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AbsWa~ 

We relate the logical and the automata theoretic approach to define sets of words, trees, and 
graphs. For this purpose a notion of "graph acceptor" is introduced which can specify 
monadic second-order properties and allows to treat known types of finite automata in a 
common framework. In the final part of the paper, we discuss infinite graphs that have a 
decidable monadic second-order theory. 

1. Introduction 

Many formalisms have been developed in theoretical computer science for specifying 
properties of words, trees, or graphs. The purpose of the present paper is to discuss and 
relate two of these approaches: the definition in certain logical systems and the recognition 
by finite automata. 

Let us recall, by an example, a classical theorem of Btichi [Bii60] and Elgot [El61] which 
establishes a bridge between logic and automata in the domain of finite words: Consider the 
property of (nonempty) words over the alphabet A = {0,1 } to contain no segment 00 and to 
end with 1. It can be specified by the finite automaton with the following state graph: 

o 

1 

For a logical description we identify a word al...an with the relational structure 
({ 1 . . . . .  n},S,P0,P1) where S is the successor relation on { I ..... n}, P0 = {i I ai = 0}, and P1 = 
{i 1 ai = 1}. This word model can be viewed as a vertex labelled graph. A sentence q~ in the 
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corresponding frrst-order language (with relation symbols S, P0, P1 besides equality) defines 
a set L(to) c {0,1 }+, containing the words whose associated graph satisfies t 0. For the 
example language above one may choose as defining sentence 

-,3x3y(Sxy ^ Po x ^ PoY) ^ qx(--,3ySxy ̂  PlX). 

In general, not only the first-order variables x,y,z .... but also variables X,Y,Z .... for sets of 
positions (and corresponding atomic formulas Xx, Xy,...) are admitted, i.e. we allow 
monadic second-order logic over the considered signature. The characterization result due 
to Biichi and Elgot states that a set L ~ {0,1 }+ i s recognized by a finite automaton iff it is 
monadic second-order definable in this signature. Subsequent work of Biichi [Bii61], Rabin 
[Ra69], and others showed that similar equivalences hold for sets of infinite words, sets of 
finite trees, and sets of infinite trees (see [Th90] for a survey). 

These equivalence results are remarkable for several reasons. Originally, they served to show 
decidability of interesting logical theories. (We return to this aspect in Section 5 of the 
paper.) Perhaps more important, they connect formalisms of very different nature: logical 
formulas which are built up inductively and have an inductively defined semantics, and 
"unstructured" automata which are not easily decomposed into meaningful constituents. In 
another view, one may regard automata (transition systems) as "programs" and monadic 
second-order logic as a specification formalism for their behaviour. The equivalence 
theorems state that there is a perfect match between specifications and programs, and the 
proofs yield transformations in both directions. Many applications and refinements have 
been obtained in the verification of finite state programs (now an own field of research), 
often referring to systems of temporal logic instead of classical quantifier logic. 

The essence of the transformations from logic to automata is the reduction of a g!obal 
description of words or trees (using quantifiers that range over the whole set of positions) 
to a description which refers only to local checking of consecutive letters (plus finite 
memory and acceptance condition). 

It is natural to ask for such a connection between monadic second-order logic and finite 
state recognizability in a more general context, in particular for classes of graphs. A next 
step starting from trees is the class of directed acyclic graphs (or the induced partial orders), 
which is also of special interest in the semantics of concurrency. 

In a series of fundamental papers, Courcelle has investigated the relation between monadic 
second-order logic and an algebraic notion of recognizability for graphs (see [Co90] for a 
survey). He introduces an algebra of graphs, using three basic operations which suffice for 
constructing arbitrary graphs: disjoint union, fusion of vertices, and renaming of vertices. To 
handle the latter, the considered graphs have distinguished vertices. A set of graphs is called 
recognizable if it is the inverse homomorphic image of a many-sorted graph algebra which 
is finite in each sort. Since infinitely many sorts are admitted (and necessary for building up 
natural graph sets like the set of grids), this recognizability has an infinitary feature; it is 
strictly more powerful in expressiveness than monadic second-order logic. 

