A Comparison of Control Problems
for Timed and Hybrid Systems*

Franck Cassez'**, Thomas A. Henzinger®>* **, and Jean-Francois Raskin®?

1 TRCCyN, Ecole Centrale de Nantes, France
2 EECS Department, University of California, Berkeley, USA
3 Département d’Informatique, Université Libre de Bruxelles, Belgium

Abstract. In the literature, we find several formulations of the control
problem for timed and hybrid systems. We argue that formulations where
a controller can cause an action at any point in dense (rational or real)
time are problematic, by presenting an example where the controller
must act faster and faster, yet causes no Zeno effects (say, the control
actions are at times O, %, 1, 1%, 2, 2%, 3, 3%, ...). Such a controller is,
of course, not implementable in software. Such controllers are avoided
by formulations where the controller can cause actions only at discrete
(integer) points in time. While the resulting control problem is well-
understood if the time unit, or “sampling rate” of the controller, is fixed
a priori, we define a novel, stronger formulation: the discrete-time control
problem with unknown sampling rate asks if a sampling controller exists
for some sampling rate. We prove that this problem is undecidable even
in the special case of timed automata.

1 Introduction

Timed and hybrid systems are dynamical systems with both discrete and con-
tinuous components. A paradigmatic example of a hybrid system is a digital
control program for an analog plant environment, like a furnace or an airplane:
the controller state moves discretely between control modes, and in each con-
trol mode, the plant state evolves continuously according to physical laws. A
natural model for hybrid systems is the hybrid automaton, which represents dis-
crete components using finite-state machines and continuous components using
real-numbered variables whose evolution is governed by differential equations or
differential inclusions [ACHT95]. An interesting class of hybrid automata is the

* An abbreviated version of this paper will appear in the Proceedings of the Fifth Inter-
national Workshop on Hybrid Systems: Computation and Conirol (HSCC), Lecture
Notes in Computer Science, Springer-Verlag, 2002.

** Partially supported by the FNRS, Belgium, under grant 1.5.096.01.

*** Partially supported by the DARPA SEC grant F33615-C-98-3614, the AFOSR MURI
grant F49620-00-1-0327, the NSF Theory grant CCR-9988172, and the MARCO
GSRC grant 98-DT-660.

T Partially supported by a “Crédit aux chercheurs” from the Belgian National Fund
for Scientific Research.



class of rectangular automate [HKPV98]: this is the most liberal generalization of
timed automata [AD94] with interesting decidability properties. While in timed
automata, all real-numbered variables are “clocks” with constant derivative 1, in
rectangular automata, the derivatives of all variables are bounded by constants
from below and above. If the bounds on the derivative of a variable cannot
change between control modes unless the variable is reset, then the rectangular
automaton is called initialized.

The distinction between continuous evolutions of the plant state (which
is given by the real-numbered variables of a hybrid automaton) and discrete
switches of the controller state (which is given by the location, or control mode,
of the hybrid automaton) permits a natural formulation of the safety control
problem: given an unsafe set U of plant states, is there a strategy to switch
the controller state in real time so that the plant can be prevented from enter-
ing U? In other words, the hybrid automaton specifies a set of possible control
modes, together with the plant behavior resulting from each mode, and the
control problem asks for deriving a switching strategy between control modes
that keeps the plant out of trouble. A switch in control mode can be caused by
two events: sensing of a particular plant state (e.g., “turn off the furnace when
the heat hits x degrees”); or arrival of a particular time instant (e.g., “turn
off the furnace after y seconds”). This can be formalized in several ways, and
consequently, a variety of similar but different mathematical formulations of the
safety control problem for timed and hybrid systems can be found in the litera-
ture (e.g., [HAW92,AMP95 MPS95,Won97, HHM99,HK99,ABD*00,TLS00]). We
classify various formulations, compare their relative strengths, and fill in some
gaps that had been left open previously. In doing so, we focus on safety control
purely for reasons of clarity; the treatment of more general control objectives is
orthogonal to the issues studied here [dAHMO1].

One fundamental distinction is between dense-time and discrete-time (or
sampling) models of control. In dense-time models, the controller observes the
plant state continuously, and may cause a control switch as soon as a particular
plant state is encountered. In discrete-time models, while the plant evolves con-
tinuously, the controller observes the plant state only at regularly spaced time
instants, and may cause a control switch only at those sampling points. With
discrete-time models, we can further distinguish between known and wunknown
sampling rate. A control problem of the first kind asks: given a positive rational
number 3, can an unsafe plant state be prevented by a controller that samples
the plant state every 3 seconds? The more general discrete-time control problem
with unknown sampling rate asks: is there a rational number 8 such that an
unsafe plant state be prevented by a controller with sampling rate 47 For exam-
ple, a discrete-time control problem may not be solvable with sampling rate of
10 ms, but it may be solvable with sampling rate of 5 ms.

