
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/319534545

MK-fuzzy Automata and MSO Logics

Article · September 2017

DOI: 10.4204/EPTCS.256.8

CITATIONS

2
READS

76

4 authors:

Some of the authors of this publication are also working on these related projects:

CAI 2019: 8th International Conference on Algebraic Informatics, Niš, Serbia, June 30 – July 4, 2019 View project

RISCAL - The RISC Algorithm Language View project

Manfred Droste

University of Leipzig

200 PUBLICATIONS   3,238 CITATIONS   

SEE PROFILE

Temur Kutsia

Johannes Kepler University Linz

110 PUBLICATIONS   716 CITATIONS   

SEE PROFILE

George Rahonis

Aristotle University of Thessaloniki

44 PUBLICATIONS   387 CITATIONS   

SEE PROFILE

Wolfgang Schreiner

Johannes Kepler University Linz

169 PUBLICATIONS   648 CITATIONS   

SEE PROFILE

All content following this page was uploaded by George Rahonis on 04 September 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/319534545_MK-fuzzy_Automata_and_MSO_Logics?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/319534545_MK-fuzzy_Automata_and_MSO_Logics?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/CAI-2019-8th-International-Conference-on-Algebraic-Informatics-Nis-Serbia-June-30-July-4-2019?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/RISCAL-The-RISC-Algorithm-Language?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Manfred-Droste?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Manfred-Droste?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Leipzig?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Manfred-Droste?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Temur-Kutsia?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Temur-Kutsia?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Johannes_Kepler_University_Linz?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Temur-Kutsia?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George-Rahonis?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George-Rahonis?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Aristotle_University_of_Thessaloniki?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George-Rahonis?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wolfgang-Schreiner?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wolfgang-Schreiner?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Johannes_Kepler_University_Linz?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wolfgang-Schreiner?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George-Rahonis?enrichId=rgreq-e586b3db5dca6cc5dd7062f4bb20d7b6-XXX&enrichSource=Y292ZXJQYWdlOzMxOTUzNDU0NTtBUzo2NjcyMzE3NDI2MDMyNjhAMTUzNjA5MTg1Mjg1Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf


P. Bouyer, A. Orlandini & P. San Pietro (Eds.): 8th Symposium on

Games, Automata, Logics and Formal Verification (GandALF’17)

EPTCS 256, 2017, pp. 106–120, doi:10.4204/EPTCS.256.8

c© M. Droste, T. Kutsia, G. Rahonis & W. Schreiner

This work is licensed under the

Creative Commons Attribution License.

MK-fuzzy Automata and MSO Logics∗

Manfred Droste

Institut für Informatik
Universität Leipzig

D-04109 Leipzig, Germany

droste@informatik.uni-leipzig.de

Temur Kutsia

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University

A-4040 Linz, Austria

Temur.Kutsia@risc.jku.at

George Rahonis

Department of Mathematics
Aristotle University of Thessaloniki

54124 Thessaloniki, Greece

grahonis@math.auth.gr

Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University

A-4040 Linz, Austria

Wolfgang.Schreiner@risc.jku.at

We introduce MK-fuzzy automata over a bimonoid K which is related to the fuzzification of the

McCarthy-Kleene logic. Our automata are inspired by, and intend to contribute to, practical appli-

cations being in development in a project on runtime network monitoring based on predicate logic.

We investigate closure properties of the class of recognizable MK-fuzzy languages accepted by MK-

fuzzy automata as well as of deterministically recognizable MK-fuzzy languages accepted by their

deterministic counterparts. Moreover, we establish a Nivat-like result for recognizable MK-fuzzy

languages. We introduce an MK-fuzzy MSO logic and show the expressive equivalence of a frag-

ment of this logic with MK-fuzzy automata, i.e., a Büchi type theorem.

1 Introduction

Fuzzy automata constitute a special model of weighted automata but historically have been defined and

studied separately, mostly inspired by fuzzy logic theory. The original fuzzy automaton model assigned

to words values from the lattice [0,1] with the usual max and min operations. Later on, fuzzy automata

were investigated also over more general structures like for instance lattices, residuated lattices, and l-

monoids. Several real world applications are modelled by fuzzy automata. We refer the reader to [19]

for fuzzy automata theory and applications, to [21] for a generalization of them and their connection to

weighted automata, and to [1] for fuzzy semirings related to automata. For weighted automata theory,

the interested reader should consult for instance [7, 8, 9].

On the other hand, McCarthy-Kleene logic (MK-logic for short), a combination of three-valued

logics of McCarthy [18] and Kleene [12], has been introduced in [13, 2] to reason about computation

errors. The original idea, according to [2], was to distinguish between two types of errors: critical ones,

which make the whole computation stop and cause a total failure of the program, and non-critical ones,

which stop only part of the computation and can be fixed or circumvented by a success in some other

part. MK-logic is a four-valued logic, where alongside the truth values t (true) and f (false) there are also

u (undefined, which originates from Kleene’s logic) and e (error, which comes from McCarthy’s logic).

In this combination, ‘undefined’ is intended to represent non-critical errors, while ‘error’ is reserved for

critical ones. As in McCarthy’s logic, interpretation of binary connectives is asymmetric, which means,

for instance, that the disjunction of t and e is t, while the disjunction of e and t gives e. In the combination

it is assumed that e prevails u in whatever order they appear.
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MK-logic has found an application in the LogicGuard project [16, 17, 14, 4] which pursues research

on network security, developing a specification and verification formalism and tool for runtime network

monitoring based on predicate logic. A monitor, which is a logical formula (usually with quantifiers), is

interpreted over a network (an infinite stream of messages). The goal is to check whether the property

specified in the monitor is satisfied by the stream, and report violating messages, if any. For instance, the

following monitoring formula

monitor x : p(x)⇒ exists y with x ≤ y ≤ x+T : q(x,y)

investigates for every stream position x that satisfies p(x) whether there exists some position y in range

[x,x+T ] such that property q(x,y) holds. Operationally, the monitor formula is translated into a program,

which accepts stream messages one after the other, keeps evaluating the monitored property on the known

part of the stream, and if it is violated (i.e., its truth value becomes f ), reports the message that caused

the violation. At each moment, the monitor observes only a finite initial part of the stream. Hence, it is

not always possible to decide whether the property holds or not (‘not enough’ messages have arrived).

In this case, a new copy of the current instance of the monitoring formula is created. Its truth value is

u: undefinedness here really corresponds to ‘unknown’, not to a non-critical error. The copy is added

to the pile of copies of some previous instances, which also wait to be decided. Each of these copies

will be evaluated for the incoming messages and will be removed from consideration if its truth value

becomes t or f . In the latter case, the violated message is reported. If something causes an error (i.e., if

the truth value e is generated for some reason), monitoring stops. The LogicGuard framework has met

the expectations of the developers, being successfully used for runtime network monitoring. As the next

step, it is planned to deploy it for new application scenarios such as, for instance, “Internet of Things”.

