Decidability and Complexity
Results for Timed Automata and
Semi-linear Hybrid Automata

Joseph S. Miller *

Department of Mathematics
Cornell University
Ithaca, NY 14853

jmiller@math.cornell.edu

Abstract. We define a new class of hybrid automata for which reach-
ability is decidable—a proper superclass of the initialized rectangular
hybrid automata—Dby taking parallel compositions of simple components.
Attempting to generalize, we encounter timed automata with algebraic
constants. We show that reachability is undecidable for these algebraic
timed automata by simulating two-counter Minsky machines. Modifying
the construction to apply to parametric timed automata, we reprove the
undecidability of the emptiness problem, and then distinguish the dense
and discrete-time cases with a new result. The algorithmic complexity—
both classical and parametric—of one-clock parametric timed automata
is also examined. We finish with a table of computability-theoretic com-
plexity results, including that the existence of a Zeno run is £i-complete
for semi-linear hybrid automata; it is too complex to be expressed in
first-order arithmetic.

1 Introduction

Though the bulk of this paper will be given over to undecidability results, our
initial motivation is the extension, even by a small amount, of the class of hybrid
automata for which reachability is known to be decidable. It has been suggested
that it is the coupling of continuous variables which leads to undecidability [7].
Parallel composition couples only the discrete dynamics of its components. Thus,
arguing informally, if we consider parallel compositions of hybrid automata which
obey a sufficient decoupling between discrete and continuous dynamics, then we
should be able to circumvent undecidability. We will bring this simple idea to a
simple fruition in Sect. 2, but first we must dispose of the preliminaries.

1.1 Hybrid Automata

A hybrid system is a physical system which combines discrete and continuous
dynamics. Hybrid automata are intended as formal mathematical models of such

* Research supported by the ARO under the MURI program “Integrated Approach
to Intelligent Systems”, grant no. DAA H04-96-1-0341.

systems. The following definition is provided to fix notation for the duration of
this paper. Though no standard definition exists, this one is not unusual. Note
that the continuous dynamical behavior is expressed by a (non-deterministic)
semi-flow, not by vector fields as is more common.

Definition 1. A hybrid automaton A is a tuple (Q,&,X,Z,8,5,0, R, ®) such
that:

[discrete states] Q is a finite set

[edges] €& is a finite set

[plant states] X is any set (usually taken to be a manifold)

[invariant set] T C QX X

[initial set] SC QX X

[source map] §:& — Q

[destination map] 0:E& — Q

[reset relation] R C X x Ex X

[semi-flow] @ :Q x X x R>g — P(X) such that for all (¢,z) € Q x A
1. ®(q,z,0) = {z}

2. Vi, t2 € R0 (g, 2, t1 +12) = U yeagu) PG Y, t2)-

The components of a hybrid automaton 4 are written with A as a superscript,
as in Q#4, s and ®A*. The superscript may be omitted when the automaton
is clear from context. 7, denotes the invariant set in discrete state ¢ and is
taken to be a subset of X'. Similarly, S,;, R. and ®, are given their expected
interpretations as subsets of X', X? and X x R>¢ x X, respectively. Finally, by
the guard of and edge e €& we refer to the support of the reset relation R..

Definition 2. A run of a hybrid automaton A is a sequence (qo, Zo, fo, to, Yo,

€05 15 T15 f15 t15 Y1, €15 -« -5 €n—1, Any Tns fns tn, Yn) such that for all 0 < i < n:
°*qcQ o fi:[0t] =X
® T,y €X e fi(0) = z; and f;(t;) =y
e (go,x0) €S e Vie[0,t;) fi(t) €T
e {; € RZO ° Vs,te[(),ti] s<t— fl(t) € (I)(qi,fi(S%t — S)
and for all 0 <7 < n:
e c, €&

o s5(e;) =q; and (e;) = @iq1

° (yi,ei,xiﬂ) eR.
In Sect. 5 we will generalize the notion of run both by allowing the final time
interval to be infinite and by allowing infinite sequences of transitions. Until
then, finite runs will be more convenient.

