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Abstract. We study time-dependent strategies for playing congestion
games. The players can time their participation in the game with the
hope that fewer players will compete for the same resources. We study
two models: the boat model, in which the latency of a player is influenced
only by the players that start at the same time, and the conveyor belt
model in which the latency of a player is affected by the players that
share the system, even if they started earlier or later; unlike standard
congestion games, in these games the order of the edges in the paths
affect the latency of the players. We characterize the symmetric Nash
equilibria of the games with affine latencies of networks of parallel links
in the boat model and we bound their price of anarchy and stability. For
the conveyor belt model, we characterize the symmetric Nash equilibria
of two players on parallel links. We also show that the games of the boat
model are themselves congestion games. The same is true for the games
of two players for the conveyor belt model; however, for this model the
games of three or more players are not in general congestion games and
may not have pure equilibria.

Keywords: Algorithmic game theory, price of anarchy, congestion games,
contention.

1 Introduction

In the last dozen years, the concepts of the price of anarchy (PoA) and stability
(PoS) have been successfully applied to many classes of games, most notably to
congestion games and its relatives [17,24,21]. In congestion games, the players
compete for a set of resources, such as facilities or links; the cost of each player
depends on the number of players using the same resources; the assumption is
that each resource can be shared among the players, but with a cost. Another
interesting class of games are the contention games [12] in which the players
again compete for resources, but the resources cannot be shared. If more than
one players attempt to share a resource at the same time, the resource becomes
unavailable and the players have to try again later. There are however interesting
games that lie between the two extreme cases of the congestion and contention
games. For example, the game that users play for dealing with congestion on a
network seems to lie in between—the TCP congestion control policy is a strategy
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of this game. Timing is part of the strategy of the players (as in contention
games) and the latency of a path depends on how many players use its edges (as
in congestion games).

In this work, we attempt to abstract away the essential features of these
games, to model them, and to study their properties, their Nash equilibria, and
their price of anarchy and stability. The games that we consider are essentially
congestion games with the addition of time dimension. The difference with con-
gestion games is that players now don’t simply select which path to use, but
they also decide when to initiate the transmission.

Consider a link or facility e of a congestion game with latency function �e. In
the congestion game the latency that a player experiences on the link is �e(k),
where k is the number of players that use the link. In our model however, in
which the players can also decide when to start, the latency needs to be redefined.
We define and study two latency models for the links:

The boat model: in which only the group of players that start together affect
the latency of the group: imagine that one boat departs from the source of
the link at every time step; all players that decide to start at time t enter the
boat which takes them to their destination; the speed of the boat depends
only on the number of players in the boat and it is independent of the players
on the other boats.

The conveyor belt model: in which the latency of a player depends on the
number of other players using the link at the same time regardless if they
started earlier or later. Specifically, the link is like a conveyor belt from the
source to the destination; the speed of the belt at every time depends on
the number of people on it. An interesting variant of this model is when the
player is affected only by the players that have been already in the link but
not by the players that follow; we don’t study this model in this work.

Notice that in the boat model, the order in which the players finish a link may
differ from the order in which they start. This, for example, can happen when
a player starts later but with a smaller group of people. This cannot happen in
the conveyor belt model.

In this work, we consider

– non-adaptive strategies, in which the players decide on their strategy in
advance. Their pure strategies consist of a path and a starting time.

– symmetric strategies.

Intuitively, in the boat model, the aim of the players is to select a path with
small latency and to avoid other players that start at the same time. In the
conveyor belt model the aim is similar but the players try to avoid other players
that start near the same time.

Related work. Contention resolution in communication networks is a problem
that has attracted the interest of diverse communities of Computer Science. Its
significance comes from the fact that contention is inherent in many critical
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network applications. One of them is the design of multiple access protocols
for communication networks, such as Slotted Aloha: According to it, a source
transmits a packet through the network, as soon as this packet is available. If
a collision takes place, that is, another source attempted to transmit simultane-
ously, the source waits for some random number of time slots and attempts to
retransmit at the beginning of the next slot. The increase of users of the net-
work incurs a large number of collisions and subsequently poor utilization of the
system’s resources.