In the present paper we pursue a complementary view: We stay inside monadic second-order 
logic, and try to approximate its expressive power "from below" using a notion of 
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recognition by finite state acceptors. We introduce an acceptor model which (1) generalizes 
known models of automata on words, trees, and directed acyclic graphs, (2) allows only to 
specify monadic second-order definable sets of graphs, (3) captures first-order logic when 
only single state acceptors are considered. The idea of "local tests" is realized in the form 
of "tiling by transitions"; this extends the notion of tiling as known from the literature on 
domino games (e.g. [LP81,Ha86]) and from work of Muller and Schupp [MS85] on the 
monadic theory of context-free graphs. 

In the final part of the paper we return to the original motivation in reducing logical 
formulas to finite automata: decidability of monadic second-order theories. We sketch some 
recent work which aims at extending Rabin's Tree Theorem (decidability of the monadic 
second-order theory of the unvalued binary tree) to more complex structures, especially to 
certain infinite graphs. 

The present treatment is a short summary, and several relevant aspects are not covered. For 
example, we do not discuss here the relation to graph grammars or to the theory of picture 
languages. 

2. Graph recognizability by tilings 

We consider directed graphs whose vertices and edges are labelled with symbols of finite 
alphabets A and B, respectively. Formally, these graphs are structures G = (V,E,13,oQ where 
V is a nonempty and finite set, E _c VxV, and ~:E --> B and ct:V ---) A are the valuations. It 
will be convenient to represent these graphs as relational structures, namely in the form 
(V,~b)be B,(Pa)aeA) where the E b are pairwise disjoint binary relations over V and the Pa are 
unary predicates which form a partition of V. The corresponding first-order or monadic 
second-order language has symbols for each of these predicates E b and Pa. As in model 
theory we distinguish graphs only up to isomorphism. 

For specifying graph properties by finite acceI~tors we start with the idea of "local tests" by 
transitions: a transition associates states with the vertices of a "local neighbourhood" in a 
graph, given by at least one vertex together with its adjacent vertices. If the admitted graph 
acceptors are finite, they should involve only finitely many transitions each of which is a 
finite object. Thus we consider only graphs whose degree is uniformly bounded by some 
constant k. If there is no bound to the degree of the vertices (number of adjacent vertices), 
one cannot in a direct way work with checks of local neighbourhoods by a finite recognition 
device. 

Let DGk(A,B ) be the class of finite directed graphs (V,(Eb)b~B,(Pa)a~A) as above, where for 
each vertex x there are at most k vertices y with (x,y) e E b or (y,x) e E b for some be B. We 
speak of graphs of degree k. 

2.1 Examples. (a) Words over an alphabet A: As in the introduction, a nonempty word 
w = al...a n can be represented by the graph ({1 ..... n},S,(Pa)a~A) where S is the successor 
relation on {1,...n} and Pa = {i I a i = a}. 
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(b) Trees over an alphabet A: A k-ary tree whose vertices are valued in A and where the 
successors of vertices are ordered, is represented in the form (V,(Ei)ie { l,...,k}, (Pa)a~A) where 
(x,y) e E i iff the i-th successor of x is y. 

(c) Grids: These are graphs of the form Gm,n = ({ 1 ..... m}x{1 ..... n},EI,E2) where the edge 
sets E 1 and F_~ are given by 

((x,y),(x+l,y)) ~ E1 for l<x<m, l<y<n, ((x,y),(x,y+l)) E F_~ for l<x<m, l<y<n 

and where we assume a trivial vertex valuation. 

We now turn to recognizability by graph acceptors. 

2.2 Definition. A finite graph acceptor over DGk(A,B) is a triple .~ = (Q,A,C) where Q is 
a finite set (of "states"), A is a finite set of connected graphs in DGk((QxA)uQ, B), called 
the set of transitions (or "tiles"), and C, called constraint, is a boolean combination of 
conditions of the form "there are > n copies of transition '~" (where "c e A). 

Roughly speaking, the graph acceptor (Q,A,C) accepts a graph G = (V~,13,o~) if G can be 
"tiled coherently" by transitions from A obeying the constraint C; here "coherence" means 
that the A- and B-values of the transitions agree with the valuation of the underlying graph 
G and, concerning the Q-values, by overlapping transitions only one state is associated with 
each vertex of G. In other words, the tiling should define some "run" p:V --~ Q. 

