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1 Introduction

Classical logic, as founded by the Greek philosopher Aristotle, is based on the
principle of bivalence which states that every proposition can be assigned ex-
actly one of the logical values true or false. However, Aristotle himself observed
that this principle cannot describe the status of all propositions especially the
ones which refer to future contingents. In his treatise On Interpretation 9, the
philosopher formulated the famous sentence “There will be a sea-battle to-
morrow”, which is actually neither true nor false. Clearly, (at least) a third
logical value is required in order to describe such situations. Actually this
third value spoils the principle of bivalence. Nevertheless, despite the efforts
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of philosophers and mathematicians in the Middle Ages, a three-valued propo-
sitional logic was successfully established by �Lukasiewicz and Post only in
1920 (see [48, 59]). However, it came up that even that three-valued logic
was not sufficient enough to describe the logical status of real world state-
ments. Therefore, the three-valued logic has been extended to multi-valued
(or many-valued) logic by considering (finitely or infinitely) many logical val-
ues. For textbooks on multi-valued logic, we refer the reader to [50, 64] (see
also [66] for historical details for the multi-valued logic’s progress and the
contribution of Gr. Moisil and A. Salomaa to this field).

On the other hand, Zadeh [78] introduced in 1965 the concept of fuzzy
sets. He was motivated by the real world where sentences like “the class
of real numbers that are much greater than 1” or “the class of beautiful
women” are naturally imprecise, and they do not determine sets in the usual
mathematical sense. In 1973, Zadeh founded his fuzzy logic as a multi-valued
logic over the interval [0, 1] ⊆ R, enriched with further fuzzy quantifiers like
most, few, many, and several. In the meantime, Wee [75] introduced the fuzzy
automaton as a model of learning systems. The fuzzy automaton model is
the natural fuzzification of the classical finite automaton and it is actually
a weighted automaton model (over the fuzzy semiring 〈[0, 1], max, min, 0, 1〉)
in the sense of [24]. Since then, fuzzy automata theory has been extended to
more general structures like lattices, residuated lattices, and �-monoids. How-
ever, in all these cases, the corresponding fuzzy automata act on semirings
induced by the original structures. Therefore, all the well-known results for
recognizable formal power series over semirings hold in particular for fuzzy
recognizable languages accepted by fuzzy automata. More specific results can
be obtained for fuzzy automata and their behaviors due to the special prop-
erties of their underlying semirings inherited by the original structures. For
instance, the determinization problem is effectively solved for fuzzy automata
and the equality is decidable for fuzzy recognizable languages over bounded
distributive lattices.

Fuzzy structures and fuzzy logic contribute to a wide range of real world
applications because they can effectively incorporate the impreciseness of prac-
tical problems. It is the purpose of this chapter, to present the theory of fuzzy
recognizable languages as a paradigm of recognizable formal power series. Our
fuzzy languages are defined over bounded distributive lattices. This is a more
general case than the very first definition of fuzzy languages over the inter-
val [0, 1], but still almost all the recognizability properties remain valid. In
our development, we refer only briefly to those results which are inherited
from the general theory of weighted automata and power series. Instead, we
focus on results which do not hold for power series over arbitrary semirings.
More precisely, our fuzzy recognizable languages are obtained as behaviors of
multi-valued automata. We show that for every such multi-valued automa-
ton we can effectively construct an equivalent trim deterministic one which
moreover has a minimum counterpart. Furthermore, the equivalence problem
for multi-valued automata is decidable and a pumping lemma holds for fuzzy
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recognizable languages. The equivalence problem turns out also to be decid-
able for multi-valued automata over infinite words. Our treatment of fuzzy
recognizable languages is based on automata-theoretic techniques. It is worth
noting that fuzzy recognizability over finite words, especially over the fuzzy
semiring, has been also defined by means of finite monoid representations,
syntactic congruences, syntactic monoids, and (left and right) derivatives (see
[8, 9, 36, 47, 54, 57]). On the other hand, several authors have fuzzified notions
like monoids [36], trees [22, 28], and algebras [46, 70–72, 74].

In the sequel, we briefly describe the contents of the chapter. First, we
introduce basic notions like (bounded distributive) lattices and the more par-
ticular class of De Morgan algebras. We show that the collection of De Morgan
algebras coincides with the family of semirings with complement function. We
define the concept of fuzzy languages as formal power series over bounded dis-
tributive lattices. Then we deal with fuzzy recognizable languages over finite
(resp. infinite) words obtained as behaviors of multi-valued (resp. multi-valued
Büchi and Muller) automata. An MSO logic characterization of fuzzy recog-
nizable languages is also provided. Next, we briefly investigate fuzzy languages
over bounded �-monoids and residuated lattices. These are the most general
classes of fuzzy languages, but still they are special cases of power series.
Finally, we refer to practical applications of fuzzy languages. The material
concerning multi-valued automata over infinite words, De Morgan algebras,
and the MSO logic is contained in [22].

For monographs presenting fuzzy logic, fuzzy languages, and fuzzy au-
tomata, we refer the reader to [32, 35, 54, 74]. Our list of references includes
only these ones which are connected with the context of the chapter. In [1, 35,
54], there are extended lists of references until 2002. Also, the journal Fuzzy
Sets and Systems publishes periodically an article entitled Recent Literature,
and it presents the latest developments in fuzzy theory (see for instance vol-
ume 159 (2008), pages 857–865).

2 Lattices and Fuzzy Languages

A partially ordered set (L,≤) is called a lattice if the supremum (called also
least upper bound or join) a ∨ b and the infimum (called also greatest lower
bound or meet) a ∧ b exist in L for every a, b ∈ L (see [21]). A lattice (L,≤)
(which is simply denoted by L if the order relation is understood) is distributive
if it satisfies the equation a∧ (b∨ c) = (a∧ b)∨ (a∧ c) (which in turn implies
a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)) for every a, b, c ∈ L. The supremum (resp.
the infimum) of every A ⊆ L is denoted (if it exists in L) by ∨A (resp. ∧A).
If A = (ai | i ∈ I), then we also use the notation

∨
i∈I ai (resp.

∧
i∈I ai). A

lattice L is bounded if it contains two distinguished elements 0, 1 ∈ L such that
0 ≤ a ≤ 1 for every a ∈ L. Furthermore, a lattice L is called complete if ∨A
and ∧A exist for every A ⊆ L. Observe that a complete lattice is also bounded
with 0 = ∨∅ and 1 = ∧∅. It is well known that if L is any distributive lattice
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and A ⊆ L a finite subset, then the sub-lattice LA of L generated by A is finite.
In fact, if A′ = {∧B | B ⊆ A}, then we have LA = {∨C | C ⊆ A′} due to
the distributivity law. Obviously, every finite lattice L is complete. A bounded
distributive lattice L forms a semiring 〈L,∨,∧, 0, 1〉 whose operations are both
idempotent. An element a 
= 0 of a lattice L is called join-irreducible if a = b∨c
implies a = b or a = c for every b, c ∈ L. We denote by J(L) the set of all
join-irreducible elements of L. If the lattice L is finite, then

a = ∨{b ∈ J(L) | b ≤ a}

for every a ∈ L. Moreover, if L is distributive, then every join-irreducible
element a ∈ L is prime, i.e., whenever a ≤ b ∨ c with b, c ∈ L, then a ≤ b or
a ≤ c (cf. [6, 16]).

Let (L,≤) be a bounded distributive lattice and − : L → L be any function
with 0 = 1 and 1 = 0. Then we call − a (general) negation function and
(L,≤,− ) a bounded distributive lattice with negation function. Note that every
bounded distributive lattice L can be equipped with a negation function −

by letting for instance 0 = 1 and x = 0 for every x ∈ L \ {0}. De Morgan
algebras, Heyting algebras, and variants of pseudo-complemented lattices are
well-investigated classes of distributive lattices with negation function (see
[3, 16]). Recently, De Morgan algebras have been investigated intensively for
multi-valued model checking (see [13, 31, 39]). More precisely, a De Morgan
(or quasi-Boolean) algebra is a distributive lattice (L,≤,− ) with a complement
mapping − satisfying the involution a = a and De Morgan laws, i.e., a ∨ b =
a ∧ b and a ∧ b = a ∨ b for every a, b ∈ L. Then a ≤ b implies b ≤ a for
every a, b ∈ L. Furthermore, if L is bounded, then 0 = 1 and 1 = 0, i.e., the
function − is a negation function. Moreover, the mapping − : (L,≤) → (L,≥)
is an order-isomorphism. Hence, if (ai | i ∈ I) ⊆ L is a family of elements of
L for which

∨
i∈I ai exists, then

∨
i∈I ai =

∧
i∈I ai. For instance, the lattice

([0, 1],≤,− ) with ≤ the usual order of real numbers, and a = 1− a for every
a ∈ [0, 1] is a De Morgan algebra. The induced semiring 〈[0, 1], max, min, 0, 1〉 is
referred to as the fuzzy semiring. In the sequel, without any further notation,
for every De Morgan algebra (L,≤,− ), we require the lattice L to be bounded.
On the other hand, every bounded distributive lattice can be endowed with a
negation function, therefore, lattices with negation function constitute a much
larger class than De Morgan algebras. In particular, any bounded distributive
lattice which is not anti-isomorphic to itself, does not have a complement
operation, and thus cannot be structured to a De Morgan algebra.

Next, we investigate the relationship between De Morgan algebras and
semirings. Given a semiring 〈S, +, ·, 0, 1〉, a mapping f : S → S is called a
complement function, if it satisfies the following statements:

(i) f is an involution, i.e., f(f(a)) = a for every a ∈ S.
(ii) f is a monoid morphism from 〈S, +, 0〉 to 〈S, ·, 1〉, i.e., f(0) = 1 and

f(a + b) = f(a) · f(b) for every a, b ∈ S.
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It is easily seen that f(1) = 0 and f(a · b) = f(a) + f(b) for every a, b ∈ S,
hence f is a monoid isomorphism from 〈S, +, 0〉 to 〈S, ·, 1〉 and from 〈S, ·, 1〉 to
〈S, +, 0〉. Every De Morgan algebra (L,≤,− ) induces a semiring 〈L,∨,∧, 0, 1〉
with complement mapping −, therefore, the following result concludes that
De Morgan algebras and semirings with complement function coincide. This
indicates the relation between the MSO logic over De Morgan algebras (see
Sect. 3.3) and semirings (see [18, 23, 20]).

Proposition 2.1 ([22]). Let 〈S, +, ·, 0, 1〉 be a semiring with complement
function f . For every a, b ∈ S, we put a ≤ b iff a + b = b. Then (S,≤, f)
is a De Morgan algebra.

Proof. We have f(0) = 1, f is an involution, f(a + b) = f(a) · f(b) and
f(a · b) = f(a) + f(b). Hence, 0 · 0 = 0 implies 1 + 1 = 1, so 〈S, +, 0〉,
and hence also 〈S, ·, 1〉 are idempotent. Thus, ≤ is a partial order on S (see
Proposition 20.19 in [30]) and a+ b is the supremum of a and b in this partial
order. Moreover, 0 ≤ a for every a ∈ S, and a · 0 = 0 implies f(a) + 1 = 1, so
f(a) ≤ 1, showing also a ≤ 1 for every a ∈ S.

Next, observe that if a ≤ b, then by distributivity we have a · c ≤ b · c for
every a, b, c ∈ S. We show that a · b is the infimum of a and b in (S,≤) for
every a, b ∈ S. Since a ≤ 1, the previous remark implies a · b ≤ b and similarly
a · b ≤ a. Now if c ∈ S with c ≤ a and c ≤ b, then c = c · c ≤ a · c ≤ a · b,
proving that a·b = a∧b. Hence, (S,≤) is a distributive lattice with + being the
operation supremum and · being the infimum. Moreover, (S,≤) is bounded,
and f is a complement mapping satisfying De Morgan laws. Thus, the proof
is completed. �

The interested reader should find further characterizations of bounded
distributive lattices by means of semirings in Example 1.5 of [30].

Given two lattices (L,≤) and (L′,≤), a mapping f : L → L′ is a lattice
morphism if it preserves suprema and infima, i.e., for every a, b ∈ L

f(a ∨ b) = f(a) ∨ f(b) and f(a ∧ b) = f(a) ∧ f(b).

