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Abstract. We consider the dynamic complexity of some central graph
problems such as Reachability and Matching and linear algebraic prob-
lems such as Rank and Inverse. As elementary change operations we
allow insertion and deletion of edges of a graph and the modification of
a single entry in a matrix, and we are interested in the complexity of
maintaining a property or query. Our main results are as follows:
1. Rank of a matrix is in DynFO(+,×);
2. Reachability is in DynFO;
3. Maximum Matching (decision) is in non-uniform DynFO.

Here, DynFO allows updates of the auxiliary data structure defined in
first-order logic, DynFO(+,×) additionally has arithmetics at initializa-
tion time and non-uniform DynFO allows arbitrary auxiliary data at ini-
tialization time. Alternatively, DynFO(+,×) and non-uniform DynFO al-
low updates by uniform and non-uniform families of poly-size, bounded-
depth circuits, respectively.
The second result confirms a two decade old conjecture of Patnaik and
Immerman [27]. The proofs rely mainly on elementary Linear Algebra.
The second result can also be concluded from [13].

1 Introduction

Dynamic Complexity Theory studies dynamic problems from the point of view of
Descriptive Complexity (see [21]). It has its roots in theoretical investigations of
the view update problem for relational databases. In a nutshell, it investigates the
logical complexity of updating the result of a query under deletion or insertion
of tuples into a database.

As an example, the Reachability query asks, whether in a directed graph
there is a path from a distinguished node s to a node t. The correct result of this
query (i.e., whether such a path exists in the current graph) can be maintained
for acyclic graphs with the help of an auxiliary binary relation that is updated by
a first-order formula after each insertion or deletion of an edge. In fact, one can
simply maintain the transitive closure of the edge relation. In terms of Dynamic
Complexity, we get that Acyclic Reachability is in DynFO. In this setting, a
sequence of change operations is applied to a graph with a fixed set of nodes
whose edge set is initially empty [27].

http://arxiv.org/abs/1502.07467v2


Studying first-order logic as an update language in a dynamic setting is
interesting for (at least) two reasons. In the context of relational databases, first-
order logic is a natural update language as such updates can also be expressed
in SQL. On the other hand, first-order logic also corresponds to circuit-based
low level complexity classes; and therefore queries maintainable by first-order
updates can be evaluated in a highly parallel fashion in dynamic contexts.

We also consider two extensions,DynFO(+,×) and non-uniformDynFO, whose
programs can assume at initialization time multiplication and addition relations
on the underlying universe of the graph, and arbitrarily pre-computed auxiliary
relations, respectively. These two classes contain those problems that can be
maintained by uniform and non-uniform families of poly-size, bounded-depth
circuits, respectively.

The Reachability query is of particular interest here, as it is one of the sim-
plest queries that can not be expressed (statically) in first-order logic, but rather
requires recursion. Actually, it is in a sense prototypical due to its correspondence
to transitive closure logic. The question whether the Reachability query can be
maintained by first-order update formulas has been considered as one of the
central open questions in Dynamic Complexity. It has been studied for several
restricted graph classes and variants of DynFO [5,10,15,17,27,34]. In this paper,
we confirm the conjecture of Patnaik and Immerman [27] that the Reachability
query for general directed graphs is indeed in DynFO.

Theorem 1. Directed Reachability is in DynFO.

Our main tool is an update program (i.e., a collection of update formulas)
for maintaining the rank of a matrix over finite fields Zp against updates to
individual entries of the matrix. The underlying algorithm works for matrix
entries from arbitrary integer ranges, however, the corresponding DynFO update
program assumes that only small numbers occur.4

Theorem 2. Rank of a matrix is in DynFO(+,×).

Theorem 1 follows from Theorem 2 by a simple reduction. Whether there is a
path from s to t can be reduced to the question whether some (i, j)-entry of the
inverse of a certain matrix has a non-zero value, which in turn can be reduced to
a question about the rank of some matrix. This reduction (and similarly those
mentioned below) is very restricted in the sense that a single change in the
graph induces only a bounded number of changes in the matrix. We further use
the observation that for domain independent queries as the Reachability query,
DynFO is as powerful as DynFO(+,×).The combination of these ideas resolves
the Patnaik-Immerman conjecture in a surprisingly elementary way.

By reductions to Reachability it further follows that Satisfiability of 2-CNF
formulas and regular path queries for graph databases can be maintained in
DynFO. By another reduction to the matrix rank problem, we show that the

4 More precisely, it allows only integers whose absolute value is at most the possible
number of rows and columns of the matrix.



existence of a perfect matching and the size of a maximum matching can be
maintained in non-uniform DynFO.

Theorem 3. PerfectMatching and MaxMatching are in non-uniform
DynFO.

Related work Partial progress on the Patnaik-Immerman conjecture was achieved
by Hesse [17], who showed that directed reachability can be maintained with
first-order updates augmented with counting quantifiers, i.e., logical versions of
uniform TC0. More recently, Datta, Hesse and Kulkarni [5] studied the problem
in the non-uniform setting and showed that it can in fact be maintained in
non-uniform AC0[⊕], i.e., non-uniform DynFO extended by parity quantifiers.

Dynamic algorithms for algebraic problems have been studied in [29,31,32].
The usefulness of matrix rank for graph problems in a logical framework has
been demonstrated in [23]. Both [31,23] contain reductions from Reachability to
matrix rank (different from ours). A dynamic algorithm for matrix rank, based
on maintaining a reduced row echelon form, is presented in [13]. This algorithm
can also be used to show that matrix rank is in DynFO(+,×). More details are
discussed in Section 3.1.

In [31,32] a reduction from maximum matching to matrix rank has been
used to construct a dynamic algorithm for maximum matching. While in this
construction the inverse of the input matrix is maintained using Schwartz Zippel
Lemma, we use the Isolation Lemma of Mulmuley, Vazirani and Vazirani’s [26]
to construct non-uniform dynamic circuits for maximum matching.

The question whether Reachability can be maintained by formulas from first-
order logic has also been asked in the slightly different framework of First-Order
Incremental Evaluation Systems (FOIES) [9]. It is possible to adapt our update
programs to show that Reachability can be maintained by FOIES.

Organization After some preliminaries in Section 2, we describe in Section 3
dynamic algorithms for matrix rank, reachability and maximum matching in-
dependent of a particular dynamic formalism. In Section 4 we show how these
algorithms can be implemented as DynFO programs. Section 5 contains open
ends.

2 Preliminaries

We refer the reader to any standard text for an introduction to linear algebraic
concepts (see, e.g., [2]). We briefly survey some relevant ones here. Apart from
the concept of vector space use its basis i.e. a linearly independent set of vectors
whose linear combination spans the entire vector space and its dimension i.e. the
cardinality of any basis. We will use matrices as linear transformations. Thus an
n×m matrix M over a field F yields a transformation TM : Fm → Fn defined by
TM : x 7→ Mx. We will abuse notation to write M for both the matrix and the
transformation TM . The kernel of M is the subspace of Fm consisting of vectors
x satisfying Mx = 0 where 0 ∈ Fn is the vector of all zeroes. In this paper we



mainly study the following algorithmic problems.
MatrixRank

Given: Integer matrix A
Output: rank(A) over Q

Reach
Given: Directed graph G, nodes s, t
Question: Is there a path from s to t in G?

