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Abstract

Equilibria in noncooperative games are typically inefficient, as illustrated by the
Prisoner’s Dilemma. In this paper, we quantify this inefficiency by comparing the pay-
offs of equilibria to the payoffs of a “best possible” outcome. We study a nonatomic
version of the congestion games defined by Rosenthal (1973a), and identify games in
which equilibria are approzimately optimal in the sense that no other outcome achieves
a significantly larger total payoff to the players—games in which optimization by in-
dividuals approximately optimizes the social good, in spite of the lack of coordination
between players. Our results extend previous work on traffic routing games.
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1 Introduction

Equilibria in noncooperative games are typically inefficient, as illustrated by the classical
Prisoner’s Dilemma (Rapoport and Chammah, 1965). In this paper, we aim to quantify
this inefficiency by comparing the payoffs of equilibria to the payoffs of a “best possible”
outcome. To make such a comparison and to define a notion of optimality, we assume that
aggregating the payoffs of different players is meaningful; it is then natural to study the
sum of player payoffs of noncooperative equilibria and of coordinated outcomes. As a simple
example, the total number of years of imprisonment handed down to the prisoners in the
Nash equilibrium of the Prisoner’s Dilemma (with both prisoners defecting) can be compared
to the same quantity in the (optimal) coordinated outcome. Our goal is to identify natural
classes of games in which equilibria are guaranteed to be approzimately optimal, in the sense
that no other outcome achieves a significantly larger sum of player payoffs; these are games
in which optimization by individuals approximately optimizes the social good, in spite of the
competition and lack of coordination between players.

We study a nonatomic version (in the sense of Schmeidler (1973)) of the congestion games
defined by Rosenthal (1973a). Congestion games are noncooperative games in which the pay-
off to each player depends only on the player’s strategy and on the number of other players
choosing the same or some “interfering” strategy. Congestion games have been used to model
traffic behavior in road and communication networks, competition among firms for produc-
tion processes, and migration of animals between different habitats (Milchtaich, 1996; Quint
and Shubik, 1994; Rosenthal, 1973a; Roughgarden and Tardos, 2002). Rosenthal (1973a)
studied games with a finite number of discrete players; more recently, several authors have
considered nonatomic congestion games in which there is a continuum of players (Blonski,
1999; Friedman, 1996; Milchtaich, 1996, 2001).

The idea of quantifying the inefficiency of noncooperative equilibria using notions of
approximation is due to Koutsoupias and Papadimitriou (1999), who proved upper and
lower bounds on the worst-possible objective function value of a Nash equilibrium relative
to that of an optimal solution in a simple load-balancing game. The authors, motivated
by networking issues, subsequently applied this idea to a classical model of traffic routing
with noncooperative players (Wardrop, 1952) and determined the worst-case inefficiency of
equilibria in this model (Roughgarden, 2002a,b; Roughgarden and Tardos, 2002).

In this paper, we extend techniques developed for analyzing traffic equilibria (Roughgar-
den, 2002a; Roughgarden and Tardos, 2002) to a large class of nonatomic congestion games.
The work presented here includes all previous bounds on the inefficiency of traffic equilibria
as special cases, and demonstrates that traffic routing games in no way exhaust the supply
of games with provably near-optimal equilibria. Our results also suggest that studying the
degree to which equilibria approximate natural objective functions may be tractable and
enlightening in many other game-theoretic contexts.

Organization and Overview

In Section 2 we define our model, study a simple example, and state several lemmas about
equilibria in nonatomic congestion games.



In Sections 3 and 4 we quantify the inefficiency of equilibria by investigating the worst
possible ratio between the total cost incurred by players in an equilibrium and in an out-
come of minimum-possible total cost (it is technically convenient to assign costs, rather
than payoffs, to outcomes). This ratio has recently been dubbed “the price of anarchy”
by Papadimitriou (2001). Section 3 is devoted to a “quick and dirty” upper bound on the
worst-case inefficiency of equilibria in certain nonatomic congestion games; this method is
easy to apply but does not always give a best possible bound. In Section 4 we give, by more
sophisticated methods, an exact bound on this worst-case inefficiency under mild conditions
on the cost functions of the game. We also show in this section that simple games always
furnish worst-possible examples for the inefficiency of equilibria.