Then a ≤ b implies f(a) ≤ f(b) for every a, b ∈ L. Furthermore, if (L,≤) and
(L′,≤) are bounded distributive lattices, then a lattice morphism f : L → L′

satisfying f(0) = 0 and f(1) = 1 is a semiring morphism from 〈L,∨,∧, 0, 1〉
to 〈L′,∨,∧, 0, 1〉.

Now we turn to fuzzy sets originally introduced by Zadeh in [78]. Given a
non-empty set X, a fuzzy set A in X (or a fuzzy subset A of X) is defined
by a membership function

fA : X → [0, 1].

A fuzzy subset of a free monoid is called a fuzzy language [40]. Thus, a fuzzy
language is nothing else but a formal power series over the fuzzy semiring
〈[0, 1], max, min, 0, 1〉. So far, the term fuzzy language has been also used for
power series over lattices, residuated lattices, and �-monoids (see Sect. 4).
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Here, we deal with fuzzy languages over bounded distributive lattices. More
precisely, let S be a set and L be a bounded distributive lattice. A formal power
series (over S and L) is a mapping r : S → L. Such a series is called (finitary)
fuzzy language (resp. infinitary fuzzy language) over some finite alphabet Σ if
S = Σ∗ (resp. S = Σω, i.e., the set of all infinite words over Σ). Subsequently,
we will only need the cases where S = Σ∗ or S = Σω. The support supp(r) of
a series r over S and L is defined as usually by supp(r) = {s ∈ S | (r, s) 
= 0},
and the image of r is the set {l ∈ L | ∃s ∈ S : (r, s) = l}. The collection
L〈〈S〉〉 of all power series over S and L is itself a bounded distributive lattice
(L〈〈S〉〉,≤); for r, r′ ∈ L〈〈S〉〉 the partial order ≤ is determined by r ≤ r′ iff
(r, s) ≤ (r′, s) for every s ∈ S. Then the supremum r ∨ r′ and the infimum
r ∧ r′ are defined elementwise by (r ∨ r′, s) = (r, s) ∨ (r′, s) and (r ∧ r′, s) =
(r, s)∧(r′, s) for every s ∈ S. Furthermore, for every k ∈ L, the scalar infimum
k ∧ r is determined by (k ∧ r, s) = k ∧ (r, s) for every s ∈ S. If (L,≤,− ) is
a bounded distributive lattice with negation function (resp. a De Morgan
algebra), then (L〈〈S〉〉,≤,− ) constitutes also a bounded distributive lattice
with negation function (resp. a De Morgan algebra); for every r ∈ L〈〈S〉〉 its
negation r ∈ L〈〈S〉〉 is defined by (r, s) = (r, s) for every s ∈ S.

Assume that (L,≤) and (L′,≤) are two distributive lattices, and let f :
L → L′ be any mapping. Then f is extended to a mapping f : L〈〈S〉〉 →
L′〈〈S〉〉 in the following way. For every r ∈ L〈〈S〉〉, the series f(r) ∈ L′〈〈S〉〉 is
determined by (f(r), s) = f((r, s)) for every s ∈ S.

3 Fuzzy Recognizability over Bounded Distributive
Lattices

We consider the concept of fuzzy recognizable languages obtained as beha-
viors of weighted automata over bounded distributive lattices. Such automata
are called multi-valued, and they have recently contributed to multi-valued
logics [22] and multi-valued model checking employing distributive lattices
[10, 39]. Several other names occur in the literature for automata over lattices,
like fuzzy automaton, max-min automaton, L-fuzzy automaton, and lattice
automaton depending on the properties of the underlying lattice (see, for
instance, [43, 54]).

First, we deal with fuzzy recognizable languages over finite words. For these
languages a Kleene–Schützenberger theorem is obtained as a special case of
the corresponding theorem for recognizable series over commutative semirings.
Then we show that fuzzy recognizable languages have an elegant character-
ization, namely they are written as fuzzy recognizable step languages. This
enables us to give short proofs for well-known results concerning multi-valued
automata. More precisely, we show that:

(i) For every multi-valued automaton, we can effectively construct an equiv-
alent minimum trim deterministic one.
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(ii) The equivalence problem for multi-valued automata is decidable.
(iii) A pumping lemma holds for fuzzy recognizable languages.
(iv) A fuzzy language is recognizable iff it has finite image and each of its

cut languages is recognizable.

It is worth noting that these results do not hold in general for weighted au-
tomata over arbitrary semirings. Next, we introduce Büchi and Muller multi-
valued automata working on infinite words. As in the finitary case, we show
that fuzzy Büchi recognizable languages can be written as fuzzy Büchi recog-
nizable step languages. Using this simple characterization, we give elegant
proofs for two important results. Namely, the classes of fuzzy Büchi and fuzzy
Muller recognizable languages coincide, and a Kleene theorem holds for them.
Moreover, we introduce a multi-valued MSO logic and we show the funda-
mental theorem of Büchi, i.e., fuzzy definable languages over infinite words
coincide with fuzzy Büchi recognizable languages. For the rest of this sec-
tion, Σ will denote an arbitrary finite alphabet and L an arbitrary bounded
distributive lattice.

3.1 Fuzzy Recognizability over Finite Words

We start with the concept of multi-valued automata.

Definition 3.1. A multi-valued automaton (MVA for short) over Σ and L is
a quadruple A = (Q, in, wt, out), where Q is the finite state set, in : Q → L is
the initial distribution, wt : Q×Σ×Q → L is the mapping assigning weights
to the transitions of the automaton, and out : Q → L is the final distribution.

Let w = a0 . . . an−1 ∈ Σ∗ where a0, . . . , an−1 ∈ Σ. A path of A over w
is a sequence Pw = (ti)0≤i≤n−1 of transitions, such that ti = (qi, ai, qi+1) ∈
Q × Σ × Q for every 0 ≤ i ≤ n − 1. The weight of Pw is defined by

weight(Pw) = in(q0) ∧
∧

0≤i≤n−1

wt(ti) ∧ out(qn).

We shall denote by LA the finite sub-lattice of L generated by {0, 1}∪{in(q) |
q ∈ Q}∪{out(q) | q ∈ Q}∪{wt(t) | t ∈ Q×Σ×Q}. Clearly weight(Pw) ∈ LA.
The behavior of A is the fuzzy language

‖A‖ : Σ∗ → L

which is defined by
(‖A‖, w) =

∨

Pw

weight(Pw)

for w ∈ Σ∗, where the supremum is taken over all paths Pw of A over w. It
should be clear that (‖A‖, ε) =

∨
q∈Q in(q)∧out(q). Again, (‖A‖, w) ∈ LA for

every w ∈ Σ∗.



488 George Rahonis

Two multi-valued automata A and A′ over Σ and L are called equivalent
if they have the same behavior, i.e., ‖A‖ = ‖A′‖.

A fuzzy language r ∈ L〈〈Σ∗〉〉 is said to be fuzzy recognizable over Σ and
L if there is an MVA A such that r = ‖A‖. We denote the family of all
fuzzy recognizable languages over Σ and L by Lrec〈〈Σ∗〉〉. The reader should
observe that an MVA over Σ and L is just a weighted automaton over Σ and
the semiring 〈L,∨,∧, 0, 1〉 in the sense of [24, 38, 67] (see also Theorems 2.2
and 3.6 in [27]). Thus, the class Lrec〈〈Σ∗〉〉 coincides with the collection of all
recognizable series over Σ and the semiring L. Therefore, as a consequence of
the general Kleene–Schützenberger theorem for series over arbitrary semirings
(see, for instance, [65]), we immediately obtain its reformulation for fuzzy
languages as follows. Let us first reconsider the rational operations of formal
power series in the setting of fuzzy languages. Let r, r′ ∈ L〈〈Σ∗〉〉. The Cauchy
product rr′ of r and r′ is a fuzzy language in L〈〈Σ∗〉〉 which is determined by
(rr′, w) =

∨
uu′=w(r, u)∧(r′, u′) for every w ∈ Σ∗. If r is proper, i.e., (r, ε) = 0,

then we define the star r∗ ∈ L〈〈Σ∗〉〉 of r by (r∗, w) = ∨{(r, u1)∧· · ·∧ (r, un) |
u1 . . . un = w, u1, . . . , un ∈ Σ∗} for every w ∈ Σ∗. The rational operations of
fuzzy languages in L〈〈Σ∗〉〉 are the supremum, the Cauchy product, and the
star. We denote by Lrat〈〈Σ∗〉〉 the least class of fuzzy languages from L〈〈Σ∗〉〉
which contains the polynomials, i.e., the fuzzy languages with finite support,
and is closed under the rational operations.

Theorem 3.2 (Kleene–Schützenberger). Let Σ be an alphabet and L be
a bounded distributive lattice. Then Lrec〈〈Σ∗〉〉 = Lrat〈〈Σ∗〉〉.

Let Σ,Δ be alphabets and h : Σ∗ → Δ∗ be any morphism. Then we can
define the mapping h−1 : L〈〈Δ∗〉〉 → L〈〈Σ∗〉〉 (see [21]); if L is a complete
lattice or h is non-deleting, then the mapping h : L〈〈Σ∗〉〉 → L〈〈Δ∗〉〉 is also
well defined.

Proposition 3.3 ([24]). Let Σ,Δ be two alphabets and h : Σ∗ → Δ∗ be any
morphism. Then:

(i) h−1 : L〈〈Δ∗〉〉 → L〈〈Σ∗〉〉 preserves fuzzy recognizability.
(ii) If h is non-deleting, then h : L〈〈Σ∗〉〉 → L〈〈Δ∗〉〉 preserves fuzzy recogniz-

ability.

Recall that for every language R ⊆ Σ∗, its characteristic series 1R ∈
L〈〈Σ∗〉〉 is defined by (1R, w) = 1 if w ∈ R, and 0 otherwise, for every w ∈ Σ∗.
Here, we call 1R the characteristic fuzzy language of R. Every unweighted
finite automaton with input alphabet Σ can be considered in the obvious
way, as an MVA over Σ and L with weights only 0 and 1. Therefore, for
every recognizable language R, its characteristic language 1R is fuzzy recog-
nizable. Assume now that R1, . . . , Rn ⊆ Σ∗ are recognizable languages and
k1, . . . , kn ∈ L. Clearly, the fuzzy language ki ∧ 1Ri is recognizable for every
1 ≤ i ≤ n. Then by Theorem 3.2, the fuzzy language
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r =
∨

1≤i≤n

ki ∧ 1Ri

is also recognizable. Such a language r is called a fuzzy recognizable step lan-
guage. The class of recognizable languages is closed under the Boolean opera-
tions; hence, for every fuzzy recognizable step language r =

∨
1≤i≤n ki ∧ 1Ri ,

we may assume that the family (Ri | 1 ≤ i ≤ n) forms a partition of Σ∗.
Next, we show that fuzzy recognizable languages and fuzzy recognizable step
languages coincide. This important result has been firstly proved in [19] for
power series over locally finite semirings. Therefore, it can be applied to the
class of fuzzy languages over bounded distributive lattices (recall that for
every bounded distributive lattice L, the semiring 〈L,∨,∧, 0, 1〉 is locally fi-
nite). However, here we give an alternative proof based on lattices. The same
proof has been also used in [22] for the corresponding result for infinitary
fuzzy languages (see Sect. 3.2). We shall need the following lemma which is
easily proved by a standard automata construction.

Lemma 3.4. Let (L,≤) and (L′,≤) be two bounded distributive lattices and
f : L → L′ be a lattice morphism. Then for every fuzzy recognizable language
r in L〈〈Σ∗〉〉, the fuzzy language f(r) ∈ L′〈〈Σ∗〉〉 is again recognizable.

Theorem 3.5. Let Σ be an alphabet and L be a bounded distributive lattice.
Then a fuzzy language r ∈ L〈〈Σ∗〉〉 is recognizable iff it is a fuzzy recognizable
step language.

