
Automata For Modeling Real-Time
Rajeev Alur 1 David Dill 2

Department of Computer Science
Stanford University, U.S.A.

Systems

A B S T R A C T . To model the behavior of finite-state asynchronous real-time systems we
propose the notion of timed B~chi automata (TBA). TBAs are Biichi automata coupled with
a mechanism to express constant bounds on the timing delays between system events. These
automata accept languages of timed traces, traces in which each event has an associated real-
valued time of occurrence.

We show that the class of languages accepted by TBAs is closed under the operations of
union, intersection and projections, and the trace language obtained by projecting the language
accepted by a TBA is w-regular. It turns out that TBAs are not closed under complement,
and it is undecidable whether the language of one automaton is a subset of the language of
another. This result is an obstruction to automatic verification. However, we show that a
significant (proper) subclass represented by deterministic timed Muller automata (DTMA) is
closed under nit the boolean operations. Consequently, a system modeled by a TBA can be
automatically verified with respect to a specification given as a DTMA.

1 I n t r o d u c t i o n

Modal logics and w-automata for qualitative temporal reasoning about concurrent sys-
tems have been studied in great detail (selected references: [Ch74, WVS83, CES86,
Pn86, Di88, CDK89]). These formalisms abstract away from time, retaining only the se-
quencing of events in a system. In the automata-theoretic approach, a system is modeled
as a finite-state non-deterministic automaton on infinite strings (e.g. Bilchi automaton);
the language accepted by the automaton corresponds to the set of possible behaviors of
the system. The operations useful for describing complex systems can then be viewed as
language-theoretic operations. For example, parallel composition can be modeled using
projection and intersection. Furthermore, the verification problem - - whether every
possible behavior of an implementation is a member of the set of behaviors allowed by
the specification, now becomes the language inclusion problem. For Biichi au tomata
there are known effective constructions for intersection and complementation. Also the
language inclusion problem is decidable.

For a large class of systems - real-time systems, the system has to meet certain hard
real-time constraints (e.g. "the system should respond within 2 seconds"), and the cor-
rectness of the system depends on the actual values of the delays. For the analysis of
such systems we need to develop formalisms for quantitative temporal reasoning. System
designers have realized the need for such models, and several ways to extend the existing
formalisms have been suggested. Most of these at tempts are tailored to specific appli-
cations and do not handle concurrency in a general way. Also, this work is generally
somewhat ad hoc: questions such as formal semantics, soundness, expressiveness, and

1Supported by the NSF grant CCR-8812595, and the DARPA contract N00039-84-C-0211, and by
the USAF office of Scientific Research under contracts 88-0281 and 90-0057.

2Supported by the NSF grant MIP-8858807.

323

closure properties have not been addressed. This problem has received relatively little
attention from the theoreticians, though recently researchers have studied quantitative
temporal logics ([JM86, Ko89, AH90, ACD90, Le90]).

The first question to address is how to incorporate time explicitly in the underlying
formal semantics for processes. Most of the previous work on modeling real-time systems
has used two basic approaches. Discrete-time models use the domain of integers to model
time. This approach requires that continuous time be approximated by choosing some
fixed quantum a priori, which limits the accuracy with which the system can be modeled.
The fictitious clock approach introduces a special tick transition in the model. Here time
is viewed as a global state variable that ranges over the domain of natural numbers, and
is incremented by one with every tick transition (e.g. [AK83, AH90]). This model allows
arbitrarily many transitions of aay process between two successive tick transitions. The
timing delay between two events is measured by counting the number of ticks between
them. Consequently, it is impossible to state precisely certain simple requirements on
the delays such as "the delay between two transitions equals 2 seconds." Both these
models are used, despite their apparent inaccuracy, because they are straightforward
extensions of existing temporal models.

In this paper we use a different model. We choose a dense domain to model time,
and extend the trace semantics by associating with each event its time of occurrence.
This allows an unbounded number of environment events between any two events of a
system, and also allows a more accurate modeling of the timing delays in asynchronous
systems.

To model finite-state real-time systems we define timed automata. A timed automa-
ton is an 0>automaton with an auxiliary finite set of clocks which record the passage of
time. The clocks can be reset with any state-transition of the automaton. The timing
constraints are expressed by associating with the transitions enabling conditions which
compare clock values with time constants. When coupled with acceptance criteria, such
as Bfichi acceptance, timed automata accept timed traces, sequences in which every
element has an associated real-valued time.

Our work is based on the recent proposals by Dill ([Di89]) and Lewis ([Le89]) for
extending state-graphs with timing constraints based on a continuous model of time.
These papers provide a way of using the timing assumptions to verify qualititative
temporal requirements. Later works use these models as interpretations for the formulas
of branching-time real-time logics, and give model-checking algorithms ([ACD90, Le90]).

In this paper we use timed automata to define languages of (linear) timed traces, and
study their language-theoretic properties. We show that the class of languages accepted
by timed Bfichi automata (TBA) is closed under intersection and projections. Conse-
quently, there are effective constructions for operations such as parallel composition,
hiding, and renaming for processes modeled as sets of timed traces in this class.