PerfectMatching
Given: Undirected graph G
Question: Is there a perfect matching in G?

MaxMatching
Given: Undirected graph G
Output: Maximum size of a matching in G

For each natural number n, [n] denotes {1, . . . , n}.

3 Dynamic algorithms for Rank, Reachability and others

In this section, we present dynamic algorithms in an informal algorithmic frame-
work. Their implementation as dynamic programs in the sense of Dynamic Com-
plexity will be discussed in the next section. However, the reader will easily verify
that these algorithms are highly parallelizable (in the sense of constant time par-
allel RAMs or the complexity class AC0). In Subsection 3.1, we describe how to
maintain the rank of a matrix. In Subsection 3.2 we describe how to maintain
an entry of the inverse of a matrix by a reduction to the rank of a matrix and
we show that this immediately yields an algorithm for Reachability in directed
graphs. In Subsection 3.3 we give non-uniform dynamic algorithms for Existence
of perfect matching and Size of maximum matching, respectively.

3.1 Maintaining the rank of a matrix

In this subsection we show that the rank of a matrix A can be maintained
dynamically in a highly parallel fashion. For simplicity, we describe the algorithm
for integer matrices although it can be easily adapted for matrices with rational
entries. At initialization time, the algorithm gets a number n of rows, a number
m of columns, and a bound N for the absolute value of entries of the matrix A.
Initially, all entries aij have value 0. Each change operation changes one entry
of the matrix.

First, we argue that for maintaining the rank of A it suffices to main-
tain the rank of the matrix (A mod p) for polynomially many primes of size
O(max(n, logN)3). To this end recall that A has rank at least k if and only if
A has a k × k-submatrix A′ whose determinant is non-zero. The value of this
determinant is bounded by n!Nn, an integer with O(n(log n + logN)) many
bits. Therefore, it is divisible by at most O(n(log n + logN)) many primes.

By the Prime Number Theorem, there are ∼ max(n,logN)3

logmax(n,logN)3 many primes in

[max(n, logN)3]. Hence for n large enough, the determinant of A′ is non-zero if
and only if there is a prime p ∈ [max(n, logN)3] such that the determinant of
(A′ mod p) is non-zero. Hence the rank of A is at least k if and only if there is a
prime p such that the rank of (A mod p) is at least k. Thus in order to compute
the rank of A it suffices to compute the rank of (A mod p) in parallel for the
primes in [max(n, logN)3], and to take the maximum over all such ranks.
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Fig. 1. A basis A with an A-good basis B. The first three (column) vectors of B are
in the kernel K. The principal components of the two other vectors are marked in red.

Now we show how to maintain the rank of a n ×m matrix A over Zp. The
idea is to maintain a basis of the column space that contains a basis of the kernel
of A. The number of non-kernel vectors in the basis determines the rank of A.

By K we denote the kernel of A, i.e., the vector space of vectors v with
Av = 0. For a vector v in Zm

p , we write S(v) for the set of non-zero coordinates
of Av, that is, the set of all i, for which (Av)i 6= 0.

As auxiliary data structure, we maintain a basis B of Zm
p with the following

additional property, called A-good. A vector v ∈ B is i-unique with respect to
B and A, for some i ∈ [n], if i ∈ S(v) but i 6∈ S(w), for every other w ∈ B. We
omit A when it is clear from the context. A basis B of Zm

p is A-good if every
v ∈ B −K is i-unique with respect to B and A, for some i. For v ∈ B −K in
an A-good basis B, the minimum i for which v is i-unique is called the principal
component of v, denoted by pc(v). Figure 1 illustrates an A-good basis.

The following proposition shows that it suffices to maintain A-good bases in
order to maintain matrix rank modulo p.

Proposition 1. Let A be an n × m matrix over Zp and B an A-good basis
of Zm

p . Then rank(A) = n− |B ∩K|.

Proof. It is well-known that rank(A) = n − dim(K). To prove the proposition
it therefore suffices to show that B ∩ K is a basis for K. To this end, let u
be an arbitrary vector from K and u =

∑

v∈B bvv. Let us assume towards a
contradiction that bv 6= 0, for some v ∈ B − K. Let i = pc(v). By definition
the i-th coordinate of Av and therefore also of Abvv is non-zero. However, as
(Aw)i = 0, for all other w ∈ B, we can conclude that (Au)i 6= 0, the desired
contradiction. Therefore, u ∈ span(B ∩K) and therefore B ∩K is a basis for K.

⊓⊔

We now show how to maintain A-good bases modulo a prime p. Initially, the
matrix A is all zero and every basis B of Zm

p is A-good, as all its vectors are
in K. Besides B, the algorithm also maintains the vector Av, for every v ∈ B,
which is easy to do, as each change affects only one entry of A.

It is sufficient to describe how the basis can be adapted when one matrix
entry aij of A is changed. We denote the new matrix by A′, its entries by a′ij , its
kernel by K ′ and, for a vector v, the set of non-zero coordinates of A′v by S′(v).
Clearly, for every vector v, Av and A′v can only differ in the i-th coordinate as
the only difference between A and A′ is that aij 6= a′ij . Therefore, if the A-good



basis B is not A′-good, this can be only due to changes of the sets S′(v) with
respect to i. More specifically,

(a) there might be more than one vector v ∈ B with i ∈ S′(v), and
(b) there might be a vector u ∈ B such that pc(u) = i but i 6∈ S′(u).

When constructing an A′-good basis B′ from the A-good basis B, those two
issues have to be dealt with. To state the algorithm, the following definitions are
useful. Let u denote the unique vector from B with pc(u) = i, if such a vector
exists. The set of vectors v ∈ B with i ∈ S′(v) can be partioned into three sets
U , V and W where

– U = {u} if i ∈ S′(u), otherwise U = ∅.
– V is the set of vectors v ∈ B ∩K with i ∈ S′(v); and
– W is the set of vectors w ∈ B − K, with i ∈ S′(w) but w 6= u (thus, in

particular pc(w) 6= i).

For vectors v ∈ V , only i is a candidate for being the principal component
since S′(v) = {i} for such v because Av = 0 and the vectors Av and A′v may
only differ in the i-th component.

The idea for the construction of the basis B′ is to apply modifications to
B in two phases. In the first phase, when U ∪ V 6= ∅, a vector v̂ ∈ U ∪ V is
chosen as the new vector with principal component i. The i-uniqueness of v̂ is
ensured by replacing all other vectors x with i ∈ S′(x) by x − (A′x)i(A

′v̂)−1
i v̂,

where (A′v̂)−1
i denotes the inverse of the i-th entry of A′v̂. The second phase

assigns, when necessary, a new principal component k to the vector u or to its
replacement from the first phase. Furthermore it ensures the k-uniqueness of this
vector. The detailed construction of B′ from B is spelled out in Algorithm 1.

Proposition 2. Let A and A′ be n×m matrices such that A′ only differs from
A in one entry a′ij 6= aij. If B is an A-good basis of Zm

p and B′ is constructed
according to Algorithm 1 then B′ is an A′-good basis of Zm

p .

Proof. We first note that if we have two vectors v 6= w in some basis of Zm
p

and replace w by x
def

= w − (A′w)i(A
′v)−1

i v then we get again a basis and
S′(x) ⊆ (S′(v)∪S′(w))−{i}. The former ensures B′ is again a basis of Zm

p after
the construction above.