Proof. Let r be fuzzy recognizable and A = (Q, in, wt, out) be an MVA over
Σ and L such that r = ‖A‖ and LA = {k1, . . . , kn}. We set Ri = {w ∈ Σ∗ |
(r, w) = ki} for every 1 ≤ i ≤ n. Then

r =
∨

1≤i≤n

ki ∧ 1Ri .

We shall show that the languages Ri (1 ≤ i ≤ n) are recognizable. Let
B = ({0, 1},≤) be the two-valued Boolean lattice. For every join-irreducible
element p of LA, we define a mapping fp : LA → {0, 1} by putting

fp(a) =

{
1 if p ≤ a,

0 otherwise

for every a ∈ L.
We claim that fp is a lattice morphism. Indeed, p 
= 0; hence, fp(0) = 0 and

fp(1) = 1. Next, note that if a, a′ ∈ LA and fp(a∨a′) = 1, then p ≤ a∨a′ which
implies p ≤ a or p ≤ a′ since p is prime, proving fp(a ∨ a′) = fp(a) ∨ fp(a′).
Clearly, fp(a∧a′) = fp(a)∧fp(a′). By Lemma 3.4, the fuzzy language fp(r) of
B〈〈Σ∗〉〉 is recognizable and, therefore, the language supp(fp(r)) = {w ∈ Σ∗ |
p ≤ (r, w)} is recognizable. Now let 1 ≤ i ≤ n. Since the element ki of LA is
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the supremum of the join-irreducible elements of LA below ki, the language
Ri is obtained as the intersection of the languages supp(fp(r)) (p ≤ ki and
join-irreducible) and of the complements of the languages supp(fp(r)) (p � ki

and join-irreducible). The class of recognizable languages is closed under the
Boolean operations. Therefore, we conclude that Ri is a recognizable language,
as required.

The converse is also true as already noted. �

Observe that the proof of the above theorem is effective. Indeed, starting
from the weights of the multi-valued automaton A, we compute the sub-lattice
LA in finitely many steps. Then following our proof, we obtain finite automata
for the languages Ri (1 ≤ i ≤ n).

Due to Theorem 3.5, in the sequel, we write every fuzzy recognizable lan-
guage as a fuzzy recognizable step language. This has very interesting conse-
quences. Firstly, generalizing Lemma 3.4, we show that fuzzy recognizability
is preserved even by arbitrary mappings between lattices.

Proposition 3.6. Let (L,≤) and (L′,≤) be two bounded distributive lattices
and f : L → L′ be any mapping. Then for every fuzzy recognizable language
r ∈ L〈〈Σ∗〉〉 the language f(r) ∈ L′〈〈Σ∗〉〉 is again fuzzy recognizable.

Proof. Let r =
∨

1≤i≤n ki ∧ 1Ri . Then f(r) =
∨

1≤i≤n f(ki) ∧ 1Ri and so f(r)
is fuzzy recognizable. �

Next, we get a classical result from fuzzy language theory. More precisely,
given a fuzzy language r ∈ L〈〈Σ∗〉〉 and l ∈ L, the l-cut of r is the language
r≥l = {w ∈ Σ∗ | (r, w) ≥ l}. Furthermore, for every l ∈ L, we let r=l =
r−1(l) = {w ∈ Σ∗ | (r, w) = l}.

Proposition 3.7 ([43]). For every fuzzy language r ∈ L〈〈Σ∗〉〉, the following
statements are equivalent:

(i) r is fuzzy recognizable.
(ii) r has finite image, and for every l ∈ L, r=l is a recognizable language.
(iii) r has finite image, and for every l ∈ L, r≥l is a recognizable language.

Proof. The equivalence of (i) and (ii) is immediate by Theorem 3.5. We show
the implication (i) ⇒ (iii). Let r =

∨
1≤i≤n ki ∧ 1Ri with pairwise disjoint

recognizable languages Ri. Consider an l ∈ L. If there is no i ∈ {1, . . . , n} such
that ki ≥ l, then r≥l = ∅. Otherwise, let ki1 , . . . , kim (1 ≤ i1 < · · · < im ≤ n)
be all the values of r with ki1 , . . . , kim ≥ l. Then r≥l = Ri1 ∪ · · · ∪Rim , hence
r≥l is recognizable. Finally, assume that statement (iii) is true. For every
l ∈ L, we have r=l = r≥l \

⋃
l′∈L,l<l′ r≥l′ , and thus r=l is recognizable which

concludes our proof. �

In the sequel, we deal with the determinization and minimization prob-
lems of multi-valued automata. These problems do not always have a so-
lution for weighted automata over arbitrary semirings (see [12, 34, 52]) or
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even over residuated lattices and �-monoids (see [33, 42]). However, due to
the local finiteness property of distributive lattices, we show that for every
multi-valued automaton we can effectively construct an equivalent trim deter-
ministic one. The determinization problem for fuzzy automata over ([0, 1],≤)
was first solved in [51]. Borchardt in [7] showed that weighted tree automata
over locally finite semirings can be effectively determinized (see [34] for the
word case). A reformulation of the same method is used in [42] for fuzzy au-
tomata over bounded �-monoids, and in [5, 43] (resp. in [33]) for the special
case of fuzzy automata over bounded distributive lattices (resp. over resid-
uated lattices). In all the aforementioned papers, the authors followed the
well-known subset construction (or even the accessible subset construction in
[33]) in the weighted setting. Here, we use the result of Theorem 3.5 and we
reduce the determinization of multi-valued automata to the determinization
of classical finite automata (as indicated in [19]). Then we minimize the trim
deterministic multi-valued automaton. For this minimization procedure, we
use the classical reduction algorithm (see [24]). In [4, 68] (resp. in [58]), the
size (number of states) of a non-deterministic fuzzy automaton (over the fuzzy
semiring) is reduced by means of equivalences (resp. congruences) on the set
of states.

A deterministic multi-valued automaton (DMVA for short) over Σ and L
is an MVA A = (Q, in, wt, out) such that the following two conditions hold:

(i) There is exactly one q0 ∈ Q such that in(q0) = 1 and for every p ∈ Q with
p 
= q0 we have in(p) = 0.

(ii) For every q ∈ Q and σ ∈ Σ, there is at most one state q′ ∈ Q such that
wt(q, σ, q′) = 1 and for every p ∈ Q with p 
= q′ we have wt(q, σ, p) = 0.

Clearly, for a DMVA A, the function wt can be equivalently expressed by a
(partial) function δ : Q×Σ → Q in the obvious way. Therefore, we will denote
in the sequel a DMVA by (Q, q0, δ, out) with q0 ∈ Q and δ : Q × Σ → Q as a
partial function. Thus, a DMVA A can be considered as a classical determin-
istic automaton with weights attached only to the final states. The DMVA
A = (Q, q0, δ, out) is called accessible if for every state q ∈ Q there exists a
word w ∈ Σ∗ such that δ(q0, w) = q. Furthermore, A is co-accessible if for
every q ∈ Q there exists w ∈ Σ∗ such that out(δ(q, w)) > 0. A DMVA is called
trim if it is accessible and co-accessible. Observe that in a DMVA A, for every
word w = a0 . . . an−1 ∈ Σ∗ and for every path Pw = (pi, ai, pi+1)0≤i≤n−1 of
A over w such that δ(pi, a) = pi+1, we have

weight(Pw) =

{
out(pn) if p0 = q0,

0 otherwise.

Theorem 3.8. Let Σ be an alphabet and L be a bounded distributive lattice.
For every MVA A = (Q, in, wt, out) over Σ and L, we can effectively construct
a trim DMVA A′ over Σ and L such that ‖A′‖ = ‖A‖.
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Proof. Let ‖A‖ =
∨

1≤i≤n ki ∧ 1Ri with pairwise disjoint recognizable lan-
guages Ri. Clearly, we may assume that ki 
= 0 for every 1 ≤ i ≤ n. Let
Ai = (Qi, Σ, q0i, δi, Fi) (1 ≤ i ≤ n) be a complete deterministic (i.e., δi is a
total mapping) finite automaton accepting Ri. Now we perform a classical con-
struction of an automaton accepting a union of languages. Consider the finite
automaton Ã = (Q̃, Σ, q0, δ̃, F̃ ) with Q̃ = Q1 × · · · × Qn, q0 = (q01, . . . , q0n),
and F̃ =

⋃
1≤i≤n Q1 ×· · ·×Qi−1 ×Fi ×Qi+1 ×· · ·×Qn. The (total) mapping

δ̃ : Q̃ × Σ → Q̃ is determined by δ̃((q1, . . . , qn), a) = (δ1(q1, a), . . . , δn(qn, a))
for every (q1, . . . , qn) ∈ Q̃, a ∈ Σ. Obviously, Ã is deterministic with be-
havior R1 ∪ · · · ∪ Rn. Now let A = (Q, Σ, q0, δ, F ) be the trim part of Ã
(see [24]). We consider the DMVA A′ = (Q, q0, δ, out) over Σ and L with
out((q1, . . . , qn)) =

∨
1≤i≤n outi(qi) where

outi(qi) =

{
ki if qi ∈ Fi,

0 otherwise.

The finite automaton A is accessible, and thus the DMVA A′ is also accessible.
Moreover, A′ is trim. Indeed, let (q1, . . . , qn) ∈ Q. Since A is co-accessible
there is a w ∈ Σ∗ such that δ((q1, . . . , qn), w) ∈ F, i.e., there is an index
1 ≤ i ≤ n such that δi(qi, w) ∈ Fi which in turn implies that outi(δi(qi, w)) =
ki. In fact, since the languages Ri are pairwise disjoint, there is exactly one
index i with this property, and for every other 1 ≤ j ≤ n with j 
= i, we have
δj(qj , w) ∈ Qj \ Fj . Hence, out(δ((q1, . . . , qn), w)) = ki > 0. Now for every
w ∈ Σ∗,

(‖A′‖, w) = out
(
δ(q0, w)

)
= out

((
δ1(q01, w), . . . , δn(q0n, w)

))

=
∨

1≤i≤n

outi

(
δi(q0i, w)

)
=

∨

1≤i≤n

(ki ∧ 1Ri , w)

i.e., ‖A′‖ = ‖A‖ as required. �

Let A = (Q, q0, δ, out) and A′ = (Q′, q′0, δ
′, out′) be two DMVA over Σ

and L, and let ϕ : Q → Q′ be a mapping such that:

(i) ϕ(q0) = q′0.
(ii) If δ(q, a) exists, then δ′(ϕ(q), a) exists and ϕ(δ(q, a)) = δ′(ϕ(q), a) for

every q ∈ Q, a ∈ Σ.

Then ϕ is called a homomorphism from A to A′ and is denoted by ϕ : A → A′.
If out′(ϕ(q)) = out(q) for every q ∈ Q, then ϕ is termed a strong homomor-
phism. A bijective strong homomorphism ϕ is an isomorphism.

Lemma 3.9. Let A = (Q, q0, δ, out) and A′ = (Q′, q′0, δ
′, out′) be two equiv-

alent trim DMVA. Then there is at most one homomorphism ϕ : A → A′.
Every such homomorphism is surjective and strong.
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Proof. Assume that there are two homomorphisms ϕ : A → A′ and ψ : A →
A′. For every q ∈ Q, there exists a word w ∈ Σ∗ such that δ(q0, w) = q.
Then ϕ(q) = ϕ(δ(q0, w)) = δ′(ϕ(q0), w) = δ′(q′0, w). Similarly, we show that
ψ(q) = δ′(q′0, w), and thus ϕ(q) = ψ(q), i.e., ϕ = ψ. Next, we show that ϕ,
whenever it exists, is surjective and strong. Consider q′ ∈ Q′. Since A′ is
accessible, there is w ∈ Σ∗ with q′ = δ′(q′0, w). Moreover, there exists w′ ∈ Σ∗

such that 0 < out′(δ′(q′, w′)) = (‖A′‖, ww′) = (‖A‖, ww′). So, there exists
q ∈ Q with q = δ(q0, w). Therefore, ϕ(q) = ϕ(δ(q0, w)) = δ′(ϕ(q0), w) =
δ′(q′0, w) = q′, showing that ϕ is surjective. Keeping the same notations, we
have out′(q′) = (‖A′‖, w) = (‖A‖, w) = out(q) yielding that ϕ is a strong
homomorphism. �

For every r ∈ Lrec〈〈Σ∗〉〉, let TR(r) be the collection of all trim DMVA
accepting r. We define a pre-order ≤ in TR(r); for every A,A′ ∈ TR(r),
we set A′ ≤ A iff there exists an homomorphism ϕ : A → A′. We show
that if A ≤ A′ and A′ ≤ A, then A and A′ are isomorphic. Indeed, A ≤
A′ and A′ ≤ A imply that there exist homomorphisms ϕ′ : A′ → A, ϕ :
A → A′. Then ϕ′ ◦ ϕ : A → A, ϕ ◦ ϕ′ : A′ → A′ are also homomorphisms
and by Lemma 3.9, ϕ′ ◦ ϕ = 1A and ϕ ◦ ϕ′ = 1A′ where 1A and 1A′ are
the identity isomorphisms of A and A′, respectively, and ϕ is strong. So, ϕ is
an isomorphism. We conclude that the collection of the isomorphism classes
of all trim DMVA accepting r forms a partial order. Clearly, the question of
the existence (up to an isomorphism) of a minimum trim DMVA accepting
r arises. Here, minimum refers to a trim DMVA in TR(r) which has as few
states as any other automaton in TR(r). In the following, we show that such
a minimum trim DMVA accepting r, always can be constructed and is unique
up to isomorphism.