Given a TBA we show how to construct a Bfichi automaton which accepts exactly
those traces to which times can be attached consistently with the timing constraints
of the given automaton. This gives an algorithm for deciding the emptiness of its lan-
guage, and allows using the information about the timing delays to verify qualitative
temporal requirements. However, the language inclusion problem is undecidable, which
poses problems for automatic verification of real-time requirements. We define the no-
tion of determinism for timed automata, and show that deterministic timed automata
can be complemented. In particular, we show that deterministic timed Muller automata

324

(DTMA) are closed under all the boolean operations (but not under projections). Con-
sequently, automatic verification is possible when a specification is expressed as a DTMA
and an implementation is modeled using TBAs.

Outline: In section 2 we develop the essential aspects of semantics of timed traces
for concurrent systems. In section 3 we define timed automata and discuss their closure
properties and decision problems. In section 4 we present the complementable subclass
of DTMAs, and show how it can be used for verification.

2 T i m e d t r a c e s e m a n t i c s

To define the semantics of real-time processes, we first define a simple trace semantics
for concurrent processes, and then introduce explicit time in the model.

2.1 Trace s e m a n t i c s for u n t i m e d processes

In trace semantics, we associate a set of observable events with each process (an example
event might be an assignment of a value to a variable, or arrival of a message), and model
the process by the set of all its traces. A trace is a (linear) sequence of events that may
be observed when the process runs. All events are assumed to occur instantaneously.
Hoare originally proposed such a model for CSP ([Ho85]). In our model we allow several
events to happen simultaneously, and consider both finite and infinite traces.

Formally, given a set A of events, a trace is a finite or infinite word over 7~+(A), the
set of all nonempty subsets of A. An untimed process is a pair (A ,X) , where A is the
set of its observable events and X _ ~O+(A)°° is the set of its possible traces. (For any
alphabet ~, ~o~ denotes the set of all finite and infinite strings over it.)

The projection of p e T'+(A) 0¢ onto A1 C A (written P[A1) is formed by intersecting
each event set in p with A1 and deleting all the empty sets from the sequence. Note that
the projection can be finite even if the original trace is infinite.

The following operations are helpful for constructing complex systems from the sim-
pler ones :

• Pa ra l l e l C o m p o s i t i o n : Given P1 : (A~,)(1) and P2 : (A2, X2), their com-
position P1 It P2 is a process with the event set A1 U As and trace set
{p E ~+(A1 U Al) ~ : prA, e X, A P[A, E X2}).

• H i d i n g : Given a process P : (A,X) and an event a E A, P \ a i s the
process (A - {a}, {PP(A-{~}) : P e X}).

• Event renaming : Given event sets A and A', a process P : (A,X), and a
bijective renaming map # : A --* A', #(P) is (A', {#(p) : p e X}) (where
is naturally extended to event sets, and then extended pointwise to
finite and infinite sequences).

2.2 T i m e d traces

An untimed process models the sequencing of events but not the actual times at which
the events occur. Timing can be added to a trace by coupling it with a sequence of
real-valued times. We are interested only in the delays between the successive events,
but, for convenience, we adopt the convention of assigning time 0 to the first event of a

325

trace. We will use R to denote the set of nonnegative real numbers. The results of this
paper still apply if we choose any other dense linear order, instead of R, to model time.

A time sequence r is a finite or infinite sequence over R satisfying the following
constraints:

• Initiality: T begins at time 0; that is, r(0) = 0.
• Monotonicity: T increases strictly monotonically; that is,

for all i > 0, , (i) < r (i + 1).
• Progress: For every t E R, there is some i such that T(i) > t.

The progress condition implies that only a finite number of events can happen in a
bounded interval of time.

A timed traceover an alphabet E is a pair (fl, T) where p E E °°, T is a time sequence,
and p and T are of equal length (infinite sequences are considered to have length w). A
timed language over E is a set of timed traces over E. A timed process is a pair P : (A, L)
where L is a timed language over P+(A).

The operations on untimed processes are extended in the obvious way to timed
processes: the projection of a timed trace deletes events from p and leaves T unchanged,
unless the element in p becomes empty, in which case that element and the corresponding
time are deleted. The definitions of parallel composition, hiding, and renaming are as
before, except that they use the projection for timed traces. The times associated
with events can be discarded by the Untime operation: Untime[(A, L)] is defined to be
(A,{p E E ¢¢ : 3 time sequence , such that (p,r) E L}).

Note that, in general, Untime(P1 tl P2) C Untime(P1) Ii Untime(P2) (they are not
necessarily equal). In other words, the timing information retained with the traces
constrains the set of possible traces when two processes are composed (which is why
they are interesting).

3 T i m e d a u t o m a t a

Processes whose behaviors are regular are especially interesting because they can be
represented using finite automata. The operations on processes can be implemented
using standard constructions on the automata, and the inclusion problem is decidable.
This forms a basis for automatic verification of finite-state concurrent systems, such as
certain hardware devices and communication protocols.

