which is less than (t + 1)2) while keeping the length of v.

We now upper bound the number of types that can occur in a given ω-word:

LEMMA 5. The number of (k, k ′)-types occurring in any ω-word over �m is at most 23k((2k ′+1)(m+1)+1);
i.e.,

|τw
k,k ′ (0, ∞)| ≤ 23k((2k ′+1)(m+1)+1)

for every w ∈ �ω
m.

Proof. The proof is by induction on k. Let w be any ω-word over �m . Let t(k,k ′) be the number
of (k, k ′)-types occurring in w. For the base case, from (8), it is easy to see that t(0,k ′) ≤ 2(2k ′+1)(m+1).
Now observe that the sequence (τw

k,k ′ (0, i − 1))i≥0 is an increasing sequence containing at most t(k,k ′)
distinct elements. Similarly, the sequence (τw

k,k ′ (i + 1, ∞))i≥0 is a decreasing sequence containing at
most t(k,k ′) + 1 distinct elements. Therefore, there are only 2t(k,k ′) + 1 many distinct pairs of the form

FO2 AND UNARY TEMPORAL LOGIC 289

(τw
k,k ′ (0, i − 1), τw

k,k ′ (i + 1, ∞)), and thus, using (9), t(k+1,k ′) ≤ (2t(k,k ′) + 1)2(2k ′+1)(m+1), where, again,
2(2k ′+1)(m+1) accounts for the number of distinct (0, k ′)-types. The lemma follows by induction.

Theorem 4 now follows from Lemma 4 together with Lemma 5.

We conclude this section with two additional theorems. The first one says that Theorem 4 does not
hold when unary-TL is replaced by temporal logic; the second one shows that there are unary-TL
formulas whose smallest models are exponentially big. These show the limits of how much one could
hope to improve Theorem 4.

THEOREM 6. There is a sequence (ϕn)n≥0 of satisfiable temporal formulas of operator depth O(n)
such that the smallest finite model of ϕn is of size tower(�(n), 2).

Proof. The rough idea is as follows. Assume we could produce for a given k a family of t formulas of
operator depth n all of which have different unique models of size exactly l. Say these models are u0, . . . ,
ut−1. For every permutation π of {0, . . . , t −1}, we want to construct a depth k+1 formula whose unique
model is uπ (0)$uπ (1)$ · · · uπ (t−1) where $ is a symbol that serves as a separator. The models of the new
formulas would only be bigger by a linear factor: their length would be t(l + 1) − 1. But we would have
exponentially more (formulas and) models: approximately 2t log t l many. We would do the same construc-
tion again and would get models of size approximately 2t log t lt(l+1), which is exponential in l, provided l
was dominated by t . Iterating this two-stage process would give us the desired nonelementary explosion.

In the following, we will make this idea more formal.
For every n ≥ 0, we will construct a sequence of formulas ϕ0

n , . . . , ϕtn−1
n with certain properties, as

explained below. To phrase these properties correctly, we need some more notation.
For r, s ≥ 0, we set αs

r = pr+1 ∨ · · · ∨ pr+s−1. Given formulas ϕ and ψ , we write ϕ[ψ/p0] for the
result of replacing every occurrence of p0 in ϕ by ψ .

We can now state the properties of the ϕi
n’s for a fixed n; the symbols c and d stand for appropriate

integer constants.

1. The operator depth of each ϕi
n is at most 5n + c.

2. There is a number ln and distinct finite words ui
n ∈ �+

n+d of length ln − 2 such that

(v, j) |= ϕi
n

[
αs

n+d/p0
]

iff




v j = {pn+d},
v j+1 · · · v j+ln−1 = ui

n,

v j+ln = {pn+d},

for every s ≥ 0 and every finite word v ∈ �+
n+d+s and j < |v|.

3. The numbers ln and tn satisfy:

t0 > l0 ≥ 3,

tn+1 ≥ 2tn for n ≥ 0,

ln+1 = tn(ln − 1) + 3 for n ≥ 0.

Condition 3 implies tn ≥ ln ≥ 3 for n ≥ 0, and thus

ln+2 = tn+1(ln+1 − 1) + 3 ≥ 2tn (ln+1 − 1) + 3 ≥ 2ln

for n ≥ 0. Hence, we can set ϕn = ϕ0
2n .