Similarly, with dense-time models, we can distinguish between known and
unknown switch conditions. A control problem of the first kind asks: for each
control mode, given a set P of predicates on the plant state, can an unsafe
plant state be prevented by a controller that watches the predicates in P and



causes a mode switch only when the truth value of a predicate in P changes.
The more general dense-time control problem with unknown switch conditions
asks: is there a set P of predicates (typically chosen from some language) on the
plant state such that an unsafe plant state be prevented by a controller choosing
switch conditions from P? For example, a dense-time control problem may not
be solvable by a controller that can switch mode by watching a sensor that
indicates when a furnace hits a multiple of 10 degrees, but it may be solvable if
the sensor has a granularity of 5 degrees.

The following three control problems have been studied in the literature:
(1) The known sampling rate (known or unknown switch conditions) discrete-
time control problem can be solved algorithmically for all rectangular automata
[HK99] (see [HW92] for the timed case). (2) The known switch conditions dense-
time control problem, while undecidable for general rectangular automata, is
solvable for all initialized rectangular automata [HHM99]. (3) The unknown
switch conditions dense-time control problem, while undecidable for initialized
rectangular automata [HKPV98], is solvable for all timed automata [MPS95].
While none of these papers explicitly mention switch conditions, we obtain equiv-
alent formulations in terms of switch conditions, which allow us to see that the
three formulations (1) (3) are of strictly increasing generality. Intuitively, if all
switch conditions are known, then they are part of the hybrid automaton model,
and the task of the controller is simply to disable or enable edge guards: at each
plant state, the controller decides whether to cause a mode switch, or let an
amount of time pass which is constrained only by the location invariant of the
hybrid automaton. Since all timing constraints are already part of the model
(in the form of location invariants and edge guards), this is also called timne-
abstract control [HHM99]. By contrast, in [MPS95,AMP95], the controller may
strengthen the location invariants of the hybrid automaton model to achieve the
control objective: at each plant state, the controller decides whether to cause
a mode switch, or let an amount of time pass which is constrained by some
new, derived predicate on the plant state. If the invariants are strengthened by
polyhedral predicates, as in [AMP95,MPS95], this is called polyhedral control.

It is well-known that careless solutions of dense-time control problems may
lead to unrealistic controllers that “stop time,” either by blocking the progress of
time altogether, or by causing mode switches at convergent points in time, say,
0, % %, %, ... [Won97]. Such Zeno phenomena can be avoided by lifting the con-
trol objective from a safety objective to a combined safety and liveness objective
(“always avoid unsafe states and let time progress for another unit”) [dAHMO1].
However, we show for the first time that dense-time control models are more
seriously flawed: we present an example that can be controlled by a dense-time
controller but not by any discrete-time controller with unknown sampling rate.
The dense-time controller causes mode switches at divergent points in time, say,
0,3, 1,11,2,24,3,3:,..., where the difference between adjacent time instants
cannot be bounded from below. Such a controller is, of course, not implementable
by software. This observation has led us to define the unknown sampling rate
discrete-time control problem, which asks whether a discrete-time controller ex-



ists for some sampling rate, and if so, for a derivation of the sampling rate. We
show that this problem is, surprisingly, undecidable even in the very special case
of timed automata with known switching conditions. The undecidability proof is
interesting, because it requires the encoding of unbounded integer values using
the difference between two clocks.

We believe that our results have practical significance for two reasons. First,
they put in question the usefulness of dense-time control formulations. Some
authors insist, for example, that the number of dense-time control actions in a
time unit is bounded from above [ABD*00]. But even such a bound does not
prevent pathological examples like the one mentioned before, where there are
no more than two control actions in any one time unit, yet the time intervals
between control actions must get smaller and smaller. This can be avoided only
if the time difference between control actions is bounded by a constant ¢ from
below, which, however, fundamentally changes the control problem to a discrete-
time problem with time unit . Second, our results show that even discrete-time
control problems can be solved only when the sampling rate, or time unit, is
fixed a priori. It follows that from a decidability point of view, the control of
timed and hybrid systems is considerably more difficult than we thought when
we embarked on our original goal of comparing different formulations found in
the literature. (This, of course, does not affect the applicability of symbolic semi-
decision procedures such as [Won97,ABD*00,TLS00,dAHMO1]).

The paper is organized as follows. In Section 2, we recall the definitions of
safety control for transition systems, as well as the definitions of timed and
rectangular automata. In Section 3, we formulate and compare the four ba-
sic variations of the safety control problem for hybrid systems: known switch
conditions vs. unknown switch conditions dense-time, and known sampling rate
vs. unknown sampling rate discrete-time. We also show that a dense-time con-
troller may exist in cases where no sampling rate exists. Section 4 contains the
proof that the existence of digital controllers i.e., the unknown sampling rate
discrete-time control problem— is undecidable for timed automata.