3.1 w - a u t o m a t a a n d u n t i m e d p r o c e s s e s

An w-automaton is essentially the same as a non-deterministic finite-state automaton,
but with the accepting condition modified suitably so as to handle infinite input words
also. These automata provide a finite representation for regular trace sets. Various types
of w-automata have been studied in the literature ([Bii62, Mc66, Ch74]). In this paper
we will consider two types of w-automata: Bfichi automata and Muller automata.

We consider w-automata with ~-transitions, which accept both finite and infinite
traces; this is non-standard, but all of the basic results for these automata continue to
hold (as do the constructions, with small modifications).

An w-automaton M is a tuple (E, S, So, E t, where E is the input alphabet, S is a finite
set of automaton states, So C S is a set of start states, and E C S × S × [E U {~}] is a set

326

of edges. If (s,s/,~r) E E then the automaton can change its state from s to s' reading
the input symbol a.

s I pt
G i v e n p e ~ , we say that r : So po sl p l s2 2> . . . is a run of M over p,

provided

• the input word read is p: p' is an infinite sequence over [~ (3 {¢}] such that
p is pt with all v's removed, and

• the run satisfies proper consecution requirements: for each i >_ 0, there is
an edge in E from state s~ to s~+l with label p~.

Furthermore, r is called an initialized run if so is a start state.
A Biichi automaton M is an w-automaton with an additional set F C_. S of accepting

states. A run r of M over a word p E ~ is an accepting run if for infinitely many i's,
s~ E F. The language L(M) accepted by M consists of the traces p E ~oo such that M
has an initialized accepting run over p.

A finite-state (untimed) process with event set A is modeled using a Bi~chi automaton
over 7:'+(A) (it is convenient to identify the empty event set with v). S corresponds to
the states of the system, and E gives its transitions. The purpose of the accepting set F
is to restrict at tention to only the fair runs. For example, in a system with two processes
we consider only those computation sequences in which each process executes infinitely
often.

The class C of finite-state processes comprises of processes of the form (A, X) where
X = L(M) for some Biichi automaton M over T'+(A).

Given a B~ichi automaton M we can construct a finite automaton which accepts
precisely the finite words accepted by M, and an v-free Biichi automaton accepting pre-
cisely the infinite words accepted by M. From the known results it follows that Biichi
automata are (effectively) closed under union, intersection, projections and complemen-
tation ([Ch74, WVS83]). As a consequence we have the following useful results:

Fac t : The class C of processes is closed under parallel composition, hiding, and renam-
ing.
P r o o f : First we consider parallel composition of two processes P~ (i = 1, 2) with event
sets Ai and represented as Biichi automata M~. First expand the event set of each au-
tomaton to the union of the two event sets. This can be done by replacing each edge
{s, s', a) of M~ by a set of edges of the form (s, s', a'} such that a ' V~ A~ = a. Now that the
alphabet of both the automata is :P+(A1 O A2), parallel composition reduces to language
intersection, and can be implemented by a product construction for Bfichi automata
([wvs83]).

Hiding of an event corresponds to removing it from every edge label in which it
appears. Since our automata have e-edges this poses no problem. Renaming can be
done by renaming events in all the edge labels. []

Fac t : The inclusion problem for the class C is decidable.
P r o o f : To test whether the language of one automaton is contained in the other, we
check for emptiness of the intersection of the first automaton with the complement of
the second, using known constructions for complementing Biichi automata ([SVW87,
Sa88]). To test for emptiness, we need to search for a cycle that is reachable from a start
state and includes at least one final state. []

327

Complementing a Bfichi automaton involves an exponential blow-up in the number
of states, and hence the complexity of checking for inclusion is exponential. However,
checking whether the language of one automaton is contained in the language of a
deterministic automaton can be done in polynomial time ([CDK89]).

An w-automaton M is deterministic iff there is a single start state, and for every
state s and every symbol a, the number of edges starting at 8 and labeled with either
a or e is at most 1. Thus, a deterministic automaton has at most one run over any
word. It turns out that , unlike the automata on finite strings, the class of languages
accepted by deterministic Bfichi automata is strictly smaller than that accepted by their
non-deterministic counterparts. Muller automata defined below avoid this problem at
the cost of a more complicated acceptance condition.

A Muller automaton M is an w-automaton with an acceptance family 5 r C_ 2 s. A run
r of M over a word p is an accepting run iff the set of states repeating infinitely often
along r equals some set in 9 r . The language accepted by M is defined as in case of Bfichi
automata.

The class of languages accepted by Muller automata is the same as that accepted
by Bfichi automata, and also equals that accepted by deterministic Muller automata.
Algorithms for constructing the intersection of two Muller automata and for checking
the language inclusion are known ([CDK89]). Hence, one can possibly use deterministic
Muller automata as a representation for the processes in C.