Such applications pose new challenges, related to the difficulties with quantification of decisions, or to

the fact that it is not a priori clear what the expectations of a correct execution of a system are. To deal

with such problems, reasoning with some kind of probabilistic or fuzzy knowledge is required. As the

first step towards this direction, we envisage the extension of the LogicGuard specification language to a

fuzzy quantified logic that is able to handle specifications including uncertainty and vagueness. On this

strand, and for the development of the fuzzification of the MK-logic and relative models, we introduce

MK-fuzzy automata, and this paper is a first attempt to study these models. Our MK-fuzzy automata

assign, to words, values from the bimonoid

K = {(t, f ,u,e) ∈ [0,1]4 | t + f +u+ e = 1}

where its operations, called MK-disjunction and MK-conjunction, are inspired by the fuzzification of the

MK-logic. Formal series with values in K are called MK-fuzzy languages.

Classical operations in formal series over semirings cannot be defined in the usual way over bi-

monoids due to the lack of commutativity and distributivity properties. Notable examples are the Cauchy

product and the star operation. If the weight structure is weaker than a semiring, for instance a bimonoid

like in our case, then the lack of commutativity, distributivity, and multiplicative zero properties has a

serious impact on the automata models considered over such a weight structure. For instance the value

assigned by the automaton to a word cannot be defined in the usual way. Due to these difficulties, and

since no interesting bimonoid structures have been considered so far, there is a lack of work on weighted

automata over bimonoids. According to our best knowledge, the most relative works deal with automata

and transducers over strong bimonoids where the first operation is commutative and there is a multi-

plicative zero [5, 10, 15]. For our MK-fuzzy automata, where a multiplicative zero is missing from the

bimonoid K, we consider a set of initial states, a set of transitions, and a set of final states and define on
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these sets the initial distribution, the mapping assigning truth values to the transitions of the automaton,

and the terminal distribution, respectively. Our model is nondeterministic. Since the MK-disjunction is

not commutative, we require the state set of the MK-fuzzy automaton to be linearly ordered. Then the

paths of the automaton over any word, can be ordered according to lexicographic order, and hence we

can define the value of K assigned by the MK-fuzzy automaton to the given word.

We show that the class of recognizable MK-fuzzy languages accepted by MK-fuzzy automata is

closed under MK-disjunction, strict alphabetic homomorphisms and inverse strict alphabetic homomor-

phisms. Moreover, we establish a Nivat-like decomposition result showing that recognizable MK-fuzzy

languages can be obtained from very particular MK-fuzzy automata (in fact, with only one state), restric-

tion to recognizable languages and strict alphabetic homomorphisms. We introduce also the deterministic

counterpart of our model and show that the class of MK-fuzzy languages accepted by these automata,

called deterministically recognizable, is closed under MK-disjunction with scalars. The Cauchy product

of two deterministically recognizable MK-fuzzy languages is a recognizable MK-fuzzy language. Due

to the structure of the bimonoid K, we can define several notions of supports of MK-fuzzy languages. We

show that the strong support, related to the first component of the elements in K, of a deterministically

recognizable MK-fuzzy language is a recognizable language. Furthermore, we introduce an MK-fuzzy

MSO logic and determine a fragment of sentences which is expressively equivalent to the class of MK-

fuzzy automata, i.e., a Büchi type theorem.

2 Preliminaries

Let A be an alphabet, i.e., a finite nonempty set. As usually, we denote by A∗ the set of all finite words

over A and define A+ = A∗ \{ε}, where ε is the empty word. The length of a word w, i.e., the number

of the letters of w is denoted as usual by |w|. A word w = a0 . . .an−1 over A, with a0, . . . ,an−1 ∈ A, is

written also as w = w(0) . . .w(n− 1) with w(i) = ai for every 0 ≤ i ≤ n− 1. Assume now that ≤ is a

linear order on A. The lexicographic order ≤lex on A∗ is defined as follows:

w ≤lex u iff ((u = wv with v ∈ A∗) or (w = vav′, u = vbv′′, v ∈ A∗, a,b ∈ A with a < b))

for every w,u ∈ A∗. Let now A and B be linearly ordered sets, respectively by ≤A and ≤B. Then, the

Cartesian product A×B is linearly ordered by ≤ which is defined, as usual, in the following way:

(a,b) ≤ (a′,b′) iff ((a <A a′) or (a = a′ and b ≤B b′))

for every (a,b),(a′,b′) ∈ A×B. In a similar way, the linear orders of three sets induce a linear order on

their Cartesian product. If no confusion arises, we shall use the same symbol ≤ to denote every linear

order considered in the sequel.

Throughout the paper A will denote an alphabet.

A bimonoid (K,+, ·,0,1) (cf. [10]) consists of a set K, two binary operations + and · and two constant

elements 0 and 1 such that (K,+,0) and (K, ·,1) are monoids. If the monoid (K,+,0) is commutative

and 0 acts as a multiplicative zero, i.e., k · 0 = 0 · k = 0 for every k ∈ K, then the bimonoid is called

strong. The bimonoid is denoted simply by K if the operations and the constant elements are understood.

A semiring is a strong bimonoid where multiplication distributes over addition. A bimonoid K is called

zero-sum free if k+ k′ = 0 implies k = k′ = 0, and it is called zero-divisor free if k · k′ = 0 implies k = 0

or k′ = 0, for every k,k′ ∈ K.
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In this paper we deal with a new type of fuzzy sets with values in the Cartesian product [0,1]4 =
[0,1]× [0,1]× [0,1]× [0,1], such that their components are summing up to 1. This type of fuzzy sets

is inspired by McCarthy-Kleene logic (MK-logic for short). MK-logic which is a combination of three-

valued logics of McCarthy [18] and Kleene [12], has been introduced in [13, 2] to reason about compu-

tation errors. It is a four-valued logic, where alongside the truth values t (true) and f (false) there are also

u (undefined, which originates from Kleene’s logic) and e (error, which comes from McCarthy’s logic).

In this combination, ‘undefined’ is intended to represent non-critical errors, while ‘error’ is reserved for

critical ones. For the reader’s convenience we recall the truth tables of MK-logic:

or t f u e

t t t t t

f t f u e

u t u u e

e e e e e

not t f u e

f t u e

and t f u e

t t f u e

f f f f f

u u f u e

e e e e e

implies t f u e

t t f u e

f t t t t

u t u u e

e e e e e

For the fuzzification of the MK-logic we assign to t, f ,u,e values from the interval [0,1] with the

restriction that they are summing up to 1. Therefore, our fuzzy sets get their values in the subset K of the

Cartesian product [0,1]4 which is defined as follows:

K = {(t, f ,u,e) ∈ [0,1]4 | t + f +u+ e = 1}.

Due to practical applications, by which our theory is motivated (cf. [14]), we refer to the four components

of the elements of K to as the true, false, unknown, and error value, respectively. We shall denote

the elements of K with bold symbols and we shall call them the truth values of our fuzzy sets. For

k = (t, f ,u,e) ∈ K we shall write sometimes x(k) for x ∈ {t, f ,u,e}, to denote the x value of k. For every

k1 = (t1, f1,u1,e1),k2 = (t2, f2,u2,e2)∈K we let k3 = k1⊔k2 and k4 = k1⊓k2 where k3 = (t3, f3,u3,e3)
and k4 = (t4, f4,u4,e4) are defined by the relations

t3 = t1 +( f1 +u1)t2 t4 = t1t2
f3 = f1 f2 f4 = f1 +(t1 +u1) f2

u3 = f1u2 +u1( f2 +u2) u4 = t1u2 +u1(t2 +u2)
e3 = e1 +( f1 +u1)e2 e4 = e1 +(t1 +u1)e2.