Fix G = (V,E,13,a) and let o:V ~ Q. Define the corresponding extended vertex valuation 
pxo~:V --> QxA by pxcx(x) = (p(x),cx(x)). We denote by G O the graph (V,E,13,pxcz). In order 
to describe the mentioned coherent tilings precisely, we introduce some terminology on 
subgraphs of Gp. A subgraph of Gp = (V,E,13,pxo0 is a graph G' = (V',E',13',(pxa)') where 
V' _c V, E'  = E n (V'xV'), and 13', (pxo~)' are the restrictions of 13, pxo~ to V'. Vertex 
x ~ V' is called a border vertex if there is an edge (x,y) or (y,x) in E with y ~ V'. The core 
of G' is the set of vertices of G' which are not border vertices. We write [G'] for the graph 
which results from G' by erasing the A-values for the border vertices; thus [G'] has a vertex 
valuation in (QxA)uQ. Let us say that G' matches the transition "c if [G'] and z are 
isomorphic (via a bijection preserving vertex and edge labels, hence mapping core to core 
and border to border). 

We say that Gp satisfies the condition "there are > n copies of x" if there are > n distinct 
occurrences of graphs [G'] isomorphic to x within G. Applied to boolean combinations of 
such conditions, this fixes the meaning of the statement "Gp satisfies the constraint C". 

2,3 Definition. The run p:V --~ Q of A = (Q,A,C) on G is called successful if 
(a) each vertex of V is in the core of a subgraph of Gp which matches some transition 

of A, 
(b) Gp satisfies the constraint C. 

Let us say that A acceots G if there is a successful run of A on G. Given a class G of 
graphs in DGk(A,B) and a graph set L c G, .fl recognizes L relative to G if for any graph 
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G ~ G, we have G ~ L iff A accepts G. Then L is called recognizable by filings (or short 
t-recognizable) relative to G. 

The above definition is influenced by the work of Muller and Schupp [MS85]. In their study 
of the monadic second-order theory of context-free graphs (see Section 5 below) they define 
graph properties by "forbidden patterns" and close these definitions by the boolean 
operations and projection (existential quantification). In the present set-up we start with one 
existential quantification immediately, postulating a "run", and for the expansion of a graph 
by a run work with "allowed patterns" (given by the transitions). This is in accordance with 
the general idea that nondeterminstic finite automata specify projections of local properties. 
(For example, the regular sets of words, resp. trees, are just the projections of locally 
testable sets.) The case where no projection is applied (which amounts to using acceptors 
with one state only) is discussed in Section 4. The reason for introducing core vertices (as 
opposed to border vertices) in transitions is to enable us to specify a local neighbourhood 
completely by a single transition, i.e. without skipping edges which may be covered by other 
transitions; again this will be useful in Section 4. 

2.4 Theorem. Any t-recognizable set of graphs in DGk(A,B ) is definable in monadic 
second-order logic (using the signature with equality, the binary predicate symbols E b for 
be B, and the unary predicate symbols Pa for a~ A). 

Proof Hint. The existence of a run is expressible by existential quantifiers over n disjoint 
vertex sets if n states are involved (the i-th set containing the vertices where the i-th state 
is assumed). The conditions (a), (b) of Definition 2.3 are easily formalized in first-order 
logic. 

We end this section with some remarks on graph acceptors applied to infinite structures, a 
subject which in the present paper is not treated in depth. Over infinite graphs, one should 
allow more general constraints, including conditions "there are infinitely many copies of 
transition x". Considering the case of ta-words (viewed as infinite graphs), one obtains 
variants of the known models of sequential Biichi automaton, Rabin automaton, and Muller 
automaton (see e.g. [Th90]), by using this type of constraint or certain boolean 
combinations of it. In the familiar definitions of these automata, the occurrence of states and 
not of transitions in a run is constrained; however, both versions yield file same expressive 
power. 