3 . 2 T i m e d a u t o m a t a

In this section we extend w-automata to timed automata accepting timed languages.
With each w-automaton we associate a finite set of (real-valued) clocks. A clock can
be set to zero simultaneously with any transition of the automaton. At any instant,
the reading of a clock equals the time elapsed since the last time it was set. With
each transition we associate an enabling condition which compares the current values
of the clocks with t ime constants. Before we define the timed automata formally, let us
consider some examples of timed B~chi automata.

E x a m p l e 1 : The following automaton over the alphabet {a, b} accepts the t imed
language 3i.Vj > i. 2j+1 < + 2}.

~ a, reset(x)
27 @

The start state is So, s2 is the accepting state, and there is a single clock x. The clock is
set on the transition from s2 to s3, and the transition from s3 to s2 is enabled only if the
t ime elapsed since then is not greater than 2. Interpreting b as the response to a request
a, the automaton models a system in which the response time is eventually always less
than 2 seconds. •

E x a m p l e 2 : The language accepted by the following automaton over {a} is {(a ~, r) :
3i,j : r~ = Ti + l}.

,, a

reset(x) ~-p x = 1? ~

The star t state is So, and 82 is the accepting state. •

328

Thus the mechanism of resetting a clock with one transition, and associating with
another transition an enabling condition which compares the value of this clock with
some time constant, expresses a bound on the delay between the two transitions. Note
that clocks can be set asynchronously of each other. Also arbitrarily many events can
occur in a finite interval of time. The finiteness of the number of clocks corresponds to
the assumption that the future behavior of a process depends on only a finite number
of delays.

Before we give the definition of timed automata, we need to develop some notation.
Let N = {0 ,1 ,2 . . . } be the set of time constants. For a set X of clocks, O(X) denotes the
set of formulas constructed from the atomic formulas of the form x < c or c < x, where
x E X and c E N, using the logical connectives. A t ime ass ignment for X assigns a real
value to each clock. The formulas in ~5(X) can be interpreted over the time assignments
for X in the obvious way. For a time assignment u for X, and t E R, u + t denotes
another time assignment which maps a clock x in X to the value ~,(x) + t. For X t _C X,
[X t ~-~ t]u denotes an assignment for X which assigns t to each x E X t, and agrees with
u over the rest of the clocks.

A t imed automaton is a tuple (E, S, So, C, E), where E, S, and So are the same as in
an w-automaton, C is a finite set of clocks, and E C_ S x S x [E U {~}] × 2 c x ¢(C) gives
the set of transitions. An edge (s, s t, ~r, A, 5) represents a transition from state s to state
s t on input symbol a. A gives the set of clocks to be reset with this transition, and 5
gives the enabling condition. An w-automaton is a special case of a timed automaton
with an empty set of clocks.

The automaton starts in one of the start states with all the clocks initialized to 0.
As time advances the values of all the clocks change reflecting the elapsed time. At any
point in time, the automaton can change state through a transition (s, s t, a, A, 5) reading
the input a, provided the current values of the clocks satisfy 5. With this transition the
clocks in A get reset to 0, and thus start counting time with respect to it. We now define
a run of a timed automaton.

Given a t imed trace (p , r) over E, we say that r : (So, uo, O) P~, (s l , u l , t l } P'~,,~
(s2, u2, t~)- . , is a run of M over (p, r) , provided

• the input word read is p: p' is an infinite word over [E U {e}] such that p
is pt with all ¢'s removed,

• r satisfies proper consecution requirements: for each i, there is an edge in
E of the form (si, si+l, p~, Ai, 5i) such that the time assignment vl + ti+l - ti
satisfies 5i and vi+l equals [Ai ~ O](vl + ti+l - tl), and

• t ime progresses along r: for every t G R, for some i >_ O, ti > t.

Furthermore, r is called an initialized run if it is properly initialized: s 0 is a start state,
and for each x G C, u0(x) = 0.

We can couple acceptance criteria with timed automata, and use them to define
timed languages. A t imed Biichi automaton (TBA for short) is a timed automaton with
a set F C S of accepting states. A run r of a TBA over a timed trace is called an
accepting run iff for infinitely many i's, si E F. For a TBA M, the language L(M) of
timed traces it accepts, is defined to be the set {(p,T): M has an initialized accepting
run over (p, T)}.

We model finite-state real-time processes using TBAs. We consider the class ~ of
t imed finite-state processes, those of the form (A, L), where L is the language accepted

329

by some TBA over T'+(A).
The next theorem considers some closure properties of TBAs.

Theorem: The class of timed languages accepted by TBAs is closed under union,
intersection, and projections.
Proof: First consider the boolean operations over two TBAs Mi, i = 1,2. Assume
without loss of generality that the sets C1 and C2 are disjoint. In each case, the re-
sulting set of clocks is C1 U C2. Union corresponds to the disjoint union of the two
automata. Intersection can be implemented by modifying the product construction for
Biichi automata. For a joint transition of the resulting automaton corresponding to
the Ml-transition (sl, s~, a, ~ , 51) and the Mrtransition (s2, s~, a, A2, 52), the set of the
clocks to be reset is)~1 U ,~2, and the enabling condition is 51 A 52.