We call ⊔ the MK-disjunction (disjunction for simplicity) and ⊓ the MK-conjunction (conjunction for

simplicity). The result of the empty MK-conjunction equals 1. MK-disjunction and MK-conjunction

correspond to the fuzzification of the connectives ‘or’, ‘and’ of the MK-logic, respectively. To clarify

this, we preserve the above notations for k1,k2,k3, and k4 and construct the following multiplication

table:

t2 f2 u2 e2

t1 t1t2 t1 f2 t1u2 t1e2

f1 f1t2 f1 f2 f1u2 f1e2

u1 u1t2 u1 f2 u1u2 t1e2

e1 e1t2 e1 f2 e1u2 e1e2

(1)
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We compute every component y3 ∈ {t3, f3,u3,e3} of k3 by summing up the values of the cells in table

(1) above, such that the corresponding cells in the truth table of ‘or’ contain the value y. Similarly, for

k4 we compute every component y4 ∈ {t4, f4,u4,e4} of k4 by summing up the values of the cells in

table (1) above, such that the corresponding cells in the truth table of ‘and’ contain the value y. For

instance t3 = t1t2 + t1 f2 + t1u2 + t1e2 + f1t2 +u1t2 = t1(t2 + f2 +u2 + e2)+ ( f1 +u1)t2 = t1 +( f1 +u1)t2
and t4 = t1t2.

Proposition 1 The disjunction and conjunction operations on K are associative with unit elements 0 =
(0,1,0,0) and 1 = (1,0,0,0), respectively.

By Proposition 1, we immediately get the next corollary.

Corollary 2 The structure (K,⊔,⊓,0,1) is a bimonoid.

Nevertheless, by the following proposition we conclude that the bimonoid (K,⊔,⊓,0,1) is not strong.

Proposition 3 Both the disjunction and conjunction operations on K are not commutative and idempo-

tent. Furthermore, for every k = (t, f ,u,e) ∈ K we get 0⊓k = 0 and k⊓0 = (0, t + f +u,0,e).

Proof. Consider the elements k = (0.3,0.2,0.4,0.1),k′ = (0.9,0.05,0.03,0.02) ∈ K. Then we get k⊔
k′ 6= k′⊔k, and k⊓k′ 6= k′⊓k, k⊔k 6= k and k⊓k 6= k. The remaining part of our proposition is proved

by a standard calculation. �

Proposition 4 Both the disjunction and conjunction on K do not distribute over each other.

Proposition 5 The bimonoid K is zero-sum free and zero-divisor free.

An MK-fuzzy language over A and K is a mapping s : A∗ →K. The strong support of s is the language

stgsupp(s)= {w∈A∗ | t(s(w)) 6= 0}. For every w∈A∗ the MK-fuzzy language w is determined by w(u)=
1 if u = w, and w(u) = 0 otherwise. The constant MK-fuzzy language k̃ (k ∈ K) is defined, for every

w∈ A∗, by k̃(w) = k. We shall denote by K 〈〈A∗〉〉 the class of all MK-fuzzy languages over A and K. The

characteristic MK-fuzzy language 1L ∈ K 〈〈A∗〉〉 of a language L ⊆ A∗ is defined by 1L(w) = 1 if w ∈ L

and 1L(w) = 0 otherwise. Let s,r ∈ K 〈〈A∗〉〉 and k ∈ K. The MK-disjunction (or simply disjunction)

s⊔ r, the MK-conjunction (or simply conjunction) s⊓ r, and the MK-conjunctions with scalars (simply

scalar conjunctions) k⊓s and s⊓k are defined as follows: s⊔r(w) = s(w)⊔r(w), s⊓r(w) = s(w)⊓r(w),
and (k⊓ s)(w) = k⊓ s(w), (s⊓k)(w) = s(w)⊓k for every w ∈ A∗. Since the disjunction and conjunction

operations among MK-fuzzy languages are defined elementwise, we can easily show that properties of

the structure
(

K 〈〈A∗〉〉 ,⊔,⊓, 0̃, 1̃
)

are inherited by the properties of the structure (K,⊔,⊓,0,1), hence
(

K 〈〈A∗〉〉 ,⊔,⊓, 0̃, 1̃
)

is a bimonoid. The Cauchy product rs of r,s ∈ K 〈〈A∗〉〉 is defined as follows. For

every w = a0 . . .an−1 ∈ A∗ with a0, . . . ,an−1 ∈ A we let

rs(w) = (r(ε)⊓ s(a0 . . .an−1))⊔ (r(a0)⊓ s(a1 . . .an−1))⊔ . . .⊔ (r(a0 . . .an−1)⊓ s(ε)) .
Since disjunction and conjunction are not commutative, and they do not distribute over each other, the

Cauchy product is not associative as we state in the next proposition.

Proposition 6 The Cauchy product operation is not associative.

We assume now that the alphabet A is linearly ordered and let B be another alphabet. Then a homo-

morphism h : A∗ → B∗ is extended to a mapping h : K 〈〈A∗〉〉→ K 〈〈B∗〉〉 in the following way. For every

s ∈ K 〈〈A∗〉〉 and u ∈ B∗ we let h(s)(u) =
⊔

w∈h−1(u) s(w) where in the definition of the disjunction we take

into account the lexicographic order of the words w ∈ h−1(u). Finally, we assume that h : A∗ → B∗ is a

strict alphabetic homomorphism, i.e., h(a) ∈ B for every a ∈ A. Then, for every r ∈ K 〈〈B∗〉〉 the MK-

fuzzy language h−1(r) ∈ K 〈〈A∗〉〉 is determined by h−1(r)(w) = r(h(w)) for every w ∈ A∗. We should

note that for h−1 we do not require any order on the alphabet A.
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3 MK-fuzzy automata

In this section we introduce the model of MK-fuzzy automata over A and K and investigate closure

properties of the class of their behaviors. Moreover, we prove a Nivat-like theorem for recognizable

MK-fuzzy languages.

Definition 7 An MK-fuzzy automaton over A and K is a seven-tuple A = (Q, I,T,F, in,wt, ter) where Q

is the finite state set which is assumed to be linearly ordered, I is the set of initial states, T ⊆ Q×A×Q

is the set of transitions, F is the set of final states, in : I → K is the initial distribution, wt : T → K

is a mapping assigning truth values to the transitions of the automaton, and ter : F → K is the final

distribution.

Let w = a0 . . .an−1 be a word over A with a0, . . . ,an−1 ∈ A. A path P
(A )
w (or simply Pw if the

automaton is understood) of A over w is a sequence of transitions P
(A )
w := ((qi,ai,qi+1))0≤i≤n−1,

(qi,ai,qi+1) ∈ T for every 0 ≤ i ≤ n − 1, with q0 ∈ I and qn ∈ F . The weight of P
(A )
w is the truth

value

weight
(

P
(A )
w

)
= in(q0)⊓

l

0≤i≤n−1

wt (qi,ai,qi+1)⊓ ter(qn).