Over the trivially valued infinite grid (either with domain Z×Z or o~xta), graph acceptors 
define a generalization of tiling problems as known from the literature on domino games 
(e.g. [LP81], [Ha86]). A domino game is given by a finite set of quadratic tiles (or 
dominoes) with quadruples of "colors" (for the top, bottom, left, and right margin of a tile), 
and a tiling is a placement of copies of these dominoes on the euclidean plane (or one 
quadrant of it) such that adjacent colors coincide. Changing to the terminology of graph 
acceptors, quadruples of colors correspond to states, and dominoes correspond to transitions. 
These transitions have five vertices, namely a core vertex with its four neighbours, the 
central vertex is valued with a state and the trivial grid value, and the states of the 
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neighbottr vertices in a transition fit to the central state (e.g., the top component of the 
central state coincides with the bottom component of the state of the top neighbour). The 
standard constraints considered in the literature require that a certain domino be used at least 
once (the "origin constraint" over whole euclidean plane), or that a domino is used infinitely 
often ("recurring domino" in [Ha86]). If only a quadrant of the plane is considered, special 
transitions are introduced for the comer and margin positions, which amounts to an origin 
constraint. 

Tree automata with Bfichi acceptance or Rabin acceptance involve a more restrictive 
constraint than the requirement that certain transitions be used infinitely often in a run; 
instead the constraint applies to the individual paths of a run. An interesting question is to 
find suitable constraints on infinite graphs which have good logical properties (e.g. which 
allow closure under eomplementation). 

3. Recognizability within special classes of graphs 

Here we verify that relative to.some classes of graphs, the graph acceptors introduced above 
have the same expressive power as known models of finite state automata. 

3.1 Theorem. A set of words, resp. of trees of some bounded degree, is recognizable (by 
conventional finite automata, resp. finite tree automata) iff it is t-recognizable as a set of 
graphs. 

Proof Hint. The direction from right to left is clear from Theorem 2.4 and the 
characterization of recognizable word sets and tree sets in monadic second-order logic. It is 
instructive to explain the converse direction (which is also easy) for an example. We 
consider the automaton defined in the Introduction, It induces the following transitions in a 
corresponding graph acceptor (the pairs (state, vertex label) are simply written p0, pl, q0, 
ql; moreover, * indicates one of the two states p,q): 

(pO,q), (pl,p) 
(*,pO,q), (*,pl,p), (*,ql,p) 
(*,pl), (*,ql) 
(pl) for words of length 1, 

as initial transitions, 
as intermediate transitions, 
as final transitions, 

(p0,ql), (pl,pl) for words of length 2. 

For the word w = 01101, acceptance (with trivial constraint "true") is verified by covering 
w with these transitions in the following way (building up the run p q p p q): 

0 1 
(pO, q) 
(p, ql, 

(q, 

1 0 I 

P) 
pl, p) 

(p, po, q) 
(p, qI) 

Note that no initial or final states are used in graph acceptors. Since the initial and final 
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letter of a word can only be matched by special transitions (due to the distinction between 
core and border vertices), the information about initial and final states can be included in 
transitions. One also notes that over words the transitions of graph acceptors contain 
redundant components (the first component in the intermediate and final transitions). This 
is due to the linear structure of word graphs which allows to propagate the relevant 
information already via pairs of vertices. Another fact is also clear from the example: For 
the simulation of word automata (as well as tree automata), constraints are not needed; 
formally, we work with a trivially true condition. 

In contrast, we give a trivial example which shows that constraints are needed in general, if 
monadic second-order definable (or just first-order) properties are to be described. Consider 
the set of completely unconnected graphs in which there is a vertex labelled a and another 
one labelled b. The only transitions applicable to accept such graphs are of the form (qa), 
(qb). Without a constraint also the singletons valued a, resp. b, would be accepted. The 
reason for including more complex constraints will be clear in the next section. 

We call a graph acceptor elementary if it contains only transitions with just one core vertex 
and only edges which start or end in this vertex, excepting the transitions with empty border. 
Call a set recognized by an elementary graph acceptor e-recognizable. The example acceptor 
in Theorem 3.1 above is elementary. It turns out that all recognizable sets of words or trees 
are e-recognizable (relative to the class of word graphs, resp. tree graphs). 