In Section 5, we consider a more general class of nonatomic congestion games, where
the cost incurred by players in an equilibrium can be arbitrarily larger than that in other
outcomes. We show that a meaningful upper bound on the inefficiency of equilibria is never-
theless possible in this general setting; specifically, we prove that the cost of an equilibrium is
bounded above by that of the best possible outcome between an increased number of players.

2 Preliminaries

We consider a finite ground set E of elements, with each element e possessing a cost function
ce(€). We assume that each cost function is nonnegative and is continuous and nondecreasing
in its argument. There are k player types 1,2,...,k, and for each player type ¢ there is a
finite multiset S; of subsets of F, called the strategy set of players of type i. Elements of S;
are called strategies. The continuum of players of type i is represented by the interval [0, n;]
endowed with Lebesgue measure. To a player type 7, a strategy S € §;, and an element
e € S, we associate a positive rate of consumption ag,. that defines the amount of congestion
contributed to element e by players of type 7 selecting strategy S. A nonatomic congestion
game (NCG) is defined by a 5-tuple (E, ¢, S, n,a).

Example 2.1 A classical and intensively studied type of NCG is the traffic routing model of
Wardrop (1952). Here, the set E is the edge set of a directed graph, player types correspond
to different origin-destination vertex pairs, strategy sets are sets of directed origin-destination
paths, and the cost function c, describes the delay experienced by traffic traversing edge e
as a function of the edge congestion (typically, all rates of consumption are 1).

By an action distribution, we mean a vector x of nonnegative reals with components
indexed by the disjoint union of Sy, ..., Sk, with the property that ) ¢, s, s = n; for each
player type . We interpret s as the measure of the set of players selecting strategy S. We
abuse notation and write x. for the total amount of congestion induced on element e by the

action distribution z:
k
Te = E E ag,exg.

i=1 SES§;

We next define the disutility experienced by players with respect to an action distribution.
With respect to an action distribution z, players of type ¢ selecting strategy S € S; incur a



cost c¢s(x) defined by

cs(z) = Z as.eCe(Te)-
ecsS

The cost incurred by a player is thus the sum of the costs incurred on the elements of its
strategy, each of which in turn is the base cost c.(x.) of the element e (with respect to the
congestion induced by action distribution z) times the rate ag. at which the player consumes
the element. We emphasize that the cost incurred by a player depends only on its type, its
chosen strategy, and on the congestion experienced by the elements in its strategy—the
identities of the players that induce the congestion are of no importance.

We next introduce an objective function to measure how “good” an action distribution
is. Define the social cost C(z) of an action distribution z as the total disutility experienced
by the players, so that

We will be interested in action distributions with smallest possible social cost, and will call
such an action distribution optimal. Any nonatomic congestion game admits an optimal
action distribution because the social cost function C' is assumed continuous and the space
of all action distributions (a subset of RS! x - - x RS) is compact.

Remark 2.2 Nonatomic games are traditionally presented in a more general way, as follows.
The basic notion is that of a strategy profile, defined as a (Lebesgue) measurable function o
from a compact interval I to a finite-dimensional simplex of mixed strategies (Schmeidler,
1973). A strategy profile then naturally induces an action distribution x, with x5 obtained by
integrating the coordinate of o corresponding to strategy S over the interval I (with respect
to Lebesgue measure). Conversely, every action distribution is induced by some strategy
profile. When all players select pure strategies, passing from strategy profiles to action
distributions can be viewed as aggregating players according to their chosen strategies and
ignoring their identities. We will not directly study strategy profiles in this paper, because
our investigation of nonatomic games concerns only a quantity (the social cost) that, by
definition, depends only on the action distribution of a strategy profile. We will work only
with the elementary notion of an action distribution in what follows.

We next define our notion of equilibrium in NCGs. Informally, equilibria are the action
distributions induced by strategy profiles (see Remark 2.2) in which all players outside a set
of measure zero play best response strategies.