During the last four decades many more refined multiple access protocols
have been proposed to increase the efficiency of Aloha, the vast majority of
which assume that the agents follow the protocol, even if they might prefer not
doing so. Recently, slotted Aloha has been studied from a game-theoretic point
of view, trying to capture the selfish nature of its users. Part of this work has
been done by Altman et al. [2,3]. The authors model slotted Aloha as a game
among the transmitters who aim at transmitting their stochastic flow, using
the retransmission probability that maximizes their throughput [2] or minimizes
their delay [3]. They show that the system possesses symmetric equilibria and
that its throughput deteriorates with larger number of players or arrival rate of
new packets. Things get better considering a cost for each transmission though.
Another slotted Aloha game is studied by MacKenzie and Wicker [18]. Here the
agents aim at minimizing the time spent for unsuccessful transmissions before
each successful one, while each transmission incurs some cost to the player. Their
game possesses a symmetric equilibrium, and some of its instantiations possess
equilibria that achieve the maximum possible throughput of Aloha.

Much of the prior game-theoretic work considers transmission protocols that
always transmit with the same fixed probability. In [12] and [11] the authors
consider more complex protocols (multi-round games), where a player’s trans-
mission probability is allowed to be an arbitrary function of his play history and
the sequence of feedback he has received, and propose asymptotically optimal
protocols. In [12], the authors propose a protocol which is a Nash equilibrium and
has constant price of stability, i.e., all agents will successfully transmit within
time proportional to their number. This protocol assumes that the cost of any
single transmission is zero. In [11] the case of non-zero transmission cost is ad-
dressed, and a protocol is proposed where after each time slot, the number of
attempted transmissions is returned as feedback to the users.

There is a lot of work on game theoretic issues of packet switching. For ex-
ample, [15] considers the game in which users select their transmission rate, [1]
considers TCP-like games in which the strategies of the players are the param-
eters of the AIMD (additive increase / multiplicative decrease) algorithm, and
[13] considers game-theoretic issues of congestion control. All these works are
concerned with the steady or long term version of the problems and they don’t
consider time-dependent strategies in the spirit of this work.

Routing in networks by selfish agents is another area that has been extensively
studied based on the notion of the price of anarchy (PoA) [17] and the price
of stability (PoS) [5]. The PoA and the PoS compare the social cost of the
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worst-case and best-case equilibrium to the social optimum. Selfish routing is
naturally modeled as a congestion game. The class of congestion or potential
games [22,20] consists of the games where the cost of each player depends on
the resources he uses and the number of players using each resource. The effect
of selfishness in infinite congestion games was first studied in [24] and of finite
congestion games in [8,6].

The above results concern classical networks or static flows on networks. Per-
haps the closest in spirit to our work are the recent attempts to study game-
theoretic issues of dynamic flows, or more precisely, of flows over time. In [16],
the authors consider selfish selection of routing paths when users have to wait in
a FIFO queue before using every edge of their paths; the waiting time is not part
of their strategy, but depends on the traffic in front of them. The same model
is assumed by [19] who considers the Braess’ paradox for flows over time. More
results appeared in [7] which gives an efficiently computable Stackelberg strategy
for which the competitive equilibrium is not much worse than the optimal, for
two natural measures of optimality: total delay of the players and time taken
to route a fixed amount of flow to the sink. In a slightly different model, [4]
considers game-theoretic issues of discrete-time models in which the latency of
each edge depends on its history. All these papers consider non-atomic conges-
tion games. In a different direction which involves atomic games, [14] considers
temporal congestion games that are based on coordination mechanisms [10] and
congestion games with time-dependent costs.

All these models share with this work the interest in game-theoretic issues
of timing in routing, but they differ in an essential ingredient: in our games,
timing is the most important part of the players strategy, while in the previous
work, time delays exist because of the interaction of the players; in particular,
in all these models the strategy of the players is to select only a path, while in
our games the strategy is essentially the timing. We view our model as a step
towards understanding games related to TCP congestion control; this does not
seem to be in the research agenda of game-theoretic issues of flows over time.

Short description of results. We first study structural properties of the boat
and conveyor belt games. In the next section, we characterize the symmetric
Nash equilibria and the optimal symmetric solution of the boat model game
for parallel links of affine latency functions and any number of players. From
these we get that the price of anarchy and stability is very low 3

√
2/4 ≈ 1.06.

We also study the class of conveyor belt games. These are more complicated
games and here we consider only two players and arbitrary latency functions
(for two players the class of affine and the class of arbitrary latency functions
are identical). The price of anarchy and stability is (for large latencies) again
approximately 3

√
2/4 ≈ 1.06. This is the price of anarchy we computed for the

boat model, but the relation is not as straightforward as it may appear: in the
boat model we take the limit as the number of players tends to infinity, while in
the conveyor model, we take the limit as the latencies tend to infinity.