The elementary graph acceptors are close to (and equivalent to) finite automaton models that 
have been considered on directed ac¥clic ~raphs ("dags"). We mention the pdag-antomata 
(working on planar dags) studied in [KS81] and [BDW]. In these papers, a vertex label is 
a doubly ranked symbol, where the two ranks fix the in-degree and out-degree of vertices 
carrying this symbol (i.e., the number of ingoing and outgoing edges). A transition for 
symbol "a" of rank (r,s) has the form (p,a,q) where p is an r-tuple and q an s-tuple of states. 
Runs are built up by associating a state with each edge (instead of each vertex). Without 
going into details here, we note that one can simulate these pdag automata by elementary 
graph acceptors in our sense. For this purpose, it is necessary to use a graph representation 
which determines an ordering of ingoing and outgoing vertices. This can be done by 
partitioning the edge set into sets Eij, where (x,y) e Eij iff (x,y) is the i-th edge with source 
x and the j-th edge with target y. Moreover, the assignment of states to edges has to be 
replaced by an assignment of state-tuples to vertices (using (r+s)-tuples for vertices with in- 
degree r and out-degree s). Our decision to use runs which are assignments of states to 
vertices is motivated by the formulation of acceptance in monadic second-order logic with 
quantification over vertex sets. 

We also mention briefly that the asynchronous automata considered in trace theory (see 
[Ma89]) can be viewed as elementary graph acceptors that work on dependency graphs 
associated with traces (dags in which the edge relation is determined in a certain way by the 
vertex labeling). This case is of particular interest, because by the deep theorem of Zielonka 
[Zi87] a reduction to deterministic acceptors is possible (relative to the class of dependency 
graphs of traces). It follows that a trace language is recognizable in the sense of [Ma89] iff 
its associated graph set is e-recognizable iff its associated graph set is monadic second-order 
definable. More details are given in [Th90a]. 
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Relative to the class of arbitrary directed acyclic graphs, however, the power of elementary 
graph acceptors is very limited, and one has to pass to more general graph acceptors: 

3.2 Example. (a) The set of grids Gm~ with vertex set {1 ..... m}×{1,2} (the set of 
"ladders") is not e-recognizable relative to the class of dags. 
(b) The set of grids Gin,2, the set of all grids, and the set of quadratic grids are t- 
recognizable relative to the class of finite graphs. 

Proof Hint. (a) Assume there is an elementary graph acceptor A which accepts exactly the 
set of grids GraB. For simplicity we suppose that there is no constraint; the general case 
works by the same idea but is more technical. If m is chosen sufficiently large, a successful 
run of A on Gm8 will have the same pair of transitions on a vertex pair ((i,0),(i,1)) and on 
((j,0),(j,1)) with i < j. Change the considered grid by modification of two edges: Replace the 
edge ((i,0),(i,1)) by ((i,0),(j,I)), and replace ((j,0),(j,i)) by ((j,0),(i,1)). Obviously the new 
graph is not isomorphic to a grid Gm,2 but still accepted by ~ a contradiction. (The new 
graph violates a first-order sentence which is true for grids, namely: "for any vertex x, a 
vertex reached from x via an El-edge and then an E2-edge coincides with the vertex reached 
from x via an E2-edge and then an El-edge". Since the negation of this condition can be 
checked by an elementary graph acceptor, the e-recognizable dag sets are not closed under 
complement w.r.t, the class of dags.) 

(b) We consider the grids Gm,n with m,n > 3. (The other cases need extra treatment similar 
to the words of length 1 or 2 in the example of Theorem 3.1.) For the grids Gm, n with 
m,n > 3, one may work with five states, to be used respectively for the bottom vertices, the 
top vertices, the left vertices (excepting top and bottom), the right vertices (excepting top 
and bottom), and all remaining vertices inside. The core of each transition is a square of 
four vertices, and the border contains the adjacent vertices in all possible 9 versions. We 
omit the details and also leave it to the reader to refine these transitions (by additional 
information along the diagonal) for specifying the quadratic grids. 