Given a fuzzy language r ∈ L〈〈Σ∗〉〉, we define an equivalence relation ≡r

on Σ∗ as follows. For every w1, w2 ∈ Σ∗, w1 ≡r w2 iff (r, w1w) = (r, w2w) for
every w ∈ Σ∗. It is clear that ≡r is a right congruence.

Proposition 3.10. The fuzzy language r ∈ L〈〈Σ∗〉〉 is recognizable iff the right
congruence ≡r has finite index.

Proof. Assume first that r is accepted by a trim DMVA A = (Q, q0, δ, out).
We define an equivalence relation ≡A on Σ∗ as follows. For every w1, w2 ∈ Σ∗,
w1 ≡A w2 iff δ(q0, w1) = δ(q0, w2). Obviously, ≡A is a right congruence, i.e.,
w1 ≡A w2 implies w1w ≡A w2w for every w ∈ Σ∗, and thus (r, w1w) =
(r, w2w); therefore, ≡A ⊆ ≡r. Since Q is finite, ≡A has finite index, hence ≡r

has also finite index.
Conversely, assume that ≡r has finite index and let [w] denote the equiv-

alence class of w ∈ Σ∗. We construct the accessible DMVA A′ = (Q′, [ε], δr,
outr) with Q′ = {[w] | w ∈ Σ∗}. The function δr is determined by δr([w], a) =
[wa] for every [w] ∈ Q′, a ∈ Σ, and outr([w]) = (r, w) for every [w] ∈ Q′. Then
‖A′‖ = r and thus r is fuzzy recognizable. By letting Qr = {[w] ∈ Q′ | ∃u ∈
Σ∗ : (r, wu) > 0}, we get an equivalent trim DMVA Ar = (Qr, [ε], δr, outr).

�
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Keeping the notations of the previous proof, assume now that r ∈ Lrec〈〈Σ∗〉〉
and let A = (Q, q0, δ, out) be a trim DMVA accepting r. Then for every q ∈ Q
there exists wq ∈ Σ∗ such that q = δ(q0, wq). If w′

q is another word such
that q = δ(q0, w

′
q), then [wq] = [w′

q]. We define a mapping ϕr : Q → Qr by
ϕ(q) = [wq]. Then ϕr : A → Ar is a homomorphism. Indeed, δ(q0, ε) = q0,

and thus ϕr(q0) = [ε]. Furthermore, let q ∈ Q and w ∈ Σ∗ such that δ(q, w)
exists. Then ϕr(δ(q, w)) = ϕr(δ(δ(q0, wq), w)) = ϕr(δ(q0, wqw)) = [wqw] =
δ′([ε], wqw) = δ′([wq], w) = δ′(ϕr(q), w) proving our claim. Hence, we have
obtained the following result.

Theorem 3.11. Let Σ be an alphabet and L be a bounded distributive lattice.
For every fuzzy recognizable language r ∈ Lrec〈〈Σ∗〉〉, there exists a minimum
trim DMVA Ar with ‖Ar‖ = r.

Any trim DMVA A which is isomorphic to Ar will be also called a min-
imum automaton for r. Next, we show that for every fuzzy recognizable lan-
guage r ∈ Lrec〈〈Σ∗〉〉, we can effectively construct a minimum automaton
accepting r. Let us assume that A = (Q, q0, δ, out) is a trim DMVA with
behavior ‖A‖ = r. We define an equivalence relation ≡ on Q as follows: for
every q, q′ ∈ Q, q ≡ q′ iff out(δ(q, w)) = out(δ(q′, w)) for every w ∈ Σ∗. Then
A is called reduced if q ≡ q′ implies q = q′ for every q, q′ ∈ Q. It is easy to
see that A is reduced iff the strong homomorphism ϕr : A → Ar is injective.
Since ϕr is also surjective, we conclude the following proposition.

Proposition 3.12. A DMVA A accepting r ∈ Lrec〈〈Σ∗〉〉 is minimum iff it is
trim and reduced.

The previous proposition actually points out a way to construct a min-
imum DMVA accepting r: we start from a trim DMVA A = (Q, q0, δ, out)
with ‖A‖ = r and we merge its equivalent states. Therefore, we prove that
the equivalence q ≡ q′ is decidable for every pair of states q, q′ ∈ Q, and
we give an algorithm which uses at most card(Q) iterations. To this end, we
introduce the equivalence relations ≡n (n ≥ 0) on Q, given by q ≡n q′ iff
out(δ(q, w)) = out(δ(q′, w)) for every w ∈

⋃
0≤k≤n Σk. Obviously, ≡0 ⊇ ≡1 ⊇

· · · ⊇ ≡n ⊇ · · · hence ≡ =
⋂

n≥0 ≡n . We show that if there exists an n ≥ 0
such that ≡n = ≡n+1, then ≡n+1 = ≡n+l for every l ≥ 2. Indeed, assume
that ≡n = ≡n+1. Then for every q, q′ ∈ Q,

q ≡n+1 q′

⇐⇒ out
(
δ(q, w)

)
= out

(
δ(q′, w)

)
for every w ∈

⋃

0≤k≤n+1

Σk

⇐⇒ out
(
δ(q, au)

)
= out

(
δ(q′, au)

)
for every a ∈ Σ, u ∈

⋃

0≤k≤n

Σk
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⇐⇒ out
(
δ(δ(q, a), u)

)
= out

(
δ
(
δ(q′, a), u

))

for every a ∈ Σ, u ∈
⋃

0≤k≤n

Σk

⇐⇒ δ(q, a) ≡n δ(q′, a) for every a ∈ Σ

⇐⇒ δ(q, a) ≡n+1 δ(q′, a) for every a ∈ Σ (by hypothesis)

⇐⇒ out
(
δ
(
δ(q, a), u

))
= out

(
δ
(
δ(q′, a), u

))

for every a ∈ Σ, u ∈
⋃

0≤k≤n+1

Σk

⇐⇒ q ≡n+2 q′.

Therefore, by induction, we have ≡n+1 = ≡n+l for every l ≥ 2. Now we
let e0, e1, . . . denote the numbers of the equivalence classes of ≡0,≡1, . . . ,
respectively. Then e0 ≤ e1 ≤ · · · ≤ card(Q). Thus, there exists an n ≤ card(Q)
such that en = en+1, hence ≡n = ≡n+1 and so ≡ = ≡n. We conclude that
the equivalence q ≡ q′ is decidable in at most card(Q) iterations.

We complete this subsection with two further important consequences of
Theorem 3.5. First, a pumping lemma is valid within the class Lrec〈〈Σ∗〉〉.

Proposition 3.13. Let r ∈ Lrec〈〈Σ∗〉〉. There exists an integer m > 0 such
that for every w ∈ Σ∗ with |w| > m, the word w can be written as w = w1uw2

with |u| > 0 and |w1w2| < m, and (r, w1u
kw2) = (r, w) for every k ≥ 0.

Proof. Let r =
∨

1≤i≤n ki ∧ 1Ri . Then the pumping lemma holds for every
recognizable language Ri (1 ≤ i ≤ n), and let mi be the corresponding integer
for Ri. We conclude our proof by letting m = max{m1, . . . , mn}. �

A pumping lemma for fuzzy recognizable languages over the interval [0, 1],
has been proved in [8] by means of fuzzy monoid recognizability.

Now we show that the equivalence problem is decidable for multi-valued
automata over Σ and L. In fact, we prove the following stronger result.

Theorem 3.14. Let Σ be an alphabet and L be a bounded distributive lattice.
For every two fuzzy recognizable languages r, r′ ∈ Lrec〈〈Σ∗〉〉, the relations
r ≤ r′ and r = r′ are decidable.

Proof. Let r =
∨

1≤i≤n ki ∧ 1Ri with pairwise disjoint recognizable languages
Ri and r′ =

∨
1≤j≤m k′

j∧1R′
j

with pairwise disjoint recognizable languages R′
j .

Clearly, our decidability problems reduce to well-known decidability problems
for recognizable languages. For instance in case of equality, we check that
whenever Ri ∩ R′

j 
= ∅ then ki = k′
j . �

3.2 Fuzzy Recognizability over Infinite Words

In this subsection, we introduce Büchi and Muller multi-valued automata
consuming infinite words. We show that both models accept the same class
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of infinitary fuzzy languages, and a Kleene-type theorem holds for this class.
The material of the present and the next subsection is based on [22].

Definition 3.15.

(a) A multi-valued Muller automaton (MVMA for short) over Σ and L is a
quadruple A = (Q, in, wt,F), where Q is the finite state set, in : Q → L
is the initial distribution, wt : Q × Σ × Q → L is the mapping assigning
weights to the transitions of the automaton, and F ⊆ P(Q) is the family
of final state sets.

(b) An MVMA A is a multi-valued Büchi automaton (MVBA for short) if
there is a set F ⊆ Q such that F = {S ⊆ Q | S ∩ F 
= ∅}.

Let w = a0a1 . . . ∈ Σω. A path of A over w is an infinite sequence of
transitions Pw = (ti)i≥0, so that ti = (qi, ai, qi+1) ∈ Q × Σ × Q for every
i ≥ 0. The weight of Pw is defined by

weight(Pw) = in(q0) ∧
∧

i≥0

wt(ti).

Observe that weight(Pw) is well-defined since weight(Pw) ∈ LA, where LA is
the finite sub-lattice of L generated by {0, 1} ∪ {in(q) | q ∈ Q} ∪ {wt(t) | t ∈
Q × Σ × Q}. The path Pw is called successful if the set of states that appear
infinitely often along Pw constitutes a final state set. The behavior of A is the
infinitary fuzzy language

‖A‖ : Σω → L

which is defined by
(‖A‖, w) =

∨

Pw

weight(Pw)

for w ∈ Σω, where the supremum is taken over all successful paths Pw of
A over w. Since LA is finite, (‖A‖, w) exists and (‖A‖, w) ∈ LA for every
w ∈ Σω.

An infinitary fuzzy language r ∈ L〈〈Σω〉〉 is said to be fuzzy Muller recog-
nizable (resp. fuzzy Büchi recognizable or fuzzy ω-recognizable) if there is
an MVMA (resp. an MVBA) A so that r = ‖A‖. We denote the family
of all fuzzy Muller recognizable (resp. fuzzy ω-recognizable) languages over Σ
and L by LM-rec〈〈Σω〉〉 (resp. Lω-rec〈〈Σω〉〉). It should be clear that the class
LM-rec〈〈Σω〉〉 (resp. Lω-rec〈〈Σω〉〉) coincides with the class of Muller recogniz-
able (resp. ω-recognizable) series over Σ and the semiring 〈L,∨,∧, 0, 1〉 (see
[22, 23]). Clearly Lω-rec〈〈Σω〉〉 ⊆ LM-rec〈〈Σω〉〉. Later on, we shall prove that in
fact the two classes coincide.