2 Prerequisites

2.1 Labeled transition systems and control

A labeled transition system S is a tuple (Q, X, —,Qo), where @ is a (possibly
infinite) set of states, X' is a (possibly infinite) set of labels, > C Q x X' x Q) is a
labeled transition relation, and @y C @ is a set of initial states. We write g—=¢q' if
(¢,a,q") € >. A run of S is a finite sequence p = gpagqia; - .. g, of states g; € Q
and labels a; € X such that (1) gy € Qo and (2) ¢i—5qiqq forall 0 <i < n. We
write dest(p) = g, for the final state of p. A state ¢ € Q is reachable in S if there
exists a run p of S such that ¢ = dest(p). A set F' C @ of states is reachable in
S if there exists a state in F' that is reachable in S.

Definition 1 (Reachability). The reachability problem for a class C of labeled
transition systems is the following: given a labeled transition system S € C and
a set F of states of S, determine if F' is reachable in S. a



The labels of a labeled transition system S can be interpreted as control actions.
A label a € X is enabled at the state ¢ € Q if g—=¢' for some state ¢' € Q. We
write Enabled(q) for the labels that are enabled at q. A control map for S is a
function x: @ — 2* that maps every state ¢ € Q to a set k(q) C Enabled(q)
of enabled labels. The closed-loop system k(S) is the labeled transition system
(Q,%, =, Qq), where ¢ 5, ¢ iff ¢%¢' and a € r(g). The control map & is
deadlock-free for S if k(q) # 0 for every state ¢ that is reachable in the closed-
loop system &(S).

Definition 2 (Safety control). The safety control problem for a class C of
labeled transition systems is the following: given a labeled transition system S € C
and a set F' of states of S, determine if there exists a deadlock-free control map
k for S such that F' is not reachable in the closed-loop system r(S). O

The safety verification problem is the special case of the safety control problem
where |X| = 1. Note that the safety verification problem can be reduced to the
non-reachability problem, and vice versa.

2.2 Timed and rectangular automata

Let X be a finite set of real-valued variables. A wvaluation for X is a function
v: X — R. We write [X — R] for the set of all valuations for X. For a set
V C [X — R] of valuations, and = € X, define V(z) = {v(z) | v € V}. Let
e {<, <, > >} let xy,... .z, ¢ € X, and let ¢1,... ,¢,, ¢ € Z. A rectangular
inequality over X is a formula of the form x i ¢; a triangular inequality over X
is a formula of the form x; — x5 > ¢; a polyhedral inequality over X is a formula
of the form ¢y x1 +- -+ ¢pay, < c. A rectangular predicate over X is a conjunction
of rectangular inequalities over X; the set of all rectangular predicates over X
is denoted Rect(X). A polyhedral predicate over X is a boolean combination
of polyhedral inequalities over X. For a polyhedral predicate p over X, and a
valuation v for X, we write v(p) for the boolean value that is obtained from p
by replacing each variable x € X with v(z). The polyhedral predicate p defines
the set [p] = {v: X — R | v(p) = true} of valuations.

Definition 3 (Rectangular automaton [HKPV98]). 4 rectangular automa-
ton H is a tuple (L, X, Y, init, E inv,flow). (1) L is a finite set of locations
representing the discrete state of the automaton. (2) X is a finite set of real-
valued variables representing the continuous state. We write X = {t |z € X}
for the set of corresponding dotted variables, which represent first derivatives.
(3) X is a finite set of events disjoint from R. (4) init: L — Rect(X) is the ini-
tial condition. If the automaton starts in location £, then each variable x € X has
a value in the interval [init(€)](z). (5) E C L x Rect(X) x X x Rect(X) x2X x L
is a finite set of edges. Fvery edge ({,v,0,a,U ') € E represents a change
from location £ to location ¢ with guard -, label o, and reset assignment «,
which asserts that each variable x € U is nondeterministically reset to a value
in the interval o] (), and each variable in X \ U is left unchanged. (6) inv:



L — Rect(X) is the invariant condition. The automaton can stay in location £
as long as each variable © € X has a value in the interval [inv(€)](z). (7) flow:
L — Rect(X) is the flow condition. We require that for every location ¢ € L
and variable x € X, the interval [flow(€)](Z) is bounded. If the automaton is
in location £, then each variable x € X can evolve nondeterministically with a
derivative in the interval [flow(£)](%). O

Definition 4 (Initialized rectangular automaton). An initialized rectan-
gular automaton is a rectangular automaton that satisfies the following: for all
edges (£,7v,0,a,U, ') € E and variables x € X, if [flow(?)](x) # [flow(£")](x),
then x € U. In other words, every time the bounds on the derivative of a variable
change between two locations, the variable is reset. a

Definition 5 (Timed automaton). A timed automaton is an initialized rect-
angular automaton such that (1) flow(f) = Nyex (& = 1) for all locations ¢ € L,
and (2) a = Nyey(z = 0) for all edges (£,7v,0,a,U,¢") € E. In other words, all
variables advance at the rate of time  they are called clocks  and variables
can be reset only to 0.1 O