Definition 2.3 An action distribution z for a nonatomic congestion game (E, ¢, S,n,a) is
an equilibrium if for each player type ¢ = 1,2,..., k and strategies S, S, € S; with zg, > 0,
Cs, (I) < 052($)'

Example 2.4 Define a nonatomic congestion game I'y = (E, ¢, S, n, a) for a positive integer
p as follows. Let £ = {1,2} be a ground set with two elements and cost functions ¢;(§) =
1 and cp(€) = &. There is one player type with ny = 1, and two singleton strategies
S = {{1},{2}} with unit rates of consumption af},; = ays32 = 1. For any p, the action



distribution z13 = 0, 2y} = 1 is an equilibrium for I', with social cost 1. A superior (indeed,
optimal) action distribution is z(;; =1 — (p + 1)~\e, Ty = (p+ 1)~'/?, which has social
cost 1 —p- (p+ 1)~®+D/P < 1. This quantity is 0.75 when p = 1, is approximately 0.615
when p = 2 and 0.528 when p = 3, and tends to 0 as p — oo.

Example 2.4 demonstrates that, in an arbitrary NCG, an equilibrium may have social
cost arbitrarily larger than that of other action distributions. This fact motivates our work
identifying classes of NCGs in which equilibria are not arbitrarily inefficient (Sections 3
and 4) and seeking approaches to bounding the social cost of equilibria in general NCGs
that do not directly compare the social cost of optimal and equilibrium action distributions
of the same game (Section 5).

Equilibrium action distributions in nonatomic congestion games with continuous, nonde-
creasing cost functions enjoy several nice properties. We now state three of them.

Proposition 2.5 Fvery nonatomic congestion game admits an equilibrium action distribu-
tion.

Proposition 2.5 is a special case of very general theorems about the existence of equilib-
ria in nonatomic games (Mas-Colell, 1984; Rath, 1992; Schmeidler, 1973) and can also be
proved by a straightforward generalization of techniques used to prove existence of traffic
equilibria (Beckmann et al., 1956; Dafermos and Sparrow, 1969).

Proposition 2.6 Distinct equilibria for a nonatomic congestion game have equal social cost.

Proposition 2.6 follows from work of Milchtaich (2000) or from an easy generalization
of an analogous result for traffic equilibria (Beckmann et al., 1956; Dafermos and Sparrow,
1969).

Proposition 2.7 Let x be an equilibrium action distribution for the nonatomic congestion
game (E,c,S8,n,a). For each player type i, there is a real number c;(x) such that every
strategy S € S; with x5 > 0 satisfies cs(x) = ¢;(x). The social cost of x is then

C(z) = Z ci(x)n;.

=1

The first assertion in Proposition 2.7 is immediate from the definition of an equilibrium;
the second is immediate from the first and the definition of social cost.

Our final preliminary result is a simple but useful equivalent definition of social cost, that
will account for the social cost of an action distribution on an element-by-element (rather
than strategy-by-strategy) basis.

Proposition 2.8 The social cost C(z) of an action distribution x for the nonatomic con-
gestion game (E,c,S,n,a) satisfies

C(z) = Z Ce(Te)Te-

ecE



Proof: Expanding the definitions and rearranging, we obtain

k

C(z) = Z Z Ts Z as,eCe(Te) = Z Ce(e) Z Z asexs = Zce(xe)xe.

i=1 SES; ecS eckE i=1 S€S;:e€S eckE

3 A “Quick and Dirty” Upper Bound

In this section and the next, we demonstrate that nontrivial upper bounds on the inefficiency
of equilibria in nonatomic congestion games are possible. In this section we present a simple
method that gives a nontrivial but suboptimal bound for a large class of NCGs; in the next,
we pursue exact worst-case bounds by more sophisticated methods.

For a NCG T, define p(I") by C(z)/C(z*) where z is an equilibrium and z* is an optimal
action distribution for T'; this ratio is well defined by Propositions 2.5 and 2.6 except in
the degenerate case where C'(z*) = 0. In this case, z* is also an equilibrium and hence (by
Proposition 2.6) C(x) = 0; we then define p(T") = 1.

We next give a method for bounding the p-value of NCGs with cost functions that are,
in some sense, “not too steep”’. For example, we will see that NCGs with cost functions
that are bounded-degree polynomials with nonnegative coefficients have bounded p-value
(independent of E, S, n and a).