The construction of the ϕi
n is by induction on n, the base case being an easy exercise. Assume

ϕ0
n , . . . , ϕ

tn−1
n are given. Let Stn denote the symmetric group on {0, . . . , tn − 1}. For every π ∈ Stn , we

will construct a formula ϕi
n+1 so that

ui
n+1 = {pn+d+1}{pn+d}uπ (0)

n {pn+d} · · · {pn+d}uπ (tn−1)
n {pn+d}.

290 ETESSAMI, VARDI, AND WILKE

We set

ϕi
n+1 = pn+d+1 ∧

∧
i≤n+d

¬pi ∧ ❢ψπ,

where ψπ is the conjunction of:

(¬p0 ∧ ¬pn+d+1) U
(

pn+d+1 ∧
∧

i≤n+d

¬pi

))
, (15)

∧
i<tn

¬pn+d+1 U ϕi
n[pn+d+1/p0], (16)

∧
i<tn

¬(¬pn+d+1 U
(
ϕi

n[pn+d+1/p0] ∧ ¬pn+d+1 U ϕi
n[pn+d+1/p0]

))
, (17)

∧
i< j<tn

¬pn+d+1 U (ϕπ (i)[pn+d+1/p0] ∧ ¬pn+d+1 U ϕπ (j)[pn+d+1/p0]), (18)

(
¬pn+d+1 ∧

(
pn+d →

∨
i<tn

ϕi
n[pn+d+1/p0]

))
U pn+d+1. (19)

Formulas (15)–(19) formalize in a straightforward way what is needed. For instance, (16) says that
every substring ui

n has to occur (at least) once, (17) says that every substring ui
n should occur at most

once, and (18) requires the ui
n’s to occur in the right order.

THEOREM 7. There is a sequence (ϕn)n>0 of satisfiable unary-TL sentences in one propositional
variable, of size polynomial in n and of depth (1,O(n)), such that the smallest finite model of ϕn has
size at least 2n.

Proof. The idea is very simple: ϕn is constructed in such a way that every model of ϕn has

{p0}{p0}[0]{p0}{p0}[1]{p0}{p0} · · · {p0}{p0}[2n − 1]{p0}{p0}

as its prefix where the substring {p0}{p0} serves as separator and [0], [1], [2], . . . stand for encodings
of the binary representations of 0, 1, 2, . . . Here, we say that a string s2n−1 · · · s0 over {∅, {p0}} is the
binary encoding of a number i < 2n when s2 j+1 = ∅ for j < n and when s2 j = {p0} iff the j th bit of
the binary representation of i is 1.

Using polynomial size propositional formulas which define addition by one (“+1”), the construction
of polysize formulas ϕn with above property becomes easy.

In fact, an appropriate formula ϕn can be constructed in such a way that in addition its depth in ❢

is at most 2n + 5 (the number of positions required to represent two numbers <2n together with three
copies of the marker {p0}{p0}) and depth 1 in : we need to say that for all positions in which one finds
the marker, if the following number is <2n − 2, then the number following this position is what one
obtains by adding 1.

4.2. Formula Length

We proceed by proving a different small model property for FO2, which is phrased in terms of
formula size.

THEOREM 8. Every satisfiable FO2 formula ϕ has a model of the form uvω where the sizes of u and
v are bounded by 2O(|ϕ|).

This small model property is obtained using the appropriate notion of “type” and cut-and-paste
arguments corresponding to the ones we have seen in Lemmas 2 and 4. We start with the definition of
the right notion of type.

FO2 AND UNARY TEMPORAL LOGIC 291

Given an FO2 formula ϕ, we define the set of formulas characteristic for ϕ, denoted cf(ϕ), as
follows. When ϕ is an atomic order formula, then cf(ϕ) = ∅. When ϕ is of the form Pi x or Pi y, then
cf(ϕ) = {ϕ}. When ϕ is of the form ¬ψ or ψ1 ∨ψ2, then cf(ϕ) = cf(ψ) or cf(ϕ) = cf(ψ1) ∪ cf(ψ2),
respectively. Finally, when ϕ is of the form ∃xϕ∗(x, y) or ∃yϕ∗(x, y) with ϕ∗(x, y) as in (3), then

cf(ϕ) = {ϕ} ∪
⋃
i<s

cf(ξi) ∪
⋃
i<t

cf(ζi) ∪ {∃x(τ ∧ ξi) | i < s and τ ∈ ϒ}

or

cf(ϕ) = {ϕ} ∪
⋃
i<s

cf(ξi) ∪
⋃
i<t

cf(ζi) ∪ {∃y(τ ∧ ζi) | i < t and τ ∈ ϒ},

respectively.
For an FO2 formula ϕ, an ω-word u, and a position i in u, we set τ u

ϕ (i) = {ψ ∈ cf(ϕ) | u |= ψ[i]},
and we call the τ u

ϕ (i)’s ϕ-types.
We prove the same cut-and-paste as the one we know from the previous section:

LEMMA 6. Let ϕ be an FO2-formula. Then Lemma 2 holds when k is replaced by ϕ.