Definition 3. The semi-linear (resp. semi-algebraic) subsets of R™ are formed
by taking boolean combinations of sets defined by linear (resp. algebraic) equal-
ities and inequalities with rational coefficients.

Definition 4. By semi-linear hybrid automata (SLHA) we mean that elusive
class of automata which has been variously known as polyhedral and—to the
consternation of control theorists—as linear. A is an n-dimensional SLHA if:

e XA =TR" for some n
e for every g € Q4 and e € £A, the projected components Z(;“, 854, Rf and
@7 are semi-linear subsets of R™, R”, R?" and R*"! respectively.

Semi-algebraic hybrid automata are defined analogously.

1.2 Annotated Hybrid Automata

It will be convenient to add a layer of abstraction to our hybrid automata. An
annotation associates to each edge an event and to each discrete state a nonempty
set of possible conditions. These annotations do not affect the behavior of the
automaton but will be used when we define the timed language of an automaton
and when we define the operation of parallel composition.

Definition 5. An annotated hybrid automaton A is a hybrid automaton with
four additional components (X,T, ¢, ¢):

[events] X is a finite set

e [conditions] T is a finite set

o [event assignment] e¢:E€ — X

e [condition assignment] ¢: Q — P(I') such that Vge Q ¢(q) # 0.

Definition 6. To each run (qo, xo, fo, to, Yo, €0, q1, *1, f1, t1, Y1, €1, --.,
€n—1s Qny Tny fns tn, Yn) of an annotated hybrid automaton A, we associate an
annotated run (co, to, Vo, €1, t1, V1, - - ., Cn, ty) such that:

o forall0 <i<n,c¢ €c(q)

o for all 0 <i < n, v; =e(e;).
The timed language L(A) of an annotated hybrid automaton A is set of all
annotated runs of A.

The following equivalence relation will be important.

Definition 7. We say that the annotated hybrid automata A and B are lan-
guage equivalent iff:

o XA =NB

o L(A)=L(B).

We denote language equivalence by A ~. B.

Remark 1. Invoking symmetry, one might expect the requirement that T'A = T'B
in the definition of language equivalence. We disclude this requirement because it
is unnecessary, though it would not falsify the results that follow. The interested
reader should note in Sect. 1.3 that the set T' does not play a very important
role in parallel composition, while ¥ is crucial.

By the reachability problem for an annotated hybrid automaton A, we mean
the problem of determining which conditions ¢ € T4 occur on some annotated
run. This ensures that language equivalent hybrid automata have equivalent

reachability problems. Of course, the reachability of a discrete state can be
detected with a suitable annotation and we may suppress explicit mention of
annotations when discussing reachability. We say that the reachability problem
is decidable for a class I if there is an algorithm which uniformly solves the
reachability problem for every member of K.

1.3 Parallel Composition

Given two annotated hybrid automata we define a product automaton called the
parallel composition. Conceptually, a run of the parallel composition is comprised

of simultaneous runs of the component automata which are independent except
that:

e They must synchronize on shared events.

e The only product states that are permitted are those for which the restric-
tions on conditions are jointly satisfiable.

Definition 8. We define the parallel composition A || B of the annotated hy-
brid automata A and B in two stages. First, we define a synchronized product
automaton 4 ® B such that:

e Q=04x Q"
e £ =& U&E UE;3 where:
& = {(81,Q2) S g.A X QB | eA(el) ¢ ZB}
& = {(q1,e2) € Q4 x EP | eB(ey) ¢ X4}
Ey = {(e1,e0) € EA x EB | eA(e1) = ¢B(e)
o« X =xAxXB
o T={((q1,92), (r1,22)) € QX X | (q1,21) € TA A (g2, %) € TP}
={((q1,2); (x1,22)) € Qx X | (q1,21) € S A (go, x2) € SP}
(5 (61)702) if CQEQB
5(cq,c2) = (c, B(ey)) if ¢; € QA
(s*(c1),s otherwise
(1),¢2) if coc QB
0(cy,e2) =4 (a1 ,0 B(cy)) if ¢; € QA
(04(c1),058(c2)) otherwise
R = {((xl,xg) (c1,¢2), (Y1,y2)) € X X E X X |
((c1 € OANT = y1) or (c1 € EAN (z1,c1,91) € RA)) and
((co € QB Awg = 1) or (c2 € EB A (w2, ¢2,12) € RP))}
(D((CthQ)’ (xl,xg),r) = (DA(qlvth) X (PB(q%x%T)‘
A ® B is annotated as follows:
e L=xAUxB

e I'=TANTE
Aley) if cpe&t

e
e ¢(ci, o) _{ B(cy) otherwise

]
95}

[]
(n
/\

QU'P
[y
(x
—~
Q
DO
~
~

e
e o(q1,q2) = A1) N B(ga).

The second stage in the formation of A || B is to discard all discrete states
q € QA% guch that ¢A®B(q) = . This ensures that A || B is an annotated
hybrid automaton and completes the construction.

Remark 2. Parallel composition is commutative and associative (up to isomor-
phism). Therefore we can, and will, refer to the parallel composition of several
annotated hybrid automata without fear of ambiguity.

The concept of parallel composition defined here is nowise new. Conditions
are just an alternative to the propositional constraints that commonly arise in
the temporal logic literature. The novelty is not in our definition, but in the use
we will make of parallel composition—to define a new class of hybrid automata
for which the reachability problem is decidable. The following simple relationship
between language equivalence and parallel composition will be a key ingredient;
it will allow us to do reductions component-wise.

Lemma 1. If A~ A and B~ B then A| B~ A || B.

2 A New Decidable Class

Definition 9. If K is a class of hybrid automata, then the parallel closure Kl is
the class of all parallel compositions of all annotations of the elements from K.

Definition 10.
Clock Components:
Let C be the class of 1-dimensional SLHA such that ®(q,¢,x) = x + ¢, the plant
state is zero in all initial states, and each edge satisfies either:
(a) zero reset
or (b) identity reset

Rectangular Components:
Let R be the class of 1-dimensional SLHA such that ®(q,t¢,z) = = + tI;, where
I, is an interval for each g, and such that each edge satisfies either:
(a) constant set-valued reset map
or (b) identity reset and
source and destination have the same flow

Deterministic Components:
Let D be the class of SLHA with deterministic flows and finite initial set such
that each edge satisfies either:
(a) constant (single-valued) reset map
or (b) identity reset and
source and destination have the same flow

Nondeterministic Components:
Let A be the class of SLHA such that each edge satisfies either:
(a) constant set-valued reset map
or (b) identity reset and
trivial guard and
source and destination have the same flow and invariant set

The reader is probably already familiar with Cll and RI, though our pre-
sentation is somewhat unusual. They are, respectively, timed automata [1] and
initialized rectangular hybrid automata [12,7]. Both of these classes are known
to have decidable reachability problems.

Lemma 2.

1. If A € R then every annotation of A is language equivalent to a two clock
timed automaton.

2. If A € DUN then every annotation of A is language equivalent to an
annotation of a clock component.

Part (1) is contained in [12] while Part (2) offers no real difficulty. Combining
Lemma 1 with Lemma 2 and the decidability of reachability for timed automata,
the following theorem is immediate.

Theorem 1. Reachability is decidable for (R UD UJ\/')”.

Note that (RUDUN)” is a proper superclass of the initialized rectangular
hybrid automata, and that the possibility of further extension remains open.
New building blocks may be added easily; they will slip right into place, as long
as they are language equivalent to timed automata. Admittedly, this is a severe
restriction.