It thus only remains to show that B′ is A′-good. For this we first observe
that i 6∈ S′(v) for all vectors v added to B′ in Steps (1b) and (2b). For Step
(2b) this is the case because i /∈ S′(û) and after (1b) also i /∈ S′(v). Furthermore
k 6∈ S′(v) for all vectors v added to B′ in Step (2b).

We now show by a case distinction that all elements x of B′−K ′ are j-unique
for some j. We observe that x can not be one of the vectors added in Step (1bii)
since those are are actually in K ′. For the same reason x cannot be the vector
û added in Step (1biii) if S′(u) = {i}.

The remaining cases are as follows:

– If x = v̂ then x is i-unique by Steps (1bi)-(1biii)



Algorithm 1 Computation of B′ from B.

(0) Copy all vectors from B to B′

(1) If U ∪ V 6= ∅ then:
(a) Choose v̂ as follows:

(i) If V 6= ∅, let v̂ be the minimal element in V (with respect to the lexico-
graphic order obtained from the order on V ).

(ii) If V = ∅ and U 6= ∅, let v̂
def

= u.
(b) Make v̂ i-unique by the following replacements in B′:

(i) Replace each element w ∈ W by w − (A′w)i(A
′v̂)−1

i
v̂.

(ii) If v̂ ∈ V , replace each element v ∈ V , v 6= v̂, by v − (A′v)i(A
′v̂)−1

i
v̂.

(iii) If v̂ ∈ V and U 6= ∅, replace u by û
def

= u− (A′u)i(A
′v̂)−1

i
v̂.

(c) If u exists and i /∈ S′(u) (note: U = ∅) then let û
def

= u.
(2) If û has been defined (note: i /∈ S′(û)) and S′(û) 6= ∅ then:

(a) Choose k minimal in S′(û).
(b) Make û k-unique by replacing every vector v ∈ B′ with k ∈ S′(v) by v −

(A′v)k(A
′û)−1

k
û.

(3) Compute A′v, for every v ∈ B′ (with the help of the vectors Au, for u ∈ B)

– If x = û and S′(û) 6= ∅ then x is k-unique by Step (2b).
– If x is an element added in Step (1bi) (of the form w−(A′w)i(A

′v̂)−1
i v̂), then

w is ℓ-unique with respect to B and A, for some ℓ 6= i (or ℓ 6∈ {i, k} if k is
defined) as i ∈ S(u) (or {i, k} ⊆ S(u), respectively). However, then ℓ ∈ S′(x)
and no other vector y with ℓ ∈ S′(y) can be in B′. Thus x is ℓ-unique.

– If x is any other element then it has already been in B − K and thus it
is ℓ-unique with respect to B and A, for some ℓ 6= i (or ℓ 6∈ {i, k} if k is
defined). As before, no other vector y with ℓ ∈ S′(y) can be in B′.

⊓⊔

An anonymous referee pointed out that the above stated algorithm for ma-
trix rank (modulo p) is very similar to a dynamic algorithm for matrix rank
presented as Algorithm 1 in [13] in a context where parallel complexity was not
considered. Indeed, both algorithms essentially maintain Gaussian elimination,
but the algorithm in [13] maintains a stronger normal form (reduced row eche-
lon form) that differs by multiplication by a permutation matrix from our form.
However, Algorithm 1 in [13], restricted to single entry changes and integers
modulo p, can be turned into an AC0 algorithm by observing that the sorting
step 12 only requires moving two rows to the appropriate places.

3.2 Maintaining Reachability

Next, we give a dynamic algorithm for Reachability. To this end, we first show
how to reduce Reachability to the test whether an entry of the inverse of an
invertible matrix equals some small number. Testing such a property will in
turn be reduced to matrix rank.

We remind the reader, that for Reachability the number n of nodes is fixed
at initialization time and the edge set is initially empty. Afterwards in each step



one edge can be deleted or inserted. For simplicity, we assume that two nodes
s and t are fixed at initialization time and we are always interested in whether
there is a path from s to t. To maintain Reachability for arbitrary pairs, the
algorithm can be run in parallel, for each pair of nodes.

For a given directed graph G = (V,E) with |V | = n, we define its adjacency
matrix A = AG, where Au,v = 1 if u 6= v and there is a directed edge (u, v) ∈ E,
and otherwise Au,v = 0.

The matrix I − 1
n
A is strictly diagonally dominant, therefore it is invertible

(see e.g. [20, Theorem 6.1.10.]) and its inverse can be expressed by its Neumann
series as follows.

(I −
1

n
A)−1 = I +

∞
∑

i=1

(
1

n
A)i.

The crucial observation is that the (s, t)-entry of the matrix on the right-hand
side is non-zero if and only if there is a directed path from s to t. Therefore it
suffices to maintain (I − 1

n
A)−1 in order to maintain Reachability. To be able to

work with integers, we consider the matrix B
def

= nI − A rather than I − 1
n
A.

Clearly, the (s, t)-entry in B−1 is non-zero if and only if it is in (I − 1
n
A)−1.

Thus, for maintaining reachability it is sufficient to test whether the (s, t) entry
of B−1 is non-zero.

More generally we show how to test whether the (i, j)-entry of the inverse
B−1 of an invertible matrix B equals a number a ≤ n using matrix rank. A
similar reduction has been used in [23, p. 99]. Let b be the column vector with
bj = 1 and all other entries are 0. For every l ≤ n, the lth entry of the vectorB−1b
is equal to the (l, j)-entry (B−1)l,j of B−1. In particular, the unique solution of
the equation Bx = b has (B−1)i,j as ith entry. Now let B′ be the matrix resulting
from B by adding an additional row with 1 in the i-column and otherwise zero.
Let further b′ be b extended by another entry a. The equation B′x = b′ now
corresponds to the

Bx = b

xi = a

and, by the above, this system is feasible if and only if the (i, j)-entry of B−1 is
equal to a.

On the other hand, B′x = b′ is feasible if and only if rank(B′) = rank(B′|b′),
where (B′|b′) is the (n+1)× (n+1) matrix obtained by appending the column
b′ to B′. As B is invertible, rank(B′) = rank(B) = n and therefore, we get the
following result.

Proposition 3. Let B be an invertible matrix, a ≤ n a number, and B′ and
b′ as just defined. Then, the (i, j)-entry of B−1 is equal to a if and only if
rank(B′|b′) = n.

Thus, to maintain a small entry of the inverse of a matrix it suffices to main-
tain the rank of the matrix B′|b′ and to test, whether this rank is n (or, otherwise



n + 1). As every change in B yields only one change in B′|b′, Algorithm 1 can
be easily adapted for this purpose.

By choosing a = 0, the following corollary immediately follows from the
observation made above, that the (s, t)-entry of the matrix (nI − A)−1 is non-
zero if and only if there is a directed path from s to t. It implies that also
reachability can be maintained.

Corollary 1. Let G be a directed graph with n vertices, A its adjacency matrix,
B = nI − A, a = 0, and B′ and b′ as defined above (with s and t instead
of i and j). Then, there is a path from node s to node t in G if and only if
rank(B′|b′) = n+ 1.

3.3 Maintaining Matching

We first show how to non-uniformly maintain whether a graph has a perfect
matching, afterwards we extend the technique for the maintenance of the size of
a maximum matching.

