
A Comparison of Control Problemsfor Timed and Hybrid Systems?Franck Cassez1??, Thomas A. Henzinger2? ? ?, and Jean-Fran�cois Raskin3y1 IRCCyN, Ecole Centrale de Nantes, France2 EECS Department, University of California, Berkeley, USA3 D�epartement d'Informatique, Universit�e Libre de Bruxelles, BelgiumAbstract. In the literature, we �nd several formulations of the controlproblem for timed and hybrid systems.We argue that formulationswherea controller can cause an action at any point in dense (rational or real)time are problematic, by presenting an example where the controllermust act faster and faster, yet causes no Zeno e�ects (say, the controlactions are at times 0; 12 ; 1; 1 14 ; 2; 2 18 ; 3; 3 116 ; : : :). Such a controller is,of course, not implementable in software. Such controllers are avoidedby formulations where the controller can cause actions only at discrete(integer) points in time. While the resulting control problem is well-understood if the time unit, or \sampling rate" of the controller, is �xeda priori, we de�ne a novel, stronger formulation: the discrete-time controlproblem with unknown sampling rate asks if a sampling controller existsfor some sampling rate. We prove that this problem is undecidable evenin the special case of timed automata.1 IntroductionTimed and hybrid systems are dynamical systems with both discrete and con-tinuous components. A paradigmatic example of a hybrid system is a digitalcontrol program for an analog plant environment, like a furnace or an airplane:the controller state moves discretely between control modes, and in each con-trol mode, the plant state evolves continuously according to physical laws. Anatural model for hybrid systems is the hybrid automaton, which represents dis-crete components using �nite-state machines and continuous components usingreal-numbered variables whose evolution is governed by di�erential equations ordi�erential inclusions [ACH+95]. An interesting class of hybrid automata is the? An abbreviated version of this paper will appear in the Proceedings of the Fifth Inter-national Workshop on Hybrid Systems: Computation and Control (HSCC), LectureNotes in Computer Science, Springer-Verlag, 2002.?? Partially supported by the FNRS, Belgium, under grant 1.5.096.01.? ? ? Partially supported by the DARPA SEC grant F33615-C-98-3614, the AFOSRMURIgrant F49620-00-1-0327, the NSF Theory grant CCR-9988172, and the MARCOGSRC grant 98-DT-660.y Partially supported by a \Cr�edit aux chercheurs" from the Belgian National Fundfor Scienti�c Research.

class of rectangular automata [HKPV98]: this is the most liberal generalization oftimed automata [AD94] with interesting decidability properties. While in timedautomata, all real-numbered variables are \clocks" with constant derivative 1, inrectangular automata, the derivatives of all variables are bounded by constantsfrom below and above. If the bounds on the derivative of a variable cannotchange between control modes unless the variable is reset, then the rectangularautomaton is called initialized.The distinction between continuous evolutions of the plant state (whichis given by the real-numbered variables of a hybrid automaton) and discreteswitches of the controller state (which is given by the location, or control mode,of the hybrid automaton) permits a natural formulation of the safety controlproblem: given an unsafe set U of plant states, is there a strategy to switchthe controller state in real time so that the plant can be prevented from enter-ing U? In other words, the hybrid automaton speci�es a set of possible controlmodes, together with the plant behavior resulting from each mode, and thecontrol problem asks for deriving a switching strategy between control modesthat keeps the plant out of trouble. A switch in control mode can be caused bytwo events: sensing of a particular plant state (e.g., \turn o� the furnace whenthe heat hits x degrees"); or arrival of a particular time instant (e.g., \turno� the furnace after y seconds"). This can be formalized in several ways, andconsequently, a variety of similar but di�erent mathematical formulations of thesafety control problem for timed and hybrid systems can be found in the litera-ture (e.g., [HW92,AMP95,MPS95,Won97,HHM99,HK99,ABD+00,TLS00]). Weclassify various formulations, compare their relative strengths, and �ll in somegaps that had been left open previously. In doing so, we focus on safety controlpurely for reasons of clarity; the treatment of more general control objectives isorthogonal to the issues studied here [dAHM01].One fundamental distinction is between dense-time and discrete-time (orsampling) models of control. In dense-time models, the controller observes theplant state continuously, and may cause a control switch as soon as a particularplant state is encountered. In discrete-time models, while the plant evolves con-tinuously, the controller observes the plant state only at regularly spaced timeinstants, and may cause a control switch only at those sampling points. Withdiscrete-time models, we can further distinguish between known and unknownsampling rate. A control problem of the �rst kind asks: given a positive rationalnumber �, can an unsafe plant state be prevented by a controller that samplesthe plant state every � seconds? The more general discrete-time control problemwith unknown sampling rate asks: is there a rational number � such that anunsafe plant state be prevented by a controller with sampling rate �? For exam-ple, a discrete-time control problem may not be solvable with sampling rate of10 ms, but it may be solvable with sampling rate of 5 ms.Similarly, with dense-time models, we can distinguish between known andunknown switch conditions. A control problem of the �rst kind asks: for eachcontrol mode, given a set P of predicates on the plant state, can an unsafeplant state be prevented by a controller that watches the predicates in P and2

