
ar
X

iv
:1

30
2.

31
09

v2
 [

cs
.F

L
]

 2
0

Fe
b

20
13

Reachability in Two-Clock Timed Automata is

PSPACE-complete

John Fearnley1 and Marcin Jurdziński2

1 Department of Computer Science, University of Liverpool, UK
2 Department of Computer Science, University of Warwick, UK

Abstract. A recent result has shown that reachability in two-clock
timed automata is log-space equivalent to reachability in bounded one-
counter automata [6]. We show that reachability in bounded one-counter
automata is PSPACE-complete.

1 Introduction

Timed automata [1] are a successful and widely used formalism, which are used in
the analysis and verification of real time systems. A timed automaton is a non-
deterministic finite automaton that is equipped with a number of real-valued
clocks, which allow the automaton to measure the passage of time.

Perhaps the most fundamental problem for timed automata is the reachability
problem: given an initial state, can the automaton perform a sequence of transi-
tions in order to reach a specified target state? In their seminal paper on timed
automata [1], Alur and Dill showed that this problem is PSPACE-complete. To
show hardness for PSPACE, their proof starts with a linear bounded automaton
(LBA), which is a non-deterministic Turing machine with a fixed tape length n.
They produce a timed automaton with 2n+1 clocks, and showed that the timed
automaton can reach a specified state if and only if the LBA halts.

However, the work of Alur and Dill did not address the case where the num-
ber of clocks is small. This was rectified by Courcoubetis and Yannakakis [4],
who showed that reachability in timed automata with only three clocks is still
PSPACE-complete. Their proof cleverly encodes the tape of an LBA in a single
clock, and then uses the two additional clocks to perform all necessary oper-
ations on the encoded tape. In contrast to this, Laroussinie et al. have shown
that reachability in one-clock timed automata is complete for NLOGSPACE, and
therefore no more difficult than computing reachability in directed graphs [7].

The complexity of reachability in two-clock timed automata has been left
open. The best known lower bound was given by Laroussinie et al., who gave
a proof that the problem is NP-hard via a very natural reduction from subset-
sum [7]. Moreover, the problem lies in PSPACE, because reachability in two-clock
timed automata is obviously easier than reachability in three-clock timed au-
tomata. However, the PSPACE-hardness proof of Courcoubetis and Yannakakis
seems to fundamentally require three clocks, and does not naturally extend to
the two-clock case. Naves [8] has shown that several extensions to two-clock

http://arxiv.org/abs/1302.3109v2

timed automata lead to PSPACE-completeness, but his work does not advance
upon the NP-hard lower bound for unextended two-clock timed automata.

In a recent paper, Haase et al. have shown a link between reachability in
timed automata and reachability in bounded counter automata [6]. A bounded
counter automaton is a non-deterministic finite automaton equipped with a set
of counters, and the transitions of the automaton may add or subtract arbitrary
integer constants to the counters. The state space of each counter is bounded
by some natural number b, so the counter may only take values in the range
[0, b]. Moreover, transitions may only be taken if they do not increase or de-
crease a counter beyond the allowable bounds. This gives these seemingly simple
automata a surprising amount of power, because the bounds can be used to
implement inequality tests against the counters.

Haase et al. show that reachability in two-clock timed automata is log-space
equivalent to reachability in bounded one-counter automata. Reachability in
bounded one-counter automata has also been studied in the context of one-clock
timed automata with energy constraints [2], where it was shown that the problem
lies in PSPACE, and is NP-hard. It has also been shown that the reachability
problem for unbounded one-counter automata is NP-complete [5], but the NP
containment proof does not seem to generalise to bounded one-counter automata.

Our contribution. We show that satisfiability for quantified boolean formulas
can be reduced, in polynomial time, to reachability in bounded one-counter
automata. Hence, we show that reachability in bounded one-counter automata
is PSPACE-complete, and therefore we resolve the complexity of reachability in
two-clock timed automata. Our reduction uses two intermediate steps: subset-
sum games and bounded counter-stack automata.

Counter automata are naturally suited for solving subset-sum problems, so
our reduction starts with a quantified version of subset-sum, which we call subset-
sum games. One interpretation of satisfiability for quantified boolean formulas
is to view the problem as a game between an existential player, and a universal

player. The players take in turns to set their propositions to true or false, and
the existential player wins if and only if the boolean formula is satisfied. Subset-
sum games follow the same pattern, but apply it to subset-sum: the two players
alternate in choosing numbers from sets, and the existential player wins if and
only if the chosen numbers sum to a given target. Previous work by Travers can
be applied to show that subset-sum games are PSPACE-complete [9].

We reduce subset-sum games to reachability in bounded one-counter au-
tomata. However, we will not do this directly. Instead, we introduce bounded
counter-stack automata, which are able to store multiple counters, but have a
stack-like restriction on how these counters may be accessed. These automata
are a convenient intermediate step, because having access to multiple counters
makes it easier for us to implement subset-sum games. Moreover, the stack based
restrictions means that it is relatively straightforward to to show that reacha-
bility in bounded counter-stack automata is reducible, in polynomial time, to
reachability in bounded one-counter automata, which completes our result.

2 Bounded one-counter automata

A bounded one-counter automaton has a single counter that can store values
between 0 and some bound b ∈ N. The automaton may add or subtract values
from the counter, so long as the bounds of 0 and b are not overstepped. This can
be used to test inequalities against the counter. For example, to test whether
the counter is larger than some n ∈ N, we first attempt to subtract n + 1 from
the counter, then, if that works, we add n+ 1 back to the counter. This creates
a sequence of two transitions which can be taken if, and only if, the counter
is greater than n. A similar construction can be given for less-than tests. For
the sake of convenience, we will include explicit inequality testing in our formal
definition, with the understanding that this is not actually necessary.