Let H be a rectangular automaton with locations L and variables X. The state
space of H is L x [X — R]; that is, every state (¢,v) of H consists of a discrete
part £ € L and a continuous part v: X — R. A polyhedral (resp. rectangular) state
predicate pred for H is a function that maps every location in L to a polyhedral
(resp. rectangular) predicate pred(£) over X. Note that the initial and invariant
conditions of H are rectangular state predicates for H. The polyhedral state
predicate pred defines the set [pred] = {(¢,v) € L x [X — R] | v € [pred(¢)]} of
states. A state set P C Lx[X — R] is polyhedral if there exists a polyhedral state
predicate pred such that [pred] = P. We define three semantics for rectangular
automata. The first two permit location changes at all real-valued points in time;
the third only at multiples of a fixed sampling unit.

Definition 6 (Dense-time semantics). The dense-time semantics of a rect-
angular automaton H = (L, X, X, init, E,inv, flow) is the labeled transition sys-
tem S}"f"se = (Q, Xiense; = dense, Qo), where Q@ = [inv] and Ygepse = X U
Rsg and Qo = [init], and — gense is defined as follows. (1) Discrete tran-
sitions for each event o € X: let (£,1)5 gense(l',v") iff there exists an edge
(0, y,0,0,U, ") € E such that v € [v], and v'(z) € [a](x) for all z € U, and
v'(z) = v(z) for all x € X\U. (2) Continuous transitions for each duration
6 € Ryg: let (Z,v)ideme(ﬁ’,v’) iff £ = 0" and for each variable x € X, there
exists a differentiable function f,:[0,6] — [inv(£)](x) such that (i) f.(0) = v(x),
(i) fo(6) = v'(x), and (iii) f,(t) € [flow(€)](z) for all 0 < t < 6. O

The time-abstract semantics hides the duration of continuous transitions.

! Unlike [AD94], we do not allow triangular inequalities in the definition of a timed
automaton. However, every timed automaton with triangular inequalities can be
transformed into one that accepts the same timed language and has only rectangular
predicates.



Definition 7 (Time-abstract semantics). Let H = (L, X, X init, E, inv,flow)
be a rectangular automaton and S’}if"” = (Q, Yiense; = dense, Qo) its dense-time

semantics. The time-abstract semantics of H is the labeled transition system
Sz{bstr = (Q7 Eu,bst"‘: abstrs Q0)7 where En,bstr = EU{tzme} and _>n,bst1’_is de,ﬁned

time

as follows. (1) For each 0 € X, let ¢ upsirq’ iff 0= denseq' - (2) Let q—— ohetrq'
iff q— genseq’ for some duration 6 € Ryg. a

If we assume that discrete transitions alternate with continuous transitions of
a fixed duration 3, then we obtain a discrete-time semantics with time unit /.
The sampling semantics, with sampling unit g, further assumes that all discrete
transitions (i.e., location changes) represent moves of the controller, and all con-
tinuous transitions (i.e., variable evolutions) represent moves of the plant. The
intuition behind this semantics is that the plant evolves continuously, observed
by a digital controller whose control decisions are separated by time 3.2

Definition 8 (Sampling semantics). Let H = (L, X, ¥, init, E, inv, flow) be a
rectangular automaton and S}"f"’“ = (Q, Xiense, = dense, Qo) its dense-time se-
mantics. Let B € Qso be a sampling unit. The B-sampling semantics of H is the
labeled transition system Si}”""le(ﬂ) = (Q x {Control, Plant}, X sumple, = sample s
Qo x {Control}), where Xypmpie = X U {B} and — spmpie is defined as follows.
(1) Discrete control transitions for each o € X: let (q, C’ontml)gwmple(q’, Plant)
iff 05 denseq - (2) Continuous plant transitions of fized duration § € Qsy: let
(q, Plant)— sampie(q', Control) iff qi,lemeq’. m|

3 Control of Timed and Rectangular Automata

3.1 Dense-time control

In dense-time control, the controller can make a decision to change location
i.e., to switch control mode at every real-valued time instant £ € R>q. We
distinguish between dense-time control with known switch conditions [HHM99]
and unknown switch conditions [AMP95,MPS95,AMPS98|.

Known switch conditions. A known switch conditions dense-time controller de-
cides in every state either to issue a control action or to let time pass. If the
controller issues a control action o, then an edge with label ¢ is taken. In lo-
cation ¢, if the controller lets time pass, then an arbitrary positive amount of
time § € Rsq is selected so that the invariant of £ is not violated. As the ac-
tual amount of time that will pass is not decided by the controller, the model is
time-abstract.