3 Irrational Timed Automata

The semi-algebraic sets share many of the nice properties of the semi-linear
sets [14]; in particular, they are closed under projection [13] and the boolean
operations. So it is natural to ask if the results of the preceding section remain
true in this more general context.

Definition 11. We use Csa, Rsa, Dsa and Nsa for the generalizations of C,
R, D and N to semi-algebraic hybrid automata.

As before, we can prove that every automaton A€ (Rga UDga UNga)l is

language equivalent to an automaton A’ €C g‘ - But note that A’ is not necessar-
ily a timed automaton; its constants are arbitrary algebraic numbers and may
be irrational. So we are led to ask if reachability remains decidable for algebraic
timed automata. Unfortunately, it does not.

Theorem 2. Reachability is undecidable for CQ*A-

Before preceding with a proof of this theorem, there is further motivation.
Reachability is decidable for several classes of hybrid systems, for example [8]
and [9]; we focus on two. We have already mentioned the initialized rectangular
hybrid automata, and even offered a modest generalization. The second class con-
tains the semi-algebraically defined hybrid automata with constant (set-valued)

reset maps, which are proven to have computable finite bisimulations in [10].
To what extent can these classes be combined while preserving the decidability
of reachability? Algebraic timed automata represent, in our opinion, a simple
midpoint between these two classes, and in this light, the undecidability of the
reachability problem presents an obstacle to a natural unification.

3.1 Minsky Machines and Undecidability

We prove our main theorem in more generality to illustrate that undecidabil-
ity does not arise from some subtle property of the algebraics. Rather, it is a
consequence of irrationality. This generality will also be useful in Sect. 4.

Definition 12. Given S C R, the class 7s of irrational timed automata over S
is the generalization of timed automata in which the guards and state invariants
are allowed to have constants from Q U S.

In particular, CglA = T, is the class of algebraic timed automata, where A
is the set of all algebraic numbers, i.e. real roots of polynomial equations with

rational coefficients.

Theorem 3. Let 7 € (1,2) be irrational. Let S = {0,1,7,3—7}. Then the
reachability problem for the class Ts is undecidable.

Our proof of undecidability closely follows the technique in [7], where the
undecidability of several slight generalizations of timed automata is proved. In
particular, we proceed by reducing the halting problem for two-counter Minsky
machines to the reachability problem for the class 75. Before presenting this
reduction, we give a definition of two-counter machines. It is well known that
the halting problem for two-counter machines is undecidable [11].

Definition 13. A two-counter Minsky machine is finite state machine with two
natural number counters ¢; and cy. Each machine state has an associated com-
mand which is executed when the machine is in that state. Possible commands
are:

e increment ¢; and go to n

e decrement ¢; and go to n; if ¢; = 0 then it is unchanged

e if ¢; is zero go to n, otherwise go to m

e halt

where i € {1,2} and n, m are machine states. There is a distinguished start state
and the machine begins its execution with both counters set to zero.

Proof (Theorem 3).

Let A be a two-counter machine. To simplify the encoding we can assume
that it never decrements a counter containing zero. Of course, any two-counter
machine can easily be modified to meet this restriction.

Let (x) denote the non-integer part of € R. In particular, for any z, 0 <
(x) < 1. We will encode the values of the counters ¢; and ¢z in continuous

Fig. 2. Decrement ¢y

xz1=0;{}

x1 > 0;{}

Fig. 3. Test if c; =0

z1 = {c17),¢c1 #0

T2 = <CQT>

xr1 = <61T>
X2 = (CaT) >
c=0

Fig. 4. Halt

variables x1 and x5 by representing the natural number n by the real number
(nT). Because T is irrational, (n7) = (m7) if and only if n = m.

We now construct a timed automaton A* € 7s. It will have three clocks
components. We represent the continuous state of these components by x1, x
and c. As indicated, 1 an x5 store the counter values.