We now give a formal definition. For two integers a, b ∈ Z we define [a, b] =
{n ∈ Z : a ≤ n ≤ b} to be the subset of integers between a and b. A bounded
one-counter automaton is defined by a tuple (L, b,∆, l0), where L is a finite set of
locations, b ∈ N is a global counter bound, ∆ specifies the set of transitions, and
l0 ∈ L is the initial location. Each transition in ∆ has the form (l, p, g1, g2, l

′),
where l and l′ are locations, p ∈ [−b, b] specifies how the counter should be
modified, and g1, g2 ∈ [0, b] give lower and upper guards for the counter.

Each state of the automaton consists of a location l ∈ L along with a counter
value c. Thus, we define the set of states to be L × [0, b]. A transition ex-
ists between a state (l, c) ∈ S, and a state (l′, c′) ∈ S if there is a transition
(l, p, g1, g2, l

′) ∈ ∆, where g1 ≤ c ≤ g2, and c
′ = c+ p.

The reachability problem for bounded one-counter automaton is: starting at
the state (l0, 0), can the automaton reach a specified target state (lt, ct)? It has
been shown that the reachability problem for bounded one-counter automata is
equivalent to the reachability problem for two-clock timed automata.

Theorem 1 ([6]). Reachability in bounded one-counter automata is log-space

equivalent to reachability in two-clock timed automata.

3 Subset-sum games

A subset-sum game is played between an existential player and a universal

player. The game is specified by a pair (ψ, T), where T ∈ N, and ψ is a list:

∀ {A1, B1} ∃ {E1, F1} . . . ∀ {An, Bn} ∃ {En, Fn},

where Ai, Bi, Ei, and Fi, are all natural numbers.
The game is played in rounds. In the first round, the universal player chooses

an element from {A1, B1}, and the existential player responds by choosing an
element from {E1, F1}. In the second round, the universal player chooses an
element from {A2, B2}, and existential player responds by choosing an element
from {E2, F2}. This pattern repeats for rounds 3 through n. Thus, at the end
of the game, the players will have constructed a sequence of numbers, and the
existential player wins if and only if the sum of these numbers is T .

Formally, the set of plays of the game is the set:

P =
∏

1≤j≤n

{Aj , Bj} × {Ej , Fj}.

A play P ∈ P is winning for the existential player if and only if
∑

P = T .
A strategy for the existential player is a list of functions s = (s1, s2, . . . , sn),

where each function si dictates how the existential player should play in the ith
round of the game. Thus, each function si is of the form:

si :
∏

1≤j≤i

{Aj , Bj} → {Ei, Fi}.

This means that the function si maps the first i moves of the universal player
to a decision for the existential player in the ith round.

A play P conforms to a strategy s if the decisions made by the existential
player in P always agree with s. More formally, for each i in the range 1 ≤ i ≤ n,
we define Fi = P ∩

∏

1≤j≤i{Aj , Bj} to be the first i moves made by the universal
player. The play P conforms to a strategy s = (s1, s2, . . . , sk) if si(Fi) ∈ P , for
all i. Given a strategy s, we define the set of conforming plays to be Plays(s).
Note that, since the universal player makes exactly n choices, the set Plays(s)
contains exactly 2n different plays.

A strategy s is winning if every play P ∈ Plays(s) is winning for the existential
player. The subset-sum game problem is to decide, for a given SSG instance
(ψ, T), whether the existential player has a winning strategy for (ψ, T).

The SSG problem clearly lies in PSPACE, because it can be solved on a poly-
nomial time alternating Turing machine. A quantified version of subset-sum has
been shown to be PSPACE-hard, via a reduction from quantified boolean formu-
las [9]. Since SSGs are essentially a quantified version of subset-sum, the proof
of PSPACE-hardness easily carries over. See Appendix A for further details.

Lemma 2. The subset-sum game problem is PSPACE-complete.

4 Counter-Stack Automata

Outline. In this section we ask: can we use a bounded one-counter automaton to
store multiple counters? The answer is yes, but doing so forces an interesting set
of restrictions on the way in which the counters are accessed. By the end of this
section, we will have formalised these restrictions as counter-stack automata.

Suppose that we have a bounded-one counter automaton with counter c and
bound b = 15. Hence, the width of the counter is 4 bits. Now suppose that we
wish to store two 2-bit counters c1 and c2 in c. We can do this as follows:

c = 1 0 0 1

c2 c1

We allocate the top two bits of c to store c2, and the bottom two bits to store c1.
We can easily write to both counters: if we want to increment c2 then we add 4
to c, and if we want to increment c1 then we add 1 to c.

However, if we want to test equality, then things become more interesting.
It is easy to test equality against c2: if we want to test whether c2 = 2, then
we test whether 8 ≤ c ≤ 11 holds. But, we cannot easily test whether c1 = 2
because we would have to test whether c is 2, 6, 10, or 14, and this list grows
exponentially as the counters get wider. However, if we know that c2 = 1, then
we only need to test whether c = 6. Thus, we arrive at the following guiding
principal: if you want to test equality against ci, then you must know the values
of cj for all j > i. Counter-stack automata are a formalisation of this principal.

Counter-stack automata. A counter-stack automaton has a set of k distinct
counters, which are referred to as c1 through ck. For our initial definitions, we
will allow the counters to take all values from N, but we will later refine this by
defining bounded counter-stack automata. The defining feature of a counter-stack
automaton is that the counters are arranged in a stack-like fashion:

– All counters may be increased at any time.
– ci may only be tested for equality if the values of ci+1 through ck are known.
– ci may only be reset if the values of ci through ck are known.