Proof. The proof of both parts goes by induction on |ϕ|. We sketch a proof of the first part. The
only interesting case is when ϕ is an existential formula. In this case, ϕ is of the form ∃xϕ∗(x, y) or
∃yϕ∗(x, y). Without loss of generality, suppose ϕ is of the first form, and further suppose ϕ∗(x, y) is as
in (3). We can directly apply the induction hypothesis to all elements of cf(ξl) for l < s and cf(ζq) for
q < t . And to prove the claim it is thus sufficient to show:

w |= ∃y(τ ∧ ζq)[l] iff w′ |= ∃y(τ ∧ ζq)[l] (20)

for l ≤ i , q < t , τ ∈ ϒ , and

w |= ∃y(τ ∧ ζq)[l] iff w′ |= ∃y(τ ∧ ζq)[l − (j − i)] (21)

for j ≤ l, q < t , τ ∈ ϒ .
One proves this by a case distinction on the order between i , j , and l on the one hand and the

order type τ on the other hand. We only deal with the most complicated case where l < i and τ =
¬suc(x, y) ∧ x < y and only show the more difficult implication from left to right.

Assume w |= ∃y(τ ∧ζq)[l]. Then there exists a position l ′ > l+1 such that u |= ζq [l ′]. We distinguish
three cases.

First, l ′ ≤ i . Then ζq ∈ τw
ϕ (l ′), and by induction hypothesis, ζq ∈ τw′

ϕ (l ′), which means w′ |= ζq [l ′],
and hence w′ |= ∃y(τ ∧ ζq).

Second, i < l ′ ≤ j . Then ∃y(suc(x, y) ∧ ζq) or ∃y(¬suc(x, y) ∧ x < y ∧ ζq) is a member of τw
ϕ (i).

Hence, by assumption, one of these formulas is a member of τw
ϕ (j). Consequently, there is a position

l ′′ > j such that w |= ζq [l ′′]. We then have w′ |= ζq [l ′′ − (j − i)] by induction hypothesis, which shows
w′ |= ∃y(τ ∧ ζq)[l].

Third, j < l ′. This is even easier than the previous case.

We can now prove the desired small model property.

Proof of Theorem 8. First, observe that Lemma 4 holds for ϕ-types instead of (k, k ′)-types. Second,
observe that the total number of ϕ-types is bounded by 26|ϕ| (as there are 5 order types). So we obtain a
model of ϕ of the form uvω where the size of u and v is bounded by (26|ϕ| + 1)2, which is in 2O(|ϕ|).

4.3. Unary-TL without “Next” and “Previously”

For unary-TL[] formulas we can prove a really small model property:

292 ETESSAMI, VARDI, AND WILKE

THEOREM 9. Every satisfiable unary-TL[] formula ϕ has a model of the form uvω where the sizes
of u and v are bounded by |ϕ|.

Again, we will use a cut-and-paste argument.
First, observe that unary-TL[] formulas starting with a temporal operator have very simple truth

tables with respect to a given ω-word:

Remark 3. Let ϕ be a unary-TL[] formula and u ∈ �ω
m .

1. There exists a unique i ∈ {0, 1, 2, . . . , ω} such that u, j |= ϕ if and only if j < i .

2. This position i is the last position in u where ϕ holds (where, by convention, we say that ϕ

holds at ω if it holds infinitely often).

The symmetric claim holds for ϕ.
We call the distinctive position i from the previous remark the extremal appearance of ϕ in u,

and denote it by EA(ϕ, u). Formulas of the form ϕ are dealt with in the same way. Also, given a
unary-TL[] formula ϕ we write tf(ϕ) for the set of subformulas of ϕ starting with a temporal operator.

The next lemma is going to tell us that positions that are no extremal appearance of a subformula of
a given formula ϕ do not influence whether or not u is a model of ϕ.

LEMMA 7. Let ϕ be a unary-TL[] formula, u ∈ �ω
m, and i > 0 a position that is not any extremal

appearance of a formula from tf(ϕ).
Then u |= ϕ if and only if u0 · · · ui−1ui+1 · · · |= ϕ.