Theorem 3.1 Suppose the nonatomic congestion game I' = (E, ¢, S,n,a) and the constant
n > 1 satisfy

¢
S-Ce(ﬁ)ﬁn-/o ce(t)dt

for all elements e and all positive real numbers &. Then

p(I') <.

Proof: The proof hinges on the following fact: the equilibria for I' are precisely the opti-
mal action distributions for the NCG ' = (E, ¢ 8, n,a), where ¢(0) = ¢.(0) and &(&) =
[ f(f ce(t)dt]/€ for & > 0. The proof of this fact is a routine generalization of an analogous
result for traffic equilibria (Beckmann et al., 1956; Dafermos and Sparrow, 1969); the idea
is to model the optimization problem of computing the optimal action distribution for T as
a convex nonlinear program, and to check that the Karush-Kuhn-Tucker conditions (Per-
essini et al., 1988), which provide necessary and sufficient conditions for optimality, are
equivalent to the equilibrium conditions of Definition 2.3 for the game I'. We remark that
Rosenthal (1973a; 1973b) showed that this fact and its proof also have analogues for atomic
congestion games. In turn, his work motivated the recent study of potential games—games
more general than congestion games, in which Nash equilibria can be interpreted as max-
imizing an appropriate objective function, called a potential function. We refer the reader
to the seminal paper of Monderer and Shapley (1996) and the survey of Voorneveld et al.
(1999) for a detailed discussion of these topics.
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We now show that an equilibrium for I optimizes an objective function that is at most
a factor of n away from the social cost C'(-). Let z and z* denote an equilibrium and an
optimal action distribution for I', respectively. We then have

Cx) = Zce(xe)xe (1)

IA IA
33 33
S— S
3 &
& &
—~~ —
o~ o~
N SN—
S
—_ —_
w N
N— N—

< nY el (4)
= - C(") (5)

where (1) and (5) follow from Proposition 2.8, (2) from the hypothesis, (3) from the fact
that the equilibrium z minimizes the function ), [ c.(t)dt, and (4) from the assumption
that every cost function c, is nondecreasing. W

For example, Theorem 3.1 yields the following corollary for NCGs with cost functions
that are polynomials with nonnegative coefficients.

Corollary 3.2 Suppose every cost function of the NCG T" is a polynomial with nonnegative
coefficients and degree at most p. Then,

p(l) <p+1.

4 An Exact Bound for Most Classes of Cost Functions

In this section we undertake a deeper study of the inefficiency of equilibria in nonatomic
congestion games. We saw in Example 2.4 that for arbitrary (continuous, nondecreasing)
cost functions, equilibria can be arbitrarily inefficient. On the other hand, in the previous
section we discovered that restricting the class of allowable cost functions (to degree-bounded
polynomials, say) permits a universal upper bound on this inefficiency, independent of all
other parameters (such as the number of elements and the number of player types). These
two observations motivate our current ambition: to precisely compute the worst-case ratio
in social cost between an equilibrium and an optimal action distribution with respect to any
(fixed but arbitrary) class of allowable cost functions. We will realize this ambition subject
to two mild assumptions on the allowable cost functions. We record these assumptions next.

Definition 4.1 A class C of cost functions is homogeneous if ¢(0) = 0 for all ¢ € C and
inhomogeneous otherwise.

Definition 4.2 A cost function c is standard if it is differentiable and if the function & - ¢(§)
is convex on [0,00). A class C of cost functions is standard if it contains only standard cost
functions and includes at least one nonzero function.



Convex differentiable cost functions are standard, as are some nonconvex functions such as
log(1 4 £). Approximations of step functions are examples of nonstandard cost functions.

Throughout this section, we restrict attention to NCGs with cost functions drawn from
an inhomogeneous standard class.! We now proceed in two steps. We begin with a lower
bound on the worst-case ratio between the social cost of an equilibrium and of an optimal
action distribution, and then prove a matching upper bound.

4.1 Lower Bounding the Inefficiency of Equilibria

We first give a fairly obvious lower bound on the worst-case value of p with respect to NCGs
with cost functions drawn from a standard class C containing the constant functions (cost
functions of the form ¢(§) = g for a scalar § > 0). We will then show that this lower bound
is in fact valid with respect to any inhomogeneous standard class of cost functions.