When the automaton increases a counter, it adds a specified number n ∈ N

to that counter. The automaton has the ability to perform equality tests against
a counter, but the stack-based restrictions must be respected. An example of a
valid equality test would be ck = 3 ∧ ck−1 = 10, because ck−1 = 10 only needs
to be tested in the case where ck = 3 is known to hold. Conversely, the test
ck−1 = 10 by itself is invalid, because it places no restrictions on the value of ck.

The automaton may also reset a counter, but the stack-based restrictions
apply. Counter ci may only be reset by a transition, if that transition tests
equality against the values of ci through ck. For example, ck−1 may only be
reset if the transition is guarded by a test of the form ck−1 = n1 ∧ ck−2 = n2.

Formal definition. A counter-stack automaton is a tuple (L,C,∆, l0), where
L is a finite set of locations, C = [1, k] is a set of counter indexes, l0 ∈ L is an
initial state, and ∆ specifies the transition relation. Each transition in ∆ has the
form (l, E, I, R, l′) where:

– l, l′ ∈ L is a pair of locations,
– E is a partial function from C to N which specifies the equality tests. If E(i)

is defined for some i, then E(j) must be defined for all j ∈ C with j > i.
– I ∈ N

k specifies the how the counters must be increased,
– R ⊆ C specifies the set of counters that must be reset. It is required that
E(r) is defined for every r ∈ R.

Each state of the automaton is a location annotated with values for each of
the k counters. That is, the state space of the automaton is L × N

k. A state
(l, c1, c2, . . . , ck) can transition to a state (l′, c′1, c

′
2, . . . , c

′
k) if, and only if, there

exists a transition (l, E, I, R, l′) ∈ ∆, where the following conditions hold:

– For every i for which E(i) is defined, we must have ci = E(i).
– For every i ∈ R, we must have c′i = 0.
– For every i /∈ R, we must have c′i = ci + Ii.

A run is a sequence of states s0, s1, . . . , sn, where each si can transition to
si+1. To solve the reachability problem for counter-stack automata, we must de-
cide whether there is a run from (l0, 0, 0, . . . , 0) to a target state (lt, t1, t2, . . . , tk).

A counter-stack automaton is b-bounded, for some b ∈ N, if it is impossible
for the automaton to increase a counter beyond b. Formally, this condition re-
quires that, for every state (l, c1, c2, . . . , ck) that can be reached by a run from
(l0, 0, 0, . . . , 0), we have ci ≤ b for all i. We say that a counter-stack automaton
is bounded, if it is b-bounded for some b ∈ N.

Simulation by a bounded one-counter automaton. A bounded counter-
stack automaton is designed to be simulated by a bounded one-counter automa-
ton. To do this, we follow the construction outlined at the start of this section:
we split the bits of the counter c into k chunks, where each chunk represents one
of the counters ci. Note that the boundedness assumption is crucial, because
otherwise incrementing ci may overflow the allotted space, and inadvertently
modify the value of ci+1. See Appendix B for more details of the construction.

Lemma 3. Reachability in bounded counter-stack automata is polynomial-time

reducible to reachability in bounded one-counter automata.

5 Outline Of The Construction

Our goal is to show that reachability in bounded counter-stack automata is
PSPACE-hard. To do this, we will show that subset-sum games can be solved
by bounded counter-stack automata. In this section, we give an overview of our
construction using the following two-round QSS game.

(

∀ {A1, B1} ∃ {E1, F1} ∀ {A2, B2} ∃ {E2, F2}, T
)

.

For brevity, we will refer to this instance as (ψ, T) for the rest of this section.
The construction is split into two parts: the play gadget, and the reset gadget.

u1 e1 u2 e2 w1 w2

c1 + 1, c9 + A1

c2 + 1, c9 +B1

c3 + 1, c9 + E1

c4 + 1, c9 + F1

c5 + 1, c9 + A2

c6 + 1, c9 +B2

c7 + 1, c9 + E2

c8 + 1, c9 + F2

c9 = T

R(c9)

Fig. 1. The play gadget

The play gadget. The play gadget is shown in Figure 1. The construction
uses 9 counters. The locations are represented by circles, and the transitions are

represented by edges. The annotations on the transitions describe the increments,
resets, and equality tests: the notation ci+n indicates that n is added to counter
i, the notation R(ci) indicates that counter i is reset to 0, and the notation ci = n
indicates that the transition may only be taken when ci = n is satisfied.

This gadget allows the automaton to implement a play of the SSG. The
locations u1 and u2 allow the automaton to choose the first and second moves of
the universal player, while the locations e1 and e2 allow the automaton to choose
the first and second moves for the existential player. As the play is constructed,
a running total is stored in c9, which is the top counter on the stack. The final
transition between w1 and w2 checks whether the existential player wins the
play, and then resets c9. Thus, the set of runs between u1 and w2 corresponds
precisely to the set of plays won by the existential player in the SSG.

In addition to this, each outgoing transition from ui or ei comes equipped
with its own counter. This counter is incremented if and only if the corresponding
edge is used during the play, and this allows us to check precisely which play was
chosen. These counters will be used by the reset gadget. The idea behind our
construction is to force the automaton to pass through the play gadget multiple
times. Each time we pass through the play gadget, we will check a different play,
and our goal is to check a set of plays that verify whether the existential player
has a winning strategy for the SSG.

Which plays should be checked? In our example, we must check four plays.
The format of these plays is shown in Table 1.

Play u1 e1 u2 e2

1 A1 E1 or F1 A2 E2 or F2

2 A1 Unchanged B2 E2 or F2

3 B1 E1 or F1 A2 E2 or F2

4 B1 Unchanged B2 E2 or F2

Table 1. The set of plays that the automaton will check.