To our knowledge, these games differ significantly from the classes of conges-
tion games that have been studied before. Also, the techniques developed for
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bounding the PoA and the PoS for congestion games do not seem to be applica-
ble in our setting. In particular, the smoothness analysis arguments [8,23,9] do
not seem to apply because we consider symmetric equilibria. In fact, the focus
and difficulty of our analysis is to characterize the Nash equilibria and not to
bound the PoA (or PoS).

The decision to study only symmetric strategies is based on the assumption
that these games are played by many players with no coordination among them.
We consider this work as a step towards the study of real-life situations such
as the TCP congestion control mechanism in which the players are essentially
indistinguishable and therefore symmetric.

In all the games that we study, there exists a unique symmetric equilibrium.
For this type of equilibria, the definition of the price of anarchy is uncomplicated:
We simply take the ratio of the cost of one player over the cost of one player of
the symmetric optimal solution. Since there is a unique Nash equilibrium, the
price of stability is equal to the price of anarchy.

Due to the space limitations, some proofs are omitted but can be found in the
full version of the paper. Moreover, the structural properties of the two models
are presented in short here, and are described in detail in the full version of this
work.

Formally, the games that we study here are the following: Let G be a network
congestion game with n players and latency functions �e(k) on its link e. We
define two new games based on G, the boat model game and the conveyor belt
game. The pure strategies of both new games of every player consist of one
strategy (path) of the original game and one non-negative time step t ∈ Z

+
0 .

Their difference lies in the cost of the pure strategies.
In the boat model, the cost of a player is simply t +

∑
e∈P �e(nt(e)), where

nt(e) denotes the set of players that also start at time t and use edge e. In the
conveyor belt model the cost is more complicated. It depends on the notion of
work: in a time interval [t, t+Δt] in which player i uses link e, it completes work
Δt/�e(k), where k is the number of players using the same link during this time
interval. A player finishes a link when it completes total work of 1 for this link;
the player then moves to the next link of its path.

The following theorem describes the nature of the time-dependent games.

Theorem 1. All boat games are congestion games. In contrast, only the 2-player
conveyor belt games are congestion games, and for 3 or more players there are
games that have no pure equilibria. Furthermore, the order of using the facilities
in conveyor belt games is important: a reordering of the edges of a path can result
in a different game.

2 Nash Equilibria of the Boat Model

In this section, we first consider symmetric Nash equilibria of n players for the
boat model of parallel links. We also compute the optimal non-selfish solution
and estimate the PoA.
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Nash equilibria computation. A pure strategy for a player is to select a link e and
a time t. A mixed strategy is given by probabilities pe,t with

∑
e,t pe,t = 1: the

player uses link e at time step t with probability pe,t. A set of probabilities pe,t
is a Nash equilibrium when a player has no incentive to change it to some other
values q. To find the Nash equilibria, we first estimate the latency de,t when the
player selects pure strategy (e, t):

de,t = t+

n−1∑

k=0

(
n− 1

k

)

pke,t (1− pe,t)
n−1−k �e(k + 1). (1)

Let d = mine,t de,t denote the minimum value. Then the probabilities define a
symmetric mixed Nash equilibrium if and only if pe,t > 0 implies d = de,t.

To find the Nash equilibria, the first crucial step is to show that the proba-
bilities in every link must be non-increasing in t. This is shown by the following
lemma which holds for arbitrary latency functions, not only for affine ones:

Lemma 1. If for every edge e the latencies �e(k) are non-decreasing in k, then
every symmetric Nash equilibrium is a non-increasing sequence of probabilities:
pe,t ≥ pe,t+1.

(The proof is omitted and can be found in the full version of the paper.)
We define the support of the Nash equilibrium to be the set of strategies

that have minimum latency: Se = {t : de,t = d}. Alternatively, we could have
defined the support to be the set of strategies with non-zero probability at the
Nash equilibrium; the two notions are similar but not identical in some cases.
Notice the convention de,he+1 > d = de,he , in the definition of the support. The
last lemma shows that the support Se of every link e is of the from {0, . . . , he}
for some integer he.