Two multi-valued Muller (resp. Büchi) automata A and A′ over Σ and L
are called equivalent if ‖A‖ = ‖A′‖.

Given a language R ⊆ Σω, its characteristic infinitary fuzzy language 1R ∈
L〈〈Σω〉〉 is defined in a similar way as for finitary languages. Obviously, every
unweighted Büchi automaton with input alphabet Σ can be considered as an
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MVBA over Σ and L with weights only 0 and 1. Therefore, we immediately
obtain the next proposition.

Proposition 3.16 ([23]). Let R ⊆ Σω be an ω-recognizable language. Then
the characteristic infinitary fuzzy language 1R ∈ L〈〈Σω〉〉 is ω-recognizable.

Assume now that R1, . . . , Rn ⊆ Σω are ω-recognizable languages, k1, . . . ,
kn ∈ L, and let

r =
∨

1≤i≤n

ki ∧ 1Ri .

Such a language r is called fuzzy ω-recognizable step language [23]. Actually
a fuzzy ω-recognizable step language is fuzzy ω-recognizable. Indeed, let us
assume that for every 1 ≤ i ≤ n we are given a Büchi automaton Ai =
(Qi, Ii, Δi,Fi) accepting Ri (see [56]). We fix an 1 ≤ i ≤ n. Then as already
noted above, Ai can be considered as an MVBA (Qi, ini, wti,Fi) over Σ and
L with behavior 1Ri . We consider the MVBA Ai = (Qi, ki ∧ ini, wti,Fi).
Obviously ‖Ai‖ = ki ∧ 1Ri . Now let A be the MVBA obtained as the disjoint
union of all Ai (1 ≤ i ≤ n). Clearly, ‖A‖ = r proving our claim.

Theorem 3.17 ([22]). Let Σ be an alphabet and L be a bounded distributive
lattice. Then the following statements are equivalent for every infinitary fuzzy
language r ∈ L〈〈Σω〉〉:

(i) r is fuzzy Muller recognizable.
(ii) r is fuzzy ω-recognizable.
(iii) r is a fuzzy ω-recognizable step language.

Proof. We show that (i) implies (iii). Let r ∈ LM-rec〈〈Σω〉〉 and A be an MVMA
accepting r. Then r =

∨
1≤i≤n ki ∧ 1Ri where LA = {k1, . . . , kn} and Ri =

{w ∈ Σω | (r, w) = ki} for every 1 ≤ i ≤ n. Following the proof of Theorem
3.5, we can show that the languages Ri (1 ≤ i ≤ n) are Muller recognizable,
and thus ω-recognizable, which in turn implies that r is a fuzzy ω-recognizable
step language.

The implications (iii) ⇒ (ii) and (ii) ⇒ (i) are also true as already shown.
�

Observe that our proof above is effective (recall the discussion after The-
orem 3.5). In the sequel without any further notation, we write every fuzzy
ω-recognizable language r over Σ and L as r =

∨
1≤i≤n ki ∧ 1Ri .

Theorem 3.17 has very interesting consequences. Firstly, we can easily
obtain closure properties of fuzzy ω-recognizable languages.

Proposition 3.18. The class Lω-rec〈〈Σω〉〉 of fuzzy ω-recognizable languages
is closed under supremum, infimum, and scalar infimum.

Proof. Closure under supremum is immediate and closure under scalar infi-
mum is obtained by distributivity of L. Furthermore, for the closure under
infimum one has to recall that the class of ω-recognizable languages is closed
under intersection. �
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Consider now two alphabets Σ, Δ and a non-deleting homomorphism h :
Σ∗ → Δ∗. Then h can be extended to a mapping h : Σω → Δω by setting
h(a0a1 . . .) = h(a0)h(a1) . . . for every infinite word a0a1 . . . ∈ Σω. Let r ∈
L〈〈Σω〉〉 be an infinitary fuzzy language having finite image, and R ⊆ Σω. We
define the infinitary fuzzy language hR(r) ∈ L〈〈Δω〉〉 by

(
hR(r), u

)
=

∨

w∈h−1(u)∩R

(r, w)

for every u ∈ Δω. We denote the mapping hΣω simply by h. Furthermore, if
s ∈ L〈〈Δω〉〉, then the fuzzy language h−1(s) ∈ L〈〈Σω〉〉 is specified by

(
h−1(s), w

)
=

(
s, h(w)

)

for every w ∈ Σω.

Proposition 3.19.

(i) Let (L,≤) and (L′,≤) be two bounded distributive lattices and f : L →
L′ be any mapping. Then for every fuzzy ω-recognizable language r in
L〈〈Σω〉〉 the fuzzy language f(r) ∈ L′〈〈Σω〉〉 is again ω-recognizable.

(ii) Let h : Σω → Δω be a non-deleting homomorphism and R ⊆ Σω be an ω-
recognizable language. Then hR : L〈〈Σω〉〉 → L〈〈Δω〉〉 and h−1 : L〈〈Δω〉〉 →
L〈〈Σω〉〉 preserve the ω-recognizability property of fuzzy languages.

Proof. Statement (i) can be shown as Proposition 3.6, using Theorem 3.17.
Now let r ∈ Lω-rec〈〈Σω〉〉 with r =

∨
1≤i≤n ki ∧1Ri . For every u ∈ Δω, we have

(
hR(r), u

)
=

∨

w∈h−1(u)∩R

(r, w) =
∨

1≤i≤n

(

ki ∧
∨

w∈h−1(u)∩R

(1Ri , w)
)

which is equal to
∨

1≤i≤n ki ∧ (1h(Ri∩R), u). Hence,

hR(r) =
∨

1≤i≤n

ki ∧ 1h(Ri∩R).

Since the class of ω-recognizable languages is closed under non-deleting homo-
morphisms [56], we obtain that the fuzzy language hR(r) is ω-recognizable.

Finally, assume that s =
∨

1≤j≤m k′
j ∧ 1R′

j
. Then

h−1(s) =
∨

1≤j≤m

k′
j ∧ 1h−1(R′

j)
.

The class of ω-recognizable languages is closed under inverse non-deleting
homomorphisms [56], therefore, h−1(s) is fuzzy ω-recognizable and our proof
is completed. �
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As an immediate consequence of Proposition 3.19(i), we obtain the closure
of fuzzy ω-recognizable languages under negation functions.

Corollary 3.20. Let (L,≤,− ) be a bounded distributive lattice with negation
function, and r ∈ Lω-rec〈〈Σω〉〉. Then also r ∈ Lω-rec〈〈Σω〉〉.

By Theorem 3.17, we get the statements of Proposition 3.7 in the setting
of infinitary fuzzy languages. More precisely, for every r ∈ L〈〈Σω〉〉 and l ∈ L,
we consider the infinitary languages r≥l = {w ∈ Σω | (r, w) ≥ l} and r=l =
r−1(l) = {w ∈ Σω | (r, w) = l}.

Proposition 3.21. For every fuzzy language r ∈ L〈〈Σω〉〉, the following state-
ments are equivalent:

(i) r is fuzzy ω-recognizable.
(ii) r has finite image, and for every l ∈ L, r=l is an ω-recognizable language.
(iii) r has finite image, and for every l ∈ L, r≥l is an ω-recognizable language.

As a further consequence of Theorem 3.17, we prove that the equivalence
problem is decidable for multi-valued Muller (resp. Büchi) automata over Σ
and L. In fact, we get the subsequent stronger decidability result.

Theorem 3.22. Let Σ be an alphabet and L be a bounded distributive lattice.
For every two fuzzy ω-recognizable languages r, r′ ∈ Lω-rec〈〈Σω〉〉, the relations
r ≤ r′ and r = r′ are decidable.

Proof. See the proof of Theorem 3.14. �

Finally, we show that a Kleene theorem holds for fuzzy ω-recognizable
languages. We firstly recall the ω-rational operations of fuzzy languages (see
[37, 63, 27]). Let r ∈ L〈〈Σ∗〉〉 and r′ ∈ L〈〈Σω〉〉. Then the Cauchy prod-
uct rr′ ∈ L〈〈Σω〉〉 of r and r′ is defined by (rr′, w) = ∨{(r, u) ∧ (r′, u′) |
w = uu′, u ∈ Σ∗, u′ ∈ Σω} for every w ∈ Σω. Furthermore, whenever r is
proper, i.e., (r, ε) = 0, we define the ω-star rω ∈ L〈〈Σω〉〉 of r as follows:
(rω, w) = ∨{∧{(r, w1), (r, w2), . . .} | w = w1w2 . . . with w1, w2, . . . ∈ Σ∗} for
every w ∈ Σω. Now the class of fuzzy ω-rational languages over Σ and L,
denoted by Lω-rat〈〈Σω〉〉, is the least class of infinitary fuzzy languages gen-
erated by the finitary fuzzy languages (over Σ and L) with finite support,
applying finitely many times the operations of supremum, Cauchy product,
star, and ω-star. Every fuzzy ω-recognizable language r =

∨
1≤i≤n ki ∧ 1Ri

over Σ and L is ω-rational. Indeed, for every 1 ≤ i ≤ n the language Ri is
ω-rational and thus 1Ri is a fuzzy ω-rational language with values 0 and 1.
Then ki ∧ 1Ri is just the Cauchy product of the series kiε and 1Ri , where the
series kiε is defined by (kiε, w) = 1 if w = ε and (kiε, w) = 0 otherwise, for
every w ∈ Σ∗. Conversely, we claim that Lω-rat〈〈Σω〉〉 ⊆ Lω-rec〈〈Σω〉〉. For this,
it suffices to show that for every r ∈ Lrec〈〈Σ∗〉〉, r′ ∈ Lω-rec〈〈Σω〉〉 the fuzzy lan-
guage rr′ ∈ Lω-rec〈〈Σω〉〉, and for every proper fuzzy language r ∈ Lrec〈〈Σ∗〉〉,
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the ω-star rω ∈ Lω-rec〈〈Σω〉〉. Once again by using Theorems 3.5 and 3.17,
this is reduced to the well-known closure properties of recognizable languages
under the ω-rational operations (see, for instance, [56]). Therefore, we get the
subsequent Kleene theorem for infinitary fuzzy languages.

Theorem 3.23. Let Σ be an alphabet and L be a bounded distributive lattice.
Then Lω-rec〈〈Σω〉〉 = Lω-rat〈〈Σω〉〉.

For a Kleene theorem for infinitary formal power series over a larger
class of semirings than bounded distributive lattices, we refer the reader to
[25–27].

3.3 Multi-valued MSO Logic

Following [22], we introduce a multi-valued monadic second-order logic (multi-
valued MSO logic, for short) over infinite words, and we state a multi-valued
version of Büchi’s theorem [11] for fuzzy languages over bounded distributive
lattices with negation function. A corresponding theory for finite words has
been obtained as an application of weighted logics over locally finite semi-
rings (see [18, 20]). Throughout this subsection, we assume that (L,≤,− ) is
a bounded distributive lattice with negation function.

Every word w = a0a1 . . . ∈ Σω, with a0, a1, . . . ∈ Σ, is also written as
w = w(0)w(1) . . . with w(i) = ai for i ≥ 0. Then every w ∈ Σω is represented
by the structure (ω,≤, (Ra)a∈Σ) where Ra = {i | w(i) = a} for a ∈ Σ. Given
a finite set V of first- and second-order variables, a (w,V)-assignment σ is a
mapping assigning elements of ω to first-order variables from V, and subsets
of ω to second-order variables from V. If x is a first-order variable and i ∈ ω,
then σ[x → i] denotes the (w,V ∪ {x})-assignment which assigns i to x and
acts as σ on V \ {x}. For a second-order variable X and I ⊆ ω, the notation
σ[X → I] has a similar meaning.

By using the extended alphabet ΣV = Σ ×{0, 1}V , we encode pairs (w, σ)
for every w ∈ Σω and every (w,V)-assignment σ. Every word in Σω

V is con-
sidered as a pair (w, σ) where w is the projection over Σ, and σ is the projec-
tion over {0, 1}V . Then σ is a valid (w,V)-assignment if for every first-order
variable x ∈ V the x-row contains exactly one 1. In this case, we identify σ
with the (w,V)-assignment so that for every first-order variable x ∈ V, σ(x) is
the position of the 1 on the x-row, and for every second-order variable X ∈ V,
σ(X) is the set of positions labeled with 1 along the X-row. By standard
automata constructions, it can be shown that the language

NV =
{
(w, σ) ∈ Σω

V
∣
∣ σ is a valid (w,V)-assignment

}

is ω-recognizable.