The table shows four different plays, which cover every possible strategy
choice of the universal player. Clearly, if the existential player does have a win-
ning strategy, then that strategy should be able to win against all strategy
choices of the universal player. The plays are given in a very particular order:
the first two plays contain A1, while the second two plays contain B1. Moreover,
we always check A2, before moving on to B2.

We want to force the decisions made at e1 and e2 to form a coherent strategy
for the existential player. In this game, a strategy for the existential player is
a pair s = (s1, s2), where si describes the move that should be made at ei. It
is critical to note that s1 only knows whether A1 or B1 was chosen at u1. This
restriction is shown in the table: the automaton may choose freely between E1

and F1 in the first play. However, in the second play, the automaton must make
the same choice as it did in the first play. The same relationship holds between
the third and fourth plays. These restrictions ensure that the plays shown in
Table 1 are a description of a strategy for the existential player.

w2 r′2 r2

r′1 r1

u1

t

c7 = 1, c8 = 0

R(c7, c8)

c7 = 0, c8 = 1

R(c7, c8)

c5 = 1, c6 = 0

c
5

=
1, c

6

=
1

R
(c

5 , c
6)

c3 = 2, c4 = 0

R(c3, c4)

c3 = 0, c4 = 2

R(c3, c4)

c1
=
2,
c2
=
0

c
1

=
2, c

2

=
2

R
(c

1 , c
2)

Fig. 2. The reset gadget

The reset gadget. The reset gadget, shown in Figure 2, enforces the constraints
shown in Table 1. The locations w2 and u1 represent the same locations as they
did in Figure 1. To simplify the diagram, we have only included meaningful
equality tests. Whenever we omit a required equality test, it should be assumed
that the counter is 0. For example, the outgoing transitions from r2 implicitly
include the requirement that c7, c8, and c9 are all 0.

We consider the following reachability problem: can (t, 0, 0, . . . , 0) be reached
from (u1, 0, 0, . . . , 0)? The structure of the reset gadget places restrictions on the
runs that reach t. All such runs pass through the reset gadget exactly four times,
and the following table describes each pass:

Pass Path
1 w2 → r′2 → r2 → u1
2 w2 → r′2 → r2 → r′1 → r1 → u1
3 w2 → r′2 → r2 → u1
4 w2 → r′2 → r2 → r′1 → r1 → t

To see why these paths must be taken, observe that, for every i ∈ {1, 3}, each
pass through the play gadget increments either ci or ci+1, but not both. This
means that the first time that we arrive at r2, we must take the transition directly
to u1, because the guard on the transition to r′1 cannot possibly be satisfied after
a single pass through the play gadget. When we arrive at r2 on the second pass,
we are forced to take the transition to r′1, because we cannot have c5 = 1 and
c6 = 0 after two passes through the play gadget. This transition resets both c5
and c6, so the pattern can repeat again on the third and fourth visits to r2. The
location r1 behaves in the same way as r2, but the equality tests are scaled up,
because r1 is only visited on every second pass through the reset gadget.

We can now see that all strategies of the universal player must be considered.
The transition between r2 and u1 forces the play gadget to increment c5, and

therefore the first and third plays must include A2. Similarly, the transition
between r2 and r′1 forces the second and fourth plays to include B2. Meanwhile,
the transition between r1 and u1 forces the first and second plays to include A1,
and the transition between r1 and t forces the third and fourth plays to include
B1. Thus, we select the universal player strategies exactly as Table 1 prescribes.

The transitions between r′1 and r1 check that the existential player is playing
a coherent strategy. When the automaton arrives at r′1 during the second pass, it
verifies that either E1 was included in the first and second plays, or that F1 was
included in the first and second plays. If this is not the case, then the automaton
gets stuck. The counters c3 and c4 are reset when moving to r1, which allows
the same check to occur during the fourth pass. For the sake of completeness, we
have included the transitions between r′2 and r2, which perform the same check
for E2 and F2. However, since the existential player is allowed to change this
decision on every pass, the automaton can never get stuck at r′2.

The end result is that location t can be reached if and only if the existential
player has a winning strategy for (ψ, T). As we will show in the next section, the
construction extends to arbitrarily large SSGs, which then leads to a proof that
reachability in counter-stack automata is PSPACE-hard. Note that all counters
in this construction are bounded: c9 is clearly bounded by the maximum value
that can be achieved by a play of the SSG, and reset gadget ensures that no
other counter may exceed 4. Thus, we will have completed our proof of PSPACE-
hardness for bounded one-counter automata and two-clock timed automata.

6 Formal Definition and Proof

Sequential strategies for SSGs. We start by formalising the ideas behind
Table 1. Recall that the table gives a strategy for the existential player in the
form of a list of plays. Moreover, the table gave a very specific ordering in which
these plays must appear. We now formalise this ordering.

We start by dividing the integers in the interval [1, 2n] into i-blocks. The
1-blocks partition the interval into two equally sized blocks. The first 1-block
consists of the range [1, 2n−1], and the second 1-block consists of the range
[2n−1 + 1, 2n]. There are four 2-blocks, which partition the 1-blocks into two
equally sized sub-ranges. This pattern continues until we reach the n-blocks.

Formally, for each i ∈ {1, 2, . . . , n}, then there are 2i distinct i-blocks. The
set of i-blocks can be generated by considering the intervals [k+1, k+2n−i] for
the first 2i numbers k ≥ 0 that satisfy k mod 2n−i = 0. An i-block is even if k
is an even multiple of 2n−i, and it is odd if k is an odd multiple of 2n−i.