We now focus on affine latency functions, �e(k) = aek+ be, for which the cost
de,t in (1) takes a simple closed form:

de,t = t+ ae + be + (n− 1) ae pe,t, (2)

which shows that the probabilities of the Nash equilibria are of the form:

pe,t =

{
d−ae−be−t
(n−1)ae

for t ≤ he

0 otherwise
(3)

Observe that at every Nash equilibrium pe,t, the non-zero probabilities decrease
linearly with t. These probabilities are determined by the cost d of each player
and the integers he (one for each link). In fact, the parameters he are very tightly
related with the cost d of each player:

Theorem 2. There is a unique symmetric Nash equilibrium with support Se =
{t : 0 ≤ t ≤ he = �d − ae − be�}, where d is the expected cost of every player;
its probabilities are given by

pe,t =

{
d−ae−be−t
(n−1)ae

for t ≤ d− ae − be

0 otherwise
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The expected cost LNE = d of every player is the unique solution of the
equation

∑

e

(�d− ae − be�+ 1) (2(d− ae − be)− �d− ae − be�)
2(n− 1)ae

= 1. (4)

Its value is approximately

d ≈
∑

e
ae+be

2(n−1)ae
+

√(∑
e

ae+be
2(n−1)ae

)2

+
(∑

e
1

2(n−1)ae

)(
1−∑

e
(ae+be)2

2(n−1)ae

)

∑
e

1
2(n−1)ae

,

(5)

and as n tends to infinity this tends to
√

2n∑
e a−1

e
.

(The proof is omitted and can be found in the full version of the paper.)

The optimal setting. Let us now consider the optimal symmetric protocol. With
similar reasoning, the expected latency of a player is

LOPT =
∑

e

∞∑

t=0

pe,t

(
t+

n−1∑

k=0

(
n− 1

k

)
pke,t (1− pe,t)

n−1−k �e(k + 1)

)
=

∑

e

∞∑

t=0

pe,t de,t

We seek the probabilities pe,t with
∑

e,t pe,t = 1 which minimize the above
expression. We again focus on affine latencies. With �e(k) = ak + b, the above
expression has the following compact form LOPT =

∑
e

∑∞
t=0 pe,t (t+ ae + be +

(n − 1) ae pe,t). We minimize this subject to
∑

e,t pe,t = 1. Using a Lagrange
multiplier and taking derivatives, we get that the minimum occurs when the
probabilities have the form pe,t = (λ − ae − be − t)/(2(n − 1)ae), for some
constant λ, and pe,t = 0 when λ−ae− be− t ≤ 0. This means that they decrease
linearly with t until ce = λ − ae − be, when they become 0 and they remain
0 from that point on. Thus, the form of the optimal probabilities resembles
the form of the Nash equilibrium probabilities; the only difference is that the
optimal probabilities drop slower to 0 (the factors are 2(n − 1)ae and (n −
1)ae respectively). A similar bicriteria relation between the Nash equilibria and
the optimal solution has been observed in simple congestion games before [24].
Taking into account the constant term also we get,

Lemma 2. The set of probabilities of the optimal solution for latencies �e(k) =
aek + be is a Nash equilibrium for latencies �e(k) = 2aek + (be − ae).

Therefore the probabilities of the optimal solution are:

pe,t =

{
λ−ae−be−t
2(n−1)ae

t ≤ h∗
e

0 otherwise
(6)

where h∗
e = �λ − ae − be�, and the value of λ is the unique solution of the

equation
∑

e,t pe,t = 1. Thus, λ is determined by an equation similar to (4)
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(they essentially differ only in the denominator):

∑

e

(�λ− ae − be�+ 1) (2(λ− ae − be)− �λ− ae − be�)
4(n− 1)ae

= 1. (7)

From the probabilities we can compute LOPT . Observe that the optimal case
differs from the Nash equilibrium case of the previous subsection in that the
parameters λ and LOPT are distinct (while in the Nash equilibrium case they
are identical—equal to d).

As in the case of the Nash equilibrium, it is useful to define η∗e = λ− ae − be.
We can then compute the optimal latency: LOPT =

∑

e

∞∑

t=0

pe,t (t+ae+be+(n−1) ae pe,t)=
∑

e

(h∗
e + 1) (6η∗

e (η
∗
e + 2ae)− h∗

e(2h
∗
e + 6a+ 1))

24(n− 1)ae
.