The basic idea for maintaining whether a graph has a perfect matching relies
on a correspondence between the determinant of the Tutte matrix of a graph
and the existence of perfect matchings. The Tutte matrix TG of an undirected
graph G is the n× n matrix with entries

tij =











xij if (i, j) ∈ E and i < j

−xji if (i, j) ∈ E and i > j

0 if (i, j) 6∈ E

where the xij are indeterminates.

Theorem 4 (Tutte [33]). A graph G has a perfect matching if and only if
det(TG) 6= 0.

We note that det(TG) is a polynomial with variables from {xi,j | 1 ≤ i ≤ j ≤
n} with possibly exponentially many terms. However, as we will see, whether
det(TG) is the zero-polynomial can be tested by evaluating the polynomial for
well-chosen positive integer values. For a graph G, let w be a function that
assigns a positive integer weight to every edge (i, j) and let BG,w be the integer
matrix obtained from TG by substituting xij by 2w(i,j). By Tutte’s Theorem, if
G has no perfect matching then det(BG,w) = 0.

Theorem 5 (Mulmuley, Vazirani and Vazirani [26]). Let G be a graph
with a perfect matching and w a weight assignment such that G has a unique
perfect matching with minimal weight with respect to w. Then det(BG,w) 6= 0.

Using the technique implicit in [30] one can find, for every n ∈ N, weighting

functions w1, . . . , wn2

with weights in [4n], such that for every graph G there is
an i ∈ [n2] such that if G has a perfect matching, then it has a unique minimal
weight matching with respect to wi.



For the sake of completeness, we show how to obtain those functions. The
following lemma is due to Mulmuley, Vazirani and Vazirani [26], but we use the
version stated in [22].

Lemma 1 (Isolation Lemma). Given a non-empty F ⊆ 2[n]. If a weight
assignment w ∈ [N ][n] is uniformly chosen at random, then with probability at
least 1 − n

N
, the minimum weight subset in F is unique; where the weight of a

subset F ∈ F is
∑

i∈F w(i).

Lemma 2 (Non-uniform Isolation Lemma, implicit in [30]). Let m ∈ N

and F1, . . . ,F2m ⊆ 2[m]. There is a sequence w1, . . . , wm of weight assignments
from [4m][m] such that for any i ∈ [2m] there exists a j ∈ [m] such that the
minimum weight subset of Fi with respect to wj is unique.

Proof. The proof is implicit in the proof of Lemma 2.1 in [30]. For the sake of
completeness we give a full proof.

We call a sequence of weight assignments u1, . . . , um bad for some Fi if no
F ∈ Fi is a minimum weight subset with respect to any uj . For each Fi the
probability of a randomly chosen weight sequence U

def

= u1, . . . , um to be bad
is at most (14 )

m thanks to Lemma 1 (for N
def

= 4m). Thus the probability that
such a U is bad for some Fi is at most 2m × (14 )

m < 1. Hence there exists a
sequence U which is good for all Fi. ⊓⊔

We immediately get the following corollary.

Corollary 2. Let G1, . . . , G2n2 be some enumeration5 of the graphs on [n] and
let F1, . . . ,F2n2 be their respective sets of perfect matchings. There is a sequence

w1, . . . , wn2

of weight assignments to the edges of [n]2 such that for every graph
G over [n] there is some i ∈ [n2] such that if G has a perfect matching then it
also has a perfect matching with unique minimal weight with respect to wi.

Then, in order to decide whether a graph G over [n] has a perfect match-
ing, it is sufficient to maintain whether det(BG,wi) 6= 0 for any i ∈ [n2]. As
the determinant det(BG,wi) is at most n!(24n)n, it thus suffices, for every i, to
maintain whether det(BG,wi) 6= 0 modulo p, and thus to maintain the rank of
BG,wi modulo p, for polynomially many primes p. As the rank of a matrix can be
maintained dynamically as shown in Subsection 3.1 (and as each change in the
graph yields only one change in each matrix) we altogether get a non-uniform
procedure for dynamically testing whether a graph has a perfect matching. The
non-uniformity is due to the choice of the weight assignments. We note that,
although the entries in BG,wi might be of exponential size in n, the dynamic
algorithm only needs to maintain matrices with numbers modulo small primes.

The algorithm for the more general problem of maintaining the size of a
maximum matching relies on an extension of Tutte’s theorem by Lovász [24].
We state the version of this theorem from [28].

5 For notational simplicity we use n2 instead of
(

n

2

)

, here.



Theorem 6 (Lovász). Let G be a graph with a maximum matching of size m.
Then rank(TG) = 2m.

Theorem 7. Let G be a graph with a maximum matching of size m, and let w
be a weight assignment for the edges of G such that G has a maximum matching
with unique minimal weight with respect to w. Then rank(BG,w) = 2m.

This theorem is implicit in Lemma 4.1 in [19]. For the sake of completeness
we give a full proof here.

Proof (of Theorem 7). Recall that the rank of a matrix can be defined as the
size of the largest submatrix with non-zero determinant. Thus rank(BG,w) ≤
rank(TG), and therefore rank(BG,w) ≤ 2m by Theorem 6.

For showing rank(BG,w) ≥ 2m we adapt the proof of Theorem 6 given in
[28]. Let U be the set of vertices contained in the maximum matching of G
with minimal weight, and G′ the subgraph of G induced by U . Observe that
G′ has a perfect matching and that its weight with respect to w is unique.
Restricting BG,w to rows and columns labeled by elements from U yields the
matrix BG′,w′ where w′ is the weighting w restricted to edges from G′. However,
then detBG′,w′ 6= 0 by Theorem 5 and therefore rank(BG,w) ≥ 2m. ⊓⊔

An easy adaption of Corollary 2 to maximum matchings and the same con-
struction as above yields a procedure for maintaining the size of a maximum
matching.

4 Matrix rank and Reachability in DynFO

In this section we show Theorems 1, 2 and 3. The proofs are based on the
algorithms presented in Section 3.

We first give the basic definitions for dynamic descriptive complexity and, in
particular, DynFO in Subsection 4.1. In Subsection 4.2 we show that, for domain-
independent queries, DynFO programs with empty initialization are as powerful
as DynFO programs with (+,×)-initialization. Then we show how to maintain
the rank of a matrix in DynFO(+,×) (in Subsection 4.3), the Reachability query,
regular path queries and 2-SAT in DynFO (in Subsection 4.4), and maximum
matching in non-uniform DynFO (in Subsection 4.5).

4.1 Dynamic Complexity

We basically adopt the original dynamic complexity setting from [27], although
our notation is mainly from [34].

In a nutshell, inputs are represented as relational logical structures consisting
of a universe, relations over this universe, and possibly some constant elements.
For any change sequence, the universe is fixed from the beginning, but the re-
lations in the initial structure are empty. This initially empty structure is then
modified by a sequence of insertions and deletions of tuples. As much of the



original motivation for the investigation of dynamic complexity came from incre-
mental view maintenance (cf. [11,8,27]), it is common to consider such a logical
structure as a relational database and to use notation from relational databases.
As an example, for the reachability problem, the database D has domain dom
containing the nodes of the graph. It has one relation E, representing the edges,
and two constants, s and t. The reachability problem itself is then represented
by the Boolean query Reach whose result is true if there is a path from s to t
in the graph (dom, E), and false, otherwise. The goal of a dynamic program is
to answer a given query after each prefix of a change sequence. To this end, the
program can use some data structures, represented by auxiliary relations. De-
pending on the exact setting, these auxiliary relations might be initially empty
or might contain some precomputed tuples.