In the construction of A*, each state of A is replaced with one of the four
gadgets illustrated in Figs. 1-4, depending on its associated command. For ex-
ample, a state with command “Increment cs” would be replaced by the gadget
in Fig. 1, but with the roles of x; and x5 reversed. In the figures, a state ¢ is
represented by a node labeled with the state invariant Z,. An edge e is repre-
sented by an arrow from the node for s(e) to the node for 9(e) labeled by both
the guard for e and by the set of clocks reset to zero by the transition.

We define the destination of edges leaving a gadget to correspond to the
transitions in the two-state machine A. Finally, let S = (qo,0), where ¢ is
the discrete state in the gadget corresponding to the initial state of A. This
completely specifies a timed automaton A*.

The reader is encouraged to carefully examine Figs. 1-4 to understand why
the gadgets that they depict have the asserted effects. It is worth noting that
Fig. 2 is the same as Fig. 1 except that 7 is replaced by 7/ = 3—71 € (1,2). It is
also worth noting that the each gadget is defined to guarantee that ¢ = 0 when
the next gadget is entered.

By construction, the two-counter machine A halts if and only if there is a
reachable state of A* which corresponds to a halting state of 4. As mentioned
above, the halting problem for two-counter machines is undecidable. This proves
that reachability is undecidable for the class 7. O

Theorem 2 is proved by letting 7 = /2 in Theorem 3 and noting that
7—{0,1,\/2&\@} < CgA'

3.2 Further Results

Both Rs4 and Dg 4 are extensions of Cg 4. Therefore, the undecidability of reach-
ability for T\’,g 4 and Dg 4 follows from Theorem 2. On the other hand, N, gl 4 Te-
quires a different proof. The following results are each proved by refining of the
construction for Theorem 3. The gadgets become rather complicated to circum-
vent the additional restrictions, but no other change is necessary.

Theorem 4.

1. Reachability is undecidable for NQA
2. Let 7 > 0 be irrational. Then reachability is undecidable for Ty 1y (with as
few as three clocks).

Definition 14. Given 51,82 C R, let 7s, s, be the class of irrational timed
automata with the first clock constrained by constants from &; and the remaining
clocks constrained by constants from Ss.

Theorem 5. Let 7 > 0 be irrational. Reachability is undecidable for Ti1y (1)
(with as few as four clocks).

Before moving on, one simple decidability result should be mentioned.

Theorem 6. Reachability for one-clock timed automata over R depends only on
the order of the constants (including zero), and is decidable given that order.

4 Parametric Timed Automata

Without significant modification, the undecidability results of the previous sec-
tion carry over to the context of parametric timed automata. These automata—
introduced in “Parametric Real-time Reasoning” [2]—allow us to express a more
sophisticated range of synthesis and verification questions, but their most ba-
sic properties turn out to be undecidable [2]. After discussing the connection
between parametric timed automata and timed automata with irrational con-
straints, we state a new undecidability result and then examine the complexity
of the one-clock case, for which reachability is decidable.

Definition 15.

(a) Parametric timed automata are a generalization of timed automata in which
the guards and state invariants are allowed to have constants from Q U W,
where W is a set of parameter variables.

(b) Let A be a parametric timed automaton with parameters from ¥ and let
A: U — Q. Then Ay is the timed automaton that results from using A to
substitute for the parameters in A.

(c) If g is a state of A, then I';(A) is the subset of parameter space for which
A has a run reaching ¢. In other words:

Iy(A)={X:T—Q | g is areachable state of Ay}

Now consider what would happen were 7 a rational number in the proof of
Theorem 3. In particular, let 7 = a/be (1, 2), where a and b are relatively prime.
As long as our virtual Minsky machine keeps its counter values below b, nothing
can go wrong. But a counter value of b is indistinguishable from zero; we have
an overflow error. Such an error is easy to detect if we always test for zero after
incrementing a counter. Thus, we can correctly simulate the Minsky machine as

long as the counter values remain small and suspend the simulation when an
overflow error is detected.