causes a mode switch only when the truth value of a predicate in P changes.The more general dense-time control problem with unknown switch conditionsasks: is there a set P of predicates (typically chosen from some language) on theplant state such that an unsafe plant state be prevented by a controller choosingswitch conditions from P ? For example, a dense-time control problem may notbe solvable by a controller that can switch mode by watching a sensor thatindicates when a furnace hits a multiple of 10 degrees, but it may be solvable ifthe sensor has a granularity of 5 degrees.The following three control problems have been studied in the literature:(1) The known sampling rate (known or unknown switch conditions) discrete-time control problem can be solved algorithmically for all rectangular automata[HK99] (see [HW92] for the timed case). (2) The known switch conditions dense-time control problem, while undecidable for general rectangular automata, issolvable for all initialized rectangular automata [HHM99]. (3) The unknownswitch conditions dense-time control problem, while undecidable for initializedrectangular automata [HKPV98], is solvable for all timed automata [MPS95].While none of these papers explicitly mention switch conditions, we obtain equiv-alent formulations in terms of switch conditions, which allow us to see that thethree formulations (1){(3) are of strictly increasing generality. Intuitively, if allswitch conditions are known, then they are part of the hybrid automaton model,and the task of the controller is simply to disable or enable edge guards: at eachplant state, the controller decides whether to cause a mode switch, or let anamount of time pass which is constrained only by the location invariant of thehybrid automaton. Since all timing constraints are already part of the model(in the form of location invariants and edge guards), this is also called time-abstract control [HHM99]. By contrast, in [MPS95,AMP95], the controller maystrengthen the location invariants of the hybrid automaton model to achieve thecontrol objective: at each plant state, the controller decides whether to causea mode switch, or let an amount of time pass which is constrained by somenew, derived predicate on the plant state. If the invariants are strengthened bypolyhedral predicates, as in [AMP95,MPS95], this is called polyhedral control.It is well-known that careless solutions of dense-time control problems maylead to unrealistic controllers that \stop time," either by blocking the progress oftime altogether, or by causing mode switches at convergent points in time, say,0; 12 ; 34 ; 78 ; : : : [Won97]. Such Zeno phenomena can be avoided by lifting the con-trol objective from a safety objective to a combined safety and liveness objective(\always avoid unsafe states and let time progress for another unit") [dAHM01].However, we show for the �rst time that dense-time control models are moreseriously awed: we present an example that can be controlled by a dense-timecontroller but not by any discrete-time controller with unknown sampling rate.The dense-time controller causes mode switches at divergent points in time, say,0; 12 ; 1; 1 14 ; 2; 2 18 ; 3; 3 116 ; : : : , where the di�erence between adjacent time instantscannot be bounded from below. Such a controller is, of course, not implementableby software. This observation has led us to de�ne the unknown sampling ratediscrete-time control problem, which asks whether a discrete-time controller ex-3

ists for some sampling rate, and if so, for a derivation of the sampling rate. Weshow that this problem is, surprisingly, undecidable even in the very special caseof timed automata with known switching conditions. The undecidability proof isinteresting, because it requires the encoding of unbounded integer values usingthe di�erence between two clocks.We believe that our results have practical signi�cance for two reasons. First,they put in question the usefulness of dense-time control formulations. Someauthors insist, for example, that the number of dense-time control actions in atime unit is bounded from above [ABD+00]. But even such a bound does notprevent pathological examples like the one mentioned before, where there areno more than two control actions in any one time unit, yet the time intervalsbetween control actions must get smaller and smaller. This can be avoided onlyif the time di�erence between control actions is bounded by a constant " frombelow, which, however, fundamentally changes the control problem to a discrete-time problem with time unit ". Second, our results show that even discrete-timecontrol problems can be solved only when the sampling rate, or time unit, is�xed a priori. It follows that from a decidability point of view, the control oftimed and hybrid systems is considerably more di�cult than we thought whenwe embarked on our original goal of comparing di�erent formulations found inthe literature. (This, of course, does not a�ect the applicability of symbolic semi-decision procedures such as [Won97,ABD+00,TLS00,dAHM01]).The paper is organized as follows. In Section 2, we recall the de�nitions ofsafety control for transition systems, as well as the de�nitions of timed andrectangular automata. In Section 3, we formulate and compare the four ba-sic variations of the safety control problem for hybrid systems: known switchconditions vs. unknown switch conditions dense-time, and known sampling ratevs. unknown sampling rate discrete-time. We also show that a dense-time con-troller may exist in cases where no sampling rate exists. Section 4 contains theproof that the existence of digital controllers |i.e., the unknown sampling ratediscrete-time control problem| is undecidable for timed automata.2 Prerequisites2.1 Labeled transition systems and controlA labeled transition system S is a tuple (Q;�;!; Q0), where Q is a (possiblyin�nite) set of states, � is a (possibly in�nite) set of labels, !� Q���Q is alabeled transition relation, and Q0 � Q is a set of initial states. We write q a�!q0 if(q; a; q0) 2!. A run of S is a �nite sequence � = q0a0q1a1 : : : qn of states qi 2 Qand labels ai 2 � such that (1) q0 2 Q0 and (2) qi ai�!qi+1 for all 0 � i < n. Wewrite dest(�) = qn for the �nal state of �. A state q 2 Q is reachable in S if thereexists a run � of S such that q = dest(�). A set F � Q of states is reachable inS if there exists a state in F that is reachable in S.De�nition 1 (Reachability). The reachability problem for a class C of labeledtransition systems is the following: given a labeled transition system S 2 C anda set F of states of S, determine if F is reachable in S. 24