Projections are modeled by changing the labels of all the edges appropriately. •

It follows that :D is closed under operations of parallel composition, hiding, and
renaming. As in case of untimed processes, for parallel composition, we first make the
event sets of the two automata the same (using the same technique), and then take
language intersection.

We can define timed automata with Muller acceptance condition also. A timed
Muller automaton (TMA for short) is a timed automaton with acceptance family ~" c_ 2 F
specified as in case of Muller automata. The language accepted by a TMA is defined in
the obvious way.

A TBA given by (E, S, So, C, E, F) can be viewed as a TMA (E, S, So, C, E, 9v>, where
the acceptance family is given by .T" = {S' C S : S' A F ~ ¢}. On the other hand, given
a TMA, we can construct a TBA accepting the same language using the simulation
of Muller acceptance condition by Biichi automata. It follows that the class of timed
languages accepted by TMAs is the same as that accepted by TBAs.

3.3 Emptiness

The information about the timing constraints provided by a timed automaton can be
used to rule out certain behaviors, and to prove that some qualitative temporal speci-
fication is met. We will show that a Bfichi automaton can be constructed that accepts
exactly the set of untimed traces that are consistent with the timed traces accepted by
a timed automaton.

Let M = (E, S, So, C, E, F) be a TBA. A snapshot of M is a pair consisting of the state
of the automaton and a time assignment giving the current values of all its clocks. A
snapshot has enough information to determine which transitions will be enabled. Since
the number of such snapshots is infinite, we cannot possibly build an automaton whose
states are snapshots of M. But if two snapshots with the same M-state agree on the
integral parts of all the clock values, and also on the ordering of the fractional parts
of all the clocks, then the future behaviors starting from the two snapshots are very
similar. The integral parts of the clock values are needed to determine whether or not
a particular enabling condition is met, whereas the ordering of the fractional parts is
needed to decide which clock will change its integral part first. For example, if two clocks
x and y are between 0 and 1 in a snapshot, then a transition with enabling condition
x = 1 can be followed by a transition with enabling condition y = 1, depending on
whether or not the snapshot satisfies x < y.

330

The integral readings of the clocks can get arbitrarily large. But if a clock x is never
compared with a constant greater than c, then its actual value, once it exceeds c, is of
no consequence in deciding the Mlowed paths.

Now we formalize this notion. For each x E C, let c= be the largest constant that x is
compared with in any enabling condition. For any t E R, fract(t) denotes the fractional
part of t, and [tJ denotes the integral part of t.

Given time assignments u, u' E [C ~ It], let us say u ~ u' iff the following hold:

• For each x E C, either [u(x)j and [u'(x)J are tile same, or
both and are greater tha

• For every x , y E C such that ~,(x) _< c= and u(y) < c~,
f rac t (u(x)) < fract (u(y)) iff f rac t (u ' (x)) < fract(u ' (y)) .

L e m m a : Let s be any state, and u, u' be t ime assignments such that u ~- u I. There is
an accepting run starting at (s, u, O) if f there is an accepting run starting at (s, g, 0). •

A stronger version of the above lemma is proved in [ACD90].
We will use [u] to denote the equivalence class of u with respect to ~. A region is

a pair (s, [u]) where s is a state and u is a time assignment. Note that there are only
a finite number of regions. We will define an edge relation over the regions such that
the paths in the resulting w-automaton mimic the runs of M in a certain way. The
edge relation captures two different types of events: (1) transitions in M and (2) moving
into a new equivalence class of snapshots because of the passage of time. We define a
successor function over equivalence classes of time assignments to capture the second
type of transitions.

Let a, fl be distinct equivalence classes of [C ~ R]. succ(a) = fl iff for each u E a,
there exists a positive t E R such that u + t E fl, and for all t I < t, u + t ' E a U ft.

Let us consider an example with two clocks x and y with c~ = 2 and c~ = 1. The
equivalence classes are shown in the following figure:

Equivalence classes:

! ~ Corner points: e.g. (0,1)
Open line segments: e.g. {(x,y) : (0 < x < 1) A (x = y)}

k Open regions: e.g. {(x,y) : 0 < x < y < 1}

The successor of any class a is the class to be hit first by a line drawn from some point
in a in the diagonally upwards direction. For example, the successor of the class {(1,0)}
is the class {(=, y) : (1 < x < 2) h (y = x - 1)}. The successor of {(x, y) : 0 < y < x < 1}
is the class { (1 ,y) : 0 < y < 1}.

Let us call an equivalence class a a boundary class, if for each t, E a and for any
positive t, v and u + t are not equivalent. In the above example, the classes which lie on
either horizontal or vertical lines are boundary classes.

Now we can construct the desired automaton:

T h e o r e m : Given a T B A M = (E,S, S0, C,E,F}, there exists a Biichi automaton M'
over E such that L(M') = Untime[L(M)].
P r o o f : First we construct an w-automaton M'. States of M" are the regions of M.
The start states of M" are of the form (so, [~'0]) where So is a start state of M, and for
each x E C, v0(x) = 0. The edge set consists of two types of edges:

331

• Edges representing the passage of time: Each state (s, a) has an e-labeled
edge to Is, succ(,~)).