The set of paths of A over w can be linearly ordered as follows. For two paths Pw = ((qi,ai,qi+1))0≤i≤n−1

and P′
w =

((
q′i,ai,q

′
i+1

))
0≤i≤n−1

we let

Pw ≤ P′
w iff q0 . . .qn−1 ≤lex q′0 . . .q

′
n−1.

The behavior of A is the MK-fuzzy language ‖A ‖ : A∗ → K and it is defined in the following way. Let

w ∈ A+ and {Pw,1, . . . ,Pw,m} be the set of all paths of A over w. Furthermore, assume that Pw,1 ≤ . . . ≤
Pw,m. Then, we set

‖A ‖(w) = weight(Pw,1)⊔ . . .⊔weight(Pw,m).

If there are no paths of A over w, then we let ‖A ‖(w) = 0. If w = ε , then

‖A ‖(ε) = (in(qi1)⊓ ter(qi1))⊔ . . .⊔ (in(qim)⊓ ter(qim))

where I ∩F = {qi1 , . . . ,qim} and qi1 ≤ . . . ≤ qim . If I ∩F = /0, then we set ‖A ‖(ε) = 0. An MK-fuzzy

language s : A∗ → K is called recognizable if there is an MK-fuzzy automaton A over A and K such that

s = ‖A ‖. We denote by Rec(K,A) the class of all recognizable MK-fuzzy languages over A and K.

Remark 8 By our definition above, we get that weight
(

P
(A )
w

)
= 0 whenever in(q0) = 0 for every path

P
(A )
w = ((qi,ai,qi+1))0≤i≤n−1 of A over w = a0 . . .an−1. Hence, in the sequel, we assume that in : I →

K \{0} for every MK-fuzzy automaton A = {Q, I,T,F, in,wt, ter} over A and K.

Example 9 Let k ∈ K. Then the constant MK-fuzzy language k̃ is recognizable. Indeed, we consider

the MK-fuzzy automaton Ak = ({q},{q},T,{q}, in,wt, ter) with T = {(q,a,q) | a ∈ A} and in(q) = k,

ter(q) = 1, and wt(q,a,q) = 1 for every a ∈ A. We trivially get ‖A ‖= k̃.

Proposition 10 Let L ⊆ A∗ be a recognizable language. Then 1L ∈ Rec(K,A).

Theorem 11 The class Rec(K,A) is closed under disjunction.

Theorem 12 Let s ∈ Rec(K,A) and L ⊆ A∗ be a recognizable language. Then 1L ⊓ s ∈ Rec(K,A).
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Proof. [Sketch] Let A1 =
(

Q1,A,q
(0)
1 ,T1,F1

)
be a deterministic finite automaton accepting L and A2 =

(Q2, I2,T2,F2, in2,wt2, ter2) an MK-fuzzy automaton over A and K accepting s. We define an arbitrary lin-

ear order ≤ on Q1 and consider the MK-fuzzy automaton A =(Q1×Q2,{q
(0)
1 }×I2,T,F1×F2, in,wt, ter)

with T = {((q1,q2),a,(q
′
1,q

′
2)) | (q1,a,q

′
1) ∈ T1 and (q2,a,q

′
2) ∈ T2} and

- in
(

q
(0)
1 ,q2

)
= in2(q2) for every q2 ∈ I2,

- wt((q1,q2),a,(q
′
1,q

′
2)) = wt2(q2,a,q

′
2) for every ((q1,q2),a,(q

′
1,q

′
2)) ∈ T ,

- ter(q1,q2) = ter2(q2) for every (q1,q2) ∈ F1 ×F2.

The state set Q1 ×Q2 is linearly ordered by

(q1,q2)≤ (q′1,q
′
2) iff ((q2 < q′2) or (q2 = q′2 and q1 ≤ q′1))

for every (q1,q2),(q
′
1,q

′
2) ∈ Q1 ×Q2. Then we show that ‖A ‖= 1L ⊓ s. �

Theorem 13 Let A be a linearly ordered alphabet and h : A∗ → B∗ a strict alphabetic homomorphism.

Then s ∈ Rec(K,A) implies h(s) ∈ Rec(K,B).

Proof. Let A = (Q, I,T,F, in,wt, ter) be an MK-fuzzy automaton over A and K accepting s. We consider

the MK-fuzzy automaton B = (A×Q,{minA}× I,T ′,A×F, in′,wt ′, ter′) with T ′ = {((a,q),b,(a′q′)) |
(q,a′,q′) ∈ T and h(a′) = b}. The weight mappings in′,wt ′, ter′ are defined respectively, by

- in′(a,q) = in(q), with a = minA and every q ∈ I,

- wt ′((a,q),b,(a′ ,q′)) = wt(q,a′,q′), for every ((a,q),b,(a′ ,q′)) ∈ T ′, and

- ter′(a,q) = ter(q), for every (a,q) ∈ A×F.

Let w = a0 . . .an−1 ∈ A+ and P
(A )
w = ((qi,ai,qi+1))0≤i≤n−1 be a path of A over w. By definition of the

MK-fuzzy automaton B there is a unique path

P
(B)
h(w) = ((a,q0),h(a0),(a0,q1))((a0,q1),h(a1),(a1,q2)) . . . ((an−2,qn−1),h(an−1),(an−1,qn))

of B over h(w), and by a straightforward calculation we get weight
(

P
(B)
h(w)

)
= weight

(
P
(A )
w

)
. Con-

versely, let u = b0 . . .bn−1 ∈ B+ and

P
(B)
u = ((a,q0),b0,(a0,q1))((a0,q1),b1,(a1,q2)) . . . ((an−2,qn−1),bn−1,(an−1,qn))

be a path of B over u. Then, u= h(w) where w= a0 . . .an−1 ∈A+. Moreover, P
(A )
w =((qi,ai,qi+1))0≤i≤n−1

is a path of A over w and weight
(

P
(B)
u

)
= weight

(
P
(A )
w

)
. Hence, for every u ∈ B+, if w1, . . . ,wm are

all the words in A+ such that h(wi) = u (1 ≤ i ≤ m), then there is a one-to-one correspondence between

the paths

P
(A )
w1,1

, . . . ,P
(A )
w1, j1

, . . . ,P
(A )
wm,1

, . . . ,P
(A )
wm, jm

of A , respectively over w1, . . . ,wm, and the paths

P
(B)
u,1 , . . . ,P

(B)
u, j1

,P
(B)
u, j1+1, . . . ,P

(B)
u, j1+ j2

, . . . ,P
(B)
u,k
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of B over u, where P
(A )
wl ,rl

corresponds to P
(B)
u, j1+...+ jl−1+rl

for every 1 ≤ l ≤ m and 1 ≤ rl ≤ jl . Then we get

weight
(

P
(A )
wl ,rl

)
= weight

(
P
(B)
u, j1+...+ jl−1+rl

)
. Moreover, if w1 ≤ . . .≤ wm and

P
(A )
w1,1

≤ . . .≤ P
(A )
w1, j1

, . . . ,P
(A )
wm,1

≤ . . .≤ P
(A )
wm, jm

,

then

P
(B)
u,1 ≤ . . .≤ P

(B)
u, j1

≤ P
(B)
u, j1+1 ≤ . . .≤ P

(B)
u, j1+ j2

≤ . . .≤ P
(B)
u,k .