The ordering of the plays in Table 1 can be described using blocks. There
are four 2-blocks, and A2 appears only in even 2-blocks, while B2 only appears
in odd 2-blocks. Similarly, A1 only appears in the even 1-block, while B1 only
appears in the odd 1-block. The restrictions on the existential player can also be
described using blocks: the existential player’s strategy may not change between
Ei and Fi during a i-block. We generalise this idea in the following definition.

Definition 4 (Sequential strategy). A sequential strategy for the existential

player in (ψ, T) is a list of 2n plays S = P1, P2, . . . , P2n , where for every i-block
L we have:

– If L is an even i-block, then Pj must contain Ai for all j ∈ L.
– If L is an odd i-block, then Pj must contain Bi for all j ∈ L.
– We either have Ei ∈ Pj for all j ∈ L, or we have Fi ∈ Pj for all j ∈ L.

We say that S is winning for the existential player if
∑

Pj = T for every
Pj ∈ S. Since a sequential strategy is simply a strategy written in the form of a
list, we have the following lemma. See Appendix C for further details.

Lemma 5. The existential player has a winning strategy if and only if the ex-

istential player has a sequential winning strategy.

The base automaton. We describe the construction in two steps. Recall, from
Figures 1 and 2, that the top counter is used by the play gadget to store the value
of the play, and to test whether the play is winning. We begin by constructing
a version of the automaton that omits the top counter. That is, if ck is the top
counter, we modify the play gadget by removing all increases to ck, and the
equality test for ck between w1 and w2. We call this the base automaton. Later,
we will add the constraints for ck back in, to construct the full automaton.

We now give a formal definition of the base automaton. Throughout this
definition, we keep consistency with the location and counter names used in
Figures 1 and 2. For each natural number n, we define a counter-stack automaton
An as follows. The automaton has the following set of locations

– For each i ∈ [1, n] we have a location ui and a location ei.
– We have two check states w1 and w2.
– For each i ∈ [1, n] we have two reset locations ri and r

′
i.

– We have a goal location t.

The automaton uses k = 2n + 1 counters. The top counter ck is reserved for
the full automaton, and will not be used in this construction. We will identify
counters 1 through 2n using the following shorthands. For each integer i, we
define ai = c4(i−1)+1, we define bi = c4(i−1)+2, we define ei = c4(i−1)+3, and we
define fi = c4(i−1)+4. Note that, in Figure 1, we have a1 = c1 and a2 = c5, and
these are precisely the counters associated with A1 and A2, respectively. The
same relationship holds between bi and Bi, and so on.

The transitions of the automaton are defined as follows. Whenever we omit
a required equality test against a counter ci, it should be assumed that the
transition includes the test ci = 0.

– Each location ui has two transitions to ei.
• A transition that adds 1 to ai.
• A transition that adds 1 to bi.

– We define un+1 to be a shorthand for w1. Each location ei has two transitions
to ui+1.

• A transition that adds 1 to ei.

• A transition that adds 1 to fi.

– Location w1 has a transition to w2, and w2 has a transition to r′n. These
transitions do not increase any counter, and do not test any equalities.

– Each location r′i has two outgoing transitions to ri.

• A transition that tests ei = 2n−i and fi = 0.

• A transition that tests ei = 0 and fi = 2n−i.

– We define r′0 to be shorthand for location t. Each location ri has two outgoing
transitions.

• A transition to u1 that tests ai = 2n−i and bi = 0.

• A transition to r′i−1 that tests ai = 2n−i and bi = 2n−i.

Runs in the base automaton. We now describe the set of runs are possible in
the base automaton. We decompose every run of the automaton into segments,
such that each segment contains a single pass through the play gadget. More
formally, we decompose R into segments R1, R2, . . . , where each segment Ri
starts at u1, and ends at the next visit to u1. We say that a run gets stuck

if the run does not end at (t, 0, 0, . . . , 0), and if the final state of the run has
no outgoing transitions. We say that a run R gets stuck during an i-block L
if there exists a j ∈ L such that Rj gets stuck. The following lemma gives a
characterisation of the runs in An. See Appendix D for further details.

Lemma 6. Let R be a run in An. R does not get stuck if and only if, for every

i-block L, all of the following hold.

– If L is an even i-block, then Rj must increment ai for every j ∈ L.

– If L is an odd i-block, then Rj must increment bi for every j ∈ L.

– Either Rj increments ei for every j ∈ L, or Rj increments fi for every

j ∈ L.

We say that a run is successful if it eventually reaches (t, 0, 0, . . . , 0). By
definition, a run is successful if and only if it never gets stuck. Also, the transition
from r1 to t ensures that every successful run must have exactly 2n segments.
With these facts in mind, if we compare Lemma 6 with Definition 4, then we
can see that the set of successful runs in An corresponds exactly to the set of
sequential strategies for the existential player in the SSG.

Since we eventually want to implement An as a bounded one-counter au-
tomaton, it is important to prove the An is bounded. We do this in the following
Lemma. See Appendix E for full details.

Lemma 7. Along every run of An we have that:

– ai and bi are bounded by 2n−i+1, and

– ei and fi are bounded by 2n−i.

The full automaton. Let (ψ, T) be an SSG instance, where ψ is:

∀ {A1, B1} ∃ {E1, F1} . . . ∀ {An, Bn} ∃ {En, Fn}.

We will construct a counter-stack automaton Aψ from An. Recall that the top
counter ck is unused in An. We modify the transitions of An as follows. Let δ
be a transition. If δ increments ai then it also adds Ai to ck, if δ increments bi
then it also adds Bi to ck, if δ increments ei then it also adds Ei to ck, and if δ
increments fi then it also adds Fi to ck. We also modify the transition between
w1 and w2, so that it checks whether ck = T , and resets ck.