We say that a dynamic program maintains a query q if it has a designated
auxiliary relation that always coincides with the query result for the current
database. We now give more precise definitions.

A dynamic instance of a query q is a pair (D, α), where D is a finite database
over a finite domain dom and α is a sequence of updates to D, i.e. a sequence of
insertions and deletions of tuples over dom. The dynamic query Dyn(q) yields
as result the relation that is obtained by first applying the updates from α to D
and then evaluating q on the resulting database.

The database resulting from applying an update δ to a database D is denoted
by δ(D). The result α(D) of applying a sequence of updates α = δ1 . . . δℓ to a
database D is defined by α(D)

def

= δℓ(. . . (δ1(D)) . . .).

Dynamic programs, to be defined next, consist of an initialization mechanism
and an update program. The former yields, for every (input) database D, an
initial state with initial auxiliary data. The latter defines the new state of the
dynamic program for each possible update δ.

A dynamic schema is a tuple (τin, τaux) where τin and τaux are the schemas
of the input database and the auxiliary database, respectively. In this paper the
auxiliary schemas are purely relational, while the input schemas may contain
constants.

Definition 1. (Update program) An update program P over dynamic schema
(τin, τaux) is a set of first-order formulas (called update formulas in the following)
that contains, for every R ∈ τaux and every δ ∈ {insS ,delS} with S ∈ τin, an
update formula φR

δ (~x; ~y) over τin ∪ τaux where ~x and ~y have the same arity as S
and R, respectively.

The semantics of update programs is defined below. Intuitively, when modi-
fying the tuple ~x with the operation δ, then all tuples ~y satisfying φR

δ (~x; ~y) will
be contained in the updated relation R.

Example 1. The transitive closure of an acyclic graph can be maintained by an
update program with one binary auxiliary relation T which is intended to store
the transitive closure [27,9]. After inserting an edge (u, v) there is a path from x
to y if, before the insertion, there has been a path from x to y or there have been



paths from x to u and from v to y. Thus, T can be maintained for insertions by
the formula

φT
insE (u, v;x, y)

def

= T (x, y) ∨
(

T (x, u) ∧ T (v, y)
)

.

The formula for deletions is slightly more complicated.

The semantics of update programs is made precise now. A program state S over
dynamic schema (τin, τaux) is a structure (D,A) where D is a database over
the input schema (the current database) and A is a database over the auxiliary
schema (the auxiliary database), both with domain dom. The effect Pδ(S) of
an update δ(~a), where ~a is a tuple over dom, to a program state S = (D,A)

is the state (δ(D),A′), where A′ consists of relations R′ def

= {~b | S |= φR
δ (~a;

~b)}.
The effect Pα(S) of an update sequence α = δ1 . . . δl to a state S is the state
Pδl(. . . (Pδ1(S)) . . .).

Definition 2. (Dynamic program) A dynamic program is a triple (P, Init, Q),
where

– P is an update program over some dynamic schema (τin, τaux),
– Init is a mapping that maps τin-databases to (initial) τaux-databases, and
– Q ∈ τaux is a designated query symbol.

A dynamic program P = (P, Init, Q) maintains a dynamic query Dyn(q) if, for
every dynamic instance (D, α), where in D all relations are empty, the relation
q(α(D)) coincides with the query relation QS in the state S = Pα(SInit(D)),
where SInit(D) is the initial state, i.e. SInit(D)

def

= (D, Initaux(D)).
Several dynamic settings and restrictions of dynamic programs have been

studied in the literature (see e.g. [27,12,16,14]). Here, we concentrate on the
following three classes, whose relationship with circuit complexity classes has
already been mentioned in the introduction.

– DynFO is the class of all dynamic queries that can be maintained by dy-
namic programs with formulas from first-order logic starting from an empty
database and empty auxiliary relations.

– DynFO(+,×) is defined as DynFO, but the programs have three particular
auxiliary relations that are initialized as a linear order and the correspond-
ing addition and multiplication relations. There might be further auxiliary
relations, but they are initially empty.

– Non-uniform DynFO is defined as DynFO, but the auxiliary relations may
be initialized by arbitrary functions.

4.2 DynFO and DynFO(+,×) coincide for domain independent queries

Next, we show that DynFO and DynFO(+,×) coincide for queries that are invari-
ant under insertion and deletion of isolated elements. More precisely, a query q is
domain independent, if q(D1) = q(D2) for all databases D1 and D2 that coincide
in all relations and constants (but possibly differ in the underlying domain). As
an example, the Boolean Reachability query is domain independent, as its result
is not affected by the presence of isolated nodes (besides s and t).



Theorem 8. For every domain-independent query q the following are equiva-
lent:

(1) q ∈ DynFO(+,×);
(2) q ∈ DynFO.

Proof. Of course, we only need to prove that (1) implies (2). We give the proof
only for Boolean graph queries. The generalization to databases with arbitrary
signature and non-Boolean queries is straightforward.

Let q be a domain-independent query and P a DynFO(+,×) program that
maintains q. We recall that change sequences are applied to an initially empty
graph but that P has a linear order and the corresponding addition and multi-
plication relations available.

Let in the following n denote the size of the domain dom. As there is a linear
order < on dom we can assume that dom is of the form [n] and that < is just the
usual linear order on [n]. Likewise, if there is a linear order available on a subset
of dom with j elements, we can assume for simplicity that this set is just [j].

We say that an element u of the universe has been activated by a change
sequence α = δ1, . . . , δℓ, if u occurs in some δi, no matter, whether an edge with
a is still present in α(D). We denote the set of activated elements by A.

We will construct a DynFO program P ′ that simulates P . By definition of
DynFO, P ′ has to maintain q under change sequences from an initially empty
graph (just as P), but with initially empty auxiliary relations (unlike P).

It is well known that arithmetic on the active domain can be constructed
on the fly when new elements are activated [12]. Yet this is not sufficient for
simulating P : thanks to its built-in arithmetic, P can maintain complex auxiliary
structures even for elements that have not been activated so far. On the other
hand, the program P ′ can only use elements as soon as they are activated6.
Thus, the challenge for the construction of P ′ is to make arithmetic as well as
the auxiliary data for an element available as soon as it is activated.

The basic idea for the construction of P ′ is to start simulating P for active
domains of size m2 as soon as m elements are activated. There will be one
such simulation for every m with (m − 1)2 < n2, in parallel. For each m, the
“m-simulation” starts from an initially empty database and simulates P for an
insertion sequence leading to the current database. The goal is that as soon as
(m − 1)2 elements are activated, the m-simulation will be “consistent” with P .
We now describe this basic idea in more detail.

Let D be the initial empty graph on [n] and α = δ1, . . . , δℓ a change sequence.
The m-simulation (i.e., the simulation for domain size m2) begins, as soon as
≥ m elements have been activated. For simplicity we assume that [m] is the set
of these elements. Let Dm = α′(D), where α′ is the shortest prefix of α such
that α′(D) has at least m activated elements.

6 Non-activated elements are already present in the domain before they are activated,
yet it is easy to see that all non-activated elements behave similarly since they are all
updated by the same first-order formulas. Therefore they cannot be used for storing
complex auxiliary data structures.