Hence we have

h(s)(u) =
⊔

w∈h−1(u)

s(w) = s(w1)⊔ . . .⊔ s(wm) =
⊔

1≤r1≤ j1

weight
(

P
(A )
w1,r1

)
⊔ . . .⊔

⊔

1≤rm≤ jm

weight
(

P
(A )
wm,rm

)

=
⊔

1≤i≤k

weight
(

P
(B)
u,i

)
= ‖B‖(u).

If s(ε) 6= 0, then let I∩F = {qi1 , . . . ,qim}. Then ({min A}× I)∩(A×F) = {(min A,qi1), . . . ,(minA,qim)}
and by definition of in′ and ter′ we get ‖A ‖(ε) = ‖B‖(ε). Since h(s)(ε) = s(ε), we finally conclude

that h(s) = ‖B‖, i.e, h(s) ∈ Rec(K,B), and we are done. �

Theorem 14 Let h : A∗ →B∗ be a strict alphabetic homomorphism. Then s∈Rec(K,B) implies h−1(s)∈
Rec(K,A).

Next, we show a Nivat-like decomposition theorem for recognizable MK-fuzzy languages. The

fundamental Nivat’s theorem [20] states a relation among rational transductions and rational languages.

A Nivat-like result was proved for weighted automata over semirings in [8]. We need some preliminary

matter. Let B be an alphabet and g : B → K a mapping. Then g can be extended to an MK-fuzzy language

g : B∗ → K by g(b0 . . .bn−1) =
d

0≤i≤n−1 g(bi) for every b0 . . .bn−1 ∈ B+, b0, . . . ,bn−1 ∈ B, and g(ε) = 1.

Then, for a language L ⊆ B+ we define the MK-fuzzy language L∩ g by L∩ g(w) = g(w) if w ∈ L and

L∩ g(w) = 0 otherwise, for every w ∈ B∗. It should be clear that L∩ g = 1L ⊓ g. Now we are ready to

state our Nivat-like theorem.

Theorem 15 Let A be a linearly ordered alphabet and s an MK-fuzzy language over A and K with

s(ε) = 0. Then s is recognizable iff there is a linearly ordered alphabet B, a recognizable language

L ⊆ B+, a mapping g : B → K, and a strict alphabetic homomorphism h : B∗ → A∗ such that s = h(L∩g).

Proof. We prove firstly the implication “ ⇐= ”. The MK-fuzzy language g is recognizable. Indeed,

consider the MK-fuzzy automaton G = ({q},{q},T,{q}, in,wt, ter) over B and K, with in(q) = ter(q) =
1 and wt(q,b,q) = g(b) for every b ∈ B. Trivially ‖G ‖ = g. Then, by Proposition 10 and Theorem 12

the MK-fuzzy language 1L ⊓g is recognizable and hence, h(L∩g) is recognizable by Theorem 13.

Conversely, let s ∈ Rec(K,A) with s(ε) = 0 and A = (Q, I,T, in,wt, ter) be an MK-fuzzy automaton

accepting s. We set B= T and consider the finite automaton B=(Q,B, I,T ′,F) with T ′= {(q,(q,a,q′),q′)
| (q,a,q′) ∈ T}. It can be easily seen that L(B) = {Pw | w ∈ A+ and Pw path of A over w}∪C, where

C = {ε} if I ∩F 6= /0 and C = /0 otherwise. We let L = L(B) \ {ε}, define the mapping g : B → K by

g(q,a,q′) = wt(q,a,q′) for every (q,a,q′) ∈ B, and the strict alphabetic homomorphism h : B∗ → A∗ by

h(q,a,q′) = a for every (q,a,q′) ∈ B. Then, for every w ∈ A+ we get

h(L∩g)(w) =
⊔

u∈h−1(w)

L∩g(u) =
⊔

u∈h−1(w)

u∈L

g(u) =
⊔

Pw

weight(Pw) = ‖A ‖(w),
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i.e., h(L∩g)(w) = ‖A ‖ as required, and our proof is completed. �

In the sequel, we deal with the deterministic counterpart of our model. An MK-fuzzy automaton

A = (Q, I,T,F, in,wt, ter) over A and K is called deterministic if I = {q0} and for every q ∈ Q,a ∈ A

there is at most one q′ ∈ Q such that (q,a,q′) ∈ T . Then for every word w ∈ A∗ there is at most one path

Pw of A over w, which in turn implies that we can relax the order relation of Q. Nevertheless, in the

sequel, sometimes we will need the state set of a deterministic MK-fuzzy automaton to be ordered. A

deterministic MK-fuzzy automaton A is simply written as A = (Q,q0,T,F, in,wt, ter). An MK-fuzzy

language s ∈ K 〈〈A∗〉〉 is called deterministically recognizable if there is a deterministic MK-fuzzy au-

tomaton A over A and K such that s = ‖A ‖. We denote by DRec(K,A) the class of all deterministically

recognizable MK-fuzzy languages over A and K. An MK-fuzzy automaton A = (Q, I,T,F, in,wt, ter) is

called unambiguous if for every word w ∈ A∗ there is at most one path Pw of A over A. Clearly, every

deterministic MK-fuzzy automaton is unambiguous as well, but the converse is not always true.

Theorem 16 Let s ∈ DRec(K,A) and k ∈ K. Then k⊓ s,s⊓k ∈ DRec(K,A).

Next, we investigate the closure of the class of deterministically recognizable MK-fuzzy languages

under Cauchy product. More precisely, we show that the Cauchy product of two deterministically recog-

nizable MK-fuzzy languages is a recognizable MK-fuzzy language. For this, we will need the notion of

a normalized MK-fuzzy automaton and some preliminary results which present their own interest.

Definition 17 An MK-fuzzy automaton A = (Q, I,T,F, in,wt, ter) is called normalized if I = {qin}, qin /∈
F, in(qin) = 1, ter(q) = 1 for every q ∈ F, (q,a,qin) /∈ T for every q ∈ Q,a ∈ A, and (q,a,q′) /∈ T for

every q ∈ F,a ∈ A, and q′ ∈ Q.

By the above definition, if A is a normalized MK-fuzzy automaton, then ‖A ‖(ε) = 0. A normalized

MK-fuzzy automaton A = (Q, I,T,F, in,wt, ter) will be simply denoted by A = (Q,qin,T,F,wt).

Proposition 18 For every deterministic MK-fuzzy automaton A = (Q,q0,T,F, in,wt, ter) we can effec-

tively construct a normalized unambiguous MK-fuzzy automaton A ′ such that ‖A ′‖(w) = ‖A ‖(w) for

every w ∈ A+, and ‖A ′‖(ε) = 0.

Lemma 19 Let s ∈ K 〈〈A∗〉〉 and k ∈ K. If s is accepted by a normalized unambiguous MK-fuzzy au-

tomaton, then s⊓k is accepted also by a normalized unambiguous MK-fuzzy automaton.