Definition 9 (Known switch conditions dense-time safety control). The
known switch conditions dense-time safety control problem for a class C of rect-
angular automata is the following: given a rectangular automaton H € C and

2 The sampling semantics of [HK99] is more general in that it allows more than one
discrete transition between two continuous transitions of duration #. All results
presented here apply also to that case.



a rectangular state predicate fin for H, solve the safety control problem for the
time-abstract semantics SEP*'" and state set [fin]; that is, determine if there ex-
ists a deadlock-free control map k for S”bs’"” such that [fin] is not reachable in
the closed-loop system r(SE*'"). O

Unknown switch conditions. An unknown switch conditions dense-time con-
troller controls a rectangular automaton by strengthening the invariants and
guards that appear in the automaton. In particular, in location £, such a con-
troller may let time pass up to some upper bound, which can be stronger than
the invariant of £. In order to synthesize control maps, the constraints added by
the controller cannot be arbitrary, but must be expressible in some language. Fol-
lowing [AMPS98], we consider constraints that can be expressed as polyhedral
predicates. This is captured by the notion of a polyhedral control map.

Let H = (L, X, X, init, E inv,flow) be a rectangular automaton, and let x
be a control map for the dense-time semantics SE*¢. For a state set P C
L x [X — R] and an event o € X, define Posty(P) = {¢' | 3¢ € P. ¢ geneeq'}
and Postn g(P)={d | 3q € P. 05 denseq’ and o € K(q )}. Furthermore, define
Post?™(P) = {¢' | dg € P, 6 € Rsy. q—>dt,,seq} and Posffm'e( ) ={¢ |
dg € P, § € Ryy. q—>,,zpm,,q and § € k(q)}. Note that if P is polyhedral, then
Post% (P) is a polyhedral state set of H for all events o € X, and Post'™*(P)
is also a polyhedral state set of H [ACHT95]. A control map & for the dense-
time semantics Sg¢"*¢ is polyhedral if the following two conditions are satisfied.
(1) For every event o € X, there exists a polyhedral state set P, of H such that
for every polyhedral state set P of H, we have Post; y(P) = Posty (P N Py).
(2) There exists a polyhedral state set Pijm. of H such that for every polyhedral
state set P of H, we have Post“"’e(P) Post“'"e(P) N Piime. Note that the
polyhedral state set P, can be used to strengthen edge guards, while Py, can
be used to strengthen location invariants.

Definition 10 (Unknown switch conditions dense-time safety control).
The unknown switch conditions dense-time safety control problem for a class C
of rectangular automata is the following: given a rectangular automaton H € C
and a rectangular state predicate fin for H, determine if there exists a deadlock-
free polyhedral control map & for the dense-time semantics SEe"*¢ such that the
state set [fin] is mot reachable in the closed-loop system k(Sgemse). O

It is easy to see that if the answer to the known switch conditions dense-time
control problem (H,fin) is YES, then the answer to the unknown switch condi-
tions dense-time control problem (H, fin) is also YEs. Indeed, if the answer to the
known (resp. unknown) switch conditions dense-time control problem (H, fin) is
YEs, then we can constructively strengthen the guards (resp. both invariants and
guards) of H with a finite set of polyhedral predicates such that the resulting
hybrid automaton x(H) (which may no longer be rectangular) is non-blocking
and contains no reachable states in [fin].



| [ KSC [ USC | KSR USR]

Timed automata [+ IMPS95]| / [MPS95] [/ [HW92][ ?
Initialized rectangular automatal,/ [HHM99]|x [HKPV98][\/ [HK99]| ?
Rectangular automata |x [HHM99]|x [HKPV98][/ [HK99]| ?

Table 1. Decidability results for safety control problems. KSC stands for “known
switch conditions dense-time”; USC for “unknown switch conditions dense-time”; KSR
for “known sampling rate discrete-time”; USR for “unknown sampling rate discrete-
time”; 4/ stands for decidable, x for undecidable, and ? for previously open. In the
next section, it will be shown that all three previously open problems are undecidable
(cf. Corollary 1).

3.2 Discrete-time control

In discrete-time control, the controller samples the plant state once every [
time units, for some sampling unit 8 € Qs¢, and issues control actions at these
points in time. Control actions, as before, may cause a change in location. Be-
tween control actions the plant evolves for 8 time units without interruption. We
distinguish between discrete-time control with a known sampling unit 5 [HK99],
and the more ambitious problem of synthesizing a suitable sampling unit, which
has not been studied before.