The set of grids clarifies the difference between graph acceptors and the algebraic approach 
to recognizability of CourceUe. Clearly there are only countably many t-recognizable sets of 
grids (each of which is recursive), whereas all subsets of the set of quadratic grids are 
recognizable in the sense of [Co90]. Presently it is not clear how far the two approaches 
diverge. Many nontrivial monadic second-order formulas can be translated to graph 
acceptors. But it remains open relative to which graph classes the graph acceptors exhaust 
the power of monadic second-order logic. The critical unsettled property is closure of t- 
recognizable sets under complement. By adapting an argument in [KS81, Thm 8.2], one sees 
that we cannot expect to obtain complementation by reducing the graph acceptors to 
deterministic ones. 

A question of independent interest is to analyze the emptiness problem for particular classes 
of graph acceptors. It is clearly undecidable if the set of grids can be specified, because in 
this case the halting problem for Turing machines can be coded in the emptiness problem, 
using the idea of the undecidability proof for the domino problem (see [LP81]). 
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4. First.order logic and single state graph acceptors 

If G = (V,(Eb)beB,(Pa)aeA)  is a graph (not necessarily finite) and xeV, define the n-sphere 
around x, written S(x,n), to be the subgraph of G whose vertices are those of distance < n 
to x (where edges may be traversed in both directions). Inductively, define the vertex set 
V(x,n) of S(x,n) by V(x,0) = {x}, and V(x,n+l) = V(x,n) u {yeV I 3z~V(x,n)3beB: 
(z,y)eE b or (y,z)eEb}. We call a subgraph obtainable in this manner a sphere. A key result 
in the first-order model theory of graphs, due to Hanf [Hf65], states that arbitrary first-order 
formulas can be reduced to local properties, provided the n-spheres are finite. Here we 
formulate it for (finite) graphs in DGk(A,B): 

4.1 Sphere Lemma. Let G and H be two graphs in DGk(A,B ). G and H satisfy the same 
first-order sentences of quantifier-depth n provided the following holds: G and H contain, 
for each m < n and each isomorphism type cr of a 3m-sphere, the same number < n.k r of 
spheres of type t~, or G and H both contain > n-k r spheres of type or, where r = 3 m+l. 

The proof given in [Hf65, Lemma 2.3] uses the "Ehrenfeucht-Fraiss6 game" for f'trst-order 
logic. A different approach and a more detailed analysis (by syntactic quantifier elimination) 
is presented by Gaifman [GAS2], focussing on finite graphs and giving applications in graph 
theory and set theory. Applications to infinite graphs were studied in the seventies by the 
(East) Berlin model theory group (Hauschild, Herre, Rautenberg, Seese, and others); see for 
example [HR72], or the bibliography [Mii87, p.100 ff.] for a list of references. 

Within the class of finite graphs, we conclude from the sphere lemma that the meaning of 
an arbitrary first-order formula amounts to a statement on the number of occur~nces of 
certain subgraphs, counted only up to some finite threshold. 

4.2 Corollary. In the class DGk(A,B ), a first-order sentence is equivalent to a boolean 
combination of sentences of the form 

tpn,H: "there are > n occurrences of H as a sphere". 

For word graphs, a sphere is a segment (or factor). The class of word languages that are 
determined by occurrences of finitely many given factors, counted up to a finite threshold, 
has been studied by Beauquier and Pin [BP89]; they call such languages locally threshold 
testable. Let us generalize this terminology to graphs in DGk(A,B), replacing word segments 
by spheres. Then 4.2 says: 

4.3 Corallary. A set of graphs in DGk(A,B) is definable in first-order logic iff it is locally 
threshold testable. 

An analysis of Definition 2.3 above shows that the graphs Gp which represent successful 
runs of a graph acceptor (i.e., satisfy (a) and (b) of Definition 2.3) form a locally threshold 
testable set. Therefore we have, by 4.3, 
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4.4 Corollary. 
(a) A set of graphs in DGk(A,B) is t-recognizable iff it is the projection of a first-order 

definable set of graphs. 
(b) A set of graphs in DGk(A,B ) is recognized by a graph acceptor with only one state 

iff it is first-order definable. 