The labels of a labeled transition system S can be interpreted as control actions.A label a 2 � is enabled at the state q 2 Q if q a�!q0 for some state q0 2 Q. Wewrite Enabled (q) for the labels that are enabled at q. A control map for S is afunction �: Q ! 2� that maps every state q 2 Q to a set �(q) � Enabled(q)of enabled labels. The closed-loop system �(S) is the labeled transition system(Q;�;!�; Q0), where q a�!� q0 i� q a�!q0 and a 2 �(q). The control map � isdeadlock-free for S if �(q) 6= ; for every state q that is reachable in the closed-loop system �(S).De�nition 2 (Safety control). The safety control problem for a class C oflabeled transition systems is the following: given a labeled transition system S 2 Cand a set F of states of S, determine if there exists a deadlock-free control map� for S such that F is not reachable in the closed-loop system �(S). 2The safety veri�cation problem is the special case of the safety control problemwhere j�j = 1. Note that the safety veri�cation problem can be reduced to thenon-reachability problem, and vice versa.2.2 Timed and rectangular automataLet X be a �nite set of real-valued variables. A valuation for X is a functionv: X ! R. We write [X ! R] for the set of all valuations for X . For a setV � [X ! R] of valuations, and x 2 X , de�ne V (x) = fv(x) j v 2 V g. Let./2 f<;�; >;�g, let x1; : : : ; xn; x 2 X , and let c1; : : : ; cn; c 2 Z. A rectangularinequality over X is a formula of the form x ./ c; a triangular inequality over Xis a formula of the form x1 � x2 ./ c; a polyhedral inequality over X is a formulaof the form c1x1+ � � �+cnxn ./ c. A rectangular predicate overX is a conjunctionof rectangular inequalities over X ; the set of all rectangular predicates over Xis denoted Rect(X). A polyhedral predicate over X is a boolean combinationof polyhedral inequalities over X . For a polyhedral predicate p over X , and avaluation v for X , we write v(p) for the boolean value that is obtained from pby replacing each variable x 2 X with v(x). The polyhedral predicate p de�nesthe set [[p]] = fv : X ! R j v(p) = trueg of valuations.De�nition 3 (Rectangular automaton [HKPV98]). A rectangular automa-ton H is a tuple (L;X;�; init; E; inv; ow). (1) L is a �nite set of locationsrepresenting the discrete state of the automaton. (2) X is a �nite set of real-valued variables representing the continuous state. We write _X = f _x j x 2 Xgfor the set of corresponding dotted variables, which represent �rst derivatives.(3) � is a �nite set of events disjoint from R. (4) init: L! Rect(X) is the ini-tial condition. If the automaton starts in location `, then each variable x 2 X hasa value in the interval [[init(`)]](x). (5) E � L�Rect(X)���Rect(X)�2X�Lis a �nite set of edges. Every edge (`; ; �; �; U; `0) 2 E represents a changefrom location ` to location `0 with guard , label �, and reset assignment �,which asserts that each variable x 2 U is nondeterministically reset to a valuein the interval [[�]](x), and each variable in X n U is left unchanged. (6) inv:5