Definition 11 (Known sampling rate discrete-time safety control). The
known sampling rate discrete-time safety control problem for a class C of rect-
angular automata is the following: given a rectangular automaton H € C, a
sampling unit 8 € Qso, and a rectangular state predicate fin for H, solve the
safety control problem for the sampling semantics S’;;m'plﬂ(ﬂ) and state set [fin];
that is, determine if there exists a deadlock-free control map k for S;,"’mple(ﬁ)
such that [fin] is not reachable in the closed-loop system k(S5 """ (3)). 0

Definition 12 (Unknown sampling rate discrete-time safety control).
The unknown sampling rate discrete-time safety control problem for a class C
of rectangular automata is the following: given a rectangular automaton H € C
and a rectangular state predicate fin for H, determine if there exist a sampling
unit S € Qso and a deadlock-free control map k for the sampling semantics

S5 (B) such that the state set [fin] is not reachable in the closed-loop sys-
tem k(S (8)). O

3.3 Comparison between dense-time and discrete-time control

To compare the different classes of controllers we first recall what is known
about the decidability of the various control problems defined above. The results
from the literature are summarized in Table 1. For all decidable entries, suitable
control maps can be synthesized algorithmically. Next we study two examples
that shed some light on the relative merits of the different models.



a

z> 1Az <100
b;z:=0

Fig.2. A timed automaton that

cannot be controlled by any time-
Fig.1. A timed automaton that cannot be con- abstract controller, but can be con-
trolled by any sampling controller, no matter how trolled by a sampling controller (cf.
small the sampling unit, but can be controlled by Theorem 2).

a dense-time controller (cf. Theorem 1).

Unknown sampling rate discrete-time control is not as powerful as dense-time
control. Our definitions of dense-time control ignore Zeno phenomena; for ex-
ample, a controller that blocks the progress of time by causing control actions
at convergent points in time, such as 0, %, %, %, ..., is considered legal. Zeno
phenomena have been studied extensively, and are usually avoided either by
lifting the control objective from safety to liveness [Won97,dAHMO01], or by as-
sumption, as in [AMPS98], where it is imposed that every loop in the control
structure of a hybrid automaton must contain a clock that is reset to 0 and then
tested to be greater than 1 (“strongly non-zeno automata”). However, dense-
time control models are more seriously flawed: we present a timed automaton H
that can be controlled by a dense-time controller, but there is no sampling unit,
however small, such that H can be controlled by a sampling controller. The
dense-time controller issues control actions at divergent points in time, such
as 0, %, 1, 1%, 2, 2%, 3, 3%, ..., but the difference between adjacent time instants

cannot be bounded from below.

Consider the timed automaton of Figure 1. The control objective is to avoid
the location Bad. Thus, the controller must keep the automaton looping in loca-
tions lg, 1, and 5. To do so, let us show that the controller must leave location
I, faster and faster. The first time that the automaton enters ly, the variables x
and y have the values xy and yq, respectively, where zq < 1 and yo = 0. To keep
looping, the controller must ensure that z < 1 when reentering location l;. We
now describe the evolution of the value of z at the successive times location Iy is
entered: by z; and y;, we denote the values of x and y, respectively, when entering
lp after ¢ iterations of the loop. The loop consists in taking successively the edges
labeled by a, b, and ¢. When crossing a, we have © = 1, and when entering [y,
we have = 0 and y equals the amount of time 6 spent by the automaton in
location ly. The automaton stays in location Iy for time §; = 1—6, and then the
edge labeled by b is crossed. The automaton stays in location Iy for time 67 > 0.
So the value of z when reentering ly is z;41 = z; + 6?. Remember that the value

10



of = must be less or equal to 1 when entering location lj in order to avoid being
forced to go to the Bad location. So we must have Y .-, 67 < 1—z4. Such a con-
verging sequence of §7 can be enforced by a dense-time controller with unknown
switch conditions. This controller imposes the additional invariant z < 1 on Iy,
and the d edges are labeled with the guard false, ensuring that they can never
be taken. It is not difficult to see that this new automaton is non-blocking and
cannot visit the Bad location. Note that our controller only takes three control
actions per time unit, and so is not excluded by the definition of control given
in [ABD"00], which requires the number of control actions per time unit to be
bounded from above. As a direct consequence of the discussion above, the au-
tomaton of Figure 1 modified with the additional invariant x < 1 on location [,
is controllable by a dense time controller with known switch conditions.

Now let us establish that there does not exist a sampling controller that can
avoid the location Bad, no matter how small the sampling unit. If we fix the
sampling unit to be § € Qsg, then the automaton reaches for the first time [,
with g = 8 and yo = 0. Then, after each iteration of the loop, when entering
lo the value of x has grown by 3 (the time spent in location ly). Thus, after n
iterations of the loop, for n = min;(j-8 > 1— ), the value of x when entering Iy
is strictly greater than 1. Thus only the d edge leaving [, can be taken, leading
to the Bad location. Finally, let us note that this justification is still valid when
considering the automaton of Figure 1 modified with the additional invariant
z < 1 on location [s.