In the m-simulation of P elements of [m2] are encoded by pairs over [m].
The simulation uses an auxiliary edge relation E′

m over [m]2, which is initially
empty, the linear order on [m] and the corresponding addition and multiplication
relations, and all other auxiliary relations of P , all of them initially empty. The
arity of all these relations used by P ′ is twice the one in P due to the encoding
of [m2] by pairs.

For each of the subsequent change operations δ (as long as necessary), the
m-simulation inserts four edges from Dm to E′

m and applies δ to E′
m. If δ deletes

an edge that has not yet been transferred from Dm to E′
m then additionally

this edge is deleted in Dm. For all these (up to) five change operations, P ′ also
applies the corresponding updates to the auxiliary relations and deletes the four
inserted edges from Dm.

As soon as more than (m − 1)2 elements are activated, we can be sure that
all edges of Dm have been inserted to E′

m. Thus, the m-simulation becomes
the “main simulation” — until the (m + 1)-simulation takes over, when more
than m2 elements are activated. During that time, the query relation Q′ of P ′

always has the same value as the relation Q′
m corresponding to the designated

query relation of P . The correspondence between the simulation on [m]2 and
the actual domain is induced by the bijection (u1, u2) 7→ (u1 − 1)×m+ u2.

So far, P ′ would need, for every m ≤ n a separate collection of auxiliary
relations, which is of course, not possible for a dynamic program. However,
all these relations can be combined into one (of each kind), by increasing the
arity and prefixing each tuple by the defining element m. As an example, all
relations E′

m are encoded into one 5-ary relation E′ and E′
m is just the set of

pairs ((u1, u2), (v1, v2)), for which (m,u1, u2, v1, v2) is in E′.
We now describe P ′ in more detail. We describe first, how P ′ constructs a

linear order7 <, an addition relation + and a multiplication relation × on the
set A of activated elements. We note that this part of the simulation is just as
in [12]. We assume without loss of generality that P never changes its linear
order, addition relation and multiplication8.

The relation < will be, at any time, a linear order of all currently activated
elements, in the order of activation. For concreteness: if an edge (a, b) is inserted
which activates a and b then a < b become the two largest elements of <.

We always identify activated elements with their position in <, that is, the
minimal element in < is considered as 0, the second as 1 and so on. We use
numbers as constants in formulas. It is straightforward to replace these numbers
by “pure” formulas. For example, the subformula x > 1 can be replaced by
∃x1∃x2 x1 < x2 ∧ x2 < x.

The update formulas for these three relations are straightforward. For delete
operations, nothing has to be changed, that is, e.g., φ<

del(a, b;x, y) = x < y and
likewise for the other two relations.

The update formula φ<
ins(a, b;x, y) for insertions states that

7 We use infix notation for <, + and ×.
8 Otherwise, they have to be duplicated.



– x < y; or
– x is already activated, y ∈ {a, b} is not yet activated; or
– x = a, y = b, a 6= b, and both a and b are not yet activated.

The formulas for + and × are in the same spirit and use the well-known
inductive definitions of addition and multiplication, respectively. We note that
<, +, × can be lifted to relations over pairs in a straightforward fashion. Here,
a pair (u1, u2) over [m]2 corresponds to the number (u1 − 1)×m+ u2.

Algorithm 2 describes the update operations that are induced by a change
operation δ in the simulation over [m]2 in an algorithmic fashion. As the algo-
rithm only performs a constant number of steps for each change operation, it
is straightforward (though tedious) to turn it into a bunch of first-order update
formulas.

If δ is an insertion of an edge e = (u, v) into the graph, Algorithm 2 inserts
the corresponding edge ê into the graph over [m]2. Here, ê is defined as follows.
Let u1, u2, v1, v2 be the uniquely determined elements from [m] such that u =
(u1 − 1)×m+ u2 and v = (v1 − 1)×m+ v2. Then, ê = ((u1, u2), (v1, v2)).

The correctness of P ′ can be established as follows. Let α = δ1, . . . , δℓ be a
change sequence with universe [n]. Let p be the number of activated elements
after applying α to the empty graph. Let m be chosen such that (m− 1)2 < p ≤
m2. At the time of the activation of the (m+1)st element, Dm has at most [m]2

edges. These edges can thus be added to E′
m within the subsequent m2

4 steps. On

the other hand, there are at least (m−1)2−(m+1)
2 insertion steps from α needed to

reach the point of more than (m− 1)2 activated elements. It is straightforward

to check that (m−1)2−(m+1)
2 ≥ m2

4 for m ≥ 8 and therefore the edge transfer
is completed before the m-simulation becomes the “main simulation”. For each
fixed universe size ≤ 64, q can be maintained by separate formulas that can then
be combined with the formulas derived from Algorithm 2.

As the m-simulation starts at a moment, where arithmetic is available for
[m]2, it can be shown by a straightforward induction that P ′ indeed simulates
P on a universe of size m2 and thus delivers the same answer as P would do. As
during the time in which the m-simulation is the “main simulation” the graph
has at most m2 vertices, the result returned by P is the same as it would be on
universe [n], thanks to the domain independence of q. ⊓⊔

Remark 1. Kousha Etessami already observed that arithmetic can be defined
incrementally, so that at any point there are relations <ad, +ad and ×ad that
represent a linear order on the activated domain, and the ternary addition and
multiplication relations [12].

4.3 Matrix rank in DynFO(+,×)

To the best of our knowledge, computational linear algebra problems like matrix
rank and matrix inverse have not been studied before in dynamic complexity
(with the notable exception of Boolean matrix multiplication in [18]). Therefore,



Algorithm 2 Updates for change operation δ relative to universe size m2

1: if |A| ≤ m after change δ then ⊲ Wait until universe size > m
2: Pm := E (after application of δ)
3: E′

m := ∅
4: for all R ∈ τaux do

5: R′

m := ∅
6: end for

7: else ⊲ Simulate P over universe [m]2

8: for i ∈ {1, 2, 3, 4} do ⊲ Transfer four edges from Gm to E′

m

9: e := “smallest” edge from Pm

10: Delete e from Pm

11: Add ê to E′

m

12: for all R ∈ τaux do

13: Apply the update formula for insertion of ê to R′

m

14: end for

15: end for

16: ⊲ Apply the current change to E′

m

17: if the current change operation inserts an edge e then

18: Add ê to E′

m

19: for all R ∈ τaux do

20: Apply the update formula for insertion of ê to R′

m

21: end for

22: end if

23: if the current change operation deletes an edge e then

24: Delete ê from E′

m

25: for all R ∈ τaux do

26: Apply the update formula for deletion of ê to R′

m

27: end for

28: if e ∈ [m]2 then Remove e from Pm

29: end if

30: if (m− 1)2 < |A| ≤ m2 then Q′ := Q′

m

31: end if

there is no standard way of representing the matrix rank problem in the dynamic
complexity framework. The key question is how to represent the numbers that
appear in a matrix, as their size can grow arbitrarily compared to the dimensions
of the matrix. We use a representation that does not allow matrices with large
numbers but suffices for our applications in which matrix entries are not larger
than the number of rows in the matrix.