To get an approximate estimate as n tends to infinity, we observe that λ is

approximately given by
∑

e
λ2

4(n−1)ae
≈ 1 which implies λ ≈ 2

√
n∑

e a−1
e

. From

this, we can find an approximate value for LOPT :

LOPT ≈ η∗e
3

6(n− 1)ae
≈

∑

e

λ3

6(n− 1)ae
=

4

3

√
n

∑
e a

−1
e

The price of anarchy. Comparing the value of LOPT to the cost d of the Nash
equilibrium, we see that the PoA and the PoS of the boat model on parallel links

with affine latency functions tends to 3
√
2

4 ≈ 1.06, as the number of players n
tends to infinity (while the parameters of the network remain fixed).

Theorem 3. For every fixed set of parallel links with positive ae and be, the
PoA (and PoS) tends to 3

√
2/4 ≈ 1.06, as the number of players n tends to

infinity.

However, for fixed number of players and because of the integrality of h and h∗,
the situation is more complicated. Figure 1 shows the PoA for typical values of
ae and n, for one link. The situation is captured by the following theorem:

Theorem 4. For one link and fixed number of players n, the PoA is maxi-
mized when ae = 1/(n − 1) and be = 0. For these values the NE is pure
(pe,0 = 1), but the optimal symmetric solution is given by the probabilities
pe,0 = 3/4 and pe,1 = 1/4. For these strategies we get LNE = d = n/(n − 1),
LOPT = (7n+ 1)/(8(n− 1)), and PoA= 8n/(7n+ 1).

To compare the cost LNE and LOPT we first investigate the solutions of the
equations (4) and (7) as functions of ae; since we care about the worst-case
PoA, we can safely assume that be = 0 because be ≥ 0 is added to both the
numerator and the denominator of the PoA.
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Fig. 1. PoA of the single-link boat games

For every nonnegative integer k, let us define Ak = k(k+1)
2(n−1) which are the

values of ae where the value d− ae becomes integral (equal to k). The following
lemma gives the solution of (4) for the intervals [Ak, Ak+1) where the integral
part of d− ae is constant. It also extends it to the optimal cost.

Lemma 3. For ae ∈ [Ak, Ak+1), LNE = n+k
k+1 ae +

k
2 .

For ae ∈ [Ak/2, Ak+1/2), LOPT = n+k
k+1 ae +

k
2 − k(k+1)(k+2)

48(n−1)ae
.

Proof. We first show that for ae ∈ [Ak, Ak+1) the value of d given by equation
(4) satisfies �d− aa� = k. It suffices to show that the value x = d− ae − k is in
[0, 1).

3 Nash Equilibria of the Conveyor Belt Model

We now turn our attention to the conveyor belt model, which is more complicated
than the boat model. In the conveyor belt model each link is like a conveyor belt
whose speed depends on the number of players on it. We only consider the case
of 2 players in this section. The cost ce(t, t

′) of a player for pure strategies (e, t)
when the other player starts using link e at time step t′ is computed using

fi = ti + �e(1) + max
(
0, (�e(2)− �e(1))

(
1− |t2−t1|

�e(1)

))
where ti, fi are the start

and finish times of player i respectively (see the full version for details).
To simplify the discussion, we assume that �e(1) is an integer; this does not

seem to really change the nature of equilibria, except perhaps when �e(1) < 1
which does not seem a very interesting case.

Nash equilibria computation. Consider a symmetric Nash equilibrium with prob-
abilities pe,t, the same for every player. It is a Nash equilibrium when a player
has no incentive to change his probabilities to different values. To find the Nash
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equilibria, we first compute the expected cost de,t of a player when he plays pure
strategy (e, t):

de,t =
∑

t′
ce(t, t

′) = t+ �e(1) + (�e(2)− �e(1))

�e(1)∑

r=−�e(1)

(
1− |r|

�e(1)

)
pe,t+r (8)

The probabilities define a symmetric mixed Nash equilibrium when probability
pe,t > 0 implies de,t = d = mine,t de,t.

We are interested in symmetric Nash equilibria, that is equilibria that occur
when all players use the same strategies. Let’s first establish a very intuitive fact:

Claim. If at the Nash equilibrium, positive probability is allocated to edge e,
then pe,0 > 0.

(The proof is omitted and can be found in the full version of the paper.)
The next lemma shows that the support Se = {t : de,t = d} of every mixed

Nash equilibrium is of the form {0, . . . , ĥe} for some ĥe.

Lemma 4. If for some t there exists s ≥ t with pe,t > 0, then t is in the support
Se, i.e. de,t = d.

(The proof is omitted and can be found in the full version of the paper.)
The previous lemma establishes that the support Se starts at 0 and is con-

tiguous. With this, we can now determine the exact structure of Nash equilibria.