Since we only add extra constraints to An, the set of successful runs in Aψ

is contained in the set of successful runs of An. Recall that the set of successful
runs in An encodes the set of sequential strategies for the existential player in
(ψ, T). In Aψ , we simply check whether each play in the sequential strategy is
winning for the existential player. Thus, we have shown the following lemma.

Lemma 8. The set of successful runs in Aψ corresponds precisely to the set of

winning sequential strategies for the existential player in (ψ, T).

We also have that Aψ is bounded. Counters c1 through ck−1 are bounded
due to Lemma 7, and counter ck is bounded by

∑

{Ai, Bi, Ei, Fi : 1 ≤ i ≤ n}.
This completes the reduction from subset-sum games to bounded counter-stack
automata, and gives us our main theorem.

Theorem 9. Reachability in bounded counter-stack automata is PSPACE-hard.

Corollary 10. We have:

– Reachability in bounded one-counter automata is PSPACE-complete.
– Reachability in 2-clock timed automata is PSPACE-complete.

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

2. P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and J. Srba. Infinite runs in
weighted timed automata with energy constraints. In Proc. of FORMATS, pages
33–47, 2008.

3. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms, Third Edition. The MIT Press, 2009.
4. C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in

real-time systems. Formal Methods in System Design, 1(4):385–415, 1992.
5. C. Haase, S. Kreutzer, J. Ouaknine, and J. Worrell. Reachability in succinct and

parametric one-counter automata. In Proc. of CONCUR, pages 369–383, 2009.
6. C. Haase, J. Ouaknine, and J. Worrell. On the relationship between reachability

problems in timed and counter automata. In Proc. of RP, pages 54–65, 2012.
7. F. Laroussinie, N. Markey, and P. Schnoebelen. Model checking timed automata

with one or two clocks. In Proc. of CONCUR, pages 387–401, 2004.
8. G. Naves. Accessibilité dans les automates temporisé à deux horloges. Rapport de

Master, MPRI, Paris, France, 2006.
9. S. Travers. The complexity of membership problems for circuits over sets of integers.

Theoretical Computer Science, 369(13):211–229, 2006.

A Proof of Lemma 2

Outline. A quantified version of subset-sum has already been shown to be
PSPACE-hard [9], and the proof easily carries over for the case of SSGs. For the
sake of completeness, we provide a direct proof that SSGs are PSPACE-hard,
which closely follows the ideas laid out in [9].

The proof follows the NP-hardness proof for subset-sum, taken from [3][The-
orem 34.10]. The key observation is that, if we begin with a quantified version
of 3-SAT, then we end up with an SSG.

Subset-sum is NP-hard. We now give a summary of the NP-hardness proof
given in [3][Theorem 34.10]. We will describe the reduction using a worked ex-
ample taken from [3]. Consider the following 3-CNF formula:

φ = C1 ∧ C2 ∧ C3 ∧ C4

C1 = (x1 ∨ ¬x2 ∨ ¬x3)

C2 = (¬x1 ∨ ¬x2 ∨ ¬x3)

C3 = (¬x1 ∨ ¬x2 ∨ x3)

C4 = (x1 ∨ x2 ∨ x3)

This formula has three variables, x1, x2, and x3, and four clauses, C1 through
C4. The reduction assumes that there is no clause Ci that contains both xi and
¬xi, because otherwise Ci would be always be satisfied.

The reduction constructs a subset-sum instance, which is described in the
following table:

x1 x2 x3 C1 C2 C3 C4

v1 = 1 0 0 1 0 0 1
v′1 = 1 0 0 0 1 1 0
v2 = 0 1 0 0 0 0 1
v′2 = 0 1 0 1 1 1 0
v3 = 0 0 1 0 0 1 1
v′3 = 0 0 1 1 1 0 0
s1 = 0 0 0 1 0 0 0
s′1 = 0 0 0 2 0 0 0
s2 = 0 0 0 0 1 0 0
s′2 = 0 0 0 0 2 0 0
s3 = 0 0 0 0 0 1 0
s′3 = 0 0 0 0 0 2 0
s4 = 0 0 0 0 0 0 1
s′4 = 0 0 0 0 0 0 2
t = 1 1 1 4 4 4 4

Each row should be read as a number written in decimal. For example, the first
row specifies the number v1 = 1001001. The subset-sum instance asks whether
there is a subset of rows v1 through s′4 that sums to row t.

The table is constructed according to the following rules. Each column is
labelled: the first three columns are labelled by the variables x1 through x3,
and the rest of the columns are labelled by the clauses C1 through C4. For each
variable xi we define two rows:

– vi has a 1 in column xi, and a 1 in every column Ci that contains xi.

– v′i has a 1 in column xi, and a 1 in every column Ci that contains ¬xi.

In addition to these, for each clause Ci we define two slack rows: the row si has
a 1 in column Ci, and the row s′i has a 2 in column Ci.

To see that this reduction works, suppose that we know a satisfying as-
signment of the CNF formula. We can use this to construct a solution to the
subset-sum instance. If xi is true in the satisfying assignment, then we select vi,
and if it is false then we select v′i. In doing so, we construct a subset with the
following properties:

– For each column xi, we have that the sum of that column is 1, because we
never select both vi and v

′
i.

– For each column Ci, we have that the sum of that column is at least 1,
because every clause must be satisfied.

– For each column Ci, we have that the sum of that column is at most 3,
because each clause contains exactly 3 variables.

These properties ensure that, for each column Ci, we can always select a subset
of the slack columns, si and s′i, so that the sum of the column is 4. Thus,
every satisfying assignment of the CNF formula corresponds to a solution of the
subset-sum instance.