Theorem 1. There exist a timed automaton H and a rectangular state predicate
fin such that the answer to the known switch conditions dense-time safety control
problem (H, fin) is YES, and the answer to the unknown sampling rate discrete-
time safety control problem (H,fin) is No. a

Known switch conditions dense-time control is not as powerful as discrete-time
control. Let us now consider the timed automaton of Figure 2. The control
objective is again to avoid the location Bad. The automaton is not known switch
conditions dense-time controllable. In fact, when entering for the first time /1, we
have z = 0, and the controller can decide either to take the edge labeled by a, or
to let time pass. The decision to take the edge labeled by a is excluded, as this
would lead directly to the Bad location. Unfortunately, the controller cannot
allow time to pass either. In fact, if the controller chooses to let time pass,
then it agrees to wait for an undetermined amount of time, including delays
100 < 6 < 200. If 6 = 200, then the automaton reaches a state where only a is
enabled, which leads to the Bad location. This means that this simple system
cannot be controlled by a dense-time controller with known switch conditions. On
the other hand, the automaton is controllable by an unknown switch conditions
dense-time controller. A simple way to control the automaton is to add the
invariant z < 100 to location I;, and to add the guard false to the edge labeled
by a. The automaton can also be controlled by a discrete-time controller with a
sampling unit g < 100.

11



Theorem 2. There exist a timed automaton H, a sampling unit 3, and a rect-
angular state predicate fin such that the answer to the known sampling rate
discrete-time safety control problem (H,[(3,fin) is YES, and the answer to the
known switch conditions dense-time safety control problem (H,fin) is No. O

4 Unknown Sampling Rate Control is Undecidable

We establish the undecidablity of the unknown sampling rate discrete-time safety
control problem for the restricted class of timed automata. Actually, we prove
the undecidability of a weaker question, namely, the unknown-rate discrete-time
reachability problem.

Definition 13 (Unknown-rate discrete-time reachability). The unknown-
rate discrete-time reachability problem for a class C of rectangular automata is
the following: given a rectangular automaton H € C and a rectangular state pred-
icate fin for H, determine if there exists a sampling unit 3 € Rsq such that the

sample

state set [fin] is not reachable in the sampling semantics Sy (8). O
Our main result is the following.

Theorem 3. The unknown-rate discrete-time reachability problem is undecid-
able for timed automata. O

As non-reachability can be reduced to safety control, we obtain the following.

Corollary 1. The unknown sampling rate discrete-time safety control problem
is undecidable for timed automata.

To establish Theorem 3, we reduce the control state reachability problem for
two-counter machines to the unknown-rate discrete-time reachability problem for
timed automata. The former is well-known to be undecidable, thus implying the
undecidability of the latter. A two-counter machine M consists of two counters
(initially 0) and a finite sequence of instructions, each taken from the following:
increment a counter; test a counter for zero and branch conditionally; decrement
a counter if its value is not zero. Given M and a control state u of M, we construct
a timed automaton Hjs and a location [, of H,s such that the execution of M
reaches u iff there exists a sampling unit 3 € Qs such that a state with discrete
part [, is reachable in the sampling semantics S;;;”pla(,@). The key property of
Hy, is that if the automaton is sampled every % time units, for some b € Qs
then it can simulate the execution of M as long as the counter values are less
than |b|. When a counter overflow occurs, then Hjs goes into a terminal location
different from [,. If the execution of M reaches u, then it does so with some
maximal counter values, and Hj; can reach [, for a sufficiently large choice of b.
On the other hand, if the execution of M does not reach u, then H,; cannot
reach [, for any choice of b.

12



z>1Ay<1

z:=0
r<1lAy<l1
z<1lAy>1
y:=0
z>1Ay>1
lo ll
z:=0;y:=0
z>1Ay>1 to Normalizing widget
Fig. 3. Widget for zero testing z:=0;y:=0

Fig. 4. Idling widget

Configuration encoding. First we need to decide how to encode the configurations
of the counter machine M. A configuration of M consists of a control state and
two counter values ¢j,c2 € N. The control state w of M is directly encoded by
a location I, of Hy;. A counter value ¢ is encoded by the difference between
two clocks x and y. Recall that Hj; is sampled every % time units. If clocks are
always reset to 0, then the clock difference = —y is a multiple of % at every state

sample /1

in every run of the sampling semantics Sy "*"“(5). Moreover, we constrain the

values of z and y to lie in the interval I, = [0, UHb'lJ |; then |z—y| € Iy. We encode
counter value ¢ using only clock values =,y € I, and impose the following on

the automaton Hyy:

— If x>y, then c=(x —y)-b.
fIfx<y,thenc=(%—(y—m))-b.

In this way the maximal counter value we can encode with z,y € I is exactly |b].
Note that when x < y, we cannot encode the counter value 0. Thus, ¢ = 0 is
always encoded with z > y.

We now give widgets for encoding the three types of instructions of the
counter machine, and a widget for what we call “normalization” of the encoding.
As we want our result to be as general as possible, and robust in the sense
of [HR00], we avoid the use of equality in the rectangular predicates of H); (the
proof, especially the widget for zero testing, would be somewhat easier if the use
of equality were allowed).