Let C be a standard class of cost functions containing all of the constant functions. We will
construct a bad example (a NCG with cost functions in C and an inefficient equilibrium) by
mimicking Example 2.4. Define elements E, strategy set S, and rates a as in Example 2.4.
We assign an arbitrary nonzero cost function co € C to element 2 and pick an arbitrary
positive value for n, large enough so that cy(n;) > 0. We conclude our definition of the
game ' = (E,¢,S,n,a) by assigning element 1 the constant cost function ¢;(§) = co(n1),
which by hypothesis lies in C.

The action distribution zg; = 0, 2oy = n; is an equilibrium for I" with social cost
c2(n1)ny. To compute the optimal action distribution, we define the marginal social cost
function ¢ corresponding to the cost function ¢, as the derivative of the social cost £ - c.(&)
incurred on edge e. We note that ¢ (&) = c.(&) + & - ¢, (§); since cost functions are assumed
nondecreasing, ¢; > ¢, on [0,00). Returning to the game I', we define the action distribution
x* so that marginal costs are equalized (c}(z3) = c4(z3)); thisis possible since ¢} is everywhere
equal to ca(ny), ¢5(0) = ¢2(0), and ¢ > ¢y with ¢ continuous. It is easy to check that, since
the cost functions ¢; and ¢, are standard, z* is an optimal action distribution for I'.2 The
social cost of z* is [Ap + (1 — A)]ca(n1)n1, where A = z3/x9 and p = co(23)/co(z2), so
p(T) = Au+ (1 =N

Motivated by this example, we next assign to each standard class C of cost functions
a number «(C) € [1,00] that, when C contains the constant functions, lower bounds the
worst-case p-value occurring in NCGs with cost functions in C.

Definition 4.3 Let C be a standard class of cost functions. For a nonzero cost function
¢ € C, we define a(c) by

alc)=sup  [p+(1-N)"
n>0:¢(n)>0

! The differentiability condition of Definition 4.2 is for simplicity of presentation and can be relaxed.

2More generally, the optimal action distributions for a NCG (FE, ¢, S,n,a) with standard cost functions
¢ are precisely the equilibria for the NCG (E,c*,S,n,a). This fact follows from the equivalence between
equilibrium conditions for NCGs and optimality conditions for certain convex programs described in the
proof of Theorem 3.1; as discussed in that proof, this is tantamount to asserting that NCGs are (nonatomic)
potential games in the sense of Monderer and Shapley (1996). It also explains our notational convention of
writing z* for an optimal action distribution and ¢* for a marginal social cost function: the functions ¢* are
“optimal cost functions” in that the optimal action distributions arise as equilibria with respect to c¢*.



where \ € [0, 1] satisfies ¢*(An) = ¢(n) and p = ¢(An)/c(n) € [0,1]. We define a(C) by

a(C) = sup afc).
0#£ceC

Existence of the scalar A follows from an argument already given above. For most cost
functions A is uniquely determined by ¢ and n; otherwise, our assumption that each cost
function c is standard ensures that a(c) is well defined (i.e., that [Au+(1—X\)] ! is independent
of the choice of \ satisfying ¢*(An) = ¢(n)).

Remark 4.4 The expression for «(C) may not look easy to work with, but it simplifies
considerably in many cases of interest. For example, if C is the set of polynomials with
degree at most p and nonnegative coefficients, then a(C) = [1 —p - (p + 1)~ ®+D/P]71; see
Roughgarden (2002b) for a derivation of this fact and for further examples motivated by
applications in networking and queueing theory.

It is immediate that if C is a standard class of cost functions containing the constant
functions, then there are NCGs with ratio p arbitrarily close to «(C). Our next theorem
extends this statement to inhomogeneous standard classes of cost functions.

Theorem 4.5 LetC denote an inhomogeneous standard class of cost functions. Let G denote
the set of nonatomic congestion games with cost functions in C. Then

sup p(I') > «(C).
Teg

The idea of the proof of Theorem 4.5 is that, for a class C not containing the constant
functions, elements with constant cost function can nonetheless be “simulated” with multiple

elements all endowed with the same cost function from C. The details are not difficult, but
are somewhat technical and are therefore deferred to the Appendix.