For similar reasons, every solution of the subset-sum instance corresponds
to a satisfying assignment of the CNF formula, by simply ignoring the slack
rows. Since every column Ci must sum to 4, we know that after removing the
slacks, each column must sum to at least 1. This, combined with the fact that
vi and v

′
i cannot be selected at the same time, implies that we have a satisfying

assignment for the CNF formula.

See [3] for a full proof correctness of the NP-hardness reduction.

Changing the format. Our definition of an SSG requires a very specific format
for the input instance. In particular, each quantifier is associated with exactly two
natural numbers. However, the reduction that we have described can be written
down very naturally as a one-player SSG, in which only the existential player is
allowed to move. For our example, the instance is (V S1S2S3S4, t), where:

V = ∃ {v1, v
′
1} ∃ {v2, v

′
2} ∃ {v3, v

′
3},

Si = ∃ {si, 0} ∃ {s′i, 0}.

Note that it is valid to force the choice between vi and v
′
i, because no solution

of the subset-sum instance can contain both of these numbers.

Subset-sum games are PSPACE-complete. It is now easy to reduce a quan-
tified boolean formula to an SSG. We simply follow the existing reduction, but if
variable xi is universally quantified, then we use ∀{vi, v

′
i} rather than ∃{vi, v

′
i}.

For example, if we consider the quantified boolean formula ∀x1∃x2∀x3 φ, where
φ is defined as before, then we produce the quantified subset-sum instance
(V ′S1S2S3S4, t), where:

V ′ = ∀{v1, v
′
1} ∃{v2, v

′
2} ∀{v3, v

′
3},

and Si is defined as before. The final step is to ensure a strict alternation of
quantifiers, which the definition of an SSG requires. This can easily be achieved
by inserting “dummy” quantifiers, where necessary. That is, we can insert ∃{0, 0}
between two consecutive ∀ quantifiers, and we can insert ∀{0, 0} between two
consecutive ∃ quantifiers. This change obviously cannot affect the winner of the
SSG.

B Proof of Lemma 3

Let S = (L,C,∆, l0) be a b-bounded counter-stack automaton. Without loss
of generality, we will assume that b = 2n − 1, which means that each counter
in S is n bits wide. We will construct a bounded one-counter automaton B =
(L′, b′, ∆′, l′0) that simulates S. We will refer to the counters of S as c1 through
ck, and the counter of B as c.

We will follow the approach laid out at the start of Section 4. That is, we will
set the bound b′ = 2k·n − 1 so that c is k · n bits wide. We then partition these
bits in order to implement the counters c1 through ck. The counter ck will use
the n most significant bits, the counter ck−1 will use the next n most significant
bits, and so on.

We introduce some notation to formalise this encoding. Let x ∈ [0, b] be a
counter value for counter ci. We define Enc(x, i) = x · 2(i−1)·n. To understand
this definition, note that for i = 1, we have Enc(x, i) = x. Then, for i = 2, we
have that Enc(x, i) is the value of x bit-shifted to the left n times. Thus, this
definition simply translates x to the correct position in c.

We can now define the translation. We will set L′ = L and l′0 = l0, which
means that both automata have the same set of locations, and the same start
location. We will use the transitions in ∆′ to simulate S. For each transition
t = (l, E, I, R, l′) ∈ ∆, we construct a transition t′ = (l, p, g1, g2, l

′) ∈ ∆′ between
the same pair of locations. We want to have the following property: transition t
can be used from a state (l, c1, c2, . . . , ck) in S if and only if transition t′ can be
used from the state (l,

∑

i Enc(ci, i)) in B.
We begin by defining p. We set:

p =
∑

i/∈R

Enc(Ii, i)−
∑

i∈R

Enc(E(i), i).

In other words, for each counter i /∈ R that is not to be reset, we add Enc(Ii, i)
to c, which correctly adds Ii to ci. Note that the boundedness assumption on

S implies that the counters can never overflow due to this operation. For the
counters i ∈ R, we subtract E(i) from ci. Recall that E(i) must always be defined
for the indices i ∈ R. Furthermore, the transition may only be taken if ci = E(i).
Thus, subtracting E(i) from ci will correctly set it to 0.

Next we define the inequality tests. Let j be the smallest index for which
E(j) is defined. Our guards are:

g1 =
∑

i≥j

Enc(E(i), i),

g2 =
∑

i≥j

Enc(E(i), i) + Enc(1, j)− 1.

It is straightforward to show that, in our encoding scheme, we have ci = E(i)
for all i ≥ j if and only if g1 ≤ c ≤ g2.

If we are given a target state s = (t, c1, c2, . . . , ck) for S, then we can translate
it into a target state s′ = (t,

∑

i Enc(ci, i)) for B. The equivalence between the
transitions in ∆, and the transitions in ∆′ implies that s can be reached from
(l0, 0, 0, . . . , 0) if and only if s′ can be reached from (l′0, 0). This completes the
proof of Lemma 3.

C Proof of Lemma 5

Let s = (s1, s2, . . . , sn) be a winning strategy for the existential player. We define
a sequential winning strategy as follows. Recall that Plays(s) contains exactly 2n

plays. We argue that these plays can be ordered so that they form a sequential
strategy. We give an iterative procedure that achieves this task: the first step
of the procedure will ensure that the 1-blocks contain the correct plays, the
second step will ensure that the 2-blocks contain the correct plays, and so on.
In the first step, we observe that exactly 2n−1 of the plays contain A1, while
exactly 2n−1 of the plays contain B1, so we can order the plays so that the even
1-block contains all plays containing A1. Now suppose that we have found the
i-blocks. We observe that each i-block L has exactly 2n−(i+1) plays that contain
Ai+1. Therefore, for each i-block L, we can order the plays in L so that the even
(i + 1)-block has all plays that contain Ai+1, and the odd (i + 1)-block has all
plays that contain Bi+1. At the end of this procedure, we will have a list of plays
S = P1, P2, . . . , P2n where:

– Pj contains Ai whenever j is in an even i-block.
– Pj contains Bi whenever j is in an odd i-block.