Zero testing. We assume two clocks z and y encoding counter value ¢ with
x > y. A widget for zero testing without using equality is shown in Figure 3.
More formally, there exists % € Q-0 \ % such that the state (I;,z = 0,y = 0)
is reachable from (ly,z,y) in the sampling semantics S;}ﬁl;‘ple(%) iff x =y in lg.
This gives us a way to test if ¢ = 0 when its value is encoded by (z — y) - b. As
we will see in the next paragraph, we can restrict ourselves to zero testing when
x > y. In the sequel we assume % € Q0 §7 so that value 1 is never hit for both
z and y at any sampling point of any run.

13



|

r<1Ay<1 y <1 2> 1 T
=7~ ™ overl

\ /7

|
|
)ie S
|
|
|
|

z>1Ay>1;2:=0;y:=0 L2710 _

Fig. 5. Widget for normalizing (and incrementing) the encoding of a counter value

Normalizing the encoding. Before addressing the encoding of incrementing and
decrementing a counter, we give a widget for obtaining a normal form for the
encoding of counter value ¢. By normal form we mean that ¢ = (z —y)-b can be
written in a unique manner with y = 0 and = > y. The widget for normalization
is shown in Figure 5 (the dashed box contains extra material that will be dealt
with later). If either z > y and c = (z—y)-b,orz < y and ¢ = (@—(y—m)) b,
then the counter value ¢ is in normal form when entering location I5, that is,
y=0and z >y.

Incrementing a counter. To add one to counter value ¢ encoded by clocks x
and y, we first normalize the encoding of ¢ using the widget of Figure 5. To
increment ¢ we need to let time pass until the next edge transition, that is, we
need to wait % time units in location I,. Thus we add a single edge from [, to I3
resetting y; see Figure 5 inside the dashed box.

Decrementing a counter. To decrement a counter value we use a slightly modified
version of the widget for normalization, namely, an anti-normal form: encode
counter value ¢ with x = 0 and y > 0, and after % time units reset x.

Counter overflow and idling. Counter overflows are dealt with when adding one
to a counter. The dashed transition to location over in Figure 5 corresponds to
a counter overflow. Finally, we have to manage concurrently two counters C
and Cy. While (' is updated, time elapses, and we need to keep the value of Cs.
This is done by using an idling widget, shown in Figure 4, for the counter that
is not in the instruction to be performed. An instruction of the counter machine
involving C is encoded by the synchronous composition of the appropriate wid-
get for C; and the idling widget for Cy. This completes the proof sketch for
Theorem 3.

References

[ABDT00] E. Asarin, O. Bournier, T. Dang, O. Maler, and A. Pnueli. Effective syn-
thesis of switching controllers for linear systems. In Proc. IEEE, 88:1011-1025, 2000.

14



[ACH95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hy-
brid systems. Theoretical Computer Science, 138:3—-34, 1995.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183-235, 1994.

[AMP95] E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for discrete
and timed systems. In Hybrid Systems II, LNCS 999, pp. 1-20. Springer, 1995.

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed
automata. In IFAC Symp. System Structure and Control, pp. 469-474. Elsevier, 1998.

[dAHMO1] L. de Alfaro, T.A. Henzinger, and R. Majumdar. Symbolic algorithms for
infinite-state games. In CONCUR: Concurrency Theory, LNCS 2154, pp. 536-550.
Springer, 2001.

[HHM99] T.A. Henzinger, B. Horowitz, and R. Majumdar. Rectangular hybrid games.
In CONCUR: Concurrency Theory, LNCS 1664, pp. 320-335. Springer, 1999.

[HK99] T.A. Henzinger and P.W. Kopke. Discrete-time control for rectangular hybrid
automata. Theoretical Computer Science, 221:369-392, 1999.

[HKPV98] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable
about hybrid automata? J. Computer and System Sciences, 57:94—-124, 1998.

[HROO] T.A. Henzinger and J.-F. Raskin. Robust undecidability of real-time and hy-
brid systems. In Hybrid Systems: Computation and Control, LNCS 1790, pp. 145-159.
Springer, 2000.

[HW92] G. Hoffmann and H. Wong-Toi. The input-output control of real-time discrete-
event systems. In RTSS: Real-time Systems Symp., pp. 256-265. IEEE, 1992.

[MPS95] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers
for timed systems. In STACS: Theoretical Aspects of Computer Science, LNCS 900,
pp. 229-242. Springer, 1995.

[TLS00] C. Tomlin, J. Lygeros, and S. Sastry. A game-theoretic approach to controller
design for hybrid systems. In Proc. IEEFE, 88:949-970, 2000.

[Won97] H. Wong-Toi. The synthesis of controllers for linear hybrid automata. In
CDC: Conf. Decision and Control, pp. 4607-4612. IEEE, 1997.

15