Definition 3.24. The set of all MSO(L, Σ)-formulas of the multi-valued
MSO logic over Σ and L is defined to be the smallest set F such that:
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• F contains all atomic formulas k, Pa(x), x ≤ y, x ∈ X.
• If ϕ, ψ ∈ F , then also ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ,∃x � ϕ,∃X � ϕ,∀x � ϕ,∀X � ϕ ∈ F

where k ∈ L, a ∈ Σ, x, y are first-order variables and X is a second-order
variable.

We represent the semantics of the formulas in MSO(L, Σ) as infinitary
fuzzy languages over the extended alphabet ΣV and the lattice L. Here, our
definition of semantics is more general that the one used in [18, 23, 20]. There,
the authors assigned to every atomic formula Pa(x), x ≤ y, or x ∈ X, respec-
tively, the characteristic series of its associated MSO-language. These series
take on only 0, 1. Here, we assume that there is a function f assigning to
every atomic formula ϕ of the form Pa(x), x ≤ y, or x ∈ X, respectively,
an infinitary fuzzy language f(ϕ) in L〈〈Σω

ϕ〉〉 (where Σϕ stands for ΣFree(ϕ)).
This generalization has been already used in other logics. For instance, in
many-valued predicate logic, every object variable is being assigned a value
from an L-structure M , where L is a BL-algebra (see Sect. 5 in [32]). In [39],
the atomic propositions of the multi-valued LTL take values from a subset
of the underlying De Morgan algebra. Our assignment f here is called ω-
recognizable if the fuzzy language f(ϕ) is ω-recognizable for every atomic
formula ϕ. Later on, we always require that f is an ω-recognizable assign-
ment. Thus, the language f(ϕ) will be taking on only finitely many values, for
every atomic formula ϕ. Therefore, we will call f a multi-valued atomic as-
signment over Σ, if f(ϕ) takes on only finitely many values, for every atomic
formula ϕ.

Definition 3.25. Let ϕ ∈ MSO(L, Σ), V be a finite set of variables containing
Free(ϕ), and f be a multi-valued atomic assignment over Σ. We define the
f -semantics of ϕ to be an infinitary fuzzy language ‖ϕ‖f

V ∈ L〈〈Σω
V 〉〉 in the

following way. Let (w, σ) ∈ Σω
V . If σ is not a valid (w,V)-assignment, then we

put (‖ϕ‖f
V , (w, σ)) = 0. Otherwise, we inductively define (‖ϕ‖f

V , (w, σ)) ∈ L as
follows:

• (‖k‖f
V , (w, σ)) = k

• (‖ϕ‖f
V , (w, σ)) = (f(ϕ), (w, σ|Free(ϕ))) if ϕ is an atomic formula of the

form Pa(x), x ≤ y, or x ∈ X

• (‖¬ϕ‖f
V , (w, σ)) = (‖ϕ‖f

V , (w, σ))
• (‖ϕ ∨ ψ‖f

V , (w, σ)) = (‖ϕ‖f
V , (w, σ)) ∨ (‖ψ‖f

V , (w, σ))
• (‖ϕ ∧ ψ‖f

V , (w, σ)) = (‖ϕ‖f
V , (w, σ)) ∧ (‖ψ‖f

V , (w, σ))
• (‖∃x � ϕ‖f

V , (w, σ)) =
∨

i∈ω(‖ϕ‖f
V∪{x}, (w, σ[x → i]))

• (‖∃X � ϕ‖f
V , (w, σ)) =

∨
I⊆ω(‖ϕ‖f

V∪{X}, (w, σ[X → I]))

• (‖∀x � ϕ‖f
V , (w, σ)) =

∧
i∈ω(‖ϕ‖f

V∪{x}, (w, σ[x → i]))

• (‖∀X � ϕ‖f
V , (w, σ)) =

∧
I⊆ω(‖ϕ‖f

V∪{X}, (w, σ[X → I])).
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It should be clear that in Definition 3.25 all the occurring infinite suprema
and infima exist in L (without any further completeness assumption). More
precisely, one can show by induction on the structure of formulas ϕ that ‖ϕ‖f

V
takes on only finitely many values. Indeed, for atomic formulas, this is clear
by assumption, and the property is preserved by negation, disjunction, and
conjunction. Since L is a lattice, the property is also preserved by infinite
suprema and infima, proving our claim.

If the multi-valued atomic assignment is well-known, then we omit the
superscript f from ‖ϕ‖f

V . Furthermore, we simply write ‖ϕ‖ for ‖ϕ‖Free(ϕ). If
ϕ has no free variables, i.e., if it is a sentence, then ‖ϕ‖ ∈ L〈〈Σω〉〉.

An infinitary fuzzy language r ∈ L〈〈Σω〉〉 is called MSO-f -definable if
there is a sentence ϕ ∈ MSO(L, Σ) such that r = ‖ϕ‖f . We let Lf-mso〈〈Σω〉〉
comprise all fuzzy languages from L〈〈Σω〉〉 which are f -definable by some
sentence in MSO(L, Σ). In the sequel, we show that the classes Lf-mso〈〈Σω〉〉
and Lω-rec〈〈Σω〉〉 coincide.

Let us first give an example of possible interpretations of multi-valued
MSO-formulas. The reader can find more examples in [18, 22, 23, 20].

Example 3.26 ([22]). We consider the bounded distributive lattice (N ∪ {∞},
≤,−) (where N is the set of natural numbers and − is an arbitrary negation
function). Let Σ = {a, b, c} and f be the multi-valued atomic assignment
over Σ, determined in the following way. For every w ∈ Σω and every valid
(w, {x})-assignment σ, we set:

• (f(Pa(x)), (w, σ)) = 0

• (f(Pb(x)), (w, σ)) =

{
1 if w(σ(x)) = b,

0 otherwise

• (f(Pc(x)), (w, σ)) =

{
2 if w(σ(x)) = c,

0 otherwise.

For every other atomic formula ϕ, f(ϕ) is the fuzzy language with image
{0}. Let ϕ = ∀x �(Pa(x)∨Pb(x)∨Pc(x)). In fact, ϕ is a sentence, and for every
word w ∈ Σω the semantics ‖ϕ‖f returns the value 0 if the letter a occurs at
least once in w, the value 1 if no a appears in w but b occurs at least once,
and it returns the value 2 if w = cω.

The reader should observe that the above definition of semantics is valid
for every formula ϕ ∈ MSO(L, Σ) and every finite set V of variables containing
Free(ϕ). The following proposition states that the f -semantics ‖ϕ‖f

V is in fact
independent of the set V; it depends only on Free(ϕ). For a proof, we refer
the reader to [18, 20].

Proposition 3.27. For every ϕ ∈ MSO(L, Σ), every finite set V of variables
with Free(ϕ) ⊆ V, and every multi-valued atomic assignment f over Σ, it
holds that
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(
‖ϕ‖f

V , (w, σ)
)

=
(
‖ϕ‖f , (w, σ|Free(ϕ))

)

for every (w, σ) ∈ Σω
V , where σ is a valid (w,V)-assignment. Furthermore,

the fuzzy language ‖ϕ‖f is ω-recognizable iff the fuzzy language ‖ϕ‖f
V is ω-

recognizable.

The next lemma states a further closure property of the class of fuzzy
ω-recognizable languages.

Lemma 3.28. Let h : Σω → Δω be a non-deleting homomorphism, R ⊆ Σω

be an ω-recognizable language, and r ∈ Lω-rec〈〈Σω〉〉 be a fuzzy ω-recognizable
language. Then the language

∧
h,R(r) ∈ L〈〈Δω〉〉 defined by (

∧
h,R(r), u) =∧

w∈h−1(u)∩R(r, w) is fuzzy ω-recognizable.

Proof. Let (Ld,≤d) = (L,≥) be the dual lattice of L, which is obtained by
interchanging suprema and infima. Since r takes on only finitely many values
and each value on an ω-recognizable language, r is also fuzzy ω-recognizable
over Ld. Consider the transformation hd

R : Ld〈〈Σω〉〉 → Ld〈〈Δω〉〉. By Propo-
sition 3.19(ii), we obtain hd

R(r) ∈ (Ld)ω-rec〈〈Δω〉〉 which in turn means that
hd

R(r) ∈ Lω-rec〈〈Δω〉〉. Since suprema in Ld equal infima in L, we have hd
R(r) =∧

h,R(r) and our proof is completed. �

Proposition 3.29. Let ϕ, ψ ∈ MSO(L, Σ) such that ‖ϕ‖f
V , ‖ψ‖f

V are fuzzy
ω-recognizable languages where f is a multi-valued atomic assignment, and V
is a finite set of variables with Free(ϕ) ∪ Free(ψ) ⊆ V. Then the languages
‖¬ϕ‖f

V , ‖ϕ∨ψ‖f
V , ‖ϕ∧ψ‖f

V , ‖∃x � ϕ‖f
V , ‖∃X � ϕ‖f

V , ‖∀x � ϕ‖f
V , and ‖∀X � ϕ‖f

V
are fuzzy ω-recognizable.

Proof. The f -semantics of the negation of ϕ is fuzzy ω-recognizable by Corol-
lary 3.20. The f -semantics of disjunction and conjunction of ϕ and ψ are fuzzy
ω-recognizable by Proposition 3.18. Next, we deal with existential and uni-
versal quantifiers. By assumption, ‖ϕ‖f

V is fuzzy ω-recognizable. Let ‖ϕ‖f
V =∨

1≤i≤n ki ∧ 1Ri , and

h : Σω
V∪{x} → Σω

V and h′ : Σω
V∪{X} → Σω

V

be the non-deleting homomorphisms erasing the x-row and the X-row, respec-
tively. Clearly,

‖∃x � ϕ‖f
V = h

(
‖ϕ‖f

V∪{x}
)

‖∃X � ϕ‖f
V = h′(‖ϕ‖f

V∪{X}
)

‖∀x � ϕ‖f
V =

∧

h,NV∪{x}

(
‖ϕ‖f

V∪{x}
)

‖∀X � ϕ‖f
V =

∧

h′,Σω
V∪{X}

(
‖ϕ‖f

V∪{X}
)
.

We conclude our proof by applying Proposition 3.19(ii) and Lemma 3.28. �

Proposition 3.30. Let f be any ω-recognizable multi-valued atomic assign-
ment. Then Lf-mso〈〈Σω〉〉 ⊆ Lω-rec〈〈Σω〉〉.
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Proof. We apply induction on the structure of MSO(L, Σ)-formulas using
Proposition 3.29. �

Next, we define the crisp atomic assignment cf for atomic formulas. More
precisely, let ϕ be an atomic formula of the form Pa(x), x ≤ y, or x ∈ X. Then
for every (w, σ) ∈ Σω

ϕ with σ a valid assignment, we set:

• (cf(Pa(x)), (w, σ)) =

{
1 if w(σ(x)) = a,

0 otherwise

• (cf(x ≤ y), (w, σ)) =

{
1 if σ(x) ≤ σ(y),
0 otherwise

• (cf(x ∈ X), (w, σ)) =

{
1 if σ(x) ∈ σ(X),
0 otherwise.

Note that if ϕ is an atomic formula of this form, then (‖¬ϕ‖cf , (w, σ)) =
(cf(ϕ), (w, σ)) for every (w, σ) ∈ Nϕ, and by the property of − that 1 = 0
and 0 = 1, the semantics of ¬ϕ coincides with the one given in [23, 20].
Furthermore, the crisp atomic assignment is ω-recognizable [23]. We denote
the class Lcf-mso〈〈Σω〉〉 simply by Lmso〈〈Σω〉〉.

Now we can state our Büchi-type characterization of the class Lω-rec〈〈Σω〉〉.