At the risk of stating the obvious, note that if a Minsky machine halts then
its counters remain bounded. Also note that the rational numbers in the interval
(1,2) have arbitrarily large denominators (in reduced form). Therefore, a Minsky
machine halts if and only if that fact is detected by the simulation for some
rational 7 € (1,2). With a few simple details swept under the rug, this is all it
takes to translate the theorems of the last section into theorems about parametric
timed automata. Under this translation, Theorem 4.2 becomes:

Theorem 7. The emptiness of I'y(A) is undecidable for the class of parametric
timed automata with three clocks and one parameter.

This is not an essentially new result. That the emptiness of I';(A) for para-
metric timed automata is undecidable was proved in [2]. The proof given there
uses three clocks and six parameters but has the advantage of working for both
the dense-time and discrete-time cases. The translation of Theorem 5 is more
interesting.

Theorem 8. The emptiness of I'y(A) is undecidable for the class of parametric
timed automata with only one clock constrained by parameters.

The corresponding problem is decidable for discrete-time [2], so we have
exposed a divergence in the expressive power of dense-time and discrete-time
parametric timed automata.

Before leaving the subject of parametric timed automata, let us turn our
attention to the one-clock case. Let A be a one-clock parametric timed automa-
ton. As was noted before, the time-abstract runs of a one-clock timed automaton
depend only on the order of the constants. So, to calculate I';(.A), we simply de-
termine the reachability of ¢ in A, for sample assignments A corresponding to
every possible ordering of the constants (including zero) and parameters. Unfor-
tunately, the number of such orderings' grows exponentially in the number of
parameters.

! Let 7 be the number of (non-strict) orderings that can be formed from n parameters
with respect to m distinct constants. The following formulae generalizations of those
in [6], where the sequence {m{ }nay of preferential arrangements is studied.

n 1 - k neo—=k
== k"2
-3y (k)
k=0
n—1 n
7 = 2mn 4+ Z (k:) *
k=0
Finally, writing f ~, g to denote lim f/g =1,

(n+m)!

v T =T
(Vm) = 2m!In™ Tt 2

(Vn) 7 ~m(2m)™.

We conclude with a number of observations about the complexity of the
problem of determining emptiness for one-clock parametric timed automata.
Both standard algorithmic complexity and parametric complexity [5] results are
considered.

Theorem 9. Consider the problem of determining the non-emptiness of T'y(A)
for the class of one-clock parametric timed automata.

1. The problem is NP-complete.

2. For any fized k bounding the number of parameters, the problem can be solved
in polynomial time.

3. Parameterized by the number of parameters, the problem is W[SAT]/-hard.
Note that it is strongly suspected that W[SAT] is a proper superset of the
fized parameter tractable (FPT) problems [5].

4. Parameterized by the number of both constants and parameters, the problem
is FPT.

5 The Complexity of Questions About SLHA

This last section deviates from the course of the paper thus far. The only con-
nection it bears to the earlier sections is the reliance on Minsky machine simu-
lations; they play a central role in proving the hardness directions of all of the
completeness results that follow.

Definition 16. A mazimal run is any run that can not be extended. It either
has an infinite number of transitions, ends with an infinite time interval spent
in the same discrete state, or reaches a state from which it can neither flow nor
jump. A maximal run is said to be jump-infinite if it makes an infinite number of
discrete transitions; otherwise jump-finite. It is time-infinite if its time intervals
sum to infinity; otherwise time-finite. A maximal run is blocking if it is both
time-finite and jump-finite; otherwise we call it infinite. Finally, a maximal run
is Zeno if it is time-finite but jump-infinite.

A hybrid automaton is said to have arbitrarily long runs if for each n € N
there is either a run that makes at least n transitions or a run with a duration
of at least n.

Definition 17. An SLHA is compact if all of its defining regions are compact.
An SLHA with at most one initial state and at most one possible evolution from
each state is called deterministic, and an SLHA with at least one initial state
and at least one evolution from each state is called non-blocking.