Theorem 20 Let r,s ∈ DRec(K,A). Then rs ∈ Rec(K,A).

Proof. [Sketch] Since r,s ∈ DRec(K,A), there are deterministic MK-fuzzy automata accepting them.

Then, by Proposition 18, we can effectively construct normalized unambiguous MK-fuzzy automata

A1 =
(

Q1,q
(1)
in ,T1,F1,wt1

)
and A2 =

(
Q2,q

(2)
in ,T2,F2,wt2

)
such that ‖A1‖(w) = r(w) and ‖A2‖(w) =

s(w) for every w ∈ A+. Without any loss we assume that Q1 ∩Q2 = /0, otherwise we apply a renaming.

We consider the MK-fuzzy automaton A =
(

Q,{q
(1)
in },T,F2, in,wt, ter

)
with

- Q = (Q1 \F1)∪Q2,

- T =
{(

q(1),a, p(1)
)
∈ T1 | p(1) /∈ F1

}
∪T2 ∪{(

q(1),a,q
(2)
in

)
| there exists p(1) ∈ F1 such that

(
q(1),a, p(1)

)
∈ T1

}
,

- in
(

q
(1)
in

)
= 1,
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- wt(q,a, p) =





wt1(q,a, p) if (q,a, p) ∈ T1

wt2(q,a, p) if (q,a, p) ∈ T2

wt1(q,a, p(1)) if q ∈ Q1 \F1, p = q
(2)
in , p(1) ∈ F1, and

(
q,a, p(1)

)
∈ T1

for every (q,q, p) ∈ T , and

- ter(q) = 1 for every q ∈ F2.

We should note that in case p = q
(2)
in the value wt(q,a, p) is well-defined. Indeed, since the original

MK-fuzzy automaton accepting r is deterministic, by construction of A1, we get that there is at most one

p(1) ∈ F1 such that (q,a, p(1)) ∈ T1. We define a linear order on Q by preserving the orders of Q1 and Q2

and letting maxQ2 ≤ minQ1. Then we can show that ‖A ‖(w) = rs(w) for every w ∈ A+.

Next, by Theorem 16, the series r(ε)⊓ s is deterministically recognizable, hence by Proposition 18

there is a normalized unambiguous MK-fuzzy automaton A3 such that ‖A3‖(w)= (r(ε)⊓s)(w) for every

w ∈ A+, and ‖A3‖(ε) = 0. Furthermore, by Proposition 10 and Lemma 19 respectively, the MK-fuzzy

languages ε ⊓ r(ε)⊓ s(ε) and ‖A1‖⊓ s(ε) are recognizable. Since

rs = (ε ⊓ r(ε)⊓ s(ε))⊔‖A3‖⊔‖A ‖⊔ (‖A1‖⊓ s(ε)),

we conclude our proof by Theorem 11. �

Proposition 21 Let s ∈ DRec(K,A). Then the strong support of s is a recognizable language.

4 MK-fuzzy monadic second order logic

In this section we introduce our MK-fuzzy monadic second order (MSO for short) logic and we prove

the fundamental theorem of Büchi [3], Elgot [11], and Trakhtenbrot [23] in the setup of MK-fuzzy

languages. We need to recall the definition of syntax and semantics of MSO logic (cf. for instance [22]).

The syntax of MSO logic formulas over A is given by the grammar

φ ::= true | Pa(x) | x ≤ x′ | x ∈ X | ¬φ | φ ∨φ | ∃x �φ | ∃X �φ

where a ∈ A and we let false = ¬true. The set free(φ) of free variables of an MSO logic formula φ is

defined as usual. In order to define the semantics of MSO logic formulas we need the notions of the

extended alphabet and valid assignment. Let V be a finite set of first and second order variables. For

every word w = w(0) . . .w(n− 1) ∈ A∗ we let dom(w) = {0, . . . ,n−1}. A (V ,w)-assignment σ is a

mapping associating first order variables from V to elements of dom(w), and second order variables

from V to subsets of dom(w). If x is a first order variable and i ∈ dom(w), then σ [x → i] denotes the

(V ∪{x},w)-assignment which associates i to x and coincides with σ on V \ {x}. For a second order

variable X and I ⊆ dom(w), the notation σ [X → I] has a similar meaning. We shall encode pairs of the

form (w,σ), where w ∈ A∗ and σ is a (V ,w)-assignment, using the extended alphabet AV = A×{0,1}V .

Indeed, every word in A∗
V

can be considered as a pair (w,σ) where w is the projection over A and σ is

the projection over {0,1}V . Then σ is a valid assignment if for every first order variable x ∈ V the x-row

contains exactly one 1. In this case, σ is the (V ,w)-assignment such that for every first order variable

x ∈ V , σ(x) is the position of the 1 on the x-row, and for every second order variable X ∈ V , σ(X) is the

set of positions labelled with 1 along the X -row. It is well-known that

NV = {(w,σ) ∈ A∗
V | σ is a valid (V ,w)-assignment}
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is a recognizable language. For every (w,σ) ∈ NV we define the satisfaction relation (w,σ) |= φ by

induction on the structure of φ , as follows:

(w,σ) |= true, (w,σ) |= x ∈ X iff σ(x) ∈ σ(X),
(w,σ) |= Pa(x) iff w(σ(x)) = a, (w,σ) |= ¬φ iff (w,σ) 6|= φ ,
(w,σ) |= x ≤ x′ iff σ(x) ≤ σ(x′), (w,σ) |= φ ∨φ ′ iff (w,σ) |= φ or (w,σ) |= φ ′,

(w,σ) |= ∃x �φ iff there exists an i ∈ dom(w) such that (w,σ [x → i]) |= φ ,
(w,σ) |= ∃X �φ iff there exists an I ⊆ dom(w) such that (w,σ [X → I]) |= φ .

If (w,σ) ∈ A∗
V
\NV , then we let (w,σ) 6|= φ .

We denote by L(φ) the language of an MSO logic sentence φ , i.e., L(φ) = {w ∈ A∗ | w |= φ}.

Remark 22 For the definition of the semantics of our MK-fuzzy MSO logic, we shall need the power set

P(dom(w)) to be linearly ordered for every word w ∈ A∗. Let w = a0 . . .an−1 ∈ A∗, hence dom(w) =
{0, . . . ,n−1}. We define the linear order ≤ on P(dom(w)) in the following way. Let I = {i1, . . . , im},J =
{ j1, . . . , jk} ∈ P(dom(w)) and assume that 0 ≤ i1 < .. . < im ≤ n− 1 and 0 ≤ j1 < .. . < jk ≤ n−
1. Then we consider the words uI = i1 . . . im,uJ = j1 . . . jk ∈ dom(w)∗. Clearly, there is a one-to-one

correspondence among the subsets of dom(w), and the words of dom(w)∗ with length at most n and

their letters being pairwise disjoint. The empty set corresponds to the empty word. Now, for every

I,J ∈ P(dom(w)) we set I ≤ J iff uI ≤lex uJ .