• Edges representing the transitions of M: For each edge (s, s ~, a, ~, 3) of M,
there is a ~-laheled edge from (s, a) to (s', [[~ ~ 0]u]), provided u satisfies
the enabling condition 6, and either succ(a) = [u], or u E a and a is not
a boundary class.

There is a simple correspondence between the runs of M and runs of M". Let r :
{(s~,~,t~) : i > 1} be any run of M. For each i _> 1, we can find a finite path rl in M"
joining (s,, [u,]) to (8,+1, [u,+x]) by taking successor classes of [ul] as time increases from
ti to t~+a. Thus the run r r obtained by concatenating the segments r~ corresponds to the
run r in a natural way. Similarly, given a run of M" we can construct a corresponding
run of M.

If r is an accepting run of M, that is, some state s from F repeats infinitely often,
then for some equivalence class a, the state (8, a) repeats infinitely often along, r ' . Let
F" = {(8, a) : ~ e F}.

Since t ime progresses without bound along r, every clock y E C is either reset
infinitely often or eventually it always increases. Hence, for each y E C, along r t,
infinitely many regions satisfy either y = 0, or Y > cy.

Let us denote the set {(s,[u]) : s E S A (u(y) = 0 V u(y) > cu)} by Fu, for y E C.
Let us call a run of M" accepting iff it visits some state from F", and some state from
each of Fu's infinitely often. It follows that L(M") equals Untime [L(M)].

The acceptance condition of M" is not a Bfichi acceptance condition, but it is straight-
forward to construct a Bfichi automaton M ~ accepting the same trace language. •

From the theorem it follows that for all processes P E :D, Untime(P) E C.
Furthermore, given a TBA, to check whether its language is empty, we can check for
the emptiness of the language of the corresponding Bfichi automaton constructed by the
theorem. The next corollary follows.

C o r o l l a r y : Given a timed Biichi automaton M there is a decision procedure to check
for the emptiness of L(M). •

The size of M' constructed by the above proof is O(ICl!" (ISl + IEI)-2J), where
is the total number of bits used in the binary encoding of the constants in the enabling
conditions. Thus the complexity of deciding emptiness of a TBA is exponential in the
number of clocks and the length of its timing constraints. This blow-up in complexity

w

seems unavoidable; we can reduce the acceptance problem for linear bounded automata
to the emptiness question for TBAs to prove that the problem of deciding whether or
not the language of a TBA is empty is PSPACE-complete. Note that the source of this
complexity is not the choice of R to model time. The same result can be proved if we
leave the syntax of t imed automata unchanged, but use the discrete integer domain to
model time.

The above methods can be used even if we change the acceptance condition for timed
automata. In particular, given a TMA M we can effectively construct a Biichi automaton
which accepts Untime[L(M)], and use it to check for the emptiness of L(M).

332

3.4 Inc lus ion

For verification, one may describe the implementation as a TBA, I, and the specification
as another TBA, S. Then one way to define verification is: I satisfies S iff L(I) C L(S).
However, there is a stumbling block to automatic verification by this approach:

Theorem: Given timed Biichi automata M and M ~, the problem of deciding whether
L(M) C L(M') is undecidable ~-- in fact, El-hard.
Proof: \¥e reduce the question of deciding whether a non-deterministic 2-counter
machine has a recurring computation (a computation in which its start state appears
infinitely often), to the language inclusion problem of timed automata.

Consider a machine with counters a and/3, and a program with m labeled instructions
that can increment/decrement the counters, jump based on testing for a counter being
zero, and can choose nondeterministically between two instructions. A configuration of
the machine is represented by the triple {i, c, d), where i gives the value of the location
counter, and c and d give the values of the counters a and fl, respectively. We encode the
computations of the machine using timed traces over the alphabet {bl,. . . bin, al, a2}. A
configuration (i, c, d) is represented by the event sequence b~a~ad2. We say that a timed
trace encodes a computation of the machine, if the sequence of events happening in
the time interval [j,j + 1) encodes the j-th configuration of the computation, for each
j >_ 0. Note that denseness of the underlying time domain allows the counter values to
get arbitrarily large.

We construct a boolean expression S of TBAs which accepts precisely the computa-
tions of the machine. Using a TBA we can express the nature of the initial configuration.
We need to express that the successive configurations are related as per the requirements
of the program instructions. The question reduces to whether timed automata can be
used to express that the number of al (or a2) events in two intervals encoding the suc-
cessive configurations is the same (or that the number is one less or one greater). This
can be done by requiring that every al in the first interval has a matching al at distance
1 and vice versa. This requirement can be specified as the complement of the TBA
requiring some al in the first interval with no matching al at distance 1 or vice versa.