Theorem 3.31. Let Σ be an alphabet and L be a bounded distributive lattice
with any negation function. Then

Lω-rec〈〈Σω〉〉 =
⋃

f

Lf-mso〈〈Σω〉〉 = Lmso〈〈Σω〉〉

where the union is taken over all ω-recognizable multi-valued atomic assign-
ments.

Proof. Let r ∈ Lω-rec〈〈Σω〉〉 with r =
∨

1≤i≤n ki∧1Ri . We fix an 1 ≤ i ≤ n. By
Büchi’s theorem [11], Ri is definable by a classical MSO-sentence ϕi. Clearly,
ϕi can be considered as a multi-valued sentence over Σ and L. Then ‖ϕi‖ =
1Ri which in turn implies that ‖

∨
1≤i≤n ki ∧ ϕi‖ = r. Thus, Lω-rec〈〈Σω〉〉 ⊆

Lmso〈〈Σω〉〉. Now Proposition 3.30 completes our proof. �

This result shows that for every formula ϕ ∈ MSO(L, Σ), whose semantics
is defined with any ω-recognizable multi-valued atomic assignment, we can
construct an equivalent MSO(L, Σ)-formula with the crisp atomic assignment.
In case of De Morgan algebras, an alternative simpler syntax of formulas of
multi-valued MSO logic can be given by the grammar

ϕ ::= k | Pa(x) | x ≤ y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x � ϕ | ∃X � ϕ.

We define the semantics ‖ϕ‖ of formulas ϕ of this syntax exactly as in De-
finition 3.25. Given a multi-valued atomic assignment f , let Ldm-f-mso〈〈Σω〉〉
be the collection of all infinitary fuzzy languages definable in this logic. Then
conjunction and universal quantifiers are determined by:
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• ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ)
• ∀x � ϕ = ¬(∃x � ¬ϕ)
• ∀X � ϕ = ¬(∃X � ¬ϕ)

for every ϕ, ψ ∈ MSO(L, Σ). By using the De Morgan laws, we have the
following equalities for every (w, σ) ∈ Σω

V where σ is a valid assignment:

• (‖ϕ ∧ ψ‖f
V , (w, σ)) = (‖ϕ‖f

V , (w, σ)) ∧ (‖ψ‖f
V , (w, σ))

• (‖∀x � ϕ‖f
V , (w, σ)) =

∧
i∈ω(‖ϕ‖f

V∪{x}, (w, σ[x → i]))

• (‖∀X � ϕ‖f
V , (w, σ)) =

∧
I⊆ω(‖ϕ‖f

V∪{X}, (w, σ[X → I])).

The crisp atomic assignment cf is also defined as before, and we denote
again the class Ldm-cf-mso〈〈Σω〉〉 simply by Ldm-mso〈〈Σω〉〉. Then the next result
is an immediate consequence of Theorem 3.31 and the above equalities.

Corollary 3.32. Let Σ be an alphabet and (L,≤,− ) be a De Morgan algebra.
Then

Lω-rec〈〈Σω〉〉 =
⋃

f

Ldm-f-mso〈〈Σω〉〉 = Ldm-mso〈〈Σω〉〉

where the union is taken over all ω-recognizable multi-valued atomic assign-
ments.

4 Fuzzy Languages: An Overview

In the previous section, we have focused on fuzzy languages over bounded dis-
tributive lattices. Several other concepts of fuzzy languages occur in the litera-
ture, and they mainly differ in their underlying structure. The most general
cases are covered by fuzzy languages over bounded �-monoids and residuated
lattices. Since every residuated lattice is a bounded �-monoid, fuzzy languages
over residuated lattices constitute a subclass of fuzzy languages over bounded
�-monoids. Fuzzy automata over these two concepts have been investigated
recently. Actually, they are weighted automata over the corresponding in-
duced semirings. Therefore, the properties of their behaviors mostly follow
from the general theory of recognizable formal power series. Further prop-
erties of fuzzy recognizable languages over residuated lattices and bounded
�-monoids require specific restrictions for their underlying structures. In this
section, we only highlight the most interesting results (without proofs) for
fuzzy recognizable languages over bounded �-monoids and residuated lattices.
We also succinctly refer to fuzzy automata with outputs, to families of fuzzy
languages, and to fuzzy tree languages. For the rest of this section, Σ will
denote an arbitrary finite alphabet.
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4.1 Fuzzy Languages over �-Monoids

A lattice-ordered monoid (or �-monoid for short) is a lattice (L,≤) equipped
with an operation · and a distinguished element e ∈ L such that the following
conditions hold:

(i) 〈L, ·, e〉 is a monoid
(ii) a · (b ∨ c) = a · b ∨ a · c and (a ∨ b) · c = a · c ∨ b · c

for every a, b, c ∈ L (see [6]). Note that then a ≤ b implies a · c ≤ b · c and
c · a ≤ c · b, for every a, b, c ∈ L.

The �-monoid defined above is denoted by (L,∨, ·), and is called bounded
if the lattice (L,≤) is bounded and

(iii) a · 0 = 0 · a = 0

for every a ∈ L. Furthermore, if (L,≤) is a complete lattice satisfying

(iv) a · (
∨

i∈I bi) =
∨

i∈I(a · bi) and (
∨

i∈I bi) · a =
∨

i∈I(bi · a)

for every a ∈ L and every countable family (bi | i ∈ I) ⊆ L of elements
of L, then (L,∨, ·) is called countably distributive. Every bounded distributive
lattice is a bounded �-monoid with · = ∧ and e = 1. A further example of a
bounded �-monoid with e = 1 is given by any residuated lattice L (see Sect. 4.2
below). Given a bounded �-monoid (L,∨, ·), the structure 〈L,∨, ·, 0, e〉 is a
semiring. An L-valued language r over Σ and (L,∨, ·) is a formal power se-
ries r ∈ L〈〈Σ∗〉〉. Automata over bounded �-monoids, called L-fuzzy automata,
were introduced in [42]. More precisely, an L-fuzzy automaton over Σ and
(L,∨, ·) is just a weighted automaton over Σ and the semiring 〈L,∨, ·, 0, e〉.
A Kleene theorem for L-valued recognizable languages is stated in [42] under
the assumption that the �-monoid (L,∨, ·) is countably distributive or e = 1.
In fact, this is actually an application of the Kleene–Schützenberger theorem
for recognizable series (see for instance [27, 65]). A deterministic L-fuzzy au-
tomaton over Σ and (L,∨, ·) is defined in the same way as the deterministic
multi-valued automaton (see Sect. 3.1). The subsequent theorem indicates
the requirements for the determinization of L-fuzzy automata over bounded
l-monoids.

Theorem 4.1 ([42]). Let (L,∨, ·) be a bounded �-monoid. Then for every L-
fuzzy automaton over (L,∨, ·), there exists an equivalent deterministic L-fuzzy
automaton over (L,∨, ·) iff the semiring 〈L,∨, ·, 0, e〉 is locally finite.

For the “if” part, we refer the reader also to [7, 19] where corresponding
statements for arbitrary locally finite semirings are shown. For the “only if”
part, we consider an arbitrary finite subset A of L, and we construct an L-
fuzzy automaton A having A as its set of weights and the submonoid LA of
〈L, ·, e〉 generated by A as the image of its behavior (see [42]). Since every
deterministic L-fuzzy automaton takes on only finitely many values and A
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can be determinized, LA is finite. Since the monoid 〈L,∨, 0〉 is clearly locally
finite, it follows that the semiring 〈L,∨, ·, 0, e〉 is locally finite.

If the semiring 〈L,∨, ·, 0, e〉 is locally finite, then by [19] we get that an
L-valued language r ∈ L〈〈Σ∗〉〉 is recognizable iff it is an L-valued recognizable
step language (in the sense of Sect. 3 and [19]). Then following our construc-
tions in Sect. 3.1, we get similar results as for fuzzy recognizable languages
over bounded distributive lattices. We collect these results in the subsequent
theorem.

Theorem 4.2. Let Σ be an alphabet and (L,∨, ·) be a bounded �-monoid such
that the semiring 〈L,∨, ·, 0, e〉 is locally finite. Then:

• For every L-valued recognizable language r ∈ L〈〈Σ∗〉〉 we can effectively
construct a minimum trim deterministic L-fuzzy automaton with behav-
ior r.

• An L-valued language r ∈ L〈〈Σ∗〉〉 is recognizable iff r has finite image and
each of its cut languages is recognizable.1

• A pumping lemma holds for L-valued recognizable languages in L〈〈Σ∗〉〉.
• The equivalence problem is decidable for L-fuzzy automata over Σ and

(L,∨, ·).

4.2 Fuzzy Languages over Residuated Lattices

Now we turn to residuated lattices. A residuated lattice is an algebra L =
〈L,∨,∧,⊗,→, 0, 1〉 where (L,≤) is a bounded lattice equipped with two op-
erations ⊗,→ such that the following conditions hold:

(i) 〈L,⊗, 1〉 is a commutative monoid
(ii) ⊗ and → form an adjoint pair, i.e., a ⊗ b ≤ c ⇔ a ≤ b → c

for every a, b, c ∈ L (see [73]).
If the lattice L is complete, then L is called a complete residuated lattice.

Examples of (complete) residuated lattices are provided by the fuzzy semiring
〈[0, 1], max, min, 0, 1〉 equipped with operations ⊗ and → defined, respectively,
as follows. For every a, b ∈ [0, 1], let:

• a ⊗ b = max(a + b − 1, 0), and a → b = min(1 − a + b, 1) (the �Lukasiewicz
structure)

• a ⊗ b = a · b, and a → b = 1 if a ≤ b and a → b = b/a (the usual quotient
of real numbers) otherwise (the product structure)

• a ⊗ b = min(a, b), and a → b = 1 if a ≤ b and a → b = b otherwise (the
Gödel structure).

Next, we claim that if (ai | i ∈ I) ⊆ L is a family of elements of L such
that

∨
i∈I ai exists, then for every a ∈ L we have

1 This statement has been also derived in [42].
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( ∨

i∈I

ai

)

⊗ a =
∨

i∈I

(ai ⊗ a).

Indeed, for every j ∈ I, we have

aj ≤
∨

i∈I

ai ≤
(

a →
(( ∨

i∈I

ai

)

⊗ a

))

,

so aj ⊗ a ≤ (
∨

i∈I ai) ⊗ a. Now let c ∈ L such that ai ⊗ a ≤ c for every i ∈ I,
hence ai ≤ a → c. Then we get

∨
i∈I ai ≤ a → c, and thus (

∨
i∈I ai) ⊗ a ≤ c

proving our claim.
By (ii), we obtain also 0 ⊗ a = 0 for every a ∈ L.
Clearly, for every residuated lattice L = 〈L,∨,∧,⊗,→, 0, 1〉, the triple

(L,∨,⊗) is a bounded �-monoid (with e = 1). Moreover, 〈L,∨,⊗, 0, 1〉 is a
commutative semiring which is called the semiring reduct of L and is denoted
by L∗. Obviously, the semiring reducts induced by �Lukasiewicz and Gödel
structures are locally finite, whereas this is not the case for the semiring
reduct induced by the product structure. A fuzzy language r over Σ and L
is a formal power series r ∈ L〈〈Σ∗〉〉. Then a fuzzy automaton over Σ and L
is a weighted automaton over Σ and the semiring reduct L∗ (see [60, 61]);2 it
is also an L-fuzzy automaton over Σ and (L,∨,⊗). Fuzzy automata over the
product structure occur in practical applications (see Sect. 5). As immediate
consequences of Theorems 4.1 and 4.2, we obtain the following corollaries.

Corollary 4.3 ([33]). Let L = 〈L,∨,∧,⊗,→, 0, 1〉 be a residuated lattice.
Then for every fuzzy automaton over L there exists an equivalent deterministic
fuzzy automaton over L iff the semiring reduct L∗ is locally finite.

Corollary 4.4. Let Σ be an alphabet and L = 〈L,∨,∧,⊗,→, 0, 1〉 be a resid-
uated lattice with locally finite semiring reduct L∗. Then:

• For every fuzzy recognizable language r ∈ L〈〈Σ∗〉〉, we can effectively con-
struct a minimum trim deterministic fuzzy automaton with behavior r.