So S satisfies the first two conditions of Definition 4. We argue that S also
satisfies the third condition. Let L be an i-block. By definition, for every j < i,
there is a unique j-block that contains L. These blocks define a play prefix
F ∈ Π1≤j≤i{Ai, Bi}, and, for each play Pj with j ∈ L, we have F ⊆ Pj . Since
S is a reordering of Plays(s), we must have si(F) ∈ Pj for every j ∈ L. Hence,

S satisfies Definition 4. Moreover, since s is winning, we have that every play in
Plays(s) is winning, and therefore S is a sequential winning strategy.

Now let S = P1, P2, . . . , P2n be a winning sequential strategy. We give a high
level description of a winning strategy for the SSG. At the start of the strategy
we set L0 = [1, 2n]. In each round i of the game, let Di ∈ {Ai, Bi} be the decision
made by the universal player. We select Li to be the unique i-block in Li−1 such
that Di ∈ Pj for all j ∈ Li. We play Ei if Ei ∈ Pj for all j ∈ Li, and we play
Fi if Fi ∈ Pj for all j ∈ Li. It is straightforward to encode this strategy in the
form s = (s1, s2, . . . , sn). By construction, when we play s, the outcome of the
game will be some play Pj from S. Since every play Pj in S is winning for the
existential player, we have that s is a winning strategy.

D Proof of Lemma 6

Let R be a run in An. The following lemma describes the set of reset states that
each segment of R must pass through.

Lemma 11. Let R be a run in An. Either:

– Rj visits precisely the reset locations {r′i, ri} for which j mod 2n−i = 0, or
– Rj gets stuck.

Proof. We will prove this lemma by induction over i. The base case, where
i = n, is trivial because j mod 2n−n is always equal to 0, and it is clear from the
construction that every segment Rj must always visit both r′n and rn.

For the inductive step, suppose that the lemma has been shown for i + 1,
and will show that the lemma holds for i. We know that, in order to reach r′i or
ri, a segment must first visit r′i+1. By the inductive hypothesis, we know that

only segments Rj with j mod 2n−(i+1) visit ri+1. At the start of R, we have
ai = bi = 0. On the first visit to ri+1, we clearly cannot take the transition
to r′i, because we have ai + bi = 2n−(i+1), and the transition to r′i requires
ai+bi = 2n−i. Thus, we either have to take the transition to u1, or we get stuck.
On the second visit to ri+1, we cannot take the transition to u1, because we
have ai + bi = 2n−i, and the transition to u1 requires ai + bi = 2n−(i+1). Thus,
either we get stuck, or we take the transition to r′i. The transition between ri+1

and r′i resets ai and bi. Thus, we can repeat the argument, and conclude that
locations r′i and ri are only visited by segments Rj where j mod 2n−i = 0. ⊓⊔

Having shown Lemma 11 it is now easy to prove Lemma 6. Let R be a run
of An. For the counters ai and bi, we have the following facts:

– At the start of the first i-block, we have ai = bi = 0.
– Each i-block contains exactly 2n−i segments. Each segment must increment

one of ai or bi, but not both.
– At the end of each odd i-block, we must take the transition from ri to u1 to

avoid getting stuck. This transition requires ai = 2n−i and bi = 0.

– At the end of each even i-block, we must take the transition from ri to r
′
i−1

to avoid getting stuck. This transition requires ai = 2n−i and bi = 2n−i, and
resets ai and bi to 0.

These facts imply that ai must be incremented during every run in an odd i-
block to prevent the automaton getting stuck, and bi must be incremented during
every run in an even i-block to prevent the automaton getting stuck. It can also
be verified that, if ai is incremented during every run in an odd i-block, and bi is
incremented during every run in an even i-block, then the automaton will never
get stuck at ri.

Similarly, for the counters ei and fi we have the following facts.

– At the start of the first i-block, we have ei = fi = 0.
– Each i-block contains exactly 2n−i runs. Each run must increment one of ei

or fi, but not both.
– At the end of each i-block, we must take one of the two transitions from r′i

to ri to avoid getting stuck. These transitions require that ei = 2n−i and
fi = 0, or ei = 0 and fi = 2n−i.

These facts imply that either ei is incremented during every run in an i-block, or
fi is incremented during every run in an i-block, or the automaton will get stuck
when moving from r′i to ri at end of the i-block. It can also be verified that, if
the automaton increases ei during every run in an i-block, then the automaton
will not get stuck moving from r′i to ri, and if the automaton increases fi during
every run in an i-block, then the automaton will not get stuck moving from r′i
to ri.

Note that, in An, it is only possible for R to get stuck at the locations r′i and
ri. Therefore, we have shown that R does not get stuck if and only if the three
conditions of Lemma 6 hold for R.

E Proof of Lemma 7

This lemma follows from Lemma 11. Let R be a run. Lemma 11 implies that the
transition from ri to r

′
i−1 is taken in every segment Rj such that j mod 2n−(i−1).

This transition resets both ai and bi to 0. Therefore, neither of these counters
may exceed 2n−(i−1). Similarly, Lemma 11 implies that every segment Rj such
that j mod 2n−i = 0 must move from r′i to ri. Both of the transitions from
between r′i and ri reset ei and fi, and therefore neither of these counters may
exceed 2n−i.