L ! Rect(X) is the invariant condition. The automaton can stay in location `as long as each variable x 2 X has a value in the interval [[inv(`)]](x). (7) ow:L ! Rect(_X) is the ow condition. We require that for every location ` 2 Land variable x 2 X, the interval [[ow(`)]](_x) is bounded. If the automaton isin location `, then each variable x 2 X can evolve nondeterministically with aderivative in the interval [[ow(`)]](_x). 2De�nition 4 (Initialized rectangular automaton). An initialized rectan-gular automaton is a rectangular automaton that satis�es the following: for alledges (`; ; �; �; U; `0) 2 E and variables x 2 X, if [[ow(`)]](x) 6= [[ow(`0)]](x),then x 2 U . In other words, every time the bounds on the derivative of a variablechange between two locations, the variable is reset. 2De�nition 5 (Timed automaton). A timed automaton is an initialized rect-angular automaton such that (1) ow(`) � ^x2X(_x = 1) for all locations ` 2 L,and (2) � � ^x2U (x = 0) for all edges (`; ; �; �; U; `0) 2 E. In other words, allvariables advance at the rate of time |they are called clocks| and variablescan be reset only to 0.1 2Let H be a rectangular automaton with locations L and variables X . The statespace of H is L� [X ! R]; that is, every state h`; vi of H consists of a discretepart ` 2 L and a continuous part v:X ! R. A polyhedral (resp. rectangular) statepredicate pred for H is a function that maps every location in L to a polyhedral(resp. rectangular) predicate pred(`) over X . Note that the initial and invariantconditions of H are rectangular state predicates for H . The polyhedral statepredicate pred de�nes the set [[pred]] = fh`; vi 2 L� [X ! R] j v 2 [[pred(`)]]g ofstates. A state set P � L�[X ! R] is polyhedral if there exists a polyhedral statepredicate pred such that [[pred]] = P . We de�ne three semantics for rectangularautomata. The �rst two permit location changes at all real-valued points in time;the third only at multiples of a �xed sampling unit.De�nition 6 (Dense-time semantics). The dense-time semantics of a rect-angular automaton H = (L;X;�; init; E; inv; ow) is the labeled transition sys-tem SdenseH = (Q;�dense ;!dense ; Q0), where Q = [[inv]] and �dense = � [R>0 and Q0 = [[init]], and !dense is de�ned as follows. (1) Discrete tran-sitions for each event � 2 �: let h`; vi ��!denseh`0; v0i i� there exists an edge(`; ; �; �; U; `0) 2 E such that v 2 [[]], and v0(x) 2 [[�]](x) for all x 2 U , andv0(x) = v(x) for all x 2 XnU . (2) Continuous transitions for each duration� 2 R>0: let h`; vi ��!denseh`0; v0i i� ` = `0 and for each variable x 2 X, thereexists a di�erentiable function fx: [0; �]! [[inv(`)]](x) such that (i) fx(0) = v(x),(ii) fx(�) = v0(x), and (iii) _fx(t) 2 [[ow(`)]](x) for all 0 < t < �. 2The time-abstract semantics hides the duration of continuous transitions.1 Unlike [AD94], we do not allow triangular inequalities in the de�nition of a timedautomaton. However, every timed automaton with triangular inequalities can betransformed into one that accepts the same timed language and has only rectangularpredicates. 6

De�nition 7 (Time-abstract semantics). Let H = (L;X;�; init; E; inv;ow)be a rectangular automaton and SdenseH = (Q;�dense ;!dense ; Q0) its dense-timesemantics. The time-abstract semantics of H is the labeled transition systemSabstrH = (Q;�abstr ;!abstr ; Q0), where �abstr = �[ftimeg and!abstr is de�nedas follows. (1) For each � 2 �, let q ��!abstrq0 i� q ��!denseq0. (2) Let q time���!abstrq0i� q ��!denseq0 for some duration � 2 R>0. 2If we assume that discrete transitions alternate with continuous transitions ofa �xed duration �, then we obtain a discrete-time semantics with time unit �.The sampling semantics, with sampling unit �, further assumes that all discretetransitions (i.e., location changes) represent moves of the controller, and all con-tinuous transitions (i.e., variable evolutions) represent moves of the plant. Theintuition behind this semantics is that the plant evolves continuously, observedby a digital controller whose control decisions are separated by time �.2De�nition 8 (Sampling semantics). Let H = (L;X;�; init; E; inv; ow) be arectangular automaton and SdenseH = (Q;�dense ;!dense ; Q0) its dense-time se-mantics. Let � 2 Q>0 be a sampling unit. The �-sampling semantics of H is thelabeled transition system SsampleH (�) = (Q� fControl ;Plantg; �sample ;!sample,Q0 � fControlg), where �sample = � [f�g and !sample is de�ned as follows.(1) Discrete control transitions for each � 2 �: let hq;Controli ��!samplehq0;Plantii� q ��!denseq0. (2) Continuous plant transitions of �xed duration � 2 Q>0 : lethq;Planti ��!samplehq0;Controli i� q ��!denseq0. 23 Control of Timed and Rectangular Automata3.1 Dense-time controlIn dense-time control, the controller can make a decision to change location |i.e., to switch control mode| at every real-valued time instant t 2 R�0. Wedistinguish between dense-time control with known switch conditions [HHM99]and unknown switch conditions [AMP95,MPS95,AMPS98].Known switch conditions. A known switch conditions dense-time controller de-cides in every state either to issue a control action or to let time pass. If thecontroller issues a control action �, then an edge with label � is taken. In lo-cation `, if the controller lets time pass, then an arbitrary positive amount oftime � 2 R>0 is selected so that the invariant of ` is not violated. As the ac-tual amount of time that will pass is not decided by the controller, the model istime-abstract.De�nition 9 (Known switch conditions dense-time safety control). Theknown switch conditions dense-time safety control problem for a class C of rect-angular automata is the following: given a rectangular automaton H 2 C and2 The sampling semantics of [HK99] is more general in that it allows more than onediscrete transition between two continuous transitions of duration �. All resultspresented here apply also to that case. 7