Table 1 gives, for different classes of SLHA, the complexity of determining
whether certain types of runs exist. It is only a sampling of complexity results.
Further questions might prove interesting; for example, “Is there an time-infinite
run for every initial state?”

Table 1. The complexity of detecting various types of runs

time-infinite,
jump-infinite

time-infinite

jump-infinite

Yi-complete

II2-complet

Semi-linear Deterministic
Hybrid Compact Deterministic and Non-blocking
Automata SLHA SLHA Non-blocking SLHA
(SLHA) SLHA
Zeno
Ya-complete
time-finite
non-Zeno

€

infinite IT;-complete
arbitrarily always
long
arbitrarily
long blocking IIy-complete never
blocking
time-infinite, > let
jump-finite 1-complete
jump-finite
Table 2. Supplement to Table 1
Semi-linear
Hybrid D tVV eakly Deterministic
Aut ta eterministic SLHA
SO SLHA
(SLHA)

Yi-complete

Yla-complete

time-infinite
run for every
initial state

II3-complete

I11-complete

II2-complete

Y1-complete

Also, our definition of determinism is very restrictive. A more reasonable
property is that there is at most one evolution from each state, with no restriction
made on the initial set. We call this property weak determinism. Table 2 shows
that questions may be much harder for weakly deterministic SLHA than for
deterministic SLHA. The complexity of many questions matches that of general
SLHA, but this is not always the case.

As a closing note, the Zeno phenomenon is exploited in [3] and [4] to show
that the reachability problem for dynamical systems with piecewise constant
derivatives is arithmetic and hyper-arithmetic, respectively.

References

1. Rajeev Alur and David L. Dill. A theory of timed automata. Theoret. Comput.
Sci., 126(2):183-235, 1994.

2. Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric real-time
reasoning. In Proceedings of the Twenty-Fifth Annual ACM Symposium on the
Theory of Computing, pages 592—601, San Diego, California, 16-18 May 1993.

3. Eugene Asarin and Oded Maler. Achilles and the tortoise climbing up the arith-
metical hierarchy. Journal of Computer and System Sciences, 57(3):389-398, De-
cember 1998.

4. Olivier Bournez. Achilles and the Tortoise climbing up the hyper-arithmetical
hierarchy. Theoretical Computer Science, 210(1):21-71, January 1999.

5. R. G. Downey and M. R. Fellows. Parameterized complezity. Springer-Verlag, New
York, 1999.

6. O. A. Gross. Preferential arrangements. Amer. Math. Monthly, 69:4-8, 1962.

7. Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s
decidable about hybrid automata? J. Comput. System Sci., 57(1):94-124, 1998.
27th Annual ACM Symposium on the Theory of Computing (STOC’95) (Las Ve-
gas, NV).

8. Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Integration graphs: a class of
decidable hybrid systems. In Hybrid systems, pages 179-208. Springer, Berlin,
1993.

9. M. Kourjanski and P. Varaiya. A class of rectangular hybrid systems with com-
putable reach set. Lecture Notes in Computer Science, 1273:228-234, 1997.

10. G. Lafferriere, G. J. Pappas, and S. Sastry. O-minimal hybrid systems. Technical
Report UCB/ERL M98/29, Department of Electrical Engineering and Computer
Science, University of California at Berkeley, May 1998.

11. Marvin L. Minsky. Recursive unsolvability of Post’s problem of “tag” and other
topics in theory of Turing machines. Ann. of Math. (2), 74:437-455, 1961.

12. Anuj Puri and Pravin Varaiya. Decidability of hybrid systems with rectangular
differential inclusions. In Computer aided verification (Stanford, CA, 1994), pages
95-104. Springer, Berlin, 1994.

13. Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. RAND
Corporation, Santa Monica, Calif., 1948.

14. Lou van den Dries. Tame topology and o-minimal structures. Cambridge University
Press, Cambridge, 1998.