The language of the conjunction of S with a TBA expressing the recurrence require-
ment is non-empty iff the machine has a recurring computation. Since TBAs are closed
under union and intersection, the emptiness question of a boolean expression over timed
automata can be phrased as a language inclusion question of two automata. The result
follows, m

This result is not unusual for systems for reasoning about dense real-time. It is similar
to the undecidability of logics interpreted over timed traces ([AH89, AD90]). Obviously,
the language inclusion problem for TMAs is also undecidable. The undecidability of the
inclusion problem has another implication:

Corollary: Timed Biichi automata are not closed under complement.
Proof: Given TBAs M and M', L(M) _C L(M') iff L(M) N L(M 'c) is empty, where M 'c
accepts the complement of L(M~). Assume that TBAs are closed under complement.
Then it follows that: L(M) • L(M') iff there is a TBA N such that L(M) A L(N) is
non-empty, but L(M') C~ L(N) is empty. Since one can effectively enumerate TBAs,
construct a TBA accepting the intersection of the languages of two TBAs, and check
for emptiness, the complement of inclusion problem is recursively enumerable. This
contradicts the E~-hardness result. •

333

By similar reasoning TMAs also are not closed under complement. To get some
insight regarding the non-closure under complementation consider the automaton of
example 2. The complement needs to make sure that no pair of a's is separated by
distance 1. Since there is no bound on the number of a's that can happen in a time
period of length 1, this requires an unbounded number of clocks. It can be proved that
the complement language cannot be specified by a timed automaton.

4 D e t e r m i n i s t i c T i m e d A u t o m a t a

The results of the previous section imply that we can build a composite timed automaton
representing the behavior of a system, using parallel composition, renaming, and hiding.
However, we cannot automatically compare it with a specification presented as a TBA.
In this section we define deterministic timed automata, and show that deterministic
timed Muller automata (DTMA) are closed under the boolean operations. The ability
to complement makes it possible to test whether a timed automaton representing an
implementation meets a specification expressed by a DTMA.

A timed automaton (Z, S, So, C, E) is called deterministic, provided

• it has only one start state, and
• for each state s, for each input symbol a, for every pair of edges of the

form (s, - , (r', - , 51) and (s, - , a", - , 52) such that both the labels ~' and
a" are in {a, ¢}, the enabling conditions 51 and 52 are mutually exclusive
(that is, 51 A 5~ is unsatisfiable).

Thus, a deterministic timed automaton may have two transitions starting at the same
state labeled with the same symbol, but given an assignment for the clocks only one of the
outgoing transitions can be taken. Consequently, a deterministic timed automaton has at
most one initialized run over any given timed trace. This property allows complementing
them. Note that in absence of docks the above definition matches with the definition of
determinism for w-automata.

Since deterministic Biichi automata are strictly less expressive than deterministic
Muller automata, deterministic timed Bfichi automata (DTBA) are strictly less expres-
sive than deterministic timed Muller automata (DTMA). Furthermore, we will show
that DTMAs are closed under complement. Hence, we propose that DTMAs be used as
a specification formalism.

Apart from the usual qualitative requirements, and simple timing properties such
as bounded response time and periodicity, DTMAs can specify interesting properties
involving liveness and timing. One such example property is the convergent response
time property of example 1: "The events a and b alternate, and eventually every a is
followed by b within time 2." The following DTMA accepts the language {((ab)% r) :
3 i , j >_ i : T2j+2 ~_~ T2j+I + 2}.

e eset (x)

b , x > 2 ? f t . . b , x < 2 ?

334

The start state is So. The Muller acceptance family is given by {{s 2, s3}}. The state s2
has two mutually exclusive outgoing transitions on b. The acceptance condition requires
that the transition with the enabling condition x > 2 is taken only finitely often. We
believe that no DTBA can specify this property.

A timed automaton (E, S, So, C, E) is called complete iff for each state s and each
input symbol a, the disjunction of the enabling conditions of the edges starting at s and
labeled with a or e is a valid formula. Thus some edge is always enabled in a complete
automaton. Consequently, a deterministic complete timed automaton has precisely one
run over any timed trace.

Given a DTMA we can construct an equivalent complete DTMA easily. First we
add a dummy dead state q to the automaton. From each state s, for each symbol a,
we add a g-labeled edge from s to q with the enabling condition equal to the negation
of the disjunction of the enabling conditions of all the edges starting at s and labeled
with ~r or e. We leave the acceptance condition unchanged. This construction preserves
determinism as well as the set of accepted timed traces.

The next theorem states the closure of DTMAs under the boolean operations.

T h e o r e m : The class of timed languages accepted by DTMAs is closed under union,
intersection, and complementation.
Proof : Let Mi, for i = 1,2, be two complete DTMAs with disjoint sets of clocks.
First we construct a timed automaton M using a product construction. The set of
states of M is S1 x $2. Its start state is (s0~,So~). The set of clocks is Cl LJ C2, For
each input symbol a, corresponding to an Ml-transition (s1,tl,al, A1,511 and an M2-
transition (s2,t2, a2, A2,521 such that each label a~ is either a or e, M has a transition
((81, S2), (tl, t2), a, A1 U A2, ~1 A ~2/, It is easy to see that M is also deterministic.