Proof. Write v for u0 · · · ui−1ui+1 · · · . The proof goes by induction on the structure of ϕ. The claim
we will show is somewhat stronger: for every j , if j < i , then u, j |= ϕ iff v, j |= ϕ, and, if j > i ,
then u, j |= ϕ iff v, j − 1 |= ϕ.

The induction base is trivial as well as the inductive step for negation and conjunction. So we are left
with formulas that start with a temporal operator. We consider only those formulas that start with . Let
ϕ be of the form ψ . We proceed by case distinction on how often ψ is true in u. If ψ is true infinitely
often in u, it is, by induction hypothesis, true infinitely often in v, and thus u, j |= ϕ and v, j |= ϕ for
j ≥ 0. If ψ is nowhere true in u or only at position 0, then, by induction hypothesis, ψ is nowhere true
in v or only at position 0; hence u, j �|= ϕ and v, j �|= ϕ for j ≥ 0. Otherwise, 0 < EA(ϕ, u) < ω, and
EA(ϕ, u) is the maximal position in u where ψ holds. By assumption, EA(ϕ, u) < i or EA(ϕ, u) > i .
By induction hypothesis, EA(ϕ, v) = EA(ϕ, u) or EA(ϕ, v) = EA(ϕ, u) − 1. This implies u, j |= ϕ

and v, j |= ϕ for all j < i , and u, j �|= ϕ and v, j − 1 �|= ϕ for all j > i .

The next lemma is of a similar style.

LEMMA 8. Let ϕ be a unary-TL[] formula, uvω ∈ �ω
m, and � the set of all formulas ψ such that

from ψ ∈ tf(ϕ) and EA(ψ, uvω) = ω. Make the following assumptions.

1. For every ψ ∈ tf(ϕ), if EA(ψ, uvω) is finite, then EA(ψ, uvω) < |u|.
2. For every ψ ∈ �, iψ is a position such that |u| ≤ iψ < |uv| and (uvω, iψ + k|v|) |= ψ for

k ≥ 0.

Let w be some subword (that is, subsequence of characters) of v that contains the positions iψ − |u|
for ψ ∈ �.

Then uwω is a model of ϕ.

Proof. Write w′ for uwω. Let i0 < i1 < · · · < ir−1 be the positions of v that constitute w. We prove
inductively that

(w′, j) |= ϕ iff (uvω, j) |= ϕ for j < |u|,
(w′, |u| + k|w| + s) |= ϕ iff (uvω, |u| + k|v| + is) |= ϕ for k ≥ 0, s < r .

The induction base is trivial, similarly negation and conjunction. So we are left with when ϕ starts
with a temporal operator. We consider only the case where ϕ starts with , i.e., when ϕ is of the form

ψ . Just as in the previous proof, we proceed by a case distinction on how often ψ is true in uvω. If

FO2 AND UNARY TEMPORAL LOGIC 293

ψ is true infinitely often in uvω, then (uvω, j) |= ϕ for j ≥ 0 and EA(ϕ, uvω) = ω, hence ϕ ∈ �, say
it = iψ . By induction hypothesis, (w′, |u| + k|w| + t) |= ψ for k ≥ 0, i.e., (w′, j) |= ϕ for j ≥ 0. If ψ

is true nowhere in uvω or only at position 0, then, by induction hypothesis, ψ is true nowhere in uvω

or only at position 0; hence (uvω, j) �|= ϕ and (w′, j) �|= ϕ for j ≥ 0. Otherwise, there is a maximal
position j > 0 in uvω where ψ is true and EA(uvω, ϕ) = j . By assumption, j ≤ |u|, so by induction
hypothesis, j is the maximal point in w′ where ψ is true. Therefore, the claim holds.

We can now prove:

Proof of Theorem 9. If ϕ is satisfiable, it has an ultimately periodic model uvω, and, in addition, u
and v can be chosen such that the assumptions from Lemma 8 hold. An application of Lemma 8 then
shows that there is w with |w| ≤ |ϕ| such that uwω |= ϕ. Repeatedly applying Lemma 7, we can now
remove letters from u to obtain a word u′ of length at most |ϕ| such that still u′wω |= ϕ.