a rectangular state predicate �n for H, solve the safety control problem for thetime-abstract semantics SabstrH and state set [[�n]]; that is, determine if there ex-ists a deadlock-free control map � for SabstrH such that [[�n]] is not reachable inthe closed-loop system �(SabstrH). 2Unknown switch conditions. An unknown switch conditions dense-time con-troller controls a rectangular automaton by strengthening the invariants andguards that appear in the automaton. In particular, in location `, such a con-troller may let time pass up to some upper bound, which can be stronger thanthe invariant of `. In order to synthesize control maps, the constraints added bythe controller cannot be arbitrary, but must be expressible in some language. Fol-lowing [AMPS98], we consider constraints that can be expressed as polyhedralpredicates. This is captured by the notion of a polyhedral control map.Let H = (L;X;�; init; E; inv; ow) be a rectangular automaton, and let �be a control map for the dense-time semantics SdenseH . For a state set P �L� [X ! R] and an event � 2 �, de�ne Post�H(P) = fq0 j 9q 2 P: q ��!denseq0gand Post��;H(P) = fq0 j 9q 2 P: q ��!denseq0 and � 2 �(q)g. Furthermore, de�nePost timeH (P) = fq0 j 9q 2 P; � 2 R>0: q ��!denseq0g and Post time�;H (P) = fq0 j9q 2 P; � 2 R>0: q ��!denseq0 and � 2 �(q)g. Note that if P is polyhedral, thenPost�H(P) is a polyhedral state set of H for all events � 2 �, and Post timeH (P)is also a polyhedral state set of H [ACH+95]. A control map � for the dense-time semantics SdenseH is polyhedral if the following two conditions are satis�ed.(1) For every event � 2 �, there exists a polyhedral state set P� of H such thatfor every polyhedral state set P of H , we have Post��;H(P) = Post�H(P \ P�).(2) There exists a polyhedral state set Ptime of H such that for every polyhedralstate set P of H , we have Post time�;H (P) = Post timeH (P) \ Ptime . Note that thepolyhedral state set P� can be used to strengthen edge guards, while Ptime canbe used to strengthen location invariants.De�nition 10 (Unknown switch conditions dense-time safety control).The unknown switch conditions dense-time safety control problem for a class Cof rectangular automata is the following: given a rectangular automaton H 2 Cand a rectangular state predicate �n for H, determine if there exists a deadlock-free polyhedral control map � for the dense-time semantics SdenseH such that thestate set [[�n]] is not reachable in the closed-loop system �(SdenseH). 2It is easy to see that if the answer to the known switch conditions dense-timecontrol problem hH; �ni is Yes, then the answer to the unknown switch condi-tions dense-time control problem hH; �ni is alsoYes. Indeed, if the answer to theknown (resp. unknown) switch conditions dense-time control problem hH; �ni isYes, then we can constructively strengthen the guards (resp. both invariants andguards) of H with a �nite set of polyhedral predicates such that the resultinghybrid automaton �(H) (which may no longer be rectangular) is non-blockingand contains no reachable states in [[�n]].8

KSC USC KSR USRTimed automata p [MPS95] p [MPS95] p [HW92] ?Initialized rectangular automata p [HHM99] � [HKPV98] p [HK99] ?Rectangular automata � [HHM99] � [HKPV98] p [HK99] ?Table 1. Decidability results for safety control problems. KSC stands for \knownswitch conditions dense-time"; USC for \unknown switch conditions dense-time"; KSRfor \known sampling rate discrete-time"; USR for \unknown sampling rate discrete-time"; p stands for decidable, � for undecidable, and ? for previously open. In thenext section, it will be shown that all three previously open problems are undecidable(cf. Corollary 1).3.2 Discrete-time controlIn discrete-time control, the controller samples the plant state once every �time units, for some sampling unit � 2 Q>0 , and issues control actions at thesepoints in time. Control actions, as before, may cause a change in location. Be-tween control actions the plant evolves for � time units without interruption. Wedistinguish between discrete-time control with a known sampling unit � [HK99],and the more ambitious problem of synthesizing a suitable sampling unit, whichhas not been studied before.De�nition 11 (Known sampling rate discrete-time safety control). Theknown sampling rate discrete-time safety control problem for a class C of rect-angular automata is the following: given a rectangular automaton H 2 C, asampling unit � 2 Q>0 , and a rectangular state predicate �n for H, solve thesafety control problem for the sampling semantics SsampleH (�) and state set [[�n]];that is, determine if there exists a deadlock-free control map � for SsampleH (�)such that [[�n]] is not reachable in the closed-loop system �(SsampleH (�)). 2De�nition 12 (Unknown sampling rate discrete-time safety control).The unknown sampling rate discrete-time safety control problem for a class Cof rectangular automata is the following: given a rectangular automaton H 2 Cand a rectangular state predicate �n for H, determine if there exist a samplingunit � 2 Q>0 and a deadlock-free control map � for the sampling semanticsSsampleH (�) such that the state set [[�n]] is not reachable in the closed-loop sys-tem �(SsampleH (�)). 23.3 Comparison between dense-time and discrete-time controlTo compare the di�erent classes of controllers we �rst recall what is knownabout the decidability of the various control problems de�ned above. The resultsfrom the literature are summarized in Table 1. For all decidable entries, suitablecontrol maps can be synthesized algorithmically. Next we study two examplesthat shed some light on the relative merits of the di�erent models.9