• A fuzzy language r ∈ L〈〈Σ∗〉〉 is recognizable iff r has finite image and each
of its cut languages is recognizable.

• A pumping lemma holds for fuzzy recognizable languages in L〈〈Σ∗〉〉.
• The equivalence problem is decidable for fuzzy automata over Σ and L.

Recently in [15], it has been proved that for every (non-deterministic) fuzzy
automaton over a residuated lattice L, a size (number of states) reduction
algorithm exists, provided that L is a locally finite residuated lattice. The
authors constructed a fuzzy automaton over the product structure (which is

2 In [60, 61], the author considers also fuzzy automata over the semiring
〈L,∨,∧, 0, 1〉 and for this requires L to be complete. For such automata, a type
of pumping lemma is shown in [62]. The completeness axiom of L required in [15,
33, 60–62] is actually superfluous for fuzzy automata over the semiring reduct L∗.
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not locally finite) for which their reduction algorithm cannot be applied. The
minimization problem for (either deterministic or non-deterministic) fuzzy
automata over arbitrary residuated lattices remains open.

4.3 Fuzzy Automata with Outputs

Fuzzy automata with outputs have been mainly defined over the bounded
distributive lattice ([0, 1],≤) (see [54, 17]). They are special cases of weighted
transducers over the fuzzy semiring (for definitions on weighted transducers
see [53]).

In [14, 49, 58, 69], size reduction algorithms have been developed for non-
deterministic versions of fuzzy automata with outputs.

In [41], it is shown that a size reduction algorithm exists for complete
L-fuzzy automata with outputs over a finite �-monoid (L,∨, ·).

4.4 Fuzzy Abstract Families of Languages

In [2], a theory for full abstract families of fuzzy languages (full AFFLs)
is presented. The underlying structure is a bounded �-monoid (L,∨, ·) with
e = 1 and its operation · being commutative. Furthermore, the lattice (L,≤)
is complete satisfying

a ∧
( ∨

i∈I

bi

)

=
∨

i∈I

(a ∧ bi)

for every a ∈ L and every family (bi | i ∈ I) ⊆ L of elements of L.
Rational operations between fuzzy languages over (L,∨, ·) are defined as

the rational operations of formal power series over the semiring (L,∨, ·, 0, 1)
(see [27]). For every two alphabets Σ and Δ, every homomorphism h : Σ∗ →
Δ∗ induces a fuzzy homomorphism h : Σ∗ → L〈〈Δ∗〉〉 mapping every word w ∈
Σ∗ to a fuzzy language with support {h(w)}. Then a family of fuzzy languages
R is called a full abstract family of fuzzy languages (full AFFL) if it is closed
under the rational operations, fuzzy and inverse fuzzy homomorphisms, and
infimum with fuzzy recognizable languages. It is proved that the class of fuzzy
recognizable languages over the �-monoid (L,∨, ·) is a full AFFL. Furthermore,
the concept of a fuzzy substitution is introduced, and the closure property of
fuzzy recognizable languages under fuzzy substitutions is investigated.

4.5 Fuzzy Tree Languages

Recently, several authors have dealt with fuzzy tree languages. These are tree
series over (complete or bounded) distributive lattices (for definitions on tree
series, see [29]).
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In [28], the authors study fuzzy tree languages over completely distributive
lattices, i.e., complete lattices in which arbitrary suprema distribute over ar-
bitrary infima and vice versa. They show that fuzzy recognizable and fuzzy
rational tree languages coincide, i.e., a Kleene theorem, and moreover fuzzy
recognizable tree languages have an equational characterization.

In [22], a multi-valued MSO logic over infinite trees is introduced and a
Rabin-type theorem is proved for infinitary fuzzy tree languages over bounded
distributive lattices.

5 Applications

In this section, we present two applications of fuzzy languages, with an effect
to real world problems. First, we refer to an alternative method of syntactic
pattern recognition using fuzzy languages. Then we define fuzzy discrete event
systems which have successfully contributed to medicine.

A popular method for pattern recognition is the syntactic pattern recogni-
tion, where a pattern is classified by checking its syntax. Usually, patterns are
represented by finite words over a finite alphabet. The letters of the alphabet,
which are called primitives, are aimed to describe the features of the patterns.
A pattern class is a language of patterns. The method of syntactic pattern
recognition is the following. First, we construct finitely many regular gram-
mars (with their terminal alphabet to be the set of primitives) taking into
account the syntactic features according to which we wish to classify any pat-
tern. The languages generated by these grammars (pattern classes) should be
pairwise disjoint. Then for every constructed grammar, we consider the cor-
responding equivalent finite automaton. Now given a pattern to be classified,
we check from which automaton it is accepted, and we classify the pattern in
the pattern class represented by this automaton.

However, in many practical applications, the structural information of
the patterns is inherently vague, i.e., the patterns are distorted or imper-
fectly formed. For instance, consider the case of recognizing handwritten
characters, or determining the type of a geometrical pattern which is not
perfectly sketched. In such situations, we consider the pattern classes to be
fuzzy languages. Therefore, we define the pattern classes by using fuzzy gram-
mars. These are weighted right-linear grammars over the fuzzy semiring (see
[37, 27]). The corresponding equivalent weighted automata are actually multi-
valued automata over the fuzzy semiring. It should be noted that now the
supports of the fuzzy languages (pattern classes) are not required to be pair-
wise disjoint. Given a pattern to be classified, we compute its membership
value to every pattern class, by using the constructed multi-valued automata.
Then we look for the greatest value, and we classify the pattern into the cor-
responding class. Fuzzy syntactic pattern recognition has been applied in the
identification of the skeletal maturity of children by using X-ray images of
radius [55] (see also [35]). More precisely, the shapes of the radius of children
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were considered as patterns. Nine pattern classes were generated featuring
the maturity of the radius. Then the skeletal maturity of a child was being
identified by classifying an X-ray image of its radius.

Now we turn to fuzzy discrete event systems [44]. A fuzzy discrete event
system (FDES for short) is a system (A1, . . . ,An) (n > 0) of weighted au-
tomata over the semiring 〈[0, 1], max, ·, 0, 1〉 where · is the multiplication of
the real numbers. Such automata are usually called fuzzy automata and they
are actually [0, 1]-fuzzy automata over the �-monoid ([0, 1], max, ·). They can
also be considered as fuzzy automata over the product structure (see Sect. 4).
The input alphabet is not required to be the same for all the automata, thus
we consider every automaton Ai (1 ≤ i ≤ n) over an individual alphabet Σi.
For the purposes of FDES theory, fuzzy automata lack their final distribution,
i.e., they are of the form Ai = (Qi, ini, wti) for every 1 ≤ i ≤ n. The elements
of Σ1∪· · ·∪Σn are called events. The FDES can be considered as a composite
fuzzy automaton A = (Q, in, wt) over Σ1 ∪ · · · ∪ Σn and [0, 1]n, where:

• Q = Q1 × · · · × Qn

• in((q1, . . . , qn)) = (in1(q1), . . . , inn(qn))
• wt((q1, . . . , qn), a, (q′1, . . . , q

′
n)) = (r1, . . . , rn) where ri = wti(qi, a, q′i) for

every 1 ≤ i ≤ n with a ∈ Σi, and ri = 1 for every 1 ≤ i ≤ n with a /∈ Σi

provided that q′i = qi; in any other case, we let wt((q1, . . . , qn), a, (q′1, . . . ,
q′n)) = 0

for every (q1, . . . , qn), (q′1, . . . , q
′
n) ∈ Q, a ∈ Σ.

In the following, we describe an important application of FDES to the im-
plementation of a self-learning system for the selection of the suitable regimen
for the HIV/AIDS (see [45, 76, 77]). The HIV/AIDS is among the most com-
plex diseases to treat. One of the reasons for this complexity is that there is
no cure for it. A treatment can only suppress the HIV virus and boost the im-
mune system. Currently, there are only four classes of available anti-retroviral
drugs and a regimen consists of a combination of two or more classes. Un-
fortunately, the HIV virus can easily develop resistance to the drugs. Thus,
a decision for the suitable drug regimen for every particular patient turns to
be a difficult task and can be successfully done only by experts. A wrong
decision should be devastating since the patient may run out of options on
available drugs. According to the experts, the following parameters must be
considered for the choice of a suitable regimen:

• Potency of the regimen: Unlike other diseases, it is not reasonable to use
the most potent regimen in the first stage of HIV/AIDS. In fact, initiating
anti-retroviral therapy when the immune system is still intact does not
prolong survival. The term “intact immune system” is already vague and
this makes the HIV/AIDS treatment more complex than other diseases.

• Adherence of the patient to the regimen: This factor is very crucial un-
like other diseases. The probability that a patient will benefit from the
anti-retroviral therapy reduces dramatically if the patient skips even 5%
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of doses. Moreover, this increases the risk that the virus will easier develop
resistance to concrete drugs or even to a whole class of drugs. Unfortu-
nately, statistics for HIV/AIDS and other chronic diseases show that the
patients take only 50–70% of the required doses of long-term medications.

• Adverse events: These consist of side effects which may be mild to severe,
and toxicity. Side effects like abdominal discomfort, loss of appetite, etc.
are common especially in the first stages of HIV/AIDS treatment. On
the other hand, toxicity usually causes liver problems, pancreatitis, etc.
Unfortunately, in some cases, these problems turn out to be fatal.

• Future drug options: The HIV frequently develops resistance to the drugs.
Thus, it is critical for a doctor, before concluding to any regimen, to con-
sider the future drugs options after a potential occurrence of the resistance.

Clearly, the HIV/AIDS disease can be treated only by expert doctors. More-
over, the number of infected people increases all over the world. Actually,
the number of experts is too small, especially in poor countries. Therefore,
a computer program for the HIV/AIDS treatment regimen selection is desir-
able. Such a program has been built by using an FDES [45, 76, 77]. Here, we
will briefly describe the contribution of the FDES to the program. The FDES
is composed by four fuzzy automata A1, A2, A3, and A4 (over the semiring
〈[0, 1], max, ·, 0, 1〉), every one corresponding to one of the four aforementioned
factors, respectively. The input alphabet is the same for all the automata.
Every letter corresponds to a possible regimen which is a combination of two
or more classes of drugs. The fuzzy automaton A1 has three states “initial”,
“medium”, and “high” simulating the three instances of potency of a regimen.
The states of the fuzzy automaton A2 are “initial”, “challenging”, “moder-
ate”, and “easy” modeling the possible values of the adherence. The states
of A3 are “initial”, “medium”, “low”, and “very low” simulating the level of
the adverse events. Finally, the fuzzy automaton A4 has the states “initial”,
“medium”, and “high” modeling the several options of future regimens. The
initial distribution of every automaton assigns the value 1 to the “initial” state
of every automaton, and the value 0 to every other state. The values of the
weight assigning mappings for all the automata are determined by the expert
doctors according to statistics and clinical experiments. Assume now that we
have a particular patient and we ask the program to choose the optimal reg-
imen. Initially, the system using a set of generic algorithms determines four
vectors w1, w2, w3, and w4 with dimensions 3, 4, 4, and 3, respectively (these
are the numbers of states of the automata A1, A2, A3, and A4, respectively).
Then every one of the automata A1, A2, A3, and A4 takes as input a letter σ
(i.e., a possible regimen) and produces a vector assigning a value to every one
of its states. Let us denote these vectors by q1σ, q2σ, q3σ, and q4σ, respectively.
Then the system computes the performance index

J(σ) = wᵀ
1q1σ + wᵀ

2q2σ + wᵀ
3q3σ + wᵀ

4q4σ
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where wᵀ
i denotes the transpose of the vector wi (1 ≤ i ≤ 4). The optimal

treatment corresponds to the maximum J(σ) for all regimens σ. For a second
round treatment, the procedure is repeated. The vector states of the automata
are now q1σ, q2σ, q3σ, and q4σ, but the system will compute new vectors w
taking into account the current situation of the patient’s health. In clinical
experiments, this system matches the experts selection of regimen for 80% of
the patients (see [45]).
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32. P. Hájek. Metamathematics of Fuzzy Logic. Kluwer Academic, Dordrecht,
1998.
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