5. THE COMPLEXITY OF SATISFIABILITY

We will show that the satisfiability problem for FO2 and FO2[<] is NEXP-complete. This contrasts
with the nonelementary lower bound for satisfiability of first-order logic with three variables over words
which follows from [Sto74]. Satisfiability for unary-TL remains, as with full TL, PSPACE-complete
[SC85]. On the other hand, satisfiability of unary-TL[] will be shown to be NP-complete.

5.1. First-Order Logic with Two Variables

We will prove the following two upper bounds for the complexity of FO2 satisfiability.

THEOREM 10. Satisfiability for FO2 (and FO2[<]) is in NEXP.
In fact, satisfiability for an FO2 formula ϕ in m unary predicates is decidable in nondeterministic

time 2O((qdp(ϕ)2+1)m) and 2O(|ϕ|).

Proof. The nondeterministic algorithm determines the satisfiability of an FO2 formula ϕ(x) over
ρm as follows. It first guesses u and v of length bounded by 2O(qdp(ϕ)2m) or 2O(|ϕ|), respectively. It then
builds up a table that contains for every i < |uv2d+1| and for every subformula ψ(z) of ϕ(x) a bit
saying whether uvω |= ψ[i]. This is done inductively. The entry for an atomic or composite (see proof
of Theorem 1) ψ is easily determined. From Lemma 3, part 3, it follows that in order to determine
whether or not an existential formula (see proof of Theorem 1) of the form ∃y β(χ̄ (x, y), ξ̄ (x), ζ̄ (y))
holds at a position i <|uv2d+1| it suffices to consider only positions <|uv2d+3| for y. Whether or not a
formula ζ (y) holds at such a position can be determined by a lookup in the table according to (13). The
algorithm outputs the entry for position 0 and ϕ(x).

Now to conclude that FO2 and FO2[<] satisfiability are NEXP-complete, we observe that they are
NEXP-hard, which can essentially be pulled out of [Le80, Fü84].

THEOREM 11. Satisfiability for FO2[<] (and FO2) is NEXP-hard.
In fact,

1. satisfiability for FO2[] formulas (that is, FO2 formulas that use neither suc nor <) is NEXP-
hard, and

2. satisfiability for FO2[suc] formulas (that is, FO2 formulas that do not use <) in one unary
predicate is NEXP-hard.

Proof. We first sketch the proof for part 1. We give a reduction from the problem of determining
whether for a given tiling system T ⊆ {0, 1, . . . , c − 1}4 with c colors and a given initial row x ∈ T +

of length n there exists a tiling of a 2n × 2n square consistent with T and with x occurring in the lower
left corner. (Recall that an element 〈c1, c2, c3, c4〉 ∈ T is considered a square tile with left edge colored
by c1, right edge colored by c2, etc. A tiling is consistent if adjacent edges carry the same color.) This
problem is known to be NEXP-complete; see, e.g., [Fü84]. We can, with a short FO2 formula, name
the adjacent positions in a tiling (and check their consistency) by exploiting the fact that addition has

294 ETESSAMI, VARDI, AND WILKE

poly-sized propositional formulae. The predicates are used to specify the address coordinates, as well
as tile content, of positions in the tiling.

To prove part 2, one compensates the lack of an unbounded vocabulary by using the successor relation
as usual.

5.2. Unary-TL without “Next” and “Previously”

That satisfiability for FO2[<] is no less difficult than satisfiability for FO2 (both are NEXP-complete)
contrasts with what happens to satisfiability when passing from unary-TL to unary-TL[]. In [SC85],
it was shown that satisfiability for the temporal logic where the only temporal operator is “at present or
sometime in the future” is in NP. We show that satisfiability for unary-TL[] (which now includes the
past operator) remains in NP, and thus is NP-complete.

THEOREM 12. The satisfiability problem for unary-TL[] is NP-complete.

Proof. From [SC85] we know that the problem is NP-hard. An appropriate NP decision procedure
guesses a “polysize” model uvω of ϕ, which we know exists by Theorem 9, and checks in polynomial
time that it is indeed a model.

6. CONCLUSION

We have shown that the close correspondence between first-order and temporal logic over words
persists when looking at first-order formulas with only two variables, and we have presented an easily
understood translation of these formulas into temporal formulas. Our translation is essentially optimal:
the formulas incur at most an exponential blow-up in size and we have proved that this is necessary in
the worst case.