x := [0; 1[y := 0 x � 2l0 l1l2 Badx = 1x := 0a y = 1z := 0bz > 0y := 0 c dx � 1 dx � 1 ^ z > 0dx � 1Fig. 1. A timed automaton that cannot be con-trolled by any sampling controller, no matter howsmall the sampling unit, but can be controlled bya dense-time controller (cf. Theorem 1).
z := 0x := 0 l1x � 200 Badaz > 1 ^ x < 100b; x := 0 aFig. 2. A timed automaton thatcannot be controlled by any time-abstract controller, but can be con-trolled by a sampling controller (cf.Theorem 2).Unknown sampling rate discrete-time control is not as powerful as dense-timecontrol. Our de�nitions of dense-time control ignore Zeno phenomena; for ex-ample, a controller that blocks the progress of time by causing control actionsat convergent points in time, such as 0; 12 ; 34 ; 78 ; : : : , is considered legal. Zenophenomena have been studied extensively, and are usually avoided either bylifting the control objective from safety to liveness [Won97,dAHM01], or by as-sumption, as in [AMPS98], where it is imposed that every loop in the controlstructure of a hybrid automaton must contain a clock that is reset to 0 and thentested to be greater than 1 (\strongly non-zeno automata"). However, dense-time control models are more seriously awed: we present a timed automaton Hthat can be controlled by a dense-time controller, but there is no sampling unit,however small, such that H can be controlled by a sampling controller. Thedense-time controller issues control actions at divergent points in time, suchas 0; 12 ; 1; 1 34 ; 2; 2 78 ; 3; 3 1516 ; : : : , but the di�erence between adjacent time instantscannot be bounded from below.Consider the timed automaton of Figure 1. The control objective is to avoidthe location Bad. Thus, the controller must keep the automaton looping in loca-tions l0, l1, and l2. To do so, let us show that the controller must leave locationl2 faster and faster. The �rst time that the automaton enters l0, the variables xand y have the values x0 and y0, respectively, where x0 < 1 and y0 = 0. To keeplooping, the controller must ensure that x � 1 when reentering location l0. Wenow describe the evolution of the value of x at the successive times location l0 isentered: by xi and yi, we denote the values of x and y, respectively, when enteringl0 after i iterations of the loop. The loop consists in taking successively the edgeslabeled by a, b, and c. When crossing a, we have x = 1, and when entering l1,we have x = 0 and y equals the amount of time �0i spent by the automaton inlocation l0. The automaton stays in location l1 for time �1i = 1��0i , and then theedge labeled by b is crossed. The automaton stays in location l2 for time �2i > 0.So the value of x when reentering l0 is xi+1 = xi+ �2i . Remember that the value10

of x must be less or equal to 1 when entering location l0 in order to avoid beingforced to go to the Bad location. So we must haveP1i=1 �2i < 1�x0. Such a con-verging sequence of �2i can be enforced by a dense-time controller with unknownswitch conditions. This controller imposes the additional invariant x < 1 on l2,and the d edges are labeled with the guard false, ensuring that they can neverbe taken. It is not di�cult to see that this new automaton is non-blocking andcannot visit the Bad location. Note that our controller only takes three controlactions per time unit, and so is not excluded by the de�nition of control givenin [ABD+00], which requires the number of control actions per time unit to bebounded from above. As a direct consequence of the discussion above, the au-tomaton of Figure 1 modi�ed with the additional invariant x < 1 on location l2is controllable by a dense time controller with known switch conditions.Now let us establish that there does not exist a sampling controller that canavoid the location Bad, no matter how small the sampling unit. If we �x thesampling unit to be � 2 Q>0 , then the automaton reaches for the �rst time l2with x0 = � and y0 = 0. Then, after each iteration of the loop, when enteringl0 the value of x has grown by � (the time spent in location l2). Thus, after niterations of the loop, for n = minj(j �� > 1��), the value of x when entering l0is strictly greater than 1. Thus only the d edge leaving l0 can be taken, leadingto the Bad location. Finally, let us note that this justi�cation is still valid whenconsidering the automaton of Figure 1 modi�ed with the additional invariantx < 1 on location l2.Theorem 1. There exist a timed automaton H and a rectangular state predicate�n such that the answer to the known switch conditions dense-time safety controlproblem hH; �ni is Yes, and the answer to the unknown sampling rate discrete-time safety control problem hH; �ni is No. 2Known switch conditions dense-time control is not as powerful as discrete-timecontrol. Let us now consider the timed automaton of Figure 2. The controlobjective is again to avoid the location Bad. The automaton is not known switchconditions dense-time controllable. In fact, when entering for the �rst time l1, wehave z = 0, and the controller can decide either to take the edge labeled by a, orto let time pass. The decision to take the edge labeled by a is excluded, as thiswould lead directly to the Bad location. Unfortunately, the controller cannotallow time to pass either. In fact, if the controller chooses to let time pass,then it agrees to wait for an undetermined amount of time, including delays100 � � � 200. If � = 200, then the automaton reaches a state where only a isenabled, which leads to the Bad location. This means that this simple systemcannot be controlled by a dense-time controller with known switch conditions. Onthe other hand, the automaton is controllable by an unknown switch conditionsdense-time controller. A simple way to control the automaton is to add theinvariant x < 100 to location l1, and to add the guard false to the edge labeledby a. The automaton can also be controlled by a discrete-time controller with asampling unit � < 100. 11