More precisely, an input database for the matrix rank query MatrixRank
consists of two ternary relations M+,M− and a linear order <. In the following,
we identify the k-th element with respect to < with the number k (and the
minimal element represents 1). That the matrix has value a > 0 at position (i, j)
is represented by a triple (i, j, a) in M+. Likewise, aij = a < 0 is represented
by a triple (i, j,−a) in M−. For each i, j, at most one triple (i, j, a) can be
present in M+ ∪M−. If, for some i, j there is no triple (i, j, a) then ai,j = 0. In
this way, we can represent n × n-matrices over {−n, . . . , n} by databases with



domain {1, . . . , n}. Non-square matrices can be represented as n×n-matrices in
a straightforward manner with the help of zero-rows or zero-columns.

Change operations might insert a triple (i, j, a) to M+ or M− (in case, no
(i, j, b) is there), or delete a triple, but we do not allow change operations on <.
That is, basically, single matrix entries can be set to 0 or from 0 to some other
value. Initially, M+ and M− are empty, that is the matrix is the all-zero matrix,
but < is a complete linear order. The query MatrixRank maps a database D
representing a matrix A in this way to the set {rank(A)}, in case rank(A) > 0
and to ∅ otherwise.
Theorem 2 (restated). MatrixRank is in DynFO(+,×).

There is a subtle technical point in the interpretation of the statement
“MatrixRank is in DynFO(+,×)”. The database representing the input ma-
trix A comes with a linear order <A and there is the linear order < initially
given to a DynFO(+,×) program. We require here that these orders are identical
(as they are in our applications).

Proof. We describe how Algorithm 1 can be extended and translated into a
dynamic program for MatrixRank. Let dom be a given domain. In our setting,
we have N = n, therefore it is sufficient to consider prime numbers p ≤ n2. Such
prime numbers and arithmetics in Zp can be expressed with the help of pairs
over dom, via the bijection (u1, u2) 7→ (u1 − 1) × n + u2. In our notation, we
use single variables for numbers ≤ n2, thus representing two variables over dom.
The dynamic program for MatrixRank uses four auxiliary relations (beyond
<, + and ×) with the following intention.

– Relation B shall contain a tuple9 (p, i, j, a) if p is a prime number and, in the
run of the dynamic algorithm modulo p, the i-th vector b(p, i) of the basis
has the j-entry a. (Again, b(p, i)j = 0 is encoded by the absence of tuples
(p, i, j, ·));

– Relation C shall contain a tuple (p, i, j, a) if p is a prime number and, in
the run of the dynamic algorithm modulo p, the j-th entry of the vector
A× b(p, i) is a modulo p, where A denotes the current matrix;

– Relation R shall contain (p, k) if n− k is the number of basis vectors in the
kernel K of A modulo p.

– Relation Q shall contain the maximal element k such that (p, k) is in R for
some p.

Whether a number p is a prime number can be tested by a first-order formula
thanks to the availability of ×. Initially10, for each prime p, all vectors of the
form (p, i, i, 1) are put into B. As the matrix A is initially all-zero, C is initially
empty. Relation R and Q are initially empty, reflecting that rank(A) = 0 for all
primes p.

We note that we do not need to represent, for basis vectors v, S(v) and pc(v)
as both can be inferred from B and C in a first-order fashion. That a basis is

9 We note that these tuples are 6-ary, as p and a represent pairs.
10 More precisely: the first step of the computation (which sees an empty B) takes into

account that B consists of these tuples.



A-good can also be tested, but we do not need such a test, as this property is
guaranteed by the algorithm. Furthermore the relation Q can be inferred from
R straightforwardly. It remains to show how, for any p, the computation of B′

from B, as described in Algorithm 1, can be done by a dynamic program.
We adopt the notation from Algorithm 1. First of all, C can be easily updated

as in one step only one entry of A changes. The sets U, V,W can be easily
represented by first-order formulas. By inspection of Algorithm 1, it is easy to see
that each of the steps can be expressed by a first-order formula. By composition
of these formulas we can obtain first-order update formulas for B. It is important
to observe, that each vector from B yields one vector of B′. Therefore, the
numbering of vectors in B (2nd component of (p, i, j, a)) can be maintained.
Furthermore, at most one vector from V moves from K to B′ −K ′ and only u
might move from B −K to K ′. All other vectors stay in their part of the basis.
Therefore, R can be easily updated as well. This completes the description of the
dynamic program for MatrixRank. Its correctness follows from the correctness
of the underlying dynamic algorithm, that is, from Propositions 1 and 2. ⊓⊔

Remark 2. Due to the initial linear order, MatrixRank does not fit into the
domain independence framework of Theorem 8. To maintain matrix rank in
DynFO, we would need to build < incrementally when entries are inserted to the
matrix. However, when we use MatrixRank to maintain a domain independent
query, Theorem 8 yields a DynFO upper bound.

4.4 Reachability in DynFO

As described at the beginning of this section, the reachability query Reach
has a straightforward, and standard formalization in the dynamic complexity
framework. Now we can sketch the proof of the main result of this paper.

Theorem 1 (restated). Reach is in DynFO.

Proof. It is straightforward to transform the approach of Proposition 3 into
a dynamic program with arithmetic. The edge relation E can be viewed as an
adjacency matrix A for the graph, and nI−A and then B′|b′ can be easily defined
in first-order logic. We note that each change of one pair in E only changes one
entry in B′|b′. It thus suffices to maintain rank(B′|b′) by the program of Theorem
2 to maintain reachability from s to t. This shows Reach ∈ DynFO(+,×). As the
reachability query is domain independent, Theorem 8 yields the theorem. ⊓⊔

Remark 3. By a straightforward modification, the binary reachability query can
also be maintained. This query returns all pairs (u, v) of a graph, for which there
is a path from u to v. The above construction is basically done for each pair (u, v)
in the role of (s, t), at the cost of an arity increase by two for the non-arithmetic
auxiliary relations.

Remark 4. In the DynFO-framework considered here, elements cannot be re-
moved from the domain. Removal of edges is allowed in the FOIES-framework



of Dong, Su and Topor: when a node is not used in any edge, then it is removed
from the domain. The proof above can be adapted to this framework.

By simple reductions we obtain the following further results.

Theorem 9. (a) Regular path queries in directed labeled graphs can be main-
tained in DynFO.

(b) Conjunctions of regular path queries in directed labeled graphs can be main-
tained in DynFO.

(c) 2-SAT is in DynFO.

Proof. Towards (a) and (b), a labeled directed graph G = (V,E,Σ) is repre-
sented by a set V of nodes, an alphabet Σ of possible labels, and a ternary
relation E consisting of all triples (v, a, v′) for which there is an a-labeled edge
from v to v′.

For the maintainability in DynFO, the regular expression α is fixed and edges
in the graph may be added, deleted or relabeled. The question is whether, for two
nodes s and t, t is reachable from s via a (not necessarily simple) path, whose
label sequence yields a word in the regular language L(α). That such regular
path queries can be maintained in DynFO can be shown by the following simple
reduction to Reachability.

For a given regular expression α, we fix an NFA M = (Q,Σ, δ, q0, f)
for L(α) with a unique accepting state f . To maintain the query α in the
labeled graph G = (V,E,Σ), the algorithm maintains Reachability from (s, q0)
to (t, f) in the unlabeled graph G × M with node set V × Q and edge set
{
(

(v, q), (v′, q′)
)

| (v, a, v′) ∈ E, (q, a, q′) ∈ δ}. This reduction from RPQ α to
Reachability can be easily defined in first-order logic and each change in G
induces at most |Q| (and thus a bounded number of) changes in G ×M . Thus
we have the following result. Statement (b) follows as DynFO is closed under
Boolean operations.