Definition 23 The syntax of formulas of the MK-fuzzy MSO logic over A and K is given by the grammar

ϕ ::= k | φ | ϕ ⊕ϕ | ϕ ⊗ϕ |
⊕

x �ϕ |
⊕

X �ϕ |
⊗

x �ϕ

where k ∈ K, a ∈ A, and φ denotes an MSO logic formula.

We denote by MSO(K,A) the set of all MK-fuzzy MSO logic formulas ϕ over A and K. We represent

the semantics of formulas ϕ ∈ MSO(K,A) as MK-fuzzy languages ‖ϕ‖ ∈ K 〈〈A∗〉〉. For the semantics

of MSO logic formulas φ we use the satisfaction relation as defined above. Therefore, the semantics of

MSO logic formulas φ gets only the values 0 and 1.

Definition 24 Let ϕ ∈ MSO(K,A) and V be a finite set of variables with free(ϕ) ⊆ V . The semantics

of ϕ is an MK-fuzzy language ‖ϕ‖
V
∈ K

〈〈
A∗

V

〉〉
. Consider an element (w,σ) ∈ A∗

V
. If (w,σ) /∈ NV ,

then we let ‖ϕ‖
V
(w,σ) = 0. Otherwise, we define ‖ϕ‖

V
(w,σ) ∈ K, inductively on the structure of ϕ ,

as follows:

- ‖k‖
V
(w,σ) = k,

- ‖φ‖
V
(w,σ) =

{
1 if (w,σ) |= φ
0 otherwise

,

- ‖ϕ ⊕ψ‖
V
(w,σ) = ‖ϕ‖

V
(w,σ)⊔‖ψ‖

V
(w,σ),

- ‖ϕ ⊗ψ‖
V
(w,σ) = ‖ϕ‖

V
(w,σ)⊓‖ψ‖

V
(w,σ),

- ‖
⊕

x �ϕ‖
V
(w,σ) =

⊔
0≤i≤|w|−1

‖ϕ‖
V ∪{x} (w,σ [x → i]),

- ‖
⊗

x �ϕ‖
V
(w,σ) =

d
0≤i≤|w|−1

‖ϕ‖
V ∪{x} (w,σ [x → i]),

- ‖
⊕

X �ϕ‖
V
(w,σ) =

⊔
I⊆dom(w)

‖ϕ‖
V ∪{X} (w,σ [X → I]),
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where the operator
⊔

I⊆dom(w)
is applied on the ascending order according to the relation ≤ as defined in

Remark 22.

We simply denote ‖ϕ‖free(ϕ) by ‖ϕ‖, hence if ϕ is a sentence, then ‖ϕ‖ ∈ K 〈〈A∗〉〉.

Lemma 25 [6] Let A be a linearly ordered alphabet, ϕ ∈ MSO(K,A), and V be a finite set of variables

containing free(ϕ). Then

‖ϕ‖
V
(w,σ) = ‖ϕ‖(w,σ |free(ϕ))

for every (w,σ) ∈ NV . Furthermore ‖ϕ‖
V

is recognizable iff ‖ϕ‖ is recognizable.

Proof. We extend the order on A to a linear order on AV and apply the proof of Prop. 3.3. in [6] using

our Theorems 12–14. �

For first order variables x,y,z, second order variables X1, . . . ,Xm, and k ∈ K let

first(y) := ∀x � y ≤ x, last(y) := ∀x � x ≤ y,

(y = x+1) := ((x ≤ y)∧¬(y ≤ x)∧∀z � (z ≤ x∨ y ≤ z)) ,

partition(X1, . . . ,Xm) := ∀x �
∨

i=1,...,m

(
(x ∈ Xi)∧

∧
j 6=i

¬(x ∈ X j)

)
,

x ∈ X → k := ¬(x ∈ X)⊕ ((x ∈ X)⊗k) .

Next we define a fragment of our MK-fuzzy MSO logic.

Definition 26 A formula ϕ ∈ MKO(K,A) will be called restricted if whenever it contains a subformula

ψ ⊗ψ ′, then ψ is a (boolean) MSO logic formula, and whenever it contains a subformula of the form⊗
x �ψ , then ψ is of the form

⊕
1≤i≤m

((x ∈ Xi)→ ki), where ki ∈ K for every 1 ≤ i ≤ m.

We shall denote by RMSO(K,A) the class of all restricted MK-fuzzy MSO logic formulas over

A and K. An MK-fuzzy language s ∈ K 〈〈A∗〉〉 is called RMSO-definable if there is a sentence ϕ ∈
RMSO(K,A) such that s = ‖ϕ‖. The main result of this section is the subsequent theorem which follows

from Theorems 28 and 30 below.

Theorem 27 Let A be a linearly ordered alphabet and s ∈ K 〈〈A∗〉〉. Then s is recognizable iff it is

RMSO-definable.

Theorem 28 Let A be a linearly ordered alphabet. If an MK-fuzzy language s ∈ K 〈〈A∗〉〉 is RMSO-

definable, then it is recognizable.

Proof. [Sketch] Let ϕ ∈ RMSO(K,A) such that s = ‖ϕ‖. We show by induction on the structure of ϕ
that ‖ϕ‖ ∈ Rec(K,A). If ϕ = k or ϕ = φ , then ‖ϕ‖ is MK-fuzzy recognizable, respectively by Example

9 and Proposition 10. Next let ϕ = ψ ⊕ψ ′ (resp. ϕ = ψ ⊗ψ ′). We prove our claim using Lemma 25 and

Theorem 11 (resp. Lemma 25 and Theorem 12). Assume now that ϕ =
⊕

x �ψ (resp. ϕ =
⊕

X �ψ) such

that ‖ψ‖ is a recognizable MK-fuzzy language and let V = free(ϕ). We extend the order on AV to a linear

order on AV ∪{x} (resp. AV ∪{X}) by letting (a,r[x = 1])≤ (a,r[x = 0]) (resp. (a,r[X = 1])≤ (a,r[X =
0])) for every (a,r) ∈ AV . Then, we follow the proof of Lm. 4.3. in [6] taking into account our Theorem

13 and show that ‖ϕ‖ is recognizable. Finally, let ϕ =
⊗

x �

(
⊕

1≤i≤m

((x ∈ Xi)→ ki)

)
where ki ∈ K for

every 1≤ i≤m. We consider the deterministic MK-fuzzy automaton A = ({q},q,T,{q}, in,wt, ter) over

A{X1,...,Xm} and K, with T =
{
(q,(a,r),q) | a ∈ A,r ∈ {0,1}{X1 ,...,Xm}

}
. The weight mappings are defined
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by in(q) = ter(q) = 1 and wt(q,(a,r),q) =
⊔

1≤i≤m (r(Xi)⊓ki) for every a ∈ A and r ∈ {0,1}{X1 ,...,Xm},

where r(Xi) = 1 if r(Xi) = 1 and r(Xi) = 0 otherwise. Let (w,σ) ∈ N{X1,...,Xm}, and assume that (w,σ) =

(a0,r0) . . . (an−1,rn−1) where w = a0 . . .an−1 ∈ A∗ and r j ∈ {0,1}{X1 ,...,Xm} for every 0 ≤ j ≤ n−1. Then,

there is a unique path P(w,σ) of A over (w,σ). Moreover, we have

‖A ‖(w,σ) = weight(P(w,σ)) =
l

0≤ j≤n−1

(
⊔

1≤i≤m

(
rj(Xi)⊓ki

)
)

=
l

0≤ j≤n−1

(∥∥∥∥
(
⊕

1≤i≤m

((x ∈ Xi)→ ki)

)∥∥∥∥
{x}

(w,σ [x → j])

)

=

∥∥∥∥
⊗

x �

(
⊕

1≤i≤m

((x ∈ Xi)→ ki)

)∥∥∥∥(w,σ) = ‖ϕ‖(w,σ).