Remark 4.6 Theorem 4.5 does not hold if the inhomogeneity hypothesis is omitted. Indeed,
if C is the homogeneous class comprising the monomials with a nonnegative coefficient and
degree exactly p for some p > 0, then a(C) > 1 but p(I') = 1 for all NCGs I' with cost
functions in C (see, for example, Dafermos and Sparrow (1969) or Barro and Romer (1987)).

4.2 Upper Bounding the Inefficiency of Equilibria

We now prove the following: for any nonatomic congestion game I' with cost functions in the
standard class C, p(I') < «(C). This result provides a matching upper bound to Theorem 4.5
and completely resolves the worst-case inefficiency of equilibria of NCGs with respect to an
inhomogeneous standard class of cost functions.

Theorem 4.7 IfT" is a nonatomic congestion game with cost functions in the standard class
C, then then p(T') < «(C).



Proof: Let z* and z be optimal and equilibrium action distributions, respectively, for a
nonatomic congestion game I' = (E, ¢, S, n,a) with cost functions in the standard class C.
We begin by decomposing the social cost of an optimal action distribution—the quantity
that we wish to lower bound—into two expressions more closely related to the social cost of
an equilibrium.

Our assumption that each cost function c, is standard ensures that each marginal social
cost function ¢} is nondecreasing. We can therefore lower bound the social cost c.(z)z:
incurred on edge e using a linear approximation of the function c.(£)¢ at the point Az,
where A, € [0, 1] solves ¢ (Aeze) = ce(e):

*
Te

ce(xt)zr = ce(/\exe))\exe—l-/ ci(z)dx
A

ele

e(Aee) Nee + () — Nee)Ch (Nee)
e(AeTe) NeTe + (T — NeTe)Ce(Te).

> c
= c
Summing this inequality over all elements and applying Proposition 2.8 to the left-hand side,
we obtain

) > [ee(Nee) Aee + (25 — Aee)ce(ze)].

We next rewrite this expression so that it enjoys a close connection with the value «(C) of
Definition 4.3—the upper bound we wish to prove for p(I'). Precisely, we can write

) > Z[,Ue)\exe + (1 = Ae)we]ce(e) + Z[x — Zelce(we)

where, following Definition 4.3, p. is defined as ce(Aexe)/ce(ze) (if ce(ze) = 0, put e = 1).
This first sum of this expression is, as desired, closely related to «(C); the second sum can
be regarded as an “error term”.

We claim that this error term is nonnegative and can therefore be dropped without harm.
To prove it, we first use the method of proof of Proposition 2.8 to write

k

Z Ce(Te)Te = Z Z cs(z)xs

and

By Proposition 2.7, the first sum equals ZZ L Ci (I)TLZ, where ¢;(x) is the common cost (with
respect to x) of all strategies S in S; with g > 0. By Definition 2.3, cs(z) > ¢;(x) for
all S € S;; the second sum is thus bounded below by Y% Y ses; GilT)Ts = S cil@)n.
It follows that ) ce(ze)ze < ), ce(we)r; and hence the error term ) [z} — zc|c.(x.) is
nonnegative, as claimed.

We have now established the inequality

) > Z[Ne)‘exe + (1 = Ae)Te]ce(ze)-
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By Definition 4.3, geAe + (1 —Ae) > 1/(C) for each element e; thus, the quantities [peAeze +
(1 —Ae)ze)ce(xe) and ce(x,)z. differ by at most an «(C) factor for each element e. Summing
over all elements and applying Proposition 2.8, we find that the social costs of * and x also
differ by at most an «(C) factor:

Cw) > i Celedn = o)

The theorem is proved. B

For example, if C, is the class of polynomials with degree at most p and nonnegative
coeflicients, then the worst-case p-value of NCGs with cost functions in C, is precisely [1 —
p-(p+1)~P+V/P]=1 This worst-case bound is asymptotically ©(p/Inp) as p — oo and is
realized (for all p) by the simple NCGs of Example 2.4.