Theorem 5. The Nash equilibria of the conveyor belt game of two players in
parallel links have probabilities

pe,t =

{
d−�e(1)−t
�e(2)−�e(1)

t ≤ d− �e(1) and
t

�e(1)
∈ Z

+

0 otherwise
(9)

where d is the expected cost of each player and it is the unique solution of the
equation

∑

e

(�ηe�+ 1)(2ηe − �ηe�)
2 �e(2)−�e(1)

�e(1)

= 1, (10)

where ηe = d/�e(1)− 1.

Proof. Consider some 0 < t < ĥe. Then from the definition of de,t we can

compute de,t+1 − 2de,t + de,t−1 = �e(2)−�e(1)
�e(1)

(pe,t−�e(1) − 2pe,t + pe,t+�e(1)). Since

for t ∈ {1, . . . , ĥe − 1}, all t− 1, t and t+ 1 are in the support Se, we have that
de,t−1 = de,t = de,t+1. In turn, this gives that the right-hand side is 0 and we
get that pe,t+�e(1) − pe,t = pe,t − pe,t−�e(1); this shows that if we consider times
that differ by �e(1), the probabilities drop linearly and more specifically that for
integers k, x: pe,k�e(1)+x − pe,x = k(pe,x+�e(1) − pe,x).

This linearity allows us to conclude that pe,t = 0 for every t which is not
a multiple of �e(1). To see this consider some x ∈ {1, . . . , �e(1) − 1} and the
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sequence pe,x−�e(1), pe,x, pe,x+�e(1), . . . , pe,x+k�e(1). This sequence is linear and
starts with a 0 (since x− �e(1) < 0) and ends again in 0 (if we take k such that

ĥe < x+ k�e(1) ≤ ĥe + �e(1)).
The above reasoning does not apply to the value x = 0, because pe,t+�e(1) −

pe,t = pe,t − pe,t−�e(1) only for t ∈ {1, . . . , ĥe − 1}. To summarize, the NE with

support {0, . . . , ĥe} have non-zero probabilities only on the multiples of �e(1).
This means that either the players start together, or they do not overlap, which
is exactly the property of the boat model. It follows, that for one link, the Nash
equilibrium is identical to the Nash equilibrium of the boat game with time
step expanded to �e(1). For more than one link, the time steps in each link are
different, because �e(1) are different. Nevertheless the analysis of the boat model
carries over to the conveyor belt model.

The proof now is essentially the same with the boat model, but with the
extra restriction that the time steps are not the same in all links. Since the
probabilities are non-zero only at integral multiples of �e(1), the latency becomes
de,t = t + �e(1) + (�e(2) − �e(1))pe,t when t is an integral multiple of �e(1). It
follows that the probabilities are as in (9). The cost d is determined by the
equation

∑
e,t pe,t = 1. Using the expressions for the probabilities, this equation

is equivalent to (10). This is identical to the equation for d for the boat model
and the argument about the uniqueness of the solution carries over.

The Optimal setting. Let’s now consider the optimal symmetric protocol. With
reasoning similar to that in the boat model and omitting the details (which can
be found in the full version of the paper), we get that the minimum occurs when

λ = t+ �e(1) + 2(�e(2)− �e(1))

�e(1)∑

r=−�e(1)

(
1− |r|

�e(1)

)
pe,t+r, (11)

for some λ. The factor 2 in the last term comes from the convolution in the
LOPT expression. We notice again the bicriteria property.

Lemma 5. The probabilities of the optimal solution for two players in the con-
veyor belt model of parallel links with latencies �e(k) is a Nash equilibrium for
latencies �′e(k) = 2�e(k)− �e(1).

Proof. By comparing equations (8) and (11) that determine the Nash equilibria
and the optimal solution, we see that the latencies must satisfy �′e(1) = �e(1)
and �′e(2)− �′e(1) = 2(�e(2)− �e(1)), which can be expressed as in the lemma.

Since the conveyor belt Nash equilibrium and optimal solution are very sim-
ilar to the ones of the boat model, the analysis of the price of anarchy is simi-
lar, and their expressions can be approximated well as the latencies �e(k) tend
to infinity. For one link, the cost d of the Nash equilibrium is approximately√
2�e(1)(�e(2)− �e(1)) while the optimal cost is 4

3

√
2�e(1)(�e(2)− �e(1)), which

shows that the price of anarchy tends to 3
√
24 ≈ 1.06, again. Since this is not

sufficiently different than the boat model, we omit the details.
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