Part (a) of the preceding result allows to restate the complementation problem for graph 
acceptors: Relative to which classes of graphs is the complement of a projection of a first- 
order property again a projection of a first-order property? Another interesting question asks 
for effective procedures which decide whether a monadic second-order property (or a 
projection of a first-order property) defines in fact a first-order, i.e. locally threshold testable, 
set. In the domain of words, a positive anwer is given by [BP89]. Already for trees the 
question is open. In the context of infinite words this problem is raised by Wilke [Wi91]. 

In monadic second-order logic, the transitive closures of the edge relations can be defined. 
(For words, this transitive closure is the linear ordering of the positions, for trees the partial 
tree ordering, and for dags the induced partial ordering.) In fh'st-order logic, the expressive 
power is increased when the transitive closure of the edge relation is included. For the class 
of words, this means to proceed from the locally threshold testable to the star-free 
languages, and special properties of word acceptors are known which characterize the star- 
free languages. For more general cases (like trees and dags) corresponding characterizations 
of acceptors are unknown. 

5. On infinite words, trees, graphs, and their monadic theory 

In this section we give a brief survey on some decidability results for monadic second-order 
theories. As mentioned in the Introduction, this was the original motivation for the attempt 
to reduce monadic second-order formulas to finite automata. We consider graphs G = 
(V,(Eb)I~B,(Pa)aeA) where V is infinite. The monadic second-order theory of G (short: the 
"monadic theory" of G) is the set of sentences in the monadic second-order language (for 
the signature under consideration) which hold in G. Biichi [Bii61] and Rabin [Ra69] proved 
decidability of SIS and $2S, the monadic theories of (o~,S) and ({ 1,2}*,SI,$2), where S is 
the successor relation on the set co of natural numbers, and SI, $2 are the two successor 
relations over { 1,2 }*. 

In order to discuss extensions of these results, we start with a statement for the case of one 
successor, assuming that the reader is familiar with B(ichi automata over o)-words. For a 
structure (co,S,P 1 ..... Pn) with Pi _c to, denote by w(P 1 ..... Pn) the a,'-word over {0,1 }n which has 
1 in the j-th component of position i iff i e Pj. Now the main result in [Bii61] states: 

For any monadic second-order formula ¢p(X 1 ..... Xn) in signature S with free set 
variables X 1 ..... X n one can construct a Biichi automaton A over {0,I }n such that for 
all P1 ..... Pn ~ co: 

(p holds in (o),S,P 1 ..... Pn) (with X i interpreted by Pi) iff A accepts w(P 1 ..... Pn)" 
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For a trivial predicate, say P = O, this yields decidability of S1S. Applied to any fixed 
predicate P c_ 03, one obtains that the monadie theory of (03,S,P) is decidable iff for an 
arbitrary Biichi automaton A it can be tested effectively whether A accepts w(P). For many 
sets P, the monadic theory of (03,S,P) has been shown decidable in this way (see [ER66], 
[Si69]). 

5.1 Theorem. ([ER66],[Si69]) The monadic theory of (03,S,P) is decidable for the 
following sets P: the set of factorial numbers, the set of powers of k (for any given k), the 
set of k-th powers (for any given k), and the value set of any polynomial with coefficients 
in 03. 

There are also simple recursive sets P for which the monadic theory of (03,S,P) is 
undecidable; the recursion theoretic complexity of such theories is analyzed in [Th78]. 

For the binary tree, expansions by fixed unary predicates did not attract much attention. 
More work was devoted to the step from trees to graphs. However, all known decidability 
proofs for monadic theories of infinite graphs still rest on a reduction to Rabin's Tree 
Theorem, and recent results of Seese [Se90] seem to indicate that this is necessarily so. 

An important example are the context-free graphs introduced by Muller and Schupp [MS85]. 
They are infinite graphs where one vertex is designated as "origin". (Keeping the framework 
of the present paper, this vertex may be represented formally by a singleton predicate.) 
Context-free graphs are characterized in many different ways: (1) by a finiteness condition 
(see [MS85], similar to regular infinite trees as the ones having only finitely many distinct 
subtrees), (2) in terms of deterministic graph grammars with "regular" rules (see [Ca90, 
p.99/I00]), (3) as transition graphs of pushdown automata (where each vertex represents a 
total state, i.e. a pair (automaton state, pushdown content)). For a clear exposition of these 
equivalences see [Ca90]. The name "context-free graph" refers to still another 
characterization, stating that they are the Cayley graphs of groups that have a context-free 
word problem (of. [BB90]). Intuitively speaking, context-free graphs "deviate in a finite 
manner" from the tree structure, and one might well be tempted to call them "regular infinite 
graphs" (which unfortunately would cause confusion). 