Theorem 2. There exist a timed automaton H, a sampling unit �, and a rect-angular state predicate �n such that the answer to the known sampling ratediscrete-time safety control problem hH; �; �ni is Yes, and the answer to theknown switch conditions dense-time safety control problem hH; �ni is No. 24 Unknown Sampling Rate Control is UndecidableWe establish the undecidablity of the unknown sampling rate discrete-time safetycontrol problem for the restricted class of timed automata. Actually, we provethe undecidability of a weaker question, namely, the unknown-rate discrete-timereachability problem.De�nition 13 (Unknown-rate discrete-time reachability). The unknown-rate discrete-time reachability problem for a class C of rectangular automata isthe following: given a rectangular automaton H 2 C and a rectangular state pred-icate �n for H, determine if there exists a sampling unit � 2 R>0 such that thestate set [[�n]] is not reachable in the sampling semantics SsampleH (�). 2Our main result is the following.Theorem 3. The unknown-rate discrete-time reachability problem is undecid-able for timed automata. 2As non-reachability can be reduced to safety control, we obtain the following.Corollary 1. The unknown sampling rate discrete-time safety control problemis undecidable for timed automata.To establish Theorem 3, we reduce the control state reachability problem fortwo-counter machines to the unknown-rate discrete-time reachability problem fortimed automata. The former is well-known to be undecidable, thus implying theundecidability of the latter. A two-counter machine M consists of two counters(initially 0) and a �nite sequence of instructions, each taken from the following:increment a counter; test a counter for zero and branch conditionally; decrementa counter if its value is not zero. GivenM and a control state u ofM , we constructa timed automaton HM and a location lu of HM such that the execution of Mreaches u i� there exists a sampling unit � 2 Q>0 such that a state with discretepart lu is reachable in the sampling semantics SsampleHM (�). The key property ofHM is that if the automaton is sampled every 1b time units, for some b 2 Q>0 ,then it can simulate the execution of M as long as the counter values are lessthan bbc. When a counter overow occurs, then HM goes into a terminal locationdi�erent from lu. If the execution of M reaches u, then it does so with somemaximal counter values, and HM can reach lu for a su�ciently large choice of b.On the other hand, if the execution of M does not reach u, then HM cannotreach lu for any choice of b. 12

l0 l1x > 1 ^ y > 1x := 0 ; y := 0x < 1 ^ y < 1
Fig. 3. Widget for zero testing l0 to Normalizing widget

x > 1 ^ y < 1x := 0 x < 1 ^ y > 1y := 0x > 1 ^ y > 1x := 0 ; y := 0Fig. 4. Idling widgetCon�guration encoding. First we need to decide how to encode the con�gurationsof the counter machine M . A con�guration of M consists of a control state andtwo counter values c1; c2 2 N. The control state w of M is directly encoded bya location lw of HM . A counter value c is encoded by the di�erence betweentwo clocks x and y. Recall that HM is sampled every 1b time units. If clocks arealways reset to 0, then the clock di�erence x�y is a multiple of 1b at every statein every run of the sampling semantics SsampleHM (1b). Moreover, we constrain thevalues of x and y to lie in the interval Ib = [0; bb+1cb]; then jx�yj 2 Ib. We encodecounter value c using only clock values x; y 2 Ib, and impose the following onthe automaton HM :{ If x � y, then c = (x � y) � b.{ If x < y, then c = � bb+1cb � (y � x)� � b.In this way the maximal counter value we can encode with x; y 2 Ib is exactly bbc.Note that when x < y, we cannot encode the counter value 0. Thus, c = 0 isalways encoded with x � y.We now give widgets for encoding the three types of instructions of thecounter machine, and a widget for what we call \normalization" of the encoding.As we want our result to be as general as possible, and robust in the senseof [HR00], we avoid the use of equality in the rectangular predicates of HM (theproof, especially the widget for zero testing, would be somewhat easier if the useof equality were allowed).Zero testing. We assume two clocks x and y encoding counter value c withx � y. A widget for zero testing without using equality is shown in Figure 3.More formally, there exists 1b 2 Q>0 n 1N such that the state hl1; x = 0; y = 0iis reachable from hl0; x; yi in the sampling semantics SsampleHM (1b) i� x = y in l0.This gives us a way to test if c = 0 when its value is encoded by (x � y) � b. Aswe will see in the next paragraph, we can restrict ourselves to zero testing whenx � y. In the sequel we assume 1b 2 Q>0 n 1N , so that value 1 is never hit for bothx and y at any sampling point of any run.13