For (c), instances of 2-satisfiability are represented as structures as follows.
The domain of a structure representing a formula ϕ is the set of variables of
ϕ. The clauses of ϕ are represented by three binary input relations CTT , CTF

and CFF such that a tuple (x, y) ∈ CTT corresponds to a clause x ∨ y, a tuple
(x, y) ∈ CTF to a clause x ∨ ¬y, and a tuple (x, y) ∈ CFF to a clause ¬x ∨ ¬y.

The 2-satisfiability problem can be easily maintained in DynFO using the
maintainability of reachability and the standard reduction from 2-satisfiability
to reachability. This reduction maps a formula ϕ with variables V to the graph
G = (V ∪ V ,E) where V = {¬x | x ∈ V } and E contains the edges ¬L → L′

and ¬L′ → L if L∨L′ is a clause in ϕ. It can be easily seen that ϕ is satisfiable
if and only if there is no variable x ∈ V such that there are both a path from x
to ¬x and a path from ¬x to x in G. Furthermore the modification of a single
clause in ϕ induces only two first-order definable modifications to the edge set
of the corresponding graph. ⊓⊔

Remark 5. The (informally presented) reduction from Reachability to matrix
rank (as well as the other reductions in this paper) can be formally defined



as bounded-expansion first-order reductions [27]. In a nutshell, a problem q is
bounded-expansion first-order reducible to another problem q′ if a single modifi-
cation in instances of q induces a bounded number of modifications in instances
of q′. If q is bounded-expansion first-order reducible to q′ and q′ is in DynFO

then q ∈ DynFO, as well.

4.5 Matching in non-uniform DynFO

The matching problem, like the MatrixRank problem, has not been studied
in dynamic descriptive complexity before. The query MaxMatching maps a
database with a single binary relation that represents a graph G to the set {k}
where k is the size of a maximum matching of G.

Theorem 3 (restated). PerfectMatching and MaxMatching are in non-
uniform DynFO.

Proof sketch. It suffices to show that MaxMatching is in non-uniform
DynFO. The idea is to advise a dynamic program with the weighting functions
w1, . . . , wn2

that assign weights such that for all graphs with n nodes there is
a maximum matching with unique weight. The advice is given to the dynamic
program via the initialization of the auxiliary relations. The program then com-
putes the ranks for the matrices BG,wi

and outputs the maximal such rank. We
make this more precise in the following.

Recall that the weighting functions assign values of up to 4n, and that there-
fore the determinant of each BG,wi

can be of size up to n!(24n)n ≤ 25n
2

, and
thus it is sufficient to maintain the rank of those matrices modulo up to 5n2

many primes, which are contained in the first n3 numbers by the prime number
theorem11. Such prime numbers and arithmetics in Zp can be expressed with
the help of triples over dom; and as before we use single variables for denoting
numbers ≤ n3. They represent three variables over dom.

When inserting an edge (i, j) into the graph G, the (i, j)-entry of BG,w is
set to 2wi,j for each of the weighting functions. Those values are too large to be
encoded as tuples of elements. However, as we are interested in maintaining the
rank of those matrices modulo small primes p only, it is sufficient to encode 2wi,j

modulo p (for all such primes p). Those values are the advice to the dynamic
program.

The dynamic program has an auxiliary relation W which is initialized with
all tuples12 (w, p, i, j, a) with 2wi,j = a modulo p.

The rank of a matrix BG,w for weighting function w can now be maintained
by extending the relations B, C, R and Q from the proof of Theorem 2 by an
additional argument for encoding the weighting (and also increasing the available
numbers from n2 to n3). For example, we maintain a relation B̂ that contains a
tuple (w, p, i, j, a) if p is a prime number and, in the run of the dynamic algorithm

11 We disregard small values of n as the query can be directly encoded with first-order
formulas for such values.

12 We note that such a tuple is 11-ary, as w, p and a represent triples.



for BG,w modulo p, the i-th vector of the basis has the j-entry a. Similarly for Ĉ,

R̂ and Q̂. All these relations can be updated as before, with the only difference
that when an edge (i, j) is inserted, then its weight modulo the primes p is looked
up in W , and used for the computations.

The relation Q̂ stores the rank of BG,w for each weight W . From this relation
the size of a maximum matching can be easily extracted by choosing the largest
rank achieved by some weighting function. ⊓⊔

5 Conclusion

The main technical contribution of the paper is that maintaining the rank of a
matrix is in DynFO(+,×). From this we derive that Reachability can be main-
tained in DynFO improving on both the complexity and uniformity of previous
results [17,5]. In the case of matching, we are able to prove only a non-uniform
bound. As exemplified by regular path queries and 2-SAT, the fact that Reach-
ability is in DynFO may help to show that many other queries and problems can
be maintained in DynFO. However, the DynFO bound obtained here does not
extend to all of NL, simply because DynFO is not known to be closed under even
unbounded first order projection reductions. We believe that also the approach
through Linear Algebra might yield further insights.

It seems worthwhile to reflect on the role of non-uniformity and isolation. The
NL/poly = UL/poly [30] result seems to indicate that isolation helps in solving
reachability by bringing in non-uniformity for general structures. [1] extends
this idea to Matchings and [3,6,7,4] confirm this philosophy by eliminating non-
uniformity in restricted structures such as planar/low genus graphs.

The situation after [5] was somewhat similar in the dynamic world. This work
changes that world view by avoiding isolation altogether for Dynamic Reacha-
bility. As a bonus it yields a dynamic upper bound better than [5] had obtained
through “traditional” methods. Not so surprisingly, maximum matching can also
be maintained in DynFO though non-uniformly. We believe that these bounds
can be translated to grid graphs using deterministic isolating weights [6] to show
a DynFO upper bound.

At this point the magic spring seems to dry up - the non-uniformity in the
case of general bipartite matching seems very hard to get rid of. The source of
hardness seems to be in isolating a witness for a shortest directed path. In fact
even given distance information13 we do not know how to obtain a witness. Para-
doxically this is a trivial problem in the bounded space world given a distance
oracle.

The search for a uniform reachability witness maintenance algorithm seems
to be the next question to ask. In fact we conjecture:

– A Reachability witness can be maintained in DynFO.
– A Shortest Path witness can be maintained in DynTC0.

13 Notice that it is known how to maintain distance in digraphs in DynTC0[17] and
undirected graphs in DynFO [15,25].



There are some further open questions related to the Reachability query it-
self. Altogether, our dynamic program for Reach uses 13-ary relations. It is
known from [10] that Reach is not in DynFO with only unary auxiliary rela-
tions. It remains open whether Reach can be expressed with relations of lower
arity, particularly, whether it is in binary DynFO. Another interesting question
is whether Reachability can be maintained by even weaker update mechanisms,
e.g. NC0-updates. Lower bounds for this fragment are conceivable. Yet, even
for the quantifier-free fragment of DynFO, which corresponds to restricted NC0-
updates, lower bounds are nontrivial. It is known that binary auxiliary relations
are not sufficient to maintain Reachability in this fragment of DynFO [34].
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