5.2 Theorem. ([MS85]) The monadic theory of a context-free graph is decidable. 

Courcelle [Co90] proves a still more general result, covering all equational graphs. These are 
obtained as solutions of graph rewriting systems and may have vertices of infinite degree. 
On th e other hand, by [Ca90], the equational graphs of bounded degree are the context-free 
o n e s .  

Do these results exhaust the graphs with a decidable monadic theory? A negative answer is 
provided by the following graph which is not context-free (also not equational). It is the 
transition graph Ges of a recognizer of the context-sensitive language {a~b~c ' I i~ 03}*. Ges is 
obtained from the binary tree by taking the leftmost branch with a-edges, using the 
rightmost branch with reversed edges labelled c, deleting the rest, and inserting, on the i-th 
level, i edges from left to right labelled b (for all i > 0). 
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5.3 Example. The monadic theory of Ges is decidable. 

The claim can be shown by an interpretation of the monadic theory of Ges in the monadic 
theory of a suitable structure (o~,S,P). For this purpose, number the vertices of Ges level by 
level from left to right. In this numbering, mark those numbers which correspond to left 
branch vertices of Gcs. The marked numbers are those of the form n(n+l)/2. Let P be the set 
of these numbers. Within (oxS,P), one can define the three edge relations of Gcs by monadic 
second-order formulas. By [Si69], the monadic theory of (o~,S,P) is decidable. It follows that 
the monadic theory of Gcs is decidable. 

Another approach to find graphs with a decidable monadic theory is to start with a graph 
where decidability is known and to apply a construction which preserves the decidability. A 
transfer result of this kind has been shown by Shelah and Stupp (stated in [Sh75], and 
proved in the unpublished [St75]). Roughly, the theorem states: if a structure 9,/" has a 
decidable monadic second-order theory, so has the "tree over 9,/", whose elements are the 
finite sequences over M. In the precise formulation we write, given x = (m 1 ..... mn) from M* 
and m~M, x^m for the sequence (m 1 ..... mn,m). 

5.4 Theorem. ([Sh75], [St75]) Let M =  (M,(Ri)i<r,(Pi)i<p) be a relational structure, where 
R i ~ MxM and Pi _c M. Define M *  = (M*,S,(Ri*)i<r,(Pi*)i<p) by 

S x y  iff for s o m e m e  M x ^ m = y  
Ri* x y iff there are z ~ M*, m,m'~M with x = zAm, y = z^m ', R i m m ' ,  
Pi* x iff there are z ~ M*, m ~ M with x = z^m and Pi m. 

If the monadic theory of Mis  decidable, so is the monadic theory of M*.  

A similar construction is the "unravelling" of a structure. Given M as in Theorem 5.4, 
define M '  = (M ,(R i )i<r,(Pi )i<p) by 

R i' x y iff there are z ~ M*, m,m'~ M with x = z^m, y = z^m^m ', R i m m', 
P i ' x  iff there a r e z ~  M * , m ~ M  with x = z ^ m ,  Pim. 

It is not known for which structures M we can conclude that M '  has a decidable monadic 
theory if M has. 

This question brings us back to the decision problem for the monadic theory of structures 
({1,2}*,S1,$2,P), expansions of the binary tree by fixed predicates. Courcelle raised the 
question whether the monadic theory of an "algebraic tree" is decidable. A (binary) algebraic 
tree can be regarded as a structure ({1,2}*,$I,$2,P) where P c {1,2}* is a set of words 
accepted by a pushdown automaton (see [Co83] for details). We can obtain an algebraic tree 
({ 1,2 } *,S 1,S2,P) by unravelling the transition graph of a pushdown automaton which accepts 
the language P (where the accepting total states form a designated subset). Thus an 
interesting case of the above question is to consider the monadic theory of structures M '  for 
context-free graphs 
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