In fact, Theorem 4.7 and the proof of Theorem 4.5 (given in the Appendix) show more
generally that simple games always furnish worst-possible examples of the inefficiency of
equilibria. This is immediate from Definition 4.3 and Theorem 4.7 when the class of allowable
cost functions is standard and includes all of the constant functions, with two-element NCGs
analogous to Example 2.4 providing worst-case examples. The proof of Theorem 4.5 shows
how an element with constant cost function can be “simulated” with many elements with
nonconstant cost functions; it follows from this construction that NCGs with only one player
type, disjoint singleton strategies, and unit rates of consumption are worst-case examples
with respect to a standard class C of allowable cost functions satisfying {c(0) : ¢ € C} D
(0,00). A similar simulation argument (given in the proof of Theorem 4.5) shows that, under
the weaker assumption that the class of allowable cost functions is inhomogeneous, NCGs
with one player type, disjoint strategies, and unit rates of consumption give worst-possible
p-values.

Corollary 4.8 Let C be an inhomogeneous standard class of cost functions. Let G denote
the set of NCGs with cost functions in C and G' C G the NCGs with one player type, mutually
disjoint strategies, and ase = 1 for all strategies S and elements e. Let G,, C G' denote the
NCGs that, in addition, possess only m singleton strategies. Then

sup p(I") = sup p(T).
reg’ reg

If for each positive scalar 5 > 0 there is a cost function ¢ € C with ¢(0) = 3, then

sup p(I') = sup p(').
Teundl, reg

If C contains the constant functions, then

sup p(I') = sup p(I).
reg, reg
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5 A Weaker Type of Guarantee for Arbitrary Cost
Functions

In Example 2.4, we observed that the ratio p(I') can be arbitrarily large for NCGs I" with
arbitrary cost functions. In the previous two sections, we evaded this difficulty by imposing
additional restrictions (beyond continuity and monotonicity) on the class of allowable cost
functions. On the other hand, upper-bounding the worst-possible value of the ratio p is not
the only available method to prove limits on the inefficiency of equilibria. In this section,
we avoid making additional assumptions on element cost functions by pursuing a different,
weaker type of guarantee on the worst-possible inefficiency of equilibria. Rather than upper
bounding the social cost of an equilibrium relative to that of an optimal action distribution
(an impossible feat in the current general setting), we upper bound this social cost by that
of an optimal action distribution for the same game with twice as many players for each
player type. This type of guarantee is nontrivial (it is not difficult to find natural classes
of games for which this bound fails), and can also have a natural meaning in concrete
scenarios. For example, this bound has the following interpretation for routing traffic in
certain networks where each edge possesses a capacity (or bandwidth): the social cost of a
traffic equilibrium after doubling the capacity of the network is bounded above by the cost
of the best coordinated outcome in the original network (Roughgarden and Tardos, 2002).
Thus, the losses due to noncooperative behavior in such a network can be offset with a
moderate investment in network hardware.

We now state and prove our result bounding the social cost of an equilibrium by the
social cost of an optimal action distribution in a game with an increased number of players.

Theorem 5.1 If x is an equilibrium for (E,c¢,S,n,a) and x* is an action distribution for
(E,c,S,2n,a), then C(x) < C(z*).

Proof: Let x, x* satisfy the hypotheses of the theorem. For each player type i =1,...,k, let
¢;(x) be the common cost of every strategy S € S; with g > 0 and write C(z) = 3¢, ci(z)n;
(see Proposition 2.7). We will define new cost functions ¢ that both approximate the original
ones (in the sense that the social cost of an action distribution with respect to cost functions
¢ is close to its original social cost) and allow us to easily lower bound the cost (with respect
to ¢) of z*. Precisely, we define new cost functions ¢ as follows:

B | ce(ze) fE<uz,
ce(§) = { (&) i€ > z..