l0 l1 l2 overl3Adding onex > 1 ^ y < 1 ; x := 0 y > 1 ; y := 0x < 1 ^ y > 1 ; y := 0x > 1 ^ y > 1 ; x := 0 ; y := 0
x > 1x < 1; y := 0x < 1 ^ y < 1 y < 1

Fig. 5. Widget for normalizing (and incrementing) the encoding of a counter valueNormalizing the encoding. Before addressing the encoding of incrementing anddecrementing a counter, we give a widget for obtaining a normal form for theencoding of counter value c. By normal form we mean that c = (x�y) � b can bewritten in a unique manner with y = 0 and x � y. The widget for normalizationis shown in Figure 5 (the dashed box contains extra material that will be dealtwith later). If either x � y and c = (x�y)�b, or x < y and c = � bb+1cb �(y�x)��b,then the counter value c is in normal form when entering location l2, that is,y = 0 and x � y.Incrementing a counter. To add one to counter value c encoded by clocks xand y, we �rst normalize the encoding of c using the widget of Figure 5. Toincrement c we need to let time pass until the next edge transition, that is, weneed to wait 1b time units in location l2. Thus we add a single edge from l2 to l3resetting y; see Figure 5 inside the dashed box.Decrementing a counter. To decrement a counter value we use a slightly modi�edversion of the widget for normalization, namely, an anti-normal form: encodecounter value c with x = 0 and y > 0, and after 1b time units reset x.Counter overow and idling. Counter overows are dealt with when adding oneto a counter. The dashed transition to location over in Figure 5 corresponds toa counter overow. Finally, we have to manage concurrently two counters C1and C2. While C1 is updated, time elapses, and we need to keep the value of C2.This is done by using an idling widget, shown in Figure 4, for the counter thatis not in the instruction to be performed. An instruction of the counter machineinvolving C1 is encoded by the synchronous composition of the appropriate wid-get for C1 and the idling widget for C2. This completes the proof sketch forTheorem 3.References[ABD+00] E. Asarin, O. Bournier, T. Dang, O. Maler, and A. Pnueli. E�ective syn-thesis of switching controllers for linear systems. In Proc. IEEE, 88:1011{1025, 2000.14

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hy-brid systems. Theoretical Computer Science, 138:3{34, 1995.[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical ComputerScience, 126:183{235, 1994.[AMP95] E. Asarin, O. Maler, and A. Pnueli. Symbolic controller synthesis for discreteand timed systems. In Hybrid Systems II, LNCS 999, pp. 1{20. Springer, 1995.[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timedautomata. In IFAC Symp. System Structure and Control, pp. 469{474. Elsevier, 1998.[dAHM01] L. de Alfaro, T.A. Henzinger, and R. Majumdar. Symbolic algorithms forin�nite-state games. In CONCUR: Concurrency Theory, LNCS 2154, pp. 536{550.Springer, 2001.[HHM99] T.A. Henzinger, B. Horowitz, and R. Majumdar. Rectangular hybrid games.In CONCUR: Concurrency Theory, LNCS 1664, pp. 320{335. Springer, 1999.[HK99] T.A. Henzinger and P.W. Kopke. Discrete-time control for rectangular hybridautomata. Theoretical Computer Science, 221:369{392, 1999.[HKPV98] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What's decidableabout hybrid automata? J. Computer and System Sciences, 57:94{124, 1998.[HR00] T.A. Henzinger and J.-F. Raskin. Robust undecidability of real-time and hy-brid systems. In Hybrid Systems: Computation and Control, LNCS 1790, pp. 145{159.Springer, 2000.[HW92] G. Ho�mann and H. Wong-Toi. The input-output control of real-time discrete-event systems. In RTSS: Real-time Systems Symp., pp. 256{265. IEEE, 1992.[MPS95] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllersfor timed systems. In STACS: Theoretical Aspects of Computer Science, LNCS 900,pp. 229{242. Springer, 1995.[TLS00] C. Tomlin, J. Lygeros, and S. Sastry. A game-theoretic approach to controllerdesign for hybrid systems. In Proc. IEEE, 88:949{970, 2000.[Won97] H. Wong-Toi. The synthesis of controllers for linear hybrid automata. InCDC: Conf. Decision and Control, pp. 4607{4612. IEEE, 1997.

15