The satisfiability problem for unary-TL is known to remain, as with full TL, PSPACE-complete, but
we have shown that FO2 satisfiability is drastically simpler than FO3 satisfiability: the former is NEXP-
complete, while the latter is known to require nonelementary complexity. Moreover, our NEXP upper
bound for FO2 satisfiability, and the corresponding small model properties for FO2 and unary-TL,
have the advantage of being only in terms of quantifier–operator depth and the number of propositions
in the vocabulary, rather than the size of the entire formula, a fact that may be of potential use when
dealing with large but shallow formulas.

Only recently [TW96] has it been shown that given a finite automaton or ω-automaton it is decidable
whether or not the language recognized by this automaton is definable in unary-TL or unary-TL[].
This means, in particular, that it is decidable whether or not a given TL formula is equivalent to a
unary-TL or unary-TL[] formula. By our translation, this also means that it is decidable whether or
not a given FO formula is equivalent to an FO2 or FO2[<] formula.

There are some remaining questions: (1) Is the FO2 quantifier alternation hierarchy strict? This
question can also be phrased in terms of operator alternation in unary-TL. (2) Does satisfiability remain
NEXP-hard for FO2[<] formulas (without successor) over a bounded number of predicates? (3) Can
the upper bound of the small model property for FO2 be improved to 2O(qdp(ϕ)+m)? This would make
(the proof of) Theorem 8 obsolete.

REFERENCES

[EW96] Etessami, K., and Wilke, Th. (1996), An until hierarchy for temporal logic, in “11th Annual IEEE Symposium on
Logic in Computer Science, New Brunswick, New Jersey,” pp. 108–117.

[Fü84] Fürer, M. (1984), The computational complexity of the unconstrained domino problem (with implications for logical
decision problems), in “Logic and Machines: Decision Problems and Complexity,” Lecture Notes in Computer
Science, Vol. 171, pp. 312–319, Springer-Verlag, Berlin.

[GHR94] Gabbay, D. M., Hodkinson, I., and Reynolds, M. (1994), “Temporal Logic,” Vol. 1, Clarendon Press, Oxford.

[GPSS80] Gabbay, D. M., Pnueli, A., Shelah, S., and Stavi, J. (1980), On the temporal analysis of fairness, in “Conference
Record of the 7th Annual ACM Symposium on Principles of Programming Languages, Las Vegas, NV,” pp. 163–173.

[GKV97] Grädel, E., Kolaitis, Ph. G., and Vardi, M. Y. (1997), On the decision problem for two-variable first-order logic,
Bull. Assoc. Symbolic Logic 3, 53–69.

FO2 AND UNARY TEMPORAL LOGIC 295

[IK89] Immerman, N., and Kozen, D. (1989), Definability with bounded number of bound variables, Inform. and Comput.
83, 121–139.

[Kam68] Kamp, J. A. W. (1968), “Tense Logic and the Theory of Linear Order,” Ph.D. thesis, University of California,
Los Angeles.

[Le80] Lewis, H. R. (1980), Complexity results for classes of quantificational formulas, J. Comput. System Sci. 21, 317–353.

[MP92] Manna, Z., and Pnueli, A. (1992), “The Temporal Logic of Reactive and Concurrent Systems,” Springer-Verlag,
Berlin/New York.

[Mor74] Mortimer, M. (1975), On languages with two variables, Z. Math. Logik Grundlag. Math. 21, 135–140.

[Pnu77] Pnueli, A. (1977), The temporal logic of programs, in “Proceedings of the 18th Annual Symposium on Foundations
of Computer Science, Providence, RI,” pp. 46–57.

[SC85] Sistla, A. P., and Clarke, E. M. The complexity of propositional linear temporal logics, J. Assoc. Comput. Mach. 32,
733–749.

[Sto74] Stockmeyer, L. J. (1974), “The Complexity of Decision Problems in Automata Theory and Logic,” Ph.D. thesis,
Department of Electrical Engineering, MIT.

[TW96] Thérien, D., and Wilke, Th. (1998), Over words, two variables are as powerful as one quantifier alternation:
FO2 = �2 ∩ �2, in “Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing (STOC),
Dallas, Texas,” pp. 41–47.

[VW86] Vardi, M. Y., and Wolper, P. (1986), An automata-theoretic approach to automatic program verification, in “Proceed-
ings of the First Annual IEEE Symposium on Logic in Computer Science, Cambridge, MA,” pp. 322–331.

	1. INTRODUCTION
	2. TERMINOLOGY AND NOTATION
	3. UNARY-TL = FO2
	4. SMALL MODEL PROPERTIES
	5. THE COMPLEXITY OF SATISFIABILITY
	6. CONCLUSION
	REFERENCES