First we show that the new cost functions ¢ approximate the original ones. For any
element e, ¢.(§) — c.(§) is zero for £ > z, and bounded above by c.(z.) for £ < z, so
£(Ce(&) — ce(§)) < ce(we)xe for all € > 0. Using this fact and Proposition 2.8, we find that
evaluating z* with cost functions ¢ (rather than c¢) increases its social cost by at most an
additive C(z) factor:

Zée(x:)x: - Zce($:)x: = Zx:(ée(x:) — ce(zp)) < Zce(xe)xe = C(x).

eckE eck eck eckE
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To complete the proof, we will show that the social cost of the action distribution z* with
respect to the cost functions ¢ is lower bounded by 2C(z). Since ¢.(§) > ce(z.) for every
element e € F and nonnegative real £, by definition of the values ¢;(x) we have ¢g(z*) > ¢;(x)
for every player type ¢ and strategy S € S;. The cost of z* with respect to ¢ can therefore
be bounded below as follows:

Z Z cs(z*)zy > Z Z )T = ZQCZ 20 ().

The same proof shows that, more generally, if x is an equilibrium for (E, ¢, S, n,a) and
* is an action distribution for (E,¢, S, (14 0)n,a) for some § > 0, then C(z) < :C(z*).

A Proof of Theorem 4.5

Proof of Theorem 4.5. We assume that «(C) is finite and omit the straightforward modifi-
cations necessary for classes with infinite a-value.

First suppose that for each scalar 8 > 0, there is some cost function ¢ € C satisfying
¢(0) = B. For any € > 0, choose a nonzero cost function ¢ € C, a positive number n > 0 with
c(n) > 0, and a scalar \ € [0, 1] satisfying c¢*(An) = c(n) so that [Au+(1=N)]" > a(C)—¢/2,
where p = ¢(An)/c(n). To mimic Example 2.4, we would like to employ a constant cost
function everywhere equal to c¢(n); however, this function need not lie in C. Instead, we
will choose ¢ € C satisfying ¢(0) = c¢(n), and will use several “copies” of ¢ to “simulate” the
function everywhere equal to ¢(n). Toward this end, let m be so large that c((1 Ay < ¢(n)+0
where ¢ is a sufficiently small positive number (dependmg on €). Define a NCG [’ with
E ={1,2,...,m}, one player type with singleton strategies S; = {{1},{2},...,{m}} and
n1 = n, cost functions ¢; = ¢, ¢; = ¢ for j € {2,3,...,m}, and unit rates of consumption
ase = 1 for all S and e. The action distribution x with 24, = n; and zy; = 0 for j > 1
is an equilibrium for I' with social cost ¢(n)n. The action distribution z* with z7;, = An
and z(j; = (1 — A)n/(m — 1) for j > 1 has social cost at most c(n)n[Ap+ (1 —A) + %5]
Provided ¢ is sufficiently small, p(I') > «(C) — €. Since € > 0 was arbitrary, the theorem
holds for the class C.

We now consider the general case. Suppose C is an inhomogeneous standard class of cost
functions, and let C denote the closure of C under multiplication by positive scalars—that is,
C = {ve : c€C,v > 0}. Let Q denote the set of NCGs with cost functions in C. Since C is
inhomogeneous, for any scalar 5 > 0 there is a function ¢ in C with ¢(0) = B. By the previous
paragraph, supp s p(I) > «(C). Inspection of Definition 4.3 shows that (C) = a(C). We
can conclude the proof by /s\howing that for any NCG T eG and any € > 0, there is a NCG
I' € G satisfying p(I') > p(I') —

Fix T = (E c, S n,a) and € > 0. For each element € of E write Co = vace for vz > 0
and cz € C. The ratio p is a continuous function of each scalar vz, so we may replace each
ve by a sufficiently close positive rational number 7e to obtain a new NCG with p-value
at least p(I') — e. Clearing denominators, we may assume that each scalar 7¢ is a positive
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integer (multiplying all cost functions of a NCG by a common positive number does not
affect its p-value). The rest of the proof consists of observing that integral multiples of cost
functions can be “simulated” with multiple elements possessing the original cost function.
More precisely, define E by replacing each element € of F by 7z new elements, each endowed
with cost function cz. Strategies S and rates of consumption a are then obtained in the
obvious way from S and @ (with each element € of Eina strategy S replaced by the ns
corresponding elements of F, each with rate of consumption as,e). It is straightforward to

check that the natural bijective correspondence between action distributions of (E , ¢, S , 7, Q)
and of I' = (F, ¢, 8,7, a) preserves both equilibria and social cost; therefore, I' € G with
p(I') > p(T") — €, and the proof is complete. W
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