Therefore, ‖A ‖= ‖ϕ‖, which implies that ‖ϕ‖ ∈ Rec
(
K,A{X1,...,Xm}

)
, and this concludes our proof. �

For the converse of Theorem 28 we shall need the next lemma.

Lemma 29 Let A = (Q, I,T,F, in,wt, ter) be an MK-fuzzy automaton over A and K. Then there is an

MK-fuzzy automaton A ′ = (Q′, I′,T ′,F ′, in′,wt ′, ter′) over A and K such that in′(q) = 1 for every q ∈ I′

and ter′(q) = 1 for every q ∈ T ′, and ‖A ′‖(w) = ‖A ‖(w) for every w ∈ A+.

Theorem 30 Let A be a linearly ordered alphabet. If an MK-fuzzy language s∈K 〈〈A∗〉〉 is recognizable,

then it is RMSO-definable.

Proof. [Sketch] Let A = (Q, I,T,F, in,wt, ter) be an MK-fuzzy automaton over A and K, and assume
firstly that ‖A ‖(ε) = 0. By Lemma 29, we can assume that in(q) = 1 for every q ∈ I and ter(q) = 1
for every q ∈ F . We intend to show that ‖A ‖ is an RMSO-definable MK-fuzzy language. For this,
we can follow the proof of Thm. 5.5. in [6]. Nevertheless, in our case we have, in addition, to take
care for the order of the paths of A over any word w ∈ A+, as well as the order of the corresponding
assignments. For every transition (p,a,q) ∈ T , we consider a second order variable Xp,a,q and we let
V = {Xp,a,q | (p,a,q) ∈ T}. Let m = |T |. We define an enumeration X1, . . . ,Xm of V , preserving the
order of the corresponding transitions in T . We let

ψ(X1, . . . ,Xm) := partition(X1, . . . ,Xm)∧
∧

(p,a,q)∈T

∀x � ((x ∈ Xp,a,q)→ Pa(x))∧

∀x �∀y �


(y = x+ 1)→

∨

(p,a,q),(q,b,r)∈T

(x ∈ Xp,a,q)∧
(
y ∈ Xq,b,r

)

∧

∃z �


 f irst(z)∧

∨

(p,a,q)∈T

p∈I

z ∈ Xp,a,q


∧∃z′ �


last(z′)∧

∨

(p,a,q)∈T

q∈F

z′ ∈ Xp,a,q


 .

Let w = a0 . . .an−1 ∈ A+. We define a linear order on the set of all (V ,w)-assignments satisfying ψ in

the following way. For two such assignments σ and σ ′, we let σ ≤ σ ′ iff there exists k ∈ dom(w), with

0 ≤ k ≤ n− 1, such that k ∈ σ(Xik)∩σ ′(Xi′k
) with ik ≤ i′k and j ∈ σ(Xi j

)∩σ ′(Xi j
) for every 0 ≤ j < k.

Trivially ≤ is a linear order. On the other hand, for every path Pw of A over w there exists a unique

(V ,w)-assignment σPw
satisfying ψ , i.e., ‖ψ‖(w,σPw

) = 1 and vice-versa (cf. Thm. 5.5. in [6]). Then,

we can easily get that Pw ≤ P′
w iff σPw

≤ σP′
w
. Next, we consider the formula

ϕ(X1, . . . ,Xm) := ψ(X1, . . . ,Xm)⊗
⊗

x �

(
⊕

(p,a,q)∈T

(x ∈ Xp,a,q)→ wt(p,a,q)

)
.
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Let now w = a0 . . .an−1 ∈ A+, Pw = ((qi,ai,qi+1))0≤i≤n−1 a path of A over w, and σPw
the corresponding

(V ,w)-assignment. Then, we get ‖ϕ‖
V
(w,σPw

) = weight (Pw). Finally, we consider the restricted MK-

fuzzy MSO logic sentence

ξ =
⊕

X1
. . .
⊕

Xm
�ϕ(X1, . . . ,Xm)

and we show that ‖ξ‖(w) = ‖A ‖(w) for every w ∈ A+. Hence, ‖A ‖ = ‖ξ‖, i.e., ‖A ‖ is RMSO-

definable. Next let ‖A ‖(ε) = k 6= 0. Then, by Lemma 29, we consider the MK-fuzzy automaton A ′

such that ‖A ′‖(w) = ‖A ‖(w) for every w ∈ A+. By what we have shown previously, there exists a

restricted MK-fuzzy MSO logic sentence ξ ′ such that ‖A ′‖= ‖ξ‖. We let

ξ = ξ ′⊕ (∀x �¬(x ≤ x)⊗k) .

Then ξ is a restricted MK-fuzzy MSO logic sentence, and we get ‖∀x �¬(x ≤ x)⊗k‖(w) = 0 for every

w ∈ A+, and ‖∀x �¬(x ≤ x)⊗k‖(ε) = k (cf. [6]). Hence ‖A ‖= ‖ξ‖, and this concludes our proof. �

5 Conclusion

We introduced the bimonoid K related to the fuzzification of MK-logic, and investigated MK-fuzzy

automata over K. Our models are inspired by real practical applications being in development within the

project LogicGuard [16, 17, 14, 4]. We proved properties of the class of MK-fuzzy languages accepted

by MK-fuzzy automata as well as by their deterministic counterpart. We introduced an MK-fuzzy MSO

logic and established a Büchi type theorem for the class of MK-fuzzy recognizable languages.

It is worth noting that our results can be generalized to weighted automata over any bimonoid

(K,+, ·,0,1) with the additional property that 0 · k = 0 for every k ∈ K. Indeed, one can replace ⊔
by + and ⊓ by ·.

Several problems remain open and they are under investigation, for instance, whether the class of

recognizable MK-fuzzy languages is closed under MK-conjunction, Cauchy product and star operation,

as well as whether the class of deterministically recognizable MK-fuzzy languages is closed under MK-

disjunction and conjunction, Cauchy product, and star operation. Furthermore, due to the four-valued

elements of K, there are several notions of supports and it is greatly desirable for applications to check

which of them constitute recognizable languages. It should be clear from the proofs of our results, that

the usual constructions on semiring-weighted automata cannot be always applied, even with modifica-

tions, when the weight structure is just a bimonoid. For instance, our bimonoid K is zero-sum free and

zero-divisor free. Nevertheless, one can not show that the support supp(s) = {w ∈ A∗ | s(w) 6= 0} of a

recognizable (even deterministically recognizable) MK-fuzzy language s over A and K is a recognizable

language following the usual construction on weighted automata (cf. for instance [8]). In our future

research we intend also to study MK-fuzzy automata models over infinite words.
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