Let 9 vl consist of the sets a C $1 x $2 such that {s: 3s' E S2.(s,s') C a} is in 5rl,
and 9 r2 consist of the sets a such that {s': 3s e Sl.(s,s') E a} is in 9r2. Now coupling M
with the Muller acceptance family 9 v l tA.T "2 gives an automaton accepting L(M1)UL(M~),
whereas using the acceptance family 9 r~ n ~-2 gives a DTMA accepting L(M1) n L(M2).

Finally consider complementation. Let M be a complete DTMA. M has exactly one
run over any timed trace. Hence, (p, T) is in the complement of L(M) if[the run of
M over it does not meet the acceptance criterion of M. The complement language is,
therefore, accepted by a DTMA which has the same underlying timed automaton as M,
but its acceptance condition is given by 2 s - .T'. •

Since DTMAs are closed under complement, whereas TMAs are not, it follows that
the class of languages accepted by DTMAs is strictly smaller than that accepted by
TMAs. In particular, the language of example 2, ("some two a's are distance 1 apart")
is not representable as a DTMA. Furthermore, DTMAs are not closed under projection
operations.

In this paper we have considered only Bfichi and Muller acceptance conditions. Other
types of acceptance criteria such as Rabin acceptance and Streett acceptance have been
studied in the context of w-automata. Deterministic timed Rabin (or Streett) automata
form another complementable subclass of TBAs, possibly different from DTMAs.

A c k n o w l e d g e m e n t s : We thank Tom Henzinger, Harry Lewis, Zohar Manna, and
Moshe Vardi for useful discussions.

335

R e f e r e n c e s

[AK83] S. Aggarwal, R.P. Kurshan, "Modeling elapsed time in protocol specification," Protocol
Specification, Testing and Verification, III, 1983.

[ACD90] R. Alur, C. Courcoubetis, D.L. Dill, "Model-checking for real-time systems," 5th
IEEE LICS, 1990.

[AH90] R. Alur, T.A. ttenzinger, "Real-time logics: complexity and expressiveness," 5th IEEE
LICS, 1990.

[Bii62] J.R. Biichi, "On a decision method in restricted second-order arithmetic," Proc. In-
ternat. Congr. Logic, Methodology, and Philosophy of Science 1960, Stanford Univ.
Press, 1962.

[Ch74] Y. Choueka, "Theories of automata on w-tapes: a simplified approach," JCSS 8, 1974.

[CDK89] E.M. Clarke, I.A. Draghicescu, R.P. Kurshan, "A unified approach for showing lan-
guage containment and equivalence between various types of w-automata," Tech. report
CMU-CS-89-192, Carnegie Mellon University, 1989.

[CES86] E.M. Clarke, E.A. Emerson, A.P. Sistla, "Automatic verification of finite-state con-
current systems using temporal logic specifications," ACM TOPLAS 8(2), 1986.

[Di88] D.L. Dill, Trace Theory for Automatic Hierarchical Verification of Speed Independent
Circuits, Ph.D. Thesis, Carnegie Mellon Univ., 1988.

[Di89] D.L. Dill, "Timing assumptions and verification of finite-state concurrent systems,"
Automatic Verification Methods for Finite State Systems, LNCS 407, 1989.

[Ho85] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.

[HU79] J.E. Hopcroft, J.D. Ullman, Introduction to Automata theory, Languages and Compu-
tation, Addison-Wesley, 1979.

[:IM86] F. Jahanian, A.K. Mok, "Safety analysis of timing properties in real-time systems,"
IEEE Trans. on Software engineering, 12(9), 1986.

[Ko89] R. Koymans, "Specifying message passing and time-critical systems with temporal
logic," Ph.D. Thesis, Eindhoven Univ. of Tech., 1989.

[Le89] H.R. Lewis, "Finite-state analysis of asynchronous circuits with bounded temporal
uncertainty," Tech. Report TR-15-89, Harvard Univ., 1989.

[Le90] H.R. Lewis, "A logic of concrete time intervals," 5th IEEE LICS, 1990.

[Mc66] R. McNaughton, "Testing and generating infinite sequences by a finite automaton,"
Information and Control 9, 1966.

[Pn86] A. Pnueli, "Applications of temporal logic to the specification and verification of re-
active systems: a survey of current trends," Current Trends in Concurrency, LNCS
244, Springer-Verlag, 1986.

[RR86] G.M. Reed, A.W. Roscoe, "A timed model for communicating sequential processes,"
13th ICALP, LNCS 226, Springer-Verlag, 1986.

[Sa88] S. Safra, "On the complexity of w-automata," 29th IEEE FOCS, 1988.

[SVW87] A.P. Sistla, M.Y. Vardi, P. W01per, "The complementation problem for Biichi au-
tomata with applications to temporal logic," Theoretical Computer Science 49, 1987.

[WVS83] P. W'olper, M.Y. Vardi, A.P. Sistla, "Reasoning about infinite computation paths,"
24th IEEE FOCS